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Micro-fabrication and nano-fabrication provide useful

approaches to address fundamental biological questions by

mimicking the physiological microenvironment in which cells

carry out their functions. In particular, 2D patterns and 3D

scaffolds obtained via lithography, direct laser writing, and

other techniques allow for shaping hydrogels, synthetic

polymers and biologically derived materials to create

structures for (single) cell culture. Applications of micro-

scaffolds mimicking cell niches include stem cell self-

renewal, differentiation, and lineage specification. This

review moves from technological aspects of scaffold

microfabrication for cell biological applications to a broad

overview of advances in (stem) cell research: achievements

for embryonic, induced pluripotent, mesenchymal, and

neural stem cells are treated in detail, while a particular

section is dedicated to micro-scaffolds used to study single

cells in basic cell biology.
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Introduction
The extracellular matrix (ECM) resembles an

immensely complex three-dimensional (3D) structure.

From a very general point of view, it is composed of

three classes of biomacromolecules: collagens,

proteoglycans, and glycoproteins. However, architec-

tural and compositional variations define subsets of

the ECM, reflecting cell-type specific microenviron-

ments with a unique molecular, structural, and topo-

graphical footprint (Figure 1). The complexity of such

cellular microenvironments is usually condensed in the

term ‘cell niche’. Especially fate decisions of embryonic

and adult stem cells are drastically influenced by the

molecular composition and the physical properties of the

cell niche and the term is therefore also referred to as

‘stem cell niche’. Despite being most prominently

linked to stem cells, the cellular microenvironment also

has an influence on differentiated cell types by facilitat-

ing tissue integrity and cellular physiology. Therefore,

we will use the term ‘cell niche’ in the following as a

general description for a cellular microenvironment.

Crucial niche factors not only comprise molecular com-

ponents but also the topography, geometry and stiffness

of the ECM [1]. These physical cues are sensed by a

complex interplay of several molecular programs that are

activated by mechanical and biochemical stimuli. For

further reading, we refer to detailed reviews, which

specifically cover this fascinating topic [2,3]. Thus, to

understand and control the fate decisions of cells and

tissue formation, one also has to understand and mimic

the physical properties of the cellular microenvironment

[4]. In principle, this can be done on a single cellular

level or on a macroscopic scale. Larger scale approaches

enable harvesting sufficient cell quantities for the assess-

ment of gene-expression (e.g. via PCR or mRNA

sequencing) or protein-expression (e.g. via Western blot-

ting). However, since fate decisions of early embryonic

stem cells or adult stem cells are often controlled on a

single cellular level, approaches to precisely mimic the

environment of isolated cells are also important. Given

this context, numerous studies set out to define the

cellular microenvironments, raising great hopes for stem

cell therapies and regenerative medicine.

This review briefly highlights the most widely used

techniques to reproduce ECM-like environments based

on scaffolds and presents several biological approaches for

applied and basic research, with special reference to stem

cell maintenance or stem cell differentiation and to micro-

scaffolds with single cell resolution for basic cell biologi-

cal research. The main publications addressing stem cell

maintenance and differentiation are summarized in

Table 1.



Generating (semi-)synthetic in vitro cell
niches: from 2D to 4D
Microfabrication for biological applications can be grossly

divided in two main approaches: (i) to create a structural

framework (either fully synthetic or from a biological

source) called scaffold, able to host cells under investiga-

tion, or (ii) to mix cells with biologically compatible fluids

or gels (e.g. Matrigel1) followed by deposition on a

substrate. Both methods share the basic idea that the

realized framework not only serves as the physical sup-

port, but can actively play a role in guiding cell behavior.

Indeed, very often the physical properties of the scaffold

and the spatial distribution of adhesion sites or cellular

guidance cues are key factors to induce a specific cellular

response. That said, the two approaches greatly differ

from each other, and scaffold fabrication, as well as cell

printing, can be obtained in a variety of different condi-

tions. A classification of scaffold fabrication methods

would be extremely complex, but in general, each tech-

nique should be considered according to its advantages

and drawbacks, which cover the following aspects: (i)

materials used; (ii) fabrication procedure; (iii) dimension-

ality and resolution achieved. These have also direct

consequences on the kind of analyses that can be per-

formed when culturing cells. Micro-scaffolds are suitable

to study cell behavior with subcellular resolution and

within well-defined geometrical parameters. In contrast,

easily scalable technologies allow for the rapid fabrication

of scaffolds with lower resolution and less defined geom-

etries. These scaffolds are, however, useful to harvest

sufficient cell amounts for high throughput ‘omics’ stud-

ies. The benefits and limitations of the most frequently
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Microenvironment of cells.

In native tissues, cells are surrounded by a complex and heterogenous cell niche. Each cell niche is composed of a specific geometrical,

topographical and molecular architecture, giving rise to an individual footprint. Additionally, dynamic factors like shear flow (e.g. in vessels),

tension or compression act on the niche. Cells sense these individual properties via transmembrane receptors like ion channels, cell cell contacts

or cell matrix contacts, and subsequently activate intracellular cascades that tune, for example, the cytoskeletal structure and the nuclear import

of transcription factors. This relationship between the cells and their structural environment ultimately drives cellular fate decisions like cell

migration, differentiation or proliferation.



used materials and fabrication techniques are schemati-

cally compared in Figure 2.

From the materials perspective, hydrogels are widely

used in scaffold fabrication due to their high water-con-

tent and tissue-like stiffness. Usually, these can be easily

formed in two-dimensional (2D) or three-dimensional

(3D) shapes, and eventually be processed via several

techniques, ranging from lithography, to electrospinning,

direct laser writing (DLW), and others [5�]. A key feature

of some classes of hydrogel scaffolds is also represented

by their capability of modifying their physical-chemical

properties upon variation of external conditions (usually

referred to as stimuli responsiveness). This widens the

spectrum to investigate cell behavior, by adding a fourth

dimension to biological experiments, that is, changing the

properties of the environment.

4D scaffolds, however, are not only obtained using hydro-

gels. Indeed, complex dynamical systems can also be

implemented with microfluidic technologies [6], or by

using synthetic polymers which can change their proper-

ties over time depending on the environmental condi-

tions. An advantage of synthetic polymers is their superior

suitability to manufacture 3D scaffolds via DLW litho-

graphic approaches [7]. Although the mechanical proper-

ties of these polymers usually differ from those of the

physiological microenvironment, they have provided sub-

stantial insights in understanding cell behavior in artificial

3D niches [8,9]. In addition, micro-channels and nano-

pillars, fabricated from stiff polymers, have been used to

investigate single cell migration [10��] and mechanotrans-

duction events on a subcellular scale [11]. In summary,

DLW allows to produce virtually any 3D geometry with

subcellular resolution, however, at present the serial

Table 1

Selection of scaffold based approaches to guide stem cell maintenance and differentiation

Cell

type

Scaffold Outcome/Application Ref.

iPSC Neutral charged PDMAAm and negatively charged

PNaAMPS hydrogels

Both hydrogels showed higher proliferation and expression of

pluripotency marker genes compared to Gelatin coated polystyrene

scaffolds in the absence of feeder cells.

[17]

iPSC Electrospun polystyrene scaffold Pluripotency was maintained for 10 consecutive passages in a xeno free

environment.

[18]

eSC DLW fabricated micro scaffolds made from IP L

photoresist

Stem cells showed higher proliferation rates when cultured in narrow 3D

environments while the proliferation decreased on narrow 2D islands.

[20]

hSC Porous polyHIPE foam scaffolds The scaffolds support hSC and progenitor cell culture (erythroid

progenitor cells and neutrophils) for 28 days.

[21]

hSC Zwitterionic poly(carboxybetaine) based Hydrogel The study achieved a 73 fold increase in long term hematopoietic stem

cell frequency and the expanded HSPCs were capable of hematopoietic

reconstitution for 24 weeks.

[22]

hSC Magnetic PEG Hydrogel Proof of concept for a perfusion system, showing controlled and

contactless movement of cell laden magnetic hydrogel in culture media

for hSC cultivation.

[23��]

hSC

and

mSC

Carboxymethylcellulose based cryogel hSCs in co culture with supportive mSCs assemble a minimalistic and

injectable 3D hematopoietic niche, which maintains over 12 weeks in

immunodeficient mice.

[24]

mSC Electrospun hydroxyapatite/collagen/chitosan

nanofibers

The scaffold favors proliferation and attachment of mSCs over control

substrates and enhances the expression of osteogenic marker genes.

[26]

mSC Electrospun polycaprolactone microfibers,

functionalized with collagen I, heparin and ceramic

based bioglass

Proof of concept study that incorporates inorganic and biologically active

compounds in the scaffold to serve as a multifunctional membrane during

osteogenic differentiation and regeneration

[28]

mSC Polypyrrole based array of electrochemically switchable

Nanotubes

Multicyclic attachment/detachment of mSCs promotes osteogenic

differentiation independent of surface stiffness

[31]

mSC Hyaluronic acid based hydrogels of different molecular

weights

The low strength hydrogel maintained mSC properties by activating the

Wnt/b catenin pathway for 1 week, while the high molecular weight

hydrogel with a higher mechanical strength promoted cartilage

differentiation

[33]

mSC Composite scaffold: Electrospun microfibers combined

with a thermosensitive PEG PNIPAAm hydrogel

The reverse thermosensitivity of the hydrogel allowed its dissolution/

hydration upon cell seeding. It was demonstrated that the hybrid scaffold

enhanced chondrogenic differentiation based on chondrocytic gene and

protein expression.

[34]

nSC Hydrogels, bifunctionalized with polylysine and the

laminin binding motif IKVAV

Bifunctional hydrogels promote differentiation and attachment of

embryonic cortical neurons and expansion of adult neurogenic clones.

[42]

nSC Hyaluronic acid based hydrogel The scaffold increased differentiation towards electrophysiologically

active immature neurons. The fate towards oligodendrocytes was

increased, while the differentiation into reactive astrocytes was reduced.

The 3D cultures were maintained for at least 70 days in minimal medium

[43]
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Scaffolds for (stem) cell culture.

Panel (a): Qualitative rating ( = poor, = medium, = good) of the suitability of the materials described in the main text with respect

to the type of scaffold that can be realized (dimensionality) and to the microfabrication technique used for shaping and/or patterning (UV =

ultraviolet mask lithography, DLW = direct laser writing, ES = electrospinning). Panel (b): schematic view of cell seeding approaches for hydrogels

based scaffolds and of structuring techniques for 3D synthetic polymers made or biopolymers made structures. Panel (c): Light induced 3D

patterning of cell laden hydrogels: photocleavable EGF is encapsulated in a PEG based gel and selectively cleaved via masked UV irradiation

(left); spheroids of HeLa cells (right, blue) proliferate preferentially on regions with still tethered EGF (green). Scalebars 200 mm. Modified with

permission from Ref. [17]. Panel (d): Scanning electron micrograph of silk fibroin freeze dried scaffolds for cancer cells (LNCaP) cultivation.

Scalebar 100 mm. Modified with permission from Ref. [13]. Panel (e): 3D multi material scaffold fabricated via DLW for single cell controlled

stretching. Scalebar 15 mm.



production of scaffolds is time-consuming and requires

specific equipment.

Unsurprisingly, the previous strategies can be combined

[12�] and enriched by the use of further biocompatible

nanofiber-based materials, for example, silk [13], gelatin

and gelatin-methacrylate (GelMA) hydrogels [14], and

others [15]. In this case, precise fabrication of scaffolds is

still challenging, but current methodologies tend to con-

verge to structures with unprecedented mechanical,

chemical and physical capabilities to mimic the physio-

logical environment of cells [16�,17]. In the following, we

will give an overview about several state-of-the-art

approaches that use micro-scaffolds to direct the cellular

behavior.

Scaffolds for stem cell self-renewal and
homing
Micro-scaffolds are considered a promising tool to main-

tain and prolong the pluripotency of stem cells in a xeno-

free environment. Pluripotent embryonic stem cells

(eSC) and induced pluripotent stem cells (iPSC) possess

enormous medical potential but their handling in vitro is

highly demanding. Each stem cell type requires individ-

ualized culture conditions and animal-derived compo-

nents to facilitate their self-renewal and as mentioned

above, maintenance of these delicate pluripotency states

requires highly defined growth conditions under con-

trolled parameters. The use of porous hydrogels or micro-

fiber-based scaffolds is a well-known approach for stem

cell homing and allows xeno-free cultivation of eSC/

iPSCs for up to two months or ten consecutive passages,

as shown by the expression of pluripotency markers and

the formation of all three germ layers in teratoma assays

[18,19]. Fully synthetic structures also possess some

potential in this regard. ‘Nichoids’ fabricated via DLW

can maintain the pluripotency of mouse eSCs for two

weeks in the absence of a feeder layer or exogenous

conditioning factors [20]. Interestingly, it was recently

shown that the cell division rate of single mouse eSCs

increased in 3D scaffolds, when the adhesive area was

more confined, while it decreased, when the adhesive

area of 2D islands was smaller [21]. This demonstrates

that the proliferation rate and gene expression profile of

eSCs and iPSCs can be influenced simply by the size and

adhesion geometry of the environment. Approaches with

fully defined geometries therefore might bear great

potential for future culture systems, allowing clonal

expansion under comprehensible conditions.

Concerning adult SCs, promising results were recently

achieved for hematopoietic stem cells (hSCs). Hydrogels

or other porous polymer scaffolds that mimic the spongy

structure of the hSC niche within bones (Figure 3a and f),

have more effectively preserved the stemness of hSCs

and progenitor cells as compared to standard 2D culture

systems [22,23��,24], especially when hSCs were co-

cultured with mesenchymal stem cells (mSCs)

(Figure 3b) [25�]. Bai et al. achieved a 73-fold increase

in long-term hSC frequency when using zwitterionic 3D

hydrogels as a culture system [23��]. It was suggested that

this culture system promotes the self-renewal of hSCs by

inhibiting the excessive production of reactive oxygen

species and the expanded hSCs were capable of hemato-

poietic reconstitution for at least 24 weeks in immuno-

compromised mice.

Scaffolds for mesenchymal stem cell
differentiation and lineage specification
Many approaches try to harvest the power of biomimetic

scaffolds to support and guide the differentiation of adult

stem cells, that is, to ultimately provide an inexhaustible

source of post-mitotic cells. mSCs are promising candi-

dates in this regard. The differentiation of mSCs is a

mechanosensitive process and although the biomolecular

mechanisms are not investigated to the last detail, it is a

well-established concept that the topography and stiff-

ness of the substrate have a major impact on the mSC

differentiation into adipose, myogenic or osteogenic pre-

cursor cells.

Of high impact are bioinspired scaffolds that support and

enhance osteogenic cell differentiation. Among the most

used are fibrous meshworks (Figure 3c and d), either

directly derived from biological sources or fabricated from

synthetic materials that are biologically functionalized

subsequently. Biologically derived materials include

decellularized and aligned ECM [26], collagen/chito-

san-derived nanofibers [27] and nanofibrillar cellulose

hydrogels [28], while polycaprolactone is a popular syn-

thetic material [29�]. Additionally, the fiber orientation

can be aligned or random (Figure 3d), and inorganic

components have been successfully incorporated in the

scaffold backbone to tune the rheological properties of

the scaffold and to enhance the production of mineralized

bone matrix [29�,30].

Further material improvements try to incorporate smart

materials in the scaffold design. A recent study used a

conductive material PEDOT:PSS and produced highly

porous, collagen I functionalized scaffolds that support

osteogenic differentiation [31]. Another study prepared a

polypyrrole scaffold that can be reversibly switched

between highly adhesive hydrophobic nanotubes and

poorly adhesive hydrophilic nanotips through an electro-

chemical oxidation/reduction process. Here, multicyclic

attachment/detachment of mSCs was shown to activate

intracellular mechanotransduction and osteogenic differ-

entiation independent of surface stiffness and chemical

induction, as shown by increased BMP2 and bone sialo-

protein expression [32]. Again, the use of fully defined

synthetic scaffolds might be another approach that might

bear great potential. Since DLW-fabricated scaffolds can

be precisely tuned with regard to their rheological and
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Examples of three basic scaffold types and exemplary applications.

Panel (a): A thiol containing biomimetic porous hydrogel scaffold was polymerised by high internal phase emulsion and employed for human

peripheral blood haematopoietic stem and progenitor cell expansion and proliferation. Scale bar 100 mm. Modified with permission from Ref. [22].

Panel (b): A collagen coated, porous carboxymethylcellulose micro scaffold (blue) was used to assemble a 3D hematopoietic niche in vitro by co

culture of supportive OP9 mesenchymal cells (green) and HSPCs (red). This set up maintained stromal and hematopoietic populations over

12 weeks after injection in immunodeficient mice. Modified with permission from Ref. [25�]. Panel (c): Example of a nanofiber scaffold that was

functionalized by exploiting host guest interactions between the electrospun cyclodextrin nanofibers and an adamantane conjugated laminin

derived IKVAV epitope to support neurite outgrowth. Scale bar 10 mm. Modified with permission from Ref. [41]. Panel (d): Randomly oriented or

aligned polycaprolactone nanofiber scaffolds were fabricated by electrospinning and functionalized with collagen I and heparin, and a ceramic

based bioglass, to analyze osteogenic induction of mesenchymal stromal cells (highlighted in red or green). Modified with permission from Ref.

[29�]. Panel (e): An array of fully synthetic 3D micro scaffolds was fabricated via 3D DLW, to guide the shape of single cells in a confined 3D

environment. For the selective functionalization of the scaffolds, different photoresists with protein repellent or protein adsorbing properties can be

used in sequential production steps. In the lower pictures, it can be seen that the cell (false colored in green) specifically adheres to the spatially

defined adhesion sites (false colored in red). Scalebars represent 150 mm for the upper picture and 5 mm for the lower pictures. Panel (f): To imply

a dynamic system, the scaffold backbones can be further tuned, for example, by including a magnetic field in hydrogels for perfusion systems.

Modified with permission from Ref. [24]. Panel (g): Stimuli responsive materials can also be used for fabricating scaffolds able to stretch single

cells symmetrically or non symmetrically. Modified with permission from Ref. [12�].



geometrical properties, bone-mimetic scaffolds could be

individually adapted to the compact or spongy substruc-

tures of bones [33].

Importantly, such systems are not limited to osteogenesis.

Hyaluronic acid-based hydrogels with adjustable stiff-

nesses [34] and electrospun PEG-based hydrogels [35]

were successfully employed for cartilage differentiation

and recent works improve the output/success rate by

refining the microstructures of the scaffolds [36,37] or

by including a dynamic dimension like degradability [38]

or thermosensitivity [35]. Future studies might shed more

light on the intracellular cascades and molecular mecha-

nisms that drive the cellular fate decisions of mSCs

growing in these different scaffold types.

Scaffolds for neural stem cell differentiation
and lineage specification
Another cell type that displays high potential in this

regard are neuronal stem cells (nSCs). Selective differen-

tiation of neural progenitor cells on scaffolds functional-

ized with a laminin-derived peptide motif (IKVAV) is a

well-established strategy for more than 15 years [39].

Today’s material toolbox for electrospun nanofiber-scaf-

folds and hydrogel-scaffolds comprise (among others) silk

fibroin [40], cyclodextrin/adamantane host-guest com-

plexes [41], hyaluronic acid [42] or polyacrylamide [43].

Basically, all harvest the power to trigger neurite exten-

sion and  depending on the functionalization  can

support certain neuronal fates [44�].

Another basic idea is to incorporate conductive materials

for electrical stimulation and transmission in the scaffolds.

Approaches include magnetoresponsive PEG-based

microgels [45], conductive PEDOT composite materials

[46 48], polypyrrole hybrid polymers [49] and graphene,

which basically showed the upregulation of neuronal and/

or glial marker proteins. Because of the myriad of gra-

phene-based approaches, we refer to a review article

specifically covering this topic [50].

Further approaches try to improve these materials by

directing the neurite formation to spatially resolve the

neuronal network formation. DLW was used to fabri-

cate proof-of-concept scaffolds with micro-channels to

spatially restrict and guide neurite outgrowth [51,52].

In contrast to 2D conditions, such 3D scaffolds sup-

ported the long-term culturing of neuronal networks for

up to 120 days [53] and allow to principally guide the

neuronal outgrowth, again highlighting the need for

micro-scaffolds of cellular scale and defined growth

parameters.

Micro-scaffolds with single cell resolution for
basic research
Geometrically defined micro-scaffolds offer great possi-

bilities for basic cell biological research by filling the gap

between oversimplified experimental set-ups on conven-

tional 2D substrates and the extremely complex in vivo
situation. The opportunity to shape the scaffolds in the

desired geometry thereby opens numerous ways for cus-

tomized and nano-structured 3D substrates with single

cell resolution (Figure 3e).

Since the migratory behavior of cells is strongly influ-

enced by the properties of the ECM, cell migration is a

prime example that can be investigated in more detail

using micro/nano-structured substrates. Classic cell

migration assays like wound healing or random migration

assays, investigate the cell movement on plain coverslips

with basically unlimited adhesive area and no directional

orientation. In vivo, the migratory route and modus (mes-

enchymal, amoeboid, lobopodial) are, however, defined

by environmental cues like chemogradients but also

topography-gradients or stiffness-gradients. Therefore,

microfabricated substrates can be precisely customized

to investigate such cues in more detail. Renkawitz and

colleagues fabricated micro-engineered pillar forests and

obstacles to study how leukocytes find the way of least

resistance in complex 3D microenvironments [10��]. In

another approach polyacrylamide-based nanopatterns of

different elastic rigidities have been used to study lym-

phocyte migration in structurally and mechanically

defined microenvironments [54]. Here, it was shown that

lymphocytes more effectively navigate through 3D

microenvironments, when Rho pathway-dependent cor-

tical contractility was increased. Similar platforms were

used to investigate the contact guidance and mechan-

osensing of cancer cells [55]. Bioengineered scaffolds

have also proven as a valuable tool to test the migration

and invasiveness of cancer cells [56,57]. Tumorigenic

tissue is often stiffer than healthy tissue and promotes

cell migration and invasion into stromal tissue. Therefore

testing the invasiveness/aggressiveness of cancer cell

lines or patient-derived tumour cells in a standardized

experimental set-up, for example, by tuning the mechan-

ical properties of stent-like or cage-like micro-scaffolds

[58], is a promising approach.

Besides migration and invasion studies, 3D micro-scaf-

folds can be customized towards various applications.

Recently, rectangular 3D micro-scaffolds were used to

improve the maturation of iPSC-derived cardiomyocytes.

Directing the cellular shape of single cardiomyocytes

towards the desired shape lead to improved structural

maturation and faster Ca2+ transient kinetics [59]. In

another approach, composite micro-scaffolds were com-

bined with a stimuli-responsive hydrogel to mechanically

stretch single cells in a defined 3D environment and their

intracellular force response was traced at subcellular

resolution by investigating actin cytoskeletal rearrange-

ments under external stress (Figure 3g) [12�]. These

approaches show the great versatility of nanofabricated

scaffolds for basic cell biological studies.



Conclusion
Despite the fact that significant improvements have been

achieved in the last years, the objective to create an in
vitro environment, accurately mimicking the structure

and functions of ECM is still far from being reached.

Indeed, most of the reviewed approaches just try to shed

light on the influence of one physical-chemical-mechani-

cal characteristic of the fabricated micro-scaffolds on one

cell behavior (e.g. differentiation or proliferation). How-

ever, since the natural cell environment is extremely

complex and many of factors play a role in homeostasis,

more complex models for cell investigation are required.

In this direction, stimuli-responsive materials represent a

significant advancement, as they allow for studying cell

dynamics in controlled conditions, for example, vessel

formation under dynamic flow or bone mineralization

under cyclic stretch/compression. However, micro-scaf-

folds should be further improved, for example, to host

more than one cell line at the same time, in order to better

mimic the complexity of the ECM. In addition, more in-

depth evaluations, will help to decipher the biomolecular

pathways that trigger the cellular responses upon chang-

ing environmental cues.
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13. Bäcker A, Erhardt O, Wietbrock L, Schel N, Göppert B, Dirschka M,
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