
Detecting Violations of Access Control and Information
Flow Policies in Data Flow Diagrams

Stephan Seifermann∗, Robert Heinrich, Dominik Werle, Ralf Reussner

KASTEL – Institute of Information Security and Dependability, Karlsruhe Institute of
Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract

The security of software-intensive systems is frequently attacked. High fines or
loss in reputation are potential consequences of not maintaining confidential-
ity, which is an important security objective. Detecting confidentiality issues in
early software designs enables cost-efficient fixes. A Data Flow Diagram (DFD)
is a modeling notation, which focuses on essential, functional aspects of such
early software designs. Existing confidentiality analyses on DFDs support ei-
ther information flow control or access control, which are the most common
confidentiality mechanisms. Combining both mechanisms can be beneficial but
existing DFD analyses do not support this. This lack of expressiveness requires
designers to switch modeling languages to consider both mechanisms, which
can lead to inconsistencies. In this article, we present an extended DFD syn-
tax that supports modeling both, information flow and access control, in the
same language. This improves expressiveness compared to related work and
avoids inconsistencies. We define the semantics of extended DFDs by clauses in
first-order logic. A logic program made of these clauses enables the automated
detection of confidentiality violations by querying it. We evaluate the expres-
siveness of the syntax in a case study. We attempt to model nine information
flow cases and six access control cases. We successfully modeled fourteen out
of these fifteen cases, which indicates good expressiveness. We evaluate the
reusability of models when switching confidentiality mechanisms by comparing
the cases that share the same system design, which are three pairs of cases. We
successfully show improved reusability compared to the state of the art. We
evaluated the accuracy of confidentiality analyses by executing them for the
fourteen cases that we could model. We experienced good accuracy.

Keywords: data flow diagram, access control, information flow

∗Corresponding author
Email addresses: stephan.seifermann@kit.edu (Stephan Seifermann),

robert.heinrich@kit.edu (Robert Heinrich), dominik.werle@kit.edu (Dominik Werle),
ralf.reussner@kit.edu (Ralf Reussner)

Preprint submitted to Journal of Systems and Software October 18, 2021

1. Introduction

In software-intensive systems, software contributes an essential influence on
the design, construction, deployment, and evolution of the system as a whole
[1]. Consequently, software-intensive systems certainly cover all software sys-
tems but also cover, for example, modern production systems, cyber-physical5

systems or the internet of things. Many attacks target software-intensive sys-
tems [2, 3]. Thus, establishing and maintaining security of software-intensive
systems is necessary. There are various security objectives that shall be estab-
lished. Confidentiality, which is one of these security objectives, ensures that
“information is not made available or disclosed to unauthorized individuals, en-10

tities, or processes” [4]. Confidentiality is hard to achieve in software-intensive
systems [5] but it is important to consider in order to avoid high penalties and
loss of reputation. Strong data protection regulations such as the General Data
Protection Regulation (GDPR) [6] of the European Union carry high financial
penalties for failing to protect the data of users. For instance, British Airways15

is facing a penalty [7] of £20m and Marriott International is facing a £18.4m
penalty [8] because of confidentiality breaches. Another threat to companies is
loss of reputation after information disclosure. For instance, Facebook users lost
trust [9], which also affected the market value, after the Cambridge Analytica
scandal [10].20

Considering confidentiality is not a small polishing step in the development
process but has to be done right from the beginning on. Big software vendors
like Microsoft already consider confidentiality in all development phases [11].
Considering confidentiality in the software design is especially crucial to avoid a
significant increase in the overall development effort: Boehm et al. [12] reported25

that fixing an issue becomes more expensive, the later it is fixed. Therefore,
issues should be fixed as early as possible in the development process. The same
holds for security issues in the development process [13, 14, 15]. This is critical
because design issues cause about 50 % of all security issues [15]. Ensuring
proper software designs does not free developers from considering confidentiality30

in the remaining phases but builds a solid foundation for further phases by
identifying and fixing fundamental issues that can barely be fixed later even
when spending considerable effort.

Model-based confidentiality analyses are appropriate for identifying confi-
dentiality violations caused by a confidentiality issue in software design, as35

Jürjens [16] demonstrated as part of a case study. A confidentiality violation
is a detectable violation of a confidentiality requirement such as a system that
receives data, to which it should not have access. A confidentiality issue is the
reason why a confidentiality violation occurs. For instance, a system might ac-
quire wrong data because of a wrong service call. Manual inspections of system40

designs can detect confidentiality violations but this task is complex and labor-
intensive, which impedes fast and early detection of violations. A modeling
language that is not capable of representing the important aspects for detecting
confidentiality violations makes the detection process even harder. Automated
model-based confidentiality analyses operating on appropriate models have the45

2

potential to speed up finding violations [17]. Especially, model-based confiden-
tiality analyses operating on DFDs are promising because security problems tend
to follow the data flow [18], i.e. to identify the cause of a violation, it is often
necessary to follow the path that the data took. We already demonstrated that
model-based confidentiality analyses based on software designs given as data50

flows can yield valuable results in Industry 4.0 settings in previous work [19].
DFDs are part of, among others, the curriculum of requirements engineering
certifications ,such as the IREB certification [20], and textbooks on require-
ments engineering, such as [21, 22], which is why designers are usually familiar
with DFDs and do not require a steep learning curve.55

Confidentiality analyses must support access control and information flow
control because both are important confidentiality mechanisms: Access control
is the standard for protecting confidential data [23]. Therefore, it is commonly
used in practice. For instance, a system might violate an access control re-
quirement by providing a user with information of a certain type, which should60

be kept secret from that particular user. Information flow control can detect
information leaks by data propagation that allow drawing conclusions without
direct data flows [24]. For instance, a system might violate an information flow
requirement by providing a user with information that has been derived from
other information, which in turn should be kept secret from that particular65

user. Simple information flow control approaches such as taint analysis [25] are
applied in practice but more powerful information flow control approaches such
as fine-grained noninterference enforcements are not [26]. Access control and
information flow control are valid options to use depending on the system and
the development context. Even combinations of simple information flow con-70

trol and access control are possible at implementation level [27, 28], which can
improve the protection of information. If modeling and analysis approaches are
not capable of representing information flow and access control, the chances are
high that they are not applicable in a significant amount of cases in practice.

This article addresses the automatic detection of confidentiality violations in75

data-oriented software designs. Related work such as [29, 30, 31] (discussed in
detail in Section 4) as well as our previous work [32] already suggested modeling
languages and analysis semantics in order to realize automated confidentiality
analyses of software designs. Nevertheless, we still see the need for further re-
search because of the following challenges that neither related work nor our80

previous work addressed comprehensively so far: Ch1) A systematic consider-
ation of all possible paths, which data can take in a system design, is necessary
to find violations systematically. Ch2) Modeling and analyzing information flow
and access control within separate artifacts introduces consistency issues, so a
consistent modeling and analysis approach, which supports both confidential-85

ity mechanisms, is necessary. Ch3) User-defined analyses are necessary to cope
with specific analysis needs, which are hard or tedious to define in terms of
established confidentiality mechanisms. We describe these challenges in more
detail in Section 2. The following two contributions address these challenges:

C1) Extended DFD Syntax. We specify an extended DFD syntax by a meta-90

model that addresses the previously described challenges via syntactical exten-

3

sions for representing confidentiality mechanisms. The metamodel introduces
the concept of alternative data flows via pins to represent multiple data sources
and destinations (Ch1). The metamodel distinguishes between system parts
that depend on particular confidentiality mechanisms and system parts that95

do not. Everything related to specific confidentiality mechanisms is encapsu-
lated in extensions that can be defined by users (Ch3). An extension consists
of confidentiality properties and behavior descriptions, i.e. descriptions of how
the system changes these properties during its execution. The metamodel can
represent information flow and access control (Ch2) by such extensions.100

C2) DFD Semantics for Confidentiality Analyses. We introduce analysis se-
mantics based on label propagation that support various types of confidentiality
analyses. Confidentiality properties are mapped to labels. Behavior descrip-
tions are mapped to label propagation functions. An analysis is defined by a
comparison of labels resulting from the label propagation with expected labels105

stemming from requirements. The comparison can cover information flow and
access control analyses (Ch2) as well as user-defined analyses (Ch3). The se-
mantics explicitly consider all possible data flows as well as their combinations,
i.e. all data flow paths (Ch1).

We evaluate the presented modeling and analysis approach in a case study110

including fifteen cases. A case consists of a system, confidentiality require-
ments given in terms of a particular confidentiality mechanism as well as the
properties and behaviors required to reason about confidentiality. We evalu-
ate three aspects of the approach: the expressiveness in specifying systems and
analyses, the reusability when replacing confidentiality mechanisms as well as115

the accuracy of analyses. We evaluate information flow analyses on nine cases
and access control analyses on six cases. All cases used to evaluate information
flow analyses and half of the cases used to evaluate access control analyses stem
from related work. The results indicate good expressiveness and accuracy as
well as improved reusability compared to the state of the art.120

The remainder of this article is structured as follows. Section 2 describes the
three challenges that we address. We describe the running example to illustrate
our approach throughout the article in Section 3. Section 4 covers the discussion
of the state of the art in DFD semantics as well as design time confidentiality
analyses. An overview on how the approach works is given in Section 5. The core125

contributions are the syntax and the semantics, which we describe in Section 6
and Section 7, respectively. We show how to detect confidentiality violations
using both contributions in Section 8. We briefly report on our tooling in Sec-
tion 9. Section 10 presents the evaluation of the expressiveness and reusability
of the syntax as well as the accuracy of defined analyses. Section 11 concludes130

the article.

2. Challenges

In this section, we describe the challenges in using the DFD syntax of De-
Marco [33] for detecting violations of confidentiality requirements. DFDs as
introduced by DeMarco [33] are graphs presenting a functional viewpoint on135

4

systems based on data processing. There are only four fundamental elements:
Data flows are unidirectional edges that connect nodes to describe a data trans-
mission between them. Source and sink nodes (also called actors) start or
terminate a sequence of data flows. Process nodes transform incoming data to
outgoing data. File nodes (also called stores) persist and emit data. DeMarco140

describes the semantics of DFDs in an intuitive but incomplete way, so there is
no standard semantics.

The lack of full-fledged semantics and shortcomings of the simple syntax
make automated analyses of DFDs challenging. Especially, we see the following
three open challenges that have not been addressed sufficiently yet.145

Ch1) Exploration of multiple data flow paths. A data flow path is a sequence
of nodes, which a data item took to reach a particular node. Multiple paths
providing the same type of data to the same node commonly occur in realistic
applications. For instance, branches can change call destinations and thereby
also the destination of sent data. Multiple calls arriving at a certain location im-150

ply multiple sources of data for the callee. Modeling approaches have to provide
means for describing these multiple paths to represent realistic system designs.
The corresponding analysis approaches have to consider all of these paths in
a systematic way to detect possible violations. Often, not all combinations of
data flows build a valid data flow path from a logical point of view. Therefore,155

modeling approaches should provide means to specify valid combinations. A
common approach to treat multiple data flows is to require an explicit selection
of one particular path before the analysis but this is problematic because it does
not scale well: In theory, the cross product of all possible choices at every node
in a DFD has to be considered if no specification of valid paths is available.160

Ch2) Coverage of multiple confidentiality mechanisms. Usually, DFDs re-
quire extensions to capture the information required to conduct confidentiality
analyses. Single purpose models and analyses cover phenomenons pretty well
and provide accurate analyses. However, the downside of single purpose ap-
proaches is the lack of flexiblity, i.e. designers have to choose a particular confi-165

dentiality mechanism, e.g. information flow or access control, before they start
modeling. Switching to another confidentiality mechanism implies remodeling
large parts of the system in the new modeling language even if fundamental
parts, such as the system structure, could be reused. Remodeling large parts
may imply consistency problems: software designers have to ensure that the170

shared part of both models actually represents the same design. Creating (au-
tomated) mappings between two single purpose models is possible in general but
such kind of consistency management is challenging if the languages diverge too
much [34]. A feasible approach for addressing this consistency problem when
switching confidentiality mechanisms is necessary.175

Ch3) User-defined confidentiality analyses. Requirements to keep informa-
tion confidential can be formulated in various ways. However, when designers
are forced to use predefined confidentiality mechanisms, even simple require-
ments such as that a certain piece of information must not flow to one specific
node can become complex: In Role-based Access Control (RBAC), a designer180

has to specify roles and assign these roles to data and nodes in a way that the

5

simple policy can be checked by comparing roles. In information flow, a de-
signer has to do roughly the same steps but for labels instead of roles. Defining
custom analyses can be easier. To do so, designers need means for specify-
ing custom analyses and according modeling concepts. As a side effect, this185

would also allow to integrate new confidentiality mechanisms. An underlying
formalism supporting analyses of various confidentiality mechanisms as well as
an appropriate modeling language is needed to provide such means.

3. Running Example

To illustrate the concepts described in this article as well as the limitations190

of the state of the art, we use the TravelPlanner case study [35] of iFlow as a
running example. The case study consists of the four systems shown in Figure 1:
The travel planner app queries flights and books them on behalf of the user. The
credit card center app manages the credit card information of a user. An airline
service provides flight information and allows booking flights. A travel agency195

service mediates between the travel planner and the airline. The scenario is that
users query flights, load their credit card data (CCD), book the flight with the
airline and the airline pays a commission for mediating to the travel agency.

With respect to confidentiality, there are three totally ordered security levels:
The first level User,Airline,Agency contains information accessible to all parties.200

The travel agency, airline and user have clearance for this level. The travel
planner and credit card center apps belong to the user. Both apps and the user
always have the same clearance. The second level User,Airline dominates, i.e.,
it is bigger than or at least equal to (>), the first level and contains information
regarding the flight booking. The airline and user have clearance for this level.205

The third level User dominates the previous levels and contains information
only meant for the user. The user has clearance for this level. The critical
part of the system is that credit card information from level three must not be
disclosed to entities with lower clearance level. However, the airline needs the
credit card information to process the booking. Therefore, a declassification210

of the credit card data explicitly lowers the security level to the second level.
If this declassification is missing, there is a violation of the information flow
requirements.

The corresponding DFD is shown in Figure 2. The level, behavior and user
annotations are part of our extended DFD syntax. The remaining elements215

follow the notation of DeMarco [33]. Informally speaking, nodes annotated
with level 1 belong to the travel agency, nodes annotated with level 2 belong to
the airline and the remaining nodes belong to the user. A process with the user
annotation (small actor symbol on the left side) is a step executed by the user
instead of the system.220

6

acceptComission(commission)

findFlights(criteria)
flights

findFlights(query)
flights

getCCD()
ccd

releaseCCDForAirline()

bookFlight(flight, ccd)

confirmation

bookFlight(flight, ccd)

confirmationconfirmation

:TravelPlanner :CreditCardCenter :TravelAgency :Airline
findFlights(criteria)

flights

ccd

Figure 1: Interactions of components during the booking of a flight in the TravelPlanner
running example.

User (3)

dispatch
request

redirect
request

filter
flights

Flight Storage
(2)

criteria query
flightscriteria

(1)

CCD
Storage (3)

Booking
Storage (2)

FlightPlanner
(2)

ccd
(3)

read
CCD

declassify
CCD

book
flight

ccd
ccd

redirect
flights

filtered-
Flights

select
flight

filtered-
Flights

selected-
Flight

declassifiedCCD
ccd direct

flights (1)

process
booking booking

declassifiedCCD

send
commission

selectedFlight

confirm
commission

confirm
bookingcommission confirm

confirm

Levels: User (3) | User,Airline (2) | User,Airline,Agency (1) Behaviors: Declassify (D) | Forward (F) | Join (J)

3F 1F 2J

3D3F

3F 3F 1F

2J

2F 1F 2F

Figure 2: DFD of TravelPlanner example annotated with security levels (1–3) and behavior
types (D,F,J). The dashed edge introduces a violation.

7

4. State of the Art

This article is about detecting violations of confidentiality requirements in
software designs by analyzing DFDs. In order to analyze DFDs, we have to de-
fine the meaning of every element of a DFD. Various attempts (see Section 4.1),
which do not focus on confidentiality, have been made to specify formal seman-225

tics of DFDs. Although these semantics are not usable to analyze confidentiality,
they reveal shortcomings in the DFD semantics by DeMarco [33] that have to be
addressed. Often, such shortcomings stem from ambiguities caused by imprecise
or missing information in DFDs. Such ambiguities can be addressed the best
by providing additional information in an extended syntax. We derive features230

that have to be considered by DFD semantics and the corresponding syntax
based on the identified shortcomings and ambiguities. We show the significance
of these features for modeling and analyzing confidentiality by discussing where
these features are used in the running example. In general, the features are an
enabler for addressing the challenges (Ch1, Ch2, Ch3) described in Section 2.235

However, the syntax and semantics cannot address these challenges completely
on its own but require support from other parts of the approach such as the
analyses.

Approaches for identifying violations of confidentiality requirements do not
have to use DFDs but can operate on various artifacts. Because approaches240

operating on data flows are most closely related to our proposed approach,
we separate the discussion of approaches for identifying violations of confiden-
tiality requirements in Section 4.2 by the paradigm of the analyzed artifacts:
Section 4.2.1 discusses approaches operating on control flow descriptions and
Section 4.2.2 discusses approaches operating on data flow descriptions. We245

also discuss how the approaches realize the previously mentioned features and
whether the approaches sufficiently address the challenges described in Section 2.

4.1. DFD Semantics

The publications about semantics of DFDs, which we describe in the follow-
ing, frequently report on four shortcomings of the informal semantics introduced250

for DFDs by DeMarco [33]. They address these shortcomings by extensions.
Consequently, we see these extensions as required features for DFD semantics
as well as for the syntax if a syntax extension supports a semantical exten-
sion. The features are F1) properties of nodes, F2) defined meaning of multiple
inputs, F3) behaviors of processes and F4) behaviors of actors. In the follow-255

ing, we explain the significance of these features for detecting confidentiality
violations and how well solutions proposed by related semantics address these
features.

F1 Node Properties. The properties of nodes are barely covered in related
semantics but representing them is important: in our running example, it would260

not be possible to represent the clearance level of nodes, which is essential for
comparing it with the classification level of data to identify violations. France et
al. [36] and Petersohn et al. [37] define execution semantics for DFDs and cover
node properties as part of the global execution state. This means, properties can

8

change dynamically. While this is an interesting approach, dynamic annotations265

are more complex to specify compared to static annotations. Therefore, we are
interested in exploring whether static annotations are sufficient to represent and
analyze common confidentiality mechanisms.

F2 Multiple Inputs. The handling of multiple inputs is a commonly addressed
feature. If a process has multiple inputs, they usually relate to each other but it270

is not clear how. In our running example, it would be unclear that the two credit
card inputs are alternatives in book flight rather than two mandatory inputs.
However, the choice of a particular input can change the analysis results. The
simplest solution is to always require all inputs [38, 39, 37, 40] but this is often
too restrictive: Requiring all inputs would not allow modeling the alternative275

input flows ccd direct and declassifiedCCD in our running example. Expecting
all inputs, which roughly equals to expecting all possible incoming calls to be
mandatory, is no realistic assumption. Building alternative groups of particular
data flows is possible by defining preconditions to select flows [36, 41, 42, 43,
44, 45] or by building sets of data flows. However, an additional alternative280

flow implies changes in potentially multiple preconditions and sets which can
lead to inconsistent specifications in case of many data flows and preconditions
or sets. In our running example, adding another input providing credit card
data to book flight would require adjusting the precondition or the sets. We see
potential to further simplify adding an alternative data flow.285

F3 Behavior of Nodes. A formal framework to specify the behavior of pro-
cesses with respect to the effect on data is necessary. In our running example,
it is important to specify that declassify CCD lowers the classification level of
yielded data. This is not possible without means for specifying behavior. How-
ever, finding a reasonable level of abstraction for the specification of process290

behaviors is a challenging topic. Semantics focused on execution [46, 47, 37, 40]
do not consider process behavior at all. Semantics using behaviors to specify
trigger conditions (conditions for when a process can run) [42, 36, 38, 39] do
not describe an effect on yielded data. Both approaches would not allow us to
derive data properties from data processing by the system. This means man-295

ual and error-prone data classifications are necessary to still support powerful
analyses. Specifications of algorithms to calculate outputs [41, 43, 44, 45] can
represent wide ranges of effects by specifications given in general purpose lan-
guages. However, a generic specification language potentially is more complex
to use than a tailored specification language.300

F4 Behavior of Actors. The behavior of actors, i.e. the data processing done
by actors instead of systems, is often neglected but can be important to consider.
In our running example, it is crucial to know that the user does not pass the
credit card information received from the simple getter call back into the system
but the credit card information received from the declassification operation.305

Actor behaviors allow to specify that the data is received and passed back
into the system. Without such descriptions, we could only guess the origin of
data, which could lead to incorrect analysis results. About half of the identified
semantics [46, 41, 47, 38] ignore actor behavior but about the other half [42, 36,
39, 44, 45] uses the same means as for specifying process behaviors. Representing310

9

actor behavior by the same means as for representing node behaviors is beneficial
because this provides a uniform way of specifying behavior. This lowers the
learning effort.

4.2. Confidentiality Modeling and Analysis Approaches

To cope with the large amount of confidentiality modeling and analysis ap-315

proaches focusing on the design and development phases, we discuss categories
of approaches and provide examples from these categories. The examples illus-
trate limitations with respect to the required features identified before as well
as limitations in sufficiently addressing the challenges described in Section 2.
The limitations apply to the whole category. In the following, we distinguish320

between approaches analyzing control flows (Section 4.2.1) and approaches an-
alyzing data flows (Section 4.2.2). The latter approaches are closely related to
the approach we present in this article.

4.2.1. Modeling and Analysis of Control Flows

Control flow modeling and analysis approaches describe actions to be exe-325

cuted and the order, in which these actions are executed. We distinguish be-
tween approaches working on abstractions of the system [48, 35, 49, 50, 51, 52],
such as models specified in the Unified Modeling Language (UML), and ap-
proaches working with source code [25, 53, 54, 55]. Creating an abstraction of
a system usually requires an upfront effort for modeling. However, once the330

model is created, it can be changed and analyzed for different design alterna-
tives (cf. what-if-analyses) much easier compared to source code. This is because
abstracting the system usually reduces dependencies that need to be considered.

Model-based Approaches. One of the most fundamental decision when creat-
ing a model-based approach is the level of abstraction of the model to be used.335

Therefore, we distinguish approaches by the level of detail required to model the
behavior of nodes (F3). As illustrated in the overview on related model-based
approaches operating on control flows in Table 1, we see three groups of ap-
proaches: i) approaches requiring detailed specifications (s) in the top section,
ii) approaches using coarse-grained specifications such as predefined behaviors340

based on node types (nt) in the middle section and iii) approaches not describ-
ing the behavior at all (—) in the bottom section. In the following, we do not
discuss the features F1, F2 as well as the challenge Ch1 individually because all
approaches handle them the same: Properties of nodes (F1) are covered by an-
notations. The meaning of multiple incoming data flows (F2) is simple: because345

data flows only happen via calls, every individual call is an alternative data flow
consisting of potentially many data items. Consequently, all approaches address
the challenge of discovering all data flow paths (Ch1) but restrict themselves to
data flows via calls, which cannot represent more complex data flow patterns of
DFDs.350

The three approaches [48, 35, 49] requiring detailed specifications (i) use the
specifications to prove information flow properties of the system model. All
three approaches cannot represent data processing by the behavior of actors

10

Table 1: Overview on model-based confidentiality analysis approaches exploiting control flows.
Used abbreviations: a (annotations), c/r (call and return), s (specification), nt (node type),
act (activities), IF (information flow), AC (access control), wf (well-formedness).

Approach F1 F2 F3 F4 Ch1 Ch2 Ch3

Gerking et al. [48] a c/r s — c/r IF —
iFlow [35] a c/r s — c/r IF —
UMLSec [49] a c/r s — c/r IF/AC wf

Hoisl et al. [50] a c/r nt act c/r IF —

Almorsy et al. [51] a c/r — — c/r AC wf
Abdellatif et al. [52] a c/r — — c/r IF —

(F4) but limit behaviors to individual calls to the system. Therefore, they
cannot provide full traceability of data that is processed by a user. Besides355

information flow, UMLSec [49] can analyze access control. However, UMLSec
can only control access to actions but not access to data. The support for
custom analyses (Ch3) is limited to simple well-formedness constraints. This
means that custom analyses can compare annotations and report violations on
a structural level. A custom data propagation analysis is not possible without360

intrusive changes in the UMLSec source code.
There are approaches operating on more abstract behavior descriptions:

Hoisl et al. [50] use predefined behavior descriptions for processes (F3) and
actors (F4), which they assign based on the type of various nodes. This is often
simple to use for designers but also implies restrictions with respect to possible365

analyses and extensibility: The approach only supports taint analyses, which
is a simple information flow mechanism (Ch2), and does not support custom
analyses (Ch3).

Approaches not providing behavior specifications [51, 52] for processes (F3)
or actors (F4) usually only have limited analysis capabilities. The approach of370

Almorsy et al. [51] supports a simple form of access control (Ch2) and means to
define simple well-formedness analyses (Ch3). The approach of Abdellatif et al.
[52] only supports information flow and no custom analyses. Both approaches
do not analyze data propagation, so classifying data or other system elements
is a manual task and the analyses are limited to pattern matching.375

Source Code-based Approaches. There are three types of related approaches
operating on source code: taint analyses such as FlowDroid [25], full-fledged
information flow analyses such as JOANA [53] or IFcB [54], and verification
approaches such as KeY [55]. The approaches either associate properties of
nodes (F1) by the node type (e.g. a sensor of a certain type can always be380

manipulated by an attacker) or by the value of attributes (e.g. a class has
an attribute holding its clearance level). The handling of multiple inputs (F2
and Ch1) is the same as for the model-based analyses operating on control
flows. The behavior of nodes (F3) is given by the source code and the behavior
of actors (F4) is usually not covered. Because approaches based on source385

11

Table 2: Overview on model-based confidentiality analysis approaches exploiting data flows.
Used abbreviations: a (annotations), st (structure only), opt (optional flows), es (explicit flow
selection), tbl (table), pf (propagation function), s (specification), IF (information flow), AC
(access control), m (manual), q (queries), pr (proof requests).

Approach F1 F2 F3 F4 Ch1 Ch2 Ch3

Threat Modeling a st — — — IF/AC m
Yampolskiy et al. [58] a opt — — — IF/AC m
Abi-Antoun et al. [56] a st a — — IF/AC m
Sion et al. [60] a st a — — IF/AC m

Alghathbar et al. [61] a st tbl tbl — IF/AC —
Tuma et al. [29] a es pf — — IF —
Seifermann et al. [32] a es pf pf — AC q
van den Berghe et al. [30] a es s s — IF pr

code are often highly specific to certain application domains or scenarios, they
only support one particular confidentiality mechanism (Ch2) and are barely
extensible (Ch3). All approaches except for KeY only support information flow
analyses. KeY does not prescribe a particular confidentiality mechanism but
supports custom analyses (Ch3) via preconditions and postconditions. However,390

approaches based on source code are not applicable at design time as already
motivated.

4.2.2. Modeling and Analysis of Data Flows

Design time approaches exploiting data flows are closely related to our work.
Table 2 gives an overview on the approaches discussed in the following. The395

upper part of the table covers threat modeling approaches. The lower part
covers data propagation analyses.

Threat modeling [56, 57, 58, 59, 60] is frequently researched. Because of the
flexible nature of threat modeling, multiple confidentiality mechanisms (Ch2)
and custom analyses (Ch3) are usually supported. All approaches support node400

properties (F1) by static annotations and do not consider actor behaviors (F4).
All approaches allow multiple inputs but only Yampolskiy et al. [58] distinguish
mandatory and optional data flows (F2). However, the selection process of their
introduced optional flows is still not specified in [58], so systematically consid-
ering multiple flow paths is not possible (Ch1). The behavior of processes (F3)405

is often not represented: Only Abi-Antoun et al. [56] and Sion et al. [60] de-
scribe behaviors by annotations. These annotations are compared to patterns
later. All analyses are limited to purely structural analyses that perform pat-
tern matching and that do not derive properties of exchanged data based on its
processing. Therefore, reasoning about information flow requires either manu-410

ally classifying all exchanged data, which can be a complex task, or only yields
results with the same granularity as simple taint analyses. Reasoning about
multiple classification levels, like we do in the running example, is not possible.

Data propagation analyses reduce the complexity of the labeling task by not

12

requiring all data to be labeled manually. Manual labeling is repetitive and415

sometimes challenging, so it is error prone. Instead, data propagation analyses
require a limited set of initial labels that are propagated through the system. As
a consequence, only few labels have to be assigned manually, which reduces the
complexity compared to the category of approaches discussed before. FlowUML
[61] derives DFDs from UML sequence diagrams, models them in a logic pro-420

gram and describes how to detect violations of information flow requirements
as well as Discretionary Access Control (DAC) and Mandatory Access Con-
trol (MAC) requirements. Therefore, they support information flow and access
control (Ch2). FlowUML uses specific node types to represent properties of
nodes (F1), which is comparable to static annotations, and specifies behaviors425

of processes (F3) and actors (F4) by tables that relate data flows. The handling
of multiple flows (F2) and also multiple data flow paths (Ch1) is not described
in the FlowUML paper [61], so it is unclear how well realistic systems can be
modeled and analyzed by the approach. Formulating custom analyses (Ch3)
is not described. We could not find any publications reporting on an evalua-430

tion of FlowUML. Therefore, it is unclear whether the approach is applicable
to realistic systems and whether it provides accurate results.

Tuma et al. [29] as well as our previous work [32] have been evaluated for real-
istic systems. Both approaches describe the system behavior (F3) as a sequence
of label propagation functions and initial labels on data. Both approaches rep-435

resent properties of nodes (F1) as static annotations. Tuma et al. only support
information flow and do not consider the behavior of actors (F4). Our previous
work [32] only supports access control and considers the behavior of actors (F4)
by label propagation functions. Considering actor behaviors allows to specify,
for instance, which particular credit card information is passed to the system440

in our running example, which in turn affects the analysis results. Both ap-
proaches only support exactly one type of confidentiality analysis (Ch2). Our
previous work [32] additionally provides means for specifying custom analyses
(Ch3) via queries. Both approaches do not provide means for systematically
considering all possible data flow paths (Ch1) in presence of multiple valid se-445

lections of inputs but prescribe one particular input selection (F2). Prescribing
one selection allows analyses in presence of ambiguities but does not guarantee
to find violations produced by other possible selections.

van den Berghe et al. [62] describe systems by data flows between predefined
processing operators to prove security properties including a simple form of450

information flow control but no access control (Ch2). They describe system
behavior in the proof assistant Coq by stateful modeling in linear-time temporal
logic. These behavior descriptions can be used to describe the behavior of
processes (F3) and actors (F4). Properties of nodes (F1) can be defined freely
and they can change dynamically. This also enables formulating custom analyses455

(Ch3). The behavior description of nodes includes the logic for selecting inputs
(F2). However, the paper does not report on systematically considering all
possible data flow paths (Ch1). Additionally, including the selection logic of
inputs in behavior descriptions hinders reusability because the same behavior
cannot be used for two nodes with different amounts of inputs. In our running460

13

example, we would have to specify a dedicated behavior for the book flight
process instead of just reusing the Forward behavior because the behavior would
have to be extended by the selection logic of the alternative incoming flows of
credit card information.

5. Overview of the Approach465

Before describing the contributions in detail, we give a high-level overview on
how our modeling and analysis approach is applied and how it works. The goal
of the approach is to detect violations of confidentiality requirements. This, es-
pecially, covers requirements given in terms of information flow or access control.
To apply the approach, the three activities illustrated in Figure 3 are necessary:470

creating an analysis definition, modeling the system and running the analysis.
The analysis definition introduces confidentiality-related model elements that
are used while modeling the system. Often, it is sufficient to create the analysis
definition once and use it for various systems. We explain all of these activities
in the following.475

Creating an Analysis Definition. An analysis definition is a collection of the
following model elements: 1) properties of nodes (F1), 2) properties of data,
3) behavior description of nodes (F3 and F4) and 4) a comparison function. In
our running example, the properties of nodes (1) are the clearance levels and the
properties of data (2) are the classification levels. The behavior descriptions (3)480

define how nodes process data, i.e. what properties outgoing data will have based
on properties of incoming data. In our running example, the behavior descrip-
tions are Forward, Join and Declassify. The Forward behavior copies incoming
data properties to outgoing data properties unchanged. The Join behavior looks
for the highest classification level on all incoming data and applies that level485

to outgoing data. The Declassify behavior explicitly sets the classification to
the second level. The comparison function (4) defines a pattern that indicates
a violation by comparing data and node properties. In our running example,
the comparison function looks for a node with a clearance level lower than the
classification level of any data received by that node. A dedicated security ex-490

pert creates the analysis definition because it requires security expertise to map
a confidentiality analysis to the described four model elements. Alternatively, a

Create Analysis Definition

Model System Run Analysis

[analysis not
defined yet]

system annotated
with properties
and behaviors

comparison function

Software

Designer

Security

Expert

properties (node/data),
node behaviors

Figure 3: Process for creating and analyzing a system design visualized as UML activity
diagram.

14

software designer can carry out these activities if he/she has security expertise.
Analysis definitions (or at least parts of it) are often reusable. Therefore, defin-
ing an analysis is only required if it has not been defined before. Consequently,495

security experts do not have to take part in the design process of every system
but only in the processes that require new analysis definitions. Decoupling the
analysis-specific model elements, i.e. the analysis definition, from the remain-
ing DFD elements is not only beneficial for assigning clear responsibilities: In
previous work [63], we demonstrated that this separation also improves main-500

tainability. In addition, the separation is beneficial for reusing models as we
show in the evaluation in Section 10. In our running example, the whole analy-
sis definition can be reused for other systems if the particular levels are renamed.
Because the analysis definition is sufficient to represent the core elements of a
confidentiality mechanism and creating the analysis definition does not require505

intrusive extensions of the overall approach via source code, the analysis defini-
tion addresses the challenge of defining custom analyses (Ch3). As we will show
in the evaluation in Section 10, the analysis definition is expressive enough to
represent information flow and access control mechanisms, so it also addresses
the challenge about representing both confidentiality mechanisms (Ch2).510

Modeling the System. First, a software designer models the structure of the
system with the DFD elements, which DeMarco [33] introduced. Next, the
designer integrates the confidentiality mechanism into the system by applying
elements from the previously defined analysis definition to DFD elements. In our
running example, the designer assigns each node a clearance level and a behavior515

description. Assigning data properties explicitly is not necessary: behavior
descriptions can provide initial data properties of newly created data and the
analysis will determine the remaining data properties later. In our running
example, the behavior description of the FlightPlanner specifies that outgoing
data always is classified by the first level. In contrast, the Forwarding behavior520

of the dispatch request process does not provide an initial data classification but
will derive the classification during the analysis.

Running the Analysis. The software designer starts the fully automated
analysis. The result is a list of detected violations according to the comparison
function. The fundamental idea of the analysis is to map the DFD, the prop-525

erties and the behavior descriptions to a label propagation network. Properties
become labels, nodes become label propagation functions according to their
behavior description and data flows define the connections between the label
propagation functions. The analysis propagates all labels through the network.
After that propagation, the labels of all data at all nodes are known. In the530

last step, the comparison function compares the labels to identify a violation.
To find information flow violations in our running example, we look for an edge
with a higher classification label than the clearance level of the receiving node.
The dashed edge in Figure 2 causes such a flow: The dashed flow circumvents
the declassification process, which makes the credit card data arriving at book535

flight level 3 instead of level 2. The process booking process receives this level 3
data but its clearance is only valid up to level 2. This means that we found a
violation. The dashed data flow as well as the solid data flow transport credit

15

card data to the process booking process. As we will explain in Section 6, we
introduced a notion to clearly state that both flows are alternative flows (F2),540

which means that exactly one of these flows has to be chosen. As we will ex-
plain in Section 7, the analysis systematically explores all possible combinations
of data flows transporting labels, which addresses the corresponding challenge
(Ch1).

In the presented running example, the violation is easy to spot but in more545

complex systems, finding all possible sources and properties of incoming data is
challenging. Using the sketched analysis can help designers to identify issues in
software designs and correct them before the implementation of the introduced
issue starts. In the running example, a designer has to ensure that data, which
has not been declassified, never arrives at the book flight process by removing550

the faulty data flow. Programmers later have to adhere to this specification and
ensure that data always goes through a declassification operation.

6. Syntax of Extended Data Flow Diagram

In order to realize the identified missing features of DFD semantics described
in Section 4.1, we have to extend the syntax and the semantics of DFDs. It is not555

sufficient to only extend the semantics because we need additional information
to solve ambiguities such as the handling of multiple inputs and outputs. In this
section, we introduce the syntactical DFD extensions that support the definition
of semantics discussed in Section 7. An overview on the syntax is given by the
metamodel in Figure 4. Grey elements are DFD elements as introduced by560

DeMarco [33]. Non-filled elements are the extending elements introduced in
this article. As part of the following descriptions, we relate the syntax to the
metamodel used in our previous work [32] as well as to closely related approaches
[29, 30].

Node Characteristics (F1). To cover relevant properties of nodes, we in-565

troduce typed characteristics. Strong types are beneficial because identifying
and matching properties becomes possible. Sets of discrete values can represent
relevant properties such as roles or classification levels. We call such a discrete
value Label. An Enumeration builds an ordered set of corresponding labels.
Analyses can make use of the order, e.g. to determine dominance between la-570

bels. In our running example, the security levels are an enumeration of ordered
labels. Labels with a higher index in such a list dominate labels with a lower
index. A CharacteristicType is the type of a property with a value range
given by an enumeration. In our running example, the clearance and classifi-
cation are characteristic types referring to the enumeration of security levels.575

A Characteristic is an instance of a characteristic type selecting a subset of
available labels, which means that these labels apply. Every node can hold mul-
tiple characteristics, which means that the selected labels apply to the node.
In our running example, we use a number inside the node to visualize a node
characteristic. The number indicates a particular label, i.e. clearance level, that580

has been selected from the characteristic type for clearance levels. In contrast

16

Store

Actor

ActorProcess

Process

DataFlowDiagram

DataFlowPin Label
*

Node
*

srcPin
dstPin

BehaviorDefinition

Assignment

inputs

*
outputs

*

src
dst

owned
Behavior

0..1
referenced
Behavior

0..1

/behavior

Characteristic

CharacteristicType

Enumeration

Term

DataCharacteristicReference

{ordered}
*

*

type

rhs

lhs

0..1

{ordered}

*

type

*

Behaving

actor

type

Figure 4: Metamodel of DFD (grey elements) with confidentiality extensions (non-filled ele-
ments).

to related work [29, 30] and to our previous work [32], labels can be ordered and
that order can be used in analyses, which we describe later.

Pins (F2). We introduce the concept of a Pin to clearly specify required
data. A pin describes either a required input data or output data. The set of all585

input and output pins describes the interface of the node. The pins are similar
to pins in the UML [64, pp. 444], which also distinguishes inputs and outputs.
In contrast to the UML, we use one fixed meaning of how data is transferred
through pins to simplify the usage of pins. We will see this in the following and
in the definition of the semantics for pins in Section 7. Multiple DataFlow edges590

to an input or output pin represent multiple sources or destinations for the same
data, respectively. This concept lowers the complexity while modeling because
connecting a new data flow has one clear meaning: An additional flow to an
input pin is an alternative flow. An additional flow from an output pin is another
forked flow. A new mandatory input or output requires a new dedicated pin, to595

which the new data flow connects to. In Figure 2, we visualize multiple flows for
the same pin by overlapping edges. For instance, the book flight process receives
credit card information from two sources when considering the dashed data flow.
These two flows are alternatives, so they connect to the same pin. To foster this
clear meaning of data flows, all data flows have to go through pins. Compared to600

related work [29, 30] and our previous work [32], pins simplify adding additional,
alternative flows because the flow just has to be added instead of integrated into
existing behavior specifications of the node. Without pins, it was necessary to
duplicate the specification of processing effects for these additional flows and to
define the order, in which these flows shall be considered.605

Data Processing Behavior (F3). We describe the data processing behavior of

17

nodes by BehaviorDefinitions. A behavior definition is meant to be reusable
to reduce the specification effort to be done by a security expert. In our running
example, the behaviors Declassify, Forward and Join are behavior definitions
shared between the various processes. In Figure 2, the letters in the processes610

indicate the reused behavior definition. Such a definition consists of input and
output pins as well as Assignments of labels to output pins. A Term specifies
whether a label shall be assigned. It can refer to labels of input pins or nodes
as well as to constants. The set of assignments specifies the label propagation
function. Our previous work [32] neither provides means to specify types of615

behavior specifications or means to reuse them. Related work provides fixed
types of behavior definitions [29] or means to specify types [30]. Not considering
types complicates the interaction between designers and security experts because
security experts have to inspect every node in the DFD instead of only providing
a few behavior types.620

Actor and Store Behavior (F4). To cover behavior of actors and stores,
we apply BehaviorDefinitions to these node types as well. Stores act like
forwarding processes, i.e. they redirect all labels from the input to the output.
Because we do not represent time or state in the model and systematically
consider all possible incoming flows into the store, the forwarding behavior fits625

the semantics of a store that saves data and emits unchanged data. In our
running example, the Flight Storage emits the same flights as the flights entered
by the FlightPlanner. Actors usually use behaviors specific to them that cannot
be reused. Additionally, we add the ActorProcess to describe complex data
processing done by actors. These processes act like regular processes and can630

reuse behavior definitions but act on behalf of the actor. Consequently, the
node properties, i.e. characteristics, of the actor, also apply to these processes.
In our running example, the select flight process is an actor process because the
user manually selects a flight from a list. In contrast to related work [29, 30],
we represent actors and stores with dedicated elements, which we already did635

in previous work [32]. Additionally, we clearly distinguish the behavior of the
system from the behavior of actors. This is beneficial because developers can
distinguish parts to develop from parts only describing usage.

7. Semantics of Extended Data Flow Diagram

In the previous section, we introduced extensions to the DFD syntax to ease640

defining unambiguous semantics, which we introduce in this section. We define
the semantics of the extended DFD by mapping it to clauses in first-order logic.
We chose to formalize the semantics in first-order logic using Prolog because
Prolog provides comprehensive capabilities of exploring all possible data flow
paths, which we will discuss later. We explain the semantics in three steps: In645

Section 7.1, we recap foundational knowledge about Prolog. Section 7.2 explains
how to map DFD elements to clauses in first-order logic. Afterwards, Section 7.3
discusses the resulting semantics of the logic program.

18

Listing 1: Examples of clauses used in Prolog.

1 cat(jane). % fact with constant jane
2 bird(john). % fact with constant john
3 chases(X,Y) :- % rule taking arguments X and Y
4 cat(X), % term testing whether X is a cat
5 bird(Y). % term testing whether Y is a bird
6 sum(0,[]). % fact stating that an empty list has sum 0

7.1. Foundations on Prolog

Analyses presented in this article rely on the semantics given by a transfor-650

mation from the DFD into a logic program given in Prolog [65]. Prolog is an
established logic programming language that requires a programmer to specify
the knowledge to solve a problem rather than the procedure. A Prolog program
consists of clauses [65, pp. 13], which can be facts or rules. Facts such as the
ones shown in lines 1 and 2 of Listing 1 are always true. A rule is only true655

if all of the terms of its body are true. In Listing 1, line 3 is the head of the
rule and the lines 4 and 5 are the body terms. Terms are constants, variables,
lists and compound terms. Compound terms consist of a name and arguments,
which are also terms. Facts and the head of a rule are compound terms. By
convention, variable names are always upper case while constants are lower case.660

Quoted strings and numbers are constants as well. Lists are denoted by square
brackets. Empty brackets mean empty lists as shown in line 6. In Prolog, rules
are given as Horn clauses, i.e. the conjunction of terms in the body imply the
term in the head. From a procedural point of view, the rule in line 3 to 5 can be
read as follows: In order to prove chases(X,Y), prove cat(X) first and bird(Y)665

second. Queries ask the program to find answers to a question. A query is a
list of goals that Prolog interpreters try to solve. Goals and terms in the body
of rules can be connected with a logical conjunction , or logical disjunction ;.
Negation \+ is also possible but does not have the exact same meaning as nega-
tion in boolean logic [66, pp. 17]. Terms in queries can contain variables, for670

which the interpreter finds values that make all goals true. Informally speaking,
Prolog interpreters find all instantiations of variables that make all goals true,
which means that they can be deduced based on facts and rules. Selection Rule
Driven Linear Resolution for Definite Clauses (SLD) [67, pp. 447] is the most
commonly used resolution process for finding variable bindings in Prolog but675

detailed knowledge about that process is not required for the remainder of this
article.

7.2. Mapping to Logic Program

In this section, we describe the mapping from the extended DFD syntax
to clauses in first-order logic formulated in Prolog. To keep things simple, we680

focus on the fundamental principles but omit implementation details such as
the helper clauses that are always added as a preamble to the mapping result.
Additionally, we use simple identifiers instead of unique identifiers that would

19

criteriaccd

select flighti o

dispatch
requesti o

store('CCD Storage').
inputPin('CCD Storage', 'i').
outputPin('CCD Storage', 'o').

actor('User').
outputPin('User', 'o1').
outputPin('User', 'o2').

process('dispatch request').
inputPin('dispatch request', 'i').
outputPin('dispatch request', 'o').

actorProcess('select flight', 'User').
process('select flight').
inputPin('select flight', 'i').
outputPin('select flight', 'o').

Usero1 o2

dataflow('ccd', 'User', 'o1', 'CCD Storage', 'i'). dataflow('criteria', 'User', 'o2', 'dispatch request', 'i').

CCD
Storage io

Figure 5: Mapping of structural DFD elements to clauses in first-order logic.

be hard to read in our examples. The full specification of the transformation is
given by a model to model transformation in our data set [68].685

DFD Nodes. First, we map the DFD nodes Actor, Store and Process,
which DeMarco [33] introduced, to clauses. Figure 5 illustrates the mapping
logic for these nodes and others that we describe later. The clauses only state
that an element of the specified type exists with the given unique identifier. For
instance, a store becomes a store clause with its identifier given as argument.690

Defining that elements exist is necessary to establish relations and specify fur-
ther details such as behaviors as we will see later. For every node, we create
one clause.

Actor Behavior (F4). An ActorProcess represents one activity, which an
actor does. A set of such processes represents all activities done by an actor. The695

mapping of actor processes consists of two steps: First, we treat an actor process
like a regular process, which means we generate a process clause as described
before. By doing so, we can reuse all the logic for describing behaviors of nodes.
Additionally, we do not need special logic for handling actor processes during
label propagation. Second, we introduce an additional clause actorProcess700

stating that a process with given identifier belongs to an actor with a given
identifier. This is necessary to find all activities of an actor. The clauses are
visualized in Figure 5.

Multiple Inputs (F2). Our extended syntax supports multiple (alternative)
inputs via Pins and DataFlows that refer to these pins. For every node, we705

create one clause for every pin specified in the BehaviorDefinition assigned
to a node. We do not represent the BehaviorDefinition itself because its sole
purpose is to make assignments and pins reusable. In Figure 5, input pins are
visualized by squares containing the letter i at the border of the node. Output
pins are visualized by squares containing the letter o at the border of the node.710

The pin clauses describe that there is an input or output pin with a given
identifier on a node with a given identifier. For every data flow, we create one
clause dataflow with a unique identifier as the first argument. The next two
arguments describe the source node and the corresponding output pin. The last

20

UserAirlineAgency : Label

Levels : Enumeration

User : Label

UserAirline : Label

Clearance : CharacteristicTypetype

characteristicType('Clearance').
characteristicTypeValue('Clearance', 'UserAirlineAgency', 1).
characteristicTypeValue('Clearance', 'UserAirline', 2).
characteristicTypeValue('Clearance', 'User', 3).

User (3) actor('User').
nodeCharacteristic('User', 'Clearance', 'User').

Figure 6: Mapping of characteristic types and characteristics to clauses in first-order logic.

two arguments describe the destination node and the corresponding input pin.715

Node Characteristics (F1). Before we can map node characteristics, we first
have to map the available types of characteristics. Characteristic types are also
mapped to clauses stating their existence. As shown in Figure 6, we create one
clause characteristicType for every characteristic type stating that there is
a characteristic type with a given identifier. We do not represent enumerations720

because they only provide means for reusing labels while modeling. Instead, we
create one clause characteristicTypeValue for every label transitively refer-
enced by a characteristic type. The first argument specifies the characteristic
type, the second argument specifies the label and the last argument specifies
the index of the label in the enumeration. Naming the characteristic type and725

the label is necessary to establish a relation, i.e. to state that a certain label
is a valid label for a certain characteristic type. A label is only unambiguous
if it is used together with a characteristic type because a label can be reused
in various characteristic types and can, therefore, have different meanings: In
our running example, the meaning of the User level is different when used as730

classification or as clearance. Representing the index is beneficial because label
comparison functions can refer to the order of the label via that index. Char-
acteristics applied to a node are also represented by one clause for every label
within a characteristic. In the example in Figure 6, the clearance level User is
applied to the actor User. Thereto, we create one clause nodeCharacteristic,735

which states that the node User (given as first argument) has the label User
(given as third argument) of the characteristic type Clearance (given as second
argument) applied.

Node Behavior (F3). In the syntax, the node behavior is given by a sequence
of assignments of truth values to boolean variables. The boolean variable on the740

left hand side defines whether one particular label, i.e. the tuple of characteristic
type and label, is available at one particular output pin. The truth value on the
right hand side can refer to labels on input pins, logic operations and constants.
If no assignment specifies a truth value for a label, the default is that it is not
available (false). The sequence of assignments represents the label propagation745

function. Representing labels as boolean variables is beneficial because first-
order logic supports boolean variables and boolean expressions very well. In

21

Forward
o.*.* := i.*.*

select
flight

flights selectedFlightsi o

process('select flight').
inputPin('select flight', 'i').
outputPin('select flight', 'o').

characteristic('select flight', 'o', 'Classification', 'User', S, VISITED) :-
 inputFlow('select flight', 'i', _, F0, VISITED), S0 = [F0 | _], S = [S0],
 characteristic('select flight', 'i', 'Classification', 'User', S0, VISITED).
characteristic('select flight', 'o', 'Classification', 'UserAirline', S, VISITED) :-
 inputFlow('select flight', 'i', _, F0, VISITED), S0 = [F0 | _], S = [S0],
 characteristic('select flight', 'i', 'Classification', 'User', S0, VISITED).
characteristic('select flight', 'o', 'Classification', 'UserAirlineAgency', S, VISITED) :-
 inputFlow('select flight', 'i', _, F0, VISITED), S0 = [F0 | _], S = [S0],
 characteristic('select flight', 'i', 'Classification', 'User', S0, VISITED).

Figure 7: Mapping of forward behavior of process to clauses in first-order logic.

the following, we explain how we represent boolean variables and how we map
assignments.

We create one characteristic clause holding six arguments that represents750

a truth value for every label of a characteristic type on an output pin. Particular
examples of these clauses are shown in Figure 7. The first two arguments identify
the node and the output pin. The next two arguments identify the characteristic
type and the label. The following two arguments are a flow tree S and a set
of already visited flows VISITED. Roughly said, the flow tree contains the data755

flows connecting all transitive predecessors of a certain node. The leafs of the
tree are always data flows from nodes without incoming data flows. There can
be multiple trees for one node. If the characteristic clause evaluates to true,
the label is available at the output pin for a particular flow tree and a particular
set of visited flows. The flow tree is necessary to identify the data flows and760

nodes that lead to a violation. Without knowing this information, identifying
the issue that lead to a violation would be hard. The set of visited flows prevents
evaluation cycles in DFDs containing cycles. We explain both concepts (flow
tree and visited flows) in more detail in Section 7.3.

Assignments describe when a label shall be available. The list of assignments765

contained in a BehaviorDefinition is ordered because an assignment that is
defined later can override the effect of an assignment defined previously. Terms,
which specify the right hand side of an assignment, cannot refer to labels on
the output pins, which means they cannot refer to the boolean variables that
the assignments change. Therefore, there is always only one assignment that770

determines the final truth value for a label on an output pin that does not
depend on any previous assignment in the list of assignments. To simplify the
mapping, we only consider that particular single assignment for building the
body of the characteristic rule for the particular characteristic type and
label. There is no point in representing other assignments than the so-called775

last applicable one because they do not affect the result of the label propagation.
The mapping transforms the Term on the right hand side of the assignment to
clauses in the rule body of the characteristic clause. Constants such as the
ones shown in Figure 8 can be mapped to truth values. References to input
labels are mapped to a characteristic clause referring to a label on an input780

22

Declassify
o.*.* := i.*.*
o.classification.* := false
o.classification.UserAirline := true

declassify
CCD

ccd declassifiedCCDi o

process('declassifyCCD').
inputPin('declassifyCCD', 'i').
outputPin('declassifyCCD', 'o').

characteristic('declassifyCCD', 'o', 'Classification', 'User', [], _) :- false.
characteristic('declassifyCCD', 'o', 'Classification', 'UserAirline', [], _) :- true.
characteristic('declassifyCCD', 'o', 'Classification', 'UserAirlineAgency', [], _) :-
 false.

Figure 8: Mapping of declassify behavior of process to clauses in first-order logic.

pin as the mapping of the forwarding behavior in Figure 7 demonstrates: the
label User shall be applied to the output pin if it is available on the input pin,
which can be checked by the characteristic clause for the input pin (third
line). To ensure traceability of the results, it is necessary to keep track of the
data flows that have been considered while calculating the label, i.e. the flow785

tree. The inputFlow clause selects a data flow F0 that shall be considered
when determining the label for the input pin. F0 will become the first flow in
the flow tree. For the sake of brevity, we omit the implementation details of
the inputFlow clause and the characteristic clause for input pins but refer
to our data set [68] for the programs containing the full implementation.790

7.3. Semantics of Logic Program

The goal of the clauses resulting from the previously defined mapping is to
formalize data transmission and data processing by means of label propagation.
Queries comparing propagated labels with expected labels prescribed by confi-
dentiality requirements can identify violations as we show in Section 8. In the795

following, we explain the meaning of the previously introduced clauses in an
informal way because a full formal discussion would require explaining all used
helper clauses in detail, which is not possible within a reasonable amount of
space. Instead, we just explain the effect of these helper clauses. The full spec-
ification is available in the logic programs in the dataset [68]. The underlying800

semantics for interpreting the logic programs are given by the SLD resolution
algorithm [67, pp. 447] for first-order logic programs. Later, queries will also
use the Prolog-specific all-solution predicates findall and setof [67, pp. 470].
The algorithm and the all-solution predicates have well-known and established
semantics for first-order logic programs.805

The majority of clauses have quite simple semantics: they state that an
element of a certain type exists with a certain identifier. Additionally, some of
the clauses described in the following establish relations between elements. The
only clauses having complex semantics are the clauses covering node behaviors.
We describe all clauses in the following.810

DFD Nodes. The semantics of the clauses representing nodes is straight
forward: the clauses for various node types simply mean that an element of
the named type exists with a given identifier. For instance, the meaning of
process(N) is that there exists a process with identifier N.

23

Actor Behavior (F4). The clauses representing actor processes only describe815

existence: The meaning of actorProcess(N, A) is that there exists an actor
process with an identifier N that belongs to an actor with identifier A.

Multiple Inputs (F2). The clauses representing and involving pins only de-
scribe existence: The meaning of inputPin(N, PIN) is that an input pin PIN

exists at the node N. The meaning of outputPin(N, PIN) is that an output pin820

PIN exists at the node N. The data flow clause states that a data flow from a
source to a destination exists. dataflow(F, N S, PIN S, N D, PIN D) means
that there exists a data flow F originating from pin PIN S of node N S and going
to pin PIN D of node N D.

Node Characteristics (F1). The clauses covering characteristic types describe825

the existence of these types: The meaning of characteristicType(CT) is that
a characteristic type CT exists. The meaning of characteristicTypeValue(CT,
V, I) is that the characteristic type CT contains a label V at index I. The clauses
representing node characteristics introduce a relation between a node and a
label. nodeCharacteristic(N, CT, V) means that the label V belonging to a830

characteristic type CT applies to node N.
Node Behavior (F3). Node behaviors describe the label propagation func-

tions of nodes. The previously described clauses define the structure of a DFD as
directed graph of nodes and edges. Together, they build a label propagation net-
work. The semantics of the label propagation are given by the characteristic835

clauses for input and output pins. We decided to realize the label propagation
as label lookup to reduce the effort for considering multiple combinations of
data flows. If we are only interested in the labels of one particular node, it is
more efficient to follow data flows in reverse order. We can stop following data
flows as soon as the label cannot be changed anymore. This is the case if an as-840

signment only involves a constant because previous labels would be overridden
by that constant assignment anyway. Therefore, we only consider nodes that
actually change the labels. In contrast, a forward propagation would require us
to evaluate all nodes and combinations of alternative data flows because we do
not know yet whether the labels propagated by a node will eventually influence845

the labels of interest. This is costly in presence of alternative data flows. Besides
the label lookup, we already identified further means for improving the perfor-
mance of the analysis in a student’s thesis [69]. These optimizations, however,
increase the complexity of the mapping to the logic program as well as the logic
program itself and are, therefore, subject to future research. Because we did not850

experience a performance issue in non-synthetic systems and, especially, not in
the realistic systems of our evaluation, we did not include these optimization
for the sake of comprehensibility.

The characteristic clause for input pins shown in Listing 2 is part of
various helper clauses added as preamble to the mapping result of the previous855

section. The labels available at an input pin solely depend on the labels available
at the output pin that a data flow connects to the input. Lines 2 and 3 find a
data flow F that connects an output pin PIN S to the input pin PIN. To avoid
evaluation cycles, only data flows not already visited are considered in the next
line. In the last line, the truth value of the label V of the output pin PIN S is860

24

Listing 2: Prolog rule for finding labels on input pins.

1 characteristic(N, PIN, CT, V, [F | S], VISITED) :-

2 inputPin(N, PIN),

3 dataflow(F, N_S, PIN_S, N, PIN),

4 intersection([F], VISITED, []),

5 characteristic(N_S, PIN_S, CT, V, S, [F | VISITED]).

just copied. In the same step, the set of visited flows VISITED is extended by
the used data flow.

The major benefit of the SLD resolution algorithm used in Prolog is that
it can find all possible variable bindings, i.e. all possible labels available via all
possible data flow trees, by reevaluating the clause. This is important if there865

are multiple data flows connected to the same input pin and it also addresses
the corresponding challenge Ch1 of systematically considering all possible data
flow paths. A label is only available for a certain node and a certain data flow
tree. In the running example, the book flight process has two alternative data
flows providing credit card details. The reevaluation by Prolog automatically870

considers both data flows but only the direct flow of credit card details leads to
a violation. A data flow tree, as introduced in the section before, can be seen
as an acyclic subgraph of the DFD only representing nodes and data flows that
potentially affect the labels available at a certain node. There are no alternative
data flows contained in such a data flow tree but always exactly one choice for875

every alternative flow. Therefore, all data flow trees for the book flight process
contain either the direct flow or the declassified flow but never both. This is
important for identifying the underlying issue of a reported violation.

The characteristic clause for output pins has the same arguments as the
clause for input pins but the body depends on the particular assignments as880

motivated in Section 7.2. The meaning of constant assignments is that the
label is always available (true) or is never available (false) independent of the
particular data flow tree or visited flows. The meaning of logical operators
is equivalent to their intuitive meaning, e.g. the And operator translated to ,

means that both operands have to evaluate to true in order to become true. The885

meaning of references to node characteristics is that the particular label has to
be available at the node, i.e. there has to be a nodeCharacteristic clause for
the particular node and label. The meaning of references to characteristics of
incoming data is that the particular label has to be available at the referenced
input pin, i.e. the characteristic clause for the particular input pin, label890

and data flow tree has to evaluate to true. Again, Prolog considers all possible
data flow trees when looking for labels. The data flow tree S initially consists of
one particular data flow for every input pin. The resolution of further clauses
extends this data flow tree until it contains all relevant data flows.

25

Listing 3: Prolog API to specify comparison functions.

1 actor(N), store(N), process(N), actorProcess(N,A),

2 inputPin(N,PIN), outputPin(N,PIN),

3 characteristicType(CT),

4 characteristicTypeValue(CT, CV, I),

5 flowTree(N, PIN, S),

6 traversedNode(S, N),

7 nodeCharacteristic(N, CT, CV),

8 characteristic(N, PIN, CT, CV, S).

8. Definition and Execution of Label Comparison Function895

Extended DFDs as described before can be analyzed for violations of access
control and information flow requirements. To do that, the automated model
transformation described in the section before translates the DFD into a logic
program given in Prolog. The label comparison function is a query to the
Prolog program. Queries compare labels of received data with labels of other900

data or nodes. Prolog automatically considers all data paths via backtracking
(Ch1), which means that all possible sets of labels that can be found via all
possible data flow paths are considered in the comparison. The label comparison
function is part of the analysis definition introduced in the approach overview in
Section 5. We focus on the label comparison function in this section because we905

already motivated and explained the other elements of the analysis definition,
namely the node properties, the property types used for data and the behavior
descriptions. In the following, we recapture the Prolog clauses that security
experts can use to define label comparisons. Afterwards, we define the query for
our running example. For the complete logic program of the running example,910

please refer to our data set [68]. We create and discuss further queries as part
of our evaluation in Section 10.3.

Security experts define queries using the clauses in Listing 3. Line 1 gives
clauses to find identifier N representing actors, stores or (actor) processes. Line
2 gives clauses for finding identifier PIN of input or output pins. Line 3 gives915

a clause to find identifier CT of a characteristic type. Line 4 gives a clause to
find label identifier CV of characteristic type CT with order number I. Line 5
gives a clause to find a flow tree S consisting of all data flows that potentially
contributed labels to pin PIN of node N. The tree chooses exactly one data flow
at any pin having multiple, alternative data flows. Line 6 gives a clause to check920

whether node N is visited when following flow tree S. Line 7 gives a clause to find
label CV of characteristic type CT that is active on node N. Line 8 gives a clause to
find label CV of characteristic type CT that is present on pin PIN of node N when
choosing flow tree S. Please note that the clause given in line 8 is a shorthand for
the characteristic clause introduced in the previous section that uses an initial925

empty list of already visited data flows. This is reasonable because no flows
have been visited yet when a label lookup starts at one particular node.

Queries are tailored to policy types such as RBAC policies or non-interference
policies. A policy is a set of confidentiality requirements. A policy type pre-

26

Listing 4: Information flow analysis for totally ordered labels.

1 ?- nodeCharacteristic(P, ’clearance’, V_CLEAR),

2 characteristicTypeValue(’clearance’, V_CLEAR, N_CLEAR),

3 inputPin(P, PIN),

4 characteristic(P, PIN, ’class’, V_LEVEL, S),

5 characteristicTypeValue(’class’, V_LEVEL, N_LEVEL),

6 N_CLEAR < N_LEVEL.

Listing 5: Reported information flow violations for the running example.

1 P = ’Booking Storage’, V_CLEAR = ’User,Airline’, N_CLEAR = 2, PIN = ’input’,

V_LEVEL = ’User’, N_LEVEL = 3, S = [’booking’, [’selectedFlight’],

[’declassifiedCCD’, ’selectedFlight’], [’ccd direct’, [’ccd’, [’ccd’]]]]];

2 P = ’process booking’, V_CLEAR = ’User,Airline’, N_CLEAR = 2, PIN = ’input’,

V_LEVEL = ’User’, N_LEVEL = 3, S = [’declassifiedCCD’, [’selectedFlight’],

[’ccd direct’, [’ccd’, [’ccd’]]]] .

scribes the structure of confidentiality requirements that may be used in a policy.930

Therefore, the first step is to define a violation in the context of the policy type.
An information flow policy with totally ordered levels is violated if someone with
clearance lclear accesses data with classification lclass bigger than the clearance
lclear < lclass. In terms of our semantics, we have to find and compare the clear-
ance label of a node with the classification label of its input pins. In the second935

step, we encode this detection rule by the query shown in Listing 4. In line 1,
we determine the clearance level V CLEAR of a node P. Line 2 determines the
position N CLEAR of the clearance level V CLEAR in the enumeration. We defined
the levels in ascending order, so the level with a lower index is semantically
lower than a level on a higher index. Line 3 finds an input pin PIN for node940

P. The classification level V LEVEL is determined in line 4. The order number
N LEVEL of the classification level V LEVEL is determined in line 5. Line 6 tests
for lclear < lclass.

The DFD as modeled in Figure 2 does not contain an information flow
violation when not considering the dashed edge. Considering the dashed edge,945

we detect the two violations shown in Listing 5. The first result in line 1 detects
that the Booking Storage receives data on its input that is classified higher than
its clearance. The same violation is detected for the process booking process in
line 2. In both cases, we can find the cause of the violation in the data flow
tree S, which contains ccd direct. This data flow directly transfers the credit950

card data without declassification, which causes the violation. Therefore, we
can trace back both violations to the introduced issue given by the ccd direct
data flow.

Specifying queries requires security expertise. However, designers do not
need this competence. They can reuse defined queries from an existing analysis955

definition that also contains characteristic types, characteristics of nodes and
behavior definitions. Security experts can create these reusable elements and
put them in a catalogue structured by the particular policy types. After that,

27

designers can select the elements and make use of them without the need for
security expertise. For instance, the query presented in this section does not960

depend on particular levels. Therefore, it is applicable to information flow
policies consisting of arbitrary totally ordered levels. How many elements of
analysis definitions for such policy types are reusable depends on how tailored
they are to the use case. For instance, the clearance and classification levels
defined for our running example are tailored to the example, so they are reusable965

but require renaming to fit another system.

9. Tool Support

We realized the previously presented concepts to show that an implementa-
tion is feasible (Böhme and Reussner [70] call this a level 0 validation) and to
support the evaluation described in Section 10. This article is not meant to be970

a technical report, so we only briefly report on our tooling. Our data set [68]
gives more details about the tooling. The full implementation is available in
various projects on GitHub, which we describe in the following.

First of all, we realized all metamodels1described in this article in the Eclipse
Modeling Framework (EMF) [71] and defined appropriate invariants to specify975

the well-formedness of DFDs in more detail. For instance, invariants ensure
that a data flow always originates from an output pin and leads to an input
pin, which both must not belong to the same node. Using EMF automatically
provides us with ready to use editors. The metamodel projects on Github
also contain an enhanced graphical editor that adopts the classic DFD syntax.980

Designers can reuse elements defined for particular policy types by referencing
catalogue models.

To automate the detection of violations, we realized the mapping to the Pro-
log program as model-to-model transformation in Xtend [72] and implemented
an adapter2 to run Prolog interpreters. The transformation has about 480 LLOC985

in total, which includes about 130 LLOC for adding the static preamble to the
logic program. LLOC covers all lines containing a statement. We also created
a metamodel3 for Prolog programs as well as a model printer to serialize the
program and a model parser to parse results based on Xtext [72]. The query is
executed in the commonly used SWI Prolog interpreter [73] that we connected990

to our prototype via the implemented adapter. Therefore, users do not have to
interact with the interpreter directly.

We decided to specify the analysis directly in Prolog because the resulting
specification is self-contained and executable. It is easy to find the concepts
introduced as part of the semantics definition in Section 7 within the analysis995

program, so there is no gap in abstraction. We could also have used existing

1https://github.com/FluidTrust/Palladio-Supporting-DataFlowDiagram
https://github.com/FluidTrust/Palladio-Supporting-DataFlowDiagramConfidentiality

2https://github.com/FluidTrust/Palladio-Supporting-Prolog4J
3https://github.com/FluidTrust/Palladio-Supporting-Prolog

28

https://github.com/FluidTrust/Palladio-Supporting-DataFlowDiagram
https://github.com/FluidTrust/Palladio-Supporting-DataFlowDiagramConfidentiality
https://github.com/FluidTrust/Palladio-Supporting-Prolog4J
https://github.com/FluidTrust/Palladio-Supporting-Prolog

model checking approaches [74] but this would not free us from a model trans-
formation into a particular formalism or at least a special encoding of the logic
to discover multiple data flow paths (Ch1).

To ease writing Prolog queries, we developed a Domain-specific Language1000

(DSL) [75] that is capable of formulating common queries without the need to
adhere to the Prolog syntax or even be aware of Prolog. When formulating the
query with the DSL, it is also possible to process the interpreter result directly
and report the detected violations in terms of the DFD, which is know to the
designer. The prototype of the DSL is still under development and not ready1005

to use yet, so we did not use or evaluate it as part of this article.

10. Evaluation

In this section, we evaluate our aforementioned contributions. We present
our evaluation goals and metrics in Section 10.1. The evaluation design is de-
scribed in Section 10.2. In Section 10.3, 10.4 and 10.5, we discuss results. We1010

discuss threats to validity in Section 10.6 and limitations in Section 10.7. We
report on the availability of evaluation data in Section 10.8.

10.1. Evaluation Goals and Metrics

We structure our evaluation according to the Goal-Question-Metric method-
ology [76, 77]. We formulate three evaluation goals.1015

G1) Evaluate the expressiveness of our syntax and semantics to represent and
analyze systems using information flow and access control.

G2) Evaluate the reusability of DFDs when switching confidentiality mecha-
nisms.

G3) Evaluate the accuracy of confidentiality analyses realized with our seman-1020

tics.

We evaluate expressiveness, reusability and accuracy. Expressiveness de-
scribes what confidentiality mechanisms our approach can express. We want to
evaluate expressiveness to see whether the approach supports information flow
and access control (Ch2). The evaluation of expressiveness also shows that we1025

addressed the challenge of enabling custom analyses (Ch3) because we do not
limit ourselves to predefined confidentiality mechanisms and analyses but use
extensions to cover confidentiality mechanisms. We evaluate reusability of DFD
parts when switching confidentiality mechanisms to show that our approach
reduces the amount of elements, which have to be recreated. This was one mo-1030

tivation for developing the extended DFD syntax for covering information flow
and access control within one modeling language (Ch2). We evaluate accuracy
because expressiveness and reusability are only useful if resulting analyses have
satisfying accuracy, which means designers can identify violations. To provide
accurate analyses, it is necessary to systematically consider all possible data1035

flow paths, i.e. combinations of these data flows. Otherwise, violations might

29

not be discovered. Because the evaluated system designs contain multiple data
flow paths, evaluating the accuracy of the analyses is appropriate to show that
we addressed the challenge of considering all data flow paths (Ch1).

To evaluate G1, we formulate the following evaluation questions:1040

Q1.1) Is the proposed syntax capable of representing systems as well as their
properties and their behaviors relevant for identifying access control vio-
lations?

Q1.2) Is the proposed syntax capable of representing systems as well as their
properties and their behaviors relevant for identifying information flow1045

violations?

Q1.3) Are the proposed semantics capable of defining analysis queries for iden-
tifying access control violations?

Q1.4) Are the proposed semantics capable of defining analysis queries for iden-
tifying information flow violations?1050

To answer the questions for G1, we use the syntactic quality metric s = |R∩E|/|R|
as defined by Boyd et al. [78] for rating the quality of constrained natural lan-
guages. The metric is also usable for rating a DSL [79], which fits to the DFD
metamodel presented in this paper. In our context, a language requirement
r ∈ R is a DFD or analysis query that we would like to express. The set of1055

expressions E contains every possible DFD or analysis query that can possibly
be constructed using our artifacts. The metric value ranges from zero (no DFD
or analysis query could be expressed) to one (all DFDs or analysis queries could
be expressed).

To evaluate G2, we formulate the following evaluation questions:1060

Q2.1) How much DFD elements can be reused when switching between confi-
dentiality mechanisms?

To answer Q2.1, we calculate the similarity coefficient according to Jaccard j =
|M∩N |/|M∪N | [80] between the models (M and N) of the cases that represent the
same system but use different confidentiality mechanisms. A model is defined1065

as set of model elements, i.e. instances of meta-classes. A model element m ∈
M is equal to a model element n ∈ N if the type and all properties of the
model elements are equal. We determine this equality of model elements by
applying EMFCompare [81]: First, we match model elements by their identifiers.
Afterwards, we compare their properties. A reference to another model element1070

is such a property. References are considered equal if they refer to equal model
elements. The coefficient is simple but is a good measure of the amount of
unchanged model elements and consequently also on the amount of elements,
which have to be changed when switching the used confidentiality mechanism in
a system design. The metric value ranges from zero (every element is different1075

and has to be recreated) to one (the models are equal and nothing has to be
recreated). The coefficient of Jaccard is appropriate to rate the similarity of
software design models as we have shown in previous work [82, 83].

30

To evaluate G3, we formulate the following evaluation question:

Q3.1) What is the accuracy of the analyses?1080

To answer Q3.1, we apply the commonly used metrics precision p = tp/(tp+fp)

and recall r = tp/(tp+fn) with the number of true positives tp, false positives fp
and false negatives fn. We describe the classification of results as tp, fp or fn
in the evaluation design.

We intentionally do not evaluate usability or correctness of the modeling and1085

analysis approach. Usability is usually evaluated in user studies that evaluate
the tool support and the concrete syntax used for modeling. We neither aim
for evaluating our implementation nor for a particular concrete syntax because
both are no contributions of this paper. We do not verify correctness because
this would not provide insights into the application of our approach and how1090

well the approach addresses the challenges (Ch1, Ch2 and Ch3). Instead, a case
study provides such insights in the context of realistic systems, which is the
objective of this paper.

10.2. Evaluation Design

Evaluations based on case studies are the second most common evaluation1095

approach for security notations after just illustrating how to use notations and
analyses as van den Berghe et al. [84] point out. Especially with respect to
expressiveness and reusability, a detailed discussion of established cases provides
more insight than a generic discussion about hypothetical systems. Therefore,
we evaluate the proposed syntax and semantics based on a case study. We select1100

cases from related work [29, 85] and from one of our previous publications [32] or
define new cases if there are no appropriate cases available. A case is a pair of a
system design and confidentiality requirements. In the following, we discuss the
evaluation design per evaluation goal before we discuss cases and their selection.

Expressiveness. For evaluating expressiveness, we model the system design1105

as DFD and the corresponding analysis query using our semantics for each
case. The procedure described in the following is the same for both access
control and information flow control. 1) We identify relevant data and node
properties, i.e. the labels and the corresponding characteristic types. 2) We
identify relevant behavior descriptions including the label propagation rules.1110

3) We model the system design as DFD by using the behaviors defined before.
4) We define the analysis query for identifying violations. After step 3, we
finished modeling the system design, so we can calculate the syntactic quality
metric and answer Q1.1 and Q1.2. A requirement as specified by the metric is
a thing that shall be expressed by a modeling language. In our evaluation, one1115

case is one requirement, i.e. a thing to be expressed according to the definition
of syntactic quality by Boyd et al. [78]. This means, the DFD metamodel has
to be capable of representing the whole case or the whole case will be counted
as not expressible. After step 4, we finished the analysis definition, so we can
calculate the syntactic quality metric and answer Q1.3 and Q1.4.1120

We build weighted sums while calculating the syntactic quality metric. The
weighted sums normalize the influence of cases that use different system designs

31

but share the same analysis type. Without such a normalization, a single case
using a not supported analysis type can be hidden by a group of cases sharing the
same but well-supported analysis type. For instance, the information flow cases1125

TravelPlanner, DistanceTracker and ContactSMS from related work [85] share
the same analysis definition representing noninterference with declassification
using totally ordered security levels. If our approach supports this analysis
type well but does not support another analysis type, that is only used by one
case, the value of the syntactic quality metric would be 3/4. However, we are,1130

especially, interested in the support of confidentiality mechanisms. Therefore,
the metric value using a weighted sum

1+1+1
3 /1+1+1

3 +1 = 0.5 would be more
appropriate. As illustrated, we group cases by their type of analysis definition.
We sum up the amount of fully modeled cases and divide this sum by the amount
of cases in the corresponding group. Eventually, we sum up all of these weighted1135

sums and divide it by the number of different types of analysis definitions.
Reusability. To answer Q2.1, we identify cases that are about the same

systems but that use different confidentiality mechanisms. This applies to the
cases using the previously mentioned systems TravelPlanner, DistanceTracker
and ContactSMS : For each system, there exists one case using RBAC and an-1140

other case using noninterference with totally ordered levels. For every such pair
of cases, we calculate the Jaccard Coefficient by comparing the model elements.
We use EMFCompare [81] to compare the model elements in order to identify
equal and unequal model elements. The comparison approach of EMFCompare
provides the necessary steps to decide whether two model elements are equal:1145

In a first step, matching elements are identified by comparing their identifiers.
This is reasonable because we copied and adjusted the models to switch the con-
fidentiality mechanism. This is also the approach designers would most likely
do. In a second step, differences are calculated, which covers all properties of the
model elements. As a result, we receive a list of differences. We walk through1150

that list and add all model elements that have been matched and that have no
changed property to the set of equal elements M ∩ N . The metric indicates a
benefit compared to the state of the art if the value is above 0.

Accuracy. The accuracy evaluation reuses the previously created DFDs and
analysis queries. The procedure described in the following is the same for access1155

control and information flow. 1) We identify a way to introduce an issue into
the DFD that leads to violations with respect to the defined analysis. We derive
the issue from related work or by defining a new issue if no issue is reported in
related work. We describe how we did that for every case in the description of
the case selection below. 2) We inject the issue into the DFD of the case. The1160

issue is usually introduced by an additional data flow. Therefore, the analysis
has to consider multiple data flow paths. 3) We execute the analysis and classify
the results.

To calculate the accuracy metrics, we classify the violations, which our anal-
ysis reports. A reported violation is valid if it traces back to the injected issue.1165

A reported violation is invalid if it does not trace back to the injected issue.
Because the DFD does not contain an issue before we inject an issue, it is rea-
sonable to trace back violations to exactly the one known issue. A violation

32

traces back to an issue if the injected data flow is in the flow tree of the vio-
lation. We classify the set of reported violations per case to avoid that large1170

cases with many reported violations for one analysis type hide the violations of
smaller cases for another analysis type in the metric. If all reported violations
are valid, the case is counted as a true positive tp. If at least one violation is
invalid, the result is a false positive fp. Not reporting any violations is a false
negative fn.1175

The reason for classifying all violations together is that analyses do not only
report one but multiple violations. This is no flaw in our analysis but the logical
consequence of propagating data through the system: if data must not be used
in one node, the chances are high that it must not be used in following nodes as
well. In our running example, the analysis reports two violations: one violation1180

at process booking and one violation at the store, into which the process writes
the data. Related work [35, 29] often only discusses why a violation occurs, i.e.
the root cause of a violation, but does not discuss individual occurring violations.
In contrast, our approach reports violations but no root cause. Again, this is no
limitation of our approach because a root cause is a design decision that has to1185

be changed in order to meet confidentiality requirements. Neither our nor other
approaches can free software designers from choosing a solution because this is
a creative process. Doing this automatically is barely possible. Therefore, we
have to bridge the gap between the set of individual violations that our approach
yields and the root causes that related approaches report in their publications.1190

We do this by ensuring that every reported violation traces back to the issue
we introduced. We already demonstrated how to trace back issues in Section 8.

Case Selection for Information Flow. There are various security models
based on information flow but noninterference is one of the most commonly
used models [86], which can be extended by declassification to increase its ap-1195

plicability. Related approaches [29, 85] also use this security model and pro-
vide cases including points to insert issues. These cases support our evalua-
tion because they provide data-oriented system descriptions, define information
flow requirements based on data and provide reference results, issues or criti-
cal points to inject issues for rating the accuracy of analysis results. All cases1200

consider declassification and are based on real systems. We select all cases pre-
sented in the mentioned publications. Katkalov [85] provides five cases with
flow requirements: TravelPlanner, DistanceTracker and ContactSMSManager
cover noninterference with declassification using totally ordered security levels
(OL). The information flow analysis ensures that no data arrives at a node1205

that has a clearance level lower than the data classification. PrivateTaxi cov-
ers fine-grained noninterference rules between nodes and selected data types
(LG). BankingApp covers noninterference between tenants of a banking system.
All aforementioned cases of Katkalov do not provide reference results in form
of a set of violations or cases containing issues. However, they describe the1210

critical point, i.e. a declassification function, in the design that prevents viola-
tions. Therefore, we introduce an issue by circumventing these declassifications.
Tuma et al. [29] provide the four cases FriendMap, Hospital, JPmail and We-
bRTC that cover noninterference analyses with two security levels (2L). The

33

Table 3: Characteristics of information flow cases (top) and access control cases (bottom)
realized in our DFD syntax.

Case Analysis Nodes Edges Behav-
iors

Character-
istic Types

Labels

TravelPlanner OL 17 19 7 2 3
DistanceTracker OL 8 9 5 2 3
ContactSMS OL 9 12 7 2 2
PrivateTaxi LG 35 54 11 6 6
BankingApp – – – – – –
FriendMap 2L 17 18 7 3 4
Hospital 2L 14 14 7 3 4
JPMail 2L 15 17 9 3 4
WebRTC 2L 50 56 10 3 4

TravelPlanner RBAC 17 19 7 2 3
DistanceTracker RBAC 8 9 5 2 3
ContactSMS RBAC 9 12 7 2 3
DAC DAC 7 7 6 4 4
MAC MAC 15 22 7 2 3
ABAC ABAC 13 18 6 4 6

information flow analysis ensures that no data classified high arrives at a node1215

observable by an attacker. Tuma et al. provide a variant with and a variant
without issue for the cases FriendMap and Hospital. We use both variants, so
we do not have to introduce an issue by ourselves. For the remaining cases, the
critical points in the design, i.e. the declassifications, are available. We intro-
duce an issue into every case by circumventing the declassification. The upper1220

part of Table 3 gives an overview of the size of the cases after realizing them
with our syntax. The publications describe the cases in more detail than we can
provide in this article, so we refer to the respective publications and our data
set [68] for detailed descriptions.

Case Selection for Access Control. Access control and corresponding analy-1225

ses are a wide field. Unfortunately, finding cases that are neither about correctly
implementing access control systems nor designing appropriate requirements is
challenging. The related approach FlowUML [61] does not provide an evalu-
ation and therefore no cases. In previous work [32], we provide three RBAC
cases derived from the already known cases TravelPlanner, DistanceTracker and1230

ContactSMS by mapping the security levels to roles. The RBAC analysis en-
sures that every node holds at least one role that a data item requires to grant
access. The cases support our evaluation by covering various system designs
and providing an analysis covering the core of RBAC. We introduce the same
issues in the access control cases that we already introduced in the information1235

flow cases for the same reasons. There are further three common access control
models [87, pp. 61], for which we could not identify appropriate cases in litera-

34

ture: DAC, MAC, and Attribute-based Access Control (ABAC). Therefore, we
create one case for each access control model on our own. We use a textbook
[87] that describes the foundational concepts of these models. The cases support1240

our evaluation because they are designed to cover the remaining, most common
access control models, which we have to consider to reason about expressive-
ness. The lower part of Table 3 gives an overview of the size of the cases after
realizing them with our syntax. In the following, we describe the cases created
by us. Our data set [68] contains additional details about the cases.1245

DAC Case. Discretionary Access Control (DAC) [87, pp. 61] directly
assigns access privileges on objects to the accessing subjects. The case covers
these aspects: The DFD describes a system consisting of a storage of family
pictures and a system function to read the pictures as illustrated by Figure A.10.
The DFD reflects common usage scenarios of DAC in operating systems or file1250

sharing systems. There are four users: Mother, Dad, Aunt and Indexing Bot.
The mother is the owner of the pictures. She grants read access to all but the
bot. Consequently, the index bot must not access the storage. The introduced
issue is that the index bot accesses the pictures.

MAC Case. Mandatory Access Control (MAC) [87, pp. 64] defines manda-1255

tory, global rules that aim for avoiding unwanted explicit information flows. The
military access control model is one of the most prominent examples for MAC.
Therefore, we assume that this particular model is a representative example for
MAC. Military information systems often use MAC requirements prohibiting
access to information classified higher than the user’s clearance. The case is1260

about such a system: The DFD describes a system for monitoring the airspace
using the military access control model [87, pp. 65] as illustrated by Figure A.11.
There are three user types: Clerks have the clearance Unclassified. They cre-
ate and store weather reports. Flight Controllers have the clearance Classified.
They register civil planes, look them up in a database and determine new routes1265

for them by considering weather reports. Military Flight Controllers have the
clearance Secret. They do the same as the civil flight controller but for military
planes by also considering positions of civil planes. Information about weather is
Unclassified, information about civil planes is Classified and information about
military planes is Secret. The levels have the total order Unclassified, Classified1270

and Secret. The introduced issue is that the civil flight controller reads military
plane information.

ABAC Case. Attribute-based Access Control (ABAC) [87, pp. 74] de-
scribes subjects and objects by attribute descriptors rather than roles or iden-
tity. Access control permissions are defined between subject descriptors and1275

object descriptors. The case covers these aspects: The DFD describes a system
design for managing customers of a bank with branches in the USA and Asia as
illustrated by Figure A.12. There are Clerks that register customers, look them
up and determine credit lines for them. A clerk has the attributes Role and
Location. Managers have the same abilities and properties as a clerk but can1280

also register celebrity customers and move customers between branches. Pro-
cessed information has the attributes Customer Status and Customer Location.
The access permissions are defined as follows. Users with a certain location can

35

access information about customers that are in the same location and that are
not celebrities. Users that have the role manager can access all information.1285

Any other access is forbidden. The introduced issue is that a manager registers
a celebrity as regular customer.

10.3. Evaluation Results and Discussion of Expressiveness

We could successfully model all system designs including properties and be-
haviors relevant for confidentiality for all cases mentioned in Table 3 except for1290

the BankingApp case. We explain why we could not model the BankingApp
case as part of the discussion below. The syntactical quality of the access con-
trol cases (Q1.1) is s = 3

3+1+1+1/3
3+1+1+1 = 1.0. The syntactical quality of

the information flow cases (Q1.2) is s = (3
3+1+0+ 4

4)/(3
3+1+1+ 4

4) = 0.75. As ex-
plained as part of the evaluation design, we normalized the influence of multiple1295

cases using the same analysis type by building a weighted sum. We could fully
represent the analysis definitions for access control (Q1.3), which implies a syn-
tactical quality s = (3

3+1+1+1)/(3
3+1+1+1) = 1.0. We could fully represent the

analysis definitions for information flow (Q1.4) except for the definition of the
BankingApp case. We explain why we could not represent the analysis defini-1300

tion of the BankingApp case as part of the discussion below. The syntactical
quality is s = (3

3+1+0+ 4
4)/(3

3+1+1+ 4
4) = 0.75. In the following, we discuss the

modeling results and examine the reason for reduced syntactical quality. We
do not present the resulting DFDs but focus on the used characteristic types,
behavior descriptions and the analysis queries because they are the crucial parts1305

that have potential to limit expressiveness. As introduced in Section 5, we refer
to the combination of these three things as analysis definition. The full DFDs
are available in our data set [68].

The cases TravelPlanner, DistanceTracker and ContactSMS share the same
analysis: non-interference using a totally ordered lattice (OL). The characteris-1310

tic types are the classification of information and the clearance of nodes. Both
use totally ordered security levels. The behavior descriptions are as follows. A
Forwarder copies the classifications from input to output. A Store acts like the
forwarding behavior. A Joiner merges two inputs into one and classifies the
output by the highest of all incoming levels. A Syncer acts like the forwarding1315

behavior but waits for an additional input without considering its classification.
A Declassifier explicitly sets the classification of the output. The analysis query
is the same as already presented in Listing 4. We could successfully represent
all three cases, which includes the system designs and analyses. The presented
analysis definition is applicable to all noninterference analyses including declas-1320

sification that have totally ordered security levels.
The cases FriendMap, Hospital, JPMail and WebRTC share the same anal-

ysis: non-interference using high/low levels (2L). The characteristic types are
the classification of information, the classification of encrypted content and the
zone of nodes. The classification characteristic type uses the values high and1325

low. The zone characteristic type uses the values attack and trusted. The behav-
ior descriptions are as follows: Store, Forwarder and Joiner share the semantics

36

Listing 6: Information flow analysis query equivalent to Tuma et al. [29].

1 ?- inputPin(P, PIN),

2 nodeCharacteristic(P, ’zone’, ’attack’),

3 characteristic(P, PIN, ’classification’, ’high’, S).

already described for the previous cases. The Encryptor always sets the classifi-
cation of the output to low but attaches the old classification in the classification
of encrypted content characteristic. The Decryptor sets the classification of the1330

output to the classification stored in the classification of encrypted content char-
acteristic. The analysis query shown in Listing 6 searches for data with a high
classification that arrives on a node P in the attack zone. We could success-
fully represent all four cases, which includes the system designs and analyses.
The presented analysis definition is applicable to all noninterference analyses1335

including declassification by encryption that use two classification levels and
only distinguish regular and attacking system nodes or users.

The PrivateTaxi case is complex and covers non-interference using lattice
groups (LG). It requires a decent amount of characteristic types and behaviors.
The characteristic type PublicKeyOf and PrivateKeyOf describe that the in-1340

formation is a public key or a private key of an entity. DecryptableBy describes
the entities that can decrypt the encrypted information. Entity describes that a
node belongs to an entity. All of these characteristic types use a list of entities as
values. The characteristic type CriticalData describes that a data type requir-
ing protection is contained in the information. EncryptedContent describes the1345

content of encrypted information. Both characteristic types use a list of data
types as values. The Store, Forwarder and Syncer behavior are as explained
previously. The Joiner determines the output characteristics by building the
union of received labels for each characteristic type except for the decryptable
characteristic type, which requires the intersection of labels. The Encryptor1350

stores the critical data type in the characteristic for encrypted content, removes
the critical data type characteristic, and sets the decryptable characteristic to
the owner of a received public key. The Decryptor inverts the effect of the En-
cryptor if the decryptable characteristic matches the owner of a received private
key. There are two behaviors that declassify data: The Proximity behavior acts1355

like the forwarding behavior but removes the critical data type label for routes
because the route cannot be reconstructed from a single valued metric. The
RouteCreator behavior creates routes from a location and a destination. It acts
like the joining behavior but explicitly sets the critical data type characteristic
to route. The analysis query shown in Listing 7 tests whether either the service1360

for calculating distances has access to contact information or the private taxi
service has access to the route. We could successfully represent the case, i.e. the
system design and the corresponding analysis. The behaviors to handle encryp-
tion are reusable but the characteristic types and the analysis goal are tailored
to the case. The reason for this is the explicit reference to nodes in the analysis1365

goal as defined by Katkalov [85, p. 211].

37

Listing 7: Information flow analysis query for PrivateTaxi case.

1 ?- (E = ’CalcDistanceService’, D = ’ContactData’;

2 E = ’PrivateTaxi’, D = ’Route’),

3 inputPin(N,PIN),

4 nodeCharacteristic(N, ’entity’, E),

5 characteristic(N, PIN, ’criticalData’, D, S).

Listing 8: RBAC analysis query for iFlow cases.

1 ?- inputPin(P, PIN), flowTree(P, PIN, S),

2 setof(R, nodeCharacteristic(P, ’Roles’, R), ROLES),

3 setof(A, characteristic(P, PIN, ’AccessRights’, A, S), REQ),

4 intersection(REQ, ROLES, []).

As mentioned before, we could not fully express the BankingApp case. The
information flow requirements to be considered in this case are about ensuring
that tenants/users of a banking app including the banking backend system do
not interfere with each other. For instance, a user must not have access to1370

the balance of another user. While we could represent the system structure
consisting of processes, the actor and stores, we could not represent the remain-
ing system aspects such as multiple users of the same type. Consequently, we
could also not represent the analysis query. We cannot represent multiple users
because the DFD model and the semantics operate on a type-level. However,1375

representing multiple users of the same type requires models and semantics op-
erating on instance-level. We discuss this aspect as part of the limitations in
Section 10.7.

The access control versions of the cases TravelPlanner, DistanceTracker and
ContactSMS share the same analysis: Core RBAC. The characteristic types are1380

AccessRights of data and Roles of nodes. Both use three available roles as values.
The behavior types are the same as described for the corresponding information
flow cases. The Joiner applies the intersection of access rights of incoming
data to the output. The Declassifier copies the access rights including a defined
additional access right to the output. The remaining behaviors remain the same.1385

The analysis query illustrated in Listing 8 collects all access rights REQ of a data
item, collects all roles ROLES of a processing node, and reports a violation if
the intersection between access rights and roles is empty. We could successfully
represent all cases, i.e. the system design and the corresponding analysis. The
analysis definition can be reused to represent access control scenarios covering1390

static Core RBAC [87, pp. 71].
The DAC case covers DAC without delegation of rights. The used charac-

teristic types are the Identity of actors as well as the ReadAccess and Owner of
stores. All characteristic types use a set of identities as values. We reuse the
Store and Forwarder behavior descriptions that we described previously. The1395

analysis query in Listing 9 detects data received by actors, which comes from
a store that has not granted read access to that actor. It uses the flow tree S,

38

Listing 9: DAC analysis query.

1 ?- store(STORE), actor(A), inputPin(A,PIN), flowTree(A, PIN, S),

2 traversedNode(S, STORE), nodeCharacteristic(A, ’Identity’, AID),

3 \+ nodeCharacteristic(STORE, ’ReadAccess’, AID).

Listing 10: Extension of analysis query for non-interference using totally ordered labels.

1 ?- actor(A), (actorProcess(P, A); A=P), ...

as well as the helper clause traversedNode that tests whether the given store
STORE is in the flow tree S. We could successfully represent the system design
and the corresponding analysis. The involved characteristic types and behavior1400

descriptions are reusable for other DAC cases.
The MAC case covers MAC with the military access control model. We use

the characteristic types Classification of data and the Clearance of nodes. Both
characteristic types use an ordered set of security levels. We reuse the previously
described behavior descriptions Store and Forwarder. A Joiner propagates the1405

highest classification value of all incoming data items. The analysis query is
the same query as already presented in Listing 4 but we restrict the nodes to
be checked to nodes directly associated to an actor as shown in Listing 10.
We could successfully represent the MAC case, i.e. the system design and the
analysis.1410

In the ABAC case, we use the characteristic types CustomerLocation and
CustomerStatus to describe attributes of data as well as EmployeeLocation and
EmployeeRole to describe attributes of actors. We reuse the previously defined
behavior descriptions Store and Forwarder. The Joiner applies the union of all
incoming data characteristics to the outgoing data. The LocationChanger acts1415

like the forwarding behavior but sets the location to Asia. The analysis query in
Listing 11 encodes the specific requirements of the case. A violation is detected
if (i) the location of the actor and the data is not the same and the actor is not
a manager or (ii) the data is about a celebrity and the actor is not a manager.
We could successfully represent the case, i.e. the system design and the analysis.1420

All behaviors except the location changing behavior are reusable. The analysis
query is specific for the ABAC rules and not reusable. However, the flexibility
of Prolog allows to represent even complex attribute descriptors and relations.

Listing 11: Analysis query for ABAC case.

1 ?- actor(A), inputPin(A, PIN),

2 nodeCharacteristic(A, ’EmployeeLocation’, SUBJ_LOC),

3 nodeCharacteristic(A, ’EmployeeRole’, SUBJ_ROLE),

4 characteristic(A, PIN, ’CustomerLocation’, OBJ_LOC,S),

5 characteristic(A, PIN, ’CustomerStatus’, OBJ_STAT,S),

6 (SUBJ_LOC \= OBJ_LOC, SUBJ_ROLE \= ’Manager’;

7 OBJ_STAT = ’Celebrity’, SUBJ_ROLE \= ’Manager’).

39

As the values of the syntactic quality metric and the corresponding discus-
sion demonstrated, we can represent multiple types of information flow and1425

access control mechanism (Ch2) in system designs. We integrated the confiden-
tiality mechanisms via extensions rather than predefined behavior descriptions
or characteristic types. Because further, custom analyses would be integrated
via the same extensions, the evaluation also demonstrated that custom analysis
definitions (Ch3) can be integrated without invasive source code extensions.1430

10.4. Evaluation Results and Discussion of Reusability

We calculated the Jaccard Coefficient for the cases covering the TravelPlan-
ner, DistanceTracker and ContactSMS to answer Q2.1. For the TravelPlanner
system design, the coefficient is j = 89/219 = 0.41. For the DistanceTracker
system design, the coefficient is j = 47/98 = 0.48. For the ContactSMS system1435

design, the coefficient is j = 66/123 = 0.54.
The Jaccard Coefficients that we calculated for the three cases TravelPlan-

ner, DistanceTracker and ContactSMS range between 0.41 and 0.54. The big-
ger the value is, the more similar the DFDs are. A value of 0.5 means that the
shared amount of model elements is as big as the sum of the individual model1440

elements of both involved models. This is a significant improvement compared
to a value of 0, which would be the result of using two dedicated modeling
languages of the state of the art for representing two versions of a system. An
in-depth look at the individual model elements, i.e. the model elements that
are different when using different confidentiality mechanisms, confirms that the1445

structural elements, i.e. the nodes and data flows, are not affected by the switch
to another confidentiality mechanism. This means, the DFD structure is equal,
which is the expected effect of separating the system structure from the confi-
dentiality mechanism in the metamodel. The good metric values show that the
chosen modeling approach supports considerable reuse of existing models when1450

switching confidentiality mechanisms.
To give an idea what these results mean, we would like to explain how

we switched the mechanism in the case study. Figure 9 presents the Distance
Tracker case. The upper part shows the DFD extended by properties and be-
havior descriptions. The lower part shows the particular properties and behav-1455

iors. In order to switch the confidentiality mechanism from information flow to
RBAC, we adjusted the properties and behaviors of information flow (shown
in dark grey) in a way that they look like the RBAC properties and behaviors
shown in light grey. This means, we neither had to adjust the DFD structure
nor the annotations of the DFD (shown as upper case letters). It is also possible1460

to first strip all annotated information, i.e. properties and behaviors, from the
DFD, import an existing analysis definition and add new annotations to the
DFD but this implies additional effort for recreating the annotations. Either
way, the DFD structure will always remain the same, which means designers
can save effort by not recreating the model from scratch.1465

As the results and the previous discussions show, the proposed extended
DFD is capable of representing access control and information flow control
mechanisms. Because we did not have to change the modeling language to

40

location

consent
consent

location
location

locations dinstance
distance

distance

User
U

confirm distance
T,E

record distance
D,F

record location
T,F

confirm location
U,L

calculate distance
T,F

Location
Store

T Distance
Store

D

Clas. (Data):
Clear. (Node):
Behaviors:

User (U) | User,Tracking (T) | Distance (D)
User (U) | User,Tracking (T) | Distance (D)
Forward (F) | Declas. Location (L) | Declas. Distance (E)

Declas. Location
out.*.* := in.*.*
out.Rights.Tracking := true

Rights (Data):
Roles (Node):
Behaviors:

User (U) | Tracking (T) | Distance (D)
User (U) | Tracking (T) | Distance (D)
Forward (F) | Declas. Location (L) | Declas. Distance (E)

Declas. Distance
out.*.* := in.*.*
out.Rights.Distance := true

Declas. Location
out.*.* := in.*.*
out.Clearance.* := false
out.Clearance.UserTracking := true

Declas. Distance
out.*.* := in.*.*
out.Clearance.* := false
out.Clearance.Distance := true

Analysis
Defintion

RBAC

Analysis
Defintion

Information
Flow

U,T,D D

U

Figure 9: Differences in Distance Tracker cases for information flow (dark grey) and access
control (light grey).

represent both mechanisms, we successfully addressed challenge Ch2. As the
Jaccard Coefficient illustrated, we did not only achieve this by merging two dis-1470

tinct modeling languages but by using a commonly shared modeling core (the
DFD core elements) and extending it by analysis-specific modeling constructs.
We represented all confidentiality mechanisms by extensions, which means that
these extensions are the foundation of confidentiality analyses that users can
define. Therefore, we addressed the modeling aspect of Ch3.1475

10.5. Evaluation Results and Discussion of Accuracy

We executed the previously defined analyses for every case that we could ex-
press and classified the results. We found violations in 14 cases and all reported
violations trace back to the specific issue. This means all results are classified
as true positives (tp = 14) and there are no false positives (fp = 0). Because1480

all cases contain an issue and violations have been reported for all cases, there
are no false negatives fn = 0. This brings us to a precision of p = 14/(14+0) = 1
and a recall of r = 14/(14+0) = 1. Thus, our analyses achieved perfect accuracy.
We could reproduce the analysis results of related publications that initially
defined the cases. We represented and analyzed information flow and access1485

control cases, while related approaches can only represent subsets as discussed
in Section 4.2.

As part of the result classification, we checked every reported violation.
Reporting on every violation as part of this article would require a considerable
amount of space and also knowledge about the particular DFD. Therefore, we1490

do not report on the details of this classification in this article but refer to our
data set [68], in which we give enough details on the DFD to understand the
classification for each violation that is also part of the data set.

41

The values of the precision and recall metrics demonstrated that we cannot
only represent systems and confidentiality mechanisms as well as analyses but1495

that we can also derive accurate results via the defined analyses. We always
introduced errors by adding an additional, alternative data flow to a DFD with-
out an issue. If we did not systematically explore all possible data flow paths,
we could not have received such accurate results. Therefore, we addresses the
challenge about considering multiple data flow paths (Ch1). The results also1500

support our claim to support information flow and access control analyses (Ch2)
as well as custom analysis definitions (Ch3) because we cannot only model them
(see Section 10.3) but also execute them.

10.6. Threats to Validity

We structure the discussion of threats to validity by the four categories of1505

Runeson and Höst [88] for evaluations based on case studies.
Internal validity assures that no unknown factor influences the investigated

factor in order to draw valid causal relations. The investigated factors in this
evaluation are the expressiveness, reusability and accuracy of our syntax and
semantics. The expected influencing factors are our syntax and semantics. How-1510

ever, further factors can influence the expressiveness: Limited experience with
the modeling language can influence the expressiveness negatively. We can
exclude this factor because the authors of this article are the designers of the
modeling language. Too simple scenarios can make the expressiveness look more
positive than it actually is because they omit relevant aspects. We selected all1515

information flow cases and half of the access control cases based on related pub-
lications [29, 85, 32], so we do not expect them to be tailored or too simple in
this field of research. In addition, we selected all cases from the mentioned, re-
lated publications to avoid a tailored or bias selection. We used weighted sums
to avoid an increased influence of cases sharing the same analysis definition.1520

Without this, it would be possible to hide a lack of expressiveness regarding
one type of analysis definition by adding many cases using a well supported
analysis definition. We created three access control cases on our own but in-
cluded fundamental concepts mentioned in a corresponding textbook [87]. We
report on aspects of the particular access control mechanisms that we did not1525

cover in the limitations in Section 10.7 to not claim more expressiveness than
the case study could show. Overly simplifying analyses can positively influence
the expressiveness by hiding important details. We stick as closely as possi-
ble to the analyses presented in related work [29, 85, 32] or the corresponding
textbook [87] to mitigate simplification. We report on aspects of the particular1530

information flow control mechanisms that we did not cover in the limitations
in Section 10.7. There are also factors that can influence the accuracy: Even
if we did not insert issues in initially created DFDs, there still might be issues
that lead to a violation. We cannot rule this out but the evaluation showed
that we can successfully detect all injected violations and trace them back at1535

least. Therefore, we can only claim that the analyses at least provide results as
good as the results of related approaches. Incorrect analysis queries or DFDs
can yield always the same result, which might be a detected violation or not.

42

We addressed this issue by always tracing back violations, which is unlikely to
be successful if the analysis query does not properly describe the violation to be1540

expected. Overfitting analysis queries, such as by encoding the violation to be
reported directly in the query, can make the accuracy look more positive than
it actually is. We evaluated three analysis types (OL, 2L, RBAC according
to Table 3) with more than one DFD and achieved accurate results. This is
unlikely to succeed for analysis types, which use queries that are overfitted to1545

a particular issue or DFD. In PrivateTaxi (LG), the query is system-specific
as requested by the original case description. For the remaining access control
queries (DAC, MAC, RBAC), we discussed their generalizability, which would
also reveal overfitted queries.

External validity assures that researchers only generalize findings if it is1550

valid to do so. According to Runeson and Höst [88], case study research does
not focus on representativeness but on specific aspects of the case under study
to get a better understanding of the phenomena. Therefore, insights cannot be
generalized to arbitrary other cases unreservedly. However, generalizing insights
to cases with comparable characteristics is possible. Therefore, we discussed1555

the characteristics of the case and how it can be generalized for each analysis
type in the discussion of expressiveness in Section 10.3. We consider the cases
derived from related work representative for the application area. In addition,
we evaluated 15 cases, which we consider a reasonable amount, especially when
comparing the amount to related work [29, 85, 32], which usually only considers1560

5 cases with similar analysis definitions at most. The remaining cases at least
comply with common definitions.

Construct validity assures that the used metrics are capable of answering
the evaluation question. We chose the syntactical quality metric to rate expres-
siveness. It is barely possible to summarize expressiveness by metrics because1565

variations and limitations of the studied cases have to be discussed, so we ex-
tensively discussed the results and provided the metric values for the sake of
a quick overview. Syntactic quality is an appropriate metric for this as it has
already been used to rate the expressiveness of a DSL [79]. We use the Jaccard
Coefficient to reason about reusability when switching confidentiality mecha-1570

nisms. The Jaccard Coefficient is an established metric for rating similarity of
sets in various fields [80]. The coefficient requires a definition of an element and
a definition of equality between two elements in order to rate similarity. We de-
fined both in the evaluation design in Section 10.2. The definitions cover models
elements and their properties. Because the whole model only consists of model1575

elements and properties, the definition covers the whole model. Therefore, the
coefficient is applicable to rate the similarity of our models. In addition, we
demonstrated the applicability of the Jaccard Coefficient for comparing models
in previous work [82, 83]. Using the comparison approach of EMFCompare [81]
to determine equal model elements is reasonable as we explained in the evalua-1580

tion design. We described the steps that EMFCompare takes in the evaluation
design in Section 10.2. The steps are intuitive, established and could also be
carried out manually. The precision and recall metrics used to rate the accu-
racy of the analyses are commonly applied metrics for rating the accuracy of

43

various information flow analyses [25, 89]. The selection of cases is appropriate1585

for answering the evaluation questions as discussed before.
Reliability assures that the conducted study, i.e. the data collection and data

analysis, does not depend on the particular researcher but other researchers
come to the same results. As discussed before, the model quality depends on
the experience of the modeler with the syntax and semantics. We cannot com-1590

pletely mitigate this issue. However, we provide all material required to replicate
the evaluation starting from the models as stated in Section 10.8. Additionally,
all metric values can be calculated in an objective way: we provide clear in-
structions on how to collect input data for calculating the metrics without the
need for subjective interpretations. Therefore, the process and results are trace-1595

able and other researchers can decide whether the study has been carried out
correctly.

10.7. Limitations

We distinguish between limitations of the proposed syntax and semantics on
the one hand, as well as limitations of the evaluation on the other hand.1600

One limitation of the syntax and semantics has been demonstrated in the
evaluation: there are no means to represent individual data or users but only
classes of data or users. A class of data describes a group of data that is treated
the same. A class of users describes a group of users acting the same. This
limitation implies limited support for some specific aspects of confidentiality1605

mechanisms: The RBAC extension providing means to specify constraints on
individual subjects, which hold roles, cannot be represented. Therefore, we can-
not represent that two clerks have to approve something but they must not be
the same person, for instance. The delegation of rights in DAC cannot be rep-
resented, so we cannot distinguish between valid and invalid access to data that1610

involves delegated access rights, for instance. Also, it is not possible to ensure
non-interference between users of the same type, so we cannot ensure, for exam-
ple, that a bank customer cannot access the balance of another customer. All
of these aspects would require detailed information about individual users and
data as well as a mechanism to express time and dependencies between system1615

states in different times. We intentionally excluded this because such detailed
information required to model individuals might not be available during design
time. Additionally, the amount of elements to specify will certainly be increased
when more detailed models and even considering time are necessary. We demon-
strated that the proposed syntax and semantics can provide valuable results and1620

insights and suggest to cover the remaining aspects in later development phases
when more detailed information or even source code is available. This lowers the
overhead for analyzing these aspects significantly. Other approaches building
on DFDs such as SecDFD [29] or FlowUML [61] share the same restrictions.

Our evaluation focused on the expressiveness and accuracy of our syntax and1625

semantics as well as on reusability. We did not evaluate usability. As already
said before, we intentionally did not evaluate usability because this would only
evaluate our implementation of tool support rather than our concepts. We do
not see an open research question in whether usable tooling for modeling and

44

analyzing DFDs can be created because the users in a recent study of Tuma1630

et al. [17] could successfully use their DFD modeling and analysis approach.
We also did not verify the correctness of the mapping and the resulting logic
program. As already motivated in the evaluation goals, verifying correctness
does not allow us to answer whether we sufficiently addressed the challenges
mentioned in the introduction. However, we plan to report on the correctness1635

in future publications on different aspects of our approach.

10.8. Data Availability

We provide all data used in the evaluation in our data set [68]. This includes
metamodels, source code, data flow diagrams, logic programs, analysis queries
and results. In addition, we provide a manual to replicate all steps of our1640

evaluation as part of the dataset.

11. Conclusions

In this article, we proposed an extended DFD syntax and analysis semantics
that allow expressing analyses to detect violations of access control and infor-
mation flow requirements with good accuracy. The DFD syntax is based on1645

DFD elements as introduced by DeMarco [33] but extends these elements with
means for representing behavior relevant for confidentiality analyses. The se-
mantics describe this behavior in terms of label propagation rules formulated in
a logic program. An automated mapping translates the extended DFD into an
executable logic program that yields detected violations. Thereby, we address1650

three open challenges of software design modeling and analysis approaches aim-
ing to find confidentiality violations. In our evaluation, we demonstrated the
expressiveness with respect to information flow and access control, demonstrated
effective reuse of existing models when switching between information flow and
access control as well as evaluated the accuracy in a case study considering1655

fifteen cases.
Practitioners as well as researchers can benefit from our contributions. Our

syntax and semantics provide means for systematically considering confiden-
tiality properties in an early design stage. This allows identifying fundamental
design issues early and fixing them in a cost-efficient way. Because our syntax1660

is close to the commonly known concepts and syntax of DFDs, we assume a
flat learning curve for designers. Researchers can use our provided analyses
as a foundation for defining their own confidentiality analyses based on data
property propagation. This allows focusing on the application area and analysis
concepts rather than on generic issues like data propagation or data dependency1665

resolution. Additionally, the cases published as part of this article [68] can serve
as a benchmark for existing analyses.

We see five major points as part of future work. First, we plan to investigate
how our DFD-based modeling language and analyses can be integrated with
existing early design modeling and analysis approaches. Many modeling lan-1670

guages have counterparts for the modeling elements we presented in this paper.

45

It might be possible to cover all aspects of our extended DFD modeling language
by some lightweight modifications and a mapping to our modeling language.
We already created a preliminary concept for Architectural Description Lan-
guage (ADL) integration [90] that needs to be refined and evaluated in future.1675

Second, we plan to investigate whether the presented syntax and semantics are
capable of supporting further security objectives such as integrity. Evaluating
the support for integrity is reasonable because information flow requirements
often ensure confidentiality and integrity. Third, we plan to investigate how we
can build catalogues of reusable model elements. Reusing model elements has1680

the potential to lower the modeling effort. An important question to answer is
how designers could use these catalogues and how to design analysis definitions
as reusable as possible. Fourth, we would like to know whether parts of our
analyses could be executed in real-time while modeling to guide designers and
provide fast feedback. Challenges in doing so include the handling of incom-1685

plete models, incomplete analysis results and how to identify and present useful
analysis results while editing. Fifth, we plan a publication on the verification
of correctness with respect to the mapping and the logic program. We plan to
do the verification of the mapping based on the properties to verify for correct-
ness collected by Rahim and Whittle [91]. The verification of the correctness1690

of the logic program will consider completeness and correctness as suggested by
Drabent [92].

Acknowledgements

This work was supported by the German Research Foundation (DFG) under
project number 432576552, HE8596/1-1 (FluidTrust), as well as by funding from1695

the topic 46.23.03 Engineering Security for Mobility Systems of the Helmholtz
Association (HGF) and by KASTEL Security Research Labs.

References

[1] Institute of Electrical and Electronics Engineers, IEEE Std 1471-2000:
IEEE Recommended Practice for Architectural Description for Software-1700

Intensive Systems, Standard, IEEE (Oct. 2000).

[2] J. Deogirikar, A. Vidhate, Security attacks in IoT: A survey, in: 2017
International Conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud) (I-SMAC), 2017, pp. 32–37. doi:10.1109/I-SMAC.2017.8058363.

[3] A. Sadeghi, C. Wachsmann, M. Waidner, Security and privacy challenges in1705

industrial Internet of Things, in: 52nd ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), 2015, pp. 1–6. doi:10.1145/2744769.2747942.

[4] International Organization for Standardization, ISO/IEC 27000:2018(E)
Information technology – Security techniques – Information security man-
agement systems – Overview and vocabulary, Standard, ISO, Geneva, CH1710

(Feb. 2018).

46

http://dx.doi.org/10.1109/I-SMAC.2017.8058363
http://dx.doi.org/10.1145/2744769.2747942

[5] R. Alguliyev, Y. Imamverdiyev, L. Sukhostat, Cyber-physical systems and
their security issues, Computers in Industry 100 (2018) 212–223. doi:

10.1016/j.compind.2018.04.017.

[6] European Union, Regulation (EU) 2016/679 of the European Parliament1715

and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), Official Journal of the European Union 59 (2016) 1–88.
URL https://eur-lex.europa.eu/eli/reg/2016/679/oj1720

[7] E. Denham, Penatly Notice, Penatly Notice COM0783542, Information
Commissioner’s Office, United Kingdom, accessed 2021-08-02 (Oct. 2020).
URL https://web.archive.org/web/20210620130131/https://
edpb.europa.eu/sites/default/files/article-60-final-decisions/
uk 2010-10 data breach security of processing decisionpublic final.pdf1725

[8] E. Denham, Penatly Notice, Penatly Notice COM0804337, Information
Commissioner’s Office, United Kingdom, accessed 2021-08-02 (Oct. 2020).
URL https://web.archive.org/web/20210802034347/https://
edpb.europa.eu/sites/default/files/article-60-final-decisions/
uk 2020-10 personal data breach decisionpublic final.pdf1730

[9] H. Weisbaum, Trust in Facebook has dropped by 66 percent since the
Cambridge Analytica scandal, accessed 2021-08-20 (Apr. 2018).
URL https://web.archive.org/web/20210820004535/https:
//www.nbcnews.com/business/consumer/trust-facebook-has-
dropped-51-percent-cambridge-analytica-scandal-n8670111735

[10] J. Isaak, M. J. Hanna, User Data Privacy: Facebook, Cambridge Analytica,
and Privacy Protection, Computer 51 (8) (2018) 56–59. doi:10.1109/
MC.2018.3191268.

[11] Microsoft Corporation, Microsoft Security Development Lifecycle (SDL)
(2020).1740

URL https://web.archive.org/web/20210924183639/https:
//www.microsoft.com/en-us/securityengineering/sdl/

[12] B. W. Boehm, R. K. Mcclean, D. E. Urfrig, Some experience with au-
tomated aids to the design of large-scale reliable software, IEEE Trans-
actions on Software Engineering SE-1 (1) (1975) 125–133. doi:10.1109/1745

TSE.1975.6312826.

[13] Microsoft Corporation, iSEC Partners, Inc., Microsoft SDL: Return-on-
Investment, accessed 2021-09-25 (2009).
URL https://web.archive.org/web/20210925085942/https:
//www.nccgroup.com/globalassets/our-research/us/whitepapers/1750

isec-partners---microsoft-sdl-return-on-investment.pdf

47

http://dx.doi.org/10.1016/j.compind.2018.04.017
http://dx.doi.org/10.1016/j.compind.2018.04.017
http://dx.doi.org/10.1016/j.compind.2018.04.017
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210620130131/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2010-10_data_breach_security_of_processing_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210802034347/https://edpb.europa.eu/sites/default/files/article-60-final-decisions/uk_2020-10_personal_data_breach_decisionpublic_final.pdf
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://web.archive.org/web/20210820004535/https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
http://dx.doi.org/10.1109/MC.2018.3191268
http://dx.doi.org/10.1109/MC.2018.3191268
http://dx.doi.org/10.1109/MC.2018.3191268
https://web.archive.org/web/20210924183639/https://www.microsoft.com/en-us/securityengineering/sdl/
https://web.archive.org/web/20210924183639/https://www.microsoft.com/en-us/securityengineering/sdl/
https://web.archive.org/web/20210924183639/https://www.microsoft.com/en-us/securityengineering/sdl/
https://web.archive.org/web/20210924183639/https://www.microsoft.com/en-us/securityengineering/sdl/
http://dx.doi.org/10.1109/TSE.1975.6312826
http://dx.doi.org/10.1109/TSE.1975.6312826
http://dx.doi.org/10.1109/TSE.1975.6312826
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf
https://web.archive.org/web/20210925085942/https://www.nccgroup.com/globalassets/our-research/us/whitepapers/isec-partners---microsoft-sdl-return-on-investment.pdf

[14] K. S. Hoo, A. W. Sudbury, A. R. Jaquith, Tangible ROI through Secure
Software Engineering, Secure Business Quarterly 1 (2) (2001) 1–3, accessed
2020-09-22.
URL https://web.archive.org/web/20060614122530/http:1755

//www.sbq.com/sbq/rosi/sbq rosi software engineering.pdf

[15] G. McGraw, Software Security - Building Security In, Addison-Wesley Pro-
fessional, 2006.

[16] J. Jürjens, Sound methods and effective tools for model-based secu-
rity engineering with UML, in: Proceedings of International Conference1760

on Software Engineering, ICSE’05, 2005, pp. 322–331. doi:10.1109/
ICSE.2005.1553575.

[17] K. Tuma, L. Sion, R. Scandariato, K. Yskout, Automating the early de-
tection of security design flaws, in: E. Syriani, H. A. Sahraoui, J. d. Lara,
S. Abrahão (Eds.), Proceedings of ACM/IEEE International Conference on1765

Model Driven Engineering Languages and Systems, MODELS’20, ACM,
2020, pp. 332–342. doi:10.1145/3365438.3410954.

[18] A. Shostack, Threat modeling: designing for security, Wiley, Indianapolis,
IN, 2014.

[19] R. Al-Ali, P. Hnetynka, J. Havlik, V. Krivka, R. Heinrich, S. Seifermann,1770

M. Walter, A. Juan-Verdejo, Dynamic security rules for legacy systems, in:
Proceedings of European Conference on Software Architecture - Volume 2,
ECSA ’19, ACM, 2019, pp. 277–284. doi:10.1145/3344948.3344974.

[20] K. Pohl, C. Rupp, Requirements engineering fundamentals: a study guide
for the certified professional for requirements engineering exam, foundation1775

level, IREB compliant, 2nd Edition, Rocky Nook, Santa Barbara, CA, 2015.

[21] J. Dick, E. Hull, K. Jackson, Requirements Engineering, Springer Interna-
tional Publishing, Cham, 2017. doi:10.1007/978-3-319-61073-3.

[22] K. E. Wiegers, More About Software Requirements: Thorny Issues and
Practical Advice, Microsoft Press, USA, 2005.1780

[23] A. Sabelfeld, A. Myers, Language-based information-flow security, IEEE
Journal on Selected Areas in Communications 21 (1) (2003) 5–19. doi:

10.1109/JSAC.2002.806121.

[24] D. Hedin, A. Sjösten, F. Piessens, A. Sabelfeld, A Principled Approach
to Tracking Information Flow in the Presence of Libraries, in: M. Maf-1785

fei, M. Ryan (Eds.), Principles of Security and Trust, Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2017, pp. 49–70. doi:

10.1007/978-3-662-54455-6 3.

48

https://web.archive.org/web/20060614122530/http://www.sbq.com/sbq/rosi/sbq_rosi_software_engineering.pdf
https://web.archive.org/web/20060614122530/http://www.sbq.com/sbq/rosi/sbq_rosi_software_engineering.pdf
https://web.archive.org/web/20060614122530/http://www.sbq.com/sbq/rosi/sbq_rosi_software_engineering.pdf
https://web.archive.org/web/20060614122530/http://www.sbq.com/sbq/rosi/sbq_rosi_software_engineering.pdf
https://web.archive.org/web/20060614122530/http://www.sbq.com/sbq/rosi/sbq_rosi_software_engineering.pdf
https://web.archive.org/web/20060614122530/http://www.sbq.com/sbq/rosi/sbq_rosi_software_engineering.pdf
http://dx.doi.org/10.1109/ICSE.2005.1553575
http://dx.doi.org/10.1109/ICSE.2005.1553575
http://dx.doi.org/10.1109/ICSE.2005.1553575
http://dx.doi.org/10.1145/3365438.3410954
http://dx.doi.org/10.1145/3344948.3344974
http://dx.doi.org/10.1007/978-3-319-61073-3
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1007/978-3-662-54455-6_3
http://dx.doi.org/10.1007/978-3-662-54455-6_3
http://dx.doi.org/10.1007/978-3-662-54455-6_3

[25] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, P. McDaniel, FlowDroid: precise context, flow, field, object-1790

sensitive and lifecycle-aware taint analysis for Android apps, in: Proceed-
ings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI’14, ACM, 2014, pp. 259–269. doi:10.1145/
2594291.2594299.

[26] C.-A. Staicu, D. Schoepe, M. Balliu, M. Pradel, A. Sabelfeld, An Empirical1795

Study of Information Flows in Real-World JavaScript, in: Proceedings of
ACM SIGSAC Workshop on Programming Languages and Analysis for Se-
curity, PLAS’19, ACM, 2019, pp. 45–59. doi:10.1145/3338504.3357339.

[27] W. Xu, S. Bhatkar, R. Sekar, Taint-Enhanced Policy Enforcement: A
Practical Approach to Defeat a Wide Range of Attacks, in: A. D.1800

Keromytis (Ed.), Proceedings of USENIX Security Symposium, USENIX
Association, 2006, pp. 121–136.
URL https://web.archive.org/web/20210822002152/http:
//usenix.org/events/sec06/tech/full papers/xu/xu.pdf

[28] L. Wang, C. Fang, B. Mao, L. Xie, TMAC: Taint-Based Memory Protection1805

via Access Control, in: Proceedings of International Conference on Depend-
ability, DEPEND’09, 2009, pp. 19–27. doi:10.1109/DEPEND.2009.33.

[29] K. Tuma, R. Scandariato, M. Balliu, Flaws in Flows: Unveiling Design
Flaws via Information Flow Analysis, in: Proceedings of IEEE Interna-
tional Conference on Software Architecture, ICSA’19, IEEE, 2019, pp. 191–1810

200. doi:10.1109/ICSA.2019.00028.

[30] A. van den Berghe, K. Yskout, R. Scandariato, W. Joosen, A Lin-
gua Franca for Security by Design, in: Proceedings of IEEE Cybersecu-
rity Development, SecDev’18, IEEE, Cambridge, MA, 2018, pp. 69–76.
doi:10.1109/SecDev.2018.00017.1815

[31] K. Alghathbar, D. Wijesekera, authUML: a three-phased framework to
analyze access control specifications in use cases, in: Proceedings of ACM
Workshop on Formal Methods in Security Engineering, FMSE ’03, ACM,
2003, pp. 77–86. doi:10.1145/1035429.1035438.

[32] S. Seifermann, R. Heinrich, R. Reussner, Data-Driven Software Architec-1820

ture for Analyzing Confidentiality, in: Proceedings of International Con-
ference on Software Architecture, ICSA, IEEE, 2019, pp. 1–10. doi:

10.1109/ICSA.2019.00009.

[33] T. DeMarco, Structured analysis and system specification, Prentice-Hall,
Englewood Cliffs, N.J., 1979.1825

[34] W. Torres, M. G. J. van den Brand, A. Serebrenik, A systematic literature
review of cross-domain model consistency checking by model management
tools, Software and Systems Modelingdoi:10.1007/s10270-020-00834-1.

49

http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/3338504.3357339
https://web.archive.org/web/20210822002152/http://usenix.org/events/sec06/tech/full_papers/xu/xu.pdf
https://web.archive.org/web/20210822002152/http://usenix.org/events/sec06/tech/full_papers/xu/xu.pdf
https://web.archive.org/web/20210822002152/http://usenix.org/events/sec06/tech/full_papers/xu/xu.pdf
https://web.archive.org/web/20210822002152/http://usenix.org/events/sec06/tech/full_papers/xu/xu.pdf
https://web.archive.org/web/20210822002152/http://usenix.org/events/sec06/tech/full_papers/xu/xu.pdf
https://web.archive.org/web/20210822002152/http://usenix.org/events/sec06/tech/full_papers/xu/xu.pdf
http://dx.doi.org/10.1109/DEPEND.2009.33
http://dx.doi.org/10.1109/ICSA.2019.00028
http://dx.doi.org/10.1109/SecDev.2018.00017
http://dx.doi.org/10.1145/1035429.1035438
http://dx.doi.org/10.1109/ICSA.2019.00009
http://dx.doi.org/10.1109/ICSA.2019.00009
http://dx.doi.org/10.1109/ICSA.2019.00009
http://dx.doi.org/10.1007/s10270-020-00834-1

[35] K. Katkalov, K. Stenzel, M. Borek, W. Reif, Model-Driven Development
of Information Flow-Secure Systems with IFlow, in: Proceedings of Inter-1830

national Conference on Social Computing, SocialCom’13, 2013, pp. 51–56.
doi:10.1109/SocialCom.2013.14.

[36] R. France, Semantically extended dataflow diagrams: a formal specification
tool, IEEE Transactions on Software Engineering 18 (4) (1992) 329–346.
doi:10.1109/32.129221.1835

[37] C. Petersohn, W.-P. de Roever, C. Huizing, J. Peleska, Formal Semantics
for Ward & Mellor’s Transformation Schemas, in: C. J. van Rijsbergen,
D. Till (Eds.), Proceedings of Refinement Workshop, Springer, London,
1994, pp. 14–41. doi:10.1007/978-1-4471-3240-0 2.

[38] D. Fensel, J. Angele, D. Landes, R. Studer, Giving Structured Anal-1840

ysis Techniques a Formal and Operational Semantics with KARL, in:
H. Züllighoven, W. Altmann, E.-E. Doberkat (Eds.), Requirements En-
gineering ’93: Prototyping, Vieweg+Teubner Verlag, 1993, pp. 267–285.
doi:10.1007/978-3-322-94703-1 18.

[39] P. G. Larsen, N. Plat, H. Toetenel, A Formal Semantics of Data Flow1845

Diagrams, Formal Aspects of Computing 6 (6) (1994) 586–606. doi:

10.1007/BF03259387.

[40] H. Xiong, H. Zhang, X. Dong, L. Meng, W. Zhao, DFDVis: A Visual
Analytics System for Understanding the Semantics of Data Flow Diagram,
in: B. Zou, M. Li, H. Wang, X. Song, W. Xie, Z. Lu (Eds.), Proceedings1850

of International Conference of Pioneering Computer Scientists, Engineers
and Educators, ICPCSEE’17, Springer, 2017, pp. 660–673. doi:10.1007/
978-981-10-6385-5 55.

[41] T. Liu, C. S. Tang, Semantic specification and verification of data flow
diagrams, Journal of Computer Science and Technology 6 (1) (1991) 21–1855

31. doi:10.1007/BF02943404.

[42] N. Plat, J. Katwijk, K. Pronk, A case for structured analysis/formal design,
in: G. Goos, J. Hartmanis, S. Prehn, W. J. Toetenel (Eds.), VDM’91
Formal Software Development Methods, Vol. 551, Springer, 1991, pp. 81–
105. doi:10.1007/3-540-54834-3 8.1860

[43] T. Wahls, A. L. Baker, G. T. Leavens, An Executable Semantics for a
Formalized Data Flow Diagram Specification Language, Technical Report
TR93-27, Iowa State University (1993).
URL https://web.archive.org/web/20200601123325/https:
//lib.dr.iastate.edu/cs techreports/160/1865

[44] G. T. Leavens, T. Wahls, A. L. Baker, K. Lyle, An Operational Semantics
of Firing Rules for Structured Analysis Style Data Flow Diagrams,
Technical Report TR93-28c, Iowa State University (1996).

50

http://dx.doi.org/10.1109/SocialCom.2013.14
http://dx.doi.org/10.1109/32.129221
http://dx.doi.org/10.1007/978-1-4471-3240-0_2
http://dx.doi.org/10.1007/978-3-322-94703-1_18
http://dx.doi.org/10.1007/BF03259387
http://dx.doi.org/10.1007/BF03259387
http://dx.doi.org/10.1007/BF03259387
http://dx.doi.org/10.1007/978-981-10-6385-5_55
http://dx.doi.org/10.1007/978-981-10-6385-5_55
http://dx.doi.org/10.1007/978-981-10-6385-5_55
http://dx.doi.org/10.1007/BF02943404
http://dx.doi.org/10.1007/3-540-54834-3_8
https://web.archive.org/web/20200601123325/https://lib.dr.iastate.edu/cs_techreports/160/
https://web.archive.org/web/20200601123325/https://lib.dr.iastate.edu/cs_techreports/160/
https://web.archive.org/web/20200601123325/https://lib.dr.iastate.edu/cs_techreports/160/
https://web.archive.org/web/20200601123325/https://lib.dr.iastate.edu/cs_techreports/160/
https://web.archive.org/web/20200601123325/https://lib.dr.iastate.edu/cs_techreports/160/
https://web.archive.org/web/20200601123325/https://lib.dr.iastate.edu/cs_techreports/160/
https://web.archive.org/web/20200725235500/https://lib.dr.iastate.edu/cs_techreports/101/
https://web.archive.org/web/20200725235500/https://lib.dr.iastate.edu/cs_techreports/101/
https://web.archive.org/web/20200725235500/https://lib.dr.iastate.edu/cs_techreports/101/

URL https://web.archive.org/web/20200725235500/https:
//lib.dr.iastate.edu/cs techreports/101/1870

[45] G. T. Leavens, T. Wahls, A. L. Baker, Formal semantics for SA style data
flow diagram specification languages, in: Proceedings of ACM Symposium
on Applied Computing, SAC’99, ACM, 1999, pp. 526–532. doi:10.1145/
298151.298433.

[46] Kavi, Buckles, Bhat, A Formal Definition of Data Flow Graph Models,1875

IEEE Transactions on Computers C-35 (11) (1986) 940–948. doi:10.1109/
TC.1986.1676696.

[47] P. Brunza, T. van der Weide, The Semantics of Data Flow Diagrams, in:
N. Prakash (Ed.), Proceedings of International Conference on Management
of Data, CISMOD’89, McGraw-Hill, Hyderabad, India, 1989, pp. 66–78.1880

URL https://web.archive.org/web/20181008133048/http://cs.ru.nl/
Th.P.vanderWeide/docs/1989-Bruza-DataFlowSem.pdf

[48] C. Gerking, D. Schubert, E. Bodden, Model Checking the Information Flow
Security of Real-Time Systems, in: M. Payer, A. Rashid, J. M. Such (Eds.),
Proceedings of International Symposium on Engineering Secure Software1885

and Systems, ESSoS’18, Springer, 2018, pp. 27–43. doi:10.1007/978-3-
319-94496-8 3.

[49] J. Jürjens, Secure Systems Development with UML, Springer-Verlag, Berlin
Heidelberg, 2005. doi:10.1007/b137706.

[50] B. Hoisl, S. Sobernig, M. Strembeck, Modeling and enforcing secure object1890

flows in process-driven SOAs: an integrated model-driven approach, Soft-
ware & Systems Modeling 13 (2) (2014) 513–548. doi:10.1007/s10270-
012-0263-y.

[51] M. Almorsy, J. Grundy, A. S. Ibrahim, Automated software architecture se-
curity risk analysis using formalized signatures, in: Proceedings of Interna-1895

tional Conference on Software Engineering, ICSE’13, IEEE, San Francisco,
CA, USA, 2013, pp. 662–671. doi:10.1109/ICSE.2013.6606612.

[52] T. Abdellatif, L. Sfaxi, R. Robbana, Y. Lakhnech, Automating infor-
mation flow control in component-based distributed systems, in: Pro-
ceedings of International ACM Sigsoft Symposium on Component-based1900

Software Engineering, CBSE’11, ACM Press, 2011, pp. 73–82. doi:

10.1145/2000229.2000241.

[53] G. Snelting, D. Giffhorn, J. Graf, C. Hammer, M. Hecker, M. Mohr,
D. Wasserrab, Checking probabilistic noninterference using JOANA, it-
Information Technology 56 (6) (2014) 280–287. doi:10.1515/itit-2014-1905

1051.

51

https://web.archive.org/web/20200725235500/https://lib.dr.iastate.edu/cs_techreports/101/
https://web.archive.org/web/20200725235500/https://lib.dr.iastate.edu/cs_techreports/101/
https://web.archive.org/web/20200725235500/https://lib.dr.iastate.edu/cs_techreports/101/
http://dx.doi.org/10.1145/298151.298433
http://dx.doi.org/10.1145/298151.298433
http://dx.doi.org/10.1145/298151.298433
http://dx.doi.org/10.1109/TC.1986.1676696
http://dx.doi.org/10.1109/TC.1986.1676696
http://dx.doi.org/10.1109/TC.1986.1676696
https://web.archive.org/web/20181008133048/http://cs.ru.nl/Th.P.vanderWeide/docs/1989-Bruza-DataFlowSem.pdf
https://web.archive.org/web/20181008133048/http://cs.ru.nl/Th.P.vanderWeide/docs/1989-Bruza-DataFlowSem.pdf
https://web.archive.org/web/20181008133048/http://cs.ru.nl/Th.P.vanderWeide/docs/1989-Bruza-DataFlowSem.pdf
https://web.archive.org/web/20181008133048/http://cs.ru.nl/Th.P.vanderWeide/docs/1989-Bruza-DataFlowSem.pdf
http://dx.doi.org/10.1007/978-3-319-94496-8_3
http://dx.doi.org/10.1007/978-3-319-94496-8_3
http://dx.doi.org/10.1007/978-3-319-94496-8_3
http://dx.doi.org/10.1007/b137706
http://dx.doi.org/10.1007/s10270-012-0263-y
http://dx.doi.org/10.1007/s10270-012-0263-y
http://dx.doi.org/10.1007/s10270-012-0263-y
http://dx.doi.org/10.1109/ICSE.2013.6606612
http://dx.doi.org/10.1145/2000229.2000241
http://dx.doi.org/10.1145/2000229.2000241
http://dx.doi.org/10.1145/2000229.2000241
http://dx.doi.org/10.1515/itit-2014-1051
http://dx.doi.org/10.1515/itit-2014-1051
http://dx.doi.org/10.1515/itit-2014-1051

[54] T. Runge, A. Knüppel, T. Thüm, I. Schaefer, Lattice-Based Information
Flow Control-by-Construction for Security-by-Design, in: Proceedings of
International Workshop on Formal Methods in Software Engineering, For-
maliSE@ICSE’20, ACM, 2020, pp. 44–54. doi:10.1145/3372020.3391565.1910

[55] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, M. Ulbrich
(Eds.), Deductive Software Verification – The KeY Book, Springer Inter-
national Publishing, 2016. doi:10.1007/978-3-319-49812-6.

[56] M. Abi-Antoun, D. Wang, P. Torr, Checking threat modeling data flow
diagrams for implementation conformance and security, in: Proceedings of1915

IEEE/ACM International Conference on Automated Software Engineering,
ASE ’07, ACM, 2007, pp. 393–396. doi:10.1145/1321631.1321692.

[57] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, W. Joosen, A privacy
threat analysis framework: supporting the elicitation and fulfillment of
privacy requirements, Requirements Engineering 16 (1) (2011) 3–32. doi:1920

10.1007/s00766-010-0115-7.

[58] M. Yampolskiy, P. Horvath, X. D. Koutsoukos, Y. Xue, J. Sztipanovits,
Systematic analysis of cyber-attacks on CPS-evaluating applicability of
DFD-based approach, in: Proceedings of International Symposium on
Resilient Control Systems, ISRCS’12, 2012, pp. 55–62. doi:10.1109/1925

ISRCS.2012.6309293.

[59] B. J. Berger, K. Sohr, R. Koschke, Automatically Extracting Threats from
Extended Data Flow Diagrams, in: J. Caballero, E. Bodden, E. Athana-
sopoulos (Eds.), Proceedings of International Symposium on Engineering
Secure Software and Systems, ESSoS’16, Springer International Publishing,1930

2016, pp. 56–71. doi:10.1007/978-3-319-30806-7 4.

[60] L. Sion, K. Yskout, D. Van Landuyt, W. Joosen, Solution-aware data flow
diagrams for security threat modeling, in: Proceedings of the ACM Sym-
posium on Applied Computing, SAC ’18, ACM Press, 2018, pp. 1425–1432.
doi:10.1145/3167132.3167285.1935

[61] K. Alghathbar, C. Farkas, D. Wijesekera, Securing UML Information
Flow using FlowUML, Journal of Research and Practice in Information
Technology 38 (1) (2006) 111–120.
URL https://50years.acs.org.au/content/dam/acs/50-years/
journals/jrpit/JRPIT38.1.111.pdf1940

[62] A. van den Berghe, K. Yskout, R. Scandariato, W. Joosen, A Model for
Provably Secure Software Design, in: Proceedings of IEEE/ACM Interna-
tional FME Workshop on Formal Methods in Software Engineering, For-
maliSE’17, IEEE, 2017, pp. 3–9. doi:10.1109/FormaliSE.2017.6.

[63] R. Heinrich, M. Strittmatter, R. Reussner, A Layered Reference Archi-1945

tecture for Metamodels to Tailor Quality Modeling and Analysis, IEEE

52

http://dx.doi.org/10.1145/3372020.3391565
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1145/1321631.1321692
http://dx.doi.org/10.1007/s00766-010-0115-7
http://dx.doi.org/10.1007/s00766-010-0115-7
http://dx.doi.org/10.1007/s00766-010-0115-7
http://dx.doi.org/10.1109/ISRCS.2012.6309293
http://dx.doi.org/10.1109/ISRCS.2012.6309293
http://dx.doi.org/10.1109/ISRCS.2012.6309293
http://dx.doi.org/10.1007/978-3-319-30806-7_4
http://dx.doi.org/10.1145/3167132.3167285
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
https://50years.acs.org.au/content/dam/acs/50-years/journals/jrpit/JRPIT38.1.111.pdf
http://dx.doi.org/10.1109/FormaliSE.2017.6

Transactions on Software Engineering 47 (4) (2021) 775–800. doi:10.1109/
TSE.2019.2903797.

[64] Object Management Group (OMG), Unified Modeling Language 2.5.1,
Specification formal/17-12-05, accessed 2021-09-21 (Dec. 2017).1950

URL https://web.archive.org/web/20210225061032/https:
//www.omg.org/spec/UML/2.5.1/PDF

[65] M. Bramer, Logic programming with Prolog, 2nd Edition, Springer, Lon-
don, 2013. doi:10.1007/978-1-4471-5487-7.

[66] M. Kifer, Y. A. Liu (Eds.), Declarative Logic Programming: Theory, Sys-1955

tems, and Applications, Vol. 20, ACM and Morgan & Claypool, 2018.
doi:10.1145/3191315.

[67] P. M. Nugues, An Introduction to Prolog, in: An Introduction to Language
Processing with Perl and Prolog: An Outline of Theories, Implementa-
tion, and Application with Special Consideration of English, French, and1960

German, Cognitive Technologies, Springer, Berlin, Heidelberg, 2006, pp.
433–486. doi:10.1007/3-540-34336-9 16.

[68] S. Seifermann, R. Heinrich, D. Werle, R. Reussner, Data Set of Publication
on Detecting Violations of Access Control and Information Flow Policies
in Data Flow Diagrams (Sep. 2021). doi:10.5281/zenodo.5535598.1965

[69] J. Kunz, Efficient Data Flow Constraint Analysis, Master’s thesis, Karl-
sruher Institut für Technologie (KIT), Karlsruhe, Germany (2018). doi:

10.5445/IR/1000122485.

[70] R. Böhme, R. Reussner, Validation of Predictions with Measurements, in:
I. Eusgeld, F. C. Freiling, R. Reussner (Eds.), Dependability Metrics, Vol.1970

4909, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 14–18. doi:
10.1007/978-3-540-68947-8 3.

[71] D. Steinberg (Ed.), EMF: Eclipse Modeling Framework, 2nd Edition, The
eclipse series, Addison-Wesley, 2009.

[72] L. Bettini, Implementing Domain Specific Languages with Xtext and1975

Xtend - Second Edition, 2nd Edition, Packt Publishing, 2016.
URL https://web.archive.org/web/20210127045423/https:
//www.packtpub.com/product/implementing-domain-specific-
languages-with-xtext-and-xtend-second-edition/9781786464965

[73] J. Wielemaker, SWI Prolog Reference Manual 7.6.0, Tech. rep., VU1980

University Amsterdam, accessed 2017-11-16 (2017).
URL https://web.archive.org/web/20171116090534/https:
//www.swi-prolog.org/download/stable/doc/SWI-Prolog-7.6.0.pdf

53

http://dx.doi.org/10.1109/TSE.2019.2903797
http://dx.doi.org/10.1109/TSE.2019.2903797
http://dx.doi.org/10.1109/TSE.2019.2903797
https://web.archive.org/web/20210225061032/https://www.omg.org/spec/UML/2.5.1/PDF
https://web.archive.org/web/20210225061032/https://www.omg.org/spec/UML/2.5.1/PDF
https://web.archive.org/web/20210225061032/https://www.omg.org/spec/UML/2.5.1/PDF
https://web.archive.org/web/20210225061032/https://www.omg.org/spec/UML/2.5.1/PDF
http://dx.doi.org/10.1007/978-1-4471-5487-7
http://dx.doi.org/10.1145/3191315
http://dx.doi.org/10.1007/3-540-34336-9_16
http://dx.doi.org/10.5281/zenodo.5535598
http://dx.doi.org/10.5445/IR/1000122485
http://dx.doi.org/10.5445/IR/1000122485
http://dx.doi.org/10.5445/IR/1000122485
http://dx.doi.org/10.1007/978-3-540-68947-8_3
http://dx.doi.org/10.1007/978-3-540-68947-8_3
http://dx.doi.org/10.1007/978-3-540-68947-8_3
https://web.archive.org/web/20210127045423/https://www.packtpub.com/product/implementing-domain-specific-languages-with-xtext-and-xtend-second-edition/9781786464965
https://web.archive.org/web/20210127045423/https://www.packtpub.com/product/implementing-domain-specific-languages-with-xtext-and-xtend-second-edition/9781786464965
https://web.archive.org/web/20210127045423/https://www.packtpub.com/product/implementing-domain-specific-languages-with-xtext-and-xtend-second-edition/9781786464965
https://web.archive.org/web/20210127045423/https://www.packtpub.com/product/implementing-domain-specific-languages-with-xtext-and-xtend-second-edition/9781786464965
https://web.archive.org/web/20210127045423/https://www.packtpub.com/product/implementing-domain-specific-languages-with-xtext-and-xtend-second-edition/9781786464965
https://web.archive.org/web/20210127045423/https://www.packtpub.com/product/implementing-domain-specific-languages-with-xtext-and-xtend-second-edition/9781786464965
https://web.archive.org/web/20210127045423/https://www.packtpub.com/product/implementing-domain-specific-languages-with-xtext-and-xtend-second-edition/9781786464965
https://web.archive.org/web/20210127045423/https://www.packtpub.com/product/implementing-domain-specific-languages-with-xtext-and-xtend-second-edition/9781786464965
https://web.archive.org/web/20171116090534/https://www.swi-prolog.org/download/stable/doc/SWI-Prolog-7.6.0.pdf
https://web.archive.org/web/20171116090534/https://www.swi-prolog.org/download/stable/doc/SWI-Prolog-7.6.0.pdf
https://web.archive.org/web/20171116090534/https://www.swi-prolog.org/download/stable/doc/SWI-Prolog-7.6.0.pdf
https://web.archive.org/web/20171116090534/https://www.swi-prolog.org/download/stable/doc/SWI-Prolog-7.6.0.pdf

[74] C. A. González, J. Cabot, Formal verification of static software models in
MDE: A systematic review, Information and Software Technology 56 (8)1985

(2014) 821–838. doi:10.1016/j.infsof.2014.03.003.

[75] S. Hahner, S. Seifermann, R. Heinrich, M. Walter, T. Bures, P. Hnetynka,
Modeling Data Flow Constraints for Design-Time Confidentiality Anal-
yses, in: Proceedings of International Conference on Software Architec-
ture Companion, ICSA-C’21, IEEE, 2021, pp. 15–21. doi:10.1109/ICSA-1990

C52384.2021.00009.

[76] V. R. Basili, D. M. Weiss, A Methodology for Collecting Valid Software
Engineering Data, IEEE Transactions on Software Engineering SE-10 (6)
(1984) 728–738. doi:10.1109/TSE.1984.5010301.

[77] V. R. Basili, G. Caldiera, H. D. Rombach, The Goal Question Metric Ap-1995

proach, in: Encyclopedia of Software Engineering - 2 Volume Set, John
Wiley & Sons, 1994, pp. 528–532.

[78] S. Boyd, D. Zowghi, A. Farroukh, Measuring the expressiveness of a con-
strained natural language: an empirical study, in: Proceedings of IEEE
International Conference on Requirements Engineering, RE’05, 2005, pp.2000

339–349, iSSN: 2332-6441. doi:10.1109/RE.2005.39.

[79] J. Munnelly, S. Clarke, A Domain-Specific Language for Ubiquitous Health-
care, in: Proceedings of International Conference on Pervasive Comput-
ing and Applications, Vol. 2 of ICPCA’08, 2008, pp. 757–762. doi:

10.1109/ICPCA.2008.4783710.2005

[80] M. Levandowsky, D. Winter, Distance between Sets, Nature 234 (5323)
(1971) 34–35. doi:10.1038/234034a0.

[81] C. Brun, A. Pierantonio, Model Differences in the Eclipse Modeling Frame-
work, UPGRADE: The European Journal for the Informatics Professional
9 (2) (2008) 29–34.2010

URL https://web.archive.org/web/20090205174152/http://upgrade-
cepis.org/issues/2008/2/upg9-2Brun.pdf

[82] R. Heinrich, Architectural runtime models for integrating runtime observa-
tions and component-based models, Journal of Systems and Software 169
(2020) 110722. doi:10.1016/j.jss.2020.110722.2015

[83] D. Monschein, M. Mazkatli, R. Heinrich, A. Koziolek, Enabling consis-
tency between software artefacts for software adaption and evolution, in:
Proceedings of IEEE International Conference on Software Architecture,
ICSA’21, IEEE, 2021, pp. 1–12. doi:10.1109/ICSA51549.2021.00009.

[84] A. van den Berghe, R. Scandariato, K. Yskout, W. Joosen, Design notations2020

for secure software: a systematic literature review, Software & Systems
Modeling 16 (3) (2017) 809–831. doi:10.1007/s10270-015-0486-9.

54

http://dx.doi.org/10.1016/j.infsof.2014.03.003
http://dx.doi.org/10.1109/ICSA-C52384.2021.00009
http://dx.doi.org/10.1109/ICSA-C52384.2021.00009
http://dx.doi.org/10.1109/ICSA-C52384.2021.00009
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1109/RE.2005.39
http://dx.doi.org/10.1109/ICPCA.2008.4783710
http://dx.doi.org/10.1109/ICPCA.2008.4783710
http://dx.doi.org/10.1109/ICPCA.2008.4783710
http://dx.doi.org/10.1038/234034a0
https://web.archive.org/web/20090205174152/http://upgrade-cepis.org/issues/2008/2/upg9-2Brun.pdf
https://web.archive.org/web/20090205174152/http://upgrade-cepis.org/issues/2008/2/upg9-2Brun.pdf
https://web.archive.org/web/20090205174152/http://upgrade-cepis.org/issues/2008/2/upg9-2Brun.pdf
https://web.archive.org/web/20090205174152/http://upgrade-cepis.org/issues/2008/2/upg9-2Brun.pdf
https://web.archive.org/web/20090205174152/http://upgrade-cepis.org/issues/2008/2/upg9-2Brun.pdf
https://web.archive.org/web/20090205174152/http://upgrade-cepis.org/issues/2008/2/upg9-2Brun.pdf
http://dx.doi.org/10.1016/j.jss.2020.110722
http://dx.doi.org/10.1109/ICSA51549.2021.00009
http://dx.doi.org/10.1007/s10270-015-0486-9

[85] K. Katkalov, Ein modellgetriebener Ansatz zur Entwicklung informations-
flusssicherer Systeme, PhD Thesis, University of Augsburg, Augsburg,
german (2017).2025

URL https://web.archive.org/web/20210926154149/https:
//opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/
docId/4339

[86] A. Sabelfeld, D. Sands, Declassification: Dimensions and principles, Jour-
nal of Computer Security 17 (5) (2009) 517–548. doi:10.3233/JCS-2009-2030

0352.

[87] S. Furnell (Ed.), Securing information and communications systems: princi-
ples, technologies, and applications, Artech House computer security series,
Artech House, Boston, 2008.

[88] P. Runeson, M. Höst, Guidelines for conducting and reporting case study2035

research in software engineering, Empirical Software Engineering 14 (2)
(2009) 131–164. doi:10.1007/s10664-008-9102-8.

[89] F. Wei, S. Roy, X. Ou, Robby, Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting of
Android Apps, in: Proceedings of ACM SIGSAC Conference on Com-2040

puter and Communications Security, CCS ’14, ACM, 2014, pp. 1329–1341.
doi:10.1145/2660267.2660357.

[90] S. Seifermann, R. Heinrich, D. Werle, R. Reussner, A Unified Model
to Detect Information Flow and Access Control Violations in Software
Architectures, in: Proceedings of International Conference on Security2045

and Cryptography, SECRYPT’21, SCITEPRESS, 2021, pp. 26–37. doi:

10.5220/0010515300260037.

[91] L. A. Rahim, J. Whittle, A survey of approaches for verifying model
transformations, Software & Systems Modeling 14 (2) (2015) 1003–1028.
doi:10.1007/s10270-013-0358-0.2050

[92] W. Drabent, Correctness and Completeness of Logic Programs, ACM
Transactions on Computational Logic 17 (3) (2016) 18:1–18:32. doi:

10.1145/2898434.

Appendix A. Data Flow Diagrams of Selected Evaluation Cases

We used existing cases as well as self-defined cases in the evaluation. This2055

appendix contains the DFDs of the cases defined by ourselves. Figure A.10
illustrates the image sharing system used in the DAC evaluation. Figure A.11
illustrates the flight monitoring system used in the MAC evaluation. Figure A.12
illustrates the banking system used in the ABAC evaluation.

55

https://web.archive.org/web/20210926154149/https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://web.archive.org/web/20210926154149/https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://web.archive.org/web/20210926154149/https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://web.archive.org/web/20210926154149/https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://web.archive.org/web/20210926154149/https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://web.archive.org/web/20210926154149/https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://web.archive.org/web/20210926154149/https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://web.archive.org/web/20210926154149/https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
http://dx.doi.org/10.3233/JCS-2009-0352
http://dx.doi.org/10.3233/JCS-2009-0352
http://dx.doi.org/10.3233/JCS-2009-0352
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1145/2660267.2660357
http://dx.doi.org/10.5220/0010515300260037
http://dx.doi.org/10.5220/0010515300260037
http://dx.doi.org/10.5220/0010515300260037
http://dx.doi.org/10.1007/s10270-013-0358-0
http://dx.doi.org/10.1145/2898434
http://dx.doi.org/10.1145/2898434
http://dx.doi.org/10.1145/2898434

Dad

Mother

Aunt

picture

picture

picturepicture

Indexing Bot
picture

Family
Pictures

add pictures

read pictures

IM

ID

IA

picture

picture II

RM | RD | RA
WM picture

F

F

Node Identity Labels:

Store Write Labels:

Store Read Labels:

Mother (IM) | Dad (ID) | Aunt (IA) | Index Bot (II)
Mother (RM) | Dad (RD) | Aunt (RA) | Index Bot (RI)
Mother (WM) | Dad (WD) | Aunt (WA) | Index Bot (WI)

Behaviors: Forward (F)

Figure A.10: Image sharing system used in the DAC evaluation (dashed data flow introduces
a violation).

Military
Flight Controller

Clerk

Flight
Controller

find plane position

determine new route
find available civil

routes

Military
Planes Store

plane position

plane id

plane position

military plane route

military plane position

military plane position

military plane positions

civil plane routes

register plane

find plane position

determine new route

Civil
Planes Store

plane positionsplane position

plane id

plane position plane positions
plane position

plane positions

Weather Data
Store

weather report
weather report

store weather report

create weather reporttime interval

weather report weather reportweather report
weather data

weather data

Data Labels:
Node Labels:
Behaviors:

Unclassified (U) | Classified (C) | Secret (S)
Unclassified (U) | Classified (C) | Secret (S)
Forward (F) | Join (J)

F

J

J J

S

S

plane id
S

S

J

J

military plane
position

register plane

C C

C

C

F

U

U

U
J

F

plane route

plane id

Figure A.11: Flight monitoring system used in the MAC evaluation (dashed data flow intro-
duces a violation).

56

U|C

Clerk US

customers

credit line

customer name customer

customers

credit line

customer name
find customer

customer

Manager

register customer
customer details

customer

customer

determine credit line

customer

move customer

customer

customer
customer name

customer name

customer
Customer
Storage

Celebrity
Customer Storage

Customer
Storage

J

FF

L

U|C

U|M

U|R

A|R

U|R

U|R

U|R

celebrity
customer details

find customer
J

Clerk Asia

A|C

Data Labels:
Node Labels:
Behaviors:

USA (U) | Asia (A) | Regular (R) | Celebrity (C)
USA (U) | Asia (A) | Clerk (C) | Manager (M)
Forward (F) | Join (J) | Location Change (L)

determine
credit line

F

celebrity
customer details

U|C
register celebrity

F

Figure A.12: Banking system used in the ABAC evaluation (dashed data flow introduces a
violation).

57

