KIT | KIT-Bibliothek | Impressum | Datenschutz

Bayesian optimization of injection efficiency at KARA using Gaussian processes

Xu, Chenran ORCID iD icon; Boltz, Tobias; Mochihashi, Akira; Santamaria Garcia, Andrea; Müller, Anke-Susanne

Abstract (englisch):

The injection at the KIT storage ring KARA (Karlsruhe Research Accelerator) is tuned by many parameters, such as the strength of various magnets and the RF frequency. The tuning process is currently performed manually by machine operators, which is time consuming and can get stuck in local optima. To address this, Bayesian optimisation is applied, i.e. a technique for optimising noisy black-box functions. Using Gaussian processes (GPs) for regression we obtain a probabilistic model, which allows the integration of prior knowledge about the physical process. The model can be queried during the optimization procedure to efficiently explore the given parameter space, leading to comparably fast convergence. In this contribution, we demonstrate the implementation of Bayesian optimization to automate and optimize the injection process.

Chenran Xu acknowledges the support by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology".

Zugehörige Institution(en) am KIT Institut für Beschleunigerphysik und Technologie (IBPT)
Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Vortrag
Publikationsdatum 17.03.2021
Sprache Englisch
Identifikator KITopen-ID: 1000138949
HGF-Programm 54.11.11 (POF IV, LK 01) Accelerator Operation, Research and Development
Veranstaltung DPG-Frühjahrstagung / Arbeitskreis Beschleunigerphysik - AKBP: Beam Dynamics - AKBP 1.7 (2021), Online, 15.03.2021 – 19.03.2021
Externe Relationen Konferenz
Schlagwörter IBPT, LAS, DPG-Frühjahrstagung AKPB 2021
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page