KIT | KIT-Bibliothek | Impressum | Datenschutz

Designing high-performance superconductors with nanoparticle inclusions: Comparisons to strong pinning theory

Jones, Sarah C.; Miura, Masashi; Yoshida, Ryuji; Kato, Takeharu; Civale, Leonardo; Willa, Roland; Eley, Serena

Abstract:

One of the most promising routes for achieving high critical currents in superconductors is to incorporate dispersed, non-superconducting nanoparticles to control the dissipative motion of vortices. However, these inclusions reduce the overall superconducting volume and can strain the interlaying superconducting matrix, which can detrimentally reduce T$_{c}$. Consequently, an optimal balance must be achieved between the nanoparticle density n$_{p}$ and size d. Determining this balance requires garnering a better understanding of vortex–nanoparticle interactions, described by strong pinning theory. Here, we map the dependence of the critical current on nanoparticle size and density in (Y$_{0.77}$, Gd$_{0.23}$)Ba$_{2}$Cu$_{3}$O$_{7−δ}$ films in magnetic fields of up to 35 T and compare the trends to recent results from time-dependent Ginzburg–Landau simulations. We identify consistency between the field-dependent critical current J$_{c}$ (B) and expectations from strong pinning theory. Specifically, we find that J$_{c}$ ∝ B$^{−α }$, where α decreases from 0.66 to 0.2 with increasing density of nanoparticles and increases roughly linearly with nanoparticle size d/ξ (normalized to the coherence length). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000139025
Veröffentlicht am 17.10.2021
Originalveröffentlichung
DOI: 10.1063/5.0057479
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theorie der Kondensierten Materie (TKM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2021
Sprache Englisch
Identifikator ISSN: 2166-532X
KITopen-ID: 1000139025
Erschienen in APL materials
Verlag American Institute of Physics (AIP)
Band 9
Heft 9
Seiten Art. Nr.: 091105
Vorab online veröffentlicht am 07.09.2021
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page