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With the goal of developing an accurate and fast image reconstruction algorithm for ultrasound computed
tomography, we combine elements of model- and data-driven approaches and propose a learned method
which addresses the disadvantages of both approaches. We design a deep neural network which accounts
for a nonlinear forward operator and primal-dual algorithm by its inherent network architecture. The
network is trained end-to-end, with ultrasound pressure field data as input to get directly an optimized
reconstruction of speed of sound and attenuation images. The training and test data are based on a set of
Optical and Acoustic Breast Phantom Database, where we use the image as ground truth and simulate pres-
sure field data according to our forward model. Extensive experiments show that our method achieves
significant improvements over state-of-the-art reconstruction methods in this field. Experiments show
that the proposed algorithm improves the measures structural similarity measure (SSIM) from 0.74 to
0.95 and root mean squared error (RMSE) from 0.13 to 0.09 on average concerning the speed of sound
reconstruction, while it improves the SSIM from 0.60 to 0.94 and RMSE from 0.24 to 0.10 on average
in attenuation reconstruction.
1. Introduction

Ultrasound computed tomography (USCT) promises high speci-
ficity for early breast cancer detection without the associated risks
of ionizing radiation while with lower costs than magnetic reso-
nance tomography. It images the reflectivity, speed of sound
(SoS) and attenuation of breast tissue. USCT devices allow to
observe reflection and transmission tomography at the same time
[1]. Yet, the widespread use of high-quality USCT is mainly limited
by the excessive time for image reconstruction, which prevents
currently the application of sophisticated reconstruction tech-
niques within clinical workflows. Hence, there is an urgent need
in fast and accurate reconstruction methods.

The simplified relationship of USCT between SoS, attenuation
and breast tissue types is shown in Fig. 1. Both in combination of
SoS and attenuation are expected to be a discriminator for different
tissue types and also to distinguish malign and benign lesions [2].
The goal of USCT image reconstruction is to reconstruct SoS and
attenuation, which are incorporated in a complex variable g that
describes the deviation of SoS and attenuation in the breast from
the background medium of water [1].

The inverse problem of image reconstruction can be formulated
as reconstruction of the inhomogeneity (ground truth) gtrue 2 X
from ultrasound pressure field data (frequency data) p 2 Y mea-
sured from the USCT system, where

p ¼ TðgtrueÞ þ dp ð1Þ
Here, X is the image domain; Y is the frequency domain; dp 2 Y

denotes the noise in the frequency data; the forward operator
T : X ! Y models how the ground truth gives rise to frequency
data.

Recently, deep learning (DL) seems to offer new potentials in
solving ill-posed inverse problems. Compared with traditional
optimization-based algorithms, once learned, the inverse operators
yield impressive reconstruction performance. Yet, the learning pro-
cess is the Archilles’ heel of these techniques since the larger the
data dimension is, the larger should be the necessary learning data
for being rich enough to account for accurate mapping.

Many algorithms based on deep neural networks (DNNs) have
been used for computed tomography (CT) image reconstruction.
In particular, a convolutional encoder-decoder (CED) architecture
[4] has been readily available for CT image reconstruction. The



Fig. 1. Simplified relationship between SoS, attenuation and breast tissue types [3].
CED has been used to restore high-quality CT images from low dose
CT images. Han et al. [5] propose a deep residual learning network
for sparse view CT reconstruction via persistent homology analysis.
Jin et al. [6] propose a filtered back projection conversion network
(FBPConvNet) architecture which combines filtered back projec-
tion and U-net architecture to improve the image quality. In [7],
a DD-Net based on DenseNet and deconvolution is developed to
accelerate the network training speed.

However, using DL to reconstruct USCT images is rarely found
in literature compared to CT reconstruction. From the mathemati-
cal side, the main difference is that CT can be well approximated by
straight rays whereas USCT is a typical example of wave and scat-
ter tomography, both complications that make standard CT recon-
struction and other image reconstruction methods with DL not
usable and pose severe problems in the reconstruction algorithms.
It is a good starting point to mention the CT deep learning recon-
struction as a motivation, but we cannot learn so much for USCT
due to its wave properties (refraction, diffraction and scattering).

In this paper, we design a novel DNN architecture based on a
primal–dual method [8] to obtain both fast and high-quality image
reconstruction as a major breakthrough for these ultrasound appli-
cations. It maps the traditional primal-dual algorithm [8] into a
dual-domain (pressure field frequency domain and image domain)
network architecture for optimizing a general USCT image recon-
struction model with a DNN.

In the traditional primal-dual hybrid gradient (PDHG) methods
[8–10], a forward model and its adjoint are needed for the compu-
tation of each iteration. However, the forward model for USCT
requires solving a wave equation [1,11], which is a highly compu-
tational burden. In addition, computing the adjoint is time-
consuming as well. Therefore, we replace the adjoint by our
frequency-to-image domain network (FI-Net) architecture. Our
network unrolls a fixed number of iterations of a primal-dual opti-
mization strategy, where in each iteration a convolutional neural
network (CNN) is applied for both frequency domain and image
domain. Iterations are connected by both the forward operator
and the FI-Net. In particular, in the image domain, nonlinear trans-
forms are learned instead of learning traditional linear transforms.
Furthermore, our network can be seen as an attempt to build a
bridge between the model-based and data-based methods.

To gain substantial improvements and address above problems,
we make the following contributions:

� The network is able to reconstruct images without any initial
reconstruction such as filtered back-projection (FBP) and use
CNNs to learn domain transformation without any fully con-
nected layer. It can effectively reduce the number of parameters
when compared with AUTOMAP [12], which makes it possible
for large images, offering a powerful tool for solving reconstruc-
tion problems in clinically acceptable time.

� Due to the highly computational burden of adjoint, we propose
the FI-Net to learn the adjoint from training data rather than
computing it directly. Since the computation of FI-Net is much
faster than the computation of the adjoint, the training of our
proposed network would be hence much faster than the learned
PDHG algorithm [13] which needs to compute the adjoint at
every unrolled iteration in its network. For the same reason,
our trained network would be much faster to use for image
reconstruction than the learned PDHG network. Therefore, our
network will benefit the community by the various and ubiqui-
tous uses in different reconstruction problems, which need an
adjoint as input.

2. Forward model

For conventional iterative image reconstruction, it is necessary
to compute the forward model and back - propagation. In USCT,
the basis for forward model is the wave propagation of ultrasound
which is mathematically described by the wave equation in the
frequency domain for inhomogeneous object [1].

2.1. Helmholtz equation

The Helmholtz equation [1] can simulate the ultrasonic wave
propagation through a background medium including multiple
scattering, and diffraction as

Dpþ k20ð1þ gÞ2p ¼ 0 ð2Þ
with the pressure field p. The acoustic medium is described by the
background wave number k0 ¼ w=c0 with the SoS of the back-
ground medium c0 and angular frequency w ¼ 2pf . The refractive
index is 1þ g , where g ¼ aþ b

k0
i is a complex value: its real part

a ¼ c0
c 1 describes the deviation of the SoS (c is in the soft tissue

while c0 is in the background medium), and its imaginary part b
k0
i

depends on the parameter b that accounts for the frequency-
dependent attenuation.

A full solution of the wave equation is computationally highly
demanding since solving the Helmholtz equation is not possible
within a reasonable time, which is due to the computation of the
used maximal frequencies of up to 3.5 MHz requiring approxi-
mately 10 discretization points per wavelength. In practice, an
approximation is necessary. A strategy commonly known from
geophysics is the paraxial approximation [1,14], which describes
the ultrasound field as nearly plane waves in the forward direction.

2.2. Paraxial approximation forward model

For the paraxial approximation [1], we consider that the emit-
ters are put around a circle, while the receivers are on the opposite
side of these emitters (see Fig. 2(a)). The wave can propagate from
a slice to another slice, and the propagation direction is indicated
by z. The forward solution is the frequency dependent pressure
field p on the computational grid. The grid is resampled from the
reconstruction volume/plane as a set of parallel slices/lines per-
pendicular to the emission direction (see Fig. 2(b)). The propaga-

tion from kth z slice to ðkþ 1Þth z slice on the computational grid
Nx � Nz with step width Dx and Dz reads

pkþ1 ¼ eiDzk0gk � F 1 eiDz
ffiffiffiffiffiffiffiffiffi
k20 n2

p
� FðpkÞ

n o
ð3Þ



Fig. 2. Forward model and measurement set-up.
where p ¼ pðx; zÞ with x; z 2 R describes the pressure field in 2D in
the frequency domain through the propagation direction z; the

index k at p and g denotes the kth z slice; the spectral variable reads

n ¼ 2p
DxNx

Nx
2 þ 1; . . . ; 0; . . . ; Nx2

� �T 2 RNx; F and F�1 respectively repre-
sent 1D discrete Fourier transformations and the inverse discrete
Fourier transformations [15]. Assuming that we have NTE emitters
and NT receivers, the full scan includes NTE � NT waves.

Based on the Eq. (3) of the forward problem, the adjoint of
derivative’s forward operator is necessary for the back propagation
of an iterative scheme. The formula of adjoint is as follow:

p�
k ¼ F 1 e iDz

ffiffiffiffiffiffiffiffiffi
k20 n2

p
� Fðe iDzk0gk � pkþ1Þ

n o
ð4Þ

where all parameters have the same meanings as in the Eq. (3).
This is known as an inverse problem, and it is ill-posed due to

the nonlinearity and the extremely large scale of the problem.
Hence, many iterative reconstruction algorithms are hard to apply
due to the computation burden for determining forward operator
and its adjoint.

3. Related work

We usually divide existing image reconstruction methods into
two categories: model-based methods and data-based methods.
In the following section, we will briefly review the two types of
methods.

3.1. Model-based reconstruction

In the model-based image reconstruction, the forward and
adjoint operators of the imaging problem are directly used in the
inverse algorithm [16]. Since the reconstruction g from frequency
data p is generally ill-posed, a conventional model-based method
for solving problem Eq. (1) is to minimize a regularized objective
function by:

g ¼ min
g2X

LðTðgÞ;pÞ þ kRðgÞ ð5Þ

where the first term is for data consistency and the second term is a
regularization prior. Here, k is regularization parameter. The regu-
larization prior R is carefully designed to limit the solutions to
the space of the desired images, and L is the negative data log-
likelihood.

An iterative model-optimized algorithm called Newton conju-
gate gradient [1] is proposed to reconstruct USCT images in inho-
mogeneous media, where it builds the forward model in the
pressure field domain and iteratively reconstruct the images. In
particular, Valkonen [9] proposes the PDHG algorithm for magnetic
resonance imaging (MRI) image reconstruction, which provides a
solid basis concerning convergence and theoretical basis for opti-
mization problems. In [17], a total variation (TV) minimization,
which uses gradient transformation as regularization prior, obtains
some satisfying results in CT reconstruction. Beck and Teboulle
[18] develop an iterative shrinkage-thresholding algorithm (ISTA)
and Liu et al. [19] present an alternating direction method of mul-
tipliers (ADMM) to solve the inverse problems, which are widely
used in compressed sensing and MRI reconstruction.

Based on traditional algorithms, model-driven methods in DL
introduce forward models and back propagation into neural net-
works, which use DNNs as regularization prior. Both of ISTA-Net
[20] and ADMM-Net [21] map the traditional method into DNNs
for compressed sensing reconstruction. Adler and Öktem [16]
apply a learned gradient scheme to reconstruct CT images. Kulka-
rni et al. [22] reduce the computational complexity by weight shar-
ing while training the network. Hammernik et al. [23] propose a
learned variational network to unroll the approximate message-
passing (AMP) method for inverse problems, which replaces the
denoising operator with CNNs.

Model-based reconstruction methods have to repeat the solu-
tions of the forward problem and back propagation. For large,
highly non-linear problems like USCT, they suffer from a high com-
putational burden and the management of appropriate regulariza-
tion strategies and parameters therein. USCT has a highly
scattering medium and the waveforms, and it has been used to effi-
ciently determine the curved, non-linear paths of the wave across
the refractive media, from source to receivers and back, which
makes it more sophisticated than other methods. In a nutshell,
USCT cannot neglect wave effects like refraction and diffraction
without loosing resolution. So far, most of the USCT breast imaging
reconstruction methods are based on an approximation of the
acoustic wave equation [24–26]. However, the wave equation or
its approximation of the wave equation needs to be solved numer-



4. Methodology

In order to combine the advantageous properties of model-
based and data-based methods and to overcome their limitations,
we propose a hybrid model-data-driven image reconstruction
approach. The goal is to design a deep neural network architecture
that directly and quickly reconstructs high-quality images from
USCT data without computation of adjoints. To the best of our
knowledge, this is also the first work in the field of USCT image
reconstruction based on DL.

4.1. Preliminaries

Iterative unrolled network is based on unrolling conventional
iterative algorithms and using CNNs to replace the penalty func-
tions. Our network is based on the PDHG algorithm, which is a typ-
ical iterative reconstruction method and a first order proximal
method [9]. Due to its robustness, it is well suited for solving a
large class of inverse problems, and it has been successively
applied in different fields [13,34]. It solves the underlying opti-
mization problem simultaneously with its dual, which provides a
robust convergence check. Specifically, PDHG (Algorithm 1) solves
the problem in Eq. (5) by iterating between the following update
steps:

pðnþ1Þ ¼ proxrL� pðnÞ þ rTðgðnÞÞ� � ð6Þ

where p 2 Y;g 2 X;n denotes the PDHG iteration index, pðnþ1Þ is

optimization result at the ðnþ 1Þth iteration, L� is the convex conju-
gate of L, and r is step size. This update step is in the dual space.

For the update step in the primal space, it reads:

ically for a large number of iterations. Hence, the large computa-
tional burden makes USCT image reconstruction different from 
other back-projection based image reconstruction, such as MRI 
[27], PET [28] and microscopy [29].

3.2. Data-based reconstruction

Another strategy for reconstructing images uses data-driven 
approaches. These approaches do not require a forward model. 
They reformulate image reconstruction as a data-driven supervised 
learning task. They can be split into two categories.

The first category uses DNN as a post-processing method for 
image reconstruction, artifact removal and denoising. These meth-
ods need to learn how to map initial reconstructed low-quality 
images to high-quality images. For instance, [7,30] use a residual 
encoder-decoder CNN to generate artifact-free images with FBP 
reconstructed images as input. Han and Ye [31] use a U-Net as 
post-processing algorithm for CT image denoising. In [32], a gener-
ative adversarial network (GAN) is proposed to clean degraded 
images.

The second category of data-based image reconstruction meth-
ods map the frequency into the image domain by learning the 
inverse operator from training data. There are fewer methods com-
pared with the post-processing data-based methods. Zhu et al. [12] 
propose a framework for image reconstruction known as AUTO-
MAP. The framework improves the reconstruction performance 
and manifests superior immunity to noise when compared to tra-
ditional reconstruction methods. In [33], a deep CED network is 
proposed to reconstruct PET images directly from PET sinograms.

All mentioned strategies, however, suffer from the huge amount 
of parameters and necessary training data in order to learn the 
inverse operator without any system model. Hence, they do not 
scale well, they cannot be applied to large images and the overall 
performance is limited.
gðnþ1Þ ¼ proxsR gðnÞ � s @TðgðnÞÞ� ��ðpðnþ1ÞÞ� �
�gðnþ1Þ ¼ gðnþ1Þ þ cðgðnþ1Þ � gðnÞÞ ð7Þ

Here, @TðgðnÞÞ� ��
: Y ! X is the adjoint of the derivative of T

regarding g; and s is step size. c is overrelaxation parameter and
prox is the proximal operator. Formally, the proximal operator is
defined as

proxkRðgÞ ¼ arg min
g02X

ðRðgÞ þ 1
2k

jjg0 � gjj22Þ ð8Þ

Algorithm 1. Primal dual hybrid gradient (PDHG)

1: Given: r; s;N > 0; c 2 ½0;1� and p0 2 Y;g0 2 X
2: for n ¼ 1; . . . ;N do
3: pðnþ1Þ ¼ proxrL� pðnÞ þ rTðgðnÞÞ� �
4: gðnþ1Þ ¼ proxsR gðnÞ s @TðgðnÞÞ� ��ðpðnþ1ÞÞ

� �
5: gðnþ1Þ ¼ gðnþ1Þ þ cðgðnþ1Þ gðnÞÞ
6: end for

Due to the success of DL, the iterative unrolled network of
learned PDHG [13] that combines DL with model-based recon-
struction is proposed to solve inverse problems. It unrolls the prox-
imal primal-dual method, and replaces proximal operators with
CNNs. A learnable DNN (Algorithm 2) replaces the proximal oper-
ator in Eq. (6):

pðnþ1Þ ¼ f R pðnÞ þ rðnþ1ÞTðgðnÞÞ;Hðnþ1Þ	 
 ð9Þ
where f R p;Hð Þ is the neural network with pressure field p and
parameter H as inputs. The parameters of H and r can be learned
during the training progress:

r�ð1Þ;H�ð1Þ; . . . ;r�ðNÞ;H�ðNÞ ¼ arg min
rð1Þ ;Hð1Þ ;...;rðNÞ ;HðNÞ

X
i

jjpðNÞ
i � ptrue

i jj22

where pðNÞ
i and ptrue

i are the ith generated pressure filed and the cor-
responding reference pressure filed.

For the primal space, the unrolled network of Eq. (7) reads:

gðnþ1Þ ¼ f R gðnÞ � sðnþ1Þ @TðgðnÞÞ� ��ðpðnþ1ÞÞ;Kðnþ1Þ
n o

; n

¼ 1;2; . . . ;N ð10Þ
where f R g;Kð Þ is a CNN, and the parameters K; s can be learned
from:

s�ð1Þ;K�ð1Þ; . . . ; s�ðNÞ;K�ðNÞ ¼ argmin
sð1Þ ;Kð1Þ ;...;sðNÞ ;KðNÞ

X
i

jjgðNÞ
i � gtrue

i jj22

where gðNÞ
i and gtrue

i are the ith image reconstruction result and the
corresponding ground truth;

For this kind of iterative unrolled network, the computation
time of forward model T and the adjoint of derivative’s forward
operator @TðgðnÞÞ� ��

: Y ! X is dominating, and as a result, it fails
to reduce the overall computation time significantly.

Algorithm 2. Learned PDHG

1: Given: p0 2 Y;g0 2 X
2: for n ¼ 1; . . . ;N do

3: pðnþ1Þ ¼ f R pðnÞ þ rðnþ1ÞTðgðnÞÞ;Hðnþ1Þ
n o

4: gðnþ1Þ ¼ f R gðnÞ sðnþ1Þ @TðgðnÞÞ� ��ðpðnþ1ÞÞ;Kðnþ1Þ
n o

5: gðnþ1Þ ¼ gðnþ1Þ þ cðgðnþ1Þ gðnÞÞ
6: end for



4.2. Network architecture
@TðgðnÞÞ� �� in the primal space to save computation time.
The proposed neural network architecture involves CNNs in

both the frequency space and image space. As shown in Fig. 3,
our proposed model consists of two parts: (a) In the dual space,
we perform an optimization of the data term. Our algorithm gener-
ates the frequency data according to the forward model and then
we optimize the data according to the realistic data. (b) In the pri-
mal space, a FI-Net reconstructs the images according to the output
of the dual space to transform frequency domain to image domain.
The detailed description of the functionality and network design of
the dual space and primal space is given in Subsections 4.2.1 and
4.2.2, respectively.

In order to solve highly non-linear inverse problems in rela-
tively short time, we propose a dual domain network architecture 
for USCT reconstruction based on learned PDHG [13] as described 
in Algorithm 2. Both learned PDHG [13] and our algorithm unroll 
the PDHG algorithm, and replace proximal operators with CNNs. 
But differently, we use the FI-Net to replace the computation of
Fig. 3. The proposed network architecture for USCT reconstruction. In (a), the dual iteratio
all have the same architecture during the iteration, which is illustrated in the correspon
Inputs to the network just need pressure field data p 2 Y. Dur-
ing iteration, the points p0 and g0 in the dual and primal space
are initialized by zero in the beginning. Let the number of unrolled
iterations be N = 3 because of memory problem. In the dual space,
we first apply the forward model to generate an initial estimate of
the frequency data. Then, we use CNNs to allow the network to
minimize the data. Finally, according to the output of the dual
space, the reconstructed USCT image gn 2 X is reconstructed by
the FI-Net.
4.2.1. Deep neural network in dual space
By taking full advantage of the properties of both, PDHG and

network-based methods, the basic idea of our architecture is to
map the previous PDHG update steps into a deep network architec-
ture that consists of a fixed number of iterations, each of which
corresponds to one iteration in the traditional PDHG.

At the top of Fig. 3, an optimization of the data term is per-
formed in the dual space. At first, we need to concatenate the ini-
tial guess dual variable pn, frequency data p and the output of
ns are in blue boxes, while the primal iterations are in red boxes. The blue/red boxes
ding large boxes. The connection pointing to one box indicates concatenation.



T gnð Þ. Neural networks optimize the dual variable p instead of the 
primal proximal according to Eq. (6).

The part of dual space consists of a 3-layer network, where the 
convolutions in the dual space are all 3 � 3 pixels in size with 
stride 1, and the number of channels is 6-64-64-2, followed by a 
rectified linear unit (ReLU). In USCT, we operate with complex 
numbers, hence, we stack the real (SoS) and imagery (attenuation) 
parts as two channels, where the 6 channels of inputs are 2 � 3
(p0; p; T gð Þ), while the 2 channels of the reconstructed output rep-
resent SoS and attenuation.
4.2.2. FI-Net
For most model-optimized iterative algorithms [8,9,35,20,36], 

an adjoint of the derivative of T in the PDHG and learned primal-
dual is required as input. Computing the adjoint of the derivative 
of forward model is relatively complex and is very time consuming. 
In order to overcome this expensive computation of the adjoint, 
our FI-Net W computes the adjoint of the derivative of T by CNNs:
gðnþ1Þ ¼ f R gðnÞ þ wðnÞðpðnþ1ÞÞ	 

; n ¼ 1;2; . . . ;N ð11Þ
where pn is the output of the dual space.
The network architecture of the FI-Net is depicted in the bottom

part of Fig. 3(b). The network consists of two parts. The first part
consists of sequential blocks of 3 � 3 convolutions with stride 2
to realize down-sampling, where the number of channels in the
different layers is 32 ! 64 ! 128 ! 256 ! 512, with a twofold
increase in the number of channels, and followed by a rectified lin-
ear unit (ReLU). The first part output consists of 512 feature maps.
The second part upsamples the feature maps from the output of
the first part. The parameters are mentioned in FI-Net of Fig. 3(b).

Unlike U-Net that uses a 2 � 2 deconvolution layer to upsample
the feature maps, our upsampling block includes 2 layers: a 3 � 3
convolution layer and a sub-pixel convolutional layer [37,38] since
the sub-pixel layer could expand the feature maps efficiently. The
subpixel layer allows the neural network to propagate more
detailed information directly from lower space to higher space
instead of zero padding and interpolation, which helps enhance
the accuracy at pixel level.
5. Experiments

5.1. Experimental design

We evaluate the algorithm on USCT problems with different
methods. All the compared approaches are evaluated on the same
Optical and Acoustic Breast Phantom Database (OA-Breast dataset),
described below in more detail.
Fig. 4. 3D rendered views
5.1.1. OA-Breast dataset
Lou et al. [39] published a 3D optical and acoustic breast phan-

tom dataset for various acoustic imaging simulation and optical
studies. The OA-Breast dataset provides for three patients MRI-
data with different breast density levels: extremely dense, hetero-
geneously dense and scattered fibroglandular level. The 3D ren-
dered views are shown in Fig. 4. Each of the 3D data sets
contains many 2D slices, where the different tissue pixel is labeled
as different integer in the 2D slices (see Table 1).

For the extracted 2D slices from 3D data, we need to assign g
according to the parameters in Table 1 for different tissues
[1,15]. And then a Gaussian filter is applied on g to ensure each tis-
sue has a smooth gradient [15]. The data is then processed by the
paraxial approximation forward model of Eq. (4) according to the
value of g. Random Gaussian noise is applied on the data to aug-
ment data. Specially, considering the accuracy of reconstruction
and convergence, the range of Signal to Noise Ratio (SNR) is set
as 110 to 140 dB. Finally, the data is scaled to the range of (0, 1)
to generate the simulated USCT dataset for training, validation
and test.

4,000 2D slices are extracted from OA-Breast dataset. Specifi-
cally, 2,000 images are used as training set. These training images
are further quadrupled by data augmentation: 90 degree rotation,
grayscale-value reversing and 90 degree rotation of generated
images. After data augmentation, the total 2000 � 4 images are
used for training. 1,000 images from OA-Breast dataset are used
for the validation set and the rest 1,000 images are used for test.
All these three sets are kept separate.

For the generated USCT dataset, the size of frequency data is
256 � 128 at the start frequency of 0.5 MHz, and the size of out-
puts is 256 � 256 with pixel size 1.88 mm. The radius of ROI is
80 mm and the radius of USCT device is 130 mm.

5.1.2. Implementation details
The model was implemented in TensorFlow framework [40]

and trained with one GTX 1080Ti GPU card. The following mean
absolute error (MAE) loss serves as loss function,

MAE ¼ 1
n

Xn
i¼1

ĝsos � gsosj j þ
Xn
i¼1

ĝatt � gattj j
!

ð12Þ

where gsos and gatt are the ground truth of SoS and attenuation; ĝsos

and ĝatt are the reconstructed images of SoS and attention.
Xavier initialization scheme [41], ADAM optimizer [42] with

parameters b1; b2ð Þ ¼ 0:5;0:99ð Þ and batch size of 16 are used for
model training. The learning rate in step t is:

lt ¼ l0
2

1þ cosðp t
tmax

Þ
� �

ð13Þ

with l0 ¼ 10�4. The model is optimized on the training set over 280
epochs.
of OA-Breast dataset.



Type of issue in OA-breast Speed of sound (SoS) Attenuation in dB/m/
MHz

0: background(water) 1485 m/s 0
2: fibro-glandular tissue 1490 m/s 0.88

3: fat 1450 m/s 1.26
4: skin layer 1570 m/s 2.08

5: blood vessel 1560 m/s 1.60

Table 1
The parameters for USCT breast data.
5.2. Experimental results

In order to show the performance of our algorithm, we compare
our model with the following methods: 1) PDHG [9], 2) Newton
Conjugate Gradient (CG)[11], 3) U-Net [43], 4) FC-DenseNet103
Table 2
Quantitative evaluation of results on test set in terms of SSIM and RMSE with different no

SSIM/RMSE SoS (real part)

SNR = 30 SNR = 50 Noise

1) PDHG 0.532/0.208 0.756/0.143 0.966/0
2) Newton CG 0.546/0.198 0.747/0.143 0.971/0
3) U-Net 0.732/0.145 0.736/0.144 0.737/0
4) FCdense103 0.720/0.145 0.720/0.145 0.739/0
5) DHDN 0.705/0.145 0.704/0.144 0.724/0
6) Ours 0.952/0.096 0.955/0.095 0.956/0

Fig. 5. Visual comparisons on USCT for different algorithms without noise, the first row

Fig. 6. Visual comparisons on USCT for di
[44], and 5) Densely Connected Hierarchical Network (DHDN)
[45] on test set. The first two are traditional iterative optimized
methods and the rest are DL methods. Here, we exclude the exper-
iments of learned PDHG [13], since it needs to compute the adjoint
at every unrolled iteration in its network. In our USCT application,
the adjoint is very expensive to compute. As a result, training the
learned PDHG network would be extremely slow. We failed to
train it within realistic time to get meaningful results.

Quantitative Comparisons. The root mean squared error
(RMSE) and structural similarity measure (SSIM) are the evaluation
metrics for quantitative evaluations. Table 2 shows quantitative
comparisons with different noise levels on the test set. We sepa-
rate quantitative comparison to three comparison levels: tradi-
tional iterative optimized methods and DL methods level, SoS
and attenuation level, and noisy data with noise free level.
ise levels.

Attenuation (imaginary part)

free SNR = 30 SNR = 50 Noise free

.009 0.479/0.335 0.480/0.335 0.481/0.335

.009 0.480/0.335 0.473/0.336 0.481/0.335

.144 0.708/0.173 0.714/0.171 0.714/0.171

.139 0.693/0.173 0.696/0.172 0.719/0.164

.141 0.621/0.173 0.620/0.173 0.686/0.168

.095 0.943/0.109 0.944/0.109 0.945/0.109

shows the SoS reconstructed results, while the second row shows the attenuation.

fferent algorithms with SNR = 50 dB.



Fig. 7. Visual comparisons on USCT for different algorithms with SNR = 30 dB.
Comparing traditional iterative optimized methods with DL
methods, we find that the initialization of Newton CG and PDHG
should be chosen carefully in order to get better results. In the
paper, for Newton CG and PDHG, we use mean value of ROI as
the initialization. In our method we use zero-initialization, because
DL does not have this high sensitivity for the attenuation. For the
noise-free case in SoS, Newton CG and PDHG achieve similar
results and better reconstructed results when compared with DL
techniques, since both of the forward model and back propagation
are solved numerically for a great number of times during each
iteration. But for the rest of the cases, DL methods obtain better
results than the iterative optimized methods. However, we observe
Fig. 8. Quantitative evaluation on USCT images. Different colored lines indicate different
of attenuation, while the left lines are the SoS results.
that the DL approaches U-Net, FC-DenseNet103 and DHDN cannot
reconstruct images well on all levels when compared with our
algorithm. The reason is that the network needs to learn the trans-
form from the frequency to image domain and it is non-linear and
complex, see the forward model and adjoint in Eqs. (3), (4). These
DL network architectures don’t have high performance on USCT
images.

For the SoS and attenuation comparison, all of the algorithms
achieve better reconstructed SoS images than their own attenua-
tion images since attenuation is much smaller than SoS and it
starts to converge only after the SoS is well reconstructed. For
the attenuation, however, only our proposed algorithm can achieve
reconstruction algorithms. The lines with a triangle indicate the quantitative results



.

acceptable results with 0.944 SSIM and 0.109 for RMSE. For most 
cases in the SoS part, our method also achieves significant 
improvements over other methods.

As for noisy data, DL methods clearly outperform Newton CG 
and PDHG due to the ability to substantially denoise the images 
while inverting the problem. For DHDN, it achieves lower accuracy 
when compared with U-Net and FCdense103. It uses a modified U-
Net hierarchical architecture to enable the network to use a large 
number of parameters, but it adds the final output to the initial 
input, which makes hard reconstruct images from frequency 
domain to image domain. However, the Newton CG and PDHG 
can compute the adjoint of derivative of forward model, and they 
can achieve higher SSIM than U-net, FC-DenseNet103 and DHDN 
without noisy data for the SoS part. When compared with other 
methods on all the three levels, our method improves the SSIM 
from 0.690 to 0.954 and RMSE from 0.156 to 0.095 on average con-
cerning the SoS reconstruction, while it improves the SSIM from 
0.596 to 0.943 and RMSE from 0.238 to 0.109 on average in atten-
uation reconstruction.

Visual Comparisons. Figs. 5–7 show visual results of USCT 2D 
slices at different noise levels in test set. The first row of Figs. 5–
7 shows the reconstruction results of SoS with noise free, SNR 
50 dB, SNR 30 dB respectively, while the second row of Figs. 5–7 
shows the corresponding results of attenuation. And the plots of 
SSIM and RMSE values are shown in Fig. 8. We note that small 
structures, such as the small inserts and dots, are much more 
clearly visible in our method than the other methods. For Newton 
CG and PDHG, both of them can reconstruct the SoS well without 
noise. But for the attenuation and noisy data, even though both 
of Newton CG and PDHG have good initialization, it is difficult 
for them to reconstruct attenuation while our method achieves 
a good quality. For the DL methods U-Net, FC-DenseNet103 and 
DHDN, none of them can reconstruct more detailed information.
Fig. 9. Visual reconstruction result and its 1D profiles focusing on the pixels at the pi
simulated reference in blue.
Our method attains the best performance in terms of both SSIM
and RMSE consistently in most categories.

In addition, we report our USCT reconstruction results with
more detailed information (see Fig. 9). The starting frequency is
0.5 MHz and it reaches the final frequency 2.5 MHz. In Fig. 9, the
2D images of Fig. 9(a) and (b) are reconstructed SoS and attenua-
tion respectively. The 1D profiles of Fig. 9(c) and (d) focus on the
parameters/pixels at the pink dotted lines, where the recon-
structed profiles are given in red and their simulated reference in
blue. In Fig. 10, we give more visual results to show robustness.

Running Time Comparisons. On one Nvidia 1080Ti GPU card, it
takes 1.31s for our method to reconstruct SoS and attenuation from
pressure field. For the DL methods, U-Net, FC-DenseNet103 and
DHDN needs 0.087s, 0.136s and 0.162s respectively. As shown in
Fig. 11, Newton CG and PDHG cost about 66 minutes to reconstruct
one high-quality image due to the need for repeated iterative oper-
ations, while other DL methods have relatively lower reconstruc-
tion quality. The DL based methods run faster than the
traditional image reconstruction methods. Because these learned
methods belong to data-driven methods, they are much faster
without forward solution. The reason for the speedup is, once the
partial inverse is learned, only a forward pass through the network
is necessary without the need to perform a forward solution of the
ultrasound transport model; this saves a lot of computing time.
6. Discussion

The main focus of this paper is to introduce a model- and data-
driven framework for USCT reconstruction and demonstrate its
benefits when compared with traditional methods. Furthermore,
our framework does not rely on any initial reconstruction as input:
it can reconstruct images directly from frequency domain to image
domain.
nk dotted line where the reconstructed profiles are given in red circles and their



Fig. 10. Visual results of more phantoms. The top results are the ground truth images while the bottom results are the reconstructed results. The left four columns are SoS
results while the right four columns are attenuation results.

Fig. 11. The reconstruction quality and running speed comparison. � and 4
present the CPU implementation time and the GPU implementation time, respec-
tively. The compared traditional methods are marked with blue font; the compared
deep learning methods are marked with green font; our method is marked with red
color.
Compared with the state-of-the-art reconstruction methods, in
particular for noisy data, our algorithm outperforms classical
reconstruction algorithms by large SSIM and small RMSE. Com-
pared with PDHG and Newton CG, it can increase SSIM by up to
30% and reduce RMSE by up to 60% for the SoS reconstruction,
and increase SSIM by up to 100% and reduce RMSE by up to 70%
for attenuation reconstruction. The first reason for good perfor-
mance for noisy data is that our algorithm learns a regularized par-
tial inverse of the problem whereby the regularization is structure
dependent. It determines a regularization functional that allows to
compensate noise without substantial loss of image details.
Another reason for good performance is that we add different noise
levels in the training data, improving the reconstruction with the
noise data.

However, because the network uses forward operator, it needs
to apply different forward operators in different reconstruction
problems. Besides it, we generally do not have a guarantee of
achieving a global solution, i.e to be near to the reference solution.
Although empirical evidence shows that the method is quite
robust, there is still the open problem of guarantees to be solved.
On the other hand, DL techniques, again, have demonstrated to
be able to capture internal structure information of a problem
and learn the partial inverse, offering a new tool for solving diffi-
cult reconstruction problems in relatively short time. In addition,
we still have the option to verify the quality of the reconstruction
by the data term of conventional techniques although it must be
said that the regularization is still a black box in this inversion pro-
cess. Better insights in the internal mapping of the network might
help better understand this issue.

All in all, our algorithm is allowed to achieve reasonable recon-
struction time for clinical systems with moderate hardware effort
and this is also the first work in the field of USCT image reconstruc-
tion based on DL. Henceforth, we consider this technique to
become a dominant strategy for this and many other inverse prob-
lem solving techniques.

7. Conclusion

In this paper, we present a model-data-driven image recon-
struction method for USCT images. The algorithm is inspired by
the PDHG algorithm, where we use FI-Net in the primal space in
order to reduce the time for computing adjoint of derivative of for-
ward operator. The algorithm is neither a typical model-driven
method nor a purely data-driven method: it incorporates these
two frameworks. Although it requires to apply different forward
operators in different applications, and we generally do not have
a guarantee of achieving a global solution, it can still be used to
solve the inverse problem in USCT and get a good result compared
with other typical methods. Future work will be focused on
extending this algorithm to realistic size 3D USCT data.
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