Identifikation und genetische Kartierung neuer Resistenzen gegen *Plasmopara viticola* aus asiatischen und amerikanischen Wildarten

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

von der KIT-Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M. Sc. Tim Höschele

Referentin: apl. Prof. Dr. Eva Zyprian
 Referent: Prof. Dr. Peter Nick
 Tag der mündlichen Prüfung: 22.07.2021

Bundesforschungsinstitut für Kulturpflanzen Federal Research Centre for Cultivated Plants

STAATLICHE LEHR" UND VERSUCHSANSTALT FÜR WEIN" UND OBSTBAU WEINSBERG

Diese Arbeit wurde im Rahmen einer Kooperation zwischen der Staatlichen Lehr- und Versuchsanstalt für Wein und Obstbau (LVWO) Weinsberg und dem Julius Kühn-Institut (JKI) Siebeldingen durchgeführt. Das Projekt "Identifikation und genetische Kartierung neuer Resistenzen gegen *Plasmopara viticola* aus Triomphe d'Alsace (früher: Maréchal Foch) und der asiatischen Wildart *Vitis amurensis*" wurde dabei vom Forschungsring des Deutschen Weinbaus (FDW) bei der Deutschen Landwirtschafts-Gesellschaft e.V. (DLG) finanziert.

I. Inhaltsverzeichnis

١.	INHA	ALTSVERZEICHNIS	1
н.	ABBILDUNGSVERZEICHNIS		
ш.	TABE	LLENVERZEICHNIS	8
	ADVÍ		0
IV.	ADRU		U
V.	ZUSA	AMMENFASSUNG1	.1
VI.	ABST	IRACT 1	.3
1.	EINLE	EITUNG1	.5
1.	1.	Der Europäische Weinbau im Wandel der Zeit	.5
1.	2.	Krankheiten im Weinbau	6
	121	Invasive Schädlinge und Pathogene im europäischen Weinhau	6
	122	Der falsche Mehltau der Weinrehe	7
1	2		á
1.	.J. 1 2 1	DIE NATORLICHE INIMONABWERK DER FFLANZEN	.9
	1.5.1	PAINIP-Inggereu Ininiumity (PTI)	.1
	1.3.2	2. Effector-triggered immunity (E11)	:Z
1.	.4.	DIE RESISTENZZUCHTUNG	.4
	1.4.1	. Bekannte Resistenzloci aus Wildreben	25
	1.4.2	2. Marker-assisted selection (MAS)	:6
1.	5.	ZIELSETZUNG	9
2.	MAT	ERIAL UND METHODEN	0
2.	1.	GERÄTE UND ZUBEHÖR	0
2.	2.	VERBRAUCHSMATERIAL, KITS UND CHEMIKALIEN	51
2.	3.	SOFTWARE UND DATENBANKEN	2
2.	4.	PFLANZENMATERIAL	4
2.	5.	PATHOGENMATERIAL	5
2.	6.	PHÄNOTYPISIERUNG	5
	2.6.1	. Infektionstests	35
	2.6	6.1.1. Test auf Normalverteilung	37
	2.6	6.1.2. Test auf Korrelation	37
	2.6.2	. Mikroskopie	37
	2.6	6.2.1. Trypanblau-Färbung	37
	2.6	6.2.2. Anilinblau-Färbung	38
	2.6	6.2.3. Calcofluor-White-Färbung	38
2.	7.	DNA-Extraktion	9
2.	8.	GENOTYPISIERUNG	9
	2.8.1	. Markeranalysen	39
	2.8	8.1.1. Mikrosatellitenanalyse mithilfe von Simple sequence repeats	10
	2.8	8.1.2. RNase H2-dependent amplicon sequencing	12
	2.8.2	. Genetische Kartierung	12
	2.8.3	C OTL-Analyse	13
2	9.	SEQUENZANALYSE MÖGLICHER KANDIDATENGENE	13
			-

3.	ERGE	BNISSE	
	3.1.	Population 'Tigvoasa' x We 90-06-12	47
	3.1.1	. Infektionstests	47
	3.1.2	. Genetische Kopplungskarten	50
	3.1.3	. QTL-Berechnungen	58
	3.1.4	. Verifizierung und Feinkartierung des QTLs auf KG 09	61
	3.1.5	. Sequenzvergleich mit den Rpv10-Kandidatengenen	63
	3.1.6	. Markeranalyse zum Vergleich der Rpv10-Varianten	67
	3.1.7	. Fluoreszenzmikroskopische Aufnahmen zum Hyphenwachstum im Blatt	69
	3.:	I.7.1. Anilinblau-Färbung	69
	3.:	1.7.2. Calcofluor-White-Färbung	
	3.2.	POPULATION 'CABERNET FRANC' X 'TRIOMPHE D'ALSACE'	73
	3.2.1	. Infektionstests	73
	3.2.2	. Genetische Kopplungskarten	80
	3.2.3	. QTL-Berechnungen	87
	3.2.4	. Untersuchung von Blattproben auf HR	
4.	DISK	USSION	93
4	4.1.	TVxWe90 zeigt eine Aufspaltung der Resistenz gegen P. viticola	
4	4.2.	WE 90-06-12 UNTERDRÜCKT HYPHENWACHSTUM	
4	4.3.	<i>Rpv10.2</i> : Signifikanter QTL auf KG 09 der Population TVxWe90	
4	4.4.	NICHT REPRODUZIERBARE, SCHWACHE QTLS IM FALL DER POPULATION CFXTA	101
5.	SCHL	USSFOLGERUNG UND AUSBLICK	105
VII.	LI	IERATURVERZEICHNIS	107
VIII	. AI	NHANG	131
IX.	DAN	KSAGUNGEN	198

II. Abbildungsverzeichnis

- Abbildung 1 Darstellung von Blättern der Weinrebe, die im Freiland Merkmale einer natürlichen Infektion mit dem Pathogen *P. viticola* aufweisen. Während die Infektion auf der Blattoberseite (A) anhand sogenannter "Ölflecken" zu erkennen ist, zeigt die Blattunterseite (B) Bereiche, die von einem mehlartigen Rasen bedeckt sind (Bildautor: Tim Höschele).
- Abbildung 2 Darstellung der evolutiven Anpassung einer spezifischen Immunantwort der Pflanze auf das Eindringen von Pathogenen anhand eines "Zick-Zack" Modells. Hierbei werden folgende vier Phasen illustriert: (1) die Induktion einer Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in der Pflanze durch die Erkennung des Pathogens, (2) die Effector-triggered susceptibility (ETS) infolge einer Inhibierung der PTI durch pathogene Effektoren, (3) die Aktivierung der Effector-triggered immunity und Vereiteln der Infektion durch das Erkennen der Effektoren, (4) die Selektion bestimmter Pathogene mit Effektorvarianten, die erneut eine ETS in der Pflanze auslösen, sowie die Aktivierung der ETI infolge einer Anpassung der Pflanze zur Erkennung dieser neuen Effektoren. Die Intensität und Effektivität der Abwehrreaktion (Amplitude of defence) wird in Abhängigkeit einer Skala angegeben und durch das Überschreiten bestimmter Grenzwerte (Treshold for effective resistance, Treshold for Hypersensitive Response (HR)) definiert (Jones & Dangl 2006).

- Abbildung 6 Färbung zur Überprüfung der Vitalität von Sporangien des Pathogens *P. viticola* mit Trypanblau. Abgestorbene (le) Sporangien sind komplett blau gefärbt, vitale (vi) Sporangien zeigen lediglich eine Färbung der intakten Zellwand (Bildautor: Tim Höschele).
- Abbildung 7 Darstellung der Phänotypen aus Infektionstests mit *P. viticola* für die Datensätze 2019-1, 2019-2 und 2020 der Population TVxWe90 als Histogramme. Die Verteilungen zeigen jeweils die Anzahl der Individuen mit ihrem zugeordnetem Infektionsgrad (1: sehr gering bis 9: sehr hoch).
- Abbildung 8 Darstellung der Resultate des Infektionstests mit *P. viticola* für die Datensätze 2019-1, 2019-2 und 2020 im Mittel. Die Verteilung zeigt die Anzahl der Individuen mit zugeordnetem Infektionsgrad (1: sehr gering bis 9: sehr hoch). Zusätzlich sind die mittleren Infektionsgrade für die Elternpflanzen 'Tigvoasa' (TV) und We 90-06-12 (We90) eingezeichnet.
- Abbildung 9 Integrierte genetische Karte der Population 'Tigvoasa' x We 90-06-12. Dafür wurden insgesamt 56 SSR- und 607 rhAmpSeq-Marker verwendet. Die Positionen der Marker sind auf 19 Kopplungsgruppen (KG) verteilt in centiMorgan [cM] dargestellt.
 SSR-Marker und Position, die mit dem QTL auf KG 09 korrelieren, sind rot markiert. 52
- Abbildung 10 Darstellung des Vergleichs zwischen der IM-Methode (schwarze Kurve) und MQM-Methode (rote Kurve) im Rahmen der QTL-Berechnung für die Versuche 2019-1, 2019-2 und 2020. Graphisch dargestellt sind die LOD-Werte in Abhängigkeit der Position [cM] auf KG 09. Die berechnete Signifikanzgrenze für QTLs auf KG 09 ist horizontal bei einem LOD-Wert von 3 für Versuch 2019-1, sowie 2,9 für die Versuche 2019-2 und 2020 eingezeichnet.
- Abbildung 11 Eingrenzung des QTLs auf KG 09 durch Rekombinanten. Dargestellt sind die Segregationsmuster ausgewählter Individuen (I) für die entsprechenden SSR-Marker (M). Des Weiteren sind die gemittelten Infektionsgrade (IG) aus Blattscheibentests der Jahre 2019, 2020 und 2021 gezeigt. Die Positionen (P) der Marker, die anhand der V.

- Abbildung 12 Darstellung des Sequenzvergleichs der Kandidatengenvariante *RPS5-like*, die aus den Rebsorten 'Solaris' und We 90-06-12 isoliert wurde. Mögliche Unterschiede sind durch Lücken im konservierten Balkendiagramm (rot) veranschaulicht. Angegeben sind unter anderem die Länge der Gensequenz in [bp], die flankierenden Primer (blau) die Promotorregion (grün) und TATA-Box, die codierende Region (CDS) des *RPS5-like* Gens (gelb), sowie der Bereich der NB-ARC-LRR-Domäne (orange).
- Abbildung 14 Sequenzvergleich der codierenden Region (CDS) des *RPS5-like* Gens (gelb) mit NB-ARC-LRR-Domäne (orange) aus We 90-06-12 mit der anfälligen Rebsorte 'Pinot Noir' (PN). Mögliche Unterschiede sind durch Lücken im konservierten Balkendiagramm (rot) veranschaulicht. Des Weiteren ist die Länge der Gensequenz in [bp] angegeben.
- Abbildung 15 Sequenzvergleich der codierenden Region (CDS) des AP2/ERF-like Gens (gelb) mit AP2-Domäne (orange) aus We 90-06-12 mit der anfälligen Rebsorte 'Pinot Noir'(PN). Mögliche Unterschiede sind durch Lücken im konservierten Balkendiagramm (rot) veranschaulicht. Des Weiteren ist die Länge der Gensequenz in [bp] angegeben.
- Abbildung 16 Test weiterer Züchtungen (A) und bekannter *Rpv10*-Sorten (B) auf die Resistenz-korrelierenden Allellängen der SSR-Marker, die den QTL (*Rpv10.2*) auf KG

- Abbildung 18 Hyphenwachstum des Pathogens P. viticola in Blattproben der Akzessionen 'Tigvoasa' (TV), 'Sauvitage' (SAU), 'Solaris' (SOL) und V. amurensis (VA) zu den Zeitpunkten 48 h und 96 h nach der Infektion. Aufgrund einer Färbung mit Calcofluor-White fluoreszieren die Infektionsherde der Zoosporen (i), Hyphen (hy) und Haustorien weiß. Vereinzelt sind auch Pflanzenbestandteile wie Blattnerven (b) und Stomata (s) leicht gefärbt.

- Abbildung 22 Darstellung der Infektionsgrade für alle Datensätze der Versuchsvarianten BSTF (A), BSTG (B) und FB (C) im Mittel. Die Verteilung zeigt die Anzahl der

- Abbildung 24 Vergleich zwischen IM (schwarze Kurve) und MQM (rote Kurve) im Rahmen der QTL-Berechnung für Versuch 2019-2-FB. Graphisch dargestellt sind die LOD-Werte in Abhängigkeit der Position [cM] auf KG 12. Die berechnete Signifikanzgrenze für QTLs auf KG 12 ist horizontal bei einem LOD-Wert von 2,8 eingezeichnet.
- Abbildung 25 Vergleich zwischen IM (schwarze Kurve) und MQM (rote Kurve) im Rahmen der QTL-Berechnung für Versuch 2020-3-BSTG. Graphisch dargestellt sind die LOD-Werte in Abhängigkeit der Position [cM] auf KG 17. Die berechnete Signifikanzgrenze für QTLs auf KG 17 ist horizontal bei einem LOD-Wert von 2,7 eingezeichnet.
- Abbildung 26 Vergleich der Akzessionen 'Triomphe d'Alsace' (TA), 'Millardet et Grasset 101-14 O.p.' (MG) und 'Riparia Gloire de Montpellier' (RGM) auf eine Hypersensitive Response (HR) 48 h nach der Infektion mit *P. viticola*. Die HR ist durch schwarze Pfeile gekennzeichnet.
 91

III. Tabellenverzeichnis

Tabelle 1 Auflistung der verwendeten Geräte.
Tabelle 2 Materialien, Kits und Chemikalien, die im Rahmen des Projekts genutzt wurden. 3
Tabelle 3 Liste über Software, die für das Projekt verwendet wurde
Tabelle 4 Ansatz einer Multiplex-PCR-Reaktion entsprechend für eine Probe mit einem Primerpaar. 4
Tabelle 5 Darstellung des PCR-Programms, das für die MPX-PCR-Reaktionen gewählt wurde.
Tabelle 6 Vorbereitung einer Probe zur Analyse mittels Kapillarelektrophorese
Tabelle 7 Darstellung und Beschreibung der verwendeten Segregationsmuster und Genotypvariationen nach Anleitung der Software JoinMap. 4
Tabelle 8 Auflistung der Primer, die zur Sequenzierung der Kandidatengene RPS5-like und AP2/ERF-like aus We 90-06-12 entwickelt wurden
 Tabelle 9 Übersicht der integrierten Karte (I) und der parentalen Karten (TV: maternal; We90: paternal) hinsichtlich Markeranzahl, Markerabstand [cM] und Länge [cM] der Kopplungsgruppe (KG).
 Tabelle 10 Übersicht der QTL-Berechnungen mit der integrierten Karte (I) und den parentalen Karten (maternal: TV, paternal: We90) in Abhängigkeit der phänotypischen Daten der Infektionstests aus den Jahren 2019 und 2020. Dargestellt sind die Daten zu den folgenden Punkten: Kopplungsgruppe (KG); QTL korrelierender Marker; Position in centiMorgan [cM]; LOD-Wert ermittelt durch Intervall Mapping (IM); Signifikanzgrenze (SG) für KG 09 ermittlet durch einen Permutationstest (PT); Erklärter Anteil der Varianz (VE) des Phänotyps [%]. Felder ohne Daten sind mit einem "-" vermerkt.
 Tabelle 11 Auflistung der annotierten Kandidatengene im Bereich des QTLs auf KG 09. Des Weiteren ist die Position des Gens im <i>V. vinifera</i> PN40024 12X.2 Genom (Canaguier et al. 2017) in Basenpaaren [bp] gezeigt. Angaben zur Proteinbezeichnung wurden mithilfe der blastx Funktion der Datenbank NCBI (blast.ncbi.nlm.nih.gov)

durchgeführt. Des Weiteren sind Organismen angegeben, die anhand des Sequenzvergleichs homologe Gene aufweisen. Kandidatengene mit möglicher Relevanz für eine Resistenz gegen das Pathogen *P. viticola* sind in roter Farbe hervorgehoben und

- **Tabelle 12** Darstellung der Tests auf Korrelation zwischen den unterschiedlichenDatensätzen der Versuchsvarianten BSTF, BSTG und FB. Hierbei geben der p-Wertund der entsprechende Korrelationskoeffizient (r/r_{Sp}) an, ob eine positive Korrelationder mittleren Infektionsgrade vorliegt. Datensätze ohne Korrelation sind in der Tabellerot markiert.**79**
- Tabelle 13 Übersicht der integrierten Karte (I) und der parentalen Karten (CF: maternal;
 TA: paternal) hinsichtlich Markeranzahl, Markerabstand [cM] und Länge [cM] der
 Kopplungsgruppen (KG).

Abkürzung	Bedeutung
BST	Blattscheibentest
ETI	Effector-triggered immunity
FB	Freilandbonitur
HR	Hypersensitive Response
IM	Intervall Mapping
KG	Kopplungsgruppe
LOD	Logarithm of the odds
LRR	Leucine-rich repeats
MAS	Marker-assisted selection
MPX	Multiplex
MQM	Multiple QTL Mapping
NB	Nucleotide-binding
NLR	Nucleotide-binding site leucine-rich repeat domain receptor
OIV	Organisation Internationale de la Vigne et du Vin
O.p.	Open pollination
PAMP	Pathogen-associated molecular pattern
PRP	Pathogenesis-related proteins
PRR	Pattern recognition receptors
PSM	Pflanzenschutzmittel
PTI	PAMP-triggered immunity
QTL	Qantitative trait locus (Plural: loci)
RGA	Resistenzgenanaloga
ROS	Reactive oxygen species
rhAmpSeq	RNase H2-dependent amplicon sequencing
SNP	Single-nucleotide polymorphism
SSR	Simple sequence repeats
VIVC	Vitis International Variety Catalogue

IV. Abkürzungsverzeichnis

V. Zusammenfassung

Die Einschleppung des invasiven Rebenpathogens Plasmopara viticola gegen Ende des 19. Jahrhunderts, gefährdet bis heute den Bestand kultivierter Rebsorten der europäischen Weinrebe Vitis vinifera ssp. vinifera und führt zu erheblichen Ernteverlusten. Um den Einsatz an Pflanzenschutzmitteln zu reduzieren, stellt die gezielte Züchtung resistenter Sorten eine ökologische Methode zum Erhalt des Bestands und zur Sicherung des Ertrags dar. Bisher konnten mehrere Resistenzloci aus sowohl amerikanischen, als auch asiatischen Wildreben identifiziert werden. Da bereits für einzelne Isolate des Pathogens erste Hinweise einer Überwindung der Resistenz beobachtet werden konnten, ist das Erfassen und Kartieren neuer Resistenzloci für die Resistenzzüchtung essentiell. Im Rahmen dieser Arbeit konnten anhand von Quantitative trait loci (QTL)-Analysen ein stabiler und signifikanter Resistenzlocus (Rpv10.2), sowie multiple schwache QTLs gegen P. viticola identifiziert werden. Die QTL-Analysen basierten auf der Verrechnung phänotypischer Daten aus Infektionstests mit den genetischen Kopplungskarten der Kreuzungspopulationen 'Tigvoasa' x We 90-06-12 (TVxWe90) und 'Cabernet Franc' x 'Triomphe d'Alsace' (CFxTA). Die Kopplungskarten wurden dabei anhand von Simple sequence repeat (SSR)- und RNase H2-dependent amplicon sequencing (rhAmpSeq)-Markern erstellt. Der Resistenzlocus Rpv10.2 konnte anhand eines signifikanten QTLs auf Kopplungsgruppe 09 für die Population TVxWe90 identifiziert werden. Die Elternsorte We 90-06-12 ist Nachkomme der asiatischen Wildart Vitis amurensis und fungierte als Donor einer bisher unbekannten Resistenz. Der eingegrenzte Bereich des Rpv10.2-Locus (ca. 80 kb auf dem V. vinifera Referenzgenom) wird von den SSR-Markern GF09-65 und GF09-47 flankiert und deckt sich mit dem bereits bekannten Rpv10-Locus aus der Sorte 'Solaris', die ebenfalls von V. amurensis abstammt (Schwander et al. 2012). Erste mikroskopische Analysen von Blattproben der Sorten We 90-06-12 und 'Solaris' zur Ausbreitung des Hyphenwachstums von P. viticola im Blatt, konnten auf ähnliche Resistenzeigenschaften hindeuten. Das Kandidatengen RPS5-like, das in Verdacht mit der Rpv10-vermittelten Resistenz steht (Zyprian et al., in preparation), konnte anhand von Sequenzanalysen in der Akzession We 90-06-12 ohne Unterschiede nachgewiesen werden. Ein weiteres Kandidatengen, AP2/ERF-like, zeigte allerdings Variationen in der Proteincodierenden Sequenz außerhalb der funktionellen AP2-Domäne. Des Weiteren konnten Markeranalysen wiederholt Unterschiede in der Resistenz-korrelierenden Allellänge der SSR-Marker (GF09-68, GF09-46 und GF09-48) aufweisen, die seit mehreren Jahren zur stabilen Identifikation von *Rpv10*-tragenden Sorten in der Züchtung eingesetzt werden. Die Ergebnisse dieser Arbeit geben Hinweise auf eine Haplotyp-Variante (Rpv10.2) des Rpv10-Locus, die in neuen Züchtungen anhand der SSR-Marker GF09-68, GF09-46 und GF09-48 detektiert werden kann. Weitere Untersuchungen zur Charakterisierung des Rpv10.2-Locus können auf den Befunden dieser Arbeit aufbauen. Im Fall der Population CFxTA wurden multiple schwache QTLs erfasst, die lediglich auf den Kopplungsgruppen 12 und 17 reproduziert werden konnten. Die Bereiche der QTLs auf diesen Kopplungsgruppen erstrecken sich dabei jeweils über mehrere Megabasen auf dem V. vinifera Referenzgenom. Um Aussagen über die Relevanz der QTLs für die Züchtung zu treffen, können weitere Analysen mit Markern zur Eingrenzung der Bereiche durchgeführt werden. Vorab ist zu erwähnen, dass auf Kopplungsgruppe 17 bisher keine Resistenzloci gegen P. viticola publiziert wurden. Im Vergleich dazu konnte auf Kopplungsgruppe 12 unter anderem der *Rpv6*-Locus aus der Sorte 'Riparia Gloire de Montpellier' detektiert werden (Marguerit et al. 2009). 'Riparia Gloire de Montpellier' ist eine Selektion der amerikanischen Wildarten Vitis riparia und ein Vorfahre der Sorte 'Triomphe d'Alsace', die als Resistenzdonor der Population CFxTA identifiziert wurde. Ob es sich im Fall des QTLs auf Kopplungsgruppe 12 um den Rpv6-Locus handelt, muss durch weitere Untersuchungen verifiziert werden. Anhand dieser Arbeit konnten erste Hinweise auf eine Verminderung der Resistenz von Generation zu Generation festgestellt werden, die anhand einer abgeschwächten Ausprägung einer Hypersensitive Response (HR) von 'Riparia Gloire de Montpellier' bis zur Akzession 'Triomphe d'Alsace' beobachtet werden konnte. Diese Hypothese deckt sich mit der Identifikation multipler schwacher QTLs für die Population CFxTA, die in den phänotypischen Infektionstests keine deutliche Aufspaltung hinsichtlich einer Resistenz gegen P. viticola zeigte.

VI. Abstract

Due to adventive grapevine pathogens like Plasmopara viticola, variable problems in European viticulture such as yield loss and the high usage of plant protection still occur. For that reason many breeders invest hope in cultivating fungi-resistant varieties using American and Asian wild species as resistance donor in new crosses. Several resistance loci against P. viticola were identified from different working groups so far. By facing the possibility of P. viticola strains to overcome resistances, quantitative trait loci (QTL) analysis was used in this work to screen for new resistance loci in two cross populations. Hereby a major QTL (Rpv10.2) as well as several minor QTLs were detected. The calculation of the QTLs was based on phenotypic data obtained from infections tests and the creation of linkage maps of the cross populations 'Tigvoasa' x We 90-06-12 (TVxWe90) und 'Cabernet Franc' x 'Triomphe d'Alsace' (CFxTA). Simple sequence repeat (SSR) and RNase H2-dependent amplicon sequencing (rhAmpSeq) markers were used to create the linkage maps. Rpv10.2 was identified as resistance locus by a major QTL on linkage group 09 in the genome of We90. The locus was introgressed by the resistant cultivar We 90-06-12, which derives from the Asian wild grape Vitis amurensis. The area of Rpv10.2 was restricted by the SSR-markers GF09-65 and GF09-47 to approximately 80 kb on the V. vinifera reference genome. This area matches the already identified Rpv10 locus from 'Solaris', which also derived from V. amurensis (Schwander et al. 2012). Based on microscopic observation of infected leaf samples, We 90-06-12 and 'Solaris' showed similar reaction of resistance to inhibit the growth of P. viticola hyphae. The putative candidate gene RPS5-like is suspected to stay in connections with the *Rpv10*-mediated resistance 'Solaris' (Zyprian et al., in preparation). Due to sequence analysis, the corresponding gene could be verified in We 90-06-12 without any differences. In comparison, a further candidate gene AP2-ERF-like showed a variation in the coding sequence. The variation was observed outside the functional area of the AP2 protein domain. In addition marker analysis repeatedly showed deviating data for We 90-06-12 regarding GF09-46 and GF09-48, which are markers used in breeding since many years to identify new cultivars carrying the Rpv10 locus. The results of this work give evidence for an Rpv10 haplotype defined as Rpv10.2, which can be used for breeding. Rpv10.2 can be distinguished from the Rpv10 locus by the markers GF09-68, GF09-46 and GF09-48. The findings of this work can be used for further characterization of the Rpv10.2 locus in the future. In case of population CFxTA multiple weak QTLs were detected. Those QTLs could only be reproduced for linkage group 12 and 17. The areas of the QTLs on those groups cover long distances on the V. vinifera reference genome. It is necessary to obtain additional marker data to point out if these QTLs are suitable for breeding. It should be mentioned that until now no resistance loci were detected on linkage group 17. In comparison, *Rpv6* was detected on linkage group 12 (Marguerit et al. 2009). 'Riparia Gloire de Montpellier', a selection of the American wild grape *Vitis riparia*, was recognized as the origin of this locus. The variety 'Triomphe d'Alsace', which represents the resistance donor in case of the cross CFxTA, originates from 'Riparia Gloire de Montpellier'. If the detected QTL on linkage group 12 is identical to the *Rpv6* locus should be verified by further investigations. This work indicates that the resistance level decreases from 'Riparia Gloire de Montpellier' to 'Triomphe d'Alsace'. The hypersensitive response (HR) shown by the cultivar 'Triomphe d'Alsace' is weaker compared to 'Riparia Gloire de Montpellier' and matches with the identification of multiple weak QTLs in the population CFxTA.

1. Einleitung

1.1. Der europäische Weinbau im Wandel der Zeit

Die Entdeckung und Anwendung der Fermentation von Lebensmitteln und Getränken, um diese haltbar zu machen, reicht etliche Jahrtausende zurück. So konnten erste Nachweise der Weinherstellung bereits auf ca. 5000 - 6000 v. Chr. datiert werden (Chojnacka 2010, Töpfer et al. 2011a). Funde von jungsteinzeitlichen Trinkgefäßen geben Hinweise einer Domestikation der heutigen europäischen Kulturrebe Vitis vinifera L. subsp. vinifera aus der Wildrebe V. vinifera L. subsp. sylvestris (C.C.Gmel.) Hegi in den Regionen des heutigen Südkaukasus (Vavilov 1930, Myles et al. 2010, Töpfer et al. 2011b). Belege dafür liefern Analysen von chemischen Abbauprodukten aus Saft- und Mostrückständen, wie Phenolcarbonsäure und Weinsäure. Hinweise für die Herstellung von Wein zeigen Sequenzanalysen fermentierender Hefepilze, die genetische Übereinstimmungen im Kerngenom mit der heutzutage verwendeten Variante der Art Saccharomyces cerevisiae besitzen (Martini 1993, Michel et al. 1993, Cavalieri et al. 2003). Im Gegensatz zu den natürlich vorkommenden Hefepilzen, die damals eher zufällig aus Traubensaft und Most Wein produzierten, werden im 21. Jahrhundert unterschiedliche Zelllinien von S. cerevisiae eingesetzt, die den Fermentationsprozess und das Endprodukt optimieren (Pretorius et al. 2003). Neben der Weinherstellung veränderte sich auch die Kultivierung der im Südkaukasus domestizierten Rebsorte im Laufe der Zeit. Nomadenwanderungen, Handel und klimatische Veränderungen trieben ihre geographische Ausbreitung über Zentraleuropa bis in den Mittelmeerraum voran (Terral et al. 2010, De Lorenzis et al. 2019). Allerdings wird aufgrund von Mikrosatellitenanalysen vermutet, dass es in Europa zu einer sekundären Domestikation der Kulturrebe aus lokal vorkommenden Wildreben kam (Grassi et al. 2003, Arroyo-García et al. 2006). Über Jahrhunderte hinweg konnte die europäische Kulturrebe hinsichtlich Ertrag, schnellerem Wachstum und einer Robustheit gegenüber Pathogenen und Schädlingen optimiert und selektiert werden (Alleweldt & Possingham 1987, Töpfer et al. 2011b, Grassi & Arroyo-García 2020). Im Jahr 2019 wurden in Europa auf einer Fläche von 3,2 Millionen Hektar unterschiedliche Rebsorten angebaut, weltweit waren es 7,4 Millionen Hektar. Europa stellte alleine mit den führenden Weinbauländern Spanien, Frankreich und Italien knapp ein Drittel der genutzten Fläche zum Anbau von Wein dar. Der globale Exportwert von Wein wurde im Jahr 2019 auf 31,8 Milliarden Euro geschätzt, bei einer Exportmenge von 105,8 Millionen Hektolitern. Die Länder Italien, Spanien und Frankreich waren dabei mit einem Anteil von 54% vertreten (OIV: Lage im weltweiten Weinbausektor 2019). Zum Vergleich betrug die globale Exportmenge von Weizen im Jahr 2019/2020 185,6 Millionen Tonnen bei einer Anbaufläche von weltweit 216,7 Millionen Hektar (USDA: United States Department of Agriculture 2021). Somit stellt der europäische Weinbau, gemessen am Verhältnis der Exportmenge zur Anbaufläche, eine große Bedeutung in der globalen Landwirtschaft dar.

1.2. Krankheiten im Weinbau

Technischer Fortschritt, Entdeckungsreisen und Transportnetzwerke als treibende Kräfte der Globalisierung ermöglichten den internationalen Handel und damit einhergehend auch die Verbreitung von Tier- und Pflanzenarten. Infolgedessen kam es zur vorwiegend ungewollten Verschleppung von Organismen wie Pathogenen und Schädlingen, die zum Teil mit dem jeweiligen Wirt transportiert wurden (Meyerson & Mooney 2007, Hulme 2009). Invasive Arten, die in einen neuen Lebensraum eingebracht werden, zeigen häufig eine hohe Anpassungsfähigkeit (Schlaepfer et al. 2010). Dies führt unweigerlich zu Eingriffen in das dort vorherrschende Gleichgewicht des Ökosystems und kann in Verbindung mit der Verdrängung von einheimischen Arten und dem Verlust von Biodiversität gebracht werden (Dickman 1996, Vitousek et al. 1996, Ehrenfeld 2003, Scherm & Coakley 2003). Durch den transatlantischen Handel mit Reben diverser *Vitis*-Arten, konnten sich invasive Pathogene und Schädlinge in Europa etablieren (Töpfer et al. 2011a). Gefestigt wurden diese Ereignisse durch die fortschreitenden Veränderungen der klimatischen Bedingungen im Rahmen des Klimawandels (Köhler 2009, Zyprian et al. 2018).

1.2.1. Invasive Schädlinge und Pathogene im europäischen Weinbau

Die Pathogene und Schädlinge der europäischen Weinrebe sind äußerst vielfältig und reichen von Vertretern der Klasse der Insekten, bis zu Krankheiten, die durch Bakterien, Viren, Oomyceten oder Pilze ausgelöst werden (Ioriatti et al. 2004, Johannesen et al. 2008, Maree et al. 2013, Negri et al. 2017). Neben heimischen Schaderregern, befallen auch eingeschleppte Pathogene und Schädlinge die Sorten der europäischen Kulturrebe *V. vinifera* und führen zu erheblichen Ernte- und Bestandsverlusten. Die Erreger des Echten Mehltaus (*Erysiphe necator* (Schwein.) Burril) und Falschen Mehltaus (*Plasmopara viticola* (Berk. & M.A. Curtis) Berl. & De Toni 1888), sowie die Reblaus (*Daktulosphaïra vitifoliae* Fitch) stehen hierbei im Fokus (Gessler et al. 2011). Das Auftreten des Pathogens *E. necator* konnte erstmals um 1845 in europäischen Weinbergen verzeichnet werden (Gadoury et al. 2012). Neben Ernteausfällen scheint der Befall durch den Erreger des Echten Mehltaus ebenso für eine Verringerung der Weinqualität verantwortlich zu sein (Calonnec et al. 2004). In Frankreich zerstörte die Reblaus, nach ihrer Einschleppung aus Nordamerika in der Mitte des

19. Jahrhunderts (Granett et al. 1985), knapp die Hälfte der Rebflächen (Banerjee et al. 2010). Zur Bekämpfung dieser Krise wurden Wurzelstöcke von nordamerikanischen Wildreben (oder Hybriden davon) importiert, die eine Resistenz gegenüber der Reblaus entwickelt hatten. Diese Wurzelstöcke können mittels Pfropfungstechnik als Unterlage der europäischen Sorten genutzt werden (Granett et al. 2001, Arrigo & Arnold 2007). Ein unerwünschter Nebeneffekt der Importstrategie nordamerikanischer Wurzelstöcke war die Einführung des Erregers des Falschen Mehltaus, *P. viticola*, nach Europa. *P. viticola* wird aufgrund der Verursachung von Blattschäden und damit einhergehender immenser Ernteausfälle als dritter großer invasiver Krankheitserreger in der Geschichte des europäischen Weinbaus bezeichnet (Jermini et al. 2010, Gessler et al. 2011).

1.2.2. Der falsche Mehltau der Weinrebe

P. viticola, der Erreger des Falschen Mehltaus bei der europäischen Weinrebe (V. vinifera L.), gehört zu der Klasse der Oomyceten und wird als obligat biotropher Parasit bezeichnet (Gehmann et al. 1987, Burruano 2000). Obwohl Oomyceten pilzähnliche Strukturen aufweisen, sind sie näher mit den Braunalgen verwandt, bilden Zellwände primär aus ß-Glucanen und Cellulose aus und weisen diploide Zellstadien während der vegetativen Periode des Mycels auf (Beakes et al. 2012, Fawke et al. 2015, Judelson & Ah-Fong 2019). Der Fortpflanzungszyklus des Oomyceten P. viticola besteht aus sexuellen und asexuellen Phasen (Gessler et al. 2011). Während die asexuelle Phase, die infolge einer Primärinfektion der Rebe im Frühjahr ausgelöst wird, im Allgemeinen die Reproduktion und Verbreitung des Pathogens bis Anfang Herbst darstellt, leiten Temperatursenkung und das Ende der Vegetationsperiode des Wirts anhand von Blattseneszenzen die sexuelle Phase und damit das Überdauern von ungünstigen Bedingungen im Winter ein (Müller & Sleumer 1934, Grünzel 1961, Gehmann et al. 1987). Die dabei gebildeten diploiden Oosporen, die eine verdickte Zellwand besitzen (Lafon & Built 1981), entstehen durch das Verschmelzen haploider Gameten aus Oogonien und Antheridien bei einem Kontakt der heterothallischen Hyphen bipolarer Pathogenisolate (P1-Typ, P2-Typ) und überwintern in abgefallenem Blattmaterial (Burruano 2000, Wong et al. 2001, Scherer & Gisi 2006). Bei geeigneten Temperaturen ab ca. 10°C und ausreichender Nässe kommt es im Frühjahr zur Ausbildung primärer Sporangien. Die darin enthaltenen Zoosporen sind für die Primärinfektionen von Reben verantwortlich und gelangen durch Spritzwasser auf Pflanzenbestandteile des Wirtes (Hill 1989, Kassemeyer 2017). P. viticola befällt zwar vorzugsweise grünes Blattgewebe (Abbildung 1), verbreitet sich allerdings auch im Gewebe von Beeren, Samen, Blattstielen und der Sprossachse (Fröbel & Zyprian 2019b).

Abbildung 1 Darstellung von Blättern der Weinrebe, die im Freiland Merkmale einer natürlichen Infektion mit dem Pathogen *P. viticola* aufweisen. Während die Infektion auf der Blattoberseite (A) anhand sogenannter "Ölflecken" zu erkennen ist, zeigt die Blattunterseite (B) Bereiche, die von einem mehlartigen Rasen bedeckt sind (Bildautor: Tim Höschele).

Die biflagellat begeißelten Zoosporen schwimmen taumelnd auf der feuchten Oberfläche der Blattunterseite in Richtung Stomata voran, enzystieren und dringen unter Ausbildung eines Keimschlauchs in den substomatären Raum vor (Burruano 2000). Laut Kortekamp 2003 ist das Auffinden der Stomata und Eindringen der Penetrationshyphe auf co-evolutive Prozesse zwischen Wirt und Parasit zurückzuführen. Vorgänge wie Chemotaxis und Elektrotaxis, die auf dem Austausch bestimmter Signale beruhen, spielen dabei möglicherweise eine Rolle (Kiefer et al. 2002). Des Weiteren konnten deregulatorische Effekte auf die Funktion der stomatären Schließzellen bei mit P. viticola infizierten Blättern beobachtet werden (Allègre et al. 2006). Nach erfolgreicher Penetration kommt es im Mesophyll schrittweise zum Aufbau eines interzellulären Myzelnetzwerks durch die Verlängerung und Verzweigung der Primärhyphe (Unger et al. 2007). Die Bildung mehrerer Haustorien ermöglicht dabei, ähnlich wie bei Pilzen, die Versorgung des Oomyceten durch die parasitäre Entnahme von Nährstoffen aus den umliegenden Mesophyllzellen (Hardham 2006, Lu et al. 2012). Die asexuelle Phase des Reproduktionszyklus wird schließlich durch die Sporulation eingeleitet. Diese wird dabei über Nacht von einer Temperatur zwischen 18°C und 24°C und einer hohen relativen Luftfeuchtigkeit zwischen 70% und 100% begünstigt. Hyphen treten aus den geöffneten Stomata aus und bilden Sporangiophoren, die an ihren verzweigten Enden mit Zoosporen gefüllte Sporangien aufweisen (Müller & Sleumer 1934, Rumbolz et al. 2002). Die Sporangien werden durch Wind und Spritzwasser auf den nächsten Wirt übertragen (Walker & Van West 2007). Der asexuelle Zyklus wird dabei mehrmals in einer Vegetationsperiode durchlaufen. Treffen die Sporangien allerdings auf Pflanzen, die eine Resistenz aufweisen,

kann die Reproduktion des Pathogens gestoppt werden. Einzelne Akzessionen amerikanischer, asiatischer und auch europäischer Wildarten zeigen teilweise eine Stagnation unterschiedlicher Stadien der Infektion oder verhindern das Eindringen des Pathogens komplett (Jürges et al. 2009, Yin et al. 2017). Im Fall der amerikanischen Wildreben beruhen die Resistenzen auf co-evolutiven Prozessen, da *P. viticola* indigen in Nordamerika vorkommt. Für nichtamerikanische Reben mit Resistenzreaktionen gegen das Pathogen ist weitere Forschung zur Aufklärung der Herkunft der Immunabwehr nötig, da *P. viticola* in ihren Ursprungsgebieten nicht indigen ist (Jiao et al. 2016).

1.3. Die natürliche Immunabwehr der Pflanzen

Da Pflanzen für zahlreiche Pathogene und Schädlinge die Rolle des Wirts einnehmen, steht die Untersuchung von Abwehrreaktionen schon lange im Fokus der Forschung (Bentham et al. 2020). Diese Reaktionen können durch Umwelt-bedingten abiotischen Stress aber auch durch Pathogene wie Bakterien, Viren, Oomyceten oder Pilze ausgelöst werden. Dabei fungieren permanent beständige Oberflächenstrukturen wie Borke, die von Epidermiszellen gebildete Wachsschicht (Cuticula) oder auch Zellwände als erste Hindernisse (Freeman & Beattie 2008). Äußere Strukturmerkmale wie Haare stellen ebenfalls erste Schutzbarrieren dar. Dies wurde am Beispiel der Rebe anhand von Blättern mit einer behaarten Unterseite gezeigt, die eine Infektion der Pflanze durch Sporen reduzieren konnten (Kortekamp & Zyprian 1999a, Kortekamp et al. 1999b). Neben den genannten primären Schutzbarrieren an der Zelloberfläche, stellt das Immunsystem der Pflanze ein Netzwerk aus einem Zusammenspiel unterschiedlicher Abwehrmechanismen im Zellinneren dar (Katagiri & Tsuda 2010). Da Pflanzen kein Säugetier-ähnliches adaptives Immunsystem besitzen, bei dem Antigen-spezifische Antikörper gebildet werden, sind sie allein auf eine Art angeborenes Immunsystem angewiesen. Dieses agiert zellulär und ist zudem äußerst ausgeprägt und komplex (Dodds & Rathjen 2010). Grundlegend basiert das Erkennen eines Pathogens dabei auf zwei Strategien, die sich gegenseitig ergänzen. Zum einen werden pathogene Stoffe und konservierte Komponenten wie z.B. Flagellen durch Rezeptoren an der Zelloberfläche erkannt. Diese Pathogen-associated molecular patterns (PAMPs) aktivieren als Elicitoren den Abwehrmechanismus der so genannten PAMP-triggered immunity (PTI). Kommt es dennoch zur erfolgreichen Infektion durch das Pathogen, werden in resistenten Pflanzen spezifische Effektoren durch intrazelluläre Rezeptoren erkannt und die Effector-triggered immunity (ETI) setzt ein. Pflanzen ohne Resistenz gegen das Pathogen erkennen diese Effektoren nicht und eine Effector-triggered susceptibility (ETS)-Reaktion wird ausgelöst (Jones & Dangl 2006, Bentham et al. 2020). Nach Jones & Dangl 2006 kann die Entwicklung der Immunantwort anhand eines "Zick-Zack" Modells in vier Phasen unterteilt werden (Abbildung 2).

Abbildung 2 Darstellung der evolutiven Anpassung einer spezifischen Immunantwort der Pflanze auf das Eindringen von Pathogenen anhand eines "Zick-Zack" Modells. Hierbei werden folgende vier Phasen illustriert: (1) die Induktion einer Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in der Pflanze durch die Erkennung des Pathogens, (2) die Effector-triggered susceptibility (ETS) infolge einer Inhibierung der PTI durch pathogene Effektoren, (3) die Aktivierung der Effector-triggered immunity und Vereiteln der Infektion durch das Erkennen der Effektoren, (4) die Selektion bestimmter Pathogene mit Effektorvarianten, die erneut eine ETS in der Pflanze auslösen, sowie die Aktivierung der ETI infolge einer Anpassung der Pflanze zur Erkennung dieser neuen Effektoren. Die Intensität und Effektivität der Abwehrreaktion (Amplitude of defence) wird in Abhängigkeit einer Skala angegeben und durch das Überschreiten bestimmter Grenzwerte (Treshold for effective resistance, Treshold for Hypersensitive Response (HR)) definiert (Jones & Dangl 2006).

Dabei zeigt sich ein Zusammenspiel aus PTI und ETI, die sich artübergreifend aus coevolutiven Prozessen mit dem jeweiligen Pathogen entwickelt haben. Die PTI wird in der Pflanze durch das Erkennen der PAMPs induziert (1), kann allerdings von sezernierten Effektoren durch das Pathogen unterdrückt werden (2). Bekannte Effektoren werden von Rezeptoren erkannt und die Aktivierung der ETI wird ausgelöst (3). Durch eine Anpassung des Pathogens an diese spezifische Abwehrreaktion, können weitere für die Pflanze unbekannte Effektorvarianten zur erfolgreichen Infektion führen (4). Dies kann wiederum eine Anpassung der ETI nach sich ziehen. Das "Zick-Zack" Modell zeigt daher sehr treffend die Entwicklung der pflanzlichen Immunantwort am Beispiel einer Co-Evolution zwischen Wirt und Pathogen (Jones & Dangl 2006). Der komplexe Mechanismus des pflanzlichen Immunsystems wird unter anderem durch die Interaktion mit Phytohormonen wie Salicylsäure, Jasmonate oder Ethylen unterstützt, die als Signalmoleküle innerhalb des Abwehrnetzwerks agieren (Pieterse et al. 2009). Riemann et al. 2013 konnten zeigen, dass die aktive Form der Jasmonsäure (Jasmonsäure-Isoleucin) an der Regulation der Immunantwort in Reis auf eine Infektion durch den Pilz Magnaporthe oryzae beteiligt ist. Des Weiteren konnte am Beispiel der Weinrebe 'Regent' eine erhöhte Konzentration an Jasmonsäure-Derivaten, sowie deren Interaktion mit dem Salicylsäure-Signalweg mit einer Resistenz gegen P. viticola in Verbindung gebracht werden (Ali et al. 2009, Ali et al. 2012, Gurreiro et al. 2016). Auch das Phytohormon Ethylen ist dafür bekannt, in frühen Abwehrreaktionen, die durch abiotische aber auch biotische Faktoren ausgelöst wurden, als Signalmolekül zu fungieren. Auch in Prozessen der Aktivierung von Resistenz-relevanten Transkriptionsfaktoren scheint Ethylen involviert zu sein (Boller 1991, Van Loon et al. 2006). Diverse Transkriptionsfaktoren aus Familien des Typs Apetala2/ Ethylen-response element binding factor (AP2/ERF), basic-helix-loop-helix (bHLH), MYB und WRKY spielen unter anderem in der Immunantwort der Pflanze eine wichtige Rolle und ergänzen als Interaktionspartner das Netzwerk aus Abwehrmechanismen (Tsuda & Somssich 2014). Auch im Fall der Weinrebe konnten anhand von Expressionsanalysen beobachten werden, dass Gene aus der Familie der Transkriptionsfaktoren MYB und WRKY als Regulatoren bei der Produktion von Stilbenen interaktiv beteiligt sind (Merz et al. 2015, Vannozzi et al. 2018). Stilbene wie Resveratrol und dessen Derivate ε - and δ -Viniferin wurden bereits für Züchtungen wie 'Solaris' oder 'Bronner' als Abwehrstoffe in Resistenzreaktionen mit P. viticola in Verbindung gebracht (Pezet et al. 2004, Fröbel et al. 2019a). Fröbel et al. 2019a konnten außerdem Gene der AP2/ERF Familie identifizieren, die potentiell unterstützend als Interaktionspartner im Signalnetzwerk der Immunantwort agieren. Dabei ist bereits bekannt, dass AP2/ERF-Transkriptionsfaktoren bei abiotischen und biotischen Stressreaktionen eine Rolle spielen können (Pré et al. 2008, Zhu et al. 2013).

1.3.1. PAMP-triggered immunity (PTI)

Die PTI wird allgemein als Breitbandimmunität bezeichnet und dient der Pflanze zum Erkennen diverser Pathogenen an der Zelloberfläche (Boutrot & Zipfel 2017). Lipopolysaccharide (LPS), Flagellinpolypeptide, und Peptidoglycane (PGN) wurden bereits als bakterielle PAMPs identifiziert, und stellen dabei artübergreifend als Elicitoren auch mögliche Auslöser der PTI in Pflanzen dar (Zipfel & Felix 2005). Das Flagellinpolypeptid flg22, das als Elicitor in Pflanzen identifiziert wurde und eine Alkalisierung der Zelle auslöst (Felix et al. 1999), konnte dabei für Vertreter der Gattung *Vitis* in Zusammenhang mit der Auslösung einer PTI gebracht werden (Chang & Nick 2012). Zeidler et al. 2004 zeigten typische Reaktionen einer Breitband-Immunantwort für Pflanzen der Art *Arabidopsis thaliana* nach einer gezielten Behandlung mit LPS-Derivaten unterschiedlicher gramnegativer

Bakterien. Des Weiteren wurden spezifische Elicitoren wie Pep-13 und ß-Glucane detektiert, die von Pflanzen bei einer Interaktion mit Oomyceten erkannt werden können (Fawke et al. 2015). Dabei lösen im Fall der Rebe ß-Glucane als Bestandteile der Zellwand des Pathogens P. viticola diverse Abwehrmechanismen aus (Aziz et al. 2003, Trouvelot et al. 2008). Im Allgemeinen werden Elicitoren extrazellulär im Rahmen einer PTI von Pattern recognition receptors (PRRs) erkannt, die anschließend eine intrazelluläre Signalweiterleitung induzieren. Receptor like kinases (RLKs) und Receptor like proteins (RLPs) stellen dabei zwei Vertreter der PRRs in Pflanzen dar. Strukturell besitzen beide Rezeptortypen eine Ektodomäne zum Erkennen von pathogenen Liganden außerhalb der Zelle, eine einfache Transmembrandomäne zur Verankerung in der Membran und eine cytoplasmatische Domäne zur intrazellulären Signalweiterleitung (Couto & Zipfel 2016, Lu & Tsuda 2021). Die Ektodomäne der PRRs ist an die Bindung unterschiedlicher Liganden angepasst und weist unter anderem Leucine-rich repeats (LRRs) oder Lysine motifs (LysMs), um diverse PAMPs zu erkennen (Macho & Zipfel 2014). Das FLS2 Gen, das für einen Rezeptor des Typs LRR-RLK codiert, wurde in A. thaliana identifiziert und anhand einer Behandlung mit dem Elicitor flg22 in Verbindung mit einer Immunreaktion gebracht (Gómez-Gómez & Boller 2000). In V. vinifera konnte gezeigt werden, dass unterschiedliche Gene des LysM-RLK Typs, vergleichbar zur Chitin elicitor receptor kinase1 (AtCERK1) aus Arabidopsis, pilzartige Elicitoren erkennen und eine wichtige Rolle in der Abwehrreaktion gegen das Pathogen E. necator spielen (Brulé et al. 2019). Zu möglichen Abwehrreaktionen, die infolge einer PTI-Reaktion ausgelöst werden können, zählen unter anderem die Produktion von Reactive oxygen species (ROS), die Aktivierung von Mitogen-activated protein kinases (MAPKs) und die Induktion verschiedener Gene, die zur Synthese von Pathogenesis-related proteins (PRPs), sowie regulativer Phytohormone wie Jasmonsäure, Salizylsäure und Ethylen führen (Garcia-Brugger et al. 2006, Héloir et al. 2019). In der Rebe wurde anhand von Behandlungen mit Methyljasmonat und Sucrose simuliert, dass PRPs wie z.B. Proteaseinhibitoren, Chitinasen oder Stilbensynthasen an Resistenzreaktionen, die durch Elicitoren ausgelöst werden, involviert sind (Belhadj et al. 2008). Thomma et al. 2011 machen allerdings darauf aufmerksam, dass einzelne Ausprägungen von Abwehrreaktionen oft nicht eindeutig auf Vorgänge der PTI oder ETI zurückzuführen sind.

1.3.2. Effector-triggered immunity (ETI)

Laut Jones & Dangl 2006 stellt die ETI eine verstärkte Variante der PTI dar und ist durch Vorgänge der natürlichen Selektion aus Pathogen-Wirt Interaktionen entstanden. Obwohl sich PTI und ETI ein komplexes Signalnetzwerk an Abwehrmechanismen teilen, gibt es

Überlegungen dazu, dass dieses Netzwerk jeweils unterschiedlich genutzt wird (Tsuda & Katagiri 2010). Die ETI basiert auf dem Erkennen bestimmter Effektoren, die von Pathogenen zur Unterdrückung der PTI produziert werden. Extrazelluläre Polysaccharide, Proteine des Type III secretion system (TTSS) oder Phytotoxine wie das Koronatin sind Virulenzfaktoren und wurden als bakterielle Effektoren identifiziert (Boller & He 2009). Apoplastische Effektoren von Oomyceten hemmen bereits extrazellulär Enzyme wie Chitinasen, Glucanasen oder Proteasen, die von Pflanzen durch eine PTI-Reaktion ausgeschüttet werden. Des Weiteren sind intrazelluläre Effektoren vom Typ RxLR und Crinkler (CRN) bekannt, die nach erfolgreicher Ausbildung von Haustorien sekretiert und anhand spezifischer Signale in die Wirtszelle eingeschleust werden (Whisson et al. 2007, Stassen & Van den Ackerveken 2011). Transkriptomanalysen bestätigten die Sekretion von Effektormolekülen des RxLR- und CRN-Typs in Blattproben von V. vinifera nach einer Infektion mit dem Oomyceten P. viticola. RxLR-Effektoren konnten dabei in Verbindung mit dem Auslösen einer ETI-Reaktion in Verbindung gebracht werden und stellen sogenannte Avirulenzproteine (Avr-Proteine) dar (Jiang & Tyler 2012, Yin et al. 2015). Das Erkennen solcher Avr-Proteine, die als pathogene Effektoren agieren, beruht im Allgemeinen auf einer spezifischen Interaktion mit Resistenzproteinen (R-Proteine) der Pflanze und führt zur Induktion einer ETI-abhängigen Abwehrreaktion wie z.B. der Hypersensitive Response (HR) (Hammond-Kosack & Kanyuka 2007, Rouxel & Balesdent 2010). Dabei stellen Nucleotide-binding (NB) leucine-rich repeat (LRR) receptor proteins (NLRs) wichtige Rezeptoren dar, die Avr-Effektoren direkt oder indirekt erkennen und intrazellulär die Immunantwort der Pflanze auslösen. NLRs bestehen aus einer N-terminalen Domäne mit Coiled-coil (CC)- oder Toll interleukin-1 receptor (TIR)-Struktur, einer zentralen NB-ARC-Domäne und einer C-terminalen LRR-Domäne. Während die LRR-Domäne generell in Verbindung mit dem Erkennen der Effektoren gebracht wird, spielt die N-terminale Domäne eine Rolle in der Induktion von Abwehrreaktionen (Bentham et al. 2020). NLRs sind als R-Proteine im Reich der Pflanzen weit verbreitet und bilden durch eine ATP-abhängige Konformationsänderung ein sogenanntes aktives Resistosom. Dies wurde am Beispiel des R-Proteins HOPZ-ACTIVATED RESISTANCE1 (ZAR1) aus Arabidopsis demonstriert, das zum Strukturtyp der CC-NLRs gehört. Dabei wird angenommen, dass die CC-Domäne Vorgänge zur Einleitung eines HR-abhängigen, schnellen programmierten Zelltods induziert, um die weitere Ausbreitung des Pathogens zu stoppen (Wang et al. 2019). Auch im Fall der Rebe konnten mehrere R-Gene des NLR-Typs im Zusammenhang mit Infektionen durch Pathogene wie P. viticola oder E. necator beschrieben werden (Poltronieri et al. 2020). Ein prominentes Beispiel stellt dabei die ETI-abhängige Resistenz gegen *P. viticola* aus der resistenten Sorte 'Regent' dar, die auf den von amerikanischen Wildreben vererbten *Rpv3*-Locus (Fischer et al. 2004, Welter et al. 2007) und dessen Haplotypvarianten (Di Gaspero et al. 2012, Zyprian et al. 2016, Vezulli et al. 2019) *Rpv3.1, Rpv3.2*, und *Rpv3.3* zurückzuführen ist (Eisenmann et al. 2019, Santos et al. 2020). Dies zeigt, dass durch gezielte Kreuzungen anfälliger Rebsorten mit amerikanischen Wildreben Resistenzen für die Züchtung neuer Weinsorten genutzt werden können. Allerdings sind aus Untersuchungen von Peressotti et al. 2010 Hinweise auf ein *P. viticola* Isolat bekannt, das eine *Rpv3*-vermittelte Resistenz in der Akzession 'Bianca' zu umgehen scheint. Das Beispiel kann als Indiz einer Anpassung des Avr-Effektors im Fall des *P. viticola* Isolats interpretiert werden und damit einhergehend eine ETS-Reaktion der Sorte 'Bianca'.

1.4. Die Resistenzzüchtung

Die Steigerung des Ertrags und der Anpassungsfähigkeit an unterschiedliche Stressfaktoren steht bereits lange im Fokus der Züchtung (Araus et al. 2008). Neben abiotischen Faktoren wie z.B. Trockenheit kommt es jährlich aufgrund zahlreicher Pathogene und Schädlinge oft zu Ernteausfällen beim Anbau landwirtschaftlich genutzter Kulturpflanzen. Dabei ist ein ausgewogenes Konzept zur Regulation des Einsatzes von Pflanzenschutzmitteln (PSM) für den Erhalt relevanter Nutzpflanzen wie Weizen, Reis oder Kartoffeln und deren Ertrag essentiell (Oerke 2006). Auch Weinreben gehören, hinsichtlich des Ex- und Importvolumens von Wein und Tafeltrauben, zu Nutzpflanzen von internationaler Wichtigkeit (OIV: Lage im weltweiten Weinbausektor 2019). Sorten der europäischen Weinrebe V. vinifera sind anfällig gegenüber zahlreichen Schädlingen und Pathogenen im Weinberg. Für den Erhalt der Rebflächen ist daher der Einsatz hoher Mengen an PSM nötig. Allein in Portugal wurden zwischen den Jahren 1992 und 2003 auf ca. 10% der landwirtschaftlich genutzten Anbaufläche im Schnitt 80% der PSM für den Anbau von Wein und Tafeltrauben ausgetragen (Eurostat 2007). Es ist bereits ausgiebig bekannt, dass PSM drastische Folgen auf Umwelt und Nicht-Ziel-Organismen hervorrufen. Des Weiteren können Rückstände von PSM in Nahrungs- und Genussmitteln wie z.B. Wein mithilfe von Massenspektrometeranalysen detektiert werden (Stanley & Preetha 2016, Bernardi et al. 2020). Neben der Verwendung von PSM, Pheromonfallen oder biologischen einer intelligenten Anpassung der Behandlungsanzahl, stellt die Züchtung neuer Rebsorten, die natürliche Resistenzen gegen Pathogene und Schaderreger besitzen, einen ökologischen Ausweg dar (Pertot et al. 2017). Dies kann durch das gezielte Einkreuzen von Genen resistenter Wildarten in bereits etablierte europäische Qualitätssorten erreicht werden.

1.4.1. Bekannte Resistenzloci aus Wildreben

Im Rahmen von QTL-Analysen auf der Grundlage diverser Kreuzungspopulationen konnten bereits zahlreiche Resistenz-korrelierende Loci aus Wildreben identifiziert und zur Züchtung Pathogen- und Schädlings-resistenter Rebsorten genutzt werden. Eine aktuelle Übersicht dieser 31 Loci und der Resistenz-abhängigen Marker, sowie deren Position auf der jeweiligen Kopplungsgruppe ist in der Datenbank des Vitis Internation Variety Catalogue ersichtlich (Table of loci for traits in grapevine relevant breeding and genetics 2020, https://www.vivc.de/docs/dataonbreeding/20201009_Table%20of%20Loci%20for%20Traits %20in%20Grapevine.pdf). Des Weiteren sind Informationen über den Resistenzdonor, die ursprüngliche Wildart, sowie das betreffende Pathogen aufgelistet. Im Fokus stehen dabei Resistenzen aus Wildreben gegen die von Gessler et al. 2011 definierten drei größten invasiven Krankheitserreger in der Geschichte des europäischen Weinbaus: die Reblaus (D. vitifoliae), den Erreger des Echten Mehltaus (E. necator) und den Erreger des Falschen Mehltaus (P. viticola). Dabei rückte das Pathogen P. viticola, das bei europäischen Kulturreben sowohl die Entwicklung der Pflanze infolge von Blattnekrosen hemmt, als auch erhebliche Ernteausfälle verursacht (Dietrich et al. 1997, Jermini et al. 2010), in den Vordergrund der Forschung. Aktuell sind 31 Resistenzloci gegen das Pathogen aus unterschiedlichen Wildreben als Resistenzursprung publiziert oder unter Beobachtung. Dabei stellen hauptsächlich die amerikanischen Wildreben Muscadinia rotundifolia, V. rupestris und V. riparia Vertreter des Ursprungs der Resistenzloci Rpv1 (Merdinoglu et al. 2003), Rpv3 (Fischer et al. 2004, Welter et al. 2007, Bellin et al. 2009, Di Gaspero et al. 2012, Van Heerden et al. 2014, Zyprian et al. 2016, Vezzulli et al. 2019), *Rpv17-21* (Divilov et al 2018), Rpv5 und Rpv6 (Marguerit et al. 2009), sowie Rpv9 und Rpv13 (Moreira et al. 2011) dar. Da P. viticola indigen in Nordamerika ist, konnten amerikanische Wildreben infolge coevolutiver Prozesse natürliche Resistenzen gegen das Pathogen entwickeln, die auf einer ETIabhängigen Immunreaktion und der Induktion spezifischer R-Gene basieren (Jürges et al. 2009). Dies konnte bereits für Träger des Rpv3-Locus beobachtet werden (Eisenmann et al. 2019, Santos et al. 2020). Des Weiteren sind bereits Resistenzen aus nichtamerikanischen Reben bekannt. Prominente Vertreter dabei sind Akzessionen der asiatischen Wildart V. amurensis, die als Resistenzdonor der Loci Rpv8 (Blasi et al. 2011), Rpv10 (Schwander et al. 2012), *Rpv12* (Venuti et al. 2013), *Rpv22-24* (Fu et al. 2020), sowie *Rpv25* und *Rpv26* (Lin et al. 2019) identifiziert wurden. Anhand von Transkriptom- und Metabolomanalysen einer serbischen Neuzüchtung, die als Nachkomme der Sorte 'Kunbarat' von der asiatischen Wildart V. amurensis abstammt, konnte der Rpv12-Locus in Verbindung mit einer ETI-

abhängigen Resistenzreaktion gebracht werden (Chitarrini et al. 2020). Allerdings setzen ETIabhängige Resistenzreaktionen eine Co-Evolution mit dem Pathogen voraus und werden im Fall von nichtamerikanischen Rebsorten kontrovers diskutiert (Jiao et al. 2016). Ein weiteres Beispiel für nichtamerikanische Rebsorten mit Resistenz-relevanten Eigenschaften, stellt die europäische Wildart *V. vinifera* ssp. *sylvestris* dar. Dabei zeigten verschiedene *V. sylvestris* Akzessionen im Vergleich zu Sorten der anfälligen Kulturrebe eine Art Basalimmunität, die mit einer induzierten Synthese spezifischer Pathogen-relevanter Stilbene durch abiotischen Stress in Verbindung gebracht wurde (Duan et al. 2015). Dies verspricht das Potential, auch europäische Wildreben in die zukünftige Züchtung Pathogen-resistenter Rebsorten zu involvieren.

1.4.2. Marker-assisted selection (MAS)

Die Marker-assisted selection (MAS) stellt einen wichtigen Teil in der Züchtung für Pflanzen mit spezifischen Merkmalen dar. Dabei stehen Merkmale wie Wuchs-, Blüten- oder Fruchtform, Sterilität und Selbstinkompatibilität, sowie die Resistenz gegenüber bestimmter Krankheiten im Fall von Nutzpflanzen wie z.B. Mais, Weizen oder Tomate im Fokus (Arús & Moreno-Gonzáles 1993). Diese Merkmale werden dabei in Verbindung mit bestimmten Genombereichen gebracht, die verantwortlich für deren Ausprägung im Phänotyp sind. Sogenannte molekulare Marker, die auf variablen DNA-Fragmenten basieren, sind teilweise eng mit diesen Bereichen gekoppelt und definieren anhand ihrer Position spezifische Loci auf unterschiedlichen Chromosomen im Genom des Organismus. Anhand von genetischen Kopplungskarten, die auf den Markerinformationen der Elternpflanzen einer Kreuzung basieren, können die Positionen der genetischen Marker und deren Abstand zueinander bestimmt werden. Dabei sind Marker, die Polymorphismen aufgrund einer genetischen Diversität der Elternpflanzen aufweisen, essentiell zur Erstellung einer geeigneten Kopplungskarte. In einer Population, die für ein bestimmtes Merkmal segregiert, gibt eine Quantitative trait locus (QTL)-Analyse die Wahrscheinlichkeit für bestimmte Marker an, die eng gekoppelt mit Genen vererbt wurden, die für die Ausprägung dieses Merkmals verantwortlich sind (Collard et al. 2005). Anhand einer QTL-Berechnung können demnach Marker identifiziert werden, die in der MAS zur Detektion bestimmter Merkmale in neuen Zuchtlinien auf genetischer Ebene dienen. Hierbei werden Neuzüchtungen bereits im Sämlingsalter auf das Tragen identifizierter Merkmals-abhängiger Loci getestet (Abbildung 3).

Abbildung 3 Schematische Darstellung der Selektion von Sämlingspflanzen anhand von molekularen Markern im Rahmen der Marker-assisted selection (MAS) zu Beginn des Züchtungsprozesses neuer Sorten. Das gewünschte Merkmal, dass durch eine Kreuzung in die F_1 -Generation übertragen werden soll, ist blau markiert. Dabei stellt die Hybridzüchtung (P_H) den Überträger des Merkmals, wie z.B. einer Resistenz dar und wird mit einer Qualitätssorte (P_Q) gekreuzt, die dieses Merkmal nicht aufweist. Die Sämlingspflanzen werden in der F_1 -Generation anhand von molekularen Markern, die mit dem Merkmal korrelieren, überprüft und für die weitere Züchtung selektiert (modifizierte und vereinfachte Darstellung der MAS nach Töpfer et al. 2011b).

Nadeem et al. 2018 verschaffen dabei einen aktuellen Überblick an molekularen Markern, die seit mehreren Jahren in der Pflanzenzüchtung verwendet werden. Neben der Restriction fragment lenght polymorphism (RFLP)-Methode, die anfänglich zur Identifikation polymorpher Loci infolge von unterschiedlichen DNA-Restriktionsmustern genutzt wurden, ermöglichte die Entwicklung von Markern der Typen Randomly amplified polymorphic DNA (RAPD), Amplified fragment length polymorphism (AFLP) oder Simple sequence repeat (SSR) die Anwendung neuer Verfahren auf PCR-Basis. Diese wurden bereits durch die Einführungen moderner Sequenziermethoden wie das Next-generation sequencing (NGS) oder Genotyping by sequencing (GBS) erweitert. Hierbei können sogenannte Singlenucleotide polymorphisms (SNPs) detektiert werden und ermöglichen das Erfassen von Insertionen, Deletion oder Basenaustauschen einzelner Nukleotide bei einem Vergleich von Genomsequenzen (Nadeem et al. 2018). Der Nutzen von molekularen Markern in der MAS wurde bereits anhand wichtiger Nutzpflanzen wie Reis (Jena & Mackill 2008), Weizen (Gupta et al. 2010) oder Soja (Maroof et al. 2008) demonstriert. Töpfer et al. 2011b

beschrieben einen Durchbruch der MAS im Fall der Weinrebe mit der Einführung der PCRbasierten DNA-Markertechniken. Dabei fanden bisher vor allem SSR-Marker zur Züchtung neuer Rebsorten mit Resistenzen gegen die Pathogene P. viticola und E. necator Verwendung. SSRs sind kurze sich wiederholende Basenpaarabfolgen, die im Genom verteilt in nicht-codierenden aber auch codierenden Bereichen vorkommen können und aufgrund ihres hohen Informationsgrades durch Längenpolymorphismen und ihrer Transferierbarkeit innerhalb verwandter Arten genutzt werden (Vieira et al. 2016). In den letzten Jahren zeigte die Anwendung von NGS-Methoden bahnbrechende Fortschritte in der SNP-Analyse hinsichtlich der Auflösung der Kopplungskarten im Hochdurchsatz (Wang et al. 2012, Barba et al. 2014). Eine neue Marker-Methode, die auf der Grundlage von Sequenzvergleichen amerikanischer und europäischer Reben exklusiv für das Vitis-Kerngenom entwickelt wurde, kombiniert dabei die positiven Eigenschaften der SSR- und SNP-Marker. Die sogenannte RNase H2-dependent amplicon sequencing (rhAmpSeq)-Methode verspricht daher auf Basis einer Illumina-Sequenzierung einen Fortschritt der Markeranalyse hinsichtlich einer hohen Transferierbarkeit der Marker, eines hohen Probendurchsatzes, sowie der Detektion von informativen Bereichen im Genom, die multi-allelische SNPs aufweisen (Zou et al. 2020). Anhand der beschriebenen Techniken wurden für die Rebe bereits zahlreiche Marker identifiziert, die mit Resistenz-assoziierten Loci korrelieren und in der MAS verwendet werden. Da bereits beobachtet wurde, dass einzelne Pathogenisolate immun gegen bekannte Resistenzen zu sein scheinen (Peressotti et al. 2010), stellt eine Pyramidisierung von Resistenzen, anhand der Kombination mehrerer bekannter Resistenzloci in neuen Züchtungen, einen Lösungsansatz dar. Die MAS ist essentiell für die Identifikation pyramidisierter Resistenzen, da anhand phänotypischer Beobachtungen kaum Aussagen über vorhandene Resistenzloci in der Pflanze getroffen werden können. Ziel der Züchtung ist der Erhalt neuer Rebsorten mit stabilen Resistenzen und einer guten Weinqualität (Töpfer et al. 2011b). Das Auffinden neuer Resistenzloci ist daher essentiell für die Züchtung.

1.5. Zielsetzung

Der Umgang mit dem invasiven Pathogen Plasmopara viticola stellt in der Rebenzüchtung heutzutage trotz moderner Pflanzenschutzmittel und etablierter Resistenzzüchtung, noch immer eine Herausforderung dar. Obwohl bisher zahlreiche Resistenzloci gegen P. viticola detektiert wurden (Table of loci for traits in grapevine relevant breeding and genetics 2020, https://www.vivc.de/docs/dataonbreeding/20201009 Table%20of%20Loci%20for%20Traits %20in%20Grapevine.pdf), finden bislang nur wenige davon eine Anwendung in der Züchtung neuer resistenter Rebsorten (z.B. Rpv10: Schwander et al. 2011, Rpv3: z.B. Welter et al. 2007). Daher war das Ziel dieser Arbeit, neue Resistenzloci gegen P. viticola zu identifizieren und anhand von molekularen Markern genetisch zu kartieren. Neu erfasste Resistenzloci bieten dabei das Potential, in zukünftigen Kreuzungen mit den bereits etablierten Loci kombiniert zu werden, um Rebsorten mit stabilen Resistenzen gegen das Pathogen zu generieren (Pyramidisierung). Außerdem können molekulare Marker, die mit den Resistenzen korrelieren, in der Marker-gestützten Selektion (MAS) zur frühen Detektion von resistenten Sämlingspflanzen eingesetzt werden. Zur Identifikation neuer Resistenzloci stand der Genpool der Kreuzungspopulationen 'Tigvoasa' x We 90-06-12 und 'Cabernet Franc' x 'Triomphe d'Alsace' zur Verfügung. Sowohl für die Züchtung We 90-06-12, die ein Nachfahre der asiatischen Wildart V. amurensis ist, als auch für die Akzession 'Triomphe d'Alsace', die von den amerikanischen Wildarten V. rupestris und V. riparia abstammt, konnten die Eigenschaften einer Resistenz gegen P. viticola im Phänotyp beobachtet werden (Boniturdaten der Rebenzüchtung an der LVWO Weinsberg). Beide Akzessionen wurden negativ hinsichtlich des Tragens eines bekannten Resistenzlocus getestet (Durchführung vor Projektbeginn). Die Erstellung von genetischen Kopplungskarten, sowie die Erhebung von Infektionsdaten, dienten im Rahmen dieser Arbeit als Grundlage zur Identifikation neuer Resistenzloci anhand der Kreuzungspopulationen.

2. Material und Methoden

2.1. Geräte und Zubehör

Tabelle 1 Auflistung der verwendeten Geräte.

Gerät/Zubehör	Hersteller	Firmensitz
Abi Prism 3130xl Genetic Analyzer	Applied Biosystems	Darmstadt (DE)
Alpha 1-4 LSCbasic	Martin Christ	Osterode am Harz
Gefriertrocknungsanlage	Gefriertrocknungsanlagen GmbH	(DE)
ABS120-4N Analysewaage	Kern & Sohn GmbH	Balingen (DE)
Axiocam ERc5s	Carl Zeiss AG	Oberkochen (DE)
Axiolab re Mikroskop 450905	Carl Zeiss AG	Oberkochen (DE)
Biometra FasTrans Automated	Analytik Jena GmbH	Jena (DE)
pipetting/PCR workstation		
Centrifuge 5425 Mikrozentrifuge	Eppendorf AG	Hamburg (DE)
CLARIOstar® Microplate Reader	BMG LABTECH GmbH	Ortenberg (DE)
DM4000 B Automated Upright	Leica Microsystems	Wetzlar (DE)
Microscope System		
EC 105 Electrophoresis Power Supply	E-C Apparatus	Waltham, MA
	Corporation	(USA)
Fisherbrand [™] Standard-Minizentrifuge	Fisher Scientific GmbH	Schwerte (DE)
GeneAmp® PCR System 9700	Applied Biosystems	Darmstadt (DE)
GFL 3031 Shaking Incubator	Gesellschaft für	Burgwedel (DE)
	Labortechnik mbH	
HX-150 Autoklav	Systec GmbH	Linden (DE)
LVis Plate Mikrotiterplatte	BMG LABTECH GmbH	Ortenberg (DE)
M80 Stereomikroskop	Leica Microsystems	Wetzlar (DE)
Neubauer Zählkammer	Paul Marienfeld GmbH &	Lauda-
	Co.KG	Königshofen (DE)
Pioneer TM PA4102C Precision Balance	OHAUS Europe GmbH	Nänikon (CH)
Primo Star LED Mikroskop	Carl Zeiss AG	Oberkochen (DE)
ProFlex PCR System	Applied Biosystems	Darmstadt (DE)
QUANTUM ST5 Geldokumentation	VILBER LOURMAT	Eberhardzell (DE)
	GmbH	
SIGMA 4K15C Tischkühlzentrifuge	SIGMA Laborzentrifugen	Osterode am Harz
	GmbH	(DE)
SL-LIQ96RT-200 Liquidator96 [®]	Steinbrenner Laborsysteme	Wiesenbach (DE)
SK350 Farbrüttler	Fast & Fluid FMFA	Sassenheim (NL)
Vortex-Genie 2	Scientific Industries Inc	Bohemia NY
Voltex Collie 2	Scientific industries, inc.	(USA)
Wärmeschrank	Memmert GmbH &	Schwabach (DE)
	Co.KG	
Zentrifuge Z160M	HERMLE Labortechnik	Wehingen (DE)
	GmbH	

2.2. Verbrauchsmaterial, Kits und Chemikalien

Tabelle 2 Materialien, Kits und Chemikalien, die im Rahmen des Projekts genutzt wurden.

Material/Kit/Chemikalie	Hersteller	Firmensitz
Abgene [™] 1,2 ml 96-Well DeepWell-	Thermo Scientific	Waltham, MA (USA)
Platten		
ABI-Typ 384-Well PCR-Platten	Biozym Scientific GmbH	Hessisch Oldendorf
		(DE)
Agar	Gustav Essig GmbH &	Mannheim (DE)
	Co.KG	
Agar Bacteriology grade	PanReac AppliChem ITW	Darmstadt (DE)
	Reagents	
Agarose	Axon Labortechnik GmbH	Kaiserslautern (DE)
Ampicillin	PanReac AppliChem ITW	Darmstadt (DE)
	Reagents	
Anilinblau WS	Merck KGaA	Darmstadt (DE)
Bacto TM Trypton	Becton Dickinson GmbH	Heidelberg (DE)
Bacto TM Yeast Extract	Becton Dickinson GmbH	Heidelberg (DE)
BglII DNA-Restriktionsenzym	Thermo Scientific	Waltham, MA (USA)
Calcofluor-White-Färbereagenz	Sigma-Aldrich, Merck	Darmstadt (DE)
	KGaA	
Desoxynucleosidtriphosphate (dNTPs)	Thermo Scientific	Waltham, MA (USA)
DNA Gel Loading Dye (6x)	Thermo Scientific	Waltham, MA (USA)
Ethylendiamintetraessigsäure (EDTA)	Merck KGaA	Darmstadt (DE)
Faltenfilter MN 625 (Ø 185 mm)	Macherey-Nagel	Düren (DE)
GeneJET Plasmid Miniprep Kit	Thermo Scientific	Waltham, MA (USA)
GeneRuler [™] 1 kb DNA Ladder	Thermo Scientific	Waltham, MA (USA)
In-Fusion [®] HD Cloning Plus CE	Takara Bio Europe (S.A.S.)	St. Germaine en Laye
		(FR)
KAPA2G Fast Multiplex Mix (2x)	Merck KGaA	Darmstadt
Dikaliumhydrogenphosphat	Merck KGaA	Darmstadt (DE)
$(K_2HPO_4 \times 3 H_2O)$		
Kaliumacetat (C ₂ H ₃ KO ₂)	Carl Roth GmbH	Karlsruhe (DE)
Kaliumhydroxid (KOH)	Carl Roth GmbH	Karlsruhe (DE)
Natriumchlorid (NaCl)	Carl Roth GmbH	Karlsruhe (DE)
NucleoSpin [®] Gel and PCR Clean-up	Macherey-Nagel	Düren (DE)
NucleoSpin [®] Plant II Kit	Macherey-Nagel	Düren (DE)
Nunc [™] Square BioAssay Dishes	Thermo Scientific	Waltham, MA (USA)
Phusion [™] HF DNA-Polymerase	Thermo Scientific	Waltham, MA (USA)
Phusion [™] HF Puffer 5x	Thermo Scientific	Waltham, MA (USA)
QIAGEN [®] Multiplex PCR Kit	QIAGEN GmbH	Venlo (NL)
Quali-PCR-Platten 96-Well	Kisker Biotech GmbH &	Steinfurt (DE)
	Co.KG	
Serva DNA Stain G	SERVA Electrophoresis	Heidelberg (DE)
	GmbH	
Tris-(hydroxymethyl)-aminomethan	Carl Roth GmbH	Karlsruhe (DE)
(Tris)		
Trypanblau	PanReac AppliChem ITW	Darmstadt (DE)
-	Reagents	. ,

2.3. Software und Datenbanken

Tabelle 3 Liste über Software, die für das Projekt verwendet wurde.

Software/Datenbank	Hersteller/Plattform	Firmensitz	Publikation/URL
3130 Series Data	Applied Biosystems	Darmstadt (DE)	
Collection Software			
Version 4			
ApE – A plasmid	M. Wayne Davis		
Editor			
BioEdit Sequence	Tom Hall		Hall 1999
Alignment Editor			
CLARIOstar [®] Reader	BMG LABTECH	Ortenberg (DE)	
Control	GmbH		
CLC Main	QIAGEN Digital	Venlo (NL)	
Workbench Version	Insights		
21.0.1			
GeneMapper Version	Applied Biosystems	Darmstadt (DE)	
5			
Gramene SSR	Cold Spring Harbor	Cold Spring	Temnykh et al. 2001;
Identification Tool	Laboratory; Cornell	Harbor, NY;	www.gramene.org (zuletzt
	University	Ithaca, NY	abgerufen am 02.04.2021)
		(USA)	
Grapegenomics	Cantu Lab,	Oakland, CA	www.grapegenomics.com
	University of	(USA)	(zuletzt abgerufen am
	California Davis		02.04.2021)
	(USA)		
Grape Genome	Genoscope –	Paris (FR);	www.genoscope.cns.fr
Browser	National Center of	Udine (IT)	(zuletzt abgerufen am
	Sequencing; National		02.04.2021)
	Research Institute for		
	Agriculture, Food		
	and the Environment		
	INRAE; Institute of		
	Applied Genomics		
	(IGA)		
Primer-BLAST	National Center for	Bethesda, MD	Ye et al. 2012
	Biotechnology	(USA)	www.ncbi.nlm.nih.gov
	Information (NCBI)		(zuletzt abgerufen am
			02.04.2021)
JoinMap Version 4.1	Kyazma B.V.	Wageningen	
& 5		(NL)	
LAS X	Leica Microsystems	Wetzlar (DE)	
MapQTL Version 6	Kyazma B.V.	Wageningen	
		(NL)	
MARS Data Analysis	BMG LABTECH	Ortenberg (DE)	
	GmbH		
Nucleotide BLAST	National Center for	Bethesda, MD	Altschul et al. 1990;
	Biotechnology	(USA)	www.ncbi.nlm.nih.gov
	Information (NCBI)		(zuletzt abgerufen am
			02.04.2021)

RStudio [®] 3.6.1	RStudio, Inc.		R Core Team 2020
Sequenzier Primer	Eurofins Genomics Konstanz (DE)		www.eurofinsgenomics.eu
Design Tool			(zuletzt abgerufen am
			25.03.2021)
Tm Calculator	Thermo Fisher	Waltham, MA	www.thermofisher.com
	Scientific	(USA)	(zuletzt abgerufen am
			25.03.2021)
TSSP / Prediction of	Softberry, Inc.	Mont Kisco, NY	Solovyev et al. 2010;
PLANT promoters		(USA)	www.softberry.com
			(zuletzt abgerufen am
			29.04.2021)
TSSPlant / Search for	Softberry, Inc.	Mont Kisco, NY	Shahmuradov et al. 2017;
RNA polymerase II		(USA)	www.softberry.com
promoters (TSSs) in			(zuletzt abgerufen am
plant DNA sequences			29.04.2021)
UniProt	UniProt Consortium:	Hinxton (UK);	www.uniprot.org (zuletzt
	European	Genf (CH);	abgerufen am 29.04.2021)
	Bioinformatics	Washington DC	
	Institute (EBI); Swiss	(USA)	
	Institute of		
	Bioinformatics		
	(SIB); Protein		
	Information		
	Resource (PIR)		
Vitis International	Julius Kühn-Institut	Siebeldingen	Maul et al. 2021;
Variety Catalogue	- Federal Research	(DE)	www.vivc.de (zuletzt
(VIVC)	Centre for Cultivated		abgerufen am 02.04.2021)
	Plants (JKI), Institute		
	for Grapevine		
	Breeding –		
	Geilweilerhof (ZR)		

2.4. Pflanzenmaterial

Zur Durchführung der Arbeiten wurden die zwei Kreuzungspopulationen 'Tigvoasa' x We 90-06-12 (TVxWe90) und 'Cabernet Franc' x 'Triomphe d'Alsace' (CFxTA) im Rahmen einer Kooperation zwischen der LVWO Weinsberg und dem Julius Kühn-Institut vor Beginn des Projekts generiert. Die Stammbäume beider Populationen sind in Abbildung 4 ersichtlich.

Abbildung 4 Darstellung der aktuellen Stammbaumdaten von TVxWe90 (A) und CFxTA (B) basierend auf SSR-Markeranalysen (VIVC: www.vivc.de). Die farbigen Markierungen illustrieren eine Rückverfolgung des Resistenzursprungs zu den jeweiligen Wildarten.

Die Population TVxWe90 ist eine Kreuzung aus der moldawischen Rebsorte 'Tigvoasa' mit der Weinsberger Zuchtlinie We 90-06-12, die im Jahr 2017 am Institut für Rebenzüchtung Geilweilerhof durchgeführt wurde. Sie umfasst 642 Pflanzen, die am Geilweilerhof wurzelecht im Erdbeet eines Gewächshauses kultiviert werden. Die Zuchtlinie We 90-06-12
ist Nachkomme der asiatischen Wildart *V. amurensis* in zweiter Generation und zeigt seit mehreren Jahren eine stabile Resistenz gegen *P. viticola*. Zusätzlich konnte eine Population, die von den amerikanischen Wildarten *V. rupestris* und *V. riparia* abstammt, in Untersuchungen verwendet werden. Dafür wurde die anfällige Qualitätssorte 'Cabernet Franc' mit der resistenten Sorte 'Triomphe d'Alsace' im Jahr 2015 in Weinsberg gekreuzt. Population CFxTA umfasst 334 Pflanzen, die seit 2015 wurzelecht auf einer Versuchsfläche an der LVWO Weinsberg im Freien stehen.

2.5. Pathogenmaterial

Sporangien des Pathogens *P. viticola* dienten im Rahmen der Blattscheibentests als Infektionsmaterial. Genutzt wurden natürlich infizierte Blätter anfälliger Rebsorten (z.B. 'Müller-Thurgau') aus dem Freiland (Versuchsfläche LVWO Weinsberg, JKI Siebeldingen Geilweilerhof), sowie jährlich im Gewächshaus reproduziertes Sporangienmaterial (LVWO Weinsberg, WBI Freiburg). Es konnte sichergestellt werden, dass keine der Pflanzen vor den Probenahmen mit Fungiziden behandelt wurde. Zur Reproduktion des Pathogenmaterials wurden Sporangienträger frisch infizierter Blätter mit einem Pinsel abgetragen und in dH₂O gelöst. Die Suspension (10 000 – 20 000 Sporangien/ml) wurde anschließend genutzt, um getopfte anfällige Reben im Gewächshaus mithilfe einer Druckspritzpumpe zu infizieren. Nach ausreichender Inkubationszeit von drei bis fünf Tagen bei 24°C und 99% relativer Luftfeuchte, konnten Blätter mit frischem Sporangienmaterial erneut geerntet werden. Diese wurden entweder direkt für Infektionstests verwendet oder bei -20°C trocken gelagert.

2.6. Phänotypisierung

Individuen beider Populationen wurden phänotypisch anhand von Blattscheibentests und Freilandbonituren auf Infektionen mit *P. viticola* untersucht. Des Weiteren konnten mikroskopische Analysen durchgeführt werden, um die Infektion bei ausgewählten Blattproben detailliert zu untersuchen.

2.6.1. Infektionstests

Infektionstests wurden über einen mehrjährigen Zeitraum (2018 – 2021) jeweils für Teile (ca. 150 Pflanzen) beider Populationen in Form von Blattscheibentests durchgeführt, um den Grad der Resistenz gegen *P. viticola* zu bestimmen. Dabei dienten Blätter der Elternpflanzen, sowie die anfällige Sorte 'Müller-Thurgau' und resistente Sorten wie 'Solaris' oder 'Regent' als Referenzen. Für einen Blattscheibentest wurden von jeder Pflanze vier Scheiben (Ø 15 mm) aus dem zweiten bis vierten Triebblatt mithilfe eines Korkbohrers ausgestanzt und mit der

Unterseite nach oben auf feuchtem Filterpapier (Faltenfilter MN 625, Macherey-Nagel) in quadratischen Petrischalen (NuncTM Square BioAssay Dishes, Thermo Scientific) platziert. Eine Trypanblau-Färbung des Pathogenmaterials stellte die Vitalität der verwendeten Sporangien vor jedem Infektionstest fest (siehe 2.6.2.1). Des Weiteren wurde unter dem Lichtmikroskop (Primo Star, Carl Zeiss AG) kontrolliert, ob in wässriger Umgebung tatsächlich Zoosporen aus der Sporangienhülle schlüpfen. Anschließend wurden 40 µl einer Suspension aus Sporangien (siehe 2.5.) mittig auf jede Blattscheibe appliziert. Die Anzahl der vitalen Sporangien betrug dabei zwischen 10 000 und 20 000 pro Milliliter dH₂O. Die Inkubation der infizierten Blattscheiben erfolgte bei Raumtemperatur $(22^{\circ}C - 25^{\circ}C)$ für vier bis sechs Tage, wobei der Infektionstropfen bereits am Tag nach der Infektion mit einem Papiertuch entfernt wurde. Die Petrischalen wurden zur Inkubation zusätzlich in Plastiktüten eingepackt und auf einer Fensterbank ausgelegt, um eine Lichtperiode von 12 - 16 Stunden zu gewährleisten. Die Bestimmung des Infektionsgrades (1: sehr gering, 3: gering, 5: mittel, 7: hoch, 9: sehr hoch) erfolgte täglich für jede Blattscheibe umgekehrt zu den Richtlinien des Boniturschlüssels OIV-452, die mit aufsteigender Boniturnote am Resistenzgrad orientiert sind (Organisation Internationale de la Vigne et du Vin, 2009). In Abbildung 5 sind die Infektionsgrade 1, 3, 5, 7 und 9 anhand von infizierten Blattscheiben beispielhaft dargestellt.

Abbildung 5 Darstellung der Infektionsgrade 1 (sehr gering), 3 (gering), 5 (mittel), 7 (hoch) und 9 (sehr hoch) anhand von Blattscheiben, die mit dem Pathogen *P. viticola* infiziert wurden (Bildautor: Tim Höschele). Die Einteilung der Infektionsgrade erfolgte invers zu den Richtlinien des Boniturschlüssels OIV-452 (Organisation Internationale de la Vigne et du Vin, 2009).

Nach Ende der Inkubationszeit ergab sich für jedes Individuum ein Mittelwert des Infektionsgrades, der für weitere Analysen genutzt werden konnte. Im Rahmen der Phänotypisierung wurden für die im Freien stehende Population CFxTA zusätzlich mehrere Freilandbonituren (Juli – September der Jahre 2016, 2018, 2019 und 2020) auf natürlich vorkommende Infektionen mit *P. viticola* durchgeführt. Dabei wurden die Daten aus den Jahren 2016 und 2018 von der Arbeitsgruppe für Rebenzüchtung an der LVWO Weinsberg zur Verfügung gestellt. Anhand des Boniturschlüssels OIV-452 konnte jeweils der Infektionsgrad für die gesamte Pflanze bestimmt werden.

2.6.1.1. Test auf Normalverteilung

Die erhobenen Datensätze im Rahmen der Infektionstests wurden auf Normalverteilung geprüft. Dazu wurde aus den Daten aller Versuche für beide Kreuzungspopulationen getrennt der Mittelwert der Boniturnoten pro Individuum berechnet. Anschließend konnten Individuen mit gleicher Boniturnote gruppiert und die Verteilung in einem Histogramm dargestellt werden. Des Weiteren veranschaulichen ein Box-Plot, sowie ein Quantil-Quantil-Plot (Q-Q-Plot) die Verteilung. Zur Prüfung der Datensätze auf Normalverteilung konnte der Shapiro-Wilk-Test mithilfe des Pakets "stats" der Software RStudio Version 3.6.1 (R Core Team 2020) durchgeführt werden.

2.6.1.2. Test auf Korrelation

Die Datensätze der einzelnen Infektionstests wurden für jede Kreuzungspopulation separat auf Korrelation der Infektionsgrade pro Jahr getestet. Zur Berechnung der Korrelation im Fall von normalverteilten Datensätzen wurde der Pearson-Korrelationskoeffizient genutzt. Der Spearman-Korrelationskoeffizient wurde für Datensätze mit abgelehnter Normalverteilung berechnet. Die Tests konnten mithilfe des Pakets "stats" der Software RStudio Version 3.6.1 (R Core Team 2020) durchgeführt werden.

2.6.2. Mikroskopie

Im Rahmen dieser Arbeit kamen unterschiedliche Methoden zur Färbung von Blattproben und Pathogenmaterial zum Einsatz. Die Proben konnten anschließend unter dem Mikroskop analysiert werden.

2.6.2.1. Trypanblau-Färbung

Zur Überprüfung der Sporangienvitalität wurde eine Trypanblau-Färbung vor jedem Infektionstest durchgeführt. Dazu wurden 0,5 g Trypanblau in 100 ml einer 0,9% igen NaCl-Lösung dissoziiert, um eine 0,5% ige Trypanblau-Lösung zu erhalten. Diese Lösung wurde im Verhältnis 1:2 mit einer frisch hergestellten Sporangiensuspension (siehe 2.5.) vermischt. In einem nächsten Schritt wurden 10 µl des Gemischs auf vitale Sporangien, deren Zellinneres keine Blaufärbung aufwies, in einer Zählkammer (Neubauer Zählkammer, Marienfeld) unter dem Lichtmikroskop untersucht. In Abbildung 6 sind vitale (vi) und abgestorbene (le) Sporangien nach einer Färbung mit Trypanblau dargestellt. Dabei sind die inneren Zellkompartimente der abgestorbenen Sporangien aufgrund einer beschädigten Zellwand komplett blau gefärbt (Shapiro, 1988).

Abbildung 6 Färbung zur Überprüfung der Vitalität von Sporangien des Pathogens *P. viticola* mit Trypanblau. Abgestorbene (le) Sporangien sind komplett blau gefärbt, vitale (vi) Sporangien zeigen lediglich eine Färbung der intakten Zellwand (Bildautor: Tim Höschele).

Die Lebendzellzahl konnte anschließend mithilfe folgernder Formal ermittelt werden:

$$Lebendzellzahl/ml = \frac{Sporangienanzahl}{0.1 \ mm \times 4 \ mm^2 \times Verdünnung}$$

2.6.2.2. Anilinblau-Färbung

Das Hyphenwachstum des Pathogens im infizierten Blatt konnte für ausgewählte Individuen durch die Methode der Anilinblau-Färbung unter einem Fluoreszenzmikroskop (DM4000 B, Leica) veranschaulicht werden. Dafür wurden Blattscheiben zu unterschiedlichen Zeitpunkten nach einer Infektion mit *P. viticola* (24 hpi, 48 hpi, 7 dpi) durch Inkubation in einer 1 N KOH-Lösung für drei bis fünf Tage bei Raumtemperatur entfärbt. Die entfärbten Blattscheiben wurden auf einem Objektträger positioniert, abaxial mit 50 µl einer 0,05% igen Anilinblau-Färbelösung (pH 9) versehen und mit einem Deckglas fixiert. Zur Herstellung der 0,05% igen Anilinblau-Färbelösung wurden eine 0,1 M K₂HPO₄- und eine 1% Anilinblau-Stammlösungen verwendet. Nach einer Inkubationszeit von 15 min wurde die Färbelösung mit dH₂O abgewaschen. Die Proben wurden anschließend fluoreszenzmikroskopisch (Extinktion: 395 – 440 nm, Emissionsfilter: 470 nm) analysiert (Hood & Shew 1996; Díez-Navajas et al. 2006, Unger et al. 2007).

2.6.2.3. Calcofluor-White-Färbung

Eine Färbung mit Calcofluor-White wurde alternativ zur Anilin-Blau-Färbung genutzt, um Blattscheiben ausgewählter Rebsorten fluoreszenzmikroskopisch auf eine Infektion mit *P*.

viticola zu untersuchen. Unterschiede zur Durchführung sind nachfolgend beschrieben. Die Blattproben wurden 48 h und 96 h nach der Infektion in eine 1 N KOH-Lösung gegeben und für zwei Tage bei Raumtemperatur inkubiert. Jeweils 20 μ l der Calcofluor-White-Lösung (1 g/l Calcofluor-White M2R; 0,5 g/l Evans blue) wurde abaxial auf die Proben pipettiert und nach 60 s mit dH₂O abgewaschen. Anschließend wurden die Proben unter dem Fluoreszenzmikroskop betrachtet (Herth & Schnepf 1980, Hageage & Harrington 1984).

2.7. DNA-Extraktion

Kleine Blattfragmente $(1 - 2 \text{ cm}^2)$ junger Blätter der Triebspitze wurden zur Vorbereitung der DNA-Extraktion in vorgekühlten 1,2 ml 96-Well DeepWell-Platten (AbgeneTM, Thermo Scientific) gesammelt, in einer Gefriertrocknungsanlage (Alpha 1-4 LSCbasic, Christ) lyophilisiert und in einem Farbrüttler (SK350, Fast & Fluid) pulverisiert. Die Isolation der DNA erfolgte anschließend nach Anleitung eines Extraktionskits (Nucleospin Plant II, Macherey-Nagel). Mithilfe eines Microplate Readers (CLARIOstar[®], BMG LABTECH) konnte die DNA-Konzentration photometrisch bestimmt werden. Dabei wurden jeweils 3 µl der extrahierten DNA-Proben auf die Micro-Drop-Wells einer LVis-Mikrotiterplatte (LVis Plate, BMG LABTECH) pipettiert. Als Blindwert diente der Elutionspuffer (Elution Buffer PE: 5 mM Tris/HCL, pH 8,5), in dem die aufgereinigte DNA nach Anleitung des Extraktionskits gelöst wurde. Anhand des UV/Vis-Verfahrens konnte die typische Absorption der DNA bei einer Wellenlänge von 260 nm gemessen werden (Gallagher 1994). Mögliche Verunreinigungen der Proben mit Proteinen (Verhältnis A260/280) oder anderen organischen Verbindungen (Verhältnis A260/A230) konnten zusätzlich zur Konzentrationsbestimmung mithilfe der Software MARS (MARS Data Analysis, BMG LABTECH) kontrolliert werden. Die Temperatur zur Aufbewahrung der Proben über einen längeren Zeitraum betrug -20°C.

2.8. Genotypisierung

Im Rahmen der Genotypisierung wurden genetische Karten anhand von Markeranalysen erstellt. Die Genkarten konnten anschließend mit den Daten aus den phänotypischen Infektionstests mithilfe einer QTL-Analyse verrechnet werden.

2.8.1. Markeranalysen

Die Markeranalyse stellt in dieser Arbeit die Grundlage der genetischen Untersuchung beider Kreuzungspopulationen dar. Im Folgenden sind zwei Methoden beschrieben, die dafür genutzt wurden.

2.8.1.1. Mikrosatellitenanalyse mithilfe von Simple sequence repeats

SSR-Muster (Simple sequence repeats), kurze sich wiederholende Basenabfolgen, die im Genom verteilt vorkommen, stellen seit geraumer Zeit eine Möglichkeit der genetischen Verwandtschaftsanalyse in der Rebenzüchtung dar (Beckmann & Soller, 1990). In der vorliegenden Arbeit wurden SSR-flankierende Primerpaare in einer Multiplex-PCR (MPX-PCR) verwendet. Der Forward Primer jedes Primerpaars war am 5'-Ende mit einem Fluoreszenzfarbstoff (ROX, HEX, 6-FAM oder TAMRA) markiert. Es konnte auf einen Pool aus SSR-Marker-Sets wie GF (z.B. Schwander et al. 2012), UDV (Di Gaspero et al. 2005), VCHR (Cipriani et al. 2008), VMC (Vitis Microsatellite Consortium & AGROGENE (europäische Kooperation), z.B. Arroyo-García & Martínez-Zapater 2004), VRZAG (Sefc et al. 1999), VVI (Merdinoglu et al. 2005), VVMD (Bowers et al. 1996 & 1999) und VVS (Thomas & Scott 1993) zurückgegriffen werden. Zusätzlich wurden weitere SSR-Marker für Kopplungsgruppe (KG) 09 mithilfe des Gramene SSR Identification Tools (Temnykh et al. 2001) anhand der V. vinifera PN40024 12x.V2 Genomsequenz (Canaguier et al. 2017) detektiert und mit dem NCBI Primer-BLAST Tool (Ye et al. 2012) konzipiert. Alle SSR-Marker, die zur genetischen Kartierung verwendet wurden, sind in Anhang 1a für Population TVxWE90 und in Anhang 1b für Population CFxTA aufgelistet. Die MPX-PCR wurde nach Anleitung eines Kits (QIAGEN[®] Multiplex PCR Kit, QIAGEN GmbH) durchgeführt. Folgende Tabelle zeigt den 5 µl Reaktionsansatz für eine Probe unter Verwendung eines Primerpaars (Tabelle 4). Die Volumenverhältnisse der Bestandteile wurden entsprechend der verwendeten Marker in einer Reaktion angepasst. Dabei konnten zwischen drei und sieben Marker abhängig von Fragmentlänge und Farbstoffmarkierung in einem Ansatz kombiniert werden. Bei Verwendung von mehreren Primerpaaren wurde das Volumen des Reaktionsbestandteils dH₂O entsprechend angepasst.

Reaktionsbestandteil	Volumen [µl]	Konzentration
dH ₂ O	1,44	-
Forward Primer	0,03	3 pmol
Reverse Primer	0,03	3 pmol
KAPA2G Fast Multiplex Mix 2x	2.5	1 v
(Kapa Biosystems)	2,3	IX
DNA Template	1	≤1 µg

Tabelle 4 Ansatz einer Multiplex-PCR-Reaktion entsprechend für eine Probe mit einem Primerpaar.

Die MPX-PCR-Reaktionen wurden in einem PCR-Cycler (GeneAmp® PCR System 9700, Applied Biosystems) in 96-Well PCR-Platten (96-Well Quali-PCR-Platten, Kisker Biotech GmbH & Co.KG) und 384-Well PCR-Platten (384-Well PCR-Platte ABI-Typ, Biozym) durchgeführt. In Tabelle 5 ist das PCR-Programm dazu dargestellt.

Tabelle 5 Darstellung des PCR-Programms, das für die MPX-PCR-Reaktionen gewählt wurde.

Phase	Zyklen	Temperatur [°C]	Zeit [s]
Denaturierung	1	95	180
Denaturierung		95	15
Primerhybridisierung	30-35	60	30
Elongation		72	30
Elongation	1	72	560

Das PCR-Produkt wurde anschließen mit autoklaviertem dH₂O verdünnt (Verhältnis 1:2). In einem nächsten Schritt wurde die Länge der durch die PCR vervielfältigten fluoreszenzmarkierten Fragmente mithilfe einer Kapillarelektrophorese (Genetic Analyzer ABI PRISM 3130xl, Applied Biosystems) bestimmt. Zuvor wurde der Reaktionsansatz, der in Tabelle 6 dargestellt ist, für fünf Minuten bei 95°C im PCR-Cycler denaturiert.

Tabelle 6 Vorbereitung einer Probe zur Analyse mittels Kapillarelektrophorese

Reaktionsbestandteil	Volumen [µl]
dH ₂ O	12
Größenstandard	0,5
PCR-Produkt	1

Der in der Markeranalyse verwendete Größenstandard ist identisch zu dem kommerziellen GeneScan[™] 500 LIZ[®] Size Standard (Applied Biosystems). Die durch einen Laser-Detektor erfassten Daten wurden zur Veranschaulichung an eine Software (3130xl Series Data Collection Version 4, Applied Biosystems) übermittelt. Anschließend konnten die Daten mit der Software GeneMapper (Version 5, Applied Biosystems) ausgewertet werden.

2.8.1.2. RNase H2-dependent amplicon sequencing

Mit dem Ziel, eine möglichst dichte genetische Karte zu erhalten, wurde eine rhAmpSeq-Analyse (RNase H2-dependent amplicon sequencing) am Cornell College of Agriculture and Life Sciences (Cornell University in Geneva NY, USA) in Kooperation mit der Genomics Facility des Cornell Institute of Biotechnology durchgeführt (Zou et al. 2020). In der rhAmpSeq-Analyse wurden speziell entwickelte molekulare Marker (SSRs, SNPs, haplotype calls, presence/absence variants) genutzt, deren Entwicklung auf Kerngenomanalysen amerikanischer und europäischer Rebsorten (PN40024, V. cinerea B9, V. rupestris B38, V. x doaniana, 'Jaeger 70', 'Chambourcin', 'Concord', 'Sultanina', 'Cabernet Sauvignon', 'Flame') basiert. Um eine möglichst spezifische Amplifikation zu erreichen, wurden die 3'-Enden der Primer mit einer molekularen Blockade (RNA-Rest mit blockierenden DNA-Basen) konstruiert. Diese konnte in einer ersten PCR mithilfe des Enzyms RNase H2 entfernt werden, sobald sich die Primer korrekt an die Zielsequenz angelagert hatten. Die anschließende Index-PCR wurde dazu genutzt, unterschiedliche Barcode-Sequenzen an jedes Amplifikat anzubringen. Dies ermöglichte eine Identifikation der Proben nach Hochdurchsatz bei der Illumina-Sequenzierung im nächsten Schritt (Yang et al. 2016, Zou et al. 2020). Zur Durchführung der rhAmpSeq-Analyse wurde frisch extrahierte DNA ausgewählter Genotypen beider Kreuzungspopulationen und verwandter Rebsorten (Elter- und Großeltersorten) in jeweils zwei 96-Well PCR-Platten vorbereitet und gekühlt übermittelt. Die zur genetischen Kartierung verwendeten rhAmpSeq-Marker sind in Anhang 2a für TVxWe90 und in Anhang 2b für CFxTA aufgelistet. Die Bezeichnung der Markernamen ist wie folgt angegeben: "rh chrXY Z". Die Abkürzung "rh" steht für rhAmpSeq-Marker, "chrXY" definiert die Kopplungsgruppe 01 – 19 und "Z" gibt die physikalische Position des Markers anhand der ermittelten Kerngenomsequenz in Basenpaaren an.

2.8.2. Genetische Kartierung

Zur Erstellung der genetischen Karten wurde die Software JoinMap (Version 4.1 & 5, Kyazma B. V.) genutzt. Es wurden jeweils für beide Kreuzungspopulationen paternale, maternale und integrierte Karten erstellt. Hierzu konnten die Daten aus der SSR-Marker- und der rhAmpSeq-Analyse kombiniert werden. Jedem Genotyp wurden dafür die entsprechenden Allelkombinationen in Abhängigkeit des Markers zugewiesen, die nach dem von JoinMap vorgegebenen Segregationsmuster für den Typ Cross population (CP) definiert sind. In Tabelle 7 sind die möglichen Segregationen und ihre Genotypvarianten aufgelistet.

Segregation	Beschreibung	Mögliche Genotypen
<abxcd></abxcd>	Heterozygoter Locus im Falle beider Eltern mit vier unterschiedlichen Allelen	ac, ad, bc, bd
<efxeg></efxeg>	Heterozygoter Locus im Falle beider Eltern mit drei unterschiedlichen Allelen	ee, ef, eg, fg
<hkxhk></hkxhk>	Heterozygoter Locus im Falle beider Eltern mit zwei unterschiedlichen Allelen	hh, hk, kk
<lmxll></lmxll>	Heterozygoter Locus im Falle des ersten Elters	ll, lm
<nnxnp></nnxnp>	Heterozygoter Locus im Falle des zweiten Elters	nn, np

Tabelle 7 Darstellung und Beschreibung der verwendeten Segregationsmuster und Genotypvariationen nach Anleitung der Software JoinMap.

Die Markerpositionen auf der jeweiligen Kopplungsgruppe wurden anhand der Rekombinationsfrequenz mit der Maximum-Likelihood-Methode für unabhängige LOD-Werte berechnet.

2.8.3. QTL-Analyse

Die Berechnung von QTLs (Quantitative trait loci) erfolgte mit der Software MapQTL (Version 6, Kyazma B. V.). Dabei wurde zunächst ein regressionsbasiertes Intervall Mapping (IM) angewandt, um genomweit mögliche QTLs zu ermitteln. Der LOD-Wert (Logarithm of the odds) gibt hierbei die logarithmische Wahrscheinlichkeit für einen segregierenden QTL zur Basis 10 an (Van Ooijen 1992). Zur Ermittlung eines statistischen Schwellenwerts für relevante QTLs wurde zusätzlich ein Permutationstest (PT) unter Berücksichtigung des 95%-Konfidenzintervalls und einer Anzahl von 1000 Permutationen verwendet. In einem nächsten Schritt konnte das Multiple-QTL Mapping (MQM) unter Angabe definierter Co-Faktoren zur Eingrenzung der Konfidenzintervalle genutzt werden.

2.9. Sequenzanalyse möglicher Kandidatengene

Der Bereich des mittels QTL-Analyse detektierten Locus auf KG 09 der Kreuzungspopulation TVxWE90 wurde mithilfe der Datenbanken Grapegenomics (www.grapegenomics.com) und NCBI (blast.ncbi.nlm.nih.gov) zunächst auf mögliche Kandidatengene untersucht. Anschließend konnten zwei Gene als Grundlage erster Sequenzanalysen bestimmt werden. Diese wurden anhand der bereits bekannten Kandidatengene *RPS5-like* und *AP2/ERF-like* aus 'Solaris' ausgewählt, die in vorherigen Arbeiten im Bereich des *Rpv10*-Locus identifiziert wurden (Schwander et al. 2012, Dudenhöffer et al. 2015, Fröbel 2019, Zyprian et al. in preparation). Die Amplifikation der Gene aus der resistenten Elternsorte We 90-06-12, die Klonierung in den pJET 1.2 Vektor, die Plasmid-Transformation in den *Escherichia coli* Stamm DH5-Alpha, sowie das Ausplattieren auf einem geeigneten Nährboden wurden von der Arbeitsgruppe für Molekulare Genetik (AG Zyprian) am Julius Kühn-Institut

durchgeführt. Kolonien mit den jeweiligen Kandidatengenen als Insert konnten selektioniert werden, da bei einer erfolgreichen Transformation in den pJET 1.2 Vektor der Leseraster des letalen Gens *eco47IR* unterbrochen wurde. Im Anschluss konnte die Plasmid-DNA aus den Bakterienzellen präpariert werden. Dazu wurde jeweils eine Einzelkolonie gepickt und über Nacht in 5 ml LB-Flüssigmedium (5 g/l NaCl, 10 g/l Trypton, 5 g/l Hefeextrakt) zuzüglich 100 µg/ml Ampicillin (AppliChem GmbH) bei 37°C und 200 rpm (GFL 3031 Shaking Incubator, GFL mbH) kultiviert. Die Plasmidpräparation wurde nach Protokoll eines Plasmid-Miniprep-Kits (GeneJET Plasmid Miniprep Kit, Thermo Scientific) durchgeführt. Die Sequenzanalyse der möglichen Kandidatengene erfolgte mithilfe der Cycle Sequencing Technology (ABI 3730XL DNA Analyzer, Applied Biosystems) durch die Firma Eurofins Genomics. Die dazu verwendeten Sequenzierprimer für *RPS5-like* und *AP2/ERF-like* sind in Tabelle 8 dargestellt.

Kandidatengen	Primersequenz zur Einzelstrangsynthese
	5'-ATGTGGGACAGGAGAACCAACAC-3'
	5'-GTTATTCATCAGATCCATTACGGC-3'
RPS5_like	5'-CTTAGACTTGATGTTCGAGAAGG-3'
Kr 55-like	5'-GCTTGCTAAGATTGTTGTTGAGG-3'
	5'-AACGGATTTCACTATGGCATTC-3'
	5'-TGGAGTGCTTGCAATACCTG-3'
	5'-TTGTCGAATTTAGCGTCTCC-3'
ADY/EDE lile	5'-GTACAGATGATAATGTAGAGACGC-3'
AP 2/EKF-like	5'-TGGTGAGCAACTGAGATGGG-3'
	5'-GGTGAAGAGATGACTACAGCAATG-3'

Tabelle 8 Auflistung der Primer, die zur Sequenzierung der Kandidatengene *RPS5-like* und *AP2/ERF-like* aus We 90-06-12 entwickelt wurden.

Die Primer wurden mit einem Abstand von ca. 500 bp zueinander anhand der Sequenz der Kandidatengene RPS5-like und AP2/ERF-like aus 'Solaris' mit dem Sequenzier-Primer-Design-Tool (Eurofins Genomics) entwickelt. Dabei wurden die Insert-flankierenden Primer des pJET 1.2 Vektors als Start- und Endpunkt der Sequenzen benutzt (pJET 1.2 Standard Primer GATC, Eurofins Genomics). Die sequenzierten Fragmente wurden mit der Software CLC Main Workbench Version 21.0.1 (QIAGEN Digital Insights) in der korrekten Orientierung zusammengeführt und anschließend mit den Sequenzen der Kandidatengene aus 'Solaris' verglichen. Zur Veranschaulichung wurden die Positionen der Sequenzierprimer, der potentiellen Promotorregion inklusive TATA-Box, sowie die MCS-Elemente annotiert (Vorlage AG Zyprian). Die Region des Promotors wurde mit den Tools TSSP (Solovyev et al. 2010) TSSPlant (Shahmuradov 2017) Softberry und et al. der Datenbank (www.softberry.com) berechnet. Im Fall der Untersuchung der MCS-Elemente wurde die Funktion blastx (Altschul et al. 1990) der NCBI Datenbank (www.ncbi.nlm.nih.gov) genutzt.

3. Ergebnisse

Im Rahmen dieser Arbeit wurden die Populationen 'Tigvoasa' x We 90-06-12 (TVxWe90) und 'Cabernet Franc' x 'Triomphe d'Alsace' (CFxTA) auf mögliche Quantitative trait loci (QTLs) untersucht, die mit einer Reduktion der Infektion des Pathogens P. viticola korrelieren. Die QTLs wurden dabei anhand von Daten aus mehreren Infektionstests und den jeweiligen genetischen Kopplungskarten berechnet. Die Infektionstests wurden in Form von Blattscheibentests (siehe 2.6.1) durchgeführt. Dabei wurde der Infektionsgrad einzelner Individuen zwischen drei und sechs Tagen nach Inokulation erfasst und invers zum Boniturschlüssel OIV-452 (1: sehr gering bis 9: sehr hoch) angegeben. Die Verteilungen der Boniturdaten sind in Form von Histogrammen für jedes unabhängige Experiment dargestellt. Die Gesamtnote des Infektionsgrades eines Individuums ergab sich aus dem Mittelwert der Boniturnoten von vier Blattscheiben. Zur Erstellung der Histogramme wurden Individuen mit gleicher Boniturnote gruppiert, um innerhalb der jeweiligen Population die Verteilung resistenter und anfälliger Pflanzen zu veranschaulichen. Aufgrund von Trockenstress, mangelnder Blattmasse oder Befall der Pflanzen mit diversen Schaderregern (z.B. Echter Mehltau, Pockenmilbe) kann die Gesamtanzahl der Individuen, die für die unterschiedlichen Versuche getestet wurden, variieren. Zur Erstellung der genetischen Kopplungskarten (siehe 2.8.2.) wurde eine Analyse der Genotypen mit Simple sequence repeat (SSR)- und RNase H2dependent amplicon sequencing (rhAmpSeq)-Markern (siehe 2.8.1.) durchgeführt. Die Kopplungskarten geben dabei die Positionen der analysierten Marker auf 19 Kopplungsgruppen in Abhängigkeit der Rekombinationsfrequenz an. In der anschließenden QTL-Analyse (siehe 2.8.3.) wurden die phänotypischen Daten mit den genetischen Kopplungskarten verrechnet. Dabei wurden die Methoden Intervall Mapping (IM) und Multiple-QTL Mapping (MQM) angewandt. Mithilfe eines Permutationstests konnte spezifisch für die jeweilige Kopplungsgruppe eine Signifikanzgrenze zum 95%-Konfidenzintervall berechnet werden, die zur Identifikation relevanter QTLs genutzt wurde. Die Ergebnisse zur Identifikation, Kartierung und Verifizierung neuer QTLs sind nachfolgend für die Populationen TVxWe90 und CFxTA getrennt dargestellt.

3.1. Population 'Tigvoasa' x We 90-06-12

Im Folgenden sind die Verteilungen der segregierenden Phänotypen aus den Infektionstests, die genetischen Kopplungskarten, sowie die QTL-Berechnungen für die Population 'Tigvoasa' x We 90-06-12 (TVxWe90) dargestellt. Außerdem wurden eine Feinkartierung zur Verifizierung des QTLs, sowie ein Sequenzvergleich von Kandidatengenen im Bereich des bereits von Schwander et al. 2012 identifizierten *Rpv10*-Locus aus 'Solaris' durchgeführt. Abschließend konnten die Ergebnisse dieser Arbeit durch mikroskopische Untersuchungen ergänzt werden.

3.1.1. Infektionstests

Die Infektionstests der Population TVxWe90 wurden in Form von Blattscheibentests (BST) mit Pflanzen aus dem Gewächshaus durchgeführt. In Abbildung 7 sind die Verteilungen des segregierenden Phänotyps für die Versuche 2019-1, 2019-2 und 2020 ersichtlich. Versuch 2019-2 wurde im Juli 2019 durchgeführt und stellt dabei eine Wiederholung des Versuchs 2019-1 nach ca. sieben Tagen dar.

Abbildung 7 Darstellung der Phänotypen aus Infektionstests mit *P. viticola* für die Datensätze 2019-1, 2019-2 und 2020 der Population TVxWe90 als Histogramme. Die Verteilungen zeigen jeweils die Anzahl der Individuen mit ihrem zugeordnetem Infektionsgrad (1: sehr gering bis 9: sehr hoch).

Die Anzahl an Individuen, die für die Blattscheibentests verwendet wurden, variiert von Versuch zu Versuch. Dabei konnten Boniturdaten von insgesamt 76 Individuen aus Versuch 2019-1, 114 Individuen aus Versuch 2019-2 und 136 Individuen aus Versuch 2020 erhoben werden. Die Verteilungen in Abbildung 7 zeigen im Rahmen der Blattscheibentests für alle Versuche eine Aufspaltung der Population in Individuen mit einem eher niedrigen und einem eher hohen Infektionsgrad. Obwohl die Histogramme der einzelnen Versuche die Erwartung einer bimodalen Verteilung der segregierenden Phänotypen bereits graphisch bestätigen, wurde dies zusätzlich für die Daten der Versuche im Mittel überprüft. Dazu wurde zunächst pro Individuum der gerundete Mittelwert des Infektionsgrades aus allen unabhängigen Datensätzen 2019-1, 2019-2 und 2020 bestimmt und anschließend die Individuen mit gleichem Infektionsgrad gruppiert. In Abbildung 8 sind zudem die mittleren Infektionsgrade der Elternpflanzen 'Tigvoasa' (TV) und We 90-06-12 (We90) angegeben.

Abbildung 8 Darstellung der Resultate des Infektionstests mit *P. viticola* für die Datensätze 2019-1, 2019-2 und 2020 im Mittel. Die Verteilung zeigt die Anzahl der Individuen mit zugeordnetem Infektionsgrad (1: sehr gering bis 9: sehr hoch). Zusätzlich sind die mittleren Infektionsgrade für die Elternpflanzen 'Tigvoasa' (TV) und We 90-06-12 (We90) eingezeichnet.

Anhand des Histogramms in Abbildung 8 ist zu erkennen, dass die gemittelten Daten der Versuche 2019-1, 2019-2 und 2020 ebenfalls eine bimodale Verteilung darstellen. Dies deutet auf eine Aufspaltung innerhalb der Population hinsichtlich resistenter und anfälliger Individuen hin. Q-Q-Plot und Box-Plot, die auf Basis der Mittelwerte der Infektionsgrade berechnet wurden, bestätigen die Darstellung des Histogramms. Die Plots sind in Anhang 3a dargestellt. Zur Prüfung des Datensatzes auf Normalverteilung wurde zusätzlich der Shapiro-Wilk-Tests durchgeführt. Hierbei konnte ein p-Wert von 3,715e-06 ermittelt werden. Da dieser unter dem Signifikanzniveau liegt, wird eine Normalverteilung der Daten abgelehnt. An dieser Stelle ist zu erwähnen, dass die Ablehnung einer Normalverteilung erwartet wurde, da die Stichprobe eine Aufspaltung der Individuen hinsichtlich des Merkmals Resistenz zeigt. Des Weiteren besteht eine Korrelation zwischen den Infektionsgraden der Datensätze aus 2019 und 2020. Dazu wurde der Spearman-Korrelationskoeffizient (r_{Sp}) berechnet. Unter der Nullhypothese, dass die Datensätze nicht korrelieren, konnte ein p-Wert von 3,438e-09 berechnet werden. Da der p-Wert unter dem Signifikanzniveau liegt, kann somit die Nullhypothese verworfen werden. Die mittleren Infektionsgrade aus 2019 korrelieren (r_{Sp} = 0,587) demnach mit denen aus 2020. Die Rohdaten der phänotypischen Untersuchungen, die zur Berechnung der Korrelation verwendet wurden sind in Anhang 4a aufgelistet.

3.1.2. Genetische Kopplungskarten

Im Fall der Population TVxWe90 konnten Markerdaten von insgesamt 244 Individuen erfasst werden. Die integrierte genetische Karte (I) ist in Abbildung 9 ersichtlich. Zusätzlich wurden parentale Karten für die Elternsorten 'Tigvoasa' (TV) und We 90-06-12 (We90) erstellt (Anhang 5a und 5b). Folgende Tabelle 9 zeigt eine Übersicht der Kartierung hinsichtlich Markeranzahl, Markerabstand und Länge der Kopplungsgruppe (KG).

Tabelle 9 Übersicht der integrierten Karte (I) und der parentalen Karten (TV: maternal; We90: paternal) hinsichtlich Markeranzahl, Markerabstand [cM] und Länge [cM] der Kopplungsgruppe (KG).

KG	Marl	keranza	ahl	Marke	erabstand	l [cM]	Länge [c	: M]	
	Ι	TV	We90	Ι	TV	We90	Ι	TV	We90
01	34	19	28	3,1	4,4	4,2	106	83,3	118,1
02	19	13	17	4,8	4,3	5	91,1	55,8	84,8
03	22	14	17	2,5	3,2	3,4	55,4	44,7	57
04	41	33	23	3	3,8	5	124,4	123,9	113,8
05	43	21	40	2,7	4,5	2,7	117,6	93,5	107,5
06	34	19	29	3,4	5	3,8	115,3	94,4	111,1
07	44	25	35	2,9	4,8	3,4	127,4	121,1	119,9
08	32	25	28	3,2	3,4	4,2	102,4	86	116,7
09	37	26	31	3,1	4,7	4,3	115,9	122,4	132,4
10	32	27	24	4,2	5,4	5,5	135,6	144,5	132,6
11	29	16	23	3,7	7,2	4,4	108,1	114,5	101,2
12	46	36	32	2,4	4,1	2,8	110	148,9	88,2
13	28	6	29	4,2	8,6	5,1	118,6	51,3	147,7
14	45	33	38	3,2	4,5	4,9	144,1	147,6	185,2
15	33	13	31	2	2,9	3,3	66,2	37,7	101,4
16	27	19	24	3,9	4,7	4,5	105,6	88,9	106,8
17	24	16	22	4,5	5	6,3	107,1	80,3	139
18	51	32	42	2,6	4	2,8	132,1	129,2	119
19	42	28	26	3	3,6	4,6	124,8	101,8	120,7
Σ/\overline{x}	663	421	539	3,3	4,6	4,2	2107,7	1869,8	2203,1
σ				0,76	1,34	0,98			

Zur Berechnung der integrierten Karte wurden 663 Marker verwendet. Das Grundgerüst der Karte, basierend auf 56 SSR-Markern, konnte dabei mit 607 Markerdaten aus der rhAmpSeq-Analyse ergänzt werden. Die Kartierung ergab 19 Kopplungsgruppen mit durchschnittlich 35 Markern pro Gruppe. Neben der Markeranzahl sind in Tabelle 9 die Länge, sowie der mittlere Markerabstand in centiMorgan (cM) dargestellt. Für die integrierte Karte ergibt sich in der Summe eine Genomlänge von 2107,7 cM. Der Markerabstand beträgt für alle Kopplungsgruppen im Schnitt 3,3 cM bei einer Standardabweichung von 0,74. Zusätzlich zur integrierten Genkarte veranschaulicht Tabelle 9 die Kartierungsdaten der maternalen Elternsorte 'Tigvoasa' (TV) und der paternalen Elternsorte We 90-06-12 (We90). Im Vergleich zur integrierten Karte, konnte für die parentalen Karten jeweils eine geringere

Anzahl an Markern verrechnet werden. Allgemein ist zu beobachten, dass die Kopplungsgruppen, auf denen weniger Marker kartiert wurden, vereinzelt größere Lücken zwischen den Markern aufweisen. Obwohl die integrierte Karte mit 663 Markern berechnet wurde und damit eine hohe Markerdichte präsentiert, sind teilweise Markerabstände von bis zu 20 cM ersichtlich (Abbildung 9). Die Kopplungsgruppen 02, 06, 11, 13 und 17 sind dafür beispielhaft. Tendenziell zeigen die parentalen Karten häufiger größere Lücken zwischen einzelnen Markern (Anhang 5a und 5b). Vor allem die Karte der Elternsorte 'Tigvoasa' weist vermehrt Markerabstände von bis zu 30 cM (KG 12) auf. Weitere markante Abstände sind auf 05, 09, 10, 14 KG 01, 06, 11, 13, und 17 zu vermerken. Abbildung 9 Integrierte genetische Karte der Population 'Tigvoasa' x We 90-06-12. Dafür wurden insgesamt 56 SSR- und 607 rhAmpSeq-Marker verwendet. Die Positionen der Marker sind auf 19 Kopplungsgruppen (KG) verteilt in centiMorgan [cM] dargestellt. SSR-Marker und Position, die mit dem QTL auf KG 09 korrelieren, sind rot markiert.

KG 01	KG 02	KG 03	KG 04
0.0 7.2 9.1 17.1 19.1 10.	0.0 rh_chr02_10978 2.9 rh_chr02_854531 6.2 rh_chr02_1626662 9.4 rh_chr02_21755729 13.7 rh_chr02_2263163 17.2 rh_chr02_2688648 20.6 rh_chr02_3059655 31.4 VCHR02A 36.0 GF02-12 49.0 VMC5G7 56.0 rh_chr02_6781830 57.8 rh_chr02_870753 64.8 rh_chr02_879012 76.7 rh_chr02_18194652 79.5 rh_chr02_18448449 91.1 GF02-62 01_21185705	0.0 0.7 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0.0 6.5 9.9 11.9 12.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1

KG 05

KG 07

0.0 5.9 13.5 15.9 16.6 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 10.6 19.5 10.6 19.5 10.6 10.6 10.6 10.7 10.6 10.6 10.6 11.6 10.6 10.7 10.7 10	0.0 8.7 12.1 18.0 12.5 18.0 18.0 18.0 19.0 18.0 19.0 18.0 19.0 18.0 19.0 18.0 19.0 18.0 19	0.0 GF07-07 11.7 rh_chr07_748361 14.3 rh_chr07_1223286 18.0 rh_chr07_1223286 18.0 rh_chr07_1406036 21.0 rh_chr07_1796486 23.9 rh_chr07_2131456 26.8 rh_chr07_2131456 26.8 rh_chr07_2131456 27.7 rh_chr07_2131456 28.7 rh_chr07_2131456 27.7 rh_chr07_2131456 28.7 rh_chr07_2131456 29.7 rh_chr07_2131456 31.3 rh_chr07_2131456 26.8 rh_chr07_4373927 33.8 rh_chr07_4373927 42.6 rh_chr07_5012925 7.7 rh_chr07_5012925 48.4 rh_chr07_780376 53.0 rh_chr07_788721 60.8 rh_chr07_1855951 67.5 rh_chr07_1790376 63.2 rh_chr07_1790376 75.5 rh_chr07_18097382 88.1 rh_chr07_18097382 88.1 rh_chr07_18437688 91.0	0.0 0.5 3.2 5.1 5.1 5.9 6.5 6.5 6.5 6.5 6.5 6.5 7.0 10.8 13.7 10.5 10.8 10.2 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.2 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.2 10.8 10.8 10.8 10.8 10.2 10.8 10.8 10.8 10.8 10.8 10.8 10.2 10.8 10.8 10.2 10.8 10.8 10.8 10.2 10.8 10.8 10.8 10.8 10.8 10.8 10.2 10.8 1
		122.2 127.4 rh_chr07_26249020 rh_ rh_chr07_26680230	chr07_26088532

KG 09

13.8 rh_chr09_516308 22.8 rh_chr09_1305204 rh_chr09_1575241 rh_chr09_1575241 rh_chr09_2133495 8.0 31.1 rh_chr09_2249377 rh_chr09_2249377 rh_chr09_2249377 rh_chr09_3600480 8.0 32.7 rh_chr09_3600480 33.8 9.9 43.1 rh_chr09_49102 43.1 rWC6D12 rGF09.48 70.0 rh_chr09_4796302 41.3 rh_chr09_6523189 6.9 60.6 GF09.08 67.3 rh_chr09_7533649 60.4 GF09.08 60.3 rh_chr09_7533649 60.4 rh_chr09_9574105 73.2 rh_chr09_1802202 rh_chr09_1802202 53.3 rh_chr09_9574105 7.0 rh_chr09_9574105 7.0 rh_chr09_1802600 96.7 rh_chr09_1802600 96.7 rh_chr09_1802600 96.7 rh_chr10_11485987 rh_chr09_1802600 96.7 rh_chr10_12409898 83.6 rh_chr	0.01 rVMC1C10	
22.8 rh_chr09_1305204 26.6 rh_chr09_1575241 27.3 rh_chr09_1575241 27.3 rh_chr09_2133495 31.1 rh_chr09_2249377 rh_chr09_2474475 38.2 rh_chr09_3600480 GF09-65 GF09-46 22.9 40.6 GF09-65 GF09-46 40.7 rh_chr10_2803328 7 rh_chr10_2803328 7 rh_chr10_2803328 20.1 rh_chr10_2803328 20.1 rh_chr10_2803328 20.1 rh_chr10_2803328 20.1 rh_chr10_2803328 20.1 rh_chr10_2803328 21 rd GF09-48 50.1 rd GF09-48 50.1 rd rhold from 04796302 53.8 rh_chr09_4796302 53.8 rh_chr09_6523189 60.6 rh_chr09_6523189 61.3 GF09-08 62.0 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_7533649 70.6 rh_chr09_13689984 77.2 rh_chr09_13689984 77.2 rh_chr09_13689984 77.2	13.8 h /r rh_chr09_516308	
26.6 rh_chr09_1575241 0.0 rh_chr10_423938 27.3 rh_chr09_1648912 n_chr09_11048912 n_chr10_1174215 32.7 rh_chr09_2249377 rh_chr09_2474475 n_chr10_1265993 rh_chr10_1265993 38.2 rh_chr09_3600480 22.9 rh_chr10_2803328 39.8 GF09.65 GF09.46 22.9 rh_chr10_2803328 43.1 r.h_chr09_4706302 36.9 rh_chr10_4427721 43.1 rh_chr09_4796302 36.9 rh_chr10_5443410 52.1 GF09.48 40.1 rh_chr10_64007241 rh_chr10_6654857 53.8 rh_chr09_4796302 48.5 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_9258189 66.7 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_7533649 66.7 rh_chr10_6732153 73.9 rh_chr09_13689984 77.8 rh_chr10_10547760 73.9 rh_chr09_1368984 77.8 rh_chr10_11300534 77.2 rh_chr09_18081402 87.5 rh_chr10_12409898 83.4 rh_chr09_18081402 87.5 rh_chr10_12409898 83.6 rh_chr09_18081402 87.5 rh_chr10_1	22.8 / /rh chr09 1305204	
27.3 1 rh_chr09_1648912 0.0 rh_chr10_423938 31.1 rh_chr09_2133495 8.0 rh_chr10_1174215 32.7 rh_chr09_3600480 8.9 rh_chr10_1265993 38.2 rh_chr09_3600480 20.1 rh_chr10_2803328 40.6 GF09-65 GF09-46 20.1 rh_chr10_2983812 43.1 VMC6D12 36.9 rh_chr10_505530 43.1 VMC6D12 36.9 rh_chr10_505530 50.1 VVUI37 7h_chr10_505530 rh_chr10_5043410 52.1 GF09-49 VMC3G8.2 43.7 rh_chr10_6030347 53.8 rh_chr09_4911190 48.5 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_6523189 62.0 rh_chr10_7537254 60.6 rh_chr09_889256 66.7 rh_chr10_7537254 73.9 rh_chr09_13689984 77.8 rh_chr10_11300534 77.2 rh_chr09_1892600 87.5 rh_chr10_11300534 81.4 rh_chr09_18392600 96.7 rh_chr10_112409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	26.6 1 /rh chr09 1575241	0.0 th the 10, 100000
31.1 rh_chr09_2133495 8.0 rh_chr10_1174215 32.7 rh_chr09_2249377 rh_chr09_2474475 rh_chr10_1265993 38.2 rh_chr09_3600480 20.1 39.8 GF09-65 GF09.46 20.1 39.8 GF09.65 GF09.46 22.9 43.1 GF09.48 22.9 43.1 GF09.48 22.9 7.9 GF09.48 40.1 7.9 GF09.48 40.1 7.1 GF09.49 VMC3G8.2 43.7 1.1 rh_chr09_4796302 43.7 rh_chr09_6523189 53.3 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_6602203 62.0 64.3 GF09.08 62.0 69.3 rh_chr09_7533649 63.8 60.6 rh_chr09_1533649 63.8 73.9 rh_chr09_138898256 66.7 73.9 rh_chr09_13689844 77.8 73.9 rh_chr09_18081402 87.5 74.0 rh_chr10_11050534 74.0 rh_chr10_112409898 74.0 rh_chr10_112409898 75.4 rh_chr	27.3 1 c/le rh chr09 1648912	0.0 m_cnr10_423938
32.7 Hrh_chr09_2249377 rh_chr09_2474475 8.9 rh_chr10_1265993 38.2 rh_chr09_3600480 20.1 rh_chr10_2600993 39.8 GF09-65 GF09-46 22.9 rh_chr10_2803328 43.1 rVMC6D12 36.9 rh_chr10_2803328 43.1 rVMC6D12 36.9 rh_chr10_2803328 50.1 rVW137 36.9 rh_chr10_505530 50.1 rVU137 36.9 rh_chr10_5381836 50.1 rK_chr09_4796302 43.7 rh_chr10_630347 53.8 rh_chr09_6523189 53.3 rh_chr10_6407241 rh_chr10_6654857 50.6 rh_chr09_6602203 68.9 GF10-02 64.3 GF09-08 62.0 rh_chr10_822060 73.9 rh_chr09_7533649 63.8 rh_chr10_822060 73.9 rh_chr09_18899266 66.7 rh_chr10_822060 73.9 rh_chr09_13689984 77.8 rh_chr10_10547760 73.4 rh_chr09_18081402 87.5 rh_chr10_11485987 73.4 rh_chr09_18081402 87.5 rh_chr10_12409898 84.6 rh_chr09_19072322 85.5	31.1 1 rh chr09 2133495	8.0 \rn_chr10_11/4215
38.2 rh chr09_3600480 17.5 rh_chr10_2600993 39.8 GF09-65 GF09-46 22.9 rh_chr10_2803328 43.1 VMC6D12 32.0 rh_chr10_2983812 43.1 VMC6D12 32.0 rh_chr10_505530 50.1 VVUI37 40.1 rh_chr10_543410 52.1 GF09-49 VMC3G8.2 41.3 rh_chr10_6030347 53.8 rh_chr09_4911190 48.5 rh_chr10_6030347 53.8 rh_chr09_6523189 53.3 rh_chr10_6030347 66.6 rh_chr09_6523189 53.3 rh_chr10_6732153 60.6 rh_chr09_95733649 63.8 rh_chr10_7537254 70.6 rh_chr09_9574105 77.8 rh_chr10_10547760 73.2 rh_chr09_1808984 77.8 rh_chr10_11300534 77.2 rh_chr09_18081402 87.5 rh_chr10_11485987 73.4 rh_chr09_18081402 87.5 rh_chr10_12605914	32.7 A rh chr09 2249377 rh chr09	2474475 8.9 rn_chr10_1265993
39.8 GF09-65 GF09-46 GF09-71 20.1 rh_chr10_2803328 40.6 GF09-71 22.9 rh_chr10_2983812 43.1 VMC6D12 32.0 rh_chr10_55530 47.9 GF09-48 40.1 rh_chr10_5381836 50.1 VVU137 40.1 rh_chr10_5381836 52.1 GF09-49 VMC3G8.2 41.3 rh_chr10_630347 52.1 GF09-49 VMC3G8.2 43.7 rh_chr10_6407241 rh_chr10_6654857 53.8 rh_chr09_4911190 48.5 rh_chr10_6407241 rh_chr10_6654857 57.3 rh_chr09_6523189 53.3 rh_chr10_7537254 60.6 rh_chr09_7533649 63.8 rh_chr10_7537254 69.3 rh_chr09_9426423 68.6 rh_chr10_8422060 73.2 rh_chr09_1368984 77.8 rh_chr10_10547760 79.5 rh_chr09_18081402 87.5 rh_chr10_11300534 81.4 rh_chr09_18081402 87.5 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	38.2 M rh chr09 3600480	17.5 rn_chr10_2600993
40.6 GF09-71 22.9 rh_chr10_2983812 43.1 VMC6D12 32.0 rh_chr10_4427721 47.9 GF09-48 40.1 rh_chr10_5055530 50.1 VVUI37 41.3 rh_chr10_5055530 52.1 GF09-49 VMC3G8.2 41.3 rh_chr10_5443410 52.1 GF09-49 VMC3G8.2 41.3 rh_chr10_6030347 53.8 rh_chr09_4911190 48.5 rh_chr10_6407241 rh_chr10_6654857 57.3 rh_chr09_6523189 53.3 rh_chr10_6732153 60.6 rh_chr09_7533649 63.8 rh_chr10_7537254 70.6 rh_chr09_9574105 74.0 rh_chr10_8528547 73.9 rh_chr09_1368984 77.8 rh_chr10_10547760 79.5 rh_chr09_18081402 87.5 rh_chr10_11300534 81.4 rh_chr09_18392600 96.7 rh_chr10_12605914	39.8 GF09-65 GF09-46	20.1 rh_chr10_2803328
43.1 VMC6D12 32.0 rh_chr10_4427721 47.9 GF09-48 40.1 rh_chr10_5055530 50.1 VVUI37 40.1 rh_chr10_5381836 52.1 GF09-49 VMC3G8.2 41.3 rh_chr10_6432170 53.8 rh_chr09_4796302 43.7 rh_chr10_6030347 53.8 rh_chr09_4911190 48.5 rh_chr10_6407241 rh_chr10_6654857 57.3 rh_chr09_6523189 53.3 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_7533649 63.8 rh_chr10_7537254 60.7 rh_chr09_9426423 68.6 rh_chr10_8422060 73.2 rh_chr09_9426423 68.6 rh_chr10_10547760 77.2 rh_chr09_13689984 77.8 rh_chr10_11300534 77.4 rh_chr09_18081402 87.5 rh_chr10_12409898 81.4 rh_chr09_18081402 87.5 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	40.6 GF09-71	22.9 rh_chr10_2983812
47.9 36.9 rh_chr10_5055530 50.1 VVUI37 40.1 rh_chr10_5381836 52.1 GF09-49 VMC3G8.2 41.3 rh_chr10_5443410 52.1 rh_chr09_4796302 43.7 rh_chr10_6030347 53.8 rh_chr09_6523189 53.3 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_6602203 58.9 GF10-02 64.3 GF09-08 62.0 rh_chr10_6732153 69.3 rh_chr09_7533649 63.8 rh_chr10_8422060 73.9 rh_chr09_9574105 74.0 rh_chr10_8528547 73.9 rh_chr09_16162865 79.2 rh_chr10_11300534 79.5 rh_chr09_1889984 77.8 rh_chr10_11485987 78.4 rh_chr09_18392600 96.7 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	43.1 W VMC6D12	32.0 \ rh_chr10_4427721
50.1 VVUI37 40.1 rh_chr10_5381836 52.1 GF09-49 VMC3G8.2 41.3 rh_chr10_5443410 52.1 rh_chr09_4796302 43.7 rh_chr10_6030347 53.8 rh_chr09_4911190 48.5 rh_chr10_6407241 rh_chr10_6654857 50.6 rh_chr09_6602203 68.3 GF10-02 64.3 GF09-08 62.0 rh_chr10_6732153 69.3 rh_chr09_7533649 63.8 rh_chr10_8422060 73.2 rh_chr09_9574105 74.0 rh_chr10_8528547 73.9 rh_chr09_16162865 79.2 rh_chr10_10547760 79.5 rh_chr09_1889984 77.8 rh_chr10_11485987 79.4 rh_chr09_18392600 96.7 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	47.9 1 GF09-48	36.9 \/ rh_chr10_5055530
52.1 GF09-49 VMC3G8.2 41.3 rh_chr10_5443410 52.1 rh_chr09_4796302 43.7 rh_chr10_6030347 53.8 rh_chr09_4911190 48.5 rh_chr10_6200947 57.3 rh_chr09_6523189 53.3 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_6602203 62.0 rh_chr10_6732153 64.3 GF09-08 62.0 rh_chr10_7537254 69.3 rh_chr09_7533649 63.8 rh_chr10_8422060 73.2 rh_chr09_8899256 66.7 rh_chr10_8422060 73.2 rh_chr09_9574105 74.0 rh_chr10_10547760 77.2 rh_chr09_16162865 79.2 rh_chr10_11300534 81.4 rh_chr09_18081402 87.5 rh_chr10_12409898 83.4 rh_chr09_19072322 98.5 rh_chr10_12605914	50.1 W VVUI37	40.1 \/ rh_chr10_5381836
52.1 rh_chr09_4796302 43.7 rh_chr10_6030347 53.8 rh_chr09_4911190 48.5 rh_chr10_6200947 57.3 rh_chr09_6523189 53.3 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_6602203 62.0 rh_chr10_6732153 69.3 rh_chr09_7533649 63.8 rh_chr10_7537254 70.6 rh_chr09_9426423 68.6 rh_chr10_8422060 73.2 rh_chr09_9574105 74.0 rh_chr10_10547760 77.2 rh_chr09_16162865 79.2 rh_chr10_11300534 81.4 rh_chr09_18392600 96.7 rh_chr10_12605914 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	IGE09-49 VMC3G8 2	41.3 rh_chr10_5443410
53.8 rh_chr09_4911190 48.5 rh_chr10_6200947 57.3 rh_chr09_6523189 53.3 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_6602203 62.0 rh_chr10_6732153 69.3 rh_chr09_7533649 63.8 rh_chr10_7537254 70.6 rh_chr09_9426423 68.6 rh_chr10_8422060 73.2 rh_chr09_9574105 74.0 rh_chr10_10547760 77.2 rh_chr09_16162865 79.2 rh_chr10_11300534 81.4 rh_chr09_18081402 87.5 rh_chr10_12605914 83.4 rh_chr09_19072322 98.5 rh_chr10_12605914	52.1 Wirb chr09 4796302	43.7 rh_chr10_6030347
57.3 rh_chr09_6523189 53.3 rh_chr10_6407241 rh_chr10_6654857 60.6 rh_chr09_6602203 62.0 rh_chr10_6732153 64.3 GF09-08 62.0 rh_chr10_7537254 69.3 rh_chr09_7533649 63.8 rh_chr10_7537254 70.6 rh_chr09_9426423 68.6 rh_chr10_8422060 73.2 rh_chr09_9574105 74.0 rh_chr10_10547760 77.2 rh_chr09_13689984 77.8 rh_chr10_11300534 79.5 rh_chr09_18081402 87.5 rh_chr10_12409898 81.4 rh_chr09_18392600 96.7 rh_chr10_12605914	53.8 H chr09 4911190	48.5 rh_chr10_6200947
60.6 -rh_chr09_6602203 58.9 GF10-02 64.3 -GF09-08 62.0 rh_chr10_6732153 69.3 -rh_chr09_7533649 63.8 rh_chr10_7537254 70.6 -rh_chr09_9426423 66.7 rh_chr10_8422060 73.2 -rh_chr09_9574105 74.0 -rh_chr10_9467495 77.2 -rh_chr09_13689984 77.8 -rh_chr10_10547760 79.5 -rh_chr09_18081402 87.5 -rh_chr10_11300534 81.4 -rh_chr09_18392600 96.7 -rh_chr10_12409898 84.6 -rh_chr09_19072322 98.5 -rh_chr10_12605914	57.3 rh chr09 6523189	53.3 - rh_chr10_6407241 rh_chr10_6654857
64.3 GF09-08 62.0 rh_chr10_6732153 69.3 rh_chr09_7533649 63.8 rh_chr10_7537254 70.6 rh_chr09_8899256 66.7 rh_chr10_8422060 73.2 rh_chr09_9426423 68.6 rh_chr10_8528547 73.9 rh_chr09_13689984 77.8 rh_chr10_10547760 79.5 rh_chr09_16162865 79.2 rh_chr10_11300534 81.4 rh_chr09_18392600 96.7 rh_chr10_12409898 83.4 rh_chr09_19072322 98.5 rh_chr10_12605914	60.6	58.9 GF10-02
69.3 rh_chr09_7533649 63.8 70.6 rh_chr09_8899256 66.7 73.2 rh_chr09_9426423 68.6 73.9 rh_chr09_9574105 74.0 77.2 rh_chr09_13689984 77.8 79.5 rh_chr09_16162865 79.2 81.4 rh_chr09_18081402 87.5 83.4 rh_chr09_18392600 96.7 84.6 rh_chr09_19072322 98.5	64 3-GF09-08	62.0 - rh_chr10_6732153
70.6 rh_chr09_8899256 66.7 rh_chr10_8422060 73.2 rh_chr09_9426423 68.6 rh_chr10_8528547 73.9 rh_chr09_9574105 74.0 rh_chr10_9467495 77.2 rh_chr09_13689984 77.8 rh_chr10_10547760 79.5 rh_chr09_16162865 79.2 rh_chr10_11300534 81.4 rh_chr09_18081402 87.5 rh_chr10_11485987 83.4 rh_chr09_18392600 96.7 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	69.3	63.8 rh_chr10_7537254
73.2 rh_chr09_9426423 68.6 73.9 rh_chr09_9574105 74.0 77.2 rh_chr09_13689984 77.8 79.5 rh_chr09_16162865 79.2 81.4 rh_chr09_18081402 87.5 83.4 rh_chr09_18392600 96.7 84.6 rh_chr09_19072322 98.5	70.6 rh chr09 8899256	66.7 // rh_chr10_8422060
73.9 rh_chr09_9574105 74.0 rh_chr10_9467495 77.2 rh_chr09_13689984 77.8 rh_chr10_10547760 79.5 rh_chr09_16162865 79.2 rh_chr10_11300534 81.4 rh_chr09_18081402 87.5 rh_chr10_11485987 83.4 rh_chr09_18392600 96.7 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	73.2 rh chr09 9426423	68.6 / rh_chr10_8528547
77.2 rh_chr09_13689984 77.8 rh_chr10_10547760 79.5 rh_chr09_16162865 79.2 rh_chr10_11300534 81.4 rh_chr09_18081402 87.5 rh_chr10_11485987 83.4 rh_chr09_18392600 96.7 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	73.9 / th chr09 9574105	74.0 // h_chr10_9467495
79.5 10. rh_chr09_16162865 79.2 rh_chr10_11300534 81.4 rh_chr09_18081402 87.5 rh_chr10_11485987 83.4 rh_chr09_18392600 96.7 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	77.2 rh chr09 13689984	77.8 // rh_chr10_10547760
81.4 rh_chr09_18081402 87.5 rh_chr10_11485987 83.4 rh_chr09_18392600 96.7 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	79.5 W rh chr09 16162865	79.2 // Nrh_chr10_11300534
83.4 rh_chr09_18392600 96.7 rh_chr10_12409898 84.6 rh_chr09_19072322 98.5 rh_chr10_12605914	81.4 W rh chr09 18081402	87.5 rh chr10 11485987
84.6 hrh_chr09_19072322 98.5 rh_chr10_12605914	83.4 W rh chr09 18392600	96.7 / rh chr10 12409898
	84.6 W rh chr09 19072322	98.5 rh chr10 12605914
86.1 W rh chr09 18463570 106.3 / The chr10 19925824	86.1 W rh chr09 18463570	106.3 rh chr10 19925824
89.1 Wrh chr09 19944895 107.8 hchr10 20553231	89.1 When chr09 19944895	107.8 /rh chr10 20553231
90.2 W rh chr09 20989379 110.4 // h chr10 21059800	90.2 W rh chr09 20989379	110 4 // rh chr10 21059800
96.2 W rh chr09 22838327 113.5 // W ch chr10 20484984	96.2 4 rh chr09 22838327	113.5 // rh_chr10_20484984
104.9 th chr09 20042224 119.3 th chr10 23440244	104.9 rh chr09 20042224	119.3 th chr10 23440244
115.9 GF09-73 129.8 GF10-11	115.9 GF09-73	129.8 GE10-11

129.8 GF10-11 135.6 GF10-04

0.01	rth chr11 542859
331	r rh chr11 601198
631	rh chr11 803595
87.L	rh chr11 1343142
10.9	VMCNG2H1
12.0	rh chr11 2406678
15.0	h abr11 2515310
15.9	- III_CIII 11_2515510
20.1	-m_chr11_2977354
22.8	rn_cnr11_3263224
24.1 /	Mrh_chr11_3749132 rh_chr11_3580540
27.1 4	rn_cnr11_4359180
28.6 4	h_rh_chr11_4081344
29.0 1/	_rh_chr11_4000176
40.6	GF11-04
51.2	rh_chr11_6276211
54.1 -//	rh_chr11_7449768
54.9 //	\rh_chr11_7656746
58.4	rh_chr11_9648408
70.4	rh_chr11_14828475
75.1	rh_chr11_17184199
79.9	rh chr11 17987786
84.0	rh chr11 18433819
84.8 //	rh chr11 18708021
86.2 /	rh chr11 18836141
92311	A rh chr11 19533500
083110	rh chr11 20115217
00.3.1/	UDV-028
108 1	LVVMD8
100.1	

1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
7.1 rh_chr12_844914 11.0 rh_chr12_1368028 11.8 rh_chr12_1996164 12.6 rh_chr12_1524783 14.1 rh_chr12_1709224 rh_chr12_1818274 19.6 rh_chr12_2966354
11.0 - rh_chr12_1368028 11.8 - rh_chr12_996164 12.6 - rh_chr12_1524783 14.1 - rh_chr12_1709224 rh_chr12_1818274 19.6 - rh_chr12_2966354
11.8
12.6
14.1 - drh_chr12_1709224 rh_chr12_1818274 19.6 - h-chr12_2966354
19.6 m rh_chr12_2966354
19.0 1 11_01112_2000004
20.5 W rh chr12 2673100
22.5 A prh_chr12_3116725
25.8 - Christer 12 3478868
29.4 M rh chr12 3962172 7
37.2 rh_chr12_5074355
40.7 - th chr12 5533572
41.4 1 m ch 12 5598767 18
44.0
46.3 m Hr ch chr12_5085351 28
51.7 W VCHR12A 33
57.2 - rh chr12 6184851 45
59.6 - Hr chr12_6822792 50
62.8 min_chr12_7220783 55
65 0 Work chr12 8048809 62
70.6
/// Inf. chr12_8944870 rb_chr12_9605397 71
73.4 / rh_chr12_0691021 75
75.6 - H - rh chr12 9898269 79
79.0
82.5 rh chr12 15428839 83
85.5 GE12-17 86
87 3 H chr12 18779599
89.3 th chr12 19037725 102
91.2 h chr12 19467018 108
93.0 A rh chr12 20594460 113
93.5 Which chr12 20361061 116
94.4 W rh chr12 20018956 118
97 3 4 Hrh chr12 21952129 rh chr12 21873473
99.1 + rh chr12 22346427
100.4 + rh chr12 22430141
101.2 rh chr12 22516082
102.0 rh chr12 22586794
103.7 rh chr12 23834651
106.8 rh chr12 24104070
110.0 GF12-07

0.0 3.5 J	rh_chr13_507206 rh_chr13_688776
.6	rh_chr13_1298235 rh_chr13_1211616 rh_chr13_2230274 rh_chr13_2994658 rh_chr13_4021260 rh_chr13_3335044
.4 -	rh_chr13_5863106 rh_chr13_5625117
232240463966	rh_chr13_6540716 VVS1 rh_chr13_7620093 rh_chr13_8308812 rh_chr13_8681863 rh_chr13_8698279 rh_chr13_13390889 Irh_chr13_15736455 rh_chr13_16075743 rh_chr13_18487980 rh_chr13_18789364 rh_chr13_20576036 SC47_20
7	GF13-37 rh_chr13_25721137 rh_chr13_27714695 rh_chr13_27978882 rh_chr13_28631883

0.01	r GF14-01
12.3	rh_chr14_836379
14.8	rh_chr14_594524
18.2	hrh_chr14_1593532 rh_chr14_1159858
22.4	Arh chr14 2055250
23.4	rh chr14 2736359
26.1	Nr rh chr14 3303300
27.6	Wr rh chr14 4228742
32 3 -	Wr rh chr14 4941220
35.6 1	-Wr rh chr14 5966808
37 4	Hr rh chr14 6495285
44.6 -	HW-VMC1E12
52.2 -	-Verh chr14 7296877
54 6 1	Herb chr14 7624685
56.3 -	Werh chr14_8871788
61.6 -	Werb chr14_8308158
67 1 1	-Verb chr14 10743715
72.5 -	H/srb_chr14_13378081
72.6	Herb chr14 14755965
74.0	- rh_chr14_16253640
75.0	drb_chr14_10233040
70.4	drb abr14 20102426 rb abr14 20850566
13.4	
05.9	rh_chr14_21323705
05.0	The abril 21803045
00.4	ch_chr14_21621143
92.9	th_chr14_22090202
94.0-	cm_cnr14_22993902
102.7	A -m_cnr14_25365636
105.9	Chr14_25499021
109.1	rn_chr14_25292543
114.4	
123.9	Fm_chr14_26224/1/
126.2 /	Cnr14_26687062
128.1 4	n_chr14_26802285
131.7 -	rh_chr14_26877597
134.5	rh_chr14_27607541
135.0 -	rh_chr14_27729833
135.8	rh_chr14_27425134
138.4 1	rh_chr14_27926007
140.3	Hrh_chr14_28292032 rh_chr14_29446606
144 1 4	h chr14 30126656

KG 15

KG 16

rh_chr15_177997 0.01 7.31 rh_chr15_2868330 9.5 rh_chr15_6996975 rh_chr15_8267292 rh_chr15_8357773 10.4 -12.1rh_chr15_9562659 13.1 rh_chr15_9660835 14.5 rh_chr15_9799495 15.6 rh_chr15_9993215 rh_chr15_10257839 17.4 1 18.6 -//- rh_chr15_10851058 hrh_chr15_12253375 rh_chr15_11792802 24.2 24.9~ /- rh_chr15_11503363 33.91 rh_chr15_13822901 /rh_chr15_15355400 38.1 rh_chr15_15294725 41.1 42.8 rh_chr15_15468122 rh_chr15_16450847 45.6-46.0 // rh_chr15_16737213 rh_chr15_16667790 51.7 MEN VMC8G3.2 55.4 -1 Yrh_chr15_17224145 rh_chr15_17991582 55.8rh_chr15_17146098 59.4rh_chr15_18318476 61.2 rh_chr15_18480191 62.7 hrh_chr15_18688959 rh_chr15_18821643 rh_chr15_19261933 64.1-66.2 rh_chr15_19600528

GF16-01 0.0 10.1 rh chr16 911072 10.5 rh chr16 976496 11.4 rh_chr16_1067628 15.5 -- rh_chr16_2212134 -rh_chr16_2376878 20.1 rh_chr16_6018898 rh_chr16_6070066 26.7 -/ GF16-56 32.9 -40.6 r GF16-04 rh chr16 9817859 46.8 /rh_chr16_12037326 48.2 -50.7 rh_chr16_12729188 54.0 -- rh_chr16_12698705 58.0 ---- rh_chr16_14911808 60.7 rh_chr16_15611288 68.2 rh_chr16_18232369 73.3 -- GF16-18 84.2 rh_chr16_19924082 85.1 rh_chr16_19830398 87.5 - rh_chr16_20304713 95.3 \ rh_chr16_22580044 97.7 - rh_chr16_22751612 99.8 rh_chr16_22811338 rh_chr16_22877339 104.2 rh_chr16_23084690 105.6 rh_chr16_23327502

rh_chr17_287812 0.0 -5.3 rh_chr17_565468 7.0 rh_chr17_765729 8.0 rh chr17 1114348 9.4 rh_chr17_1413957 10.7 rh_chr17_1756458 12.4 rh chr17 2443257 19.0 h chr17 3492286 31.3 rh_chr17_5060931 34.5 rh_chr17_5258199 38.0 rh_chr17_5707009 46.7 rh chr17 6745403 rh_chr17_6623514 51.2 -63.0 --rh_chr17_7134878 70.3 - rh_chr17_7292907 73.5 rh chr17 7609398 83.6 rh_chr17_8608505 89.0 rh_chr17_8686547 93.9 rh_chr17_9353710 -rh_chr17_9692661 95.3 102.9 rh_chr17_16303050 rh_chr17_13928628 -rh_chr17_12640993 105.3 rh_chr17_18015932 107.1

0.01	rVMC2A3	
10.3	rh_chr18_474745	
10.9	rh_chr18_582430	
12.1	rh_chr18_1782705	0.0 1 rth chr19 197793
12.9	rh_chr18_2022059	10.1 + rh chr19 271672
15.0	rh_chr18_2286800	15.6 hrh chr19 377073
18.0	rh_chr18_3555950	16.7 - Arrh chr19 472320
21.1	rh_chr18_3752475	18.9 A rh chr19 1367967
23.9 -	rh_chr18_3952793	20.1 - A rh chr19 1306780
32.6	rh_chr18_6012983	20.6 - Christer 12 12 19 270
33.3 7	rh_chr18_6135846	25.1 - rh chr19 1471481
40.3	GF18-26	27.6
44.8	rh_chr18_7997064	33.5 Worth chr19 2036017
46.9	rh_chr18_7076548 rh_chr18_6936362	38.5 W rrh chr19 2689517
48.0	rh_chr18_7128961	42.3 Wr rh chr19 3299138
49.8 -	rh_chr18_7809270	48.3 - Hr chr19 5072068
52 1 - H	rh_chr18_8594348 rh_chr18_8343849	52.2
55.1	rh_chr18_8494785	57.4 - rh chr19 6154322
54.6	rh_chr18_8759038 rh_chr18_8998759	58.0 - rh chr19 5807614
58.9	/r rh_chr18_9976929	60.5 W rrh chr19 6382258
62.5	/r rh_chr18_10304487	62.2 Wr rh chr19 6602361
64.5	// rh_chr18_10907482	64.6 J
65.8	rh_chr18_10762383	68.6 Frh chr19 7055420
68.6	rh_chr18_11215764	77.5 crh chr19 8657020
69.1	rh_chr18_11286900	78.8 \/rh chr19 9229826
71.0 -/H	Yrh_chr18_11482876 rh_chr18_11350114	80.2 drh chr19 8133480 rh chr19 9151792
73.0 //H	rh_chr18_11553491	83.8 crh chr19 8566871
76.2 //H	\rh_chr18_11614594	85.5 - rh chr19 9748768
81.3 /	rh_chr18_13446367	88 1 A rh chr19 8787547
86.5 /	rh_chr18_13105502	91 3 rh chr19 10666680
92.7 -//	rh_chr18_14135632	93.9 Hrh chr19 10968935 rh chr19 10724583
93.3 ///日	rh_chr18_14491995	95.0 / th chr19 10825978
94.1	rh_chr18_14551153	99.4 Here chr19 16545270 rh chr19 14659354
97.8	VCHR18B	101 5 / th chr19 19495933
102.3	rh_chr18_18048055	104 1
103.2	4 rh_chr18_17295477	109.0 moder th chr19 22763652
105.1	rh_chr18_22455321	110.9 W rh chr19 23034666
106.6	Frh_chr18_22829291	114.2 W rh chr19 24632229
108.2	rh_chr18_22144736	117 4 V rh chr19 24344947
111.3	rh_chr18_23887396	119.4.4 I th chr19 22967359
112.6	rh_chr18_24904198	121.0 rh chr19 24538531
116.7	rh_chr18_28307719	124.8 rh chr19 23614226
121.1	rh_chr18_30314724	
121.9	rh_chr18_31185354	
124.3	rh_chr18_31885147	
130.8	rh_chr18_34123552	
132.1	^L rh_chr18_34381037	

3.1.3. QTL-Berechnungen

Im Fall Population TVxWe90 wurden phänotypische Daten aus drei unabhängigen Blattscheibentests in den Jahren 2019 und 2020 mit sowohl der integrierten Karte (I) als auch den parentalen Karten (TV, We90) verrechnet. Folgende Tabelle zeigt eine Übersicht der Daten aus den QTL-Berechnungen (Tabelle 10).

Tabelle 10 Übersicht der QTL-Berechnungen mit der integrierten Karte (I) und den parentalen Karten (maternal: TV, paternal: We90) in Abhängigkeit der phänotypischen Daten der Infektionstests aus den Jahren 2019 und 2020. Dargestellt sind die Daten zu den folgenden Punkten: Kopplungsgruppe (KG); QTL korrelierender Marker; Position in centiMorgan [cM]; LOD-Wert ermittelt durch Intervall Mapping (IM); Signifikanzgrenze (SG) für KG 09 ermittlet durch einen Permutationstest (PT); Erklärter Anteil der Varianz (VE) des Phänotyps [%]. Felder ohne Daten sind mit einem "-" vermerkt.

Karte	Versuch	KG	Marker	Position [cM]	LOD-Wert (IM)	SG (PT)	VE [%]
	2019-1	09	GF09-71	40,64	10,86	3	48,7
Ι	2019-2	09	GF09-71	40,64	9,9	2,9	35
	2020	09	GF09-71	40,64	30,24	2,9	64
	2019-1	-	-	-	-	-	-
TV	2019-2	-	-	-	-	-	-
	2020	-	-	-	-	-	-
We90	2019-1	09	-	51,8	10,95	1,7	49
	2019-2	09	-	55,09	8,05	1,6	29,5
	2020	09	GF09-71	50,08	30,3	1,7	64,2

Tabelle 10 zeigt für alle drei Infektionsversuche, die mit der integrierten Karte verrechnet wurden, LOD-Werte auf KG 09, die über der jeweilig berechneten Signifikanzgrenze liegen. Diese sind mit dem Marker GF09-71 bei einer Position von 40,64 cM verknüpft. Für Versuch 2019-1 wurde ein LOD-Wert von 10,86 bei einer Signifikanzgrenze von 3 berechnet. Die QTL-Berechnung mit phänotypischen Boniturdaten des Versuchs 2019-2 stellt mit 9,9 den niedrigsten LOD-Wert dar. Ein LOD-Wert von 30,24 konnte bei einer Verrechnung mit Daten aus Versuch 2020 erreicht werden und definiert den höchsten Wert. Die Signifikanzgrenze für die QTL-Berechnungen mit den Daten der Versuche 2019-2 und 2020 betrug 2,9. Die Varianzen (VE) des Phänotyps in der Population werden für die unabhängigen Versuche zu 35% - 64% von den berechneten QTLs erklärt. Die Berechnung für die paternale Karte des Resistenzdonors We 90-06-12 ergab für alle drei Versuche LOD-Werte über dem Signifikanzlevel im Bereich von 50,08 cM bis 55,09 cM auf KG 09. Dabei konnte für Versuch 2020 der höchste LOD-Wert von 30,3 verzeichnet werden. Dieser erklärt 64,2% der Varianz des Phänotyps und korreliert, vergleichbar mit den LOD-Werten der integrierten Karte, mit dem Marker GF09-71. Im Fall der maternalen Karte der anfälligen Elternsorte 'Tigvoasa' wurden keine signifikanten LOD-Werte registriert. Anschließend wurde für die Population ein Multiple-QTL Mapping (MQM) mithilfe einer Co-Faktor-Selektion durchgeführt. Als Co-Faktor wurde der Marker GF09-71 auf KG 09 durch die Funktion Automatic-Cofactor-Selection der Software MapQTL definiert. In folgender Abbildung 10 sind die berechneten LOD-Werte den entsprechenden Positionen auf KG 09 graphisch zugeordnet. Dabei ist die Auswirkung der MQM-Methode im Vergleich zum IM illustriert. Die Wahrscheinlichkeitskurve, die anhand des IM ermittelt wurde (schwarze Kurve), verläuft für alle Versuche größten Teils über der Signifikanzgrenze. Der Bereich des QTLs erstreckt sich je nach Versuch zwischen 38 cM und 52 cM. Die SSR-Marker GF09-65, GF-09-46, GF09-71, VMC6D12, GF09-48, VVUI37, GF09-49 und VMC3G8.2 liegen dabei innerhalb des Bereichs. Mithilfe der MQM-Methode konnte der Bereich des QTLs stark eingegrenzt werden und ist an dem Verlauf der roten Wahrscheinlichkeitskurve verdeutlicht. Diese grenzt einen Bereich über der Signifikanzgrenze von ca. 3 cM ein, der von den SSR- Markern GF09-65 und VMC6D12 flankiert wird. In diesem Bereich liegen die Marker GF09-46 und GF09-71.

Abbildung 10 Darstellung des Vergleichs zwischen der IM-Methode (schwarze Kurve) und MQM-Methode (rote Kurve) im Rahmen der QTL-Berechnung für die Versuche 2019-1, 2019-2 und 2020. Graphisch dargestellt sind die LOD-Werte in Abhängigkeit der Position [cM] auf KG 09. Die berechnete Signifikanzgrenze für QTLs auf KG 09 ist horizontal bei einem LOD-Wert von 3 für Versuch 2019-1, sowie 2,9 für die Versuche 2019-2 und 2020 eingezeichnet.

3.1.4. Verifizierung und Feinkartierung des QTLs auf KG 09

Der QTL auf KG 09 wurde im Rahmen der MQM-Berechnung auf einen Bereich zwischen den Markern GF09-65 und VMC6D12 eingegrenzt. Dieser Bereich konnte durch eine Feinkartierung ausgewählter Individuen der Population TVxWe90 mit zusätzlichen SSR-Markern verifiziert und weiter verkleinert werden. Die Individuen wurden aufgrund rekombinanter Eigenschaften hinsichtlich ihrer Boniturnote und Allelkombination ausgewählt und untersucht (vgl. Pap et al. 2016). Abbildung 11 zeigt 17 Individuen (I) und den Mittelwert des Infektionsgrades (IG) der Jahre 2019, 2020 und 2021 aus Infektionstests mit P. viticola. Des Weiteren sind für jeden Genotyp die Allelkombinationen für insgesamt 14 SSR-Marker (M) der KG 09 dargestellt. Die Positionen (P) der Marker im V. vinifera PN40024 (12X.v2) Genom, sowie die Fragmentlänge des Resistenzallels (RA), sind ebenfalls ersichtlich. Anhand des Segregationsmusters der Rekombinanten konnten die Allelgrößen, die mit einem niedrigen Infektionsgrad korrelieren, im Stammbaum der Population bis zur Ursprungspflanze V. amurensis zurückverfolgt werden. Felder der Abbildung, die grün markiert sind, weisen auf Individuen hin, die im Fall des entsprechenden Markers das V. amurensis Resistenzallel aufweisen. Im Gegensatz dazu verdeutlichen rot gefärbte Felder dessen Abwesenheit. Durch die Feinkartierung konnte der Bereich von ca. 5,4 Mb, der von den Markern VMC1C10 und GF09-16 aus ersten QTL-Berechnungen in der IM-Methode definiert wurde, anhand der Rekombinanten 78, 178 und 243 auf ca. 189 kb eingegrenzt werden. Dieser ist in Abbildung 11 gelb markiert und umfasst die Marker GF09-62, GF09-64, GF09-65, GF09-68, GF09-46, GF09-70, und GF09-71. Der QTL, der anhand der MQM-Methode ermittelt wurde, fällt in diesen Bereich. Die Feinkartierung der Rekombinanten verifiziert den QTL und grenzt ihn anhand der Markerdaten der Rekombinante 178 noch weiter ein. Die Marker GF09-68, GF09-46, GF09-70 und GF09-71 liegen dabei innerhalb des Locus, der mit ca. 80 kb einen Bereich zwischen 3,62 Mb (GF09-65) und 3,7 Mb (GF09-47) auf der physikalischen Karte des V. vinifera PN40024 (12X.v2) Genoms darstellt.

M	VMC1C10	GF09-11	GF09-43	GF09-62	GF09-64	GF09-65	GF09-68	GF09-46	GF09-70	GF09-71	GF09-47	VMC6D12	GF09-48	GF09-16	IG
12	bc	ee	eg	fg	np	np	eg	np	np	np	np	fg	np	fg	2
19	bc	ee	eg	fg	np	np	eg	np	np	np	np	fg	np	fg	3
28	bd	ef	fg	fg	np	np	eg	np	np	np	np	eg	np	ee	3
67	bd	ee	eg	fg	np	np	eg	np	np	np	np	ef	nn	ee	3
72	ac	ef	fg	fg	np	np	eg	np	np	np	np	eg	np	eg	3
78	bc	eg	ee	fg	np	np	eg	np	np	np	np	fg	np	fg	3
94	ad	ef	fg	fg	np	np	eg	np	np	np	np	eg	np	ee	2
168	ac	ef	fg	eg	np	np	eg	np	np	np	np	eg	np	eg	2
195	bd	ef	ef	eg	np	np	eg	np	np	np	np	eg	np	ee	3
240	bc	ef	fg	eg	np	np	eg	np	np	np	np	eg	np	eg	3
413	ad	eg	N/A	eg	np	np	eg	np	np	N/A	np	fg	np	ee	1
423	ac	ef	fg	fg	np	np	eg	np	np	np	np	N/A	nn	eg	1
630	bc	ee	eg	eg	np	np	eg	np	np	np	np	fg	nn	eg	2
24	ad	ef	ef	ee	nn	nn	ef	nn	nn	nn	nn	ee	nn	ee	6
178	ac	fg	ef	ee	nn	nn	ef	nn	nn	nn	np	eg	np	eg	7
209	ad	fg	ef	ee	nn	nn	ef	nn	nn	nn	nn	ee	nn	ee	7
243	ad	ee	eg	ee	nn	nn	ef	nn	nn	nn	nn	ef	nn	ef	6
P [bp]	563536	2949642	3147101	3498499	3584443	3624190	3665959	3666103	3681842	3687217	3703008	3792236	3854406	5920527	
RA	d=150	e=287	g=427	g=383	p=281	p=312	g=153	p=413	p=334	p=366	p=299	g=146	p=357	g=243	
										\rightarrow					•

Abbildung 11 Eingrenzung des QTLs auf KG 09 durch Rekombinanten. Dargestellt sind die Segregationsmuster ausgewählter Individuen (I) für die entsprechenden SSR-Marker (M). Des Weiteren sind die gemittelten Infektionsgrade (IG) aus Blattscheibentests der Jahre 2019, 2020 und 2021 gezeigt. Die Positionen (P) der Marker, die anhand der *V. vinifera* PN40024 12x.V2 Genomsequenz ermittelt wurden, sowie die Länge des Resistenzallels (RA) sind in [bp] angegeben. Felder mit einer grünen Markierung illustrieren Genotypen, die ein Resistenz-korrelierendes Allel der Wildart *V. amurensis* im Segregationsmuster aufweisen. Rote Markierungen verdeutlichen die Abwesenheit dieses Allels. SSR-Analysen, die keine Ergebnisse geliefert haben, sind mit "N/A" gekennzeichnet. Der eingegrenzte Bereich ist durch eine Gelbfärbung der entsprechenden Marker gekennzeichnet und beträgt ca. 189 kb.

3.1.5. Sequenzvergleich mit den *Rpv10*-Kandidatengenen

Im Bereich des eingegrenzten QTLs (zwischen 3,62 Mb und 3,7 Mb), der auf KG 09 im Rahmen der MQM-Methode identifiziert und mittels Feinkartierung von Rekombinanten verifiziert wurde, konnten mehrere potentielle Kandidatengene detektiert werden. Folgende Tabelle 11 zeigt eine Übersicht der annotierten Gene, ihre Position im Genom und die mögliche Bezeichnung des Proteins. Dabei diente die aktuelle Version des *V. vinifera* Genoms (PN40024 12X.v2) und die entsprechenden Annotationen (VCost.v3) als Referenz (Canaguier et al. 2017).

Tabelle 11 Auflistung der annotierten Kandidatengene im Bereich des QTLs auf KG 09. Des Weiteren ist die Position des Gens im *V. vinifera* PN40024 12X.2 Genom (Canaguier et al. 2017) in Basenpaaren [bp] gezeigt. Angaben zur Proteinbezeichnung wurden mithilfe der blastx Funktion der Datenbank NCBI (blast.ncbi.nlm.nih.gov) durchgeführt. Des Weiteren sind Organismen angegeben, die anhand des Sequenzvergleichs homologe Gene aufweisen. Kandidatengene mit möglicher Relevanz für eine Resistenz gegen das Pathogen *P. viticola* sind in roter Farbe hervorgehoben und basieren auf der Einschätzung früherer Arbeiten (Schwander et al. 2012, Dudenhöffer et al. 2015, Fröbel 2019, Zyprian et al. in preparation).

Kandidatengen	Position [bp]	Protein
Vitvi09g00321	3628588-3638583	Ankyrin repeat-containing protein (V. vinifera)
Vitvi09g00322	3640947-3646623	RuBisCO large subunit-binding protein (V. vinifera)
Vitvi09g00323	3665109-3666362	AP2/ERF-like protein (V. vinifera, Macleaya cordata)
Vitvi09g01591	3678510-3681389	Cytochrome c oxidase assembly protein (V. vinifera)
Vitvi09g01592	3683182-3686303	CHCH-LETM1-like protein (Trema orientale)
Vitvi09g01593	3688403-3691987	RPS5-like protein (V. vinifera, V. riparia)
Vitvi09g00326	3694327-3700016	VHS domain-containing protein (V. vinifera)
Vitvi09g00327	3700694-3707991	Zinc phosphodiesterase (V. vinifera)

Es wurden insgesamt acht Gene im untersuchten Bereich gefunden. Diese sind in Tabelle 11 dargestellt und codieren für die Proteine Ankyrin repeat-containing protein, RuBisCO large subunit-binding protein, AP2/ERF-like protein, Cytochrome c oxidase assembly protein, CHCH-LETM1-like protein, RPS5-like protein, VHS domain-containing protein und Zinc phosphodiesterase. Dabei konnten zwei Gene (rot markiert) den bereits identifizierten Kandidatengenen *RPS5-like* und *AP2/ERF-like* innerhalb des *Rpv10*-Locus aus 'Solaris' zugeordnet werden (Schwander et al. 2012, Dudenhöffer et al. 2015, Fröbel 2019, Zyprian et al. in preparation). Auf der Grundlage der bekannten Sequenzen konnten die Genvarianten aus der Weinsberger Akzession We 90-06-12 isoliert, kloniert (AG Zyprian) und sequenziert werden. Der Vergleich der Gensequenzen der Kandidatengene *RPS5-like* und *AP2/ERF-like* aus den Rebsorten 'Solaris' und We 90-06-12 ist in den Abbildungen 12 und 13 dargestellt, um mögliche Unterschiede zu veranschaulichen. Im Fall der Sequenzen des Kandidatengens *RPS5-like* konnten keine Unterschiede detektiert werden. Dies ist in Abbildung 12 durch den lückenlosen roten Balken (Conservation) zu erkennen. Die Länge der Gensequenz entspricht jeweils 3528 bp. Eingezeichnet sind zudem die Regionen der Primer (blau) an den

Basenpaarpositionen 1 bis 22 (Forward Primer) und 3504 bis 3528 (Reverse Primer), die Region des Promotors (grün) zwischen 277 bp und 590 bp und die codierende Sequenz des RPS5-like Gens (gelb) mit einer Länge von 2658 bp (782 bp bis 3439 bp). Die TATA-Box ist in der Promotorregion an der Position 556 bp angegeben. Für die codierende Sequenz konnte mithilfe der blastx-Funktion der NCBI Datenbank (siehe 2.9.) eine NB-ARC-Domäne (1241 bp bis 1966 bp) und eine LRR-Domäne (1271 bp bis 3319 bp) eingezeichnet werden. Diese Region (orange) ist insgesamt 2079 bp lang. Abbildung 13 zeigt dahingegen Unterschiede zwischen den Sequenzen der isolierten AP2/ERF-like Genvarianten in Form von Basendeletionen, -austauschen und -insertionen. Dies ist einerseits an den unterschiedlich langen Sequenzen ('Solaris': 1643 bp; We 90-06-12: 1658 bp) zu erkennen, die jeweils von den flankierenden Primern (blau) begrenzt werden. Andererseits veranschaulicht der rote Balken (Conservation) die Sequenzunterschiede durch mehrere kleine Lücken im Bereich zwischen 390 bp und 740 bp. Dieser Bereich befindet sich unmittelbar vor der Promotorregion (751 bp – 822 bp), die mit einer Länge von 72 bp in grün dargestellt ist. Die Sequenz einer TATA-Box, die den möglichen Transkriptionsstart des Gens induziert, ist für die Basenpaarposition 784 angegeben. Zusätzlich ist eine etwas größere Lücke durch einen Unterschied in der codierenden Sequenz der Genvariante AP2/ERF-like (gelb) zu erkennen. Diese ist auf eine Insertion von 18 Basen im Fall der Sequenz der Rebsorte We 90-06-12 zurückzuführen und befindet sich außerhalb der funktionellen AP2-Domäne (orange), die für die Basenpaarposition 1101 bp bis 1283 bp angegeben ist. Insgesamt entspricht die codierende Sequenz einer Länge von 708 bp, die sich im Bereich zwischen 924 bp und 1631 bp erstreckt. In den Abbildungen 14 und 15 sind außerdem die Vergleiche der codierenden Sequenzen beider Genvarianten aus We 90-06-12 mit den Varianten aus der anfälligen Rebsorte 'Pinot Noir' gezeigt. Dabei sind sowohl mehrere Unterschiede in den codierenden Sequenzen, als auch in den funktionellen Domänen beider Genvarianten zu erkennen. Allgemein sind diese Unterschiede auf Basendeletionen, -austausche und -insertionen zurückzuführen.

Abbildung 12 Darstellung des Sequenzvergleichs der Kandidatengenvariante *RPS5-like*, die aus den Rebsorten 'Solaris' und We 90-06-12 isoliert wurde. Mögliche Unterschiede sind durch Lücken im konservierten Balkendiagramm (rot) veranschaulicht. Angegeben sind unter anderem die Länge der Gensequenz in [bp], die flankierenden Primer (blau) die Promotorregion (grün) und TATA-Box, die codierende Region (CDS) des *RPS5-like* Gens (gelb), sowie der Bereich der NB-ARC-LRR-Domäne (orange).

Abbildung 13 Darstellung des Sequenzvergleichs der Kandidatengenvariante *AP2/ERF-like*, die aus den Rebsorten 'Solaris' und We 90-06-12 isoliert wurde. Mögliche Unterschiede sind durch Lücken im konservierten Balkendiagramm (rot) veranschaulicht. Angegeben sind unter anderem die Länge der Gensequenz in [bp], die flankierenden Primer (blau) die Promotorregion (grün) und TATA-Box und die codierende Region (CDS) des *AP2/ERF-like* Gens (gelb) sowie der Bereich der AP2-Domäne (orange).

Abbildung 14 Sequenzvergleich der codierenden Region (CDS) des *RPS5-like* Gens (gelb) mit NB-ARC-LRR-Domäne (orange) aus We 90-06-12 mit der anfälligen Rebsorte 'Pinot Noir' (PN). Mögliche Unterschiede sind durch Lücken im konservierten Balkendiagramm (rot) veranschaulicht. Des Weiteren ist die Länge der Gensequenz in [bp] angegeben.

Abbildung 15 Sequenzvergleich der codierenden Region (CDS) des *AP2/ERF-like* Gens (gelb) mit AP2-Domäne (orange) aus We 90-06-12 mit der anfälligen Rebsorte 'Pinot Noir'(PN). Mögliche Unterschiede sind durch Lücken im konservierten Balkendiagramm (rot) veranschaulicht. Des Weiteren ist die Länge der Gensequenz in [bp] angegeben.

3.1.6. Markeranalyse zum Vergleich der Rpv10-Varianten

Aufgrund der Ähnlichkeit zum Rpv10-Locus, wird der QTL, der im Rahmen dieser Arbeit identifiziert wurde, ab sofort zum besseren Verständnis als Rpv10.2 bezeichnet. Zur weiteren Unterscheidung der *Rpv10*-Varianten wurden die Resistenz-korrelierenden Allele ausgewählter Marker im Bereich des Locus hinsichtlich des Segregationsmusters verglichen. Die Fragmentlänge des Resistenzallels der V. amurensis Akzession, die als Donor der Rpv10.2-abhängigen Resistenz in der Sorte We 90-06-12 gilt, dient dabei als Orientierung. Zusätzlich wurden weitere Weinsberger Züchtungen analysiert, die ebenfalls Nachkommen dieser Akzession sind. Abbildung 16 lässt dabei Unterschiede in den Fragmentlängen der Marker GF09-68, GF09-46 und GF09-48 im Fall der Sorten erkennen, die bereits als Träger des Rpv10-Locus identifiziert wurden (rot markiert). Die Marker GF09-46 und GF09-48 werden seit geraumer Zeit in der Züchtung zur Identifikation neuer Sorten mit Rpv10-Locus verwendet. Es fällt auf, dass sich die Fragmentlänge des Resistenzallels bei diesen Markern um zwei Basenpaare im Vergleich zu den Werten der Rpv10.2-Träger unterscheidet. Die Abweichung der Fragmentlänge um zwei bis drei Basenpaare konnte anhand mehrerer Analysen konstant beobachtet werden und wurde zudem vor Projektbeginn überprüft. Die Allellängen der restlichen Marker sind identisch und weisen auf eine enge Verwandtschaft der Rpv10-Varianten hin (grün markiert). Markerdaten der anfälligen V. vinifera Sorten 'Cabernet Franc' und 'Muscat a Petits Grains', die als Referenzen aufgeführt sind, unterscheiden sich klar von den Fragmentlängen der Resistenzallele. Dies ist durch grau markierte Felder (-) illustriert.

	Marker Akzession	GF09-62	GF09-64	GF09-65	GF09-68	GF09-46	GF09-70	GF09-71	GF09-47	GF09-48	Locus	
	V. amurensis R.	383	281	312	153	413	334	366	299	357	<i>Rpv10-2</i>	
-	We 73-45-84	+	+	+	+	+	+	+	+	+		
	We 90-06-12	+	+	+	+	+	+	+	+	+		
	We 75-103-07	+	+	+	+	+	+	N/A	+	+		
	We 73-40-27	+	+	+	+	+	+	+	+	N/A		
~	We 75-115-07	+	+	+	+	+	+	+	+	+	Rp	
A	We 75-90-03	+	+	+	+	+	+	+	+	+	νI	
	We 75-14-23	+	+	+	+	+	+	+	+	N/A)-2	
	We 75-36-26	+	+	+	+	+	+	+	+	+		
-	We 75-34-13	+	+	+	+	+	+	+	+	+		
	We 75-108-10	+	+	+	+	+	+	+	+	+		
	Sauvitage	+	+	+	+	+	+	+	+	+		
	Solaris	+	+	+	155	415	+	+	+	359	RpvI	
	Baron	+	+	+	155	415	+	+	+	359		
	Bronner	+	+	+	155	415	+	+	+	359		
	Monarch	+	+	+	155	415	+	+	+	359		
	Muscaris	+	+	+	155	415	+	+	+	359		
	Rondo	+	+	+	155	415	+	+	+	359		
m	Cabernet Cantor (36)	+	+	+	155	415	+	+	+	359	0	
-	Cabernet Cantor (52)	+	+	+	155	415	+	+	+	359		
	Cabernet Carbon	+	+	+	155	415	+	+	+	359		
	Cabernet Carol	+	+	+	155	415	+	+	+	N/A		
	Cabernet Cortis	+	+	+	155	415	+	+	+	359		
	Cabernet Franc	-	-	-	-	-	-	-	-	-	_	
	Muscat a Petits Grains	-	-	-	-	-	-	-	-	-	-	

Abbildung 16 Test weiterer Züchtungen (A) und bekannter *Rpv10*-Sorten (B) auf die Resistenz-korrelierenden Allellängen der SSR-Marker, die den QTL (*Rpv10.2*) auf KG 09 eingrenzen. Die Fragmentlängen [bp] der Resistenzallele sind für die Weinsberger *V. amurensis* Akzession ersichtlich (gelb). Sorten mit identischem Resistenzallel sind mit einem "+" (grün) gekennzeichnet. Allele mit abweichender Fragmentlänge sind im Fall der *Rpv10*-Sorten rot markiert, für die anfälligen Sorten 'Cabernet Franc' und 'Muscat a Petits Grains' ist ein "-" (grau) eingetragen. Fehlende Markerdaten sind mit "N/A" gekennzeichnet.

3.1.7. Fluoreszenzmikroskopische Aufnahmen zum Hyphenwachstum im Blatt

Um erste Hinweise auf mögliche Resistenzreaktionen nach einer Infektion mit *P. viticola* zu erlangen, wurde das Hyphenwachstum des Pathogens anhand infizierter Battproben der Sorten 'Tigvoasa', We 90-06-12 (*Rpv10.2*), 'Sauvitage' (*Rpv10.2*, *Rpv3.1*) und 'Solaris' (*Rpv10, Rpv3.3*), sowie der Weinsberger *V. amurensis* Akzession (*Rpv10.2*) mikroskopisch untersucht. Das Hyphenwachstum wurde nach einer Behandlung der Blattproben mit KOH und anschließender Färbung mit Anilinblau (siehe 2.6.2.2.) oder Calcofluor-White (siehe 2.6.2.3.) unter einem Fluoreszenzmikroskop zu unterschiedlichen Zeitpunkten nach der Infektion betrachtet.

3.1.7.1. Anilinblau-Färbung

Die Kreuzungseltern 'Tigvoasa' (TV) und We 90-06-12 (We90) der Population wurden hinsichtlich des Hyphenwachstums im Blatt nach einer Infektion mit *P. viticola* untersucht. Die fluoreszenzmikroskopische Aufnahmen sind in Abbildung 17 dargestellt. Die Blattproben wurden nach einer Behandlung durch KOH mit Anilinblau gefärbt. Zellwandbestandteile der Pflanze, sowie Zoosporen, Hyphen oder Haustorien des Pathogens zeigen dabei eine hellblaue Fluoreszenz.

Abbildung 17 Hyphenwachstum des Pathogens *P. viticola* in Blattproben der Akzessionen 'Tigvoasa' (TV) und We 90-06-12 (We90) zu den Zeitpunkten 24 h, 48 h und 7 d nach der Infektion. Aufgrund einer Färbung mit Anilinblau fluoreszieren die Infektionsherde der Zoosporen (i), Hyphen (hy) und Haustorien hellblau. Vereinzelt sind auch Pflanzenbestandteile wie Blattnerven (b) und Stomata (s) leicht gefärbt.

Im Fall der Rebsorte 'Tigvoasa' konnte mit Verlauf der Zeit eine Zunahme des Hyphenwachstums beobachtet werden. Während nach 24 h die Ausbildung erster Primärhyphen an unterschiedlichen Infektionsherden zu erkennen war, konnte bereits nach 48 h eine drastische Ausbreitung des Myzels beobachtet werden. Eine Ausbreitung der Hyphen konnte auch sieben Tagen nach Infektion noch erkannt werden. Außerdem wurde das Austreten von Sporangiophoren aus der Blattprobe bemerkt. Im Gegensatz dazu sind für die Akzession We 90-06-12 keine deutlichen Veränderungen zu den unterschiedlichen Zeitpunkten zu erkennen. Nach 24 h wurden zwar bereits erste Auswüchse von Primärhyphen registriert, die sich nach 48 h noch minimal verlängerten, allerdings kam es anschließend zur Stagnation des Hyphenwachstums. Auch nach sieben Tagen konnte unter dem Mikroskop keine weitere Ausbreitung des Myzels beobachtet werden. Ebenfalls kam es nicht zur Ausbildung von Sporangiophoren. We 90-06-12, die im Rahmen dieser Arbeit als Rpv10.2-Träger identifiziert wurde, zeigt aufgrund der mikroskopischen Untersuchungen eine Resistenzreaktion infolge einer Infektion mit P. viticola. Die Sorte Tigvoasa ist dahingegen anfällig für das Pathogen. Etwaige rötliche Färbungen im Hintergrund der mikroskopischen Aufnahmen deuten auf die Eigenfluoreszenz von Chlorophyllresten hin (Krause & Weis 1984), die während des Bleichvorgangs einzelner Proben mit KOH zum Teil nicht ganz entfernt werden konnten.

3.1.7.2. Calcofluor-White-Färbung

Im Folgenden sind Blattproben der Rebsorten 'Sauvitage' (SAU), 'Solaris' (SOL) und 'Tigvoasa' (TV), sowie der Weinsberger Akzession *V. amurensis* (VA) dargestellt, die zu unterschiedlichen Zeitpunkten nach einer Infektion mit *P. viticola* mikroskopisch untersucht wurden (Abbildung 18). Die Sorte 'Sauvitage' besitzt den *Rpv3.1*-Locus aus der resistenten Züchtungslinie 'Seibel 4614' (Ursprung: *V. rupestris*, Di Gaspero et al. 2012) und wurde im Rahmen dieser Arbeit als *Rpv10.2*-Träger identifiziert (siehe 3.1.6.). Im Vergleich dazu trägt die Sorte 'Solaris' den *Rpv10*-Locus (Ursprung: *V. amurensis*, Schwander et al. 2012) und den *Rpv3-3*-Locus aus der Hybridzüchtung 'Merzling' (Ursprung: *V. rupestris / V. lincecumii*, Vezzulli et al. 2019). Zur Veranschaulichung der Reaktion auf die Infektion wurden die Blattproben nach einer Entfärbung durch KOH mit Calcofluor-White behandelt. Durch die Färbung sind ebenfalls Pflanzen- und Pathogenkompartimente in einer weiß leuchtenden Fluoreszenz zu erkennen. Dies ist in Abbildung 18 ersichtlich.

Abbildung 18 Hyphenwachstum des Pathogens *P. viticola* in Blattproben der Akzessionen 'Tigvoasa' (TV), 'Sauvitage' (SAU), 'Solaris' (SOL) und *V. amurensis* (VA) zu den Zeitpunkten 48 h und 96 h nach der Infektion. Aufgrund einer Färbung mit Calcofluor-White fluoreszieren die Infektionsherde der Zoosporen (i), Hyphen (hy) und Haustorien weiß. Vereinzelt sind auch Pflanzenbestandteile wie Blattnerven (b) und Stomata (s) leicht gefärbt.

Zunächst ist zu erwähnen, dass Abbildung 18 im Fall der anfälligen Akzessionen 'Tigvoasa' (TV) und eine starke Zunahme des Hyphenwachstums innerhalb der beobachteten Zeitpunkte zeigt. Nach 96 hpi konnten ebenfalls Sporangiophoren an der Blattunterseite registriert werden. Die resistenten Akzessionen 'Sauvitage' (SAU) und 'Solaris' (SOL), die jeweils Resistenzloci aus amerikanischen und asiatischen Wildreben tragen, wiesen 48 h nach der Infektion zwar vereinzelt Infektionsherde auf, das Hyphenwachstum breitete sich nach 96 h allerdings nur leicht aus. Dies ist in Abbildung 18 vor allem für die Akzession 'Sauvitage' sehr gut zu erkennen. Die Ausbreitung des Pathogens ist hierbei auf einzelne Bereiche begrenzt, die im Vergleich zum restlichen Blattgewebe kaum fluoreszieren. Auch die

Weinsberger Akzession der asiatischen Wildrebe *V. amurensis* zeigt als Ursprung des *Rpv10.2*-Locus nach 48 h kaum Infektionsherde. Nach 96 h ist allerdings eine Ausbreitung des Myzels zu erkennen. Im Gegensatz zu den anfälligen Sorte 'Tigvoasa' waren jedoch keine Sporangiophoren auf der Blattunterseite ersichtlich.

3.2. Population 'Cabernet Franc' x 'Triomphe d'Alsace'

Im Rahmen dieser Arbeit wurden für die Population 'Cabernet Franc' x 'Triomphe d'Alsace' (CFxTA) ebenfalls Infektionstests in Form von Blattscheibentests durchgeführt. Zusätzlich konnten Boniturdaten anhand natürlicher Infektionen mit *P. viticola* im Freiland erfasst werden. Die phänotypischen Daten wurden in einer QTL-Analyse mit der genetischen Kopplungskarte verrechnet. Ergänzend konnten ausgewählte Sorten aus dem Stammbaum der Population mikroskopisch auf Resistenzreaktionen nach einer Infektion mit *P. viticola* untersucht werden.

3.2.1. Infektionstests

Nachfolgend sind die Verteilungen der Daten aus den Blattscheibentests (BSTs) für die Population CFxTA anhand von Histogrammen illustriert. In Abbildung 19 sind die Versuche 2019-1-BSTF, 2019-2-BSTF, 2020-1-BSTF und 2020-2-BSTF dargestellt, die mit Pflanzen aus dem Freiland (F) unabhängig voneinander durchgeführt wurden. Die Daten der Versuche konnten dabei in den Jahren 2019 und 2020 zu unterschiedlichen Zeitpunkten im Jahr erfasst werden. Während die Infektionsdaten der Versuche 2019-1-BSTF und 2020-1-BSTF aus dem Monat Mai stammen, wurden die Blattscheibentests 2019-2-BSTF und 2020-2-BSTF jeweils im Juni bonitiert. Zusätzlich ist zu erwähnen, dass in den Versuchsjahren 2019 und 2020 jeweils Pathogenmaterial aus Freilandinfektionen des Vorjahres zur Inokulation der Blattproben genutzt wurde.

Abbildung 19 Histogramme der Resultate der Blattscheibentests 2019-1-BSTF (A), 2019-2-BSTF (B), 2020-1-BSTF (C) und 2020-2-BSTF (D) mit Pflanzen der Population CFxTA aus dem Freiland. Die vertikale Achse definiert die Individuenanzahl, die horizontale Achse den bestimmten Infektionsgrad (1: sehr gering bis 9: sehr hoch).

Versuch 2019-1-BSTF ist in Abbildung 19A dargestellt. Das Histogramm veranschaulicht die Verteilung der Infektionsdaten von insgesamt 137 Pflanzen. In Abbildung 19B sind die Daten aus dem Versuch 2019-2-BSTF ersichtlich, der mit einer Anzahl von 170 Individuen durchgeführt wurde. Abbildung 19C illustriert die Verteilung von 176 Individuen aus Versuch 2020-1-BSTF, in Abbildung 19D ist die Verteilung von 140 Individuen aus Versuch 2020-2-BSTF gezeigt. Die Histogramme der Versuche spiegeln im Großen und Ganzen normal verteilte Daten wieder. Lediglich Versuch 2019-2-BSTF (Abbildung 19B) zeigt eine segregierende Aufspaltung der Daten in eine Gruppe von Individuen mit einem eher niedrigen Infektionsgrad (2) und einem eher hohen Infektionsgrad (7). Zu Beginn des Jahres 2020 wurden Stecklinge aus Holzmaterial der Freilandpflanzen der Population generiert und im Gewächshaus (G) kultiviert. Diese wurden zusätzlich auf Infektionen mit *P. viticola* getestet.

Die Verteilungen der Infektionsdaten der unabhängigen Versuche 2020-1-BSTG, 2020-2-BSTG, 2020-3-BSTG und 2020-4-BSTG sind in Abbildung 20 ebenfalls in Form von Histogrammen ersichtlich.

Abbildung 20 Histogramme der Ergebnisse der Blattscheibentests 2020-1-BSTG (A), 2020-2-BSTG (B), 2020-3-BSTG (C) und 2020-4-BSTG (D) mit Pflanzen aus dem Gewächshaus. Die vertikale Achse definiert die Individuenanzahl, die horizontale Achse den bestimmten Infektionsgrad (1: sehr gering bis 9: sehr hoch).

Abbildung 20A zeigt die Verteilung des Versuchs 2020-1-BSTG, der im April 2020 mit 141 Individuen durchgeführt wurde. Die Individuenanzahl im Fall von Versuch 2020-2-BSTG (Abbildung 20B) betrug 142, der Test wurde im Mai 2020 durchgeführt. Versuch 2020-3-BSTG (Abbildung 20C), der im Juni 2020 durchgeführt wurde, zeigt eine unregelmäßige Verteilung der 139 getesteten Individuen. Abbildung 20D veranschaulicht mit den Boniturdaten von 140 Individuen die Verteilung des Versuchs 2020-4-BSTG aus dem Monat Juli. Die Boniturdaten aus den Versuchen mit den Gewächshauspflanzen zeigen anhand der Histogramme keine Aufspaltung der Population und sind im Allgemeinen normalverteilt. Weitere phänotypische Daten konnten zusätzlich durch mehrjährige Freilandbonituren (FB) von natürlich entstandenen Infektionen mit *P. viticola* generiert werden. Dabei wurde allerdings die Intensität der Infektion (1: sehr gering bis 9: sehr hoch) anhand der gesamten Pflanze ermittelt. Dargestellt sind die Histogramme der Freilandbonituren in folgender Abbildung 21.

Abbildung 21 Histogramme der Resultate aus den Freilandbonituren 2016-FB (A), 2018-FB (B), 2019-1-FB (C), 2019-2-FB (D), 2020-1-FB (E) und 2020-2-FB (F) mit Pflanzen der Population CFxTA. Die vertikale Achse definiert die Individuenanzahl, die horizontale Achse den bestimmten Infektionsgrad (1: sehr gering bis 9: sehr hoch). Der Infektionsgrad wurde für die gesamte Pflanze bestimmt.

Die Bonituren 2016-FB (Abbildung 21A) und 2018-FB (Abbildung 21B) wurden von der Arbeitsgruppe Rebenzüchtung der LVWO Weinsberg jeweils im August des Jahres durchgeführt. Im Fall der Bonitur 2016-FB konnte der Infektionsgrad von 292 Individuen bestimmt werden. Abbildung 21B spiegelt die Daten der Verteilung von Bonitur 2018-FB mit 244 Individuen wider. Im Jahr 2019 wurden die Bonituren 2019-1-FB (Abbildung 21C) mit 228 Individuen im Juli und 2019-2-FB (Abbildung 21D) mit 163 Individuen im August durchgeführt. Die Abbildungen 21D und 21F zeigen die Histogramme der Bonituren im Jahr 2020. Im August konnten Infektionsdaten von 217 Pflanzen im Rahmen der Bonitur 2020-1-FB erfasst werden, im September wurden 216 Individuen im Fall der Bonitur 2020-2-FB bonitiert. Auch die Daten der einzelnen Freilandbonituren sind normalverteilt und zeigen anhand der Histogramme keine Aufspaltung der Population unter natürlichen Bedingungen im Weinberg. Allerdings wird der Einfluss von Umweltparametern im Freiland auf die Infektionsdaten zu den unterschiedlichen Boniturzeitpunkten im Jahr verdeutlicht. Ergänzend zu den Analysen der Einzelversuche, wurden die Mittelwerte der Infektionsgrade für alle drei Versuchsvarianten BSTF, BSTG und FB bestimmt und in Abbildung 22 in Form von Histogrammen dargestellt. Des Weiteren sind für die Blattscheibentests die mittleren Infektionsgrade der Elternpflanzen 'Cabernet Franc' (CF) und 'Triomphe d'Alsace' (TA) ersichtlich. Im Fall der Freilandbonituren konnten für die Akzessionen allerdings keine Infektionsdaten erhoben werden, da diese zum Bestand der LVWO Weinsberg gehören und zu deren Erhalt mit Pflanzenschutzmitteln behandelt wurden.

Abbildung 22 Darstellung der Infektionsgrade für alle Datensätze der Versuchsvarianten BSTF (A), BSTG (B) und FB (C) im Mittel. Die Verteilung zeigt die Anzahl der Individuen mit zugeordnetem Infektionsgrad (1: sehr gering bis 9: sehr hoch). Die mittleren Infektionsgrade der Kreuzungseltern 'Cabernet Franc' (CF) und 'Triomphe d'Alsace' sind ebenfalls eingezeichnet

Alle drei Verteilungen zeigen einen Maximalwert bei Infektionsgrad 5. Außerdem verteilt sich jeweils generell ein Großteil der Stichproben auf die Infektionsgrade 4, 5 und 6. Die Verteilungen der Daten aus den Blattscheibentests (Abbildungen 22A und 22B) ähneln hinsichtlich der Darstellung durch ein Histogramm einer Normalverteilung. Eine Ausnahme stellt hier das Histogramm der Daten aus den Freilandbonituren dar. Eine Gruppe von 60 Individuen ist für einen weiteren Hochpunkt bei einem Infektionsgrad von 8 verantwortlich. Diese Datensätze sind ebenfalls in Form von Box-Plots in Anhang 3b und Q-Q-Plots in Anhang 3c dargestellt. Die Plots bestätigen die Beobachtungen, die durch die Histogramme beschrieben wurden. Zusätzlich wurden die Datensätze mithilfe des Shapiro-Wilk-Tests auf die Eigenschaft einer Normalverteilung überprüft. Die Annahme auf Normalverteilung konnte im Fall der Versuchsvarianten BSTF und BSTG bestätigt werden. Der p-Wert des Datensatzes BSTF liegt mit 0,541 deutlich über der Signifikanzgrenze. Für den Datensatz BSTG wurde ein p-Wert von 0,0467 berechnet. Dieser liegt somit knapp unter der Signifikanzgrenze,

nähert sich dieser aber an. Der p-Wert, der für den Datensatz FB berechnet wurde, liegt mit 1,694e-09 unter der Signifikanzgrenze und lehnt eine Normalverteilung ab. Da die Population allgemein keine auffällige Aufspaltung hinsichtlich des Merkmals zeigt, ist die Ablehnung der Normalverteilung im Fall der Freilandbonituren allerdings eher auf die unkontrollierbaren Bedingungen im Weinberg zurückzuführen als auf eine Resistenz-abhängige Segregation der Individuen. Des Weiteren wurden die Datensätze auf Korrelation getestet. Dazu wurde im Fall der Versuchsvarianten BSTF und BSTG der Pearson-Korrelationskoeffizient (r) berechnet, da in beiden Fällen annähernd eine Normalverteilung vorliegt. Für die Variante BSTF wurden dabei die Mittelwerte der Infektionsgrade pro Individuum aus den Versuchen 2019 und 2020 verglichen. Die vier Versuche des Datensatzes BSTG, die im Jahr 2020 durchgeführt wurden, konnten untereinander auf Korrelation der Infektionsgrade geprüft werden. Außerdem wurden die Daten der verschiedenen Versuchsjahre der Freilandbonituren auf Korrelation getestet. Dies erfolgte unter Berechnung des Spearman-Korrelationskoeffizienten (r_{Sp}) , da keine Normalverteilung der Daten vorliegt. Die folgende Tabelle 12 zeigt die p-Werte und Korrelationskoeffizienten für die jeweiligen Versuchsvarianten.

Tabelle 12 Darstellung der Tests auf Korrelation zwischen den unterschiedlichen Datensätzen der Versuchsvarianten BSTF, BSTG und FB. Hierbei geben der p-Wert und der entsprechende Korrelationskoeffizient (r/r_{Sp}) an, ob eine positive Korrelation der mittleren Infektionsgrade vorliegt. Datensätze ohne Korrelation sind in der Tabelle rot markiert.

Versuchsvariante	Datensatz 1	Datensatz 2	p-Wert	<i>r / r</i> _{Sp}
BSTF	2019	2020	0,0001	0,297
BSTG	2020-1	2020-2	0,008	0,222
	2020-1	2020-3	0,603	0,045
	2020-1	2020-4	0,277	-0,093
	2020-2	2020-3	0,01	0,14
	2020-2	2020-4	0,772	0,025
	2020-3	2020-4	0,14	0,125
FB	2016	2018	0,001	0,214
	2016	2019	4,42e-05	0,273
	2016	2020	2,993e-05	0,282
	2018	2019	1,318e-08	0,372
	2018	2020	0,031	0,148
	2019	2020	1,855e-07	0,346

Die Nullhypothese, dass die Datensätze nicht korrelieren, kann allgemein bei einem p-Wert ≤ 0,05 verworfen werden. Dabei kann im Fall der Versuchsvarianten BSTF und FB von einer Korrelation der mittleren Infektionsgrade ausgegangen werden. Dies ist nicht der Fall für die Vergleiche der Datensätze BSTG-2020-1 und BSTG-2020-3, BSTG-2020-1 und BSTG-2020-4, BSTG-2020-2 und BSTG-2020-4, sowie BSTG-2020-3 und BSTG-2020-4, die im Rahmen

der Blattscheibentests mit Pflanzen aus dem Gewächshaus erfasst wurden. Die Boniturdaten aller Versuche, die zur Berechnung der Korrelation verwendet wurden, sind in Anhang 4b dargestellt.

3.2.2. Genetische Kopplungskarten

Des Weiteren wurden genetische Karten für die Population aus 'Cabernet Franc' x 'Triomphe d'Alsace' erstellt. Dabei konnten Markerdaten von 184 Individuen genutzt werden. Die integrierte Karte (I) ist in Abbildung 23, die parentalen Karten für die Elternsorten 'Cabernet Franc' (CF) und 'Triomphe d'Alsace' (TA) in Anhang 6a und 6b dargestellt. Kartierungsdaten wie Markeranzahl, Markerabstand und Länge der Kopplungsgruppen (KG) sind in Tabelle 13 ersichtlich.

Tabelle 13 Übersicht der integrierten Karte (I) und der parentalen Karten (CF: maternal; TA: paternal) hinsichtlich Markeranzahl, Markerabstand [cM] und Länge [cM] der Kopplungsgruppen (KG).

KG	Markeranzahl		Markerabstand [cM]		Länge [c	Länge [cM]			
	Ι	CF	ТА	Ι	CF	TA	Ι	CF	ТА
01	10	8	10	7,5	6,6	9,6	74,6	52,8	96
02	5	5	5	12,5	12,6	11,6	60,5	63	58
03	7	6	7	8,8	11,1	8,1	61,8	66,8	56,8
04	8	8	8	8,1	8,3	8	65,1	66,7	63,6
05	6	5	6	9,6	11,1	9,9	57,4	55,7	59,1
06	6	5	6	19,8	18,2	24,4	118,5	90,9	146,1
07	5	5	4	18,8	17,3	25,2	93,8	86,6	100,9
08	7	7	6	12,3	11	15,7	85,9	77,1	94
09	6	6	6	8,8	8,5	9,1	52,7	51,1	54,3
10	7	6	7	16,5	21	19,1	115,8	126,2	134
11	6	4	6	11,4	11,9	13,6	68,5	47,6	81,6
12	8	7	7	7,5	8	8,9	60,3	56,2	62,5
13	5	5	6	7,3	8,1	11,6	36,5	40,6	69,3
14	9	8	8	9,7	11,7	8,7	87	93,6	69,7
15	8	8	8	8	8,5	7,4	63,6	68	59,1
16	7	7	7	9,2	10,7	7,6	64,1	74,7	53,4
17	8	8	8	7,6	6,2	9	60,8	49,6	71,9
18	9	6	7	11	16	14,1	98,6	95,8	98,4
19	7	7	7	10,8	12,7	9	75,9	88,7	63,1
Σ / \overline{x}	134	121	129	10,8	11,6	12,1	1401,4	1351,7	1491,8
σ				3,77	4,06	5,42			

Die integrierte Karte wurde anhand von insgesamt 134 Markern berechnet. Mithilfe von 89 SSR- und 45 rhAmpSeq-Markern konnten alle 19 Kopplungsgruppen abgedeckt werden. Dabei wurden bei einer Genomlänge von 1401,4 cM durchschnittlich sieben Marker pro Kopplungsgruppe kartiert. Der mittlere Markerabstand beträgt 10,8 cM bei einer Standardabweichung von 3,67. Tabelle 13 zeigt außerdem die Kartierungsdaten für die Elternsorten 'Cabernet Franc' (TV) und 'Triomphe d'Alsace' (TA). Die maternale Karte für 'Cabernet Franc' konnte mit 121 Markern berechnet werden, die paternale Karte für 'Triomphe d'Alsace' mit 129. Generell sind im Fall der genetischen Karten größere Markerabstände zu beobachten, da mit den Positionen der 134 Markern lediglich ein Grundgerüst des Genoms kartiert wurde. Die Marker wurden allerdings in regelmäßigen Abständen kartiert, um die jeweilige Länge aller 19 Kopplungsgruppen grob abzudecken (Orientierung: Markerpositionen der Kopplungskarte des 'Pinot Noir' Genoms). Markante Ausnahmen bilden hierbei jedoch Lücken auf KG 01 und KG 10 aller genetischen Karten mit einem Markerabstand von ca. 30 bis 70 cM.

Abbildung 23 Integrierte genetische Karte aus 'Cabernet Franc' x 'Triomphe d'Alsace'. Dafür wurden insgesamt 89 SSR- und 45 rhAmpSeq-Marker verwendet. Die Positionen der Marker sind auf 19 Kopplungsgruppen (KG) verteilt in centiMorgan [cM] dargestellt. Des Weiteren sind die Bereiche der QTLs auf den KG 12 und KG 17 rot markiert.

3.2.3. QTL-Berechnungen

Die Daten, die zur QTL-Berechnung für Population CFxTA genutzt wurden, stammen aus Versuchen in Form von unabhängigen Blattscheibentests (BSTs) mit Pflanzen aus dem Freiland (F) und dem Gewächshaus (G). Des Weiteren konnten Infektionsdaten aus Freilandbonituren (FB) der Population im Weinberg verwendet werden. Tabelle 14 zeigt die Ergebnisse aus den QTL-Analysen für die jeweiligen Versuche, die mit der integrierten genetischen Karte verrechnet wurden.

Tabelle 14 Übersicht der QTL-Berechnungen mit der integrierten Karte in Abhängigkeit der phänotypischen Daten der Infektionstests aus den Jahren 2016, 2018, 2019 und 2020. Die phänotypischen Daten wurden in Form von Blattscheibentests (BSTs) mit Pflanzen aus dem Freiland (F) und dem Gewächshaus (G) erfasst. Des Weiteren konnten Daten aus Freilandbonituren (FB) verrechnet werden. Dargestellt sind die Daten zu den folgenden Punkten: Kopplungsgruppe (KG); QTL-korrelierender Marker; Position in centiMorgan [cM]; LOD-Wert ermittelt durch Intervall Mapping (IM); Signifikanzgrenze (SG) der KG, ermittlet durch einen Permutationstest (PT); Erklärter Anteil der Varianz (VE) des Phänotyps [%]. Für Positionen mit denen kein Marker korreliert, ist ein "-" eingetragen.

Versuch	Datum [MM/JJ]	KG	Position [cM]	Marker	LOD- Wert (IM)	SG (PT)	VE [%]
2016-FB	08/16	09	19,2	-	3,38	2,6	5.2
2018-FB	08/18	19	23,9	-	3,71	2,6	7
		12	49,4	GF12-17	3,2	2,6	6,1
2019-1-FB	07/19	12	49,4	GF12-17	2,67	2,6	5,7
2019-2-FB	08/19	12	15,5	rh_chr12_5533572	4,3	2,8	11,4
		12	49,4	GF12-17	3,97	2,8	10,6
2020-1-FB	08/20	10	51,8	-	2,91	2,6	6
2020-2-FB	09/20	12	43,2	GF12-15	3,06	2,5	6,3
2019-1-BSTF	05/19	05	36,7	-	2,86	2,6	9,6
2019-2-BSTF	06/19	17	24,8	-	3,03	2,6	10
2020-1-BSTF	05/20	03	27,5	GF03-01	3,54	2,6	8,7
		17	8,9	GF17-09	3,2	2,7	7,9
2020-2-BSTF	06/20	16	35,9	-	3,37	2,5	10,5
2020-1-BSTG	04/20	18	0	VMC3E5	3,27	2,7	10,1
2020-2-BSTG	05/20	01	57,3	-	3,23	2,5	10
		06	118,5	GF06-15	3,08	1,3	9,5
2020-3-BSTG	06/20	17	49,1	-	5,99	2,7	17,9
		07	0	GF07-06	3,3	2,5	10,3
2020-4-BSTG	07/20	12	0	GF12-08	2,97	2,7	9,3

Es konnten mit der IM-Methode mehrere QTLs mit LOD-Werten über der Signifikanzgrenze für unterschiedliche Kopplungsgruppen ermittelt werden, die in Tabelle 14 aufgelistet sind. Der höchste LOD-Wert von 5,99 wurde bei der Verrechnung der Daten aus Versuch 2020-3-BSTG erreicht. Dieser wurde auf KG 17 bei einer Position von 49,1 cM identifiziert und erklärt 17,9% der Varianz des Merkmals in der Population. Auch die Verrechnungen mit den Versuchen 2019-2-BSTF und 2020-1-BSTF ergaben signifikante LOD-Werte auf KG 17,

allerdings variieren dabei die angegebenen Positionen auf der Kopplungsgruppe. Die Infektionstests dieser Versuche wurden in Form von Blattscheibentests in den Monaten Mai (2020-1-BSTF) und Juni (2019-2-BSTF, 2020-3-BSTG) durchgeführt. Neben KG 17 konnten auch für KG 12 mehrere signifikante LOD-Werte aus den Versuchen 2018-FB, 2019-1-FB, 2019-2-FB, 2020-2-FB und 2020-4-BSTG berechnet werden. Die zwei höchsten LOD-Werte wurden dabei für den Versuch 2019-2-FB an den Positionen 15,5 cM (LOD-Wert 4,3) und 49,4 cM (LOD-Wert 3,97) im Jahr 2019 ermittelt und erklären jeweils ca. 11% der phänotypischen Varianz. Erneut kann beobachtet werden, dass die Positionen der ermittelten LOD-Werte in Abhängigkeit der Versuche variieren. Der Versuch 2020-4-BSTG wurde mit Pflanzen aus dem Gewächshaus im Juli durchgeführt, der Bestand der Population in den Monaten Juli, August und September im Rahmen der Freilandbonituren 2018, 2019 und 2020 auf Infektionen mit P. viticola bonitiert. Des Weiteren sind in Tabelle 14 einmalig als signifikant vorkommende LOD-Werte auf den Kopplungsgruppen 01, 03, 05, 06, 07, 09, 10, 16, 18 und 19 dargestellt. Diese liegen zwar über den Signifikanzgrenzen, die jeweils spezifisch für die Kopplungsgruppen berechnet wurden, sind jedoch genomweit nicht signifikant (SG = 4,1 - 4,3). Lediglich im Fall der QTLs auf KG 12 und KG 17, die wiederholt registriert werden konnten, wurde für die Versuche mit den höchsten LOD-Werten (2019-2-FB, 2020-3-BSTG) eine Analyse mit der MQM-Methode durchgeführt. Die Wahrscheinlichkeitskurven der QTL-Berechnungen in der IM- und MQM-Methode sind im Vergleich für KG 12 in Abbildung 24 dargestellt.

Abbildung 24 Vergleich zwischen IM (schwarze Kurve) und MQM (rote Kurve) im Rahmen der QTL-Berechnung für Versuch 2019-2-FB. Graphisch dargestellt sind die LOD-Wert in Abhängigkeit der Position [cM] auf KG 12. Die berechnete Signifikanzgrenze für QTLs auf KG 12 ist horizontal bei einem LOD-Wert von 2,8 eingezeichnet.

Abbildung 24 zeigt für das IM eine OTL-Wahrscheinlichkeitskurve (schwarze Kurve) mit zwei Flächen über der eingezeichneten Signifikanzgrenze von 2,8. Im Zuge einer automatischen Co-Faktor-Selektion wurde der Marker rh_chr12_5533572 für eine anschließende MQM-Berechnung ausgewählt. Dadurch konnte ein QTL-Bereich von ca. 35 cM auf der Wahrscheinlichkeitskurve (rote Kurve) definiert werden. Der Bereich wird von den SSR-Markern VMC8G6 und GF12-20 flankiert. Der rhAmpSeq-Marker rh_chr12_5533572 befindet sich in diesem Bereich. Außerdem ist zu bemerken, dass die Wahrscheinlichkeitskurve für einen QTL im unteren Drittel der Kopplungsgruppe unter die Signifikanzgrenze fällt. Für den Versuch 2020-3-BSTG wurden ebenfalls QTL-Berechnungen in der MQM-Methode durchgeführt. Dafür ist die Wahrscheinlichkeitskurve auf KG 17 im Vergleich zur IM-Methode in folgender Abbildung 25 dargestellt.

Abbildung 25 Vergleich zwischen IM (schwarze Kurve) und MQM (rote Kurve) im Rahmen der QTL-Berechnung für Versuch 2020-3-BSTG. Graphisch dargestellt sind die LOD-Werte in Abhängigkeit der Position [cM] auf KG 17. Die berechnete Signifikanzgrenze für QTLs auf KG 17 ist horizontal bei einem LOD-Wert von 2,7 eingezeichnet.

Der Bereich für den QTL, der durch die Wahrscheinlichkeitskurve (schwarze Kurve) in der IM-Methode veranschaulicht wird, liegt über der Signifikanzgrenze. Im Zuge der MQM-Berechnung verkleinert sich der QTL-Bereich auf ca. 13 cM. Dabei wurde der Marker GF17-03 als Co-Faktor ausgewählt. Der QTL wird von den Markern GF17-10 und rh_chr17_13991916 flankiert und schließt den Marker GF17-03 mit ein. Zusätzlich konnten signifikante LOD-Werte auf den KG 12 und 17 für die paternale Karte der resistenten Elternsorte 'Triomphe d'Alsace' an ähnlichen Positionen berechnet werden (Anhang 7). Die Berechnungen für die maternalen Karte der anfälligen Elternsorte 'Cabernet Franc' (CF) ergaben keine signifikanten LOD-Werte. Dies bestätigt die Sorte 'Triomphe d'Alsace' als Donor der QTLs in der Kreuzung CFxTA.

3.2.4. Untersuchung von Blattproben auf HR

Blattscheiben der Akzessionen 'Triomphe d'Alsace' (TA), 'Millardet et Grasset 101-14 O.p.' (MG) und 'Riparia Gloire de Montpellier' (RGM) wurden nach einer Infektion mit dem Pathogen P. viticola auf eine Hypersensitive Response (HR) untersucht. Diese ist für Pflanzen als schnelle Reaktion auf eindringende Pathogene in Form von lokalem Zelltod bekannt (Goodman & Novacky 1994, Heath 2000). Die Akzessionen, die unterschiedliche Generationen im Stammbaum der Population CFxTA darstellen (siehe 2.4.), wurden ausgewählt, um Unterschiede der Reaktion auf eine Infektion zu verdeutlichen. Während 'Triomphe d'Alsace' als Elternpflanze der Population CFxTA verwendet wurde, ist 'Riparia Gloire de Montpellier' im Stammbaum am weitesten von dieser entfernt. 'Millardet et Grasset 101-14 O.p.' ist Elternpflanze von 'Triomphe d'Alsace' und Nachkomme der Akzession 'Riparia Gloire de Montpellier'. Die Reaktion auf die Infektion mit P. viticola ist in Abbildung 26 anhand von Anzahl, Fläche und Farbintensität von punktförmigen braunen Stellen im Bereich der Infektion zu erkennen. Anhand des Phänotyps kann hierbei allerdings nicht beurteilt werden, ob es sich bei der Abwehrreaktion um Nekrosen durch eine Pathogeninduzierte HR handelt. Allerdings deutet die Verwandtschaft mit den amerikanischen Wildarten V. riparia und V. rupestris, die aufgrund co-evolutiver Prozesse eine Pathogenabhängige Resistenz gegen P. viticola entwickelt haben (Jürges et al. 2009), darauf hin.

Abbildung 26 Vergleich der Akzessionen 'Triomphe d'Alsace' (TA), 'Millardet et Grasset 101-14 O.p.' (MG) und 'Riparia Gloire de Montpellier' (RGM) auf eine Hypersensitive Response (HR) 48 h nach der Infektion mit *P. viticola*. Die HR ist durch schwarze Pfeile gekennzeichnet.

In Abbildung 26 ist eine Zunahme der Intensität einer Abwehrreaktion von 'Triomphe d'Alsace' über 'Millardet et Grasset 101-14 O.p.' zu 'Riparia Gloire de Montpellier' ersichtlich. Während die nekrotischen Stellen für die Akzession 'Riparia Gloire de Montpellier' überaus deutlich zu erkennen sind, kann eine geringere Reaktionsintensität im Fall der Akzessionen 'Millardet et Grasset 101-14 O.p.' und 'Triomphe d'Alsace' beobachtet werden. Die Blattprobe der Sorte 'Millardet et Grasset 101-14 O.p.' zeigt bereits eine geringere Anzahl an Nekrosen. 'Triomphe d'Alsace' zeigt zwar eine Abwehrreaktion, diese

ist allerdings im Vergleich zu den Akzessionen 'Millardet et Grasset 101-14 O.p.' und 'Riparia Gloire de Montpellier' am Geringsten ausgeprägt. Fluoreszenzmikroskopische Untersuchungen zur Ausbreitung des Pathogens im Blatt unterstützen die phänotypischen Beobachtungen einer Resistenzreaktion im Fall der Sorte 'Triomphe d'Alsace'. Dies ist anhand einer Calcofluor-White Färbung in Abbildung 27 veranschaulicht. Hierbei zeigt die resistente Sorte 'Triomphe d'Alsace' zwar Infektionsherde nach 48 h, die Ausbreitung des Pathogens stagniert allerdings nach 96 h im Vergleich zur anfälligen Sorte 'Cabernet Franc'.

Abbildung 27 Hyphenwachstum des Pathogens *P. viticola* in Blattproben der Akzessionen 'Cabernet Franc' (CF) und 'Triomphe d'Alsace' (TA), zu den Zeitpunkten 48 h und 96 h nach der Infektion. Aufgrund einer Färbung mit Calcofluor-White fluoreszieren die Infektionsherde der Zoosporen (i), Hyphen (hy) und Haustorien weiß. Vereinzelt sind auch Pflanzenbestandteile wie Blattnerven (b) und Stomata (s) leicht gefärbt.

4. Diskussion

4.1. TVxWe90 zeigt eine Aufspaltung der Resistenz gegen P. viticola

Zur phänotypischen Untersuchung der Reaktion auf eine Infektion mit P. viticola wurden Blattscheibentests durchgeführt. Die Bestimmung des Infektionsgrades (1: sehr gering, 3: gering, 5: mittel, 7: hoch, 9: sehr hoch) pro Blattscheibe erfolgte aus praktischen Gründen invers zu den Richtlinien des Boniturschlüssels OIV-452 (Organisation Internationale de la Vigne et du Vin, 2009). Im Fall der Population TVxWe90 konnten unabhängige Infektionstests in den Jahren 2019 und 2020 durchgeführt werden. Dabei wurde für jeden Test eine Aufspaltung der Resistenz in der Population beobachtet (siehe 3.1.1., Abbildung 7). Individuen mit niedrigem Infektionsgrad (1 bis 3) repräsentieren dabei Vertreter der Population, die eine erhöhte Widerstandskraft gegenüber P. viticola aufweisen. Diese Resistenzeigenschaften konnten im Rahmen der Blattscheibentests anhand des Phänotyps beobachtet werden. Eine für Pflanzen typische Reaktion auf eine Infektion mit einem Pathogen, stellt die Hypersensitive Response (HR) dar (Mur et al. 2007). Im Phänotyp der Pflanze sind dabei nekrotische Stellen im Bereich der Infektion zu erkennen (Heath 2000). Die HR ist eine Variation des programmierten Zelltods (Lam 2004, Liu et al. 2005), die unter anderem durch spezifische Resistenzgene ausgelöst werden kann (McDowell & Woffenden 2003). Vereinzelt konnte eine HR für Individuen der Population mit niedrigem Infektionsgrad registriert werden. Für anfällige Individuen mit hohem Infektionsgrad (7 bis 9) war dies nicht der Fall. Hierbei konnte lediglich ein dichter Bewuchs des Infektionsbereichs mit Sporangiophoren beobachtet werden. Aufspaltungen von Resistenzmerkmalen innerhalb von Kreuzungspopulationen konnten bereits in phänotypischen Analysen gezeigt werden und sind Voraussetzung zur Kartierung von Resistenzloci (Bellin et al. 2009, Malacarne et al. 2011, Zendler et al. 2017). Dies unterstützt die Annahme, dass die Population TVxWe90, bedingt durch das Vorkommen von resistenten und anfälligen Individuen, eine Segregation hinsichtlich des Merkmals für eine Resistenz gegen P. viticola aufweist. Äußerst eindeutig ist die Aufspaltung der Verteilung für die Versuche im Jahr 2019 gezeigt. Auch im Fall des Infektionstests aus dem Jahr 2020 sind zwei sich überlagernde Verteilungen zu erkennen, wobei ein Großteil der Individuen mit einem niedrigen Infektionsgrad bonitiert wurde. Die Elternsorte We 90-06-12 konnte dabei anhand eines niedrigen Infektionsgrades ($\bar{x} = 2,8$) im Vergleich zur anfälligen V. vinifera Sorte 'Tigvoasa' ($\bar{x} = 7,3$) als Resistenzdonor der Population identifiziert werden. Sie ist Nachkomme einer Akzession der asiatischen Wildart V. amurensis und zeigte eine mehrjährig bestätigte Resistenz gegenüber P. viticola im Weinberg (Aufzeichnungen der AG Rebenzüchtung an der LVWO Weinsberg). Es ist bekannt, dass die Wildart *V. amurensis* als Ursprung Resistenz-korrelierender Gene identifiziert wurde (Schwander et al. 2012, Venuti et al. 2013, Lin et al. 2019, Fu et al. 2020). Die Aufspaltung der Population hinsichtlich der Resistenz spiegelt die unterschiedliche Vererbung der Elternpflanzen wieder.

4.2. We 90-06-12 unterdrückt Hyphenwachstum

Das Pathogen P. viticola infiziert das Blattgewebe und alle grünen Teile mit Stomata anfälliger Wirtspflanzen durch das Eindringen in den substomatären Raum. Dabei werden bei geeigneten Bedingungen die Spaltöffnungen auf der Blattunterseite von einem Keimschlauch der dort enzystierten Zoosporen penetriert. Im Blattgewebe kommt es anschließend zur interzellulären Ausbreitung eines Myzelnetzwerks, das durch die Ausbildung von Haustorien den Mesophyllzellen Nährstoffe entzieht (Burruano 2000, Unger et al. 2007, Fröbel & Zyprian 2019b). Da im Fall der Population TVxWe90 eine Aufspaltung der Resistenz beobachtet werden konnte, wurden Blattproben der Elternpflanzen 'Tigvoasa' und We 90-06-12 mikroskopisch auf die Infektion mit P. viticola untersucht. Dieser Untersuchung liegt die Annahme zugrunde, dass die Elternpflanze We 90-06-12, die ein Nachkomme der asiatischen Wildart V. amurensis ist, in der Kreuzung als Resistenzdonor fungierte. Um dies zu bestätigen, wurde der Prozess der Myzelausbreitung im Gewebe infizierter Blattscheiben nach einer Behandlung mit KOH und anschließender Anilinblau-Färbung fluoreszenzmikroskopisch analysiert. Während im Fall der anfälligen Sorte 'Tigvoasa' ein deutliches Wachstum des Myzels mit Verlauf der Zeit festgestellt werden konnte, kam es im Fall der Sorte We 90-06-12 zur Stagnation der Infektion durch P. viticola (siehe 3.1.7.1, Abbildung 17). Bisherige histologische Untersuchungen anfälliger und resistenter Sorten zeigten ebenfalls Unterschiede nach einer Infektion mit P. viticola (Kortekamp et al. 1997, Kortekamp et al. 1998, Gindro et al. 2003). Gindro et al. 2003 zeigten für die resistente Sorte 'Solaris' (*Rpv10*, *Rpv3.3*) einen Abwehrmechanismus in Form einer Blockade der stomatären Öffnungen durch Callose, sowie die Anlagerung an enzystierten Zoosporen. Diese Beobachtung konnte von Schwander et al. 2012 allerdings nicht bestätigt werden. Kortekamp et al. 1998 konnten für die resistenten Sorten 'Orion' (Rpv3.1) und 'Phoenix' (Rpv3.1) ein eingeschränktes Hyphenwachstum ab einem Zeitpunkt von drei Tagen nach der Infektion nachweisen. Dies wurde mit einer früh erhöhten Peroxidaseaktivität in Zellen um den Infektionsbereich herum, sowie der damit einhergehenden Synthese von Phytoalexinen und Flavonoiden in Verbindung gebracht. Die schnelle Abwehrreaktion beruht dabei auf dem Erkennen von pflanzeneigenen oder pathogenen Elicitoren (Keen & Yoshikawa 1983, Kortekamp & Zyprian 2003). Die Polysaccharide ß-1,3- und ß-1,6-Glucan wurden bereits als Elicitoren in der Zellwand von Oomyceten identifiziert (Aronson et al. 1967, Raaymakers & Ackerveken 2016). In der Pflanze lösen diese Pathogen-associated molecular patterns (PAMPs) im Allgemeinen den Signalweg der basalen PAMP-triggered immunity (PTI) aus (Nürnberger et al. 2004, Schwessinger & Zipfel 2008). Zusätzlich zur Stagnation des Hyphenwachstums im Blattgewebe der Akzession We 90-06-12, konnten im Infektionsbereich nekrotische Stellen auf der Unterseite der Blattproben beobachtet werden. Diese, als Hypersensitive Response (HR) bezeichnete Reaktion (Heath 2000, Mur et al. 2007), wird in Verbindung mit der Effector-triggered immunity (ETI) gebracht. Die ETI-Reaktion basiert auf der Grundlage von spezifischen Resistenzgenen (R-Gene) der Pflanze (Chrisholm et al. 2006, Whisson et al. 2007), die sich in Folge einer Co-Evolution mit dem Pathogen entwickelt haben (Jones & Dangl 2006, Akaberi et al. 2018). Dabei erkennen Proteinstrukturen wie Nucleotide-binding leucine-rich repeats (NB-LRR) Pathogen-Effektoren, die zuvor die PTI-Reaktion unterdrücken konnten (Grant et al. 2006, Göhre & Robatzek 2008). Fröbel et al. 2019a konnten im Rahmen von Genexpressionsanalysen zeigen, dass im Unterschied zu anfälligen Reben die Quantität an exprimierten Abwehrgenen, sowie eine frühe und schnelle Signalweiterleitung für eine Resistenz entscheidend ist. Dabei wurden Reben untersucht, die unter anderem Träger des in 'Solaris' identifizierten Rpv10-Resistenzlocus auf KG 09 sind. Dieser Bereich weist ein putatives Gen mit NB-LRR-Struktur auf (Schwander et al. 2012). Obwohl in der Genexpressionsanalyse keine auffällige Überexpression typischer NB-LRR-Genvarianten auf KG 09 detektiert wurde, stellt eine Hochregulierung der Gencluster Phenylalanin Ammoniak Lyase (PAL) und Stilbensynthase (STS) ein Indiz für eine erhöhte Produktion von Stilbenen als Folge einer Abwehrreaktion dar (Fröbel et al. 2019a). Alonso-Villaverde et al. 2010 konnten eine erhöhte Produktion von Viniferin-Derivaten in 'Solaris' als Reaktion auf eine Infektion mit P. viticola beobachten. Stilbene, wie das toxische δ -Viniferin, sind dabei in der amerikanischen Wildart V. rupestris für Resistenzreaktionen wie der Bildung von Reaktiven Sauerstoffspezies (ROS) und einem HR-assoziierten programmierten Zelltod verantwortlich (Chang et al. 2011). Der Mechanismus der Rpv10-vermittelten Resistenz aus der asiatischen Wildart V. amurensis ist derzeit noch am Beispiel der Sorte 'Solaris' unter Beobachtung (Zyprian et al. in preparation). Obwohl das Pathogen P. viticola indigen in Nordamerika ist, zeigen asiatische Wildarten zum Teil robuste Resistenzen (Schwander et al. 2012, Venuti et al. 2013). Daher wird im Allgemeinen über ETI-abhängige Resistenzreaktionen, die normalerweise eine Co-Evolution

mit dem Pathogen voraussetzen, in nichtamerikanischen Rebsorten diskutiert (Jiao et al. 2016). Ergänzend dazu ist zu erwähnen, dass zwischen PTI und ETI oft nicht eindeutig differenziert werden kann und sich die Ausprägung der Abwehrvariante in Abhängigkeit einer spezifischen Interaktion äußert (Thomma et al. 2011). Da die Elternsorte We 90-06-12 der Population TVxWe90 ebenso wie die resistente Rebsorte 'Solaris' Nachfahren von V. amurensis Akzessionen sind, deuten erste mikroskopische Analysen auf ähnliche Resistenzeigenschaften hin. Auch Blattproben der Rebsorte 'Sauvitage', die ebenfalls Nachkomme der Weinsberger V. amurensis Variante ist, zeigten ein eingeschränktes Hyphenwachstum im Vergleich zu den anfälligen Sorten 'Cabernet Franc' und 'Tigvoasa' (siehe 3.1.7.2., Abbildung 18). Zusätzlich konnten Anzeichen von programmiertem Zelltod in Bereichen der Infektion beobachtet werden. In Blattproben der V. amurensis Variante selbst konnte allerdings eine Ausbreitung des Hyphenwachstums im beobachteten Zeitraum detektiert werden, obwohl im Vergleich zu den anfälligen Sorten kein Austreten von Sporangiophoren bemerkt wurde. Somit zeigen in den mikroskopischen Analysen die Züchtungen We 90-06-12 und 'Sauvitage' eine stärkere Ausprägung der Resistenz gegen P. viticola als die Ursprungspflanze V. amurensis. Dieser Effekt wurde von Di Gaspero et al. 2012 am Beispiel des Rpv3-Locus aus amerikanischen Wildreben erklärt. Hierbei wird angenommen, dass die Züchtung von neuen Sorten anhand der Auswahl spezieller resistenter Haplotypen des Resistenzlocus einen stärkeren Selektionsdruck hervorruft, als ein Selektionsdruck in der Natur. Auch im Fall der Sorten We 90-06-12 und 'Sauvitage' wurde auf das Merkmal der Resistenz gegen P. viticola selektiert. Es ist anzunehmen, dass diese Akzessionen unter den zahlreichen Sämlingen der Kreuzungen die beste Wahl darstellten. Zusätzlich ist zu erwähnen, dass die Sorte 'Sauvitage' bestätigter Träger des Rpv3.1-Locus aus der amerikanischen Wildart V. rupestris ist (Aufzeichnungen aus Markeranalysen, AG Rebenzüchtung der LVWO Weinsberg). Der Widerstand der Sorte gegen das Pathogen ist somit auf mehrere Resistenzen aus Wildarten unterschiedlicher Herkunft zurückzuführen. Teilt man nach Yu et al. 2012 die Akzessionen V. amurensis, We 90-06-12, 'Sauvitage' und 'Tigvoasa', die fluoreszenzmikroskopisch untersucht wurden, in unterschiedliche Resistenzklassen (A: immun, B: extrem resistent, C: resistent, D: teilweise resistent, E: anfällig) ein, muss das Kriterium der Bildung von Callose dabei vernachlässigt werden, da dies in den mikroskopischen Analysen nicht berücksichtigt wurde. Die Sorte 'Tigvoasa' ist dabei eindeutig der Kategorie E (anfällig), die V. amurensis Variante der Kategorie D (teilweise resistent) und die Sorten We 90-06-12 und 'Sauvitage' innerhalb der Kategorien B (extrem resistent) und C (resistent) zuzuordnen. Allerdings sind noch weitere Untersuchungen

zur Aufklärung des Resistenzmechanismus nötig, da sich die Interpretationen lediglich auf die Ausbreitung des Pathogens im Blattgewebe durch Anfärben von Hyphen- und Zellwandkompartimenten enzystierter Zoosporen stützen.

4.3. Rpv10.2: Signifikanter QTL auf KG 09 der Population TVxWe90

Basierend auf der Analyse von Quantitative trait loci (QTLs) konnten in der Rebenzüchtung 31 Resistenzloci gegen das Pathogen P. viticola detektiert werden oder stehen derzeit unter Beobachtung (Table of loci for traits in grapevine relevant breeding and genetics 2020, https://www.vivc.de/docs/dataonbreeding/20201009_Table%20of%20Loci%20for%20Traits %20in%20Grapevine.pdf). Grundlage der QTL-Analyse ist, neben der phänotypischen Untersuchung einer Resistenzaufspaltung innerhalb einer Kreuzungspopulation, die Erstellung einer genetischen Karte mithilfe von molekularen Markern. Zur Kartierung der Population TVxWe90 wurden dabei SSR-Marker (Simple sequence repeats) verwendet, die bereits seit geraumer Zeit in der Rebenzüchtung zum Einsatz kommen, um genetisch bedingte Merkmale (z.B. Resistenzen) zu detektieren und kartieren (Töpfer et al. 2011b). SSRs sind sich wiederholende Basenpaarsequenzen, die im Pflanzengenom verteilt in sowohl nichtcodierenden als auch codierenden DNA-Abschnitten vorkommen (Scott et al. 2000, Lawson & Zhang 2006, Viera et al. 2016). In der Marker-assisted Selection (MAS) werden SSR-Marker dabei wegen ihrer multi-allelischen Eigenschaften und der relativ hohen Sortenübergreifenden Transferierbarkeit für die Züchtung neuer Rebsorten genutzt (Decroocq et al. 2003, Doligez et al. 2006, Vezzulli et al. 2008, Töpfer et al. 2011b). Eine weitere Methode, um umfangreiche Kopplungskarten zu erstellen, stellt die Markeranalyse von Single Nucleotide Polymorphisms (SNPs) dar, die auf Basis der Genotyping-by-Sequencing (GBS) Technik durchgeführt wird (Troggio et al. 2007, Sapkota et al. 2018, Tello et al. 2019). Troggio et al. 2007 zeigten dabei mit insgesamt 994 Markern und einem mittleren Markerabstand von 1,3 cM eine hohe Abdeckung des V. vinifera Genoms anhand einer Kreuzung der Rebsorten 'Syrah' und 'Pinot Noir'. Sapkota et al. 2018 konnten mit insgesamt 2072 Markern einen mittleren Markerabstand von 1,1 cM für die integrierte Karte der Kreuzung 'Norton' und 'Cabernet Sauvignon' erreichen. In beiden Fällen wurden SSR- und SNP-Marker in Kombination verwendet. Eine Weiterentwicklung in der Markeranalyse stellt die Verwendung sogenannter rhAmpSeq-Marker (RNase H2-dependent Amplicon Sequencing) dar (Zou et al. 2020), die auch in dieser Arbeit zur Berechnung der genetische Karte der Population verwendet werden konnten. Diese neue Generation an Markern, die speziell für das Kerngenom der Gattung Vitis entwickelt wurde, detektiert Allelvarianten im

Haplotyp mit multiplen SNPs und weist daher eine höhere Informationsdichte als bisherige Marker für bi-allelische SNPs auf. Grundlage dafür ist die Anwendung der Illumina-Sequenziertechnik mit vorangehender spezifischer Amplifikation der Zielsequenzen durch die Kopplung von rhPCR und Index-PCR (Zou et al. 2020). Außerdem verspricht die Methode Hochdurchsatz Proben. sowie eine hohe einen der Sorten-übergreifende Markertransferierbarkeit (Yang et al. 2016). Somit konnte für die genetische Karte der Population mit insgesamt 663 informativen Markern (SSR und rhAmpSeq) und einem mittleren Markerabstand von 3,3 cM eine hohe Abdeckung der 19 Kopplungsgruppen im Genom erreicht werden (siehe 3.1.2., Abbildung 9). Diese Karte wurde mit den phänotypischen Daten der unabhängigen Versuche 2019-1, 2019-2 und 2020 in einer QTL-Analyse verrechnet. Dabei wurde ein stabiler und sehr signifikanter QTL auf KG 09 an der Position des Markers GF09-71 bei 40,64 cM im Interval Mapping (IM) detektiert und mithilfe der MQM-Methode eingegrenzt (siehe 3.1.3., Abbildung 10). Der höchste LOD-Wert an dieser Stelle wurde für den Versuch 2020 berechnet und beträgt 30,24. Dieser erklärt 64% der Varianz des Phänotyps in der Population und korreliert mit einer Resistenz gegen P. viticola. Durch die QTL-Berechnung mit der paternalen Karte, die ebenfalls einen QTL in diesem Bereich aufzeigt, konnte gezeigt werden, dass die Elternsorte We 90-06-12 den Resistenzdonor im Fall der Population darstellt. Eine Resistenz gegen P. viticola wurde dabei anhand mikroskopischer Untersuchungen zur Stagnation der Ausbreitung des pathogenen Hyphenwachstums festgestellt (siehe 3.1.7.1., Abbildung 17). Die Weinsberger Züchtung We 90-06-12 ist Nachkomme eines Exemplars der asiatischen Wildart V. amurensis, die im Jahr 1975 als Stecklingspflanze vom Botanischen Institut der Universität Hamburg an die LVWO Weinsberg übermittelt wurde (Archiv, AG Rebenzüchtung der LVWO Weinsberg). Es ist bereits bekannt, dass einige asiatische Akzessionen Resistenzen gegen P. viticola zeigen, die durch genetische Introgression in neue Hybridzüchtungen durch Kreuzungen mit der anfälligen europäischen Kulturrebe V. vinifera ssp. vinifera transferiert werden können (Staudt & Kassemeyer 1995, Schwander et al. 2012, Venuti et al. 2013, Fu et al. 2020). Die Weinsberger Akzession der Wildart V. amurensis stellt dabei eine weitere Akzession dar, die bisher nicht in der Resistenzzüchtung genutzt wurde. Der Bereich des Resistenzlocus auf KG 09, der aus dieser Akzession stammt, wurde mithilfe ausgewählter Rekombinanten der Population verifiziert und schließlich auf ca. 80 kb eingegrenzt (siehe 3.1.4., Abbildung 11). Die flankierenden Marker GF09-65 und GF09-47 definieren einen Bereich zwischen 3,62 Mb und 3,7 Mb im V. vinifera Referenzgenom PN40024 (12X.v2). Der von Schwander et al. 2012 identifizierte Resistenzlocus Rpv10, wird ebenfalls von diesen Markern flankiert und deckt sich mit dem Genomabschnitt (Schwander 2011). Im Rahmen einer Datenbankanalyse konnten mehrere Kandidatengene in diesem Bereich auf KG 09 detektiert werden (Tabelle 11). Bisherige Arbeiten konnten den eingegrenzten Abschnitt anhand von Sequenzanalysen einer 'Solaris' Selbstung mit Homozygotie für den Rpv10-Locus untersuchen (Dudenhöffer et al. 2015). Unter den dabei identifizierten Genen wurden die Kandidatengene RPS5-like und AP2/ERF-like ausgewählt, um sie auf eine Korrelation mit der Resistenz gegen P. viticola zu analysieren (Fröbel 2019, Zyprian et al. in preparation). Diese Gene stellen dabei auch Kandidatengene für den QTL auf KG 09 dar, der im Rahmen dieser Arbeit berechnet wurde. Es ist bereits bekannt, dass der Transkriptionsfaktor ERF der AP2-Familie in Relation mit einer Pathogenresistenz- und Stress-korrelierenden Abwehrreaktion in Pflanzen steht (Gutterson & Reuber 2004, Mizoi et al. 2012). Fröbel et al. 2019a konnten sechs Stunden nach Infektion mit P. viticola mittels Transkriptomanalyse eine deutlich höhere Überexpression des Transkriptionsfaktors ERF5 für die homozygote *Rpv10*-Variante aus 'Solaris' im Vergleich zur anfälligen V. vinifera Sorte 'Müller-Thurgau' beobachten. Ein anderes ERF5 Gen, das auf KG 16 lokalisiert ist, wurde bereits mit einer Resistenz gegen P. viticola durch Studien an Züchtungen mit dem Rpv3-Locus, der aus amerikanischen Wildreben stammt, in Verbindung gebracht (Dudenhöffer et al. 2015, Moser 2015, Zyprian et al. in preparation). Wang & Wang 2019 identifizierten in der asiatischen Wildart Vitis quinquangularis einen ERF Transkriptionsfaktor, der indirekt zur Aktivierung der Stilbensynthese beiträgt. Wie bereits erwähnt, spielen Stilbene wie Resveratrol und dessen Derivate δ- und ε-Viniferin in Reben eine große Rolle in der Pathogen-assoziierten Abwehrreaktion. Im Fall einer Infektion mit P. viticola wurde dabei eine eingeschränkte Mobilität der enzystierten Zoosporen, sowie eine gehemmte Ausbreitung des Hyphenwachstums beobachtet (Pezet et al. 2004). Im Rahmen der Datenbankanalyse wurde für den ausgewählten Bereich des Rpv10-Locus neben der Variante des ERF/AP2 Transkriptionsfaktors zusätzlich das potentielle Resistenzgen RPS5-like näher betrachtet. Das RPS5 Gen, das zur Familie der Nucleotide-binding site (NBS) Leucine-rich repeat (LRR) domain receptors (NLR) gehört (Warren et al. 1998), ist bereits seit geraumer Zeit bekannt und wurde anhand von Infektionsversuchen in Arabidopsis thaliana als Resistenzgen identifiziert, das in Folge einer ETI-Reaktion induziert wird (Simonich & Innes 1995, Pottinger & Innes 2020). Dabei stellt RPS5 den NLR-Typ mit Coiled-coil (CC) Domäne dar. Velasco et al. 2007 konnten durch Sequenzanalysen des V. vinifera 'Pinot Noir' Genoms mehrere Resistenzgenanaloga (RGAs) diesen Typs für KG 09 schätzen, die in Cluster organisiert sind. Da bereits NLR-Gene mit Korrelation zu einer Resistenz gegen P. viticola

oder E. necator gefunden wurden (Fischer et al. 2004, Velasco et al. 2007, Kortekamp et al. 2008, Zendler et al. 2021), ist diese Annahme Grundlage zur Auffindung weiterer potentieller RGAs. Das Kandidatengen RPS5-like, das sich im Bereich des Rpv10-Locus befindet, stellt dabei eine weitere Möglichkeit dar. Um mögliche Unterschiede zwischen dem Rpv10-Locus aus 'Solaris' und dem im Rahmen dieser Arbeit detektierten QTL aufzuzeigen, wurden die potentiellen Genvarianten AP2/ERF-like und RPS5-like aus der Elternpflanze We 90-06-12 kloniert (AG Zyprian) und sequenziert. Anschließend wurden die Sequenzen mit den bereits bekannten Sequenzen dieser Kandidatengene aus 'Solaris' verglichen. Die Sequenzen des Gens RPS5-like zeigten dabei keinerlei Unterschiede und wiesen im Vergleich zur anfälligen Variante des Gens aus dem V. vinifera Referenzgenom identische SNPs in der codierenden Region auf (siehe 3.1.5., Abbildung 12). Fröbel et al. 2019a konnten im Rahmen einer Transkriptomanalyse von Blattproben der Sorte 'Solaris' sechs Stunden nach Infektion mit P. viticola keine auffällige Überexpression von NBS-LRR-Genen auf KG 09 beobachten. Allerdings gibt es die Annahme, dass einige NBS-LRR-Gene konstant exprimiert werden, um eine schnelle Immunreaktion auf eindringende Pathogene zu garantieren (Parker et al. 1997, Radwan et al. 2005, McHale et al. 2006). Zudem verifiziert das Auffinden des RPS5-like Gens in der resistenten Elternsorte We 90-06-12 der Population TVxWe90, die für die Resistenz gegen P. viticola eine Aufspaltung im Phänotyp zeigt, dessen Eigenschaft als Kandidatengen. Im Fall der Varianten des Kandidatengens AP2/ERF-like konnten Unterschiede in den Sequenzen beobachtet werden. Neben SNPs und Deletionen im Bereich vor der geschätzten Promotorregion, zeigte die Genvariante aus der Sorte We 90-06-12 im Vergleich zu 'Solaris' eine Deletion von 15 Basen in der codierenden Sequenz außerhalb der funktionellen AP2-Domäne (siehe 3.1.5., Abbildung 13). Zusätzlich konnten weitere Unterschiede zur Sequenz der anfälligen Genvariante festgestellt werden. Ob das Ap2/ERFlike Gen im Fall des Rpv10-Locus generell eine Rolle in der Abwehrreaktion gegen P. viticola spielt und inwiefern sich Unterschiede in der Sequenz darauf auswirken, muss weiterhin untersucht werden. Derzeit ist noch nicht eindeutig geklärt, welche Gene auf KG 09 im Bereich des Rpv10-Locus für eine Resistenz gegen P. viticola verantwortlich sind. Das Auffinden von Sequenzunterschieden im Kandidatengen AP2/ERF-like gibt erste Hinweise auf Haplotypvariationen im Bereich des Rpv10-Locus, der im Fall der Sorten We 90-06-12 und 'Solaris' aus unterschiedlichen Akzessionen der resistenten Wildart V. amurensis vererbt wurde. Das Auftauchen allelischer Varianten konnte bereits für die Rpv3-Variationen aus den amerikanischen Wildarten Vitis rupestris, Vitis labrusca und Vitis lincecumii für die Sorten 'Regent' (Welter et al. 2007, van Heerden et al. 2014), 'Bianca' (Bellin et al. 2009), 'Seibel

4641' (Di Gaspero et al 2012), 'Villard Blanc' (Zyprian et al. 2016), 'Munson Jaeger 70' (Di Gaspero et al. 2012), GF.GA-47-42 (Zyprian et al. 2016), 'Noah' (Di Gaspero et al. 2012), 'Merzling' (Vezzulli et al. 2019), V. rupestris Ganzin (Di Gaspero et al. 2012) und 'Bayard Coudere 28-112' (Di Gaspero et al. 2012) beschrieben werden. Dabei wurde der Locus auf KG 18 zwischen 23,4 Mb und 26,9 Mb durch teilweise identische Marker mit variierender Fragmentlänge definiert und weist unterschiedliche Haplotypen auf. Aus diesem Grund kann die Variation des Rpv10-Locus, die im Rahmen dieser Arbeit gefunden wurde, als Rpv10.2-Haplotyp bezeichnet werden. Gestützt wird diese Hypothese durch Unterschiede in der Fragmentlänge der Resistenz-korrelierenden Allele im Fall der Marker GF09-68, GF09-46 und GF09-48, die sich im Bereich des Locus befinden (siehe 3.1.6., Abbildung 16). Weitere Marker in diesem Bereich mit identischen Allellängen deuten allerdings auf eine sehr nahe Verwandtschaft zum Rpv10-Locus hin. Die Marker GF09-68 (Allellänge: 153), GF09-46 (Allellänge: 413) und GF09-48 (Allellänge: 357) können daher zur klaren Identifikation von Rpv10.2-tragenden Sorten genutzt werden und finden Anwendung in der Marker-assisted selection (MAS). Des Weiteren stellt vor allem die bereits zugelassene Sorte 'Sauvitage' als *Rpv10.2-* und *Rpv3.1-*Träger interessantes Potential für Neuzüchtungen mit Resistenzen gegen P. viticola und hoher Weinqualität dar.

4.4. Nicht reproduzierbare, schwache QTLs im Fall der Population CFxTA

Zur Identifikation neuer Resistenzloci gegen das Pathogen P. viticola aus den amerikanischen Wildreben V. rupestris und V. riparia stand eine Population von 334 Individuen aus der Kreuzung 'Cabernet Franc' x 'Triomphe d'Alsace' (CFxTA) zur Verfügung. Die Sorte 'Triomphe d'Alsace' ist dabei ein Nachkomme der amerikanischen Wildarten in dritter Generation (www.vivc.de). Innerhalb des Stammbaums sind dabei die Akzessionen 'Millardet et Grasset 101-14 O.p.' (Elter) und 'Riparia Gloire de Montpellier' (Großelter) aufgezeigt. Im Allgemeinen ist bekannt, dass amerikanische Wildreben aufgrund einer Co-Evolution mit P. viticola spezifische Resistenzen gegen das Pathogen aufweisen (Jürges et al. 2009). Dies konnte bereits durch das Auffinden zahlreicher Resistenzloci bestätigt werden (Table of loci for traits in grapevine relevant breeding and genetics 2020, https://www.vivc.de/docs/dataonbreeding/20201009_Table%20of%20Loci%20for%20Traits %20in%20Grapevine.pdf). Dabei stellen Rpv1 (Merdinoglu et al. 2003), Rpv3 (Welter et al. 2007, Bellin et al. 2009, Di Gaspero et al. 2012), Rpv5 und Rpv6 (Marguerit et al. 2009), Rpv9 und Rpv13 (Moreira et al. 2011), sowie Rpv17 – Rpv21 (Divilov et al. 2018) laut Vezzulli et al. 2019 prominente Vertreter der identifizierten Loci aus amerikanischen Wildreben dar. Im Fall der Resistenzloci Rpv5 auf KG 09 und Rpv6 auf KG 12 wurde die Akzession 'Riparia Gloire de Montpellier', die eine Selektion der amerikanischen Wildart V. riparia ist, als Resistenzdonor in einer Kreuzung mit 'Cabernet Sauvignon' identifiziert (Marguerit et al. 2009). Auch die Sorte 'Millardet et Grasset 101-14' zeigte im Rahmen einer Vergleichsstudie mehrerer Vitis-Akzessionen geringe Infektionsmerkmale im Freilandversuch (Cadle-Davidson 2008). Die Weinsberger Akzession der Sorte 'Triomphe d'Alsace' konnte ebenfalls anhand von mehrjährigen Boniturdaten einen resistenten Phänotyp im Weinberg aufweisen (Boniturdaten AG Rebenzüchtung der LVWO Weinsberg). Diese Beobachtung konnte in dieser Arbeit mithilfe von mikroskopischen Analysen bestätig werden. Im Fall der Akzession 'Triomphe d'Alsace' wurde im Vergleich zur anfälligen V. vinifera Sorte 'Cabernet Franc' eine deutlich schwächere Ausbreitung des Hyphenwachstums innerhalb der Zeitpunkte von 48 und 96 Stunden nach einer Infektion mit P. viticola beobachtet (3.2.4., Abbildung 27). Ebenfalls konnten abaxial Anzeichen einer HR für die Akzessionen 'Triomphe d'Alsace', 'Millardet et Grasset 101-14 O.p.' und 'Riparia Gloire de Montpellier' im Bereich der Infektion detektiert werden. Das Vorkommen einer HR als Abwehrreaktion wurde bereits mit dem Rpv3-Locus aus der amerikanischen Wildart V. rupestris in Verbindung gebracht. Die Resistenzreaktion geht dabei auf das RGA des NBS-LRR Typs mit Toll interleukin 1 receptor (TIR) Domäne auf KG 18 zurück (Casagrande et al. 2011). Die Loci Rpv5 und Rpv6 aus der Akzession 'Riparia Gloire de Montpellier' korrelieren ebenfalls mit RGAs auf KG 09 und KG 12 (Die Gaspero et al. 2007, Marguerit et al. 2009). Die Entwicklung der RGAs und deren Beteiligung an der ETI-Reaktion gehen dabei auf evolutionäre Prozesse der Wirt-Pathogen-Interaktion zurück (Jones & Dangl 2006). Interessanterweise konnte im Rahmen dieser Arbeit eine Abschwächung der HR-Ausprägung von Generation zu Generation im Phänotyp der Blattproben beobachtet werden (siehe 3.2.4., Abbildung 26). Dabei zeigten die Proben der Akzession 'Triomphe d'Alsace', die schließlich als Elternpflanze der Population CFxTA genutzt wurde, die geringste Ausprägung. Im Rahmen dieser Arbeit konnte anhand mehrerer Infektionstests keine signifikante Aufspaltung der Population in resistente und anfällige Individuen beobachtet werden. Es scheint daher mit jeder Generation zu einer Art Ausdünnung der Resistenz zu kommen. Dies deckt sich mit der Aussage des Züchters Valentin Blattner, der diesen Effekt im Fall von V. vinifera Neuzüchtungen mit Akzessionen der resistenten Nachkommen ('Maréchal Foch', 'Maréchal Joffre' und 'Léon Millot'; Züchter: Eugène Kuhlmann, www.vivc.de) der Sorte 'Millardet et Grasset 101-14 O.p.' beobachten konnte (persönliches Gespräch mit Oliver Trapp, AG Rebenzüchtung des JKI Siebeldingen). Des Weiteren konnten im Fall der Population CFxTA multiple schwache

QTLs mit LOD-Werten zwischen 2,67 und 5,99 auf den Kopplungsgruppen 01, 03, 05, 06, 07, 09, 10, 12, 16, 17, 18 und 19 erfasst werden. Nach Risch 1992 sind LOD-Werte über einer Signifikanzgrenze von 3 im Allgemeinen nicht zufällig und stehen meist in Verbindung mit Genkopplungen. Allerdings konnten zehn der zwölf berechneten QTLs nicht reproduziert werden. Hierbei ist zu erwähnen, dass Kriterien wie der Zeitpunkt der Bonitur im Jahr, das Vorkommen unterschiedlicher Pathogenstämme des genutzten P. viticola Inokulats, sowie eine variierende Pathogendynamik als Effekt von Umwelteinflüssen ein Rolle spielen können (Burruano 2000, Moreira et al. 2011, Van Heerden et al. 2014, Lin et al. 2019). In dieser Arbeit wurde zur Durchführung der Blattscheibentests gezielt unterschiedliches Infektionsmaterial von frisch infizierten Reben aus dem Freiland genutzt, um möglichst genau die natürliche Pathogendynamik zu simulieren. Die Auswirkung von Umwelteinflüssen auf die Pathogendynamik konnte dabei vor allem anhand der Boniturdaten mit hohen Infektionsgraden für das Versuchsjahr 2016 gezeigt werden (siehe 3.2.1., Abbildung 21). Die klimatischen Bedingungen im Jahr 2016 förderten im Allgemeinen den Befall von Rebflächen durch P. viticola an mehreren Standorten (persönliches Gespräch mit Oliver Trapp, JKI Siebeldingen und Jürgen Sturm, LVWO Weinsberg). Die phänotypischen Daten, sowie das Erfassen multipler schwacher QTLs bestärken die Hypothese einer Verringerung der Resistenz, die von Generation zu Generation im Stammbaum der Population beobachtet wurde. Divilov et al. 2018 konnten anhand von zwei F1-Populationen der Kreuzungen V. rupestris B38 x 'Horizon' und 'Horizon' x V. cinerea B9 ebenfalls multiple schwache QTLs mit LOD-Werten zwischen 3,76 und 8,71 aus der amerikanischen Wildart V. rupestris berechnen. Zur Identifikation von epistatischen Effekten zwischen diesen multiplen QTLs auf unterschiedlichen Kopplungsgruppen, die in Relation mit einer Resistenz gegen P. viticola stehen, wurde eine Bayessche Analyse durchgeführt. Es ist bekannt, dass das Phänomen der Epistasis auf Interaktionen zwischen Genen beruht, die innerhalb verschiedener Loci auf unterschiedlichen Kopplungsgruppen liegen können (Phillips 2008). Die Interaktionen mehrerer Loci durch epistatische Effekte stellt daher eine mögliche Erklärung der Resistenzverminderung im Stammbaum der Population CFxTA dar. Von Generation zu Generation wurden weniger Resistenz-abhängige Loci vererbt, die nur in Kombination eine starke Immunantwort auf eine Infektion mit P. viticola generieren. Di Gaspero et al. 2007 konnten basierend auf einer Kopplungsanalyse mehrere Marker für RGA-Cluster des NBS-LRR Typs auf den Kopplungsgruppen 03, 07, 09, 12, 13, 18 und 19 identifizieren. Diese decken sich einerseits mit den vorhergesagten RGAs auf den Kupplungsgruppen 09, 12, 13, 14, 15 und 18 durch Velasco et al. 2007 mithilfe von Sequenzanalysen des Vitis Genoms und andererseits mit den QTLs auf den Kopplungsgruppen, die im Rahmen dieser Arbeit berechnet wurden. Im Fall des QTLs auf KG 12 wurde zusätzlich eine Berechnung mit der MQM-Methode durchgeführt, da dieser in mehreren Jahren detektiert werden konnte (siehe 3.2.3., Abbildung 24). Allerdings konnte der QTL lediglich auf einen Bereich zwischen 2,3 Mb (VMC8G6) und 9,9 Mb (GF12-20) eingegrenzt werden. Auf KG 12 wurden bereits die drei Loci Rpv1 (Merdinoglu et al. 2003), Rpv6 (Marguerit et al. 2009) und Rpv13 (Moreira et al. 2011) identifiziert. Der Rpv6-Locus stammt dabei aus der Sorte 'Riparia Gloire de Montpellier' und geht auf die amerikanische Wildart V. riparia zurück. Da 'Riparia Gloire de Montpellier' ein Vorfahre der Population CFxTA ist, besteht die Möglichkeit einer Übereinstimmung der QTLs auf KG 12 mit dem *Rpv6* Locus. Es ist jedoch zu erwähnen, dass der QTL auf KG 12 in der IM-Methode zwar für mehrere Jahre ermittelt wurde, allerdings nicht konstant an der identischen Position. Zur MQM-Berechnung wurde dabei der Versuch mit dem höchsten LOD-Wert exemplarisch ausgewählt. Weitere Analysen mit Markern zur Eingrenzung des QTLs sollten zur Überprüfung einer Übereinstimmung mit dem Rpv6-Locus durchgeführt werden. Der QTL auf KG 17 zeigt ebenfalls drastische Schwankungen bezüglich der Position. Die MQM-Methode konnte den QTL auf einen Bereich zwischen 8,6 Mb (GF17-10) und 13,9 Mb (rh_chr17_13991916) begrenzen (siehe 3.2.3., Abbildung 25). Auf KG 17 wurden bis zum heutigen Stand noch keine Resistenzloci gegen P. viticola identifiziert (Table of loci for traits in grapevine relevant breeding and genetics 2020, https://www.vivc.de/docs/dataonbreeding/20201009_Table%20of%20Loci%20for%20Traits %20in%20Grapevine.pdf). Um weitere Aussagen über die Relevanz der QTLs für die Züchtung zu treffen, sollten die Bereiche durch weitere Analysen mit spezifischen Markern eingegrenzt werden. Allerdings geben die flankierenden Marker der QTLs auf den Kopplungsgruppen 12 und 17 erste Anhaltspunkte zur Identifikation möglicher Resistenzloci für die Rebenzüchtung.

5. Schlussfolgerung und Ausblick

Im Rahmen dieser Arbeit wurden zwei Kreuzungspopulationen 'Tigvoasa' x We 90-06-12 und 'Cabernet Franc' x 'Triomphe d'Alsace' zur Identifizierung und Kartierung neuer Resistenzen gegen P. viticola untersucht. Die Kopplungskarten beider Populationen wurden durch die Analyse mit SSR- und rhAmpSeq-Markern erstellt. Es konnte gezeigt werden, dass die rhAmpSeq-Analyse eine effiziente Methode zur Erstellung von informativen genetischen Kopplungskarten im Hochdurchsatz darstellt. Allerdings sollte zur Feinkartierung von erfassten QTLs informative multi-allelische SSR-Marker genutzt werden. Die SSR- und rhAmpSeq-Markerdaten konnten dabei zur Erstellung von genetischen Kopplungskarten im Rahmen dieser Arbeit gut kombiniert werden. Auf der Grundlage dieser genetischen Kopplungskarten und der Erhebung von phänotypischen Daten konnte für die Population TVxWe90 ein signifikanter QTL auf KG 09 berechnet werden. Dieser korreliert mit einer bisher unbekannten Resistenz gegen P. viticola und wurde von der Elternsorte We 90-06-12, die Nachkomme der asiatischen Wildart V. amurensis ist, in den Genpool der Population eingebracht. Der QTL konnte mithilfe von Rekombinanten verifiziert werden und ist auf einen Bereich von ca. 80 kb auf dem V. vinifera Referenzgenom durch die Marker GF09-65 und GF09-47 begrenzt. Dabei ist zu erwähnen, dass sich dieser Bereich mit dem bereits identifizierten Rpv10-Locus aus 'Solaris' deckt (Schwander et al. 2012). Anhand von Sequenzanalysen wurden die Gene RPS5-like und AP2/ERF-like, die als Kandidatengene aus der *Rpv10*-tragenden Sorte 'Solaris' identifiziert wurden (Zyprian et al., in preparation), mit Genvarianten aus der Akzession We 90-06-12 verglichen. Dabei konnte das RPS5-like Gen in We 90-06-12 nachgewiesen werden. Mikroskopische Analysen zur Ausbreitung der Infektion von P. viticola in Blattproben beider Rebsorten, zeigten zudem Ähnlichkeiten in der Resistenzreaktion. Allerdings konnten Unterschiede in der codierenden Sequenz des Gens AP2/ERF-like festgestellt werden, die sich außerhalb der funktionellen AP2-Domäne befinden. Des Weiteren konnten für die SSR-Marker GF09-46 und GF09-48, die zur Identifikation des Rpv10-Locus in der Züchtung verwendet werden, stabile Unterschiede in der Allellänge detektiert werden. Dies wurde zusätzlich für den Marker GF09-68 registriert. Die Beobachtungen zeigen, dass der QTL, der im Rahmen dieser Arbeit gefunden wurde, auf eine potentielle Variation des Rpv10-Locus hinweist. Diese wird ab sofort als Rpv10.2 bezeichnet. Die Marker GF09-68, GF09-46 und GF09-48 können zukünftig zur Identifikation der Haplotyp-Variante Rpv10.2 in der Resistenzzüchtung verwendet werden. Auf der Basis dieser Arbeit sollten zukünftige Untersuchungen zur genauen Charakterisierung des Rpv10.2-Locus, sowie weitere Unterschiede zum Rpv10-Locus hinsichtlich Funktion und genetischer Herkunft der Resistenz durchgeführt werden. Zum einen können durch Selbstungen der Sorte We 90-06-12 Züchtungen generiert werden, die homozygot für das Rpv10.2-Allel sind, um diese mit homozygoten Rpv10-Trägern auf die Eigenschaft der Resistenz gegen P. viticola zu vergleichen. Dabei stellen unter anderem mikroskopische Färbungen zur Bildung von ROS, Transkriptomanalysen zur Untersuchung der Genregulation, sowie biochemische Verfahren zum quantitativen Nachweis der Stilbensynthese nach einer Infektion mit P. viticola mögliche Optionen dar. Zum anderen sollte die Auswirkung einer Kombination der Rpv10-Varianten in neuen Züchtungen untersucht werden. Auch Kombinationen mit bisher identifizierten Resistenzloci wie z.B. Rpv3 oder Rpv12 sind dabei von züchterischer Relevanz. Im Fall der Population CFxTA konnten multiple schwache QTLs erfasst werden, die aufgrund unterschiedlicher Boniturzeitpunkte im Jahr von der Umwelt-bedingten Pathogendynamik im Freiland abhängig sind. Zusätzlich konnte keine signifikante Aufspaltung der Resistenz gegen P. viticola in der Population beobachtet werden. Obwohl mehrfach QTLs auf den Kopplungsgruppen 12 und 17 identifiziert werden konnten, zeigten diese Unterschiede in der Position innerhalb der jeweiligen Kopplungsgruppen. Auf KG 12 wurde bereits der Resistenzlocus Rpv6 aus der Sorte 'Riparia Gloire de Montpellier' beschrieben (Marguerit et al. 2009). 'Riparia Gloire de Montpellier' ist eine Selektion der amerikanischen Wildart V. riparia und Vorfahre der Akzession 'Triomphe d'Alsace', die als Elternsorte der Kreuzung CFxTA verwendet wurde. Auf KG 17 wurde bislang noch kein Resistenzlocus gegen das Pathogen P. viticola erfasst. Allerdings sind zusätzliche Kartierungsarbeiten mit spezifischen Markern zur weiteren Eingrenzung der QTL-Bereiche nötig. Dabei sollte geprüft werden, ob es sich bei dem QTL auf KG 12 um den Rpv6 Locus handelt. Obwohl im Rahmen dieser Arbeit zahlreiche Infektionstests durchgeführt wurden, können zusätzliche phänotypische Daten von Individuen der Population CFxTA zur Verifizierung des QTLs auf KG 17 beitragen. Eine stabile Reproduktion des QTLs durch Infektionstests mit einem Einzelsporisolat des Pathogens stellt dabei eine Möglichkeit dar. Allerdings wurde im Rahmen dieser Arbeit eine Verminderung der Resistenz infolge einer schwächeren Ausprägung einer HR der Sorte 'Triomphe d'Alsace' im Vergleich zu 'Riparia Gloire de Montpellier' beobachtet. Die Untersuchung einer Population mit der Akzession 'Riparia Gloire de Montpellier' als Kreuzungspartner, die zur Kreuzung der Weinsberger Akzession 'Triomphe d'Alsace' genutzt wurde, kann zur Identifikation stabiler und signifikanter QTLs in Betracht gezogen werden.
VII. Literaturverzeichnis

Akaberi, S., Wang, H., Claudel, P., Riemann, M., Hause, B., Hugueney, P. & Nick, P. (2018). Grapevine fatty acid hydroperoxide lyase generates actin-disrupting volatiles and promotes defence-related cell death. *Journal of Experimental Botany* **69** (12), 2883-2896.

Ali, K., Maltese, F., Zyprian, E., Rex, M., Choi, Y. H. & Verpoorte, R. (2009). NMR metabolic fingerprinting based identification of grapevine metabolites associated with downy mildew resistance. *J. Agric. Food Chem.* **57** (20), 9599-9609.

Ali, K., Maltese, F., Figueiredo, A., Rex, M., Fortes, A. M., Zyprian, E., Verpoorte, R. & Choi, Y. H. (2012). Alterations in grapevine leaf metabolism upon inoculation with *Plasmopara viticola* in different time-points. *Plant Science* **191-192**, 100-107.

Alleweldt, G. & Possingham, J. V. (1987). Progress in grapevine breeding. *Theor. Appl. Genet.* **75**, 669-673.

Allègre, M., Daire, X., Héloir, M.-C., Trouvelot, S., Mercier, L., Adrian, M. & Pugin, A. (2006). Stomatal deregulation in *Plasmopara viticola*-infected grapevine leaves. *New Phytologist* **173**, 832-840.

Alonso-Villaverde, V., Voinesco, F., Viret, O., Spring, J.-L. & Gindro, K. (2010). The effectiveness of stilbenes in resistant *Vitaceae*: ultrastructural and biochemical events during *Plasmopara viticola* infection process. *Plant Physiology and Biochemistry* **49**, 265-274.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. *J. Mol. Boil.* **215**, 403-410.

Araus, J. L., Slafer, G. A., Royo, C. & Serret, M. D. (2008). Breeding for yield potential and stress adaption in cerelas. *Critical Reviews in Plant Sciences* **27** (6), 377-412.

Aronson, J. M., Cooper, B. A. & Fuller, M. S. (1967). Glucans of oomycete cell walls. *Science* **155**, 332-335.

Arrigo, N. & Arnold, C. (2007). Naturalised *Vitis* rootstocks in Europe and consequences to native wild grapevine. *PloS ONE* **2** (6), e521.

Arroyo-García, R. & Martínez-Zapater, J. M. (2004). Development and characterization of new microsatellite markers for grape. *Vitis* **43** (4), 175-178.

Arroyo-García, R., Ruiz-García, L., Bolling, L., Ocete, L., López, M. A., Arnold, C., Ergul, A., Söylemezoğlu, G., Uzun, H. I., Cabello, F., Ibáñez, J., Aradhya, M. K., Atanossov, A., Atanossov, I., Balint, S., Cenis, J. L., Costantini, L., Goris-Lavets, S., Grando, M. S., Klein, B. Y., McGovern, P. E., Merdinoglu, D., Pejic, I., Pelsy, F., Primikirios, N., Risovannaya, V., Roubelakis-Angelakis, K. A., Snoussi, H., Sotiri, P., Tamhankar, S., This, P., Troshin, L., Malpica, J. M., Lefort, F. & Martinez-Zapater, J. M. (2006). Multiple origins of cultivated grapevine (*Vitis vinifera* L. ssp. *sativa*) based on chloroplast DNA polymorphisms. *Mol. Ecol.* 15 (12), 3707-14.

Arús, P. & Moreno-González, J. (1993). Marker-assisted selection. In: Hayward, M. D.,
Bosemark, N. O., Romagosa, I. & Cerezo, M. (eds). Plant Breeding. *Plant Breeding Series*,
Springer (Dordrecht), 314-331.

Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bézier, A., Lambert, B., Joubert, J.-M. & Pugin,
A. (2003). Laminarin elicits defense responses in grapevine and induces protection against *Botrytis cinerea* and *Plasmopara viticola*. *Mol. Plant. Microbe Interact.* 16 (12), 1118-1128.

Banerjee, A., Duflo, E., Postel-Vinay, G. & Watts, T. (2010). Long-run health impacts of income shocks: Wine and phylloxera in nineteenth-century France. *The Review of Economics and Statistics* **92** (4), 714-728.

Barba, P., Cadle-Davidson, L., Harriman, J., Glaubitz, J. C., Brooks, S., Hyma, K. & Reisch,
B. (2014). Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. *Theor. Appl. Genet.* 127, 73-84.

Beakes, G. W., Glockling, S. L. & Sekimoto, S. (2012). The evolutionary phylogeny of the oomycete "fungi". *Protoplasma* **249**, 3-19.

Beckmann, J. S., & Soller, M. (1990). Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. *Biotechnology* **8**, 930-932.

Belhadj, A., Telef, N., Saigne, C., Cluzet, S., Barrieu, F., Hamdi, S. & Mérillon, J.-M. (2008). Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. *Plant Physiology and Biochemistry* **46**, 493-499.

Bellin, D., Peressotti, E., Merdinoglu, D., Wiedemann-Merdinoglu, S., Adam-Blondon, A.-F., Cipriani, G., Morgante, M., Testolin, R. & Di Gaspero, G. (2009). Resistance to *Plasmopara viticola* in grapevine 'Bianca' is controlled by a major dominant gene causing localized necrosis at the infection site. *Theor. Appl. Genet.* **120**, 163-176.

Bentham, A. R., De la Concepcion, J. C., Mukhi, N., Zdrzalek, R., Draeger, M., Gorenkin, D., Hughes, R. K. & Banfield, M. J. (2020). A molecular roadmap to the plant immune system. *J. Biol. Chem.* **295** (44), 14916-14935.

Bernardi, G., Kemmerich, M., Adaime, M. B., Prestes, O. D. & Zanella, R. (2020). Miniaturized QuEChERS method for determination of 97 pesticide residues in wine by ultrahigh performance liquid chromatography coupled with tandem mass spectrometry. *Anal. Methods* **12**, 2682-2692.

Blasi, P., Blanc, S., Wiedemann-Merdinoglu, S., Prado, E., Rühl, E. H., Mestre, P. & Merdinoglu, D. (2011). Construction of a reference linkage map of *Vitis amurensis* and genetic mapping of *Rpv8*, a locus conferring resistance to grapevine downy mildew. *Theor. Appl. Genet.* **123**, 43-53.

Boller, T. (1991). Ethylene in pathogenesis and disease resistance. In: Mattoo, A. K. & Suttle,J. C. (eds). The plant hormone ethylene. *CRC Press*, 293-314.

Boller, T. & He, S. Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. *Science* **324** (Issue 5928), 742-744.

Boutrot, F. & Zipfel, C. (2017). Function, discovery and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. *Annu. Rev. Phytopathol.* **55**, 257-286.

Bowers, J. E., Dangl, G. S., Vignani, R. & Meredith, C. P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (*Vitis vinifera* L). *Genome*, **39** (4), 628-633.

Bowers, J. E., Dangl, G. S. & Meredith, C. P. (1999). Development and characterization of additional microsatellite DNA markers for grape. *Am. J. Enol. Viticult.* **50** (3), 243-246.

Brulé, D., Villano, C., Davies, L. J., Trdá, L., Claverie, J., Héloir, M.-C., chiltz, A., Adrian, M., Darblade, B., Tornero, P., Stransfeld, L., Boutrot, F., Zipfel, C., Dry, I. B. & Poinssot, B. (2019). The grapevine (*Vitis vinifera*) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. *Plant Biotechnology Journal* **17**, 812-825.

Burruano, S. (2000). The life-cycle of *Plasmopara viticola*, cause of downy mildew of vine. *Mycologist* **14** (Part 4).

Cadle-Davidson, L. (2008). Variation within and between *Vitis* spp. For foliar resistance to the downy mildew pathogen *Plasmopara viticola*. *Plant Disease* **92** (11), 1577-1584.

Calonnec, A., Cartolaro, P., Poupot, C., Dubourdieu, D. & Darriet, P. (2004). Effects of *Unicinula necator* on the yield and quality of grapes (*Vitis vinifera*) and wine. *Plant Pathology* **53**, 434-445.

Canaguier, A., Grimplet, J., Di Gaspero, G., Scalabrin, S., Duchêne, E., Choisne, N., Mohellibi, N., Guichard, C., Rombauts, S., Le Clainche, I., Bérard, A., Chauveau, A., Bounon, R., Rustenholz, C., Morgante, M., Le Paslier, M.-C., Brunel, D. & Adam-Blondon, A.-F. (2017). A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). *Genomics Data* **14**, 56-62.

Casagrande, K., Falginella, L., Castellarin, S. D., Testolin, R. & Di Gaspero, G. (2011). Defence responses in *Rpv3*-dependent resistance to grapevine downy mildew. *Planta* 234, 1097-1109.

Cavalieri, D., McGovern, P. E., Hartl, D. L., Mortimer, R. & Polsinelli, M. (2003). Evidence for *S. cerevisiae* fermentation in ancient wine. *J. Mol. Evol.* **57**, 226-232.

Chang, X., Heene, E., Qiao, F. & Nick, P. (2011). The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in *Vitis* cell. *PloS ONE* **6** (10), e26405.

Chang, X. & Nick, P. (2012). Defence signaling triggered by flg22 and harpin is integrated into a different stilbene output in *Vitis* cells. *PloS ONE* **7** (Issue 7), e40446.

Chitarrini, G., Riccadonna, S., Zulini, L., Vecchione, A., Stefanini, M., Larger, S., Pindo, M., Cestaro, A., Franceschi, P., Magris, G., Foria, S., Morgante, M., Di Gaspero, G. & Vrhovsek, U. (2020). Two-omics data revealed commonalities and differences between *Rpv12-* and *Rpv3-*mediated resistance in grapevine. *Scientific Reports* **10** (12193).

Chojnacka, K. (2010). Fermentation products. *Chemical Engineering and Chemical Process Technology* **5**.

Chrisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. *Cell* **124**, 803-814.

Cipriani, G., Marrazzo, M., Di Gaspero, G., Pfeiffer, A., Morgante, M. & Testolin, R. (2008). A set of microsatellite markers with long core repeat optimized for grape (*Vitis* spp.) genotyping. *BMC Plant Biol*, **8**(1), 127.

Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B. & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. *Euphytica* **142**, 169-196.

Couto, D. & Zipfel, C. (2016). Regulation of pattern recognition receptor signaling in plants. *Nat. Rev. Immunol.* **16**, 537-552.

Decroocq, V., Favé, M. G., Hagen, L., Bordenave, L. & Decroocq, S. (2003). Development and transferability of apricot and grape EST microsatellite markers across taxa. *Theor. Appl. Genet.* **106**, 912-922.

De Lorenzis, G., Mercati, F., Bergamini, C., Cardone, M. F., Lupini, F., Mauceri, A., Caputo, A. R., Abbate, L., Barbagallo, M. G., Antonacci, D., Sunseri, F. & Brancadoro, L. (2019). SNP genotyping elucidates the genetic diversity of *Magna Graecia* grapevine germplasm and its historical origin and dissemination. *BMC Plant Biology* **19** (7)

Dickman, C. R. (1996). Impact of exotic generalist predators on the native fauna of Australia. *Wildlife Biology* **2** (3), 185-195.

Díez-Navajas, A. M., Greif, C., Poutaraud, A. & Merdinoglu, D. (2006). Two simplified fluorescent staining techniques to observe infection structures of the oomycete *Plasmopara viticola* in grapevine leaf tissues. *Micron* **38**, 680-683.

Di Gaspero, G., Cipriani, G., Marrazzo, M. T., Andreetta, D., Prado Castro, M. J., Peterlunger, E. & Testolin, R. (2005). Isolation of (AC)n-microsatellites in *Vitis vinifera* L. and analysis of genetic background in grapevines under marker assisted selection. *Mol. Breed.* **15** (1), 11-20.

Di Gaspero, G., Cipriani, G., Adam-Blondon, A.-F. & Testolin, R. (2007). Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for *R*-gene candidates. *Theor. Appl. Genet.* **114**, 1249-1263.

Di Gaspero, G., Copetti, D., Coleman, C., Castellarin, S. D., Eibach, R., Kozma, P., Lacombe, T., Gambetta, G., Zvyagin, A., Cindrić, P., Kovács, L., Morgante, M. & Testolin, R. (2012). Selective sweep at the *Rpv3* locus during grapevine breeding for downy mildew resistance. *Theor. Appl. Genet.* **124**, 277-286.

Dietrich, R., Jermini, M. & Blaise, P. (1997). A model of the influence of *P. viticola* on the yield of grapevine. In: Proceeding of OILB/WPRS Working Group Integrated Control in Viticulture, Gödöllö (Hungary), 4-6.

Divilov, K., Barba, P., Cadle-Davidson, L. & Reisch, B. I. (2018). Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. *Theor. Appl. Genet.* **131**, 1133-1143.

Dodds, P. N. & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plantpathogen interaction. *Nature Reviews Genetics* **11**, 539-548.

Doligez, A., Adam-Blondon, A. F., Cipriani, G., Di Gaspero, G., Laucou, V., Merdinoglu, D., Meredith, C. P., Riaz, S., Roux, C. & This, P. (2006). An integrated SSR map of grapevine based on five mapping populations. *Theor. Appl. Genet.* **113**, 369-382.

Duan, D., Halter, D., Baltenweck, R., Tisch, C., Tröster, V., Kortekamp, A., Hugueney, P. & Nick, P. (2015). Genetic diversity of stilbene metabolism in *V. sylvestris. Journal of Experimental Botany* **66** (11), 3243-3257.

Dudenhöffer, J., Schwander, F., Töpfer, R. & Zyprian, E. (2015). Sequence analysis of loci *Rpv10* and *Rpv3* for resistance against grapevine downy mildew (*Plasmopara viticola*). In: Shao-Hua, L. et al. (eds) ISHS Proceedings of XIth international conference on grapevine breeding and genetics. Acta. Hort. **1082**, 69-72.

Ehrenfeld, D. (2003). Globalisation: Effects on biodiversity, environment and society. In: *Conservation & Society* **1** (1), 99-111. Published by: Ashoka Trust for Research in Ecology and the Environment and Wolters Kluwer India Pvt. Ltd.

Eisenmann, B., Czemmel, S., Ziegler, T., Buchholz, G., Kortekamp, A., Trapp, O., Rausch, T., Dry, I. & Bogs, J. (2019). *Rpv3-1* mediated resistance to grapevine downy mildew is associated with specific host transcriptional responses and the accumulation of stilbenes. *BMC Plant Biology* **19** (343).

Eurostat – Nadin, P. (ed.) (2007). The use of plant protection products in the European Union (1992-2003). Zuletzt abgerufen am 31.05.2021 unter folgendem Link: https://ec.europa.eu/eurostat/documents/3217494/5611788/KS-76-06-669-EN.PDF.pdf/36c156f1-9fa9-4243-9bd3-f4c7c3c8286a?t=1414769021000.

Fawke, S., Doumane, M. & Schornack, S. (2015). Oomycete interactions with plants: infection strategies and resistance principles. *Microbiology and Molecular Biology Reviews* **79** (No. 3), 263-280.

Felix, G., Duran, J. D., Volko, S. & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. *The Plant Journal* **18** (3), 265-276.

Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K. J., Töpfer, R. & Zyprian, E. (2004). Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. *Theor. Appl. Genet.* **108**, 501-515.

Freeman, B. C. & Beattie, G. A. (2008). An overview of plant defense against pathogens and herbivores. *Plant Pathology and Microbiology Publications* **94**.

Fröbel, S. (2019). Studien zum Resistenzlokus *Rpv*10 gegen den Falschen Mehltau (*Plasmopara viticola*) der Weinrebe (*Vitis vinifera*). *Dissertation aus dem Julius Kühn-Institut*, *Quedlinburg*.

Fröbel, S., Dudenhöffer, J., Töpfer, R. & Zyprian, E. (2019a). Transcriptome analysis of early downy mildew (*Plasmopara viticola*) defense in grapevines carrying the Asian resistance locus *Rpv10. Euphytica* **215** (28).

Fröbel, S. & Zyprian, E. (2019b). Colonization of different grapevine tissues by *Plasmopara viticola* – a histological study. *Frontiers in Plant Science* **10** (951).

Fu, P., Wu, W., Lai, G., Li, R., Peng, Y., Yang, B., Wang, B., Yin, L., Qu, J., Song, S. & Lu,
J. (2020). Identifying *Plasmopara viticola* resistance loci in grapevine (*Vitis amurensis*) via genotyping-by-sequencing-based QTL mapping. *Plant Physiology and Biochemistry* 154, 75-84.

Gadoury, D. M., Cadle-Davidson, L., Wilcox, W. F., Dry, I. B., Seem, R. C. & Milgroom, M.
G. (2012). Grapevine powdery mildew (*Erysiphe necator*): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. *Molecular Plant Pathology* 13 (1), 1-16.

Gallagher, S. R. (1994). Quantitation of DNA and RNA with absorption and fluorescence spectroscopy. *Current Protocols in Human Genetics* **00** (Issue 1), A.3D.1-A.3D.8.

Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D. & Pugin, A. (2006). Early signaling events induced by elicitors of plant defenses. *Mol. Plant-Microbe Interact.* **19**, 711-724.

Gehmann, K., Staudt, G. & Grossmann, F. (1987). Der Einfluss der Temperatur auf die Oosporenbildung von *Plasmopara viticola*. Zeitschrift für *Pflanzenkrankheiten und Pflanzenschutz* **94**, (No. 3), 230-234.

Gessler, C., Pertot, I. & Perazolli, M. (2011). *Plasmopara viticola*: a review of knowledge on downy mildew of grapevine and effective disease management. *Phytopathol. Mediterr.* **50**, 3-44.

Gindro, K., Pezet, R. & Viret, O. (2003). Histological study of the responses of two *Vitis vinifera* cultivars (resistant and susceptible) to *Plasmopara viticola* infections. *Plant Physiology and Biochemistry* **41**, 846-853.

Gómez-Gómez, L. & Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in *Arabidopsis*. *Molecular Cell* **5** (Issue 6), 1003-1011.

Goodman, R. N. & Novacky, A. J. (1994). The hypersensitive reaction in plants to pathogens: a resistance phenomenon. *American Phytopathological Society* (APS).

Göhre, V. & Robatzek, S. (2008). Breaking the barriers: microbial effector molecules subvert plant immunity. *Annu. Rev. Phytopathol.* **46**, 189-215.

Granett, J., Timper, P. & Lider, L. A. (1985). Grape phylloxera (*Daktulosphaira vitifoliae*) (Homoptera: Phylloxeridae) biotopes in California. *J. Econ. Entomol.* **78**, 1463-1467.

Granett, J., Walker, M. A., Kocsis, L. & Omer, A. D. (2001). Biology and management of grape phylloxera. *Annual Review of Entomology* **46**, 387-412.

Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M. & Dangl, J. L. (2006). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. *Annu. Rev. Microbiol.* **60**, 425-449.

Grassi, F., Labra, M., Imazio, S., Spada, A., Sgorbatti, S., Scienzia, A. & Sala, F. (2003). Evidence of secondary grapevine domestication centre detected by SSR analysis. *Thero. Appl. Genet.* **107**, 1315-1320.

Grassi, F. & Arroyo-García, R. (2020). Editorial: Origins and domestication of the grape. *Frontiers in Plant Science* **11** (1176).

Grünzel, H. (1961). Untersuchungen über die Oosporenbildung beim Falschen Mehltau der Weinrebe (*Peronospora viticola* de Bary). Zeitschrift für Pflanzenkrankheiten (*Pflanzenpathologie*) und Pflanzenschutz **68** (2), 65-80.

Guerreiro, A., Figueiredo, J., Silva, M. S. & Figueiredo, A. (2016). Linking jasmonic acid to grapevine resistance against the biotrophic oomycete *Plasmopara viticola*. *Front. Plant. Sci.* **7** (565).

Gupta, P. K., Langridge, P. & Mir, R. R. (2010). Marker-assisted wheat breeding: present status and future possibilities. *Molecular Breeding* **26**, 145-161.

Gutterson, N., & Reuber, T. L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. *Current Opinion in Plant Biology* **7**, 465-471.

Hageage, G. J. & Harrington, B. J. (1984). Use of calcofluor white in clinical mycology. *Laboratory Medicine* **15** (2).

Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl. Acids. Symp. Ser.* **41**, 95-98.

Hammond-Kosack, K. H. & Kanyuka, K. (2007). Resistance genes (*R* genes) in plants. In eLS, (Ed.).

Hardham, A. R. (2006). Cell biology of plant-oomycete interactions. *Cellular Microbiology* **9** (Issue 1), 31-39.

Heath, M. C. (2000). Hypersensitive response-related death. *Plant Molecular Biology* **44**, 321-334.

Héloir, M.-C., Adrian, M., Brulé, D., Claverie, J., Cordelier, S., Daire, X., Dorey, S., Gauthier, A., Lemaître-Guillier, C., Negrel, J., Trdá, L., Trouvelot, S., Vandelle, E. & Benoit, Poinssot (2019). Recognition of elicitors in grapevine: from MAMP and DAMP perception to induced resistance. *Front. Plant. Sci.* **10** (1117).

Herth, W. & Schnepf, E. (1980). The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. *Protoplasma* **105**, 129-133.

Hill, G. K. (1989). Effect of temperature on sporulation efficiency of oilspots caused by *Plasmopara viticola* (Berk. And Curt. ex de Bary) Berl. And de Toni in wineyards. *Wein-Wissenschaft* **44** (3), 86-90.

Hood, M. E. & Shew, H. D. (1996). Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. *Phytopathology* **86**, 704-708.

Hulme, P. E. (2009). Trade, transport and trouble: managing invasive species pathways in an era of globalisation. *Journal of Applied Ecology* **46** (1), 10-18.

Internationale Organisation für Rebe und Wein (OIV). Lage im weltweiten Weinbausektor 2019. Abgerufen am 17.03.2021 auf https://de.statista.com/statistik/daten/studie/72608/umfrage/wein--rebflaechen-in-der-weltund-europa/.

Ioriatti, C., Bagnoli, B., Lucchi, A. & Veronelli, V. (2004). Vine moths control by mating disruption in Italy: Results and future prospects. *Redia* LXXXVII, 117-128.

Jena, K. K. & Mackill, D. J. (2008). Molecular markers and their use in marker-assisted selection in rice. *Crop Science* **48** (Issue 4), 1266-1276.

Jermini, M., Blaise, P. & Gessler, C. (2010). Quantitative effect of leaf damage caused by downy mildew (*Plasmopara viticola*) on growth and yield quality of grapevine 'Merlot' (*Vitis vinifera*). *Vitis* **49** (2), 77-85.

Jiang, R. H. Y. & Tyler, B. M. (2012). Mechanisms and evolution of virulence in oomycetes. *Annual Review of Phytopathology* **50**, 295-318.

Jiao, Y., Xu, W., Duan, D., Wang, Y. & Nick, P. (2016). A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence. *Journal of Experimental Botany* **67** (Issue 19), 5841-5856.

Johannesen, J., Lux, B., Michel, K., Seitz, A. & Maixner, M. (2008.) Invasion biology and host specificity of the grapevine yellows disease vector *Hyalesthes obsoletus* in Europe. *Entomologia Experimentalis et Applicata* **126** (3), 217-227.

Jones, J. D. G. & Dangl, J. L. (2006). The plant immune system. Nature 444, 323-329.

Judelson, H. S. & Ah-Fong, A. M. V. (2019). Exchanges at the plant-oomycete interface that influence disease. *Plant Physiol.* **179**, 1198-1211.

Jürges, G., Kassemeyer, H.-H., Dürrenberger, M., Düggelin, M. & Nick, P. (2009). The mode of interaction between *Vitis* and *Plasmopara viticola* Berk. & Curt. Ex de Bary depends on the host. *Plant Biology* **11**, 886-898.

Katagiri, F. & Tsuda, K. (2010). Understanding the plant immune system. *Molecular Plant-Microbe Interactions* **23** (12), 1531-1536.

Kassemeyer, H.-H., (2017). Fungi of grapes. In: König, H., Unden, G. & Fröhlich, J. (eds) Biology of microorganisms on grapes, in must and in wine. *Springer, Cham.* Chapter 4, 103-132.

Keen, N. T. & Yoshikawa, M. (1983). ß-1,3-endoglucanase from soybean releases elicitoractive carbohydrates from fungus cell walls. *Plant Physiology* **71** (No. 3), 460-465.

Kiefer, B., Riemann, M., Büche, C., Kassemeyer, H.-H. & Nick, P. (2002). The host guides morphogenesis and stomatal targeting in the grapevine pathogen *Plasmopara viticola*. *Planta* **215**, 387-393.

Kortekamp, A., Wind, R. & Zyprian, E. (1997). The role of callose deposits during infection of two downy mildew-tolerant and two-susceptible *Vitis* cultivars. *Vitis* **36** (2), 103-104.

Kortekamp, A., Wind, R. & Zyprian, E. (1998). Investigation of the interaction of *Plasmopara viticola* with susceptible and resistant grapevine cultivars. *Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz / Journal of Plant Diseases and Protection* **105** (No. 5), 475-488.

Kortekamp, A. & Zyprian, E. (1999a). Leaf hairs as a basic protective barrier against downy mildew of grape. *J. Phytopathology* **147**, 453-459.

Kortekamp, A., Wind, R. & Zyprian, E. (1999b). The role of hairs on the wettability of grapevine (*Vitis* spp.) leaves. *Vitis* **38** (3), 101-105.

Kortekamp, A. (2003). Leaf surface topography does not mediate tactic response of *Plasmopara-zoospores* to stomata. *Journal of Applied Botany – Angewandte Botanik* **77**, 41-46.

Kortekamp, A. & Zyprian, E. (2003). Characterization of *Plasmopara*-Resistance in grapevine using *in vitro* plants. *J. Plant Physiol.* **160**, 1393-1400.

Kortekamp, A., Welter, L., Vogt, S., Knoll, A., Schwander, F., Töpfer, R. & Zyprian, E. (2008). Identification, isolation and characterization of a CC-NBS-LRR candidate disease resistance gene family in grapevine. *Molecular Breeding* **22**, 421-432.

Köhler, H. (2009). Die Agrarmeteorologie Rheinland-Pfalz stellt sich dem Klimawandel – mit Wetterdaten seit 1946. *Erwerbs-Obstbau* **51**, 95-99.

Krause, G. H. & Weis, E. (1984). Chlorophyll fluorescence as a tool in plant physiology. *Photosynth. Res.* **5**, 139-157.

Lafon, R. & Built, J. (1981). Downy mildew of the vine. In: Spencer, D. M. (ed). The downy mildews. *Academic Press London (UK)*, 601-614.

Lam, E. (2004). Controlled cell death, plant survival and development. *Nature Reviews Molecular Cell Biology* **5**, 305-315.

Lawson, M. J. & Zhang, L. (2006). Distinct patterns of SSR distribution in the *Arabidopsis thaliana* and rice genomes. *Genome Biology* **7** (R14).

Lin, H., Leng, H., Guo, Y., Kondo, S., Zhao, Y., Shi, G. & Guo, X. (2019). QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (*V. vinifera* x *V. amurensis* Rupr.) crossing. *Scientia Horticulturae* **244**, 200-207.

Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B. & Dinesh-Kumar, S. P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. *Cell* **121**, 567-577.

Lu, Y.-J., Schornack, S., Spallek, T., Geldner, N., Chory, J., Schellmann, S., Schumacher, K., Kamoun, S. & Robatzek ,S. (2012). Patterns of plant subcellular responses to successful oomycete infetions reveal differences in host cell reprogramming and endocytic trafficking. *Cellular Microbiology* **14** (Issue 5), 682-697.

Lu, Y. & Tsuda, K. (2021). Intimate association of PRR- and NLR-mediated signaling in plant immunity. *MPMI* **34** (1), 3-14.

Macho, A. P. & Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. *Molecular Cell* **54** (Issue 2), 263-272.

Malacarne, G., Vrhovsek, U., Zulini, L., Cestaro, A., Stefanini, M., Mattivi, F., Delledonne, M., Velasco, R. & Moser, C. (2011). Resistance to *Plasmopara viticola* in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. *BMC Plant Biology* **11** (114).

Maree, H. J., Almeida, R. P. P., Bester, R., Chooi, K. M., Cohen, D., Dolja, V. V., Fuchs, M.
F., Golino, D. A., Jooste, A. E. C., Martelli, G. P., Naidu, R. A., Rowhani, A., Saldarelli, P. &
Burger, J. T. (2013). Grapevine leafroll-associated virus 3. *Front. Microbiol.* 4 (82).

Marguerit, E., Boury, C., Manicki, A., Donnart, M., Butterlin, G., Némorin, A., Wiedemann-Merdinoglu, S., Merdinoglu, D., Ollat, N. & Decroocq, S. (2009). Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. *Theor. Appl. Genet.* **118**, 1261-1278.

Maroof, M. A. S., Jeong, S. C., Gunduz, I., Tucker, D. M., Buss, G. R. & Tolin ,S. A. (2008). Pyramiding of soybean mosaic virus resistance genes by marker-assisted selection. *Crop Science* **48** (Issue 2), 517-526.

Martini, A. (1993). Origin and domestication of the wine yeast *Saccharomyces cerevisiae*. *Journal of Wine Research* **4** (3), 165-176.

Maul et al. (2021): Vitis International Variety Catalogue. Abgerufen am 02.04.2021 auf www.vivc.de.

McDowell, J. M. & Woffenden, B. J. (2003). Plant disease resistance genes: recent insights and potential applications. *Trends in Biotechnology* **21** (Issue 4), 178-183.

McHale, L., Tan, X., Koehl, P. & Michelmore R. W. (2006). Plant NBS-LRR proteins: adaptable guards. *Genome Biology* **7** (212).

Merdinoglu, D., Wiedemann-Merdinoglu, S., Coste, P., Dumas, V., Haetty, S., Butterlin, G. & Greif, C. (2003). Genetic analysis of downy mildew resistance derived from *Muscadinia rotundifolia*. *Acta Hortic*. **603**, 451-456.

Merdinoglu, D., Butterlin, G., Bevilacqua, L., Chiquet, V., Adam-Blondon, A. F. & Decroocq, S. (2005). Development and characterization of a large set of microsatellite markers in grapevine (*Vitis vinifera* L.) suitable for multiplex PCR. *Mol. Breeding* **15** (4), 349-366.

Merz, P. R., Moser, T., Höll, J., Kortekamp, A., Buchholz, G., Zyprian, E. & Bogs, J. (2015). The transcription factor VvWRKY33 is involved in the regulation of grapevine (*Vitis vinifera*) defense against the oomycete pathogen *Plasmopara viticola*. *Physiologica Plantarum* **153** (Issue 3).

Meyerson, L. A. & Mooney, H. A. (2007). Invasive alien species in an era of globalization. *Front. Ecol. Environ.* **5** (4), 199-208.

Michel, R. H., McGovern, P. E. & Badler, V. R. (1993). The first wine & beer: Chemical detection of ancient fermented beverages. *Analytical Chemistry* **65** (8).

Mizoi, J., Shinozaki, K. & Shinozaki-Yamaguchi, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. *Biochimica et Biophysica Acta* **1819** (Issue 2), 86-96.

Moreira, F. M., Madini, A., Marino, R., Zulini, L., Stefanini, M., Velasco, R., Kozma, P. & Grando, M. S. (2011). Genetic linkage maps of two interspecific grape crosses (*Vitis* spp.) used to localize quantitative trait loci for downy mildew resistance. *Tree Genetics & Genomes* 7, 153-167.

Moser, T. (2015). Untersuchung der transkriptionellen Regulation von Kandidatengenen der Pathogenabwehr gegen *Plasmopara viticola* in der Weinrebe. *Dissertation aus dem Julius Kühn-Institut, Quedlinburg.*

Mur, L. A. J., Kenton, P., Lloyd, A. J., Ougham, H. & Prats, E. (2007). The hypersensitive response; the centenary is upon us but how much do we know? *Journal of Experimental Botany* **59** (3), 501-520.

Müller, K. & Sleumer, H. (1934). Biologische Untersuchungen über die Peronosporakrankheit des Weinstocks. *Landw. Jb.* **79**, 509-576.

Myles, S., Chia, J. M., Hurwitz, B., Simon, C., Zhong, G. Y., Buckler, E. & Ware, D. (2010). Rapid genomic characterization of the genus *Vitis*. *PloS One* **5** (Issue 1), e8219.

Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yildiz, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G. & Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. *Biotechnology & biotechnological Equipment* **32** (2), 261-285.

Negri, S., Lovato, A., Boscaini, F., Salvetti, E., Torriani, S., Commisso, M., Danzi, R., Ugliano, M., Polverari, A., Tornielli, G. B. & Guzzo, F. (2017). The induction of noble rot (*Botrytis cinerea*) infection during postharvest withering changes in the metabolome of grapevine berries (*Vitis vinifera* L., cv. Garganega). *Frontiers in Plant Science* **8** (1002).

Nürnberger, T., Brunner, F., Kemmerling, B. & Piater, L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. *Immunological Reviews* **198**, 249-266.

Oerke, E.-C. (2006). Crop losses to pests. Journal of Agricultural Science 144, 31-43.

Organisation Internationale de la Vigne et du Vin (2009). 2. Auflage der OIV Merkmalsliste für Rebsorten und *Vitis*-Arten. Abgerufen am 03.03.2021 über folgenden Link: https://oiv.int/public/medias/2274/code-2e-edition-finale.pdf

Pap D., Riaz, S., Dry, I. B., Jermakow, A., Tenscher, A. C., Cantu, D., Oláh, R. & Walker, M.
A. (2016). Identifikation of two novel powdery mildew resistance loci, *Ren6* and *Ren7*, from the wild Chinese grape species *Vitis piasezkii*. *BMC Plant Biology* 16 (170).

Parker, J. E., Coleman, M. J., Szabo, V., Frost, L. M., Schmidt, R., Van der Biezen, E. A., Moores, T., Dean, C., Daniels, M. J. & Jones, J. D. G. (1997). The *Arabidopsis* downy mildew resistance gene RPP5 shares similarity to toll interleukin-1 receptors with N and L6. *The Plant Cell* **9**, 879-894.

Peressotti, E., Wiedemann-Merdinoglu, S., Delmotte, F., Bellin, D., Di Gaspero, G., Testolin, R., Merdinoglu, D. & Mestre, P. (2010). Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistent variety. *BMC Plant Biology* **10** (147).

Pertot, I., Caffi, T., Rossi, V., Mugnai, L., Hoffmann, C., Grando, M. S., Gary, C., Lafons, D., Duso, C., Thiery, D., Mazzoni, V. & Anfora, G. (2017). A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. *Crop Protection* **97**, 70-84.

Pezet, R., Gindro, K., Viret, O. & Richter, H. (2004). Effects of resveratrol, viniferins and pterostilbene on *Plasmopara viticola* zoospore mobility and disease development. *Vitis* **43** (2), 145-148.

Phillips, P. C. (2008). Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. *Nature Reviews Genetics* **9**, 855-867.

Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S. & Van Wees, S. C. M. (2009). Networking by small-molecule hormones. *Nature Chemical Biology* **5**, 308-316.

Poltronieri, P., Marrazzo, M. T. & Cipriani, G. (2020). Chapter 7 – Grapevine: resistance genes, sRNAs and immunity. In: Poltronieri, P. & Hong, Y. (eds.). *Applied Plant Biotechnologie for Improving Resistance to Biotic Stress, Academic Press*, 151-179.

Risch, N. (1992). Genetic linkage: interpreting lod scores. Science 255 (Issue 5046), 803-805.

Rouxel, T. & Balesdent, M.-H. (2010). Avirulence genes. In: Encyclopedia of Life Science (ELS). John Wiley & Sons, Ltd: Chichester.

Pottinger, S. E. & Innes, R. W. (2020). RPS5-mediated disease resistance: fundamental insights and translational applications. *Annual Review of Phytopathology* **58**, 139-160.

Pré, M., Atallah, M., Champion, A., De Vos, M., Pieterse, C. M. J. & Memelink, J. (2008). The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. *Plant Physiology* **147**, 1347-1357.

Pretorius, I. S., du Toit, M. & van Rensburg, P. (2003). Designer yeasts for the fermentation industry of the 21st century. *Food Technol. Biotechnol.* **41** (1), 3-10.

R Core Team (2020). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (Austria).

Raaymakers, T. M. & Van den Ackerveken, G. (2016). Extracellular recognition of oomycetes during biotrophic infection of plants. *Front. Plant. Sci.* **7** (906).

Radwan, O., Mouzeyar, S., Nicolas, P. & Bouzidi, M. F. (2005). Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with *Plasmopara halstedii*. *Journal of Experimental Botany* **56** (Issue 412), 567-575.

Riemann, M., Haga, K., Shimizu, T., Okada, K., ando, S., Mochizuki, S., Nishizawa, Y., Yamanouchi, U., Nick, P., Yano, M., Minami, E., Takano, M., Yamane, H. & Iino, M. (2013). Identification of rice *Allene Oxide Cyclase* mutants and the function of jasmonate for defence against *Magnaporthe oryzae*. *The Plant Journal* **74**, 226-238.

Rumbolz, J., Wirtz, S., Kassemeyer, H.-H., Guggenheim, R., Schäfer, E. & Büche, C. (2002). Sporulation of *Plasmopara viticola*: differentiation and light regulation. *Plant biol.* **4**, 413-422.

Santos, R. B., Nascimento, R., Coelho, A. V. & Figueiredo, A. (2020). Grapevine-downy mildew rendezvous: proteome analysis of the first hours of an incompatible interaction. *Plants* **9** (1498).

Sapkota, S., Chen, L.-L., Yang, S., Hyma, K. E., Cadle-Davidson, L. & Hwang, C.-F. (2018). Construction of a high-density linkage map and QTL detection of downy mildew resistance in *Vitis aestivalis*-derived 'Norton'. *Theor. Appl. Genet.* **132**, 137-147.

Scherer, E. & Gisi, U. (2006). Characterization of genotype and mating type in European isolates of *Plasmopara viticola*. *J. Phytopathology* **154**, 489-495.

Scherm, H. & Coakley, S. M. (2003). Plant pathogens in a changing world. *Australian Plant Pathology* **32**, 157-165.

Schlaepfer, D. R., Glättli, M., Fischer, M. & van Kleunen, M. (2010). A multi-species experiment in their native range indicates pre-adaptation of invasive alien plant species. *New Phytologist* **185** (4), 1087-1099.

Schwander, F. (2011). Identifikation des Mehltauresistenzlocus *Rpv10* für die Rebenzüchtung. *Dissertation aus dem Julius Kühn-Institut, Quedlinburg.* Schwander, F., Eibach, R., Fechter, I., Hausmann, L., Zyprian, E. & Töpfer, R. (2012). *Rpv10*: A new locus from the Asian *Vitis* gene pool for pyramiding downy mildew resistance loci in grapevine. *Theor. Appl. Genet.***124**, 163-176.

Schwessinger, B. & Zipfel, C. (2008). News from the frontline: recent insights into PAMP-triggered immunity in plants. *Current Opinion in Plant Biology* **11**, 389-395.

Scott, K. D., Eggler, P., Seaton, G., Rossetto, M., Ablett, E. M., Lee, L. S. & Henry, R. J. (2000). Analysis of SSRs derived from grape ESTs. *Theor. Appl. Genet.* **100**, 723-726.

Sefc, K. M., Regner, F., Turetschek, E., Glössl, J. & Steinkellner, H. (1999). Identification of microsatellite sequences in *Vitis riparia* and their applicability for genotyping of different *Vitis* species. *Genome* **42**, 367–373.

Shahmuradov, I. A., Umarov, R. K. & Solovyev, V. V. (2017). TSSPlant: a new tool for prediction of Pol II promoters. *Nucleic Acids Research* **45** (8), e65.

Shapiro, H. M. (1988). Practical Flow Cytometry. John Wiley & Sons, New York 2, 129.

Simonich, M. T. & Innes, R. W. (1995). A disease resistance gene in *Arabidopsis* with specificity for the *avrPph3* gene of *Pseudomonas syringae* pv. *phaseolicola*. *Mol. Plant-Microbe Interact.* **8** (4), 637-640.

Solovyev, V. V., Shahmuradov, I. A. & Salamov, A. A. (2010). Identification of promoter regions and regulatory sites. Erschienen in: *Computational Biology of Transcription Factor Binding* der Buchreihe *Methods in Molecular Biology* **674**, 57-83.

Stanley, J. & Preetha, G. (2016). Pesticide toxity to non-target organisms. *Springer*, Berlin (Germany).

Stassen, J. H. M. & Van den Ackerveken, G. (2011). How do oomycete effectors interfere with plant life? *Current Opinion in Plant Biology* **14**, 407-414.

Staudt, G. & Kassemeyer, H. H. (1995). Evaluation of downy mildew resistance in various accessions of wild *Vitis* species. *Vitis* **34** (4), 225-228.

Table of loci for traits in grapevine relevant for breeding and genetics (2020). Associated markers, their chromosomal localisation, and the donor genotype/species are given. Chromosomal position of a trait/allele is given in megabases according to the 12 x genome sequence of PN40024 (http://www.genoscope.cns.fr/vitis). Abgerufen am 19.05.2021 über folgenden Link:

https://www.vivc.de/docs/dataonbreeding/20201009_Table%20of%20Loci%20for%20Traits%20in%20Grapevine.pdf.

Tello, J., Roux, C., Chouki, H., Laucou, V., Sarah, G., Weber, A., Santoni, S., Flutre, T., Pons, T., This, P., Péros, J.-P. & Doligez, A. (2019). A novel high-density grapevine (*V. vinifera* L.) integrated linkage map using GBS in a half-diallel population. *Theor. Appl. Genet.* **132**, 2237-2252.

Temnykh, S., Lukashova, A., Cartinhour, S., DeClerck, G., Lipovich, L. & McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (*Oryza sativa* L.): Frequency, length variation, transposon associations, and genetic marker potential. *Genome research* **11**, 1441-1452.

Terral, J.-F., Tabard, E., Bouby, L., Ivorra, S., Pastor, T., Figueiral, I., Picq, S., Chevance, J.-B., Jung, C., Fabre, L., Tardy, C., Compan, M., Bacilieri, R., Lacombe, T. & This, P. (2010). Evolution and history of grapevine (*Vitis vinifera*) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. *Annals of Botany* **105** (Issue 3), 443-455.

Thomas, M. R. & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites. *Theoretical and Applied Genetics* **86**, 985-990.

Thomma, B. P. H. J., Nürnberger, T. & Joosten, M. H. A. J. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. *The Plant Cell* **23**, 4-15.

Töpfer, R., Maul, E. & Eibach, R. (2011a). Geschichte und Entwicklung der Rebenzüchtung auf dem Geilweilerhof. *Gesellschaft für Geschichte des Weines e.V.: Schriften zur Weingeschichte* 172.

Töpfer, R., Hausmann, L., Harst, M., Maul, E., Zyprian, E. & Eibach, R. (2011b). New horizons for grapevine breeding. *Fruit, Vegetable and Cereal Science and Biotechnology* **5** (Special Issue 1), 79-100.

Troggio, M., Malacarne, G., Coppola, G., Segala, C., Cartwright, D. A., Pindo, M., Stefanini, M., Mank, R., Moroldo, M., Morgante, M., Grando, M. S. & Velasco, R. (2007). A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (*Vitis vinifera* L.) anchoring Pinot Noir bacterial artificial chromosome contigs. *Genetics* **176** (4), 2637-2650.

Trouvelot, S., Varnier, A.-L., Allègre, M., Mercier, L., Baillieul, F., Arnould, C., Gianinazzi-Pearson, V., Klarzynski, O., Joubert, J.-M., Pugin, A. & Daire, X. (2008) A ß-1,3 glucan sulfate induces resistance in grapevine against *Plasmopara viticola* through priming of defense responses, including HR-like cell death. *MPMI* **21** (2), 232-243.

Tsuda, K. & Katagiri, F. (2010). Comparing signaling mechanisms engaged in patterntriggered and effector-triggered immunity. *Current Opinion in Plant Biology* **13**, 459-465.

Tsuda, K. & Somssich, I. E. (2014). Transcriptional networks in plant immunity. *New Phytologist* **206**, 932-947.

Unger, S., Büche, C., Boso, S. & Kassemeyer, H.-H. (2007). The course of colonization of two different *Vitis* genotypes by *Plasmopara viticola* indicates compatible and incompatible host–pathogen interactions. *The American Phytopathological Society* **97** (7), 780-786.

United States Department of Agriculture (USDA), Foreign Agricultural Service (2021). Grain: World markets and trade. Abgerufen am 17.03.2021 auf https://de.statista.com/statistik/daten/studie/456443/umfrage/anbauflaeche-von-weizenweltweit/.

Van Heerden, C. J., Burger, P., Vermeulen, A. & Prins, R. (2014). Detection of downy and powdery mildew resistance QTL in a 'Regent' x 'RedGlobe' population. *Euphytica* **200**, 281-295.

Van Loon, L. C., Geraats, B. P. J. & Linthorst, H. J. M. (2006). Ethylene as a modulator of disease resistance in plants. *Trends in Plant Science* **11** (4).

Van Ooijen, J. W. (1992). Accuracy of mapping quantitative trait loci in autogamous species. *Theor. Appl. Genet.* **84**, 803-811.

Vannozzi, A., Wong, D., C., J., Höll, J., Hmmam, I., Matus, J. T., Bogs, J., Ziegler, T., Dry, I., Barcaccia, G. & Lucchin, M. (2018). Combinatorial regulation of stilbene synthase genes by WRKY and MYB transcription factors in grapevine (*Vitis vinifera* L.). *Plant and Cell Physiology* **59** (Issue 5), 1043-1059.

Vavilov, N. I. (1930). Wild progenitors of the fruit trees of Turkistan and the Caucasus and the problem of the origin of fruit trees. *Proc. Of the 9th Internat. Hort. Congr.*, 271-286.

Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A., Pruss, D., Pindo, M.,
FitzGerald, L. M., Vezzulli, S., Reid, J., Malacarne, G., Iliev, D., Coppola, G., Wardell, B.,
Micheletti, D., Macalma, T., Facci, M., Mitchell, J. T., Perazolli, M., Eldredge, G., Gatto, P.,
Oyzerski, R., Moretto, M., Gutin, N., Stefanini, M., Chen, Y., Segala, C., Davenport, C.,
Demattè, L., Mraz, A., Battilana, J., Stormo, K., Costa, F., Tao, Q., Si-Ammour, A., Harkins,
T., Lackey, A., Perbost, C., Taillon, B., Stella, A., Victor, S., Fawcett, J. A., Sterck, I.,
Vandepoele, K., Grando, S. M., Toppo, S., Moser, C., Lanchbury, J., Bodgen, R., Skolnick,
M., Sgaramella, V., Bhatnagar, S. K., Fontana, P., Gutin, A., Van de Peer, Y., Salamini, F. &
Viola, R. (2007). A high draft consensus sequence of the genome of a heterozygous grapevine
variety. *PloS ONE* 2 (12), e1326.

Venuti, S., Copetti, D., Foria, S., Falginella, L., Hoffmann, S., Bellin, D., Cindrić, P., Kozma, P., Scalabrin, S., Morgante, M., Testolin, R. & Di Gaspero, G. (2013). Historical introgression of the downy mildew resistance gene *Rpv12* from the Asian species *Vitis amurensis* into grapevine varieties. *PloS ONE* **8** (4), e61228.

Vezzulli, S., Troggio, M., Coppola, G., Jermakow, A., Cartwright, D., Zharkikh, A., Stefanini, M., Grando, M. S., Viola, R., Adam-Blondon, A.-F. Thomas, M., This, P. & Velasco, R. (2008). A reference integrated map for cultivated grapevine (*Vitis vinifera* L.) from three crosses, based on 283 SSR and 501 SNP-based markers. *Theor. Appl. Genet.* **117**, 499-511.

Vezzulli, S., Malacarne, G., Masuero, D., Vecchione, A., Dolzani, C., Goremykin, V., Mehari, Z. H., Banchi, E., Velasco, R., Stefanini, M., Vrhovsek, U., Zulini, L., Franceschi, P. & Moser, C. (2019). The *Rpv3-3* haplotype and stilbenoid induction mediate downy mildew resistance in a grapevine interspecific population. *Front. Plant. Sci.* **10** (234).

Vieira, M. L. G., Santini, L., Diniz, A. L. & de Freitas Munhoz, C. (2016). Microsatellite markers: what they mean and why they are so useful. *Genetics and Molecular Biology* **39** (3), 312-328.

Vitousek, P. M., d'Antonio, C. M., Loope, L. L. & Westbrooks, R. (1996). Biological invasions as global environment change. *American Scientists* **84**, 468-478.

Walker, C. A. & Van West, P. (2007). Zoospore development in the oomycetes. *Fungal Biology Reviews* **21** (1), 10-18.

Wang, N., Fang, L., Xin, H., Wang, L. & Li, S. (2012). Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. *BMC Plant Biology* **12** (148).

Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.-W., Zhou, J.-M. & Chai, J. (2019). Reconstitution and structure of a plant NLR resistosome conferring immunity. *Science* **364** (Issue 6435), eaav5870.

Wang, L. & Wang, Y. (2019). Transcription factor VqERF114 regulates stilbene synthesis in Chinese wild *Vitis quinquangularis* by interacting with VqMYB35. *Plant Cell Reports* **38**, 1347-1360.

Warren, R. F., Henk, A., Mowery, P., Holub, E. & Innes, R. W. (1998). A mutation within the leucine-rich repeat domain of the *Arabidopsis* disease resistance gene *RPS5* partially suppresses multiple bacterial and downy mildew resistance genes. *The Plant Cell* **10**, 1439-1452.

Welter, L. J., Göktürk-Baydar, N., Akkurt, M., Maul, E., Eibach, R., Töpfer, R., & Zyprian, E. M. (2007). Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (*Vitis vinifera* L.). *Molecular Breeding* **20**, 359-374.

Whisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J. G., Gilroy, E. M., Armstrong, M. R., Grouffaud, S., van West, P., Chapman, S., Hein, I., Toth, I. K., Pritchard, L. & Birch, P. R. J. (2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. *Nature* 450, 115-118.

Wong, F. P., Burr, H. N. & Wilcox, W. F. (2001). Heterothallism in *Plasmopara viticola*. *Plant Pathology* **50**, 427-432.

Yang, S., Fresnedo-Ramírez, J., Wang, M., Cote, L., Schweitzer, P., Barba, P., Takacs, E. M., Clark, M., Luby, J., Manns, D. C., Sacks, G., Mansfield, A. K., Londo, J., Fennell, A., Gadoury, D., Reisch, B., Cadle-Davidson, L. & Sun, Q. (2016). A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: A case study for marker-assisted selection in grapevine. *Horticulture Research* **3** (16002).

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. *BMC Bioinformatics* **13** (134).

Yin, X., Liu, R.-Q., Su, H., Su, L., Guo, Y.-R., Wang, Z.-J., Du, W., Li, M.-J., Zhang, X., Wang, Y.-J., Liu, G.-T. & Xu, Y. (2017). Pathogen development and host responses to *Plasmopara viticola* in resistant and susceptible grapevines: an ultrastructural study. *Horticulture Research* **4** (17033).

Yu, Y., Zhang, Y., Yin, L. & Lu, J. (2012). The mode of host resistance to *Plasmopara viticola* infection of grapevines. *Phytopathology* **102**, 1094-1101.

Zeidler, D., Zähringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. & Durner, J. (2004). Innate immunity in *Arabidopsis thaliana*: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. *PNAS* **101** (44), 15811-15816.

Zendler, D., Schneider, P., Töpfer, R. & Zyprian, E. (2017). Fine mapping of *Ren3* reveals two loci mediating hypersensitive response against *Erysiphe necator* in grapevine. *Euphytica* **213** (68).

Zendler, D., Töpfer, R. & Zyprian, E. (2021). Confirmation and fine mapping of the resistance locus *Ren9* from the grapevine cultivar 'Regent'. *Plants* **10** (24).

Zhu, Z., Shi, J., Xu, W., Li, H., He, M., Xu, Y., Xu, T., Yang, Y., Cao, J. & Wang, Y. (2013). Three ERF transcription factors from Chinese wild grapevine *Vitis pseudoreticulata* participate in different biotic and abiotic stress-responsive pathways. *Journal of Plant Physiology* **170** (Issue 10), 923-933.

Zipfel, C. & Felix, G. (2005). Plants and animals: a different taste for microbes? *Current Opinion in Plant Biology* **8** (Issue 4), 353-360.

Zou, C., Karn, A., Reisch, B., Nguyen, A., Sun, Y., Bao, Y., Campbell, M. S., Church, D., Williams, S., Xu, X., Ledbetter, C. A., Patel, S., Fennell, A., Glaubitz, J. C., Clark, M., Ware, D., Londo, J. P., Sun, Q. & Cadle-Davidson, L. (2020). Haplotyping the *Vitis* collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. *Nature communications* **11** (413).

Zyprian, E., Ochßner, I., Schwander, F., Šimon, S., Hausmann, L., Bonow-Rex, M., Moreno-Sanz, P., Grando, M. S., Wiedemann-Merdinoglu, S., Merdinoglu, D., Eibach, R. & Töpfer, R. (2016). Quantitative trait loci affecting pathogen resistance and ripening of grapevines. *Molecular Genetics and Genomics* **291**, 1573-1594.

Zyprian, E., Eibach, R., Trapp, O., Schwander, F., Töpfer, R. (2018). Grapevine breeding under climate change: Applicability of a molecular marker linked to véraison. *Vitis* **57**, 119-123.

VIII. Anhang

Anhang 1a Auflistung aller SSR-Marker, die zur genetischen Kartierung der Population TVxWe90 verwendet wurden. Ersichtlich sind Markername, SSR-Motiv des Markers, Kopplungsgruppe (KG) und Fragmentgrößen [bp] der Elternsorten 'Tigvoasa' (TV) und We 90-06-12 (We90). Für Nullallele wurde ein " - " vermerkt. Die Marker, die im Bereich des QTLs auf KG 09 liegen, sowie das mit der Resistenz korrelierende Allel sind rot gekennzeichnet.

Name	SSR-Motiv	KG	Fragmentgröße [bp]			
			TV		We90	
GF01-59	<nnxnp></nnxnp>	01	289	289	289	294
VMC2B3	<nnxnp></nnxnp>	01	162	162	162	178
UDV-036	<nnxnp></nnxnp>	01	185	185	185	186
VCHR02A	<lmxll></lmxll>	02	136	144	136	136
GF02-62	<nnxnp></nnxnp>	02	384	384	287	378
GF02-12	<efxeg></efxeg>	02	170	188	170	186
VMC5G7	<efxeg></efxeg>	02	199	191	199	205
GF04-17	<nnxnp></nnxnp>	04	203	203	203	213
GF04-83	<efxeg></efxeg>	04	189	206	189	192
VCHR05A	<efxeg></efxeg>	05	240	192	240	215
GF05-01	<nnxnp></nnxnp>	05	172	172	160	175
VRZAG79	<hkxhk></hkxhk>	05	246	244	246	244
UDV-085	<lmxll></lmxll>	06	138	129	127	127
GF06-15	<nnxnp></nnxnp>	06	406	406	392	386
GF06-16	<abxcd></abxcd>	06	294	310	255	288
VVMD21	<efxeg></efxeg>	06	257	250	257	250
GF06-08	<hkxhk></hkxhk>	06	145	149	145	149
GF07-07	<abxcd></abxcd>	07	332	366	351	347
UDV-082	<nnxnp></nnxnp>	07	179	179	170	184
VMC1E8	<efxeg></efxeg>	08	219	209	219	223
UDV-126	<efxeg></efxeg>	08	179	182	179	175
VMC1C10	<abxcd></abxcd>	09	152	183	156	150
GF09-48	<nnxnp></nnxnp>	09	349	349	349	357
GF09-46	<nnxnp></nnxnp>	09	422	422	422	413
GF09-71	<nnxnp></nnxnp>	09	360	360	360	366
GF09-73	<efxeg></efxeg>	09	392	380	392	386
VMC6D12	<efxeg></efxeg>	09	178	155	178	146
GF09-08	<abxcd></abxcd>	09	230	246	244	259
GF09-65	<nnxnp></nnxnp>	09	314	314	314	312
GF09-70	<nnxnp></nnxnp>	09	313	313	313	334
GF09-68	<efxeg></efxeg>	09	163	151	163	153
GF09-62	<efxeg></efxeg>	09	408	-	408	383
GF09-64	<nnxnp></nnxnp>	09	276	276	276	281
VVUI37	<efxeg></efxeg>	09	237	231	237	227
GF09-49	<efxeg></efxeg>	09	393	402	393	384
VMC3G8.2	<efxeg></efxeg>	09	161	163	161	157

GF10-11	<abxcd></abxcd>	10	360	380	-	344
GF10-04	<abxcd></abxcd>	10	272	315	317	276
GF10-02	<efxeg></efxeg>	10	317	309	317	312
GF11-04	<nnxnp></nnxnp>	11	336	336	-	381
UDV-028	<lmxll></lmxll>	11	135	140	144	144
VMCNG2H1	<nnxnp></nnxnp>	11	213	213	213	246
VVMD8	<efxeg></efxeg>	11	136	134	136	141
GF12-07	<abxcd></abxcd>	12	292	294	290	298
GF12-17	<lmxll></lmxll>	12	321	337	342	342
VCHR12A	<lmxll></lmxll>	12	142	135	142	142
SC47_20	<hkxhk></hkxhk>	13	201	204	201	204
VVS1	<abxcd></abxcd>	13	177	185	178	188
GF13-37	<efxeg></efxeg>	13	259	362	259	365
VMC1E12	<efxeg></efxeg>	14	236	243	236	246
GF14-01	<efxeg></efxeg>	14	213	228	213	206
VMC8G3.2	<nnxnp></nnxnp>	15	296	296	292	298
GF16-56	<hkxhk></hkxhk>	16	330	339	330	339
GF16-18	<efxeg></efxeg>	16	395	408	395	400
GF16-01	<efxeg></efxeg>	16	349	354	349	341
GF16-04	<abxcd></abxcd>	16	140	157	148	154
GF18-26	<abxcd></abxcd>	18	-	281	277	284
VCHR18B	<nnxnp></nnxnp>	18	153	153	140	144
VMC2A3	<abxcd></abxcd>	18	163	169	181	145
VVIP31	<efxeg></efxeg>	19	188	184	188	173

Anhang 1b Auflistung aller SSR-Marker, die zur genetischen Kartierung der Population CFxTA verwendet wurden. Ersichtlich sind Markername, SSR-Motiv des Markers, Kopplungsgruppe (KG) und Fragmentgrößen [bp] der Elternsorten 'Cabernet Franc' (CF) und 'Triomphe d'Alsace' (TA). Für Nullallele wurde ein "-" vermerkt. Die Marker, die im Bereich der QTLs auf KG 12 und KG 17 liegen oder diesen flankieren, sind rot gekennzeichnet.

Name	SSR-Motiv	KG	Fragmentgröße [bp]			
			CF		TA	
VCHR1B	<abxcd></abxcd>	01	97	105	89	109
VMC4F8	<nnxnp></nnxnp>	01	120	120	113	117
VVIM25	<abxcd></abxcd>	01	210	177	167	183
VVIP60	<abxcd></abxcd>	01	314	324	310	321
GF05-01	<efxeg></efxeg>	01	175	172	175	153
GF02-10	<efxeg></efxeg>	02	209	212	209	205
GF02-12	<efxeg></efxeg>	02	175	167	175	190
VVMD36	<nnxnp></nnxnp>	03	252	252	252	274
VVMD28	<efxeg></efxeg>	03	228	236	228	238
VMC1A5	<abxcd></abxcd>	03	185	195	205	-
GF03-05	<abxcd></abxcd>	03	261	382	195	244
GF03-01	<efxeg></efxeg>	03	122	117	122	136
UDV74	<abxcd></abxcd>	04	293	297	289	-
VVMD32	<abxcd></abxcd>	04	242	260	252	-
VRZAG21	<abxcd></abxcd>	04	189	200	206	211
VRZAG83	<efxeg></efxeg>	04	194	200	194	156
GF04-16	<abxcd></abxcd>	04	294	313	285	288
GF04-01	<abxcd></abxcd>	04	250	270	252	273
GF04-10	<efxeg></efxeg>	04	132	138	132	157
UDV111	<nnxnp></nnxnp>	05	137	137	92	94
VMC6E10	<abxcd></abxcd>	05	93	118	111	116
VRZAG79	<abxcd></abxcd>	05	246	258	244	253
GF06-04	<abxcd></abxcd>	06	202	205	203	209
GF06-16	<abxcd></abxcd>	06	255	263	290	-
GF06-08	<efxeg></efxeg>	06	145	150	145	141
VVMD21	<efxeg></efxeg>	06	250	259	250	221
GF06-15	<abxcd></abxcd>	06	386	403	368	370
GF06-17	<nnxnp></nnxnp>	06	108	108	108	112
UDV82	<lmxll></lmxll>	07	185	166	185	185
VVMD31	<efxeg></efxeg>	07	214	204	214	211
VVMD7	<efxeg></efxeg>	07	238	262	238	255
GF07-08	<abxcd></abxcd>	07	234	257	226	232
GF07-06	<efxeg></efxeg>	07	117	122	117	104
GF08-08	<lmxll></lmxll>	08	163	140	172	172
UDV125	<abxcd></abxcd>	08	88	127	96	109
GF08-06	<abxcd></abxcd>	08	173	200	148	191
VMC6D12	<efxeg></efxeg>	09	178	144	178	167
VMC6E4	<abxcd></abxcd>	09	130	142	126	-
GF09-08	<abxcd></abxcd>	09	247	259	210	-

VMC4H6	<abxcd></abxcd>	09	150	160	156	164
GF09-07	<efxeg></efxeg>	09	212	214	212	216
GF09-13	<abxcd></abxcd>	09	417	421	408	-
GF10-07	<abxcd></abxcd>	10	311	318	314	316
GF10-06	<hkxhk></hkxhk>	10	400	403	400	403
GF10-11	<abxcd></abxcd>	10	362	383	312	-
GF10-02	<nnxnp></nnxnp>	10	314	314	318	312
VVMD8	<abxcd></abxcd>	11	141	151	134	177
GF11-04	<efxeg></efxeg>	11	346	338	346	405
GF12-20	<efxeg></efxeg>	12	410	382	410	392
GF12-17	<nnxnp></nnxnp>	12	337	337	319	345
GF12-08	<abxcd></abxcd>	12	190	207	175	-
GF12-13	<lmxll></lmxll>	12	258	262	258	258
GF12-15	<hkxhk></hkxhk>	12	334	352	334	352
VMC8G6	<abxcd></abxcd>	12	157	169	147	150
VMC9H4.2	<efxeg></efxeg>	13	280	274	280	265
GF13-19	<abxcd></abxcd>	13	483	498	494	512
GF14-52	<abxcd></abxcd>	14	365	369	377	379
VMC2B11	<abxcd></abxcd>	14	167	170	175	180
GF14-01	<lmxll></lmxll>	14	209	217	215	215
VVIP22	<efxeg></efxeg>	14	346	377	346	339
VMC2A5	<nnxnp></nnxnp>	14	149	149	166	183
GF15-04	<abxcd></abxcd>	15	284	293	289	296
GF15-07	<efxeg></efxeg>	15	152	155	142	155
GF15-08	<efxeg></efxeg>	15	284	272	284	281
GF16-01	<efxeg></efxeg>	16	341	354	341	352
GF16-04	<abxcd></abxcd>	16	143	148	135	154
GF16-13	<abxcd></abxcd>	16	252	258	242	255
VCHR16B	<efxeg></efxeg>	16	191	166	191	182
GF17-03	<efxeg></efxeg>	17	292	187	292	296
GF17-09	<efxeg></efxeg>	17	244	240	244	231
GF17-05	<abxcd></abxcd>	17	182	190	192	-
UDV18	<efxeg></efxeg>	17	130	152	130	118
VVIN73	<efxeg></efxeg>	17	267	271	267	258
GF17-10	<efxeg></efxeg>	17	181	204	181	183
VCHR18B	<nnxnp></nnxnp>	18	144	144	144	135
SCU10	<abxcd></abxcd>	18	204	215	207	210
VVIN16	<efxeg></efxeg>	18	149	151	149	147
VVIN83	<lmxll></lmxll>	18	239	237	236	236
VVMD17	<lmxll></lmxll>	18	220	211	220	220
GF18-19	<nnxnp></nnxnp>	18	336	336	330	334
UDV108	<abxcd></abxcd>	18	216	230	240	262
VMC2A3	<abxcd></abxcd>	18	162	181	155	173
VMC3E5	<nnxnp></nnxnp>	18	110	110	110	132
GF19-05	<abxcd></abxcd>	19	318	320	298	324

UDV23	<abxcd></abxcd>	19	190	196	200	204
VMC7B1	<abxcd></abxcd>	19	216	239	-	247
VVIV33	<efxeg></efxeg>	19	347	357	347	352
UDV31	<efxeg></efxeg>	19	132	157	132	125
VVIN74	<abxcd></abxcd>	19	282	286	284	290

Anhang 2a Auflistung aller rhAmpSeq-Marker, die zur genetischen Kartierung der Population TVxWe90 verwendet wurden. Das Segregationsmuster ist im JoinMap-Format dargestellt. Des Weiteren sind die Kopplungsgruppe (KG) und die physikalische Position des Markers anhand der *Vitis*-Kerngenomsequenz (PN40024, *V. cinerea* B9, *V. rupestris* B38, *V. x doaniana*, 'Jaeger 70', 'Chambourcin', 'Concord', 'Sultanina', 'Cabernet Sauvignon', 'Flame') in [bp] angegeben. Der Markername setzt sich aus den Abkürzungen "rh" für rhAmpSeq, "chrXY" für die Kopplungsgruppe und der physikalischen Position zusammen.

Name	Segregationsmuster	KG	Position [bp]
rh_chr01_00547952	<efxeg></efxeg>	01	00547952
rh_chr01_01400565	<nnxnp></nnxnp>	01	01400565
rh_chr01_02145831	<lmxll></lmxll>	01	02145831
rh_chr01_02306205	<lmxll></lmxll>	01	02306205
rh_chr01_03142598	<lmxll></lmxll>	01	03142598
rh_chr01_03523735	<hkxhk></hkxhk>	01	03523735
rh_chr01_04517681	<nnxnp></nnxnp>	01	04517681
rh_chr01_04613003	<nnxnp></nnxnp>	01	04613003
rh_chr01_05045973	<nnxnp></nnxnp>	01	05045973
rh_chr01_05782424	<nnxnp></nnxnp>	01	05782424
rh_chr01_05860561	<nnxnp></nnxnp>	01	05860561
rh_chr01_06034925	<lmxll></lmxll>	01	06034925
rh_chr01_07710739	<abxcd></abxcd>	01	07710739
rh_chr01_08017533	<efxeg></efxeg>	01	08017533
rh_chr01_08217621	<efxeg></efxeg>	01	08217621
rh_chr01_08477332	<efxeg></efxeg>	01	08477332
rh_chr01_09183554	<nnxnp></nnxnp>	01	09183554
rh_chr01_09388753	<nnxnp></nnxnp>	01	09388753
rh_chr01_10270991	<nnxnp></nnxnp>	01	10270991
rh_chr01_11409494	<efxeg></efxeg>	01	11409494
rh_chr01_12209767	<nnxnp></nnxnp>	01	12209767
rh_chr01_12994384	<abxcd></abxcd>	01	12994384
rh_chr01_13380398	<nnxnp></nnxnp>	01	13380398
rh_chr01_14789269	<efxeg></efxeg>	01	14789269
rh_chr01_16657949	<abxcd></abxcd>	01	16657949
rh_chr01_18659545	<lmxll></lmxll>	01	18659545
rh_chr01_19567235	<efxeg></efxeg>	01	19567235
rh_chr01_20624760	<hkxhk></hkxhk>	01	20624760
rh_chr01_21185705	<nnxnp></nnxnp>	01	21185705
rh_chr01_22123159	<abxcd></abxcd>	01	22123159
rh_chr01_23733091	<lmxll></lmxll>	01	23733091
rh_chr02_00010978	<lmxll></lmxll>	02	00010978
rh_chr02_00854531	<abxcd></abxcd>	02	00854531
rh_chr02_01626662	<hkxhk></hkxhk>	02	01626662
rh_chr02_01755729	<efxeg></efxeg>	02	01755729
rh_chr02_02263163	<nnxnp></nnxnp>	02	02263163
rh_chr02_02688648	<abxcd></abxcd>	02	02688648
rh_chr02_03061567	<abxcd></abxcd>	02	03061567

rh_chr02_03271376	<nnxnp></nnxnp>	02	03271376	
rh_chr02_03959655	<nnxnp></nnxnp>	02	03959655	
rh_chr02_05870753	<efxeg></efxeg>	02	05870753	
rh_chr02_06781830	<abxcd></abxcd>	02	06781830	
rh_chr02_07999319	<efxeg></efxeg>	02	07999319	
rh_chr02_08579012	<efxeg></efxeg>	02	08579012	
rh_chr02_18194652	<nnxnp></nnxnp>	02	18194652	
rh_chr02_18448449	<nnxnp></nnxnp>	02	18448449	
rh_chr03_01041616	<lmxll></lmxll>	03	01041616	
rh_chr03_00271381	<lmxll></lmxll>	03	00271381	
rh_chr03_00441478	<nnxnp></nnxnp>	03	00441478	
rh_chr03_00609816	<lmxll></lmxll>	03	00609816	
rh_chr03_00931142	<efxeg></efxeg>	03	00931142	
rh_chr03_01842464	<lmxll></lmxll>	03	01842464	
rh_chr03_02314233	<nnxnp></nnxnp>	03	02314233	
rh_chr03_02671385	<abxcd></abxcd>	03	02671385	
rh_chr03_02764075	<nnxnp></nnxnp>	03	02764075	
rh_chr03_03143022	<nnxnp></nnxnp>	03	03143022	
rh_chr03_03488939	<nnxnp></nnxnp>	03	03488939	
rh_chr03_03781609	<efxeg></efxeg>	03	03781609	
rh_chr03_04822693	<nnxnp></nnxnp>	03	04822693	
rh_chr03_05232850	<efxeg></efxeg>	03	05232850	
rh_chr03_05507072	<efxeg></efxeg>	03	05507072	
rh_chr03_06650857	<lmxll></lmxll>	03	06650857	
rh_chr03_07220808	<hkxhk></hkxhk>	03	07220808	
rh_chr03_08256808	<abxcd></abxcd>	03	08256808	
rh_chr03_08604250	<abxcd></abxcd>	03	08604250	
rh_chr03_09374964	<abxcd></abxcd>	03	09374964	
rh_chr03_14442063	<nnxnp></nnxnp>	03	14442063	
rh_chr03_19297395	<nnxnp></nnxnp>	03	19297395	
rh_chr04_01391400	<hkxhk></hkxhk>	04	01391400	
rh_chr04_02096842	<lmxll></lmxll>	04	02096842	
rh_chr04_02563214	<nnxnp></nnxnp>	04	02563214	
rh_chr04_02783868	<efxeg></efxeg>	04	02783868	
rh_chr04_03098243	<lmxll></lmxll>	04	03098243	
rh_chr04_03597502	<lmxll></lmxll>	04	03597502	
rh_chr04_04246018	<lmxll></lmxll>	04	04246018	
rh_chr04_04759072	<hkxhk></hkxhk>	04	04759072	
rh_chr04_04948818	<abxcd></abxcd>	04	04948818	
rh_chr04_05338718	<nnxnp></nnxnp>	04	05338718	
rh_chr04_06678764	<hkxhk></hkxhk>	04	06678764	
rh_chr04_06752086	<lmxll></lmxll>	04	06752086	
rh_chr04_06834788	<efxeg></efxeg>	04	06834788	

rh_chr04_07614182	<efxeg></efxeg>	04	07614182
rh_chr04_08778482	<lmxll></lmxll>	04	08778482
rh_chr04_09602051	<lmxll></lmxll>	04	09602051
rh_chr04_09800666	<lmxll></lmxll>	04	09800666
rh_chr04_11031511	<lmxll></lmxll>	04	11031511
rh_chr04_11238026	<lmxll></lmxll>	04	11238026
rh_chr04_11802988	<lmxll></lmxll>	04	11802988
rh_chr04_14162870	<lmxll></lmxll>	04	14162870
rh_chr04_14809627	<lmxll></lmxll>	04	14809627
rh_chr04_14964966	<lmxll></lmxll>	04	14964966
rh_chr04_16491374	<lmxll></lmxll>	04	16491374
rh_chr04_17799573	<nnxnp></nnxnp>	04	17799573
rh_chr04_18311071	<efxeg></efxeg>	04	18311071
rh_chr04_18700982	<efxeg></efxeg>	04	18700982
rh_chr04_19017335	<nnxnp></nnxnp>	04	19017335
rh_chr04_19762446	<efxeg></efxeg>	04	19762446
rh_chr04_20004123	<hkxhk></hkxhk>	04	20004123
rh_chr04_20436338	<nnxnp></nnxnp>	04	20436338
rh_chr04_21070680	<nnxnp></nnxnp>	04	21070680
rh_chr04_22215506	<lmxll></lmxll>	04	22215506
rh_chr04_22272053	<hkxhk></hkxhk>	04	22272053
rh_chr04_22331368	<nnxnp></nnxnp>	04	22331368
rh_chr04_22548287	<lmxll></lmxll>	04	22548287
rh_chr04_23092663	<lmxll></lmxll>	04	23092663
rh_chr04_23360446	<efxeg></efxeg>	04	23360446
rh_chr04_23421280	<efxeg></efxeg>	04	23421280
rh_chr05_00601862	<nnxnp></nnxnp>	05	00601862
rh_chr05_00727574	<nnxnp></nnxnp>	05	00727574
rh_chr05_00782424	<efxeg></efxeg>	05	00782424
rh_chr05_02193315	<abxcd></abxcd>	05	02193315
rh_chr05_02346684	<abxcd></abxcd>	05	02346684
rh_chr05_02429823	<abxcd></abxcd>	05	02429823
rh_chr05_02540724	<nnxnp></nnxnp>	05	02540724
rh_chr05_02671340	<nnxnp></nnxnp>	05	02671340
rh_chr05_02816543	<nnxnp></nnxnp>	05	02816543
rh_chr05_02898965	<nnxnp></nnxnp>	05	02898965
rh_chr05_02970834	<nnxnp></nnxnp>	05	02970834
rh_chr05_03163016	<nnxnp></nnxnp>	05	03163016
rh_chr05_03677473	<nnxnp></nnxnp>	05	03677473
rh_chr05_04088551	<hkxhk></hkxhk>	05	04088551
rh_chr05_04453596	<nnxnp></nnxnp>	05	04453596
rh_chr05_04631069	<nnxnp></nnxnp>	05	04631069
rh_chr05_04744451	<nnxnp></nnxnp>	05	04744451

rh_chr05_05336805	<efxeg></efxeg>	05	05336805	
rh_chr05_05451693	<abxcd></abxcd>	05	05451693	
rh_chr05_05541402	<hkxhk></hkxhk>	05	05541402	
rh_chr05_07075168	<nnxnp></nnxnp>	05	07075168	
rh_chr05_08075869	<nnxnp></nnxnp>	05	08075869	
rh_chr05_08486084	<nnxnp></nnxnp>	05	08486084	
rh_chr05_08669505	<nnxnp></nnxnp>	05	08669505	
rh_chr05_09418134	<nnxnp></nnxnp>	05	09418134	
rh_chr05_09760548	<abxcd></abxcd>	05	09760548	
rh_chr05_11411896	<lmxll></lmxll>	05	11411896	
rh_chr05_12317731	<abxcd></abxcd>	05	12317731	
rh_chr05_15849900	<efxeg></efxeg>	05	15849900	
rh_chr05_16184048	<abxcd></abxcd>	05	16184048	
rh_chr05_18637567	<efxeg></efxeg>	05	18637567	
rh_chr05_20164865	<nnxnp></nnxnp>	05	20164865	
rh_chr05_20429993	<efxeg></efxeg>	05	20429993	
rh_chr05_21389712	<lmxll></lmxll>	05	21389712	
rh_chr05_21582119	<abxcd></abxcd>	05	21582119	
rh_chr05_22732244	<nnxnp></nnxnp>	05	22732244	
rh_chr05_23885642	<efxeg></efxeg>	05	23885642	
rh_chr05_24329039	<nnxnp></nnxnp>	05	24329039	
rh_chr05_24901597	<nnxnp></nnxnp>	05	24901597	
rh_chr05_25379843	<lmxll></lmxll>	05	25379843	
rh_chr06_00102558	<abxcd></abxcd>	06	00102558	
rh_chr06_02092951	<nnxnp></nnxnp>	06	02092951	
rh_chr06_02674740	<efxeg></efxeg>	06	02674740	
rh_chr06_02818140	<nnxnp></nnxnp>	06	02818140	
rh_chr06_03423170	<nnxnp></nnxnp>	06	03423170	
rh_chr06_03629748	<abxcd></abxcd>	06	03629748	
rh_chr06_03839773	<lmxll></lmxll>	06	03839773	
rh_chr06_04193190	<nnxnp></nnxnp>	06	04193190	
rh_chr06_04597959	<lmxll></lmxll>	06	04597959	
rh_chr06_05143105	<nnxnp></nnxnp>	06	05143105	
rh_chr06_05752203	<lmxll></lmxll>	06	05752203	
rh_chr06_06016850	<nnxnp></nnxnp>	06	06016850	
rh_chr06_06873743	<nnxnp></nnxnp>	06	06873743	
rh_chr06_09426152	<hkxhk></hkxhk>	06	09426152	
rh_chr06_13115981	<abxcd></abxcd>	06	13115981	
rh_chr06_13622915	<nnxnp></nnxnp>	06	13622915	
rh_chr06_15252969	<lmxll></lmxll>	06	15252969	
rh_chr06_15775550	<efxeg></efxeg>	06	15775550	
rh_chr06_17449050	<efxeg></efxeg>	06	17449050	
rh_chr06_17974651	<efxeg></efxeg>	06	17974651	

rh_chr06_18520823	<abxcd></abxcd>	06	18520823	
rh_chr06_19096194	<efxeg></efxeg>	06	19096194	
rh_chr06_19860838	<nnxnp></nnxnp>	06	19860838	
rh_chr06_19937319	<efxeg></efxeg>	06	19937319	
rh_chr06_20569421	<nnxnp></nnxnp>	06	20569421	
rh_chr06_21811156	<nnxnp></nnxnp>	06	21811156	
rh_chr06_22086937	<nnxnp></nnxnp>	06	22086937	
rh_chr06_22153848	<nnxnp></nnxnp>	06	22153848	
rh_chr06_22260083	<nnxnp></nnxnp>	06	22260083	
rh_chr07_00748361	<nnxnp></nnxnp>	07	00748361	
rh_chr07_00848595	<efxeg></efxeg>	07	00848595	
rh_chr07_01223286	<nnxnp></nnxnp>	07	01223286	
rh_chr07_01406036	<nnxnp></nnxnp>	07	01406036	
rh_chr07_01796486	<nnxnp></nnxnp>	07	01796486	
rh_chr07_02131456	<nnxnp></nnxnp>	07	02131456	
rh_chr07_02435368	<efxeg></efxeg>	07	02435368	
rh_chr07_02771025	<nnxnp></nnxnp>	07	02771025	
rh_chr07_02950372	<abxcd></abxcd>	07	02950372	
rh_chr07_03625373	<abxcd></abxcd>	07	03625373	
rh_chr07_04112731	<efxeg></efxeg>	07	04112731	
rh_chr07_04373927	<efxeg></efxeg>	07	04373927	
rh_chr07_04663485	<efxeg></efxeg>	07	04663485	
rh_chr07_04749017	<lmxll></lmxll>	07	04749017	
rh_chr07_05012925	<nnxnp></nnxnp>	07	05012925	
rh_chr07_05300863	<nnxnp></nnxnp>	07	05300863	
rh_chr07_06083288	<nnxnp></nnxnp>	07	06083288	
rh_chr07_07447102	<efxeg></efxeg>	07	07447102	
rh_chr07_07588721	<efxeg></efxeg>	07	07588721	
rh_chr07_07829034	<nnxnp></nnxnp>	07	07829034	
rh_chr07_07990376	<efxeg></efxeg>	07	07990376	
rh_chr07_08155951	<nnxnp></nnxnp>	07	08155951	
rh_chr07_11956846	<nnxnp></nnxnp>	07	11956846	
rh_chr07_13861474	<efxeg></efxeg>	07	13861474	
rh_chr07_17219131	<nnxnp></nnxnp>	07	17219131	
rh_chr07_17378899	<efxeg></efxeg>	07	17378899	
rh_chr07_17910033	<nnxnp></nnxnp>	07	17910033	
rh_chr07_18097382	<nnxnp></nnxnp>	07	18097382	
rh_chr07_18437688	<abxcd></abxcd>	07	18437688	
rh_chr07_18701068	<nnxnp></nnxnp>	07	18701068	
rh_chr07_18762637	<nnxnp></nnxnp>	07	18762637	
rh_chr07_20279884	<lmxll></lmxll>	07	20279884	
rh_chr07_22250380	<efxeg></efxeg>	07	22250380	
rh_chr07_23068209	<lmxll></lmxll>	07	23068209	

rh_chr07_23438032	<efxeg></efxeg>	07	23438032
rh_chr07_23660749	<nnxnp></nnxnp>	07	23660749
rh_chr07_23844050	<lmxll></lmxll>	07	23844050
rh_chr07_24879814	<lmxll></lmxll>	07	24879814
rh_chr07_24967097	<lmxll></lmxll>	07	24967097
rh_chr07_26088532	<lmxll></lmxll>	07	26088532
rh_chr07_26249020	<lmxll></lmxll>	07	26249020
rh_chr07_26680230	<lmxll></lmxll>	07	26680230
rh_chr08_00030944	<abxcd></abxcd>	08	00030944
rh_chr08_00474142	<abxcd></abxcd>	08	00474142
rh_chr08_01222997	<efxeg></efxeg>	08	01222997
rh_chr08_02017540	<efxeg></efxeg>	08	02017540
rh_chr08_02250586	<abxcd></abxcd>	08	02250586
rh_chr08_02564886	<lmxll></lmxll>	08	02564886
rh_chr08_03320879	<efxeg></efxeg>	08	03320879
rh_chr08_04661848	<efxeg></efxeg>	08	04661848
rh_chr08_07224682	<efxeg></efxeg>	08	07224682
rh_chr08_08227840	<abxcd></abxcd>	08	08227840
rh_chr08_09332167	<efxeg></efxeg>	08	09332167
rh_chr08_10383725	<nnxnp></nnxnp>	08	10383725
rh_chr08_10993976	<efxeg></efxeg>	08	10993976
rh_chr08_11650720	<nnxnp></nnxnp>	08	11650720
rh_chr08_11992421	<nnxnp></nnxnp>	08	11992421
rh_chr08_12336402	<lmxll></lmxll>	08	12336402
rh_chr08_13104592	<lmxll></lmxll>	08	13104592
rh_chr08_14233651	<nnxnp></nnxnp>	08	14233651
rh_chr08_14700208	<nnxnp></nnxnp>	08	14700208
rh_chr08_14881905	<efxeg></efxeg>	08	14881905
rh_chr08_14968234	<efxeg></efxeg>	08	14968234
rh_chr08_15245498	<efxeg></efxeg>	08	15245498
rh_chr08_15673111	<nnxnp></nnxnp>	08	15673111
rh_chr08_15917624	<efxeg></efxeg>	08	15917624
rh_chr08_16390041	<efxeg></efxeg>	08	16390041
rh_chr08_17200985	<abxcd></abxcd>	08	17200985
rh_chr08_17684438	<efxeg></efxeg>	08	17684438
rh_chr08_19310146	<lmxll></lmxll>	08	19310146
rh_chr08_19745123	<efxeg></efxeg>	08	19745123
rh_chr08_20544048	<nnxnp></nnxnp>	08	20544048
rh_chr09_00516308	<efxeg></efxeg>	09	00516308
rh_chr09_01305204	<hkxhk></hkxhk>	09	01305204
rh_chr09_01575241	<nnxnp></nnxnp>	09	01575241
rh_chr09_01648912	<nnxnp></nnxnp>	09	01648912
rh_chr09_02133495	<nnxnp></nnxnp>	09	02133495

rh_chr09_02249377	<abxcd></abxcd>	09	02249377	
rh_chr09_02474475	<abxcd></abxcd>	09	02474475	
rh_chr09_03600480	<nnxnp></nnxnp>	09	03600480	
rh_chr09_04796302	<nnxnp></nnxnp>	09	04796302	
rh_chr09_04911190	<efxeg></efxeg>	09	04911190	
rh_chr09_06523189	<nnxnp></nnxnp>	09	06523189	
rh_chr09_06602203	<nnxnp></nnxnp>	09	06602203	
rh_chr09_07533649	<efxeg></efxeg>	09	07533649	
rh_chr09_08899256	<hkxhk></hkxhk>	09	08899256	
rh_chr09_09426423	<efxeg></efxeg>	09	09426423	
rh_chr09_09574105	<nnxnp></nnxnp>	09	09574105	
rh_chr09_13689984	<efxeg></efxeg>	09	13689984	
rh_chr09_16162865	<abxcd></abxcd>	09	16162865	
rh_chr09_18081402	<nnxnp></nnxnp>	09	18081402	
rh_chr09_18392600	<efxeg></efxeg>	09	18392600	
rh_chr09_18463570	<efxeg></efxeg>	09	18463570	
rh_chr09_19072322	<abxcd></abxcd>	09	19072322	
rh_chr09_19944895	<efxeg></efxeg>	09	19944895	
rh_chr09_20042224	<lmxll></lmxll>	09	20042224	
rh_chr09_20989379	<lmxll></lmxll>	09	20989379	
rh_chr09_22838327	<efxeg></efxeg>	09	22838327	
rh_chr10_00423938	<hkxhk></hkxhk>	10	00423938	
rh_chr10_01174215	<abxcd></abxcd>	10	01174215	
rh_chr10_01265993	<efxeg></efxeg>	10	01265993	
rh_chr10_02600993	<nnxnp></nnxnp>	10	02600993	
rh_chr10_02803328	<hkxhk></hkxhk>	10	02803328	
rh_chr10_02983812	<lmxll></lmxll>	10	02983812	
rh_chr10_04427721	<lmxll></lmxll>	10	04427721	
rh_chr10_05055530	<efxeg></efxeg>	10	05055530	
rh_chr10_05381836	<efxeg></efxeg>	10	05381836	
rh_chr10_05443410	<efxeg></efxeg>	10	05443410	
rh_chr10_06030347	<efxeg></efxeg>	10	06030347	
rh_chr10_06200947	<efxeg></efxeg>	10	06200947	
rh_chr10_06407241	<abxcd></abxcd>	10	06407241	
rh_chr10_06654857	<nnxnp></nnxnp>	10	06654857	
rh_chr10_06732153	<nnxnp></nnxnp>	10	06732153	
rh_chr10_07537254	<abxcd></abxcd>	10	07537254	
rh_chr10_08422060	<lmxll></lmxll>	10	08422060	
rh_chr10_08528547	<efxeg></efxeg>	10	08528547	
rh_chr10_09467495	<nnxnp></nnxnp>	10	09467495	
rh_chr10_10547760	<abxcd></abxcd>	10	10547760	
rh_chr10_11300534	<abxcd></abxcd>	10	11300534	
rh_chr10_11485987	<lmxll></lmxll>	10	11485987	
rh_chr10_12409898	<lmxll></lmxll>	10	12409898	
-------------------	-----------------	----	----------	
rh_chr10_12605914	<lmxll></lmxll>	10	12605914	
rh_chr10_19925824	<lmxll></lmxll>	10	19925824	
rh_chr10_20484984	<efxeg></efxeg>	10	20484984	
rh_chr10_20553231	<lmxll></lmxll>	10	20553231	
rh_chr10_21059800	<efxeg></efxeg>	10	21059800	
rh_chr10_23440244	<nnxnp></nnxnp>	10	23440244	
rh_chr11_00542859	<efxeg></efxeg>	11	00542859	
rh_chr11_00601198	<nnxnp></nnxnp>	11	00601198	
rh_chr11_00803595	<efxeg></efxeg>	11	00803595	
rh_chr11_01343142	<efxeg></efxeg>	11	01343142	
rh_chr11_02406678	<nnxnp></nnxnp>	11	02406678	
rh_chr11_02515310	<nnxnp></nnxnp>	11	02515310	
rh_chr11_02977354	<efxeg></efxeg>	11	02977354	
rh_chr11_03263224	<nnxnp></nnxnp>	11	03263224	
rh_chr11_03580540	<nnxnp></nnxnp>	11	03580540	
rh_chr11_03749132	<efxeg></efxeg>	11	03749132	
rh_chr11_04000176	<efxeg></efxeg>	11	04000176	
rh_chr11_04081344	<efxeg></efxeg>	11	04081344	
rh_chr11_04359180	<lmxll></lmxll>	11	04359180	
rh_chr11_06276211	<nnxnp></nnxnp>	11	06276211	
rh_chr11_07449768	<abxcd></abxcd>	11	07449768	
rh_chr11_07656746	<lmxll></lmxll>	11	07656746	
rh_chr11_09648408	<nnxnp></nnxnp>	11	09648408	
rh_chr11_14828475	<hkxhk></hkxhk>	11	14828475	
rh_chr11_17184199	<nnxnp></nnxnp>	11	17184199	
rh_chr11_17987786	<lmxll></lmxll>	11	17987786	
rh_chr11_18433819	<lmxll></lmxll>	11	18433819	
rh_chr11_18708021	<nnxnp></nnxnp>	11	18708021	
rh_chr11_18836141	<efxeg></efxeg>	11	18836141	
rh_chr11_19533500	<nnxnp></nnxnp>	11	19533500	
rh_chr11_20115217	<nnxnp></nnxnp>	11	20115217	
rh_chr12_00005638	<nnxnp></nnxnp>	12	00005638	
rh_chr12_00115867	<lmxll></lmxll>	12	00115867	
rh_chr12_00844914	<efxeg></efxeg>	12	00844914	
rh_chr12_00996164	<nnxnp></nnxnp>	12	00996164	
rh_chr12_01368028	<efxeg></efxeg>	12	01368028	
rh_chr12_01524783	<abxcd></abxcd>	12	01524783	
rh_chr12_01709224	<efxeg></efxeg>	12	01709224	
rh_chr12_01818274	<nnxnp></nnxnp>	12	01818274	
rh_chr12_02673100	<lmxll></lmxll>	12	02673100	
rh_chr12_02966354	<abxcd></abxcd>	12	02966354	
rh_chr12_03116725	<hkxhk></hkxhk>	12	03116725	

rh_chr12_03478868	<lmxll></lmxll>	12	03478868	
rh_chr12_03962172	<lmxll></lmxll>	12	03962172	
rh_chr12_05074355	<lmxll></lmxll>	12	05074355	
rh_chr12_05533572	<lmxll></lmxll>	12	05533572	
rh_chr12_05598767	<efxeg></efxeg>	12	05598767	
rh_chr12_05985351	<efxeg></efxeg>	12	05985351	
rh_chr12_06104436	<efxeg></efxeg>	12	06104436	
rh_chr12_06184851	<efxeg></efxeg>	12	06184851	
rh_chr12_06822792	<nnxnp></nnxnp>	12	06822792	
rh_chr12_07220783	<lmxll></lmxll>	12	07220783	
rh_chr12_08048809	<efxeg></efxeg>	12	08048809	
rh_chr12_08493396	<efxeg></efxeg>	12	08493396	
rh_chr12_08944870	<nnxnp></nnxnp>	12	08944870	
rh_chr12_09605397	<abxcd></abxcd>	12	09605397	
rh_chr12_09691021	<nnxnp></nnxnp>	12	09691021	
rh_chr12_09898269	<lmxll></lmxll>	12	09898269	
rh_chr12_14587489	<lmxll></lmxll>	12	14587489	
rh_chr12_15428839	<lmxll></lmxll>	12	15428839	
rh_chr12_18779599	<efxeg></efxeg>	12	18779599	
rh_chr12_19037725	<efxeg></efxeg>	12	19037725	
rh_chr12_19467018	<efxeg></efxeg>	12	19467018	
rh_chr12_20018956	<abxcd></abxcd>	12	20018956	
rh_chr12_20361061	<efxeg></efxeg>	12	20361061	
rh_chr12_20594460	<nnxnp></nnxnp>	12	20594460	
rh_chr12_21873473	<abxcd></abxcd>	12	21873473	
rh_chr12_21952129	<nnxnp></nnxnp>	12	21952129	
rh_chr12_22346427	<lmxll></lmxll>	12	22346427	
rh_chr12_22430141	<hkxhk></hkxhk>	12	22430141	
rh_chr12_22516082	<lmxll></lmxll>	12	22516082	
rh_chr12_22586794	<abxcd></abxcd>	12	22586794	
rh_chr12_23834651	<nnxnp></nnxnp>	12	23834651	
rh_chr12_24104070	<nnxnp></nnxnp>	12	24104070	
rh_chr13_00507206	<nnxnp></nnxnp>	13	00507206	
rh_chr13_00688776	<nnxnp></nnxnp>	13	00688776	
rh_chr13_01211616	<nnxnp></nnxnp>	13	01211616	
rh_chr13_01298235	<nnxnp></nnxnp>	13	01298235	
rh_chr13_02230274	<nnxnp></nnxnp>	13	02230274	
rh_chr13_02994658	<nnxnp></nnxnp>	13	02994658	
rh_chr13_03335044	<nnxnp></nnxnp>	13	03335044	
rh_chr13_04021260	<nnxnp></nnxnp>	13	04021260	
rh_chr13_05625117	<nnxnp></nnxnp>	13	05625117	
rh_chr13_05863106	<nnxnp></nnxnp>	13	05863106	
rh_chr13_06540716	<nnxnp></nnxnp>	13	06540716	

rh_chr13_07620093	<nnxnp></nnxnp>	13	07620093	
rh_chr13_08308812	<nnxnp></nnxnp>	13	08308812	
rh_chr13_08681863	<hkxhk></hkxhk>	13	08681863	
rh_chr13_08898279	<nnxnp></nnxnp>	13	08898279	
rh_chr13_13390889	<nnxnp></nnxnp>	13	13390889	
rh_chr13_15736455	<nnxnp></nnxnp>	13	15736455	
rh_chr13_16075743	<nnxnp></nnxnp>	13	16075743	
rh_chr13_18487980	<nnxnp></nnxnp>	13	18487980	
rh_chr13_18789364	<nnxnp></nnxnp>	13	18789364	
rh_chr13_20576036	<nnxnp></nnxnp>	13	20576036	
rh_chr13_25721137	<nnxnp></nnxnp>	13	25721137	
rh_chr13_27714695	<hkxhk></hkxhk>	13	27714695	
rh_chr13_27978882	<nnxnp></nnxnp>	13	27978882	
rh_chr13_28631883	<efxeg></efxeg>	13	28631883	
rh_chr14_00594524	<efxeg></efxeg>	14	00594524	
rh_chr14_00836379	<efxeg></efxeg>	14	00836379	
rh_chr14_01159858	<nnxnp></nnxnp>	14	01159858	
rh_chr14_01593532	<abxcd></abxcd>	14	01593532	
rh_chr14_02055250	<nnxnp></nnxnp>	14	02055250	
rh_chr14_02736359	<lmxll></lmxll>	14	02736359	
rh_chr14_03303300	<efxeg></efxeg>	14	03303300	
rh_chr14_04228742	<nnxnp></nnxnp>	14	04228742	
rh_chr14_04941220	<efxeg></efxeg>	14	04941220	
rh_chr14_05966808	<efxeg></efxeg>	14	05966808	
rh_chr14_06495285	<nnxnp></nnxnp>	14	06495285	
rh_chr14_07296877	<hkxhk></hkxhk>	14	07296877	
rh_chr14_07624685	<efxeg></efxeg>	14	07624685	
rh_chr14_08308158	<hkxhk></hkxhk>	14	08308158	
rh_chr14_08871788	<hkxhk></hkxhk>	14	08871788	
rh_chr14_10743715	<lmxll></lmxll>	14	10743715	
rh_chr14_13378081	<abxcd></abxcd>	14	13378081	
rh_chr14_14755965	<abxcd></abxcd>	14	14755965	
rh_chr14_16067239	<nnxnp></nnxnp>	14	16067239	
rh_chr14_16253640	<nnxnp></nnxnp>	14	16253640	
rh_chr14_17077376	<nnxnp></nnxnp>	14	17077376	
rh_chr14_20102426	<efxeg></efxeg>	14	20102426	
rh_chr14_20859566	<lmxll></lmxll>	14	20859566	
rh_chr14_21323785	<efxeg></efxeg>	14	21323785	
rh_chr14_21821143	<efxeg></efxeg>	14	21821143	
rh_chr14_21885849	<abxcd></abxcd>	14	21885849	
rh_chr14_22696262	<nnxnp></nnxnp>	14	22696262	
rh_chr14_22993902	<efxeg></efxeg>	14	22993902	
rh_chr14_25156315	<hkxhk></hkxhk>	14	25156315	

rh_chr14_25292543	<nnxnp></nnxnp>	14	25292543
rh_chr14_25365836	<nnxnp></nnxnp>	14	25365836
rh_chr14_25499021	<hkxhk></hkxhk>	14	25499021
rh_chr14_26224717	<efxeg></efxeg>	14	26224717
rh_chr14_26687062	<nnxnp></nnxnp>	14	26687062
rh_chr14_26802285	<efxeg></efxeg>	14	26802285
rh_chr14_26877597	<lmxll></lmxll>	14	26877597
rh_chr14_27425134	<hkxhk></hkxhk>	14	27425134
rh_chr14_27607541	<lmxll></lmxll>	14	27607541
rh_chr14_27729833	<lmxll></lmxll>	14	27729833
rh_chr14_27926007	<nnxnp></nnxnp>	14	27926007
rh_chr14_28292032	<lmxll></lmxll>	14	28292032
rh_chr14_29446606	<efxeg></efxeg>	14	29446606
rh_chr14_30126656	<efxeg></efxeg>	14	30126656
rh_chr15_00177997	<nnxnp></nnxnp>	15	00177997
rh_chr15_02868330	<efxeg></efxeg>	15	02868330
rh_chr15_06996975	<efxeg></efxeg>	15	06996975
rh_chr15_08267292	<nnxnp></nnxnp>	15	08267292
rh_chr15_08357773	<nnxnp></nnxnp>	15	08357773
rh_chr15_09562659	<nnxnp></nnxnp>	15	09562659
rh_chr15_09660835	<lmxll></lmxll>	15	09660835
rh_chr15_09799495	<nnxnp></nnxnp>	15	09799495
rh_chr15_09993215	<nnxnp></nnxnp>	15	09993215
rh_chr15_10257839	<efxeg></efxeg>	15	10257839
rh_chr15_10851058	<lmxll></lmxll>	15	10851058
rh_chr15_11503363	<lmxll></lmxll>	15	11503363
rh_chr15_11792802	<nnxnp></nnxnp>	15	11792802
rh_chr15_12253375	<abxcd></abxcd>	15	12253375
rh_chr15_13822901	<efxeg></efxeg>	15	13822901
rh_chr15_15294725	<efxeg></efxeg>	15	15294725
rh_chr15_15355400	<nnxnp></nnxnp>	15	15355400
rh_chr15_15468122	<efxeg></efxeg>	15	15468122
rh_chr15_15543151	<nnxnp></nnxnp>	15	15543151
rh_chr15_16450847	<abxcd></abxcd>	15	16450847
rh_chr15_16667790	<nnxnp></nnxnp>	15	16667790
rh_chr15_16737213	<abxcd></abxcd>	15	16737213
rh_chr15_16810432	<nnxnp></nnxnp>	15	16810432
rh_chr15_17146098	<efxeg></efxeg>	15	17146098
rh_chr15_17224145	<nnxnp></nnxnp>	15	17224145
rh_chr15_17991582	<nnxnp></nnxnp>	15	17991582
rh_chr15_18318476	<nnxnp></nnxnp>	15	18318476
rh_chr15_18480191	<nnxnp></nnxnp>	15	18480191
rh_chr15_18688959	<nnxnp></nnxnp>	15	18688959

rh_chr15_18821643	<nnxnp></nnxnp>	15	18821643	
rh_chr15_19261933	<nnxnp></nnxnp>	15	19261933	
rh_chr15_19600528	<nnxnp></nnxnp>	15	19600528	
rh_chr16_00911072	<efxeg></efxeg>	16	00911072	
rh_chr16_00976496	<efxeg></efxeg>	16	00976496	
rh_chr16_01067628	<nnxnp></nnxnp>	16	01067628	
rh_chr16_02212134	<efxeg></efxeg>	16	02212134	
rh_chr16_02376878	<efxeg></efxeg>	16	02376878	
rh_chr16_06018898	<efxeg></efxeg>	16	06018898	
rh_chr16_06070066	<lmxll></lmxll>	16	06070066	
rh_chr16_09817859	<nnxnp></nnxnp>	16	09817859	
rh_chr16_12037326	<efxeg></efxeg>	16	12037326	
rh_chr16_12698705	<hkxhk></hkxhk>	16	12698705	
rh_chr16_12729188	<efxeg></efxeg>	16	12729188	
rh_chr16_14911808	<abxcd></abxcd>	16	14911808	
rh_chr16_15611288	<nnxnp></nnxnp>	16	15611288	
rh_chr16_18232369	<nnxnp></nnxnp>	16	18232369	
rh_chr16_19830398	<nnxnp></nnxnp>	16	19830398	
rh_chr16_19924082	<efxeg></efxeg>	16	19924082	
rh_chr16_20304713	<efxeg></efxeg>	16	20304713	
rh_chr16_22580044	<nnxnp></nnxnp>	16	22580044	
rh_chr16_22751612	<nnxnp></nnxnp>	16	22751612	
rh_chr16_22811338	<abxcd></abxcd>	16	22811338	
rh_chr16_22877339	<nnxnp></nnxnp>	16	22877339	
rh_chr16_23084690	<lmxll></lmxll>	16	23084690	
rh_chr16_23327502	<lmxll></lmxll>	16	23327502	
rh_chr17_00287812	<efxeg></efxeg>	17	00287812	
rh_chr17_00565468	<abxcd></abxcd>	17	00565468	
rh_chr17_00765729	<efxeg></efxeg>	17	00765729	
rh_chr17_01413957	<nnxnp></nnxnp>	17	01413957	
rh_chr17_01756458	<nnxnp></nnxnp>	17	01756458	
rh_chr17_02443257	<nnxnp></nnxnp>	17	02443257	
rh_chr17_03492286	<nnxnp></nnxnp>	17	03492286	
rh_chr17_05060931	<hkxhk></hkxhk>	17	05060931	
rh_chr17_05258199	<hkxhk></hkxhk>	17	05258199	
rh_chr17_05707009	<nnxnp></nnxnp>	17	05707009	
rh_chr17_06623514	<hkxhk></hkxhk>	17	06623514	
rh_chr17_06745403	<hkxhk></hkxhk>	17	06745403	
rh_chr17_07134878	<hkxhk></hkxhk>	17	07134878	
rh_chr17_07292907	<efxeg></efxeg>	17	07292907	
rh_chr17_07609398	<hkxhk></hkxhk>	17	07609398	
rh_chr17_08608505	<efxeg></efxeg>	17	08608505	
rh_chr17_08686547	<nnxnp></nnxnp>	17	08686547	

rh_chr17_09353710	<efxeg></efxeg>	17	09353710	
rh_chr17_09692661	<efxeg></efxeg>	17	09692661	
rh_chr17_10114348	<lmxll></lmxll>	17	10114348	
rh_chr17_12640993	<nnxnp></nnxnp>	17	12640993	
rh_chr17_13928628	<efxeg></efxeg>	17	13928628	
rh_chr17_16303050	<nnxnp></nnxnp>	17	16303050	
rh_chr17_18015932	<lmxll></lmxll>	17	18015932	
rh_chr18_00474745	<lmxll></lmxll>	18	00474745	
rh_chr18_00582430	<lmxll></lmxll>	18	00582430	
rh_chr18_01782705	<nnxnp></nnxnp>	18	01782705	
rh_chr18_02022059	<nnxnp></nnxnp>	18	02022059	
rh_chr18_02286800	<nnxnp></nnxnp>	18	02286800	
rh_chr18_03555950	<nnxnp></nnxnp>	18	03555950	
rh_chr18_03752475	<nnxnp></nnxnp>	18	03752475	
rh_chr18_03952793	<lmxll></lmxll>	18	03952793	
rh_chr18_06012983	<efxeg></efxeg>	18	06012983	
rh_chr18_06135846	<nnxnp></nnxnp>	18	06135846	
rh_chr18_06936362	<lmxll></lmxll>	18	06936362	
rh_chr18_07076548	<abxcd></abxcd>	18	07076548	
rh_chr18_07128961	<efxeg></efxeg>	18	07128961	
rh_chr18_07809270	<efxeg></efxeg>	18	07809270	
rh_chr18_07997064	<nnxnp></nnxnp>	18	07997064	
rh_chr18_08343849	<nnxnp></nnxnp>	18	08343849	
rh_chr18_08494785	<nnxnp></nnxnp>	18	08494785	
rh_chr18_08594348	<nnxnp></nnxnp>	18	08594348	
rh_chr18_08759038	<nnxnp></nnxnp>	18	08759038	
rh_chr18_08998759	<nnxnp></nnxnp>	18	08998759	
rh_chr18_09976929	<nnxnp></nnxnp>	18	09976929	
rh_chr18_10304487	<efxeg></efxeg>	18	10304487	
rh_chr18_10762383	<efxeg></efxeg>	18	10762383	
rh_chr18_10907482	<efxeg></efxeg>	18	10907482	
rh_chr18_11215764	<abxcd></abxcd>	18	11215764	
rh_chr18_11286900	<efxeg></efxeg>	18	11286900	
rh_chr18_11350114	<efxeg></efxeg>	18	11350114	
rh_chr18_11482876	<abxcd></abxcd>	18	11482876	
rh_chr18_11553491	<efxeg></efxeg>	18	11553491	
rh_chr18_11614594	<efxeg></efxeg>	18	11614594	
rh_chr18_13105502	<nnxnp></nnxnp>	18	13105502	
rh_chr18_13446367	<nnxnp></nnxnp>	18	13446367	
rh_chr18_14135632	<abxcd></abxcd>	18	14135632	
rh_chr18_14491995	<abxcd></abxcd>	18	14491995	
rh_chr18_14551153	<abxcd></abxcd>	18	14551153	
rh_chr18_17295477	<nnxnp></nnxnp>	18	17295477	

rh_chr18_18048055	<nnxnp></nnxnp>	18	18048055	
rh_chr18_22144736	<nnxnp></nnxnp>	18	22144736	
rh_chr18_22455321	<lmxll></lmxll>	18	22455321	
rh_chr18_22829291	<efxeg></efxeg>	18	22829291	
rh_chr18_23887396	<abxcd></abxcd>	18	23887396	
rh_chr18_24904198	<abxcd></abxcd>	18	24904198	
rh_chr18_28307719	<efxeg></efxeg>	18	28307719	
rh_chr18_30314724	<abxcd></abxcd>	18	30314724	
rh_chr18_31185354	<lmxll></lmxll>	18	31185354	
rh_chr18_31885147	<hkxhk></hkxhk>	18	31885147	
rh_chr18_34123552	<lmxll></lmxll>	18	34123552	
rh_chr18_34381037	<lmxll></lmxll>	18	34381037	
rh_chr19_00197793	<nnxnp></nnxnp>	19	00197793	
rh_chr19_00271672	<nnxnp></nnxnp>	19	00271672	
rh_chr19_00377073	<efxeg></efxeg>	19	00377073	
rh_chr19_00472320	<abxcd></abxcd>	19	00472320	
rh_chr19_01219270	<nnxnp></nnxnp>	19	01219270	
rh_chr19_01306780	<lmxll></lmxll>	19	01306780	
rh_chr19_01367967	<lmxll></lmxll>	19	01367967	
rh_chr19_01471481	<nnxnp></nnxnp>	19	01471481	
rh_chr19_01954527	<nnxnp></nnxnp>	19	01954527	
rh_chr19_02036017	<nnxnp></nnxnp>	19	02036017	
rh_chr19_02689517	<lmxll></lmxll>	19	02689517	
rh_chr19_03299138	<nnxnp></nnxnp>	19	03299138	
rh_chr19_05072068	<efxeg></efxeg>	19	05072068	
rh_chr19_05230241	<efxeg></efxeg>	19	05230241	
rh_chr19_05807614	<lmxll></lmxll>	19	05807614	
rh_chr19_06154322	<nnxnp></nnxnp>	19	06154322	
rh_chr19_06382258	<lmxll></lmxll>	19	06382258	
rh_chr19_06602361	<lmxll></lmxll>	19	06602361	
rh_chr19_07055420	<lmxll></lmxll>	19	07055420	
rh_chr19_08133480	<nnxnp></nnxnp>	19	08133480	
rh_chr19_08566871	<nnxnp></nnxnp>	19	08566871	
rh_chr19_08657020	<abxcd></abxcd>	19	08657020	
rh_chr19_08787547	<nnxnp></nnxnp>	19	08787547	
rh_chr19_09151792	<nnxnp></nnxnp>	19	09151792	
rh_chr19_09229826	<nnxnp></nnxnp>	19	09229826	
rh_chr19_09748768	<lmxll></lmxll>	19	09748768	
rh_chr19_10666680	<lmxll></lmxll>	19	10666680	
rh_chr19_10724583	<lmxll></lmxll>	19	10724583	
rh_chr19_10825978	<efxeg></efxeg>	19	10825978	
rh_chr19_10968935	<abxcd></abxcd>	19	10968935	
rh_chr19_14659354	<efxeg></efxeg>	19	14659354	

rh_chr19_16545270	<nnxnp></nnxnp>	19	16545270
rh_chr19_19495933	<hkxhk></hkxhk>	19	19495933
rh_chr19_19968859	<hkxhk></hkxhk>	19	19968859
rh_chr19_22763652	<lmxll></lmxll>	19	22763652
rh_chr19_22967359	<lmxll></lmxll>	19	22967359
rh_chr19_23034666	<efxeg></efxeg>	19	23034666
rh_chr19_23614226	<lmxll></lmxll>	19	23614226
rh_chr19_24344947	<lmxll></lmxll>	19	24344947
rh_chr19_24538531	<lmxll></lmxll>	19	24538531
rh_chr19_24632229	<lmxll></lmxll>	19	24632229

Anhang 2b Auflistung aller rhAmpSeq-Marker, die zur genetischen Kartierung der Population CFxTA verwendet wurden. Das Segregationsmuster ist im JoinMap-Format dargestellt. Des Weiteren sind die Kopplungsgruppe (KG) und die physikalische Position des Markers anhand der *Vitis*-Kerngenomsequenz (PN40024, *V. cinerea* B9, *V. rupestris* B38, *V. x doaniana*, 'Jaeger 70', 'Chambourcin', 'Concord', 'Sultanina', 'Cabernet Sauvignon', 'Flame') in [bp] angegeben. Der Markername setzt sich aus den Abkürzungen "rh" für rhAmpSeq, "chrXY" für die Kopplungsgruppe und der physikalischen Position zusammen. Die Marker, die im Bereich der QTLs auf KG 12 und KG 17 liegen oder diesen flankieren, sind rot gekennzeichnet.

Name	Segregationsmuster	KG	Position [bp]
rh_chr01_00268616	<nnxnp></nnxnp>	01	00268616
rh_chr01_00547952	<abxcd></abxcd>	01	00547952
rh_chr01_01170229	<abxcd></abxcd>	01	01170229
rh_chr01_10502666	<abxcd></abxcd>	01	10502666
rh_chr01_17053165	<abxcd></abxcd>	01	17053165
rh_chr01_22123159	<abxcd></abxcd>	01	22123159
rh_chr02_03271376	<efxeg></efxeg>	02	03271376
rh_chr02_10104598	<efxeg></efxeg>	02	10104598
rh_chr02_18448449	<efxeg></efxeg>	02	18448449
rh_chr03_00931142	<efxeg></efxeg>	03	00931142
rh_chr03_01842464	<abxcd></abxcd>	03	01842464
rh_chr04_04948818	<efxeg></efxeg>	04	04948818
rh_chr05_00601862	<efxeg></efxeg>	05	00601862
rh_chr05_23626031	<efxeg></efxeg>	05	23626031
rh_chr08_00474142	<efxeg></efxeg>	08	00474142
rh_chr08_04661848	<efxeg></efxeg>	08	04661848
rh_chr08_10146498	<efxeg></efxeg>	08	10146498
rh_chr08_15673111	<efxeg></efxeg>	08	15673111
rh_chr10_00423938	<abxcd></abxcd>	10	00423938
rh_chr10_01111687	<efxeg></efxeg>	10	01111687
rh_chr10_10475020	<efxeg></efxeg>	10	10475020
rh_chr11_00691194	<nnxnp></nnxnp>	11	00691194
rh_chr11_02406678	<efxeg></efxeg>	11	02406678
rh_chr11_09648408	<abxcd></abxcd>	11	09648408
rh_chr11_13254270	<nnxnp></nnxnp>	11	13254270
rh_chr12_05533572	<efxeg></efxeg>	12	05533572
rh_chr12_23504918	<abxcd></abxcd>	12	23504918
rh_chr13_01298235	<nnxnp></nnxnp>	13	01298235
rh_chr13_06033227	<abxcd></abxcd>	13	06033227
rh_chr13_13501864	<nnxnp></nnxnp>	13	13501864
rh_chr13_16250951	<abxcd></abxcd>	13	16250951
rh_chr13_27714695	<abxcd></abxcd>	13	27714695
rh_chr14_03303300	<abxcd></abxcd>	14	03303300
rh_chr14_08871788	<efxeg></efxeg>	14	08871788
rh_chr14_25292543	<efxeg></efxeg>	14	25292543
rh_chr14_30126656	<efxeg></efxeg>	14	30126656
rh_chr15_06458112	<efxeg></efxeg>	15	06458112

rh_chr15_09799495	<efxeg></efxeg>	15	09799495
rh_chr15_11792802	<abxcd></abxcd>	15	11792802
rh_chr15_16066225	<abxcd></abxcd>	15	16066225
rh_chr15_19600528	<efxeg></efxeg>	15	19600528
rh_chr16_02212134	<abxcd></abxcd>	16	02212134
rh_chr16_19027656	<abxcd></abxcd>	16	19027656
rh_chr16_22877339	<efxeg></efxeg>	16	22877339
rh_chr17_13991916	<abxcd></abxcd>	17	13991916
rh_chr17_18015932	<abxcd></abxcd>	17	18015932
rh_chr19_05072068	<efxeg></efxeg>	19	05072068

Anhang 3a Darstellung und Beschreibung des Datensatzes aus den Mittelwerten der Versuche 2019-1, 2019-2 und 2020 in Form eines Box-Plots (A) und eines Q-Q-Plots (B). Die Graphiken wurden mit dem Paket "stats" der Software RStudio erstellt. Für den Box-Plot (A) sind Median (M), unteres (Q_1) und oberes (Q_2) Quartil, sowie unterer (W_1) und oberer (W_2) Whisker angegeben. Im Fall des Q-Q-Plots wurde eine lineare Trendlinie eingezeichnet.

Der Box-Plot (A) ist in Abhängigkeit des Infektionsgrades (vertikale Achse) dargestellt. Der Median ist für den Infektionsgrad 3 definiert und spiegelt somit die größte Gruppe des Datensatzes wieder, die mit dieser Note bonitiert wurden. Durch das untere (Infektionsgrad 2) und obere (Infektionsgrad 5) Quartil ist der Großteil des Datensatzes begrenzt. Die Whisker geben jeweils den maximalen (9) und minimalen Wert für den Infektionsgrad an. Im Q-Q-Plot (B) sind die theoretischen Quantile (horizontale Achse) den Noten zur Bestimmung des Infektionsgrades (vertikale Achse) zugeordnet. Die Datenpunkte im Diagramm verteilen sich auf und um eine Trendlinie, die als Maß einer optimalen Normalverteilung eingezeichnet wurde. Es ist zu erkennen, dass vor allem Datenpunkte, die besonders niedrigen und hohen Infektionsgraden zugeordnet sind, von der Trendlinie abweichen.

Anhang 3b Darstellung und Beschreibung der Datensätze aus den Mittelwerten der Versuchsvarianten BSTF, BSTG und FB in Form von Box-Plots. Diese wurden mit dem Paket "stats" der Software RStudio erstellt. Es sind Median (M), unteres (Q_1) und oberes (Q_2) Quartil, sowie unterer (W_1) und oberer (W_2) Whisker angegeben. Extremwerte sind durch einen Punkt dargestellt.

Die Box-Plots für die unterschiedlichen Versuchsvarianten BSTF, BSTG und FB veranschaulichen die Mittelwerte der Datensätze hinsichtlich des Infektionsgrades der gruppierten Individuen. Wie auch im Histogramm, ist der Median bei einem Infektionsgrad von annährend 5 im Fall der Box-Plots für die Versuchsvarianten BSTF und BSTG angegeben. Auch die unteren und oberen Quartile grenzen den Großteil der Daten zwischen Infektionsgrad 4 und 6 ein. Der Box-Plot, der die Daten der Freilandbonituren veranschaulicht, scheint tendenziell in Richtung höherer Boniturwerte verschoben zu sein. Dies ist durch einen Medianwert zwischen 5 und 6 veranschaulicht. Des Weiteren begrenzen die Quartile einen größeren Datenbereich, der durch den Medianwert auffällig asymmetrisch unterteilt ist. Die Whisker definieren den Rahmen der Verteilungen anhand des maximalen und minimalen Infektionsgrades. Messwerte, die eine Extremposition in einer Verteilung darstellen sind durch Punkte außerhalb der Whisker veranschaulicht. Obwohl die Datensätze BSTF und BSTG extreme Messwerte aufweisen, ist durch die graphisch dargestellten Box-Plots eine Ähnlichkeit zur Normalverteilung zu erkennen. Der Box-Plot, der die Daten der Freilandbonituren veranschaulicht, weicht davon ab. Diese Beobachtung wird in Anhang 3c durch die Darstellung der Datensätze in Form von Q-Q-Plots unterstützt. Hierbei sind die Infektionsgrade der Daten in Abhängigkeit der berechneten theoretischen Quantile dargestellt.

Anhang 3c Darstellung und Beschreibung der Datensätze aus den Mittelwerten der Versuchsvarianten BSTF (A), BSTG (B) und FB (C) in Form von Q-Q-Plots. Die Graphiken wurden mit dem Paket "stats" der Software RStudio erstellt. Es wurde eine lineare Trendlinie eingezeichnet.

Die Datenpunkte der Versuchsvarianten BSTF (A) und BSTG (B), die durch die Q-Q-Plots zu erkennen sind, entsprechen jeweils annähernd der linearen Trendlinie. Diese ist als Maß einer optimalen Normalverteilung eingezeichnet. Dahingegen ist zu erkennen, dass die Punkte aus dem Datensatz FB (C) teilweise erheblich von der Trendlinie abweichen.

Anhang 4a Boniturdaten (gerundeter Mittelwert) der Jahre 2019 und 2020 aus den Blattscheibentests der Population TVxWe90, die unter anderem zur Berechnung der Spearman-Rangkorrelation verwendet wurden. Die Berechnung erfolgte mit der Software RStudio Version 3.6.1 (R Core Team 2020). In der Tabelle sind außerdem der Mittelwert (\bar{x}) und die Standardabweichung (σ) aus den mittleren Infektionsgraden der Versuche für jedes einzelne Individuum angegeben. Für fehlende Boniturdaten ist ein "-" eingetragen.

Individuum	Infektion	nsgrad (x)	Mittelwert (x)	Standardabweichung (σ)
	2019	2020		
1	2	4	3.0	1.4
2	5	-	5.0	-
3	3	3	3.0	0.0
4	7	6	6.5	0.7
5	2	3	2.5	0.7
6	5	3	4.0	1.4
7	4	7	5.5	2.1
8	2	-	2.0	-
9	7	5	6.0	1.4
10	2	4	3.0	1.4
11	2	4	3.0	1.4
12	2	4	3.0	1.4
13	1	-	1.0	-
14	-	-	-	-
15	-	-	-	-
16	1	3	2.0	1.4
17	3	8	5.5	3.5
18	5	5	5.0	0.0
19	2	3	2.5	0.7
20	1	3	2.0	1.4
21	3	3	3.0	0.0
22	5	-	5.0	_
23	7	-	7.0	
24	7	6	6.5	0.7
25	1	1	1.0	0.0
26	1	3	2.0	1.4
27	-	-	-	-
28	2	2	2.0	0.0
29	4	4	4.0	0.0
30	1	3	2.0	1.4
31	4	-	4.0	-
32	1	-	1.0	-
33	_	-	-	-
34	2	5	3.5	2.1
35	6	-	6.0	
36	2	-	2.0	
37	-	-	-	_
38	2	4	3.0	1.4
39	2	-	2.0	-

40	-	_	-	-
41	-	5	5.0	_
42	-	3	3.0	_
43	-	-	-	_
44	3	_	3.0	_
45	-	-	-	_
46	-	-	-	_
47	8	7	7.5	0.7
48	7	4	5.5	2.1
49	-	_	-	-
50	1	3	2.0	1.4
51	3	-	3.0	-
52	1	_	1.0	-
53	-	-	-	-
54	2	1	1.5	0.7
55	3	4	3.5	0.7
56	6	4	5.0	1.4
57	6	_	6.0	-
58	1	2	1.5	0.7
59	7	4	5.5	2.1
60	2	5	3.5	2.1
61	2	-	2.0	-
62	4	2	3.0	1.4
63	3	5	4.0	1.4
64	4	-	4.0	-
65	_	-	-	-
66	1	3	2.0	1.4
67	3	3	3.0	0.0
68	2	3	2.5	0.7
69	-	-	-	-
70	2	-	2.0	-
71	7	6	6.5	0.7
72	2	3	2.5	0.7
73	-	2	2.0	-
74	3	4	3.5	0.7
75	1	2	1.5	0.7
76	-	-	-	-
77	8	7	7.5	0.7
78	2	3	2.5	0.7
79	-	-	-	-
80	3	2	2.5	0.7
81	3	3	3.0	0.0
82	4	7	5.5	2.1
83	-	3	3.0	-
84	-	-	-	-

85	4	3	3.5	0.7
86	1	1	1.0	0.0
87	-	_	-	-
88	6	4	5.0	1.4
89	3	2	2.5	0.7
90	3	3	3.0	0.0
91	8	_	8.0	-
92	7	_	7.0	-
93	1	_	1.0	-
94	1	3	2.0	1.4
95	-	-	_	-
96	6	-	6.0	-
97	-	-	-	-
98	4	7	5.5	2.1
99	6	8	7.0	1.4
100	-	-	-	-
101	2	-	2.0	-
102	2	1	1.5	0.7
103	4	7	5.5	2.1
104	-	-	-	-
105	-	-	-	-
106	5	-	5.0	-
107	5	6	5.5	0.7
108	-	-	-	-
109	8	6	7.0	1.4
110	5	5	5.0	0.0
111	-	-	-	-
112	2	2	2.0	0.0
113	6	5	5.5	0.7
114	6	5	5.5	0.7
115	-	-	-	-
116	-	-	-	-
117	5	-	5.0	-
118	1	1	1.0	0.0
119	-	-	-	-
120	-	-	-	-
121	4	7	5.5	2.1
122	4	-	4.0	-
123	1	1	1.0	0.0
124	3	2	2.5	0.7
125	-	-	-	-
126	5	5	5.0	0.0
127	3	3	3.0	0.0
128	2	1	1.5	0.7
129	5	1	3.0	2.8

130	5	6	5.5	0.7	_
131	-	-	-	-	
132	-	-	-	-	_
133	-	-	-	-	
134	5	3	4.0	1.4	
135	1	-	1.0	-	
136	-	-	-	-	
137	7	-	7.0	-	
138	-	-	-	-	
139	6	3	4.5	2.1	
140	1	1	1.0	0.0	
141	_	_	-	-	
142	6	2	4.0	2.8	
143	1	2	1.5	0.7	
144	4	4	4.0	0.0	
145	9	4	6.5	3.5	
146	1	2	1.5	0.7	
147	-	-	-	-	
148	_	_	-	-	
149	-	-	-	-	
150	3	5	4.0	1.4	
151	8	4	6.0	2.8	
152	-	-	-	-	
153	-	-	-	-	
154	3	6	4.5	2.1	
155	9	-	9.0	-	
156	5	2	3.5	2.1	
157	-	-	-	-	
158	6	6	6.0	0.0	

Anhang 4b Die Tabelle zeigt die Boniturdaten (gerundeter Mittelwert) aus den Blattscheibentests (BST) der Pflanzen aus dem Gewächshaus (G) und Freiland (F), sowie Daten aus Freilandbonituren (FB) der Population CFxTA. Diese wurden unter anderem zur Berechnung der Spearman-Rangkorrelation verwendet. Die Berechnung erfolgte mit der Software RStudio Version 3.6.1 (R Core Team 2020). In der Tabelle sind außerdem der Mittelwert (\bar{x}) und die Standardabweichung (σ) aus den mittleren Infektionsgraden der Versuche für jedes einzelne Individuum angegeben. Für fehlende Boniturdaten ist ein "-" eingetragen.

Individuum	BST-F	ז	BST-G				FB				Mittelwert (x)	Standardabweichung (σ)
	2019	2020	2020-1	2020-2	2020-3	2020-4	2016	2018	2019	2020		
1	-	-	-	-	-	-	-	-	-	-	-	-
2	4	4	4	7	3	5	-	5	4	3	4.3	1.2
3	2	4	7	5	1	7	-	4	2	3	3.9	2.3
4	3	4	7	6	8	5	7	4	5	2	5.1	1.7
5	4	2	5	4	1	2	7	5	4	3	3.7	1.9
6	3	5	6	6	7	3	7	6	4	2	4.9	1.6
7	5	6	7	7	7	2	8	7	8	3	6.0	1.9
8	-	4	-	-	-	-	7	7	7	-	6.3	1.5
9	2	3	8	7	6	7	8	5	7	2	5.5	2.1
10	-	-	-	-	-	-	8	-	-	-	8.0	-
11	3	5	5	4	8	5	8	6	9	3	5.6	2.0
12	3	3	-	-	-	-	7	4	6	2	4.2	1.8
13	3	4	5	5	4	4	8	5	6	3	4.7	1.5
14	4	4	6	6	3	4	7	4	7	3	4.8	1.5
15	3	6	7	6	4	5	6	4	6	3	5.0	1.3
16	4	4	6	5	2	4	7	5	6	3	4.6	1.5
17	7	7	-	-	-	-	8	6	6	3	6.2	0.8
18	7	7	5	8	4	4	8	5	6	3	5.7	1.6
19	5	5	4	7	4	5	6	5	6	3	5.0	1.0
20	-	5	5	7	3	4	7	5	3	4	4.8	1.6
21	5	3	5	8	3	3	7	4	4	2	4.4	1.8
22	-	-	-	-	-	-	7	-	-	-	7.0	-
23	-	-	-	-	-	-	8	4	-	-	6.0	2.8

24	7	1	-	-	-	-	6	7	6	3	5.0	2.5	
25	7	7	4	8	4	4	8	5	7	4	5.8	1.7	
26	-	-	-	-	-	-	8	-	-	-	8.0	-	
27	8	2	-	-	-	-	8	6	8	3	5.8	2.6	
28	-	2	-	-	-	-	8	6	3	4	4.6	2.8	
29	-	4	6	8	6	4	7	4	4	3	5.1	1.6	
30	3	1	-	-	-	-	7	3	4	4	3.7	2.2	
31	4	6	-	-	-	-	7	7	9	4	6.2	1.8	
32	5	4	3	4	3	3	6	6	7	2	4.3	1.5	
33	-	-	-	-	-	-	7	-	-	-	7.0	-	
34	8	4	-	-	-	-	7	5	9	3	6.0	2.1	
35	6	3	4	6	2	2	7	5	6	4	4.5	1.9	
36	-	8	5	7	3	6	7	5	9	4	6.0	1.9	
37	-	-	-	-	-	-	-	-	-	-	-	-	
38	-	-	-	-	-	-	8	-	-	-	8.0	-	
39	6	6	5	7	5	4	7	7	9	4	6.0	1.5	
40	-	-	-	-	-	-	-	-	-	-	-	-	
41	7	4	4	4	4	3	7	5	7	2	4.7	1.6	
42	7	4	2	6	1	5	7	5	4	3	4.4	2.1	
43	-	-	-	-	-	-	-	-	-	-	-	-	
44	-	-	-	-	-	-	-	-	-	-	-	-	
45	-	-	-	-	-	-	8	-	-	-	8.0	-	
46	7	5	4	6	6	3	8	6	8	2	5.5	1.7	
47	1	-	-	-	-	-	-	-	9	6	5.3	5.7	
48	4	4	4	5	8	3	6	5	5	3	4.7	1.5	
49	7	7	5	9	4	4	7	3	6	3	5.5	1.9	
50	8	2	5	7	8	5	8	8	5	4	6.0	2.1	
51	-	-	-	-	-	-	8	-	-	-	8.0	-	
52	-	-	-	-	-	-	-	-	-	-	-	-	

53	-	-	-	-	-	-	-	-	-	-	-	-	
54	3	5	4	7	5	6	8	4	8	4	5.4	1.8	
55	-	-	-	-	-	-	8	-	-	-	8.0	-	
56	-	-	-	-	-	-	-	-	-	-	-	-	
57	7	6	5	5	5	5	6	7	8	2	5.6	1.1	
58	5	3	5	5	3	5	6	4	4	2	4.2	1.0	
59	4	4	-	-	-	-	5	4	3	3	3.8	0.7	
60	-	-	-	-	-	-	-	-	-	-	-	-	
61	6	5	5	9	3	2	6	3	5	4	4.8	2.1	
62	-	-	-	-	-	-	8	-	-	-	8.0	-	
63	6	3	4	8	3	6	7	4	5	5	5.1	1.8	
64	7	6	6	9	6	4	7	4	7	2	5.8	1.6	
65	5	5	3	5	7	5	7	4	7	3	5.1	1.4	
66	-	-	-	-	-	-	-	-	-	-	-	-	
67	-	-	-	-	-	-	-	-	-	-	-	-	
68	-	-	-	-	-	-	8	-	-	-	8.0	-	
69	6	3	4	8	4	4	6	3	4	1	4.3	1.7	
70	5	3	5	7	7	6	7	5	6	3	5.4	1.3	
71	5	5	4	7	2	4	7	3	5	3	4.5	1.7	
72	5	6	-	-	-	-	5	4	6	2	4.7	0.8	
73	6	4	4	7	3	4	8	7	4	2	4.9	1.8	
74	5	5	-	-	-	-	7	6	6	2	5.2	0.8	
75	6	8	6	5	5	6	7	6	7	4	6.0	1.0	
76	-	-	-	-	-	-	8	-	-	-	8.0	-	
77	8	6	8	8	7	2	7	8	6	3	6.3	1.9	
78	-	5	5	5	1	3	6	8	6	3	4.7	2.1	
79	-	-	-	-	-	-	-	-	-	-	-	-	
80	7	3	-	-	-	-	8	6	7	3	5.7	1.9	
81	6	4	6	6	6	4	7	5	8	3	5.5	1.3	

82	-	2	3	4	2	3	7	4	2	4	3.4	1.7
83	-	-	-	-	-	-	9	-	-	-	9.0	-
84	-	4	5	8	4	1	7	5	3	3	4.4	2.2
85	2	3	5	7	3	3	9	3	4	2	4.1	2.3
86	7	7	5	9	9	4	7	4	6	3	6.1	1.9
87	4	-	-	-	-	-	8	7	5	-	6.0	1.8
88	4	4	2	9	3	6	8	6	3	2	4.7	2.4
89	5	5	4	7	4	6	8	5	6	5	5.5	1.3
90	6	2	4	8	1	3	6	5	5	3	4.3	2.2
91	-	-	-	-	-	-	9	-	-	-	9.0	-
92	-	-	-	-	-	-	-	-	-	-	-	-
93	5	4	2	6	9	5	7	8	6	3	5.5	2.1
94	4	7	-	-	-	-	6	7	5	3	5.3	1.3
95	-	-	-	-	-	-	-	-	-	-	-	-
96	6	4	5	7	1	6	7	7	4	2	4.9	2.0
97	1	2	4	7	6	5	7	7	3	2	4.4	2.3
98	3	3	-	-	-	-	7	6	3	2	4.0	1.9
99	-	-	-	-	-	-	-	-	-	-	-	-
100	-	5	2	8	9	6	8	6	2	3	5.4	2.7
101	-	-	-	-	-	-	-	-	-	-	-	-
102	-	-	-	-	-	_	-	-	-	-	-	-
103	-	-	-	-	-	_	-	-	-	-	-	-
104	6	5	2	6	6	5	6	4	3	2	4.5	1.5
105	-	-	-	-	-	-	8	-	-	-	8.0	-
106	-	-	-	-	-	_	8	-	-	-	8.0	-
107	-	-	-	-	-	-	6	-	-	-	6.0	-
108	-	5	1	1	-	-	6	4	2	3	3.1	2.1
109	-	6	4	8	5	6	8	6	8	7	6.4	1.5
110	-	5	4	9	4	3	7	7	7	3	5.4	2.1

111	-	-	-	-	-	-	8	-	-	-	8.0	-	
112	-	-	-	-	-	-	8	-	-	-	8.0	-	
113	7	4	1	5	6	5	7	7	4	3	4.9	2.0	
114	-	-	-	-	-	-	-	-	-	-	-	-	
115	8	5	5	9	8	3	6	4	7	3	5.8	2.0	
116	-	-	-	-	-	-	9	-	-	-	9.0	-	
117	-	-	6	9	5	5	-	-	-	-	6.3	1.9	
118	-	-	5	7	6	6	-	-	-	-	6.0	0.8	
119	-	-	-	-	-	-	8	-	-	-	8.0	-	
120	5	6	3	4	6	6	7	6	3	3	4.9	1.5	
121	8	4	4	8	7	3	7	9	8	7	6.5	2.2	
122	6	4	5	8	2	5	8	8	6	5	5.7	2.0	
123	-	-	-	-	-	-	8	-	-	-	8.0	-	
124	-	-	-	-	-	-	8	-	-	-	8.0	-	
125	3	5	5	7	6	4	7	7	9	3	5.6	1.8	
126	5	2	-	-	-	-	8	7	9	6	6.2	2.8	
127	7	3	-	-	-	-	7	6	8	6	6.2	1.9	
128	5	3	-	-	-	-	7	5	8	3	5.2	1.9	
129	4	6	4	5	5	3	7	4	9	6	5.3	1.9	
130	2	3	2	5	1	4	7	4	8	4	4.0	2.3	
131	2	7	3	5	5	2	8	4	8	5	4.9	2.4	
132	6	6	5	7	6	2	8	5	8	4	5.7	1.8	
133	7	8	-	-	-	-	8	9	9	8	8.2	0.8	
134	8	6	-	-	-	-	7	7	7	7	7.0	0.7	
135	6	6	4	5	9	4	7	4	7	3	5.5	1.7	
136	7	5	3	6	3	7	8	4	6	4	5.3	1.8	
137	8	8	5	5	6	8	8	6	7	4	6.5	1.3	
138	-	-	_	-	-	-	9	-	-	-	9.0	-	
139	8	7	6	6	5	7	8	7	9	7	7.0	1.2	

140				_			8				8.0	_
140	_	_	_		_	_	8	_	_	_	8.0	
142						_	-		_		-	
142							8				8.0	
143	-	-	-	-	-	-	0	-	-	-	8.0	-
144	-	-	-	-	-	-	-	-	-	-	-	-
143	-	-	-	-	-	-	0	-	-	-	<u> 8.0</u>	-
146	/	6	4	8	9	4	8	8	9	5	6.8	1.9
147	-	-	-	-	-	-	- 7	-	-	-	7.0	-
148	4	5	6	8	2	2	7	7	8	3	5.2	2.4
149	4	5	4	5	0	3	8	5	7	3	4.4	2.3
150	6	7	4	5	4	4	6	6	8	3	5.3	1.4
151	-	-	-	-	-	-	8	-	-	-	8.0	-
152	-	5	4	6	3	3	6	5	4	3	4.3	1.2
153	4	3	-	-	-	-	7	4	5	3	4.3	1.5
154	-	-	-	-	-	-	8	-	-	-	8.0	-
155	7	5	5	4	5	2	8	5	8	2	5.1	1.9
156	6	7	5	7	7	5	8	8	9	5	6.7	1.4
157	-	-	-	-	-	-	8	-	-	-	8.0	-
158	-	-	-	-	-	-	7	8	9	-	8.0	1.0
159	5	3	7	8	5	5	8	6	7	3	5.7	1.7
160	6	4	2	4	5	1	6	5	6	3	4.2	1.8
161	-	-	-	-	-	-	8	-	-	-	8.0	-
162	6	3	3	8	8	4	8	5	8	4	5.7	2.2
163	6	3	-	-	-	-	8	5	8	4	5.7	2.1
164	4	5	5	6	4	1	7	4	5	4	4.5	1.7
165	6	4	6	7	2	1	7	4	5	3	4.5	2.1
166	3	4	2	6	4	2	7	4	3	4	3.9	1.7
167	5	2	-	-	-	-	7	4	5	3	4.3	1.8
168	8	3	-	-	-	-	6	8	8	3	6.0	2.2

169	7	4	5	9	9	5	7	8	8	3	6.5	1.8
170	7	6	6	7	9	3	7	8	6	3	6.2	1.7
171	6	3	7	6	5	1	7	3	5	4	4.7	2.0
172	-	-	-	-	-	-	-	-	-	-	-	-
173	5	3	5	5	3	1	6	4	3	3	3.8	1.5
174	-	-	-	-	-	-	-	-	-	-	-	-
175	6	4	6	5	4	2	7	6	6	2	4.8	1.5
176	5	5	6	8	1	2	7	3	6	3	4.6	2.3
177	5	1	-	-	-	-	6	8	7	3	5.0	2.7
178	7	4	-	_	-	-	6	7	6	3	5.5	1.2
179	6	5	3	8	9	2	8	8	7	3	5.9	2.4
180	-	-	-	-	-	-	-	-	-	-	-	-
181	7	4	5	7	4	2	8	7	7	3	5.4	2.0
182	-	-	-	-	-	-	9	-	-	-	9.0	-
183	5	-	-	-	-	-	8	6	8	-	6.8	1.5
184	-	-	-	-	-	-	-	-	-	-	-	-
185	-	-	-	-	-	-	-	-	-	-	-	-
186	-	-	-	-	-	-	8	-	-	-	8.0	-
187	-	-	-	-	-	-	8	-	-	-	8.0	-
188	-	-	-	-	-	-	-	-	-	-	-	-
189	8	4	4	6	4	2	8	3	6	1	4.6	2.1
190	6	5	1	7	5	2	7	6	9	3	5.1	2.5
191	-	-	-	-	-	-	-	-	-	-	-	-
192	3	4	5	5	2	2	6	4	4	2	3.7	1.4
193	5	6	1	5	4	2	7	4	2	3	3.9	2.0
194	5	2	-	-	-	-	8	4	6	4	4.8	2.2
195	7	7	5	7	5	5	8	8	5	3	6.0	1.3
196	-	-	-	-	-	-	8	3	-	-	5.5	3.5
197	-	-	-	-	-	-	-	-	-	-	-	-

198	-	-	-	-	-	-	9	-	-	-	9.0	-	
199	-	-	-	-	-	-	8	-	-	-	8.0	-	
200	-	-	-	-	-	-	-	-	-	-	-	-	
201	7	5	2	6	3	4	8	6	5	4	5.0	1.9	
202	-	-	-	-	-	-	9	-	-	-	9.0	-	
203	7	4	4	6	5	2	6	7	6	3	5.0	1.6	
204	-	-	-	-	-	-	5	7	-	-	6.0	1.4	
205	5	3	5	7	1	1	8	7	6	3	4.6	2.6	
206	4	3	3	4	1	1	5	5	6	3	3.5	1.7	
207	7	5	7	8	8	2	5	5	4	3	5.4	2.0	
208	8	4	-	-	-	-	7	6	7	3	5.8	1.5	
209	9	7	6	6	5	3	8	7	8	4	6.3	1.8	
210	5	4	5	6	1	3	7	5	5	3	4.4	1.7	
211	9	7	8	9	5	3	7	4	7	3	6.2	2.1	
212	7	6	4	6	1	4	7	7	8	3	5.3	2.2	
213	-	-	-	-	-	-	8	7	-	-	7.5	0.7	
214	7	5	6	6	2	5	8	5	7	3	5.4	1.7	
215	-	-	-	-	-	-	8	-	-	-	8.0	-	
216	6	4	-	-	-	-	7	5	3	4	4.8	1.6	
217	-	-	-	-	-	-	-	-	-	-	-	-	
218	4	4	2	7	3	5	7	7	8	4	5.1	2.1	
219	6	7	3	9	5	2	7	6	7	4	5.6	2.2	
220	6	5	7	6	1	2	6	4	6	2	4.5	2.0	
221	5	5	4	6	1	3	6	4	7	3	4.4	1.8	
222	2	4	5	7	9	2	7	4	7	4	5.1	2.4	
223	6	1	-	-	-	-	7	5	6	4	4.8	2.3	
224	7	5	5	8	1	3	7	5	5	4	5.0	2.1	
225	7	5	7	8	7	2	8	7	7	5	6.3	1.9	
226	7	5	6	7	7	3	8	5	6	4	5.8	1.5	

227	6	5	3	7	2	3	7	6	7	4	5.0	2.0	
228	7	7	7	8	8	4	7	8	9	7	7.2	1.4	
229	7	4	5	7	5	1	7	7	8	4	5.5	2.2	
230	8	3	-	-	-	-	8	5	8	3	5.8	2.3	
231	-	-	-	-	-	-	-	-	-	6	6.0	-	
232	-	-	-	-	-	-	8	-	-	-	8.0	-	
233	6	4	5	6	6	2	7	4	5	4	4.9	1.5	
234	6	4	-	-	-	-	6	5	7	4	5.3	1.1	
235	7	6	-	-	-	-	7	7	9	5	6.8	1.1	
236	5	2	7	8	1	2	7	7	7	6	5.2	2.7	
237	6	6	7	4	5	2	7	8	8	5	5.8	2.0	
238	-	-	-	-	-	-	-	-	-	-	-	-	
239	5	3	6	7	5	2	6	4	7	4	4.9	1.7	
240	7	3	4	4	9	3	9	5	7	3	5.4	2.4	
241	-	-	-	-	-	-	8	-	-	-	8.0	-	
242	3	3	5	5	6	4	7	8	9	5	5.5	2.1	
243	3	2	1	4	-	-	8	7	9	3	4.6	3.1	
244	-	-	-	-	-	-	8	-	-	-	8.0	-	
245	-	-	-	-	-	-	-	-	-	-	-	-	
246	7	6	2	8	7	4	7	7	8	3	5.9	2.0	
247	4	5	4	8	1	2	6	4	6	2	4.2	2.1	
248	5	4	6	5	1	5	7	5	6	2	4.6	1.7	
249	7	8	-	-	-	-	7	7	7	2	6.3	0.4	
250	2	2	5	6	1	3	6	5	7	3	4.0	2.1	
251	6	6	6	7	4	3	6	6	8	3	5.5	1.5	
252	6	2	-	-	-	-	7	5	7	3	5.0	2.1	
253	7	4	6	7	4	3	7	8	9	4	5.9	2.0	
254	3	5	6	7	3	3	8	7	7	3	5.2	2.0	
255	9	8	-	-	-	-	8	8	8	7	8.0	0.4	

256	_	_	_	_	_	_	7	8	_	_	7.5	0.7
257	_	_	_	_	_	_		-	_	_	-	-
258	4	5	7	4	8	2	8	7	6	4	5.5	2.1
259	6	4	1	7	5	5	7	6	8	3	5.2	2.1
260	6	3	_	3	3	5	8	6	7	4	5.0	2.0
261	5	5	4	8	5	4	7	5	7	3	5.3	1.4
262	2	4	4	5	6	6	7	4	8	4	5.0	1.8
263	-	-	-	-	-	-	8	-	-	-	8.0	-
264	6	3	5	7	1	3	6	6	7	3	4.7	2.1
265	-	-	-	-	-	-	8	-	-	-	8.0	-
266	-	-	-	-	-	-	8	-	-	-	8.0	-
267	-	-	-	-	-	-	8	8	-	-	8.0	0.0
268	-	-	-	-	-	-	8	-	-	-	8.0	-
269	-	-	-	-	-	-	8	-	-	-	8.0	-
270	-	-	-	-	-	-	-	-	-	-	-	-
271	-	-	-	-	-	-	-	-	-	-	-	-
272	-	-	-	-	-	-	7	-	-	-	7.0	-
273	-	-	-	-	-	-	8	7	-	-	7.5	0.7
274	-	-	-	-	-	-	8	-	-	-	8.0	-
275	-	6	7	8	6	4	6	8	8	3	6.2	1.4
276	-	-	-	-	-	-	8	-	-	-	8.0	-
277	-	-	-	-	-	-	7	8	-	-	7.5	0.7
278	-	-	-	-	-	-	8	-	-	-	8.0	-
279	-	-	-	-	-	-	7	3	3	-	4.3	2.3
280	-	-	-	-	-	-	9	6	-	-	7.5	2.1
281	-	4	-	-	-	-	8	4	3	1	4.0	2.2
282	-	-	-	-	-	-	7	-	-	-	7.0	-
283	-	-	-	-	-	-	8	-	-	-	8.0	-
284	-	6	-	-	-	-	5	6	4	2	4.6	1.0

285	-	4	-	-	-	-	6	5	4	2	4.2	1.0	
286	-	-	-	-	-	-	7	-	-	-	7.0	-	
287	-	5	-	-	-	-	7	6	6	2	5.2	0.8	
288	-	-	-	-	-	-	7	7	6	2	5.5	0.6	
289	-	-	-	-	-	-	9	-	-	-	9.0	-	
290	-	-	-	-	-	-	5	5	4	3	4.3	0.6	
291	-	-	-	-	-	-	6	6	3	1	4.0	1.7	
292	-	-	-	-	-	-	9	9	-	-	9.0	0.0	
293	-	-	-	-	-	-	4	4	4	2	3.5	0.0	
294	-	-	-	-	-	-	8	7	5	2	5.5	1.5	
295	-	-	-	-	-	-	7	6	6	2	5.3	0.6	
296	-	-	-	-	-	-	6	5	2	2	3.8	2.1	
297	-	-	-	-	-	-	6	6	3	2	4.3	1.7	
298	-	-	-	-	-	-	7	6	5	3	5.3	1.0	
299	-	-	-	-	-	-	7	5	6	2	5.0	1.0	
300	-	-	-	-	-	-	8	-	-	-	8.0	-	
301	-	-	-	-	-	-	7	8	2	4	5.3	3.2	
302	-	-	-	-	-	-	7	8	4	3	5.5	2.1	
303	-	-	-	-	-	-	7	7	7	3	6.0	0.0	
304	-	-	-	-	-	-	7	7	6	4	6.0	0.6	
305	-	-	-	-	-	-	9	-	-	-	9.0	-	
306	-	-	-	-	-	-	8	8	-	-	8.0	0.0	
307	-	-	-	-	-	-	7	7	7	3	6.0	0.0	
308	-	-	-	-	-	-	7	8	8	3	6.5	0.6	
309	-	-	-	-	-	-	7	7	4	3	5.3	1.7	
310	-	_	-	-	-	-	7	7	8	4	6.5	0.6	
311	-		-	-	-	-	7	7	6	3	5.8	0.6	
312	_	-	-	-	-	-	8	8	-	-	8.0	0.0	
313	-	-	-	-	-	-	8	8	9	3	7.0	0.6	

314	-	-	-	-	-	-	7	9	8	2	6.5	1.0	
315	-	-	-	-	-	-	7	7	7	3	6.0	0.0	
316	-	-	-	-	-	-	8	8	9	2	6.8	0.6	
317	-	-	-	-	-	-	8	-	-	-	8.0	-	
318	-	-	-	-	-	-	8	-	-	-	8.0	-	
319	-	-	-	-	-	-	8	9	-	-	8.5	0.7	
320	-	-	-	-	-	-	8	9	-	-	8.5	0.7	
321	-	-	-	-	-	-	8	-	-	-	8.0	-	
322	-	-	-	-	-	-	8	7	8	3	6.5	0.6	
323	-	-	-	-	-	-	7	5	8	2	5.5	1.5	
324	-	-	-	-	-	-	7	6	5	3	5.3	1.0	
325	-	-	-	-	-	-	7	6	5	2	5.0	1.0	
326	-	-	-	-	-	-	6	7	4	3	5.0	1.5	
327	-	-	-	-	-	-	6	7	7	2	5.5	0.6	
328	-	-	-	-	-	-	5	6	3	3	4.3	1.5	
329	-	-	-	-	-	-	7	5	6	2	5.0	1.0	
330	-	-	-	-	-	-	7	6	6	2	5.3	0.6	
331	-	-	-	-	-	-	5	5	6	2	4.5	0.6	
332	-	-	-	-	-	-	5	5	7	3	5.0	1.2	
333	-	-	-	-	-	-	6	5	6	2	4.8	0.6	
334	-	-	-	-	-	-	5	5	7	3	5.0	1.2	

Anhang 5a Parentale genetische Karte der Elternsorte 'Tigvoasa' der Population TVxWe90. Dafür wurden insgesamt 41 SSR- und 380 rhAmpSeq-Marker verwendet. Die Positionen der 421 Marker sind auf 19 Kopplungsgruppen (KG) verteilt in centiMorgan [cM] dargestellt.

KG 01

~ ~

KG 02

0.0 🔨	
9.1 \	∠ rh_chr01_2145831
11.4	/_ rh_chr01_2306205
12.9	+ rh chr01 3142598
15.1	rh_chr01_3523735
a	t 1-01 0004005
31.5	rn_cnr01_6034925
35.4 🔨	-√_ rh_chr01_7710739
37.2	🛨 rh_chr01_8017533
38.6	\rh_chr01_8217621 rh_chr01_8477332
49.6 🔨	rh_chr01_11409494
53.2	rh_chr01_14789269
54.6	rh_chr01_12994384
57.2	rh_chr01_16657949
61.6	h_chr01_18659545
65.9 //	\ [\] rh_chr01_19567235
67.6 ⁷	_\ [\] rh_chr01_20624760
75.5	└ rh_chr01_22123159
83.3 -	[∼] rh_chr01_23733091

rh_chr02_10978 0.0 ~ 1.8 rh chr02 1626662 rh_chr02_854531 3.0 rh chr02 1755729 10.2 - rh_chr02_3061567 17.6 rh_chr02_2688648 19.6 GF02-12 31.2 - VCHR02A 34.9 rh_chr02_5870753 45.0 \ rh_chr02_6781830 46.2 -50.3 rh chr02 7999319 51.0 rh_chr02_8579012 55.8~

KG 03

KG 05

0.0	rh_chr04_1391400 г
7.1	/ _r rh_chr04_2096842
11.8	//r rh_chr04_2783868
15.2	///_ rh_chr04_3098243
18.3	///_ rh_chr04_3597502
22.8	///_rh_chr04_4246018
29.0	/// _r rh_chr04_4948818
33.7	///r rh_chr04_4759072
39.1	/// _r rh_chr04_6678764
46.3	/// _f rh_chr04_6834788
48.4	/// _r rh_chr04_6752086
53.7	/// _f rh_chr04_7614182
56.5	///_ rh_chr04_8778482
60.8 J	/// _f rh_chr04_9800666
61.6	/// rh_chr04_11031511
62.2	rh_chr04_9602051
64.3	rh_chr04_11238026
64.9	rh_chr04_11802988
66.3	rh_chr04_14162870
68.3 -//	rh_chr04_14964966
69.0 //_	h_chr04_16491374
71.1 -//	rh_chr04_14809627
79.8 -///	rh_chr04_18311071
84.0	rh_chr04_18700982
85.6	rh_chr04_19762446
90.1	GF04-83
95.6	rh_chr04_20004123
100.0	rh_chr04_22215506
100.7	rh_chr04_22272053
102.1	m_chr04_22548287
105.6	rh_chr04_23421280
115.4	rh_chr04_23092663
123.9	^L rh_chr04_23360446

0.0 rh_chr05_2193315 rh_chr05_782424 0.7 rh_chr05_2346684 rh_chr05_2429823	0.0
12.1 rh_chr05_4088551	•
24.6 25.4 30.4 rh_chr05_5451693 30.4 rh_chr05_5541402 VRZAG79	17.8 26.0 27.9 32.4 38.3
54.3 rh_chr05_15849900 59.1 rh_chr05_9760548 61.8 rh_chr05_11411896 64.9 rh_chr05_12317731 66.4 rh_chr05_16184048 67.9 rh_chr05_18637567 71.7 VCHR05A 77.5 rh_chr05_21582119 rh_chr05_21389712 86.7 rh_chr05_23885642 93.5 rh_chr05_25379843	46.0 61. 62. 64.9 68.3 76.2 78. 80. 82.9 87. 80.

0.0	- GF06-16
5.8	- rh_chr06_102558
17.8	- rh_chr06_2674740
26.0	rh chr06 3839773
27.9	h_chr06_3629748
32.4	rh_chr06_4597959
38.3	UDV-085
46.0	rh_chr06_5752203
61.1	rh chr06 13115981
62.1	/rh_chr06_9426152
64.5	GF06-08
68.3-	VVMD21
76.2	_ rh_chr06_15775550
78.1-	rh_chr06_15252969
80.7	rh_chr06_17449050
82.5	rh_chr06_17974651
87.7	/ rh_chr06_18520823
90.2 /	\ [\] rh_chr06_19096194
94.4	[\] rh chr06 19937319

0.0 GF07-07 11.7 rh_chr07_848595 24.6 rh_chr07_2435368 31.0 rh_chr07_2950372 32.1 rh_chr07_3625373 35.3 rh_chr07_4112731 38.8 rh_chr07_4749017 36.2 rh_chr07_4749017 56.2 rh_chr07_13861474 59.7 rh_chr07_13861474 59.7 rh_chr07_17378899 81.0 rh_chr07_20279884 7.1.8 rh_chr07_20279884 7.1.8 rh_chr07_20279884 7.1.8 rh_chr07_20279884 7.10.2 rh_chr07_20279884	.0 rh_chr08_30944 .9 rh_chr08_474142 .2 rh_chr08_1222997 .7 rh_chr08_2017540 .3 rh_chr08_2250586 .5 rh_chr08_3320879 .4 rh_chr08_3320879 .7 rh_chr08_4661848 .8 rh_chr08_7224682 .1 rh_chr08_9332167 rh_chr08_10993976 .9 rh_chr08_12336402 .1 rh_chr08_12336402 .2 rh_chr08_12336402 .3 rh_chr08_12336402 .9 rh_chr08_15245498 .1 rh_chr08_15245498 .1 rh_chr08_15917624 .0 rh_chr08_17200985 .1 rh_chr08_19310146 .1 rh_chr08_17684438 .0 VMC1E8	0.0 VMC1C10 11.1 rh_chr09_516308 14.0 rh_chr09_1305204 35.9 VMC3G8.2 rh_chr09_4911190 44.6 GF09-43 VMC6D12 GF09-11 51.8 rh_chr09_2474475 rh_chr09_2249377 63.9 VVUI37 GF09-49 67.0 GF09-08 74.4 rh_chr09_8899256 rh_chr09_7533649 78.3 rh_chr09_9426423 81.6 rh_chr09_13689984 83.9 rh_chr09_16162865 85.8 rh_chr09_18392600 88.1 rh_chr09_18463570 rh_chr09_19072322 92.1 rh_chr09_19944895 93.6 rh_chr09_20989379
89.3 rh_chr07_20279884 7, 100.2 crh_chr07_22250380 7,	.0 // rh_chr08_19745123 .0 // rh_chr08_19310146 .4 // rh_chr08_17684438	85.8 rh_chr09_18392600 88.1 rh_chr09_18463570 rh_chr09_19072322
104.1 rh chr07 23068209 8	VMC1E8	93.6 rh_chr09_20989379
107.5 rh_chr07_23844050		98.9 rh chr09 20042224
108.9 rh_chr07_23438032		108.0 - rh chr09 22838327
112.4 / rh_chr07_24879814 rh_chr07_24967	97	
115.9 / h_chr07_26088532 rh_chr07_26249	20	122.4 — U GF09-73
121.1 rh_chr07_26680230		

KG 11

0.0 7.8 9.1 18.5 21.8 29.8 34.3 38.5 39.6 41.6 44.8 49.8 58.3 60.9 64.8 71.7 79.8	rh_chr10_423938 rh_chr10_1174215 rh_chr10_1265993 rh_chr10_2983812 rh_chr10_2803328 rh_chr10_4427721 rh_chr10_5055530 rh_chr10_5443410 rh_chr10_5381836 rh_chr10_6030347 rh_chr10_6030347 rh_chr10_6407241 rh_chr10_8528547 rh_chr10_8528547 rh_chr10_8422060 rh_chr10_7537254 GF10-02 rh_chr10_11300534 rh_chr10_10547760	
94.9	 rh_chr10_11485987	
109.4 112.5	rh_chr10_12409898 rh_chr10_12605914	
121.5	— GF10-04 — GF10-11	
137.8 138.6 140.2	rh_chr10_20484984 rh_chr10_19925824 rh_chr10_20553231	
144.5	rh_chr10_21059800	

0.0 rh_chr11_542859 6 1 rh_chr11_803595	0.0
8.9 rh_chr11_1343142	30.4
$18.9 \rightarrow -rh chr11 3749132$	40.4
22.9 rh chr11 4000176 rh chr11 4081344	43.3
25.3 rh chr11 4359180	51.6
	53.1
	58.4
45.7 crh chr11 7449768	62.1
46.8 rh_chr11_7656746	70.8
	74.8
	75.5
05 0	70.3
65.8 rn_cnr11_14828475	82.9
70.5	91.4
/8.5 rn_cnr11_1/98/786	98.5
82.1	101.6
84.2 ⁹	107.6
	110.4
	115.3
102.2 UDV-028	120.1
	124.9
114.5 - UVMD8	127.3
	129.8
	130.4
	131.5
	136.0
	138.1
	140.5
	143.2

-VCHR12A rh_chr12_115867 rh_chr12_844914 //rh_chr12_1524783 rh_chr12_1368028 rh_chr12_1709224 rh_chr12_2966354 hrh_chr12_2673100 rh_chr12_3116725 rh_chr12_3478868 rh_chr12_3962172 rh_chr12_5074355 rh_chr12_5533572 // rh_chr12_5598767 rh_chr12_6184851 rh_chr12_5985351 / rh_chr12_6104436 rh chr12 8493396 /r rh_chr12_8048809 rh_chr12_7220783 /r rh_chr12_9605397 /// rh_chr12_9898269 /r rh_chr12_14587489 /r rh_chr12_15428839 GF12-17 rh_chr12_19467018 / rh_chr12_20361061 - rh_chr12_20018956 rh_chr12_18779599 rh_chr12_19037725 ^{_}rh_chr12_22430141 h_chr12_21873473 rh_chr12_22346427 rh_chr12_22516082 rh_chr12_22586794 145.3 -

148.9

GF12-07

GF14-01 0.0 rh_chr14_836379 5.9 7.3 rh chr14 594524 9.5 rh chr14 1593532 rh_chr14_2736359 12.9 14.7 rh_chr14_3303300 20.8 rh chr14 4941220 23.6 rh_chr14_5966808 32.1 rh_chr14_7296877 35.7 rh_chr14_7624685 39.0 rh_chr14_10743715 45.1 -VMC1E12 55.9 rh_chr14_20859566 rh_chr14_20102426 58.3 rh chr14 14755965 60.0· rh chr14 13378081 64.7 rh_chr14_8308158 rh_chr14_8871788 69.1 rh chr14 21885849 70.3 rh_chr14_21821143 72.4 rh chr14 21323785 81.2 rh_chr14_22993902 91.3 rh_chr14_25499021 101.5 rh_chr14_28292032 rh_chr14_29446606 108.6 rh chr14 30126656 rh_chr14_26802285 117.8 rh chr14 26224717 119.3 -122.3 rh_chr14_26877597 125.9 rh chr14 27607541 √rh_chr14_27729833 rh_chr14_27425134 126.6 147.6 — rh_chr14_25156315

rh_chr15_2868330 0.0 2.9 rh_chr15_6996975 rh_chr15_9660835 7.2 12.5 rh chr15 10257839 14.0 rh chr15 10851058 20.1 ~ rh chr15 11503363 20.9 rh_chr15_12253375 31.4 \ rh_chr15_13822901 35.4 ~ h_chr15_15294725 rh_chr15_15468122 36.9 - rh_chr15_16450847 37.3 rh chr15 16737213 37.7 rh_chr15_17146098

176

KG 17

0.0 \	∠rh chr16 2376878	
3.6	√ / rh_chr16_2212134	0.0 🔨
62	c rh_chr16_976496	7.8 🥄
72	rh_chr16_911072	10.2 🗸
14.3	GE16-01	10.9
22.6	- GE16-04	
22.0	GE16 56	
27.8		26.9 🔨
28.9	rh_chr16_6070066 rh_chr16_6018898	28.6
34.2	rh_chr16_12729188	
36.6 🦯	_ rh_chr16_12037326	
40.5	h_chr16_14911808	43.7
42.1	[\] rh ⁻ chr16 ⁻ 12698705	47.3
		51.5
57.7	— GF16-18	57.1
		66.6 -
67.5	rh_chr16_19924082	70.9
71.1-+-	rh_chr16_20304713	70.0
		70.0
83.1	rh chr16 22811338	76.2
87.5	rh_chr16_23084690	80.3 -
	$h_{\rm rb} = -23327502$	
00.9	m_cm r0_2002/002	

0.0 7.8 10.2 10.9 rh_chr17_287812 rh_chr17_565468 rh_chr17_1114348 rh_chr17_765729
26.9 rh_chr17_5060931 28.6 rh_chr17_5258199
43.7 rh_chr17_7134878 47.3 rh_chr17_7292907 51.5 rh_chr17_6623514 rh_chr17_6745403 57.1 rh_chr17_7609398 66.6 rh_chr17_8608505 70.8 rh_chr17_9353710 71.7 rh_chr17_9692661 76.2 rh_chr17_13928628 80.3 rh_chr17_18015932

KG 19

	0.0 7
0.0 > < VMC2A3	1.4 \/
11.3 \ rh chr18 474745	2.8
12.0 \/ rh_chr18_582430	3.6
26.4 1 rh chr18 3952793	15.2
36.2 \ \ \ rh chr18 6012983	21.5
40.4 1 // rh chr18 7076548 rh chr18 6936362	28.2
44.9 W GF18-26	34.1
51.3 1 rh_chr18_7128961	30.9
53.6 1 rh chr18 7809270	41.2
62.5 1 rh_chr18_10304487	45.1
64.8 1 rh_chr18_10907482	51.9
66.5 - rh_chr18_10762383	59.2
68.1 √∭├┤ <i>∭</i> ┌ rh_chr18_11286900	67.2
69.1rh_chr18_11215764	68.9
71.2 / rh_chr18_11482876 rh_chr18_11553491	75.3
71.9 rh_chr18_11350114	78.8
76.9 rh_chr18_11614594	80.4
90.4 / / rh_chr18_14135632 rh_chr18_14491995	86.0
91.2 rh_chr18_14551153	90.6
101.0 rn_cnr18_22455321	96.7
102.6 rn_chr18_22829291	97.8
105.3 m_rn_cnr18_24904198	99.4 -// \\
106.8 m_cnr18_23887396	101.8 [/] \
111.8 110.7 110.20307719	
117.7 th chr18 31185354	
122.2 rb_chr18_31885147	
127.8 rh_chr18_34123552	
129.2 h chr18 34381037	

rh_chr19_377073 rh_chr19_472320 rh_chr19_1367967 rh_chr19_1306780 rh_chr19_2689517 rh_chr19_5072068 rh_chr19_5230241 rh_chr19_5807614 rh_chr19_6382258 rh_chr19_7055420 rh_chr19_6602361 VVIP31 rh_chr19_8657020 rh_chr19_9748768 rh_chr19_19495933 rh_chr19_14659354 rh_chr19_23614226 rh_chr19_24538531 rh_chr19_22967359 rh_chr19_23034666 rh_chr19_24344947 rh_chr19_24632229 rh_chr19_22763652 rh_chr19_19968859 rh_chr19_10825978 rh_chr19_10724583 rh_chr19_10968935 rh_chr19_10666680
Anhang 5b Genetische Karte der Elternsorte We 90-06-12 der Population TVxWe90. Dafür wurden insgesamt 47 SSR- und 492 rhAmpSeq-Marker verwendet. Die Positionen der 539 Marker sind auf 19 Kopplungsgruppen (KG) verteilt in centiMorgan [cM] dargestellt.

KG 01

KG 02

KG 05

	0.0 rh_chr05_601862 2.5 rh_chr05_782424 4.1 rh_chr05_727574
	9.6 // // rh_chr05_2429823 rh_chr05_2540724
0.0 rh_chr04_2563214 2.3 rh_chr04_2783868	14.1 GF05-01 18.9 Crb-chr05_3677473
10.9 rh_chr04_1391400 19.8 rh_chr04_6678764	19.6 - rh_chr05_3163016 20.2 - rh_chr05_2970834 rh_chr05_2898965 21.0 - rh_chr05_2816543
25.9 rh_chr04_5338718 rh_chr04_4759072 rh_chr04_4948818 26.5 rh_chr04_6834788 rh_chr04_7614182	25.0 rh_chr05_4631069 28.4 rh_chr05_4744451 30.9 rh_chr05_4453596
44.1 rh_chr04_17799573 52.9 rh_chr04_18700982 rh_chr04_18311071	34.3 - rh_chr05_4088551 37.0 - rh_chr05_5336805
64.0 65.3 rh_chr04_20004123 rh_chr04_19762446	42.3 4VRZAG79 rh_chr05_5541402 55.7 4 rh_chr05_9760548 rh_chr05_9418134
66.7 70.4 71.3 rh_chr04_20436338 71.3 rh_chr04_21070680	57.9 - rh_chr05_8486084 60.3 rh_chr05_7075168 63.5 Hrh_chr05_8075869 rh_chr05_8669505
83.9 rh_chr04_23360446 93.5 rh_chr04_23421280 97.7 rh_chr04_22372053	65.9 70.9 VCHR05A 78.2
102.3 rh_chr04_22331368 113.8 GF04-17	80.6 rh_chr05_16184048 84.9 rh_chr05_18637567
	92.3 4 rh_chr05_20164865 96.1 4 rh_chr05_20429993 98.3 4 rh_chr05_21582119
	100.5 - rh_chr05_22732244 101.9 - rh_chr05_24329039 104.2 - rh_chr05_23885642
	107.5 ¹ rh_chr05_24901597

180

0.0 GF06-16 11.4 rh_chr06_102558 14.0 rh_chr06_2092951 18.4 rh_chr06_2674740 13.8 rh_chr07_748361 rh_chr07_848595 rh_chr07_1223286 20.5 rh_chr07_1406036 rh_chr07_1796486 0.0 UDV-126 0.0 (UDV-126 (U
0.0 11.4 14.0 14.0 18.4 18.4 18.4 10.0 1
0.0 11.4 11.4 14.0 1
11.4 rh_chr06_102558 20.5 14.0 rh_chr06_2092951 23.4 18.4 rh_chr06_2674740 28.0
14.0 / rh_chr06_2092951 23.4 / rh_chr07_1796486 0.0 / UDV-126 18.4 / rh_chr06_2674740 28.0 / rh_chr07_2435368 0.1 / Lth_chr08_474442 rh_chr08_20044
18.4 m rh chr06 2674740 $23.4 m chr07 1730480 $ $0.0 or chr08 474142 rh chr08 30044$
23.7 - W rh chr06 2818140
26.6 m rh chr06 3423170 $30.6 m$ chr07 2131456 $12.0 m$ rh chr08 1222997
28.5 W // rh_chr06_3629748 34.6 rh_chr08_2250586 rh_chr08_2017540
28.5 m m chroc 2950372 rb chroc 4193190 so 35.9 m m chr07 2950372 rb chr08 4661848 rh chr08 3320879
29.5 1 m_chr06_5143105 36.9 m_rh_chr07_3625373 15.3 rh_chr08_9332167
39.4 W rh_chr07_4373927 15.9 // rh_chr08_8227840 rh_chr08_7224682
40.9 \\rh_chr06_6016850 40.7 \\rh_chr07_4112731 17.9 \/_ rh_chr08_10383725
43.2 // rh_chr06_6873743 41.9 // rh_chr07_4663485 19.9 // // rh_chr08_10993976
62.9 \ / rh_chr06_9426152 47.7 \ / rh_chr07_5300863 23.8 / \ \ rh_chr08_11650720
66.8 \\ GF06-08 51.4 rh_chr07_5012925 27.2 / \\ rh_chr08_11992421
68.3 1 V/ V/MD21 55.5 rh_chr07_6083288 44.6 - rh_chr08_14233651
74.4 \// rh_chr06_13115981 58.7 - rh_chr07_7447102 50.4 / rh_chr08_14700208
75.2 \\ // rh_chr06_13622915 61.0 / rh_chr07_7588721 55.5 / A chr08_14881905
79.1 - rh_chr06_15775550 66.5 rh_chr07_8155951 58.2 rh_chr08_14968234
$80.7 \sqrt{1}$ /rh_chr06_17974651 rh_chr06_17449050 69.6 // rh_chr07_7990376 63.1 // rh_chr08_15245498
82.8 rh chr06 18520823 70.5 rh chr07 7829034 66.4 rh chr08 15673111
83.8 rh chr06 19096194 77.0 rh chr07 13861474 67.0 rb chr08 15017624
85.9 rh chr06 19860838 79.2 rh chr07 11956846 72.2 rh chr08 16300041
88.2 rh chr06_19937319
92.2 / h chr06_20569421
88.5
94.8 1 11_child_21011100 89.7 1 11_child_17219131 91.7 VMC1E8
97.5 m
99.5 // rh_chr06_22155848 93.5 // rh_chr07_18097382 116.7 / rh_chr08_19745123
100.3 ² [rn_chr06_22260085 94.5 ³ 94.5 ⁴ [rh_chr07_18437688
111.1 GF06-15 97.3 97.3 1 rh_chr07_18701068
100.9 / rh_chr07_18762637
113.6 rh_chr07_22250380
119.2 / rh_chr07_23438032
119.9 ¹ ^L rh_chr07_23660749

0.0 state 10 507000	0.0 T GF14-01
$0.0 \ rn_{chr13}507206$	14.1_{7} /r rh chr14 594524
3.5 - rh_chr13_688776	$18.0 \sqrt{10} / r rh chr14 836379$
7.7 rh_chr13_1298235	22.7 //drh_chr14_1159858 rh_chr14_1593532
11.5 rh_chr13_2230274	25.3
12.2 -//\rh_chr13_3335044 rh_chr13_4021260	26.6 h chr14 4228742
12.9 // \\ rh_chr13_2994658	20.0 11 11 -11 4220742
18.7 / H chr13 1211616	31.2 m_cnr14_2055250
30.1 - rh chr13 5863106	39.8 / / In_cnr14_4941220
35.1 rh_chr13_5625117	
46.8 - rh_chr13_6540716	54.7 _/ rn_chr14_6495285
51.6-VVS1	56.2 rh_chr14_5966808
60.9 - rh chr13 7620093	61.6 rh_chr14_7624685
60.0 In SC47 20	65.5
00.1 5047_20 72.0 th chr12 0200010	74.7 🔨 🖂 rh_chr14_8308158 rh_chr14_8871788
73.2 m_cnr13_8308812	96.7 ┐ ॅ
80.3	98.4 \ // rh_chr14_21821143 rh_chr14_21885849
85.3 rh_chr13_8898279	103.1 - 10 // rh_chr14_22993902
91.2 rh_chr13_13390889	104.0 - rh chr14 22696262
97.0 rh_chr13_16075743 rh_chr13_15736455	112.0 \ rh chr14 20102426
100.8 - / _ rh_chr13_18487980	118.2 \/drh_chr14_16067239 rh_chr14_17077376
103.0 -⁄//\` rh_chr13_18789364	120.0 \ /c rh_chr14_16253640
106.6 ⁷ / \\ rh_chr13_20576036	122.0 rh_chr14_14755965
113.5 / VMC9H4.2	123.0 rh_chr14_13378081
127.2 - GF13-37	125.0 $125.$
134.6 - rh_chr13_25721137	145.9
142.8	145.9 11 chi 14 25365836
145.5 rh chr13 27978882	147.2 - 111_c11114_25305850
147 7 - rh_chr13 28631883	150.6 rh_chr14_25499021
	157.2 rn_cnr14_20224717
	158.9 ⁻⁷ C ^{rn} _cnr14_26802285
	162.6 rh_chr14_2668/062
	1/1.9 rh_chr14_2/425134
	179.5 / rh_chr14_29446606
	181.0 ⁻ / \ rh_chr14_30126656
	185.2 ^{-/}

0.0 16.3 √ GF15-59 16.3 √ / rh_chr15_177997	
0.0 GF 15-59 16.3 rh_chr15_177997 23.7 rh_chr15_2868330 25.4 rh_chr15_6996975 26.1 rh_chr15_9562659 29.3 rh_chr15_9799495 30.3 rh_chr15_10257839 31.7 rh_chr15_11792802 rh_chr15_12253375 34.7 rh_chr15_13822901 50.8 rh_chr15_1554300 55.5 rh_chr15_15468122 61.6 rh_chr15_16450847 66.1 rh_chr15_16737213 rh_chr15_16667790 68.5 rh_chr15_17146098 73.2 rh_chr15_18318476 75.0 rh_chr15_18480191 76.5 rh_chr15_1868959 rh_chr15_18821643 80.1 rh_chr15_19600528	0.0 12.1 12.1 17.1 1
101.4 VMC8G3.2	

	0.0 7	rh chr18 2022059	
	0.7	rh_chr18_1782705	
	2.1-	r rh_chr18_2286800	
	4.9	rh_chr18_3555950	
	78	rh chr18 3752475	
	18 1 -	rh_chr18_6135846	
	18.8	rh_chr18_6012983	
	25 4	GE18-26	
0.0 \ rh_chr17_287812	20.5	Urb chr18 7128961 rb chr18 7076548	0.0 \ rh_chr19_2036017
2.8 rh chr17 565468	30.9-10	rh_chr18_7809270	11.2 _/ rh_chr19_271672
4.5	33.0	rh_chr18_7997064	20.7 1/ /r rh chr19 197793
7.8 rh chr17 1413957	37.5	rh_chr18_8750038 rh_chr18_8098750	29.9 _// rh_chr19_377073
9.5 / rh chr17 1756458	57.5	Inf chi 10_0730000 m_chi 10_0000730	30.6 - //r rh_chr19_472320
11.8 rh chr17 2443257	39.7	//rh_chr10_0343649 11_chr10_0394346	35.9 - rh chr19 1219270
20.6 rh chr17 3492286	45.0-	rh_chr19_0434763	42.1 Trh chr19 1471481
	45.0	rh_chr19_10762393	45.5 \\ rh chr19 1954527
42.9 rh chr17 5707009	49.5	rh_chr18_10907482	53 5 - rh chr19 3299138
50.5 rh chr17 5258199	52.0-	- rh_chr18_10304487	61.8 m chr19 5072068
52.8	52.0	$-$ rb_cbr18_11614594	62.8 \ rh chr19 5230241
	50.2	rh_chr18_11553/01	69.7 - VVIP31
	62.2	rh_chr18_11350114	75.4 \ / rh chr19 6154322
71.9 rh_chr17_6623514 rh_chr17_/134878	62.0	rh_chr18_11482876	91.2 Trh_chr19_8566871
74.7 rh_chr17_6745403	63.6	Vrh chr18 11286900 rh chr18 11215764	96.5 x / rh chr19 8787547
	75.0	rh_chr18_13105502	99.5 - // rh_chr19_8133480
91.8 rh_chr17_7292907	02.2	rh_chr18_13446367	100.9 - rh_chr19_9229826
93.3 - rh_chr17_7609398	84.7	rh_chr18_14135632	102.3 drh_chr19_8657020 rh_chr19_9151792
105.2 rh chr17 8608505	85.0	rh_chr18_14491995	105.2 - rh_chr19_10968935
113.7rh_chr17_8686547	867	rh_chr18_14551153	105.9 rh chr19 10825978
121.8 crh chr17 9692661	91 1	VCHR18B	108.0 - Yrh chr19 16545270 rh chr19 14659354
123.6 - rh_chr17_9353710	96.0-1	rh chr18 18048055	112.2 / Yrh chr19 19495933 rh chr19 19968859
	97.0-	h chr18 17295477	120.7 rh chr19_23034666
136.5 - rh_chr17_12640993	100.8-	- rh_chr18_22829291	
139.0	103.1-	rh_chr18_22144736	
	107 4 -	rh chr18 23887396	
	109.3	rh chr18 24904198	
	112.7	rh chr18 28307719	
	115.9	rh chr18 30314724	
	119.0	rh_chr18_31885147	

Anhang 6a Genetische Karte der Elternsorte 'Cabernet Franc' der Population CFxTA. Dafür wurden insgesamt 79 SSR- und 42 rhAmpSeq-Marker verwendet. Die Positionen der 121 Marker sind auf 19 Kopplungsgruppen (KG) verteilt in centiMorgan [cM] dargestellt.

Anhang 6b Genetische Karte der Elternsorte 'Triomphe d'Alsace' der Population CFxTA. Dafür wurden insgesamt 83 SSR- und 46 rhAmpSeq-Marker verwendet. Die Positionen der 129 Marker sind auf 19 Kopplungsgruppen (KG) verteilt in centiMorgan [cM] dargestellt.

Anhang 7 Übersicht der QTL-Berechnungen für die Versuche 2019-2-FB und 2020-3-BSTG mit den genetischen Karten der Sorten 'Cabernet Franc' (CF) und 'Triomphe d'Alsace' (TA). Dargestellt sind die Daten zu den folgenden Punkten: Kopplungsgruppe (KG); QTL-korrelierender Marker; Position in Centimorgan [cM]; LOD-Wert ermittelt durch Intervall Mapping (IM); Signifikanzgrenze (SG) der Kopplungsgruppe, ermittlet durch einen Permutationstest (PT); Erklärter Anteil der Varianz (VE) des Phänotyps [%].

Sorte	Versuch	KG	Position [cM]	LOD-Wert (IM)	SG (PT)	VE [%]
	2019-2-FB	12	22,3	4,17	1,3	11,1
TA		12	49,2	3,2	1,3	8,6
	2020-3-BSTG	17	47,5	4,38	1,5	13,4
CF	2019-2-FB	12	49,2	0,57	1,3	1,6
	2020-3-BSTG	17	45,5	1,9	1,4	6

IX. Danksagungen

Ich möchte mich bei Prof. Dr. Eva Zyprian und Prof. Dr. Peter Nick für die Bereitschaft zur Betreuung meiner Promotion bedanken.

Vielen Dank an Dr. Jürgen Sturm von der LVWO Weinsberg und Dr. Oliver Trapp vom Julius Kühn-Institut Siebeldingen für die Möglichkeit, dieses Kooperationsprojekt durchführen zu können. Besonderer Dank gilt dem Forschungsring des Deutschen Weinbaus (FDW), für die Bereitstellung der finanziellen Projektmittel.

Ebenfalls danken möchte ich Salvador Olivella Bori, der im Rahmen seiner Masterarbeit an diesem Projekt mitgearbeitet hat.

Danke auch an all meine Kollegen, insbesondere Dr. Florian Schwander und Sophia Müllner, die mir währenden meiner Zeit als Doktorand immer mit Rat und Tat zur Seite standen.