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1. Introduction

This article is a culmination of a series of articles begun in [7] and continued in [8] in 
which we extend the diffraction theory of uniform regular model sets in abelian groups 
to the wide setting of proper homogeneous metric spaces. In [7] we introduced regular 
model sets in a general locally compact second countable (lcsc) group G, and with every 
such model set Λ we associated a dynamical system ΩΛ over G, the hull of Λ. We then 
established unique ergodicity of this system and deduced that certain sampling limits 
over Λ−1Λ converge to a positive-definite Radon measure ηΛ on G, the auto-correlation 
measure of Λ. In [8] we generalized these results to (weighted) regular model sets in 
proper homogeneous metric spaces X. If G denotes the isometry group of X and K is 
one of its point stabilizers, then the auto-correlation measure of such a weighted regular 
model set can be seen as a positive-definite Radon measure on K\G/K. The current 
article is concerned with certain Fourier transforms of these measures, which we call 
spherical diffraction measures in analogy with the abelian case.

In the classical case, where G is abelian and K = {e} is the trivial subgroup, the auto-
correlation measure ηΛ admits a Fourier transform η̂Λ, which is a Radon measure on the 
Pontryagin dual Ĝ of G. Due to its physical interpretation [14,18], this measure is called 
the diffraction measure of Λ. A particular focus is on situations where this measure 
is pure point, see e.g. [27,26,3,2]. It is one of the cornerstones of the theory of quasi-
crystallographic diffraction theory that if Λ is a uniform regular model set in a locally 
compact abelian group, then the diffraction measure η̂Λ is pure point. More precisely, if 
Λ arises from an abelian cut-and-project scheme (G, H, Γ) with window W ⊂ H, then it 
follows from work of Meyer [22,23] that

η̂Λ =
∑

(ξ1,ξ2)∈Γ⊥

|1̂W (ξ2)|2 · δξ1 ,

where Γ⊥ ⊂ Ĝ × Ĥ denotes the dual lattice of Γ. This amounts to an exotic Poisson 
summation formula of the form

lim
n→∞

1
mG(Bn)

∑
x∈Λ∩Bn

∑
y∈Λ

f(y − x) =
∑

(ξ1,ξ2)∈Γ⊥

|1̂W (ξ2)|2 · f̂(ξ1), (f ∈ C∞
c (G)),

where mG denotes Haar measure of G and (Bn) is a suitable Følner sequence of balls in 
G. Our ultimate goal here is to derive similar exotic summation formulas in more general 
situations. While we can establish pure point diffraction in large generality, computing 
the diffraction coefficients explicitly will only be possible in special situations, most 
notably for Heisenberg groups.

One problem in generalizing Meyer’s theorem beyond the abelian case is that one needs 
a suitable notion of Fourier transform for functions on K\G/K. In [8] we considered in 
some details the case of the hyperbolic plane H2. In particular, we explained how the 
auto-correlation measure of a weighted regular model set Λ in H2 can be identified with 



M. Björklund et al. / Journal of Functional Analysis 281 (2021) 109265 3
an evenly positive-definite distribution ξΛ on the real line. Due to exponential volume 
growth of the hyperbolic plane, the distribution ξΛ is non-tempered, and hence instead 
of its Fourier transform one should consider its complex Fourier transform or Mellin 
transform. Recall that the Mellin transform of a function ϕ ∈ C∞

c (R) is given by

Mϕ(z) :=
∫
R

ϕ(t)etz/2 dt (z ∈ C).

By a theorem of Gelfand–Vilenkin and Krein [16, Thm. II.6.5], for every evenly positive-
definite distribution ξ there exists a measure μξ ∈ M+(C) with supp(μξ) ⊂ R ∪ iR such 
that

ξ(ϕ) = μξ(Mϕ) (ϕ ∈ C∞
c (R)ev),

and we call such a measure a Mellin transform of ξ. We are going to establish the following 
hyperbolic analogue of pure point diffraction in Theorem 6.5 below:

Theorem 1.1 (Pure point diffraction, hyperbolic case). Assume that Λ is a weighted uni-
form regular model set in H2. Then its auto-correlation distribution ξΛ has a pure point 
Mellin transform supported on [−1, 1] ∪ iR. �

The general context in which such theorems can be established is that of spherical 
harmonic analysis. We will briefly explain the general formalism and then focus on the 
case of the Heisenberg group, in which much more precise results (in particular concerning 
the diffraction coefficients) can be established.

From now on let G be a lcsc group, let K < G be a compact subgroup and X =
K\G. Then (G, K) is called a Gelfand pair and X is called a commutative space if 
the convolution subalgebra Cc(G, K) ⊂ Cc(G) of bi-K-invariant functions, the so-called 
Hecke algebra, is commutative. For example, the hyperbolic plane is a commutative space 
with G = SL2(R) and K = SO2(R). Further examples of commutative spaces include 
Riemannian symmetric spaces, regular trees (and more generally, Bruhat-Tits buildings) 
and (generalized) Heisenberg groups.

With any Gelfand pair (G, K) one associates a spherical Fourier transform as follows. 
Denote by S +(G, K) the set of positive-definite spherical functions, i.e. matrix coeffi-
cients of irreducible unitary G-representations with respect to a K-invariant vector. Such 
functions are bounded, and with the restriction of the weak-∗-topology from L∞(G) the 
space S +(G, K) is a locally compact space. (In the case of the hyperbolic plane it is 
homeomorphic ([−1, 1] ∪ iR)/{±1}.) We then define the spherical Fourier transform of 
(G, K) by

F : L1(G,K) → C0(S +(G,K)), f �→ f̂ , where f̂(ω) :=
∫

f(x)ω(x) dmG(x).

G
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We say that a Radon measure η̂ on S +(G, K) is a spherical Fourier transform of a 
Radon measure η on K\G/K if for every h ∈ span{f ∗ g∗ | f, g ∈ Cc(G, K)} we have 
ĥ ∈ L1(S +(G, K), ̂η) and

η̂(ĥ) = η(h).

Using a classical theorem of Godement [17] concerning the existence and uniqueness of 
such spherical Fourier transforms we establish (for the definition of a weighted (regular) 
model set, we refer the reader to Section 2.4 in [8]):

Proposition 1.2 (Existence of spherical diffraction). If Λ is a weighted regular model set 
in a commutative space X, then the corresponding autocorrelation measure ηΛ admits a 
unique spherical Fourier transform η̂Λ.

We refer to the Radon measure η̂Λ on S +(G, K) as the spherical diffraction of Λ. In 
the case of the hyperbolic plane this spherical diffraction is precisely the Mellin transform 
of the auto-correlation distribution.

Remark 1.3. As we will see below, the notion of spherical diffraction can actually be 
defined in a much wider context. If Λ is an arbitrary (weighted) locally finite subset of a 
commutative space X, then the hull dynamical system ΩΛ can still be defined, cf. [8]. If Λ
has finite local complexity (FLC) (which as of the definition provided in [8, Remark 2.11]
means that Λ is the projection of an FLC set Λ′ in G, i.e. Λ′(Λ′)−1 is locally finite 
in G), then with every G-invariant probability measure ν on Ω×

Λ := ΩΛ \ {∅} one can 
associate an autocorrelation measure ην , which is a Radon measure on X. This measure 
then admits a unique spherical Fourier transform η̂ν , called the spherical diffraction of 
Λ with respect to ν. If Λ is a regular model set, then there is a unique such measure ν
and we have η̂Λ = η̂ν . Even more generally, one can replace the weighted FLC set Λ by 
an arbitrary translation bounded measure on X. This is the general setting in which we 
will work in the present article, and we refer the reader to [8] for details concerning this 
setting.

Unlike the situation of abelian groups, it is not true that the spherical diffraction of 
a regular model set in a commutative space is pure point. In fact, this property depends 
on the model set being uniform, a property which holds automatically for model sets in 
abelian groups (and, more generally, for approximate lattices in nilpotent groups [6]).

Theorem 1.4 (Pure point spherical diffraction). Let Λ be a regular model set in a com-
mutative space X. If Λ is uniform (i.e. the underlying lattice is cocompact), then Λ has 
pure point spherical diffraction. �

If Λ is a uniform regular model set in X = K\G, associated with a cut-and-project 
scheme (G, H, Γ), then we can find a countable subset C ⊂ S +(G, K) such that
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η̂Λ =
∑
x∈C

c(x) · δx.

In fact, the set C is simply the spherical automorphic spectrum of Γ, i.e. the set of 
matrix coefficients associated with those irreducible subrepresentations of the G-action 
on L2((G ×H)/Γ) which contain a K-invariant vector. In the classical case, where G is 
abelian and K is trivial, this set will always be a dense subset of S +(G, K) = Ĝ, but in 
our more general setting, new phenomena arise. For example, if Λ is a uniform weighted 
regular model set in the hyperbolic plane whose underlying lattice has a strong spectral 
gap, then η̂Λ has an isolated atom at the constant function 1.

While it is easy to describe the support of the spherical diffraction measure abstractly, 
it is often impossible to compute it explicitly. Similarly, while we have an abstract de-
scription of the diffraction coefficients in terms of the so-called shadow transform of the 
characteristic function of the window, for general commutative spaces there is no hope 
to compute these coefficients explicitly. A notable exception is given by Gelfand pairs 
(G, K), for which the group G is virtually nilpotent, hence we will focus on this case for 
the remainder of this introduction.

The easiest case beyond the abelian case considered by Meyer is that of the Euclidean 
motion group G = Rn � O(n) and its maximal compact subgroup K = O(n). In this 
case, X = K\G is Euclidean n-space, and the corresponding spherical diffraction is the 
“powder diffraction” considered already more than a decade ago in [1]. In this case we 
have S +(G, K) = {ωκ | κ ≥ 0} ∼= R≥0, where ωκ is a certain Bessel function, and if Λ
is a weighted regular model set in X which arises from an irreducible Δ ⊂ Rn×Rm and 
window W ⊂ Rm, then its diffraction is given by the formula

η̂Λ =
∑

(σ1,σ2)∈Δ⊥

|1̂Wo
(σ2)|2 · δω|σ1| .

The easiest non-virtually abelian case is that of Heisenberg motion groups, and here 
the diffraction formula and in particular the diffraction coefficients take already a much 
more involved form. To describe our results, we introduce the following notation:

• For d ∈ N we abbreviate Vd := Cd and define

βd : Vd × Vd → R, βd(u, v) = −1
2 Im〈u, v〉.

Then the (2d + 1)-dimensional Heisenberg group is Nd := R ⊕βd
Vd

• The group Kd := U(1)d acts on Vd preserving βd, and hence acts on Nd by au-
tomorphisms. The group Gd := Kd � Nd is called a minimal Heisenberg motion 
group. Bi-Kd-invariant functions on Gd correspond to polyradial functions on the 
Heisenberg group Nd.

• The space of positive-definite spherical functions decomposes into two disjoint parts 
as
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S +(Gd,Kd) = {ωτ,α | τ ∈ R \ {0}, α ∈ Nd} � {ω0,κ | κ ∈ Rd
≥0},

where we use the symbol � for disjoint unions. The horizontal part {ω0,κ | κ ∈ Rd
≥0}

consists of products of Bessel functions in complete analogy to the virtually abelian 
case.

• The vertical part {ωτ,α | τ ∈ R \ {0}, α ∈ Nd} of S +(Gd, Kd) has no counter-
part in the virtually abelian theory and is given by matrix coefficients of (infinite-
dimensional) Schrödinger representations, which can be expressed in terms of the 
Laguerre polynomials Lk of degree k and type 0 as given by

Lk(t) = e−t
( d

dt

)k

(ettk), for k ∈ N.

Explicitly,

ωτ,α(k, t, v) = eiτt · qτ,α(v), where qτ,α(v) = e−|τ ||v|2/4 ·
d∏

j=1
Lαj

(|τ ||vj |2/2).

We now fix d1, d2 ∈ N. We are going to construct a model set in Nd1 = Kd1\Gd1 as 
follows:

• Let G := Gd1 and H := Nd2 so that

G×H = Kd1 � (R2 ⊕β Vd1+d2).

• We choose lattices Δ < Vd and Ξ < R2 such that Δ projects densely and injectively 
onto Vd1 and Vd2 , Ξ projects densely and injectively onto both coordinates and such 
that βd(Δ, Δ) ⊂ Ξ. We then obtain a lattice

Γ := {((e, (ξ1, δ1), (ξ2, δ2)) ∈ G×H | (ξ1, ξ2) ∈ Ξ, (δ1, δ2) ∈ Δ} < G×H.

For example, for d1 = d2 = 1 we could choose

Δ := {(a + b
√

2 + ic + id
√

2, a− b
√

2 + ic− id
√

2) | a, b, c, d ∈ Z} < C2

and

Ξ := {(a + b
√

2, a− b
√

2) | a, b ∈ Z} < R2.

For larger d, we could take products of such lattices or arithmetic lattices associated 
with higher degree number fields.

• Given aj , bj ∈ R, 0 ≤ j ≤ d, we define

I := [a0, b0] and Wo := {z ∈ Cd | |zj | ∈ [aj , bj ]}.
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Since Γ is countable we may choose these parameters in such a way that W := I×Wo

does not intersect the projection of Γ to H. We then obtain a uniform regular model 
set

Λ̃ := projG(Γ ∩ (G×W )) < G,

and an associated uniform regular model set Λ in the Heisenberg group Kd1\G = Nd1 .

With this notation understood we derive in Theorem 5.17 below the following explicit 
formula for the spherical diffraction of Λ:

Theorem 1.5 (Polyradial diffraction in Heisenberg groups). The diffraction measure η̂Λ
of the regular model set Λ is given by the formula

η̂Λ =
∑

(σ1,σ2)∈Δ⊥

chor(σ2) · δω0,|σ1|

+
∑

(τ1,τ2)∈Ξ⊥

τ1 
=0
=τ2

∑
(α,β)∈Nd1+d2

cvert(α, β, τ1, τ2,Δ) · δωτ1,α
,

where the horizontal and vertical diffraction coefficients are respectively given by

chor(σ2) = |mR(I)|2 · |1̂Wo
(σ2)|2

and

cvert(α, β, τ1, τ2,Δ)

= |τ1|d1 |τ2|d2

(2π)d1+d2
· |1̂I(τ2)|2 · |〈1Wo

, qτ2,β〉|2 ·
∑

(δ1,δ2)∈Δ

qτ1,α(δ1)qτ2,β(δ2). �

Note that the horizontal part is in complete analogy with the virtual abelian case, 
whereas the vertical part (corresponding to infinite-dimensional representations) has no 
counterpart in the classical theory. The diffraction formula can be interpreted as an 
exotic Poisson summation formula for polyradial functions on the Heisenberg group in 
the following way: If f ∈ Cc(Nd1)Kd1 is a polyradial continuous function with compact 
support on Nd1 and Bn are balls in Nd1 with respect to the Cygan-Korányi norm (see 
[10,19]), then

lim
n→∞

1
mNd1

(Bn)
∑

x∈Λ∩Bn

∑
y∈Λ

f(x−1y) =
∑

(σ1,σ2)∈Δ⊥

|mR(I)|2|1̂Wo
(σ2)|2f̂(ω0,|σ1|)

+
∑

(τ1,τ2)∈Ξ⊥

∑
(α,β)∈Nd1+d2

∑
(δ1,δ2)∈Δ

|τ1|d1 |τ2|d2

(2π)d1+d2
qτ1,α(δ1)qτ2,β(δ2)|1̂I(τ2)|2|〈1Wo

, qτ2,β〉|
2f̂(ωτ1,α).
τ1 �=0 �=τ2
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This article is organized as follows. In Section 2 we recall basic facts concerning spher-
ical harmonic analysis. In particular, we describe in Theorem 2.21(a relative version) of 
the classical Godement-Plancherel theorem. An elementary proof (modulo the spherical 
Bochner theorem) is included in Appendix A. In Section 3 this theorem is used to de-
fine spherical diffraction measures in a rather general context. Section 4 establishes pure 
point spherical diffraction for uniform regular (weighted) model sets as stated in The-
orem 1.4. We also give a general formula for the diffraction coefficients in terms of the 
so-called shadow transform in Theorem 4.8. The remainder of the article is devoted to 
examples. In Section 5 we explicitly compute the spherical diffraction for regular model 
sets in Heisenberg groups as of Theorem 1.5, using certain estimates concerning Laguerre 
polynomials from Appendix B. In Section 6 we explain why the spherical diffraction of 
regular model sets in the hyperbolic plane can be identified with the Mellin transform 
of the underlying auto-correlation distribution and deduce Theorem 1.1.

Acknowledgments
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Karlsruhe for providing financial support as well as excellent working conditions during 
out mutual visits. M.B. was partially supported by Längmanska kulturfonden BA19-1702 
and Vetenskapsrådet 11253320.

2. Preliminaries on Gelfand pairs

In this section we set up our notation and recall some basic results concerning Gelfand 
pairs. Most of the material of this subsection is fairly standard and can be found in 
[29,12,13,15].

2.1. Notational conventions

Throughout this article, G will always denote a unimodular lcsc group and K < G

will always denote a compact subgroup. We fix a choice of Haar measure mG on G and 
denote by mK the Haar probability measure on K. We also denote by

Kp : G → K\G, pK : G → G/K and KpK : G → K\G/K

the canonical projections. Starting from Subsection 2.4 we will always assume that (G, K)
is moreover a Gelfand pair (cf. Definition 2.11). Our notation follows [8], in particular 
we make the following conventions:

Remark 2.1 (Notations concerning function spaces). If X is a lcsc space, then we denote 
by Cc(X), C0(X) and Cb(X) the function spaces of complex-valued compactly supported 
continuous functions, continuous functions vanishing at infinity and continuous bounded 
functions respectively.



M. Björklund et al. / Journal of Functional Analysis 281 (2021) 109265 9
If (X, ν) is a measure space and f, g ∈ L2(X, ν), then we denote by

〈f, g〉X := 〈f, g〉(X,ν) :=
∫
X

f · g dν

the L2-inner product. Following [8], but contrary to the convention in [7], we will choose 
all our inner products to be anti-linear in the second variable.

Given a function f : G → C we denote by f̄ , f̌ and f∗ respectively the functions on 
G given by

f̄(g) := f(g), f̌(g) := f(g−1) and f∗(g) := f(g−1).

Remark 2.2 (Notations concerning measures). We denote by M(X) the Banach space 
of complex Radon measure on X. We write Mb(X) for the subspace of finite complex 
measures (i.e. μ with |μ|(X) < ∞), M+(X) for the subset of (positive) Radon measures 
and M+

b (X) for the space of bounded Radon measures on X. Finally we denote by 
Prob(X) ⊂ M+

b (X) the space of probability measures on X. We identify μ ∈ M(X) with 
the corresponding linear functional on Cc(X) and write μ(f) :=

∫
X
f dμ for f ∈ Cc(X).

The group G acts on functions on G by Lgf(x) := f(g−1x) and Rgf(x) := f(xg), and 
dually on measures.

Remark 2.3 (Notations concerning convolution algebras). Mb(G) and L1(G) are Banach-
∗-algebras under convolution. We denote by Mb(G, K) ⊂ Mb(G) and L1(G, K) ⊂ L1(G)
the Banach-∗-subalgebras consisting of measures and function classes which are bi-K-
invariant. The spaces M(G, K), C(G, K), Lp(G, K) etc. are defined similarly. The ∗-
subalgebra Cc(G, K) is called the Hecke algebra and plays a central role in the current 
article. Averaging over K×K defines canonical retractions Mb(G) → Mb(G, K), L1(G) →
L1(G, K), Cc(G) → Cc(G, K) etc. We denote these by μ �→ μ� (in case of measures) or 
f �→ f � (in case of functions).

Remark 2.4 (Actions of convolution algebras). If π : G → U (V ) is a unitary rep-
resentation of G, then we denote by the same latter the associated ∗-representation 
π : L1(G) → B(V ) as given by

π(f)(u) :=
∫
G

f(g)π(g)u dmG(g).

For the left- and right-regular representations πL, πR : G → U (L2(G)), we then have [8, 
Remark A.3]

πL(f)(u) = f ∗ u and πR(f)u = u ∗ f̌ . (2.1)
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Remark 2.5 (Canonical identifications). Pullback induces bijections Kp∗ : Cc(K\G) →
Cc(G)L(K) and Kp∗K : Cc(K\G/K) → Cc(G, K), and we denote their inverses by f �→ Kf

and f �→ KfK respectively. Thus for all g ∈ G, h ∈ Cc(G)L(K) and f ∈ Cc(G, K) we 
have

Kh(Kg) = h(g) and KfK(KgK) = f(g).

We use the same notation also for other classes of left-, respectively bi-K-invariant 
functions. The isomorphism Kp∗K : Cc(K\G/K) → Cc(G, K) can be used to induce 
a convolution structure on Cc(K\G/K). For a more explicit description of this convolu-
tion structure see Definition A.9 in [8].

Remark 2.6 (Convenient approximate identities). As pointed out in [8, Remark A.12], 
there exist functions ρ̃n ∈ Cc(G) with the following properties:

• ρ̃n ≥ 0, ρ̃∗n = ρ̃n, 
∫
G
ρ̃n dmG = 1 and all of the functions are supported inside a 

common pre-compact identity neighbourhood.
• For every 1 ≤ p < ∞ and f ∈ Lp(G) we have ρ̃n ∗ f → f and f ∗ ρ̃n → f in Lp. For 

f ∈ Cc(G) these convergences hold uniformly, and for f ∈ C(G) they hold uniformly 
on compacta, in particular pointwise.

• If we set ρn := ρ̃�n, then we have convergence ρn ∗ f → f � and f ∗ ρn → f � in the 
same sense.

We fix such functions once and for all and refer to (ρ̃n) and (ρn) as convenient approxi-
mate identities in Cc(G), respectively Cc(G, K).

2.2. Functions and measures of positive type

The terminology concerning positive-definite functions varies in the literature. We will 
use the following:

Definition 2.7. Let G be a lcsc group.

(1) A function ϕ : G → C is called positive-definite if for all λ1, . . . , λn ∈ C and 
x1, . . . , xn ∈ G,

n∑
i=1

n∑
j=1

λiλjϕ(xix
−1
j ) ≥ 0.

(2) A function class ϕ ∈ L∞(G) is called of positive type if for all f ∈ L1(G),∫
(f ∗ f∗)(g)ϕ(g)dmG(g) =

∫ ∫
f(g)f(h)ϕ(gh−1)dmG(g)dmG(h) ≥ 0.
G G G
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With this terminology the following hold ([15, Sec. 3.3]): Firstly, every function class 
of positive type has a (unique) continuous representative, which we refer to as a function 
of positive type. Thus, by our convention, functions of positive type are continuous. 
Secondly, for continuous functions being positive-definite and being of positive type is 
equivalent. More precisely:

Lemma 2.8 (Characterizations of functions of positive type). Let ϕ ∈ C(G). Then the 
following are equivalent:

(i) ϕ is positive-definite.
(ii) ϕ is of positive type.
(iii)

∫
G

(f ∗ f∗)(g)ϕ(g)dmG(g) ≥ 0 for all f ∈ Cc(G).
(iv) There exists a unitary representation π of G with cyclic vector u such that ϕ(g) =

〈u, π(g)u〉.

In this case, the pair (π, u) is unique up to isomorphism, and ϕ satisfies

‖ϕ‖∞ = ‖u‖2 = ϕ(e) ≥ 0 and ϕ∗ = ϕ. �
In the sequel we denote by P (G) ⊂ C(G) the set of continuous positive-definite 

functions (equivalently, functions of positive type) on G. We also denote by P (G, K) :=
P (G) ∩C(G, K) the subset of bi-K-invariant continuous positive-definite functions. From 
the existence of convenient approximate identities in Cc(G, K) one deduces:

Lemma 2.9.

(i) For every f ∈ Cc(G, K) we have f ∗ f∗ ∈ P (G, K) ∩ Cc(G, K).
(ii) The span of {f ∗f∗ | f ∈ Cc(G, K)} is dense in Cc(G, K) with respect to the topology 

of uniform convergence on compacta.

In particular, P (G, K) ∩ Cc(G, K) span a dense subspace of Cc(G, K).

Proof. (i) For all x1, . . . , xn ∈ G and λ1, . . . , λn ∈ C we have

∑
i,j

λiλj(f ∗ f∗)(xix
−1
j ) =

∑
i,j

λiλj

∫
G

f(y)f(xjx
−1
i y)dmG(y)

=
∫
G

∑
i

λif(xiy)
∑
j

λjf(xjy)dmG(y) ≥ 0.

(ii) The span contains all elements of the form f ∗g∗ with f, g ∈ Cc(G, K) by polarization. 
Choosing a convenient approximate identity for g then yields the claim. �
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The third characterization of Lemma 2.8 motivates the following definition:

Definition 2.10. A complex measure μ ∈ M(G) is of positive type if μ(f ∗ f∗) ≥ 0 for all 
f ∈ Cc(G).

A complex measure μ ∈ M(G, K) is of positive type relative K if μ(f ∗ f∗) ≥ 0 for all 
f ∈ Cc(G, K).

Note that if μ ∈ M(G) is of positive type in the sense of Definition 2.10, then μ� ∈
M(G, K) is of positive type relative to K (for any choice of K).

2.3. Gelfand pairs and commutative spaces

Under our standing assumptions that G is a unimodular lcsc group and K < G is a 
compact subgroup, the following properties of the pair (G, K) are equivalent (see e.g. 
[29, Thm. 9.8.1]); here for a unitary G-representation (V, πV ) we denote by V K < V the 
subspace of K-invariant vectors.

(Gel1) The Hecke algebra Cc(G, K) is commutative.
(Gel2) The algebra L1(G, K) is commutative.
(Gel3) The algebra Mb(G, K) is commutative.
(Gel4) The G-representation L2(K\G) is multiplicity free.
(Gel5) dimV K ≤ 1 for every irreducible unitary G-representation (V, πV ).

Definition 2.11. The pair (G, K) is called a Gelfand pair if it satisfies the equivalent 
properties (Gel1)–(Gel5) above. In this case, the corresponding proper homogeneous 
space K\G is called a commutative space.

2.4. Positive-definite spherical functions and the spherical Fourier transform

From now on (G, K) denotes a Gelfand pair.

Proposition 2.12. Let ω ∈ C(G, K). Then the following are equivalent:

(S1) The associated Radon measure mω defined by

mω(f) :=
∫
G

f(x)ω(x−1) dmG(x) = (f ∗ ω)(e) (f ∈ Cc(G))

restricts to a character of Cc(G, K), i.e. mω(fg) = mω(f)mω(g) for all f, g ∈
Cc(G, K).
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(S2) ω is not the constant 0 function and satisfies the functional equation

∫
K

ω(xky)dmK(k) = ω(x)ω(y) (x, y ∈ G, k ∈ K). (2.2)

(S3) ω(e) = 1 and ω is a joint eigenfunction for the Hecke algebra, i.e. for every f ∈
Cc(G, K) there exists λω(f) ∈ C such that f ∗ ω = λω(f)ω.

(S4) ω(e) = 1 and for every f ∈ Cc(G, K) we have f ∗ ω = f̂(ω) · ω, where f̂(ω) :=
(f ∗ ω)(e).

Proof. See [12, Prop. 6.1.5 and 6.1.6] and [29, Thm. 8.2.6]. �
Definition 2.13. A function ω ∈ C(G, K) satisfying the equivalent conditions (S1)-(S4) 
above is called a (G, K)-spherical function. We denote by S (G, K) the set of spherical 
functions.

If f ∈ Cc(G, K), then we define the spherical transform of f as the function

Sf : S (G,K) → C, Sf(ω) :=
∫
G

f(g)ω(g−1)dmG(g) = (f ∗ ω)(e).

We will consider the restrictions of this transform to the subsets S +(G, K) ⊂
Sb(G, K) ⊂ S (G, K) of positive-definite, respective bounded spherical functions.

Remark 2.14 (Topologies on Sb(G, K) and S +(G, K)). The space Sb(G, K) carries a 
natural locally compact Hausdorff topology which can be described in several ways:

(i) For every ω ∈ Sb(G, K) the functional mω extends to a continuous linear functional 
on L1(G, K), and this defines a bijection between Sb(G, K) and the Gelfand spec-
trum of L1(G, K). Via this identification we obtain a locally compact topology on 
Sb(G, K).

(ii) The same topology can be described more explicitly as the restriction of the weak-∗-
topology on L∞(G) to the subset Sb(G, K), see [12, Sec. 6.4]. Since Cc(G) ⊂ L1(G)
is dense we thus have ωn → ω in Sb(G, K) if and only if

∫
G

f(x)ωn(x) dmG(x) →
∫
G

f(x)ω(x) dmG(x) (f ∈ Cc(G)).

In the sequel we will always equip Sb(G, K) with this locally compact topology. The 
subspace S +(G, K) ⊂ Sb(G, K) turns out to be closed, hence inherits a locally compact 
topology by [29, Prop. 9.2.9].
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Under the above identification of Sb(G, K) with the Gelfand spectrum of L1(G, K), 
the Gelfand transform ΓL1(G,K) : L1(G, K) → C0(Sb(G, K)) of the Banach algebra 
L1(G, K) is given as follows: For f ∈ Cc(G, K) we have

ΓL1(G,K)(f) = Sf |Sb(G,K),

and this extends to L1(G, K). Restricting further to S +(G, K) we obtain the following:

Definition 2.15. The spherical Fourier transform of the Gelfand pair (G, K) is the trans-
form

F : L1(G,K) → C0(S +(G,K)), f �→ f̂ := ΓL1(G,K)(f)|S +(G,K).

Since by Lemma 2.8 any ω ∈ S +(G, K) satisfies ω = ω∗, we have the explicit formula

f̂(ω) :=
∫
G

f(x)ω(x) dmG(x) = (f ∗ ω)(e) = 〈f, ω〉 (f ∈ L1(G,K), ω ∈ S +(G,K))).

(2.3)
We record for later use the formula

f̂(ω) =
∫
G

f(x)ω̌(x) dmG(x) = f̂(ω̌) (2.4)

If G is abelian and K = {e}, then the positive-definite spherical functions are precisely 
the characters of G and hence the spherical Fourier transform of (G, {e}) coincides with 
the classical Fourier transform of G. In this case we have for all ω ∈ S +(G, {e}) the 
formula L̂xf(ω) = f̂(ω) · ω(x) and R̂xf(ω) = f̂(ω) · ω(x). This generalizes as follows:

Lemma 2.16 (Spherical Fourier transform and translations). Let f ∈ Cc(G, K) and de-
note L�

xf := Lx(f)� ∈ Cc(G, K) and R�
xf := Rx(f)� ∈ Cc(G, K). Then

L̂�
xf(ω) = f̂(ω) · ω(x) and R̂�

xf(ω) = f̂(ω) · ω(x). (2.5)

Proof. By the functional equation (S2), cf. equality (2.2), we have

L̂�
xf(ω) =

∫
G

∫
K

f(x−1ky)ω(y−1) dmK(k) dmG(y)

=
∫ ∫

f(y)ω(y−1x−1k) dmK(k) dmG(y)

G K
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=
∫
G

f(y)ω(y−1x) dmG(y) =
∫
G

f(k−1y)
∫
K

ω(y−1kx) dmK(k) dmG(y)

=
∫
G

f(y)ω(y−1)ω(x)dmG(y) = f̂(ω) · ω(x).

The computation for the right-translation action is similar. �
2.5. Spherical representations and matrix coefficients

Definition 2.17. A unitary representation πW : G → U (W ) of G is called K-spherical if 
the subspace WK of K-invariants is non-trivial.

If (V, πV ) an irreducible unitary G-representation, then by characterization (Gel5) of 
a Gelfand pair (V, πV ) is K-spherical if and only if dimV K = 1. In this case the matrix 
coefficient

ωV : G → C, ωV (g) := 〈v, πV (g).v〉 (2.6)

is independent of the unit vector v ∈ V K used to define it, and we refer to ωV simply 
as the spherical matrix coefficient of V . According to [29, Thm. 8.4.8] the assignment 
(V, πV ) �→ ωV induces a bijection between the set of unitary equivalence classes of irre-
ducible spherical representations and the set S +(G, K) of all positive-definite spherical 
functions.

If (W, πW ) is a spherical representation and ω ∈ S +(G, K), then we denote by Wω

the (V, πV )-isotypical component of W , where (V, πV ) is an irreducible spherical repre-
sentation with ωV = ω. By definition, Wω is the unique maximal subspace of W which 
is isomorphic to a direct sum of copies of (V, πV ).

Recall that if (W, πW ) is any unitary representation of G, then it induces a ∗-
representation (denoted by the same letter)

πW : L1(G) → B(W ), πW (f)(w) =
∫
G

f(g)πW (g)w dmG(g),

and πW (L1(G)) preserves irreducible subspaces of W . Moreover, the subalgebra 
πW (L1(G, K)) maps W onto the subspace WK , and hence preserves the latter. The 
action of the subalgebra πW (Cc(G, K)) on this subspace is given by the spherical Fourier 
transform in the following sense; here given ω ∈ S +(G, K) we denote WK

ω := Wω∩WK .

Lemma 2.18 (Action of the Hecke algebra on spherical representations). Let ω ∈
S +(G, K), f ∈ Cc(G, K) and u ∈ WK

ω . Then

πW (f)u = f̂(ω)u.
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Proof. We start with some easy reductions: Firstly, we may assume that u is a unit 
vector. Secondly, it suffices to prove the claim in the case where W = Wω

∼=
⊕

I(V, πV ). 
Finally, by considering the various components of u in this decomposition separately, one 
may assume that W = V is irreducible. We then have dimC WK = 1, and since πW (f)u
is K-invariant there exists λ ∈ C such that πW (f)u = λ · u. To determine λ we compute

λ = λ〈u, u〉 = 〈πW (f)u, u〉 =
〈∫

G

f(g)πW (g)u dmG(g), u
〉

=
∫
G

f(g)〈πW (g)u, u〉dmG(g) =
∫
G

f(g)〈u, πW (g−1)u〉dmG(g)

=
∫
G

f(g)ω(g−1)dmG(g) = f̂(ω).

This finishes the proof. �
2.6. The Godement-Plancherel theorem

The goal of this subsection is to explain how to extend the spherical Fourier transform 
to certain classes of Radon measures.

Proposition 2.19. Let μ ∈ M(G) be a complex measure. Then for a complex measure μ̂
on S +(G, K) the following three conditions are equivalent:

(God1) For every h ∈ span{f ∗ g∗ | f, g ∈ Cc(G, K)} we have ĥ ∈ L1(S +(G, K), ̂μ) and

μ(h) = μ̂(ĥ).

(God2) For every f ∈ Cc(G, K) we have f̂ ∈ L2(S +(G, K), ̂μ) and

μ(f ∗ f∗) = ‖f̂‖2
L2(S +(G,K),μ̂) = μ̂(|f̂ |2).

(God3) For all f, g ∈ Cc(G, K) we have f̂ , ̂g ∈ L2(S +(G, K), ̂μ) and

μ(f ∗ g∗) = 〈f̂ , ĝ〉L2(S +(G,K),μ̂) =
∫

S +(G,K)

f̂ ĝ dμ̂.

Proof. (God1) applied to f ∗f∗ yields (God2), (God2) implies (God3) by the polarization 
identity, and (God3) implies (God1) by plugging in a convenient approximate identity 
as in Remark 2.6 for g. �
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Definition 2.20. A measure μ̂ satisfying the equivalent conditions of Proposition 2.19 is 
called a spherical Fourier transform of μ.

Note that, by definition, the spherical Fourier transform (if it exists) only depends on 
the restriction μ|Cc(G,K) of μ to bi-K-invariant functions. We now discuss the existence 
and uniqueness of spherical Fourier transforms. The following is the most general state-
ment that we will need in the current article; for this we recall from Definition 2.10 the 
notion of a measure of positive type relative K.

Theorem 2.21 (Godement-Plancherel, relative version). If μ ∈ M(G, K) is of positive 
type relative K, then μ has a unique spherical Fourier transform μ̂, which is a positive 
Radon measure. Moreover, μ is uniquely determined by μ̂.

This is a slight generalization of a theorem from [17]. The original version is as follows:

Corollary 2.22 (Godement-Plancherel, absolute version). If μ ∈ M(G) is of positive type, 
then μ has a unique spherical Fourier transform μ̂, which is a positive Radon measure.

Proof. If μ is of positive type, then μ� ∈ M(G, K) is of positive type relative K, and we 
have

μ|Cc(G,K) = μ�|Cc(G,K).

Since the spherical Fourier transform of a measure only depends on its restriction to 
Cc(G, K), we have thus reduced to the relative case. �
Example. The measure μ = δe ∈ M(G) is of positive type, and its Fourier transform 
ν(G,K) := δ̂e is called the Plancherel measure of the Gelfand pair (G, K). By (God2) we 
have f̂ ∈ L2(S +(G, K), ν) for all f ∈ Cc(G), and

‖f‖2
2 = δe(f ∗ f∗) = ‖f̂‖2

L2(S +(G,K),ν(G,K)). (2.7)

We explain how Theorem 2.21 can be deduced from the classical spherical Bochner the-
orem in Appendix A. For a detailed account of Godement’s original proof see [11, Chapter 
XV, Sec. 9]. As the name indicates, Corollary 2.22 implies the classical Plancherel theo-
rem for the Gelfand pair (G, K):

Corollary 2.23 (Spherical Plancherel theorem). If ν denotes the Plancherel measure of the 
Gelfand pair (G, K), then the map F : L1(G, K) ∩ L2(G, K) → L2(S +(G, K), ν(G,K)), 
f �→ f̂ extends continuously to an isometry

FL2 : L2(G,K) → L2(S +(G,K), ν(G,K)).
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Proof. It is immediate from (2.7) that F extends to an isometric embedding FL2 . Since 
F (Cc(G)) is dense in C0(S +(G, K)), it is in particular dense in Cc(S +(G, K)) and 
L2(S +(G, K), ν(G,K)), hence the corollary follows. �

Note that if H < G is a closed subgroup, then Corollary 2.22 can also be applied to the 
Haar measure mH of H. This yields a spherical Plancherel theorem for the homogeneous 
space G/H.

3. Spherical diffraction

3.1. General setting

Throughout this section, (G, K) denotes a Gelfand pair. From now on we reserve the 
letter X to denote the associated commutative space X = K\G, on which G acts by 
g.(Kh) := Khg−1. There is a canonical measure mX on X such that

∫
G

f dmG =
∫
X

⎛⎝∫
K

f(kg) dmK(k)

⎞⎠ dmX(Kg) (f ∈ Cc(G)),

and we denote by KπR : G → U (L2(X, mX)) the corresponding unitary representation.
In [8] we have introduced the notion of a translation-bounded measure μ on X and 

gave plenty of examples of such measures. Throughout this section we will assume that 
μ is a translation bounded measure on X satisfying the following assumptions:

(H1) The punctured hull Ω×
μ := Ωμ \ {∅} is uniformly locally bounded.

(H2) There exists a G-invariant probability measure on Ω×
μ .

For the notion of uniform local boundedness used in the definition of (H1), see Section 3.3 
in [8].

Example. It was established in [8] that Condition (H1) is satisfied if Λ is a subset of G
of so-called “finite local complexity” and μ = Kp∗δΛ is the push-forward of the corre-
sponding Dirac comb to X.

On the contrary, the validity of the Condition (H2) depends on finer properties of 
the set Λ. For example, if Λ is relatively dense and G is amenable, then Ω×

μ admits 
a G-invariant probability measure by general principles. In the non-amenable case, es-
tablishing the existence of an invariant measure is much more difficult. However, as 
explained in [8], it follows from the results of [7] that if Λ is a regular model set in 
G and μ = Kp∗δΛ, then there always exists a G-invariant probability measure on Ω×

μ

(irrespective of whether G is amenable or not), and this measure is even unique.



M. Björklund et al. / Journal of Functional Analysis 281 (2021) 109265 19
From now on we fix a translation bounded measure μ satisfying (H1) and (H2); we 
also fix a G-invariant probability measure ν on Ω×

μ . Everything in the sequel will depend 
on this choice of measure. Note however that in the case of weighted model sets the 
invariant measure is unique.

Remark 3.1 (Notation concerning the Koopman representation). We will denote by πν

the unitary representation

πν : G → U (L2(Ω×
μ , ν)), πν(g)u(μ′) := u(g−1

∗ μ′),

as well as the associated ∗-representation given by

πν : L1(G) → B(L2(Ω×
μ , ν)), πν(f)(u)(μ′) =

∫
G

f(g)u(g−1
∗ μ′)dmG(g).

If (V, πV ) is an irreducible spherical representation with spherical matrix coefficient ω =
ωV ∈ S +(G, K), then we denote by

projω : L2(Ω×
μ , ν) → L2(Ω×

μ , ν)ω

the projection onto the corresponding isotypical component and set

L2(Ω×
μ , ν)Kω := L2(Ω×

μ , ν)K ∩ L2(Ω×
μ , ν)ω.

3.2. The periodization map

In [8] we defined a periodization map Pμ : Cc(K\G/K) → C0(Ω×
μ ), and our standing 

assumption (H1) implies that this map is actually continuous. With our current notation 
we have

Pμ(KfK)(μ′) = μ′(Kf) =
∫

K\G

Kf(x)dμ′(x) (f ∈ Cc(G,K), μ′ ∈ Ω×
μ ).

It is immediate from this explicit formula that Pμ takes values in the subspace 
C0(Ω×

μ )K of K-invariant functions. The goal of this subsection is to establish the follow-
ing projection formula:

Theorem 3.2 (Projection formula). For every ω ∈ S +(G, K) there exists a constant 
cν(ω) ≥ 0 such that for all f ∈ Cc(G, K),

‖projω(Pμ(KfK))‖2
L2(Ω×

μ ,ν) = cν(ω) · |f̂(ω̌)|2

Definition 3.3. The constants cν(ω) are called the diffraction coefficients of ν.
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The reason for this terminology will become apparent in Theorem 3.10 below.
The proof of the projection formula is based on the following lemma:

Lemma 3.4. For ρ, f ∈ Cc(G, K) we have Pμ(K(ρ ∗ f)K) = πν(f̌)(Pμ(KρK)).

Proof. For g ∈ G and μ′ ∈ Ω×
μ we have

πν(g)Pμ(KρK)(μ′) = Pμ(KρK)(g−1
∗ μ′) =

∫
K\G

Kρ(xg) dμ′(x).

We thus obtain

πν(f̌)(Pμ(KρK)(μ′)) =
∫
G

f̌(g)
∫

K\G

Kρ(xg) dμ′(x) dmG(g)

=
∫

K\G

KπR(f̌)(Kρ)(x)dμ′(x)

=
∫
G

K(πR(f̌)(ρ))(x)dμ′(x) = P(K(πR(f̌)(ρ))K)(μ′).

Since πR(f̌)(ρ) = ρ ∗ f , the lemma follows. �
We will apply this as follows:

Corollary 3.5. For ρ, f ∈ Cc(G, K) and u ∈ L2(Ω×
μ , ν)Kω we have

〈Pμ(K(ρ ∗ f)K), u〉 = f̂(ω̌) · 〈Pμ(KρK), u〉.

Proof. Since πν is a ∗-representation, Lemma 3.4 yields

〈PμK(ρ ∗ f)K , u〉 = 〈πν(f̌)(Pμ(KρK)), u〉 = 〈Pμ(KρK), πν(f̌∗)(u)〉

= 〈Pμ(KρK), πν(f)(u)〉.

By Lemma 2.18 and (2.4) we have

πν(f)u = f̂(ω) · u = f̂(ω̌) · u.

The corollary follows. �
We also need to use the properties of our convenient approximate identity (ρn) as 

discussed in Remark 2.6 in the following form:
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Lemma 3.6. For every f ∈ Cc(G, K), the sequence (ρn ∗ f) converges uniformly to f
in Cc(G, K) and the sequence (Pμ(K(ρn ∗ f)K) converges uniformly to Pμ(KfK) in 
C0(Ω×

μ ).

Proof. Let U ⊂ G be a pre-compact set such that f and all of the functions f ∗ ρn are 
supported inside U . We then have the estimate

|Pμ(K(f ∗ ρn)K) − Pμ(KfK)| =

∣∣∣∣∣∣∣
∫

K\G

K(f ∗ ρn − f)(x)dμ′(x)

∣∣∣∣∣∣∣
≤ μ′(Kp(U)) · ‖f ∗ ρn − f‖∞.

Now the first factor is bounded, since Ωμ is uniformly locally bounded. Since f ∗ ρn → f

uniformly on U , the lemma follows. �
Proof of Theorem 3.2. Let (uα)α∈Iω be an orthonormal basis of L2(Ω×

μ , ν)Kω . Since 
Pμ(KfK) is K-invariant, so is its projection onto L2(Ω×

μ , ν)ω, and thus

‖projω(Pμ(KfK)‖2
L2(Ω×

μ ,ν) =
∑
α∈Iω

|〈Pμ(KfK), uα〉|2

By Lemma 3.6 we have uniform convergence Pμ(K(ρn∗f)K) → Pμ(KfK), which implies 
convergence in L2. We deduce that

‖projω(Pμ(KfK)‖2
L2(Ω×

μ ,ν) =
∑
α∈Iω

lim
n→∞

|〈Pμ(K(ρn ∗ f)K , uα〉|2.

By Corollary 3.5 we have for every α ∈ Iω

〈Pμ(K(ρn ∗ f)K , uα〉 = f̂(ω̌) · 〈Pμ(KρK), uα〉,

hence

‖projω(Pμ(KfK)‖2
L2(Ω×

μ ,ν) = |f̂(ω̌)|2 ·
∑
α∈Iω

lim
n→∞

|〈Pμ(KρK), uα〉|2.

Since the second factor is independent of f , the theorem follows. �
The proof of Theorem 3.2 yields the formula

cν(ω) =
∑
α∈Iω

lim
n→∞

|〈Pμρn, uα〉|2,

for the diffraction coefficients, but this formula is hard to evaluate in praxis. We will 
later find more explicit formulas in special cases.
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3.3. Auto-correlation measure and spherical diffraction

In [8] we defined the notion of an auto-correlation measure η ∈ M+(K\G/K) as-
sociated with the invariant measure ν on Ω×

μ . Our standing assumption (H1) ensures 
that this measure is well-defined, and it is uniquely determined by the fact that for all 
f ∈ Cc(K\G/K) we have

η(f ∗ f∗) = ‖Pμ(f)‖2
L2(Ω×

μ ,ν). (3.1)

In fact, to obtain a formula for η(f) we can polarize (3.1): Let ρ ∈ Cc(G, K) be our 
convenient identity an define ρ†n := K(ρn)K ∈ Cc(K\G/K). Then f ∗ (ρ†n)∗ = f ∗ ρ†n
converges uniformly to f , and hence

η(f) = lim
n→∞

η(f ∗ (ρ†n)∗) = lim
n→∞

〈Pμ(f),Pμ(ρ†n)〉L2(Ω×
μ ,ν).

Remark 3.7 (Construction of the diffraction measure). The auto-correlation measure η
corresponds via the isomorphism M+(G, K) ∼= M+(K\G/K) to a bi-K-invariant Radon 
measure η̃ on G. Explicitly, if f ∈ Cc(G), then

η̃(f) = η(Kf �
K).

Note that for every f ∈ Cc(G, K) we have

η̃(f ∗ f∗) = ‖Pμ(KfK)‖2
L2(Ω×

μ ,ν) ≥ 0,

i.e. η̃ ∈ M+(G, K) is of positive type relative K. By the Godement–Plancherel theorem 
(Theorem 2.21) it thus admits a Fourier transform, which is a positive Radon measure on 
S +(G, K). We denote this Fourier transform by η̂, and observe that by Theorem 2.21, 
η̃ and consequently η are uniquely determined by η̂.

Definition 3.8. The measure η̂ ∈ M+(S +(G, K)) is called the spherical diffraction mea-
sure of ν.

In view of characterization (God2) of the Fourier transform of a measure, we have:

Proposition 3.9. The spherical diffraction measure η̂ ∈ M+(S +(G, K)) is uniquely de-
termined by the fact that for all f ∈ Cc(G, K) we have

η̂(|f̂ |2) = η̃(f ∗ f∗) = ‖Pμ(KfK)‖2
L2(Ω×

μ ,ν) =
∫
×

∣∣∣∣∣∣∣
∫

K\G

Kf(x) dμ′(x)

∣∣∣∣∣∣∣
2

dν(μ′). �

Ωμ
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From the projection formula (Proposition 3.2) we obtain immediately the following 
criterion for pure point spherical diffraction:

Theorem 3.10 (Complete reducibility implies pure point spherical diffraction). Assume 
that (L2(Ω×

μ , ν), πν) is spherically completely reducible in the sense that

L2(Ω×
μ , ν)K =

⊕
ω∈S +(G,K)

L2(Ω×
μ , ν)Kω .

Then the spherical diffraction measure η̂ is given in terms of the diffraction coefficients 
cν(ω) as

η̂ =
∑

ω∈S +(G,K)

cν(ω) · δω̌.

In particular, η̂ is a pure point measure.

Remark 3.11. In the setting of abelian G (and trivial K), this theorem is well-known, 
and can be significantly strengthened in different directions. For instance, Lenz and 
Moody [21, Subsection 3.2] construct (for a general translation-bounded measure μ, 
as well as for arbitrary locally square-integrable point processes) a canonical map θ :
L2(S +(G, K), ̂η) → L2(Ω×

μ , ν) such that for every ϕ ∈ L2(S +(G, K), ̂η),∫
G

f(g)〈πν(g)θ(ϕ), θ(ϕ)〉L2(Ω×
μ ,ν) dmG(g) =

∫
S +(G,K)

f̂(ω) |ϕ(ω)|2 dη̂(ω),

for every f ∈ Cc(G, K). It is not difficult to prove that this provides a converse to Theo-
rem 3.10 (for abelian G and trivial K), namely that purely atomic diffraction measures 
must necessarily come from spherically completely reducible Koopman representations. 
We do not know whether the map θ can be constructed in our general setting, but we 
plan to return to this question in future works.

Proof. Let f ∈ Cc(G, K) and recall that this implies that Pμ(KfK) ∈ L2(Ω×
μ , ν)K . It 

thus follows from Proposition 3.2 that

η̂(|f̂ |2) = ‖Pμ(KfK)‖2
L2(Ω×

μ ,ν) =
∑

ω∈S +(G,K)

‖projω(Pμ(KfK))‖2
L2(Ω×

μ ,ν)

=
∑

ω∈S +(G,K)

cν(ω) · |f̂(ω̌)|2.

This shows that the measures η̂ and 
∑

ω∈S +(G,K) cν(ω) ·δω̌ coincide on all functions of the 

form |f̂ |2 with f ∈ Cc(G, K), and since these span a dense subspace of Cc(S +(G, K)), 
the theorem follows. �
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In particular, the theorem applies if L2(Ω×
μ , ν) is completely reducible as a unitary G-

represen-tation. We will see in the next subsection that this is the case if μ is (the Dirac 
comb) of a weighted uniform regular model set and ν is the unique invariant measure on 
its hull. For non-uniform model sets, the representation L2(Ω×

μ , ν) will not be completely 
reducible. In this case irreducible subrepresentations of L2(Ω×

μ , ν) will provide some pure 
point spectrum, but there will also be continuous spectrum in the diffraction measure.

3.4. Pure point spherical diffraction for weighted uniform regular model sets

The goal of this subsection is to establish that weighted uniform model sets have pure 
point spherical diffraction. Thus let Λ = Λ(G, H, Γ, W ) be a uniform regular model set in 
G and let π∗Λ be the associated weighted model set in K\G. Recall from [8, Lemma 3.11]
that Kp induces a continuous G-factor map

π∗ : ΩΛ → Ωπ∗Λ,

and that the unique G-invariant probability measure ν on Ωπ∗Λ is the push-forward under 
π∗ of the unique G-invariant probability measure ν̂ on ΩΛ. In particular, π induces an 
embedding

π∗ : L2(Ωπ∗Λ, ν) ↪→ L2(ΩΛ, ν̂).

In order to show that the spherical diffraction measure η of ν is pure point, it suffices to 
show by Theorem 3.10 that L2(Ωπ∗Λ, ν) is completely reducible. This is established in 
the following proposition.

Proposition 3.12 (Complete reducibility for weighted uniform regular model sets). The 
representation L2(ΩΛ, ̂ν) is completely reducible with countable multiplicities, and hence 
the same holds for the subrepresentation L2(Ωπ∗Λ, ν).

Proof. We established in [7] that L2(ΩΛ, ̂ν) is isomorphic to the space L2(Y, mY ), where 
Y := Γ\(G × H) and mY denotes the unique (G × H)-invariant probability measure 
on Y . Since Γ is cocompact in G ×H, the (G ×H)-representation L2(Y ) is completely 
reducible with finite multiplicities (see e.g. [29, Thm. 7.2.5]). Since (G, K) is a Gelfand 
pair, the group G is of type I (see e.g. [9, Thm. 2.2]). Consequently, every irreducible 
unitary representation (G × H)-representation is of the form V � W where V is an 
irreducible unitary G-representation, W is an irreducible unitary H-representation and 
V �W is isomorphic to the completed tensor product of V and W with (G ×H)-action 
given by (g, h).(v ⊗ w) = gv ⊗ hw (see e.g. [15, Thm. 7.25]). In this situation, if (wi)i∈I

is a Hilbert space basis of W then, as G-representations,

V � W |G ∼=
⊕̂

V ⊗C · wi
∼=

⊕̂
V.
i∈I i∈I
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Note that I is countable, since L2(Y ) and hence W are separable. We deduce that, 
as G-representations, each V � W and thus also L2(Y ) are completely reducible with 
countable multiplicities. �

At this point we have established Theorem 1.4. The remainder of this article is devoted 
to a computation of the diffraction coefficients in various cases of interests.

4. Diffraction coefficients of weighted uniform regular model sets

Throughout this section Λ = Λ(G, H, Γ, W ) denotes a uniform regular model set in 
G (see (see [7, Def. 2.6])) constructed from a cut-and-project scheme (G, H, Γ) (see [7, 
Def. 2.3]) with window W . We denote by ν the unique G-invariant probability measure 
on Ω

Kp∗δΛ and by η ∈ M+(K\G/K) its auto-correlation measure. We have seen in the 
previous section that the diffraction measure η̂ ∈ M+(S +(G, K)) is pure point. In this 
section we consider the problem of determining its coefficients in terms of the underlying 
lattice Γ < G ×H and window W ⊂ H.

4.1. The shadow transform

We denote by Y the homogeneous (G × H)-space Y := Γ\(G × H) and by mY the 
unique (G × H)-invariant probability measure on Y . We denote by ΓπR the unitary 
G-representation

ΓπR : G → U (L2(Y,mY )), (ΓπR(x)f)(Γ(g, h)) := f(Γ(gx, h))

as well as the corresponding ∗-representation ΓπR : L1(G) → B(L2(Y, mY )). If (V, πV )
is an irreducible spherical representation with spherical matrix coefficient ω = ωV ∈
S +(G, K), then we denote by

projω : L2(Ω×
μ , ν) → L2(Ω×

μ , ν)ω

the projection onto the corresponding isotypical component and set

L2(Ω×
μ , ν)Kω := L2(Ω×

μ , ν)K ∩ L2(Ω×
μ , ν)ω.

The countable subset

spec(G,K)(Γ) := {ω ∈ S +(G,K) | L2(Ω×
μ , ν)ω �= {0}}

of S +(G, K) is called the (G, K)-spherical automorphic spectrum of the lattice Γ.

Remark 4.1 (Extending the periodization map to measurable functions). For M ∈
{G, H, G × H} denote by L ∞

c (M) the space of bounded measurable functions on M
which vanish outside a compact set. We then have a periodization map
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PΓ : L ∞
c (G×H) → L2(Y,mY ), PΓ(F )(Γ(x, y)) =

∑
γ∈Γ

F (γ(x, y))

which extends the periodization map PΓ : Cc(G ×H) → C0(Y ) considered earlier.

We are going to show:

Proposition 4.2 (Existence of the shadow transform). For every ω ∈ spec(G,K)(Γ) and 
r ∈ L ∞

c (H) there exists an element SΓ(r)(ω) ∈ L2(Y, mY )Kω such that for all f ∈
Cc(G, K),

projω(PΓ(f ⊗ r)) = f̂(ω̌) · SΓ(r)(ω).

Collecting the constants SΓ(r)(ω) from Proposition 4.2 we can define a linear map

SΓ : L ∞
c (H) →

∏
ω∈spec(G,K)(Γ)

L2(Y,mY )Kω , SΓ(r) := (SΓ(r)(ω))ω∈spec(G,K)(Γ).

Definition 4.3. The map SΓ is called the shadow transform of the lattice Γ.

Corollary 4.4 (L2-norm of a periodization). For every f ∈ Cc(G, K) and r ∈ L ∞
c (H)

we have

‖PΓ(f ⊗ r)‖2
2 =

∑
ω∈spec(G,K)(Γ)

‖projω(PΓ(f ⊗ r))‖2
2

=
∑

ω∈spec(G,K)(Γ)

|f̂(ω̌)|2‖SΓ(r)(ω)‖2. �

Corollary 4.5 (Kernel of the shadow transform). A function r ∈ L ∞
c (H) is contained in 

the kernel of the shadow transform if and only if PΓ(f ⊗ r) = 0 almost everywhere for 
all f ∈ Cc(G, K). �

The proof of Proposition 4.2 is in close analogy with the proof of the projection 
formula. Lemma 3.4 and Corollary 3.5 translate into the current setting as follows:

Lemma 4.6. For ρ, f ∈ Cc(G, K) and r ∈ L ∞
c (H) we have

PΓ((ρ ∗ f) ⊗ r) = ΓπR(f̌)(PΓ(ρ⊗ r)).

Proof. By (2.1) we have ρ ∗ f = πR(f̌)(ρ), and hence for all g ∈ G and h ∈ H we have

PΓ((ρ ∗ f) ⊗ r)(Γ(g, h)) =
∑

πR(f̌)(ρ)(γ1g)r(γ2h)

(γ1,γ2)∈Γ
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=
∫
G

f̌(x)
∑

(γ1,γ2)∈Γ

ρ(γ1gx)r(γ2h) dmG(x)

=
∫
G

f̌(x)PΓ(ρ⊗ r)(Γ(gx, h)) dmG(x)

= ΓπR(f̌)(PΓ(ρ⊗ r))(Γ(g, h)),

where we can exchange sum and integral since the sum is actually finite. �
Corollary 4.7. For ρ, f ∈ Cc(G, K), r ∈ L ∞

c (H) and u ∈ L2(Ω×
μ , ν)Kω we have

〈PΓ((ρ ∗ f) ⊗ r), u〉 = f̂(ω̌) · 〈PΓ(ρ⊗ r), u〉

Proof. Since πν is a ∗-representation, Lemma 4.6 yields

〈PΓ((ρ ∗ f) ⊗ r), u〉 = 〈ΓπR(f̌)(PΓ(ρ⊗ r)), u〉 = 〈PΓ(ρ⊗ r), ΓπR(f̌)∗(u)〉

= 〈PΓ(ρ⊗ r), ΓπR(f)(u)〉.

By Lemma 2.18 and (2.4) we have

ΓπR(f)u = f̂(ω) · u = f̂(ω̌) · u.

The corollary follows. �
Proof of Proposition 4.2. Let (uα)α∈Iω be an orthonormal basis of L2(Ω×

μ , ν)Kω . Since 
PΓ(f ⊗ r) is K-invariant, so is its projection onto L2(Ω×

μ , ν)ω, and thus

projω(PΓ(f ⊗ r)) =
∑
α∈Iω

〈PΓ(f ⊗ r), uα〉uα.

Now recall that our convenient approximate identify (ρn) has been chosen so that ρn∗f →
f converges uniformly. This in turn implies that PΓ((ρn∗f) ⊗r) → PΓ(f⊗r) uniformly, 
and hence in L2. We deduce with Corollary 4.7 that

projω(PΓ(f ⊗ r)) =
∑
α∈Iω

lim
n→∞

〈PΓ((ρn ∗ f) ⊗ r), uα〉uα

=
∑
α∈Iω

lim
n→∞

〈f̂(ω̌) · 〈PΓ(ρn ⊗ r), uα〉uα

= f̂(ω̌) ·
∑
α∈Iω

lim
n→∞

〈〈PΓ(ρn ⊗ r), uα〉uα.

Since the second factor is independent of f , the proposition follows. �
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4.2. The diffraction formula

Recall from Theorem 3.10 that the diffraction measure η̂ of the unique G-invariant 
measure ν on Ωπ∗Λ is of the form

η̂ =
∑

ω∈S +(G,K)

c(ω) · δω̌.

We can now express the diffraction coefficients c(ω) in terms of the shadow transform of 
the underlying lattice Γ and the characteristic function 1W of the underlying window:

Theorem 4.8 (Diffraction formula for weighted model sets). The diffraction measure is 
given by the formula

η̂ =
∑

ω∈spec(G,K)(Γ)

‖SΓ(1W )(ω)‖2 · δω̌.

Thus c(ω) = ‖SΓ(1W )(ω)‖2 if ω ∈ spec(G,K)(Γ) and c(ω) = 0 otherwise.

Proof. By [8, Corollary 4.18] we have for every f ∈ Cc(G, K)

η̂(|̂f |2) = η(KfK ∗ (KfK)∗) = ‖PΓ(f ⊗ 1W )‖2
L2(Γ\(G×H)).

Combining this with Corollary 4.4 we obtain

η̂(|f̂ |2) =
∑

ω∈spec(G,K)(Γ)

|f̂(ω̌)|2‖SΓ(1W )(ω)‖2

=

⎛⎝ ∑
ω∈spec(G,K)(Γ)

‖SΓ(1W )(ω)‖2 · δω̌

⎞⎠ (|f̂ |2).

The theorem follows. �
In practice, the diffraction coefficients c(ω) = ‖SΓ(1W )(ω)‖2 are usually much easier 

to determine than the shadow transform itself. For example they admit the following 
characterization:

Proposition 4.9. The diffraction coefficients c(ω) are uniquely determined by the fact that 
for all f ∈ Cc(G, K),

∑
(f ∗ f∗)(γ1)(1W ∗ 1W−1)(γ2) =

∑
+

c(ω)|f̂(ω̌)|2.

(γ1,γ2)∈Γ ω∈S (G,K)
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Proof. By Corollary 4.18 and Proposition 4.19 in [8] we have for all f ∈ Cc(G, K),

η̂(|f̂ |2) = η(f ∗ f∗) = ‖PΓ(f ⊗ 1W ))‖2 =
∑

(γ1,γ2)∈Γ

(f∗ ∗ f)(γ1)(1W ∗ 1W−1)(γ2).

Since {f ∗f∗ | f ∈ Cc(G, K)} spans a dense subspace in Cc(G, K), this determines η̂. �
4.3. The shadow transform as a generalized Hecke correspondence

In addition to the standing assumptions of this section assume now that G is a totally 
disconnected lcsc group and K < G is a compact open subgroup. In this case the shadow 
transform is closely related to a more classical transform in harmonic analysis, the so-
called Hecke correspondence, which we recall briefly.

Denote by pG : G × H → G and pH : G × H → H the canonical projections. We 
consider a lattice Γ < G ×H such that

• the projections ΓG := πG(Γ) and ΓH := πH(Γ) are dense in G and H respectively;
• pG|Γ : Γ → ΓG is bijective.

We then denote by τ : ΓG → H the homomorphism τ(g) = pH((pG|Γ)−1(g)). For the 
moment we do not assume that Γ is uniform. Since ΓG is dense in G and K is open, 
the multiplication map ΓG ×K → G is onto. We denote by g �→ (γg, kg) a fixed Borel 
section of this map. For simplicity let us normalize the Haar measure on G such that 
mG(K) = 1.

Proposition 4.10 (Hecke correspondence). Let ΓK := ΓG ∩K and Γ0 := τ(ΓK) < H.

(i) Γ0 < H is a lattice, which is uniform if and only if Γ is uniform.
(ii) The map j : Γ\(G × H)/K → Γ0\H given by j(Γ(g, h)K) := Γ0τ(γ−1

g )h is a 
homeomorphism with inverse given by i : Γ0\H → Γ\(G ×H)/K, Γ0h �→ Γ(e, h)K.

(iii) i and j induce mutually inverse isomorphisms of H-representations

i∗ : L2(Γ\(G×H))K → L2(Γ0\H) and j∗ : L2(Γ0\H) → L2(Γ\(G×H))K .

(iv) The Hecke algebra Cc(G, K) acts on L2(Γ0\H) via

T (ρ)(f)(Γ0h) =
∫
G

ρ(g)f(Γ0τ(γg)−1h) dmG(g) (ρ ∈ Cc(G,K), f ∈ L2(H/Γ0)).

Proof. We first prove (ii). Observe first that for all (g, h) ∈ G ×H,

Γ(g, h)K = Γ(γgkg, h)K = Γ(γg, h)K = Γ(e, τ(γg)−1h)K.
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This shows that the map q : H → Γ\(G ×H)/K given by q(h) := Γ(e, h)K is onto. Now 
assume that q(h1) = q(h2). Then

∃k ∈ K, γ ∈ ΓG : (e, h1) = (γ, τ(γ))(e, h2)k = (γk, τ(γ)h2) (4.1)

This implies that kγ = e, hence k = γ−1 ∈ ΓK , and thus h1 = τ(γ)h2 ∈ Γ0h2. Conversely, 
if h1 ∈ Γ0h2, then q(h1) = q(h2). Thus q factors through a continuous bijection i as in 
the proposition with inverse j. Now note that H acts on Γ\(G ×H)/K from the right, 
since it commutes with K, and that i is H-equivariant. It follows that i is open, whence 
i and j are mutually inverse homeomorphisms. This proves (ii) and shows in particular 
that Γ0 is of finite covolume, respectively cocompact in H if and only if Γ < G ×H has 
the corresponding property. To show (i) it thus remains to show only that Γ0 is discrete. 
However, for every compact subset W ⊂ H we have

Γ0 ∩W = τ(ΓK) ∩W = τ(pG((K ×W ) ∩ Γ)),

which is finite by discreteness of Γ. This finishes the proof of (i) and provides us 
with a unique H-invariant probability measure mΓ0\H on Γ0\H. Now (ii) yields an H-
equivariant isomorphism i∗ : Cc(Γ\(G ×H))K → Cc(Γ0\H), and under this identification 
the unique H-invariant measures on Γ\(G ×H) and Γ0\H must correspond, hence (iii) 
holds. In particular, if π denote the unitary representation π : G → U (L2(Γ\(G ×H))), 
then Cc(G, K) acts on L2(Γ0\H) via

T (ρ)(f) := i∗(π(ρ).(j∗f)) (ρ ∈ Cc(G,K), f ∈ L2(Γ0\H)).

Writing out the definitions of i∗, j∗ and π explicitly we end up with (iv). �
If we assume now that Γ is cocompact, then L2(Γ0\H) decomposes under the action 

of the Hecke algebra as

L2(Γ0\H) =
⊕

ω∈spec(G,K)(Γ)

L2(Γ0\H)ω,

and we note by projω : L2(Γ0\H) → L2(Γ0\H)ω the canonical projection.

Proposition 4.11 (Shadow transform vs. Hecke correspondence). Let r ∈ L ∞
c (Γ0\H) and 

denote by j∗ : L2(Γ0\H) → L2(Γ\(G × H))K the Hecke correspondence. Then for all 
ω ∈ spec(G,K)(Γ),

SΓr(ω) = j∗projω(PΓ0r) and ‖SΓr(ω)‖2 = ‖projω(PΓ0r)‖2.
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Proof. The key observation is that since K is compact-open, 1K is a two-sided identity 
in Cc(G, K). Consequently, for all h ∈ Cc(G, K) and ω ∈ S +(G, K),

1̂K(ω) · ĥ(ω) = 1̂K ∗ h(ω) = ĥ(ω),

and hence 1̂K(ω) = 1. By definition of the shadow transform we have

f̂(ω̌) · SΓ(r)(ω) = projω(PΓ(f ⊗ r))

for every f ∈ Cc(G, K). If we choose f := 1K , then we obtain

SΓ(r)(ω) = 1̂K(ω̌) · SΓ(r)(ω) = projω(PΓ(1K ⊗ r)).

Now for (g, h) ∈ G ×H we have

PΓ(1K ⊗ r)(Γ(g, h)) =
∑
γ∈ΓG

1K(γγgkg)r(τ(γ)h)

=
∑

γ′=γγg∈ΓG

1K(γ′)r(τ(γ′)τ(γ−1
g )h)

=
∑

γ0∈Γ0

r(γ0τ(γ−1
g )h) = PΓ0r(Γ0τ(γ−1

g )h)

= j∗(PΓ0r)(Γ(g, h)),

hence SΓ(r)(ω) = projω(j∗(PΓ0r)), and since j∗ is equivariant under the action of the 
Hecke algebra, the proposition follows. �

If we denote by η̂ the diffraction measure of the unique G-invariant measure on Ωπ∗Γ, 
then we obtain:

Corollary 4.12 (Spherical diffraction formula for a compact-open K). The diffraction 
measure η̂ is given by the formula

η̂ =
∑

ω∈spec(G,K)(Γ)

‖projω(PΓ01W )‖2 · δω̌. �

4.4. Classical examples

In the case where G and H are abelian and K = {e}, the diffraction formula in 
Theorem 4.8 reduces to [2, Thm. 9.4], which in its essence goes back to the pioneering 
work of Meyer [22,23]. Let us briefly explain this reduction:

Let Λ = Λ(G, H, Γ, W ) be a uniform regular model set and assume that G and H are 
abelian. Denote by Ĝ and Ĥ the dual groups of G and H respectively, and identify the 
dual group of G ×H with Ĝ× Ĥ. We define the dual lattice of Γ by
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Γ⊥ := {(ξ1, ξ2) ∈ Ĝ× Ĥ | ∀(γ1, γ2) ∈ Γ : ξ1(γ1)ξ2(γ2) = 1} < Ĝ× Ĥ.

By assumption Γ projects injectively to G and densely to H. As in [24, p. 19] one deduces:

Lemma 4.13. The dual lattice Γ⊥ projects injectively to Ĝ and densely to Ĥ.

Proof. If χ ∈ Γ⊥ is contained in the kernel of the projection to Ĝ, i.e. χ = χ1 ⊗χ2, then 
χ2 is trivial on the projection of Γ to H, hence on all of H by continuity, and thus χ = 1. 
Moreover, since Γ projects injectively to G, the map H → (G ×H)/Γ is injective, and 
hence the dual map Γ⊥ → H⊥ has dense image. �

We denote by Γ⊥
Ĝ

and Γ⊥
Ĥ

the images of Γ⊥ under the canonical projections pĜ :
Ĝ× Ĥ → Ĝ and p

Ĥ
: Ĝ× Ĥ → Ĥ respectively. Using the lemma we may define

ζ := p
Ĥ
◦ (pĜ|Γ⊥)−1 : Γ⊥

Ĝ
→ Ĥ,

so that (ξ, ζ(ξ)) ∈ Γ⊥ for all ξ ∈ Γ⊥
Ĝ

.
Given f ∈ L1(G) ∩ L2(G) we denote by

f̂(χ1) :=
∫
G

f(g)χ1(g−1)dmG(g)

the Fourier transform of f with respect to mG. We normalize the Haar measure mH on 
H so that Γ has covolume 1 in G ×H and use the same symbol to denote the Fourier 
transform with respect to mH . We denote by mY the corresponding Haar probability 
measure on Y := Γ\(G ×H).

Every ξ ∈ Γ⊥ defines a Γ-invariant function on G ×H, hence descends to a function 

Γξ on Y , and the functions {Γξ | ξ ∈ Γ⊥} form an orthonormal basis of L2(Y, mY ). We 
deduce that for f ∈ Cc(G),

‖PΓ(f ⊗ 1W )‖ =
∑
ξ∈Γ⊥

|〈PΓ(f ⊗ 1W ), Γξ〉L2(Y,mY )|2.

Now if F denotes a fundamental domain for Γ in G ×H, then for ξ = (ξ1, ξ2) ∈ Γ⊥ we 
have

〈PΓ(f ⊗ 1W ), Γξ〉L2(Y,mY ) =
∫
F

∑
(γ1,γ2∈Γ)

f(γ1g)1W (γ2h)ξ(g, h) dmG(g)dmH(h)

=
∑
γ∈Γ)

∫
γF

f(g)1W (h)ξ1(g)ξ2(h) dmG(g)dmH(h)

= f̂(ξ1)1̂W (ξ2).
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We thus obtain∑
(γ1,γ2)∈Γ

(f ∗ f∗)(γ1)(1W ∗ 1W−1)(γ2) = ‖PΓ(f ⊗ 1W )‖ =
∑

(ξ1,ξ2)∈Γ⊥

|f̂(ξ1)|2|1̂W (ξ2)|2.

Note that this is not just a formal consequence of the Poisson summation formula, since 
1W is not smooth, but it is similar in spirit. In any case, we obtain from Proposition 4.9
the formula

η̂ =
∑
ξ∈Γ⊥

Ĝ

|1̂W (ζ(ξ))|2 · δξ,

which is Meyer’s formula.
We now discuss an extension of this formula which appears (with different notation 

and under the name of “powder diffraction”) in [1]. For this let N = Rd, H = Rm and 
K = O(d), so that G = K �N is the isometry group of the Euclidean plane, and (G, K)
is a Gelfand pair with K\G = Rn. Given a character ξ ∈ N̂ we denote by qξ the Bessel 
function

qξ : N → C, qξ(n) :=
∫
K

ξ(k.n)dmK(k),

and extend it to a positive-definite spherical function ωξ : G → C on G by ωξ(ko, n) :=
qξ(n). We then obtain an identification

K\N̂ → S +(G,K), Kξ → ωξ.

The spherical Fourier transform of (G, K) relates to the usual Fourier transform of N
as follows. We have an isomorphism

ι : Cc(N)K → Cc(G,K), ι(f)((k, n)) = f(n),

and if f ∈ Cc(N)K with Fourier transform f̂ ∈ L2(N̂), then

f̂(ξ) =
∫
N

f(n)ξ(n)dmN (n) =
∫
N

∫
K

f(k−1.n)dmK(k)ξ(n)dmN (n)

=
∫
N

f(n)ξ(k.n)dmK(k)dmN (n) = 〈f, qξ〉 = ι̂(f)(ωξ).

Now let Γo < N ×H be a lattice which projects injectively to N and densely to H; then 
the image

Γ =
{
((e, γ1), γ2) ∈ (K � N) ×H : (γ1, γ2) ∈ Γo

}
,
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of Γo in G × H is a lattice, and (G, H, Γ) is a cut-and-project scheme. We now pick 
a regular window W in H so that Λ̃ = Λ̃(G, H, Γ, W ) is a regular model set and Λ =
pK\G(Λ̃) is a regular model set in K\G = Rd.

Denote by Γ⊥
o ⊂ N̂ × Ĥ the dual lattice of Γo and by (Γ⊥

o )
N̂

the projection to N̂ . 
From Lemma 4.13 we obtain a map ζ : (Γ⊥

o )
N̂

→ Ĥ such that

(ξ, ζ(ξ)) ∈ Γ⊥
o for all ξ ∈ (Γ⊥

o )
N̂
.

For f ∈ Cc(G, K) and fo = ι−1(f) ∈ Cc(N)K the computation in the abelian case yields

∑
((e,γ1),γ2)∈Γ

(f ∗ f∗)(e, γ1)(1W ∗ 1W−1)(γ2) =
∑

(γ1,γ2)∈Γo

(fo ∗ f∗
o )(γ1)(1W ∗ 1W−1)(γ2)

=
∑

(ξ1,ξ2)∈Γ⊥
o

|f̂o(ξ1)|2|1̂W (ξ2)|2

and since f̂o(ξ1) = f̂(ωξ1) we deduce from Proposition 4.9 that

η̂ =
∑

ξ∈(Γ⊥
o )

N̂

⎛⎝ ∑
χ∈K.ξ∩(Γ⊥

o )
N̂

|1̂W (ζ(χ))|2
⎞⎠ δξ,

which can be seen as a version of the “spherical Poisson summation formula” [1] for 
regular model sets.

4.5. Non-classical examples

Since the formulas in the previous subsection were already known, the question arises 
to which other classes of examples our general diffraction formula can be applied to. In 
order to run our machinery we need:

(1) a Gelfand pair (G, K) with K compact;
(2) another lcsc group H such that G ×H admits a lattice Γ which projects injectively 

to G and densely to H.

For simplicity let us also assume that

(3) G and H are connected Lie groups and the manifold G/K is simply-connected.

There are two main sources of examples for such quadruples (G, K, H, Γ). Let us first 
consider the case where G is amenable. In this case we have the following result:
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Proposition 4.14 (Cut-and-project schemes of amenable Lie groups). Assume that 
(G, K, H, Γ) satisfy (1)-(3) above and that G is amenable. If G acts effectively on G/K, 
then the following hold:

(i) G = N � L, where L is compact and contains K, and N is either abelian or 2-step 
nilpotent.

(ii) If πG(Γ) is contained in N , then H is either abelian or 2-step nilpotent and Γ is 
uniform.

Proof. (i) is an immediate consequence of Vinberg’s decomposition theorem [29, Thm. 
13.3.20]. If πG(Γ) < N , then πG(Γ) and thus Γ are 2-step nilpotent. But then also H is 
2-step nilpotent since it contains the dense 2-step nilpotent subgroup πH(Γ), and thus 
Γ is cocompact by [25, Thm. 2.1]. �

The assumption that G acts effectively is not essential and can always be arranged by 
passing to a quotient. The crucial point is that assuming amenability of G, the possible 
pairs (G, L) appearing in (i) can actually be classified; these are called nilmanifold pairs
and all arise essentially from the 23 families of “maximal irreducible” nilmanifold pairs 
listed in [29, Sec. 13.4].

If we add the additional assumption that

(4) πG(Γ) < N ,

then the quadruples (G, K, H, Γ) satisfying (1)-(4) with G amenable can actually be 
completely classified. Namely, H has to be a 2-step nilpotent Lie group, and these are 
well-known. Then Γ has to be a lattice in the nilpotent Lie group N × H, and hence 
arises from a rational basis of the Lie algebra of N ×H by the construction described in 
[25, Remark after Thm. 2.12]. In each of these cases, one can try to compute explicitly 
the diffraction formula in terms of a given regular window W . We will carry this out for 
Heisenberg motion groups in Section 5. While many of the ideas work rather generally for 
quadruples satisfying (1)-(4) above, some of our estimates are specific to the Heisenberg 
group. (For example, we use square-integrability of irreducible spherical representations 
in an essential way.)

If we drop the condition that πG(Γ) < N then we can no longer classify the corre-
sponding cut-and-project sets. Note that if we drop the assumption that G and H are 
connected, then we can no longer even guarantee that Γ is uniform. In fact, there exists 
a cut-and-project scheme (G, H, Γ) and a compact subgroup K < G such that G and H
are compact-by-abelian (in particular amenable), (G, K) is a Gelfand pair and Γ is non-
uniform, see [7, p. 8] which is based on [4, Example 3.5] due to Bader, Caprace, Gelander 
and Monod. This shows that we are very far from classifying the possible cut-and-project 
sets in a commutative space G/K with G a general lcsc amenable group.
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Among the examples of quadruples satisfying (1)-(3) with non-amenable G, a central 
role is played by semisimple (or more generally, reductive) Gelfand pairs. Note that if 
G is any semisimple Lie group with finite centre and K a maximal compact subgroup, 
then (G, K) is a Gelfand pair, and K\G is a Riemannian symmetric space. In this 
case, there always exist both uniform and non-uniform cut-and-project schemes of the 
form (G, H, Γ) satisfying (1)-(3). For example, one can always take H = G or H =
GC, the complexification of G. The assumption that Γ projects densely onto H implies 
by Margulis’ arithmeticity theorem that Γ is an arithmetic group. This implies that 
all weighted model sets in Riemannian symmetric spaces are of arithmetic origin. The 
simplest examples arise for G = SL2(R), and we will discuss this case in Section 6.

5. Virtually nilpotent examples: Heisenberg motion groups

5.1. Spherical functions for Heisenberg motion groups

Given d ≥ 1 we abbreviate Vd := Cd and denote by 〈·, ·〉 and by mVd
the Lebesgue 

measure on Vd. The standard symplectic form βd on Vd is given in terms of the standard 
Hermitian inner product 〈·, ·〉 by the formula

βd(u, v) = −1
2 Im〈u, v〉, for u, v ∈ Vd.

Definition 5.1. The (2d + 1)-dimensional Heisenberg group Nd = R ⊕βd
Vd is the group 

with underlying set R × Vd and multiplication is given by the formula

(s, u)(t, v) = (s + t + βd(u, v), u + v), for (s, u), (t, v) ∈ Nd.

Since β(v, v) = 0 for all v ∈ V , we have (t, v)−1 = (−t, −v) for all (t, v) ∈ N . The Haar 
measure on Nd is given by mNd

= mR⊗mVd
, and is clearly both left- and right-invariant.

Remark 5.2 (Heisenberg motion group). The group Kmax
d := U(d) acts on Nd by auto-

morphisms via k.(t, u) = (t, ku). If K is any closed subgroup of Kmax
d containing the 

diagonal subgroup Kd := Td, then (K � Nd, K) is a Gelfand pair [29, Corollary 13.2.3], 
and K�Nd is called a Heisenberg motion group. We will focus on the minimal Heisenberg 
motion group Gd := Kd �Nd. Bi-invariant functions for this Gelfand pair correspond to 
polyradial functions on the Heisenberg group, whereas bi-invariant functions for Kmax

d

are given by the much smaller space of radial functions. Correspondingly, our polyradial 
diffraction formula is stronger than the corresponding radial diffraction formula. To ob-
tain the latter from the former one basically has to expand the spherical functions of the 
larger Gelfand pair into those of the smaller Gelfand pair using the formulas from [28]. 
We omit the details.

Remark 5.3 (Notation concerning function spaces). For every d ∈ N we have an iso-
morphism of ∗-algebras ιd : Cc(Nd)Kd → Cc(Gd, Kd) which is given by ιd(f)(k, (t, v)) =
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f(t, v) and ι−1
d f(t, v) = f(e, (t, v)). It extends continuously to all Lp-spaces for 1 ≤ p < ∞

and preserves smooth functions.

We now recall the classification of spherical functions for the Gelfand pair (Gd, Kd) =
(Td � (R ⊕βd

Vd), Td) associated with the minimal Heisenberg motion group for a fixed 
d ∈ N. We need the following notion:

Definition 5.4. Let ϕ, ψ ∈ L1(Vd) and τ ∈ R. The function

(ϕ ∗τ ψ)(v) =
∫
Vd

ϕ(u)ψ(v − u)e−iτβ(u,v) dmVd
(u), (5.1)

is called the τ -twisted convolution of ϕ and ψ.

It is not hard to see that ϕ ∗τ ψ ∈ L1(V ) and it follows from Kd-invariance of mVd

that

L1(Vd)Kd ∗τ L1(Vd)Kd ⊂ L1(Vd)Kd for every τ ∈ R.

The following result is significantly harder (see [28, Proposition 1.3.4]).

Proposition 5.5. For every τ �= 0 we have L2(V ) ∗τ L2(V ) ⊂ L2(V ) and thus

L2(Vd)Kd ∗τ L2(Vd)Kd ⊂ L2(Vd)Kd for every τ ∈ R \ {0}. �
Note that for τ = 0 the convolution ∗0 is just the usual convolution, and hence the 

proposition does not extend to the case τ = 0. The relation between twisted convolution 
and the Heisenberg group is as follows. If f ∈ L1(Nd), then we define the τ -central 
Fourier transform fτ ∈ L1(Vd) as

fτ (v) =
∫
R

f(t, v)e−iτt dmR(t).

In other words, if fv(t) := f(t, v), then fτ (v) = f̂v(τ) is the Fourier transform in the 
central variable evaluated at τ . We observe:

Lemma 5.6. For every τ ∈ R and all f, g ∈ L1(Nd) we have (f ∗ g)τ = fτ ∗τ gτ .

Proof. First note that if f, g ∈ L1(Nd), then

(f ∗ g)(t, v) =
∫
Nd

f(s, u)g((s, u)−1(t, v)) dmNd
(s, u)

=
∫

f(s, u)g(t− s− β(u, v), v − u) dmNd
(s, u).
Nd
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Hence, for every τ ,

(f ∗ g)τ (v) =
∫
R

( ∫
Nd

f(s, u)g(t− s− β(u, v), v − u) dmNd
(s, u)

)
e−iτt dmR(t)

=
∫
Vd

(∫
R

∫
R

f(s, u)e−iτs g(t, v − u)e−iτt dmR(s) dmR(t)
)
e−iτβ(u,v) dmVd

(u)

=
∫
Vd

fτ (u)gτ (v − u)e−iτβ(u,v) dmVd
(u) = (fτ ∗τ gτ )(v).

This shows that (f ∗ g)τ = fτ ∗τ gτ . �
Applying Young’s inequality we deduce in particular that

‖(f ∗ g)τ‖L∞(Vd) ≤ ‖fτ‖L2(Vd) ‖gτ‖L2(Vd), for all τ ∈ R and f, g ∈ L1(Nd) ∩ L2(Nd).
(5.2)

Definition 5.7. A function q ∈ L∞(Vd)Kd is called τ -spherical for τ ∈ R if

〈ϕ ∗τ ψ, q〉 = 〈ϕ, q〉 〈ψ, q〉, for all ϕ,ψ ∈ L1(Vd)Kd .

Such functions can be used to parametrize the spherical functions for the Gelfand pair 
(Gd, Kd):

Proposition 5.8. Given τ ∈ R and a τ -spherical function q ∈ L∞(Vd)Kd , the function 
ω : Gd → C given by

ω(k, (t, v)) := eiτtq(v), (5.3)

is a bounded Kd-spherical function. Moreover, if f ∈ L1(Nd)Kd , then

〈ιd(f), ω〉 = 〈fτ , q〉. (5.4)

Proof. We first prove the second statement: For f ∈ L1(Nd)Kd we have

〈ιd(f), ω〉 =
∫
Nd

f(t, v)e−iτtq(v) dmNd
(t, v) =

∫
Vd

∫
R

f(t, v)e−iτt dmR(t) q(v) dmVd
(v)

= 〈fτ , q〉.

This establishes (5.4), and for f1, f2 ∈ L1(Nd)Kd we obtain
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〈ιd(f1) ∗ ιd(f2), ω〉 = 〈ιd(f1 ∗ f2), ω〉 = 〈(f1 ∗ f2)τ , q〉 = 〈(f1)τ ∗τ (f2)τ , q〉
= 〈(f1)τ , q〉〈(f2)τ , q〉 = 〈ιd(f1), ω〉〈ιd(f2), ω〉.

Since ιd : L1(Nd)Kd → L1(Gd, Kd) is surjective, this proves that ω is Kd-spherical. �
Remark 5.9 (Classification of (Gd, Kd)-spherical functions). We state without proof the 
classification of positive-definite (Gd, Kd)-spherical functions, which can be found e.g. in 
[28], see in particular Proposition 3.2.3 and the remarks after Proposition 3.2.5. It turns 
out that all bounded spherical functions are positive-definite and that they all arise from 
τ -spherical functions via the construction in Proposition 5.8.

Recall that the Laguerre polynomial Lk of degree k and type 0 is defined by

Lk(t) = e−t
( d

dt

)k

(ettk), for k ∈ N,

and that the zeroth Bessel function Jo is defined as

Jo(r) = 1
π

π∫
0

eir cos θ dθ, for r ≥ 0.

For τ ∈ R \ {0}, there are countably many τ -spherical functions {qτ,α | α ∈ Nd}, which 
can be parametrized by Nd and are given by the real-valued functions

qτ,α(v) = e−|τ ||v|2/4 ·
d∏

j=1
Lαj

(|τ ||vj |2/2).

For τ = 0 there are uncountably many τ -spherical function {q0,κ | κ ∈ Rd
≥0}, which can 

be parametrized by Rd
≥0 and are given by

q0,κ(v) =
d∏

j=1
J0(κj |vj |).

If we denote by ωτ,α, respectively ω0,κ the Kd-spherical functions on Gd corresponding 
to qτ,α and q0,κ respectively, then we have

S +(Gd,Kd) = Sb(Gd,Kd) = {ωτ,α | τ ∈ R \ {0}, α ∈ Nd} � {ω0,κ | κ ∈ Rd
≥0}. (5.5)

The functions qτ,α are matrix coefficients of Schrödinger representations with central 
character eiτ and Kd acting by ei〈α,·〉 and the functions q0,κ correspond to Kd-orbits 
of characters as discussed in the virtually abelian case above. Note that, by the same 
computation as in the virtually abelian case, for F ∈ Cc(Gd, Kd), k ∈ Kd and σ ∈ Vd we 
have
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F̂ (ω0,|σ|) =
∫
Nd

F (k, (t, v))e−i〈σ,v〉dmNd
(t, v). (5.6)

5.2. Model sets in minimal Heisenberg motion groups

We now describe the setting that we will consider throughout the rest of this section. 
From now on we fix a pair of parameters d = (d1, d2) and set

G := Gd1 = Kd1 �Nd1 = Kd1 �(R⊕βd1
Vd1), K := Kd1 and H := Nd2 = R⊕βd2

Vd2 .

Later we will also consider the group

H̃ := Kd2 � H

We then have

G×H = Kd1 � (R2 ⊕βd
Vd) = Kd1 � (Nd1 ×Nd2)

where Vd = Vd1 ⊕ Vd2 and βd : Vd → R2 is the cocycle given by

βd((u1, u2), (v1, v2)) =
(
βd1(u1, v1)
βd2(u2, v2)

)
(u1, v1 ∈ Vd1 , u2, v2 ∈ Vd2).

Remark 5.10 (Cut-and-project schemes for Heisenberg motion groups). We choose lat-
tices Δ < Vd and Ξ < R2 such that Δ projects densely and injectively onto Vd1 and Vd2 , 
Ξ projects densely and injectively onto both coordinates and such that βd(Δ, Δ) ⊂ Ξ. 
We then obtain a lattice Γo = Ξ ⊕βd

Δ in Nd, and hence also a lattice

Γ := {((e, (ξ1, δ1), (ξ2, δ2)) ∈ G×H | (ξ1, ξ2) ∈ Ξ, (δ1, δ2) ∈ Δ},

in G ×H, which we can further extend to a lattice

Γ̃ := {((e, γ1), (e, γ2)) ∈ G× H̃ | (γ1, γ2) ∈ Γo} < G× H̃, (5.7)

in G × H̃. Then by construction (G, H, Γ) is a cut-and-project scheme for the minimal 
Heisenberg motion group G.

Remark 5.11 (Model sets in the Heisenberg motion group). Let (G, H, Γ) be the cut-
and-project scheme from Remark 5.10. Since Γ is countable, we can choose parameters 
aj , bj ∈ R such that the boundary of

W := {(t, (z1, . . . , zd)) ∈ H | t ∈ [a0, b0], |zj | ∈ [aj , bj ]}

does not intersect the projection of Γ to H. We fix such parameters once and for all. 
Note that W splits as a product
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W = I ⊗Wo, where I = [a0, b0] and Wo = {(z1, . . . , zd) ∈ Vd2 | |zj | ∈ [aj , bj ]}.

We then obtain a uniform regular model set

Λ̃ := Λ̃(G,H,Γ,W ) = projG(Γ ∩ (G×W )),

and the associated uniform regular model set in the Heisenberg group K\G = Nd1 is 
then given by

Λ = Kp(Λ̃) = projNd1
(Γo ∩ (Nd1 ×W )).

For the remainder of this section we assume that Λ̃ and Λ are defined as above. We 
then denote by ν the unique G-invariant measure on the hull of Λ and by η the associated 
auto-correlation measure. Our goal is to determine the corresponding diffraction measure 
η̂. From Proposition 4.9 we know that

η̂(|f̂ |2) =
∑

(e,γ1),γ2)∈Γ

(f ∗ f∗)(γ1)(1W ∗ 1W−1)(γ2) (f ∈ Cc(G,K) = Cc(Gd1 ,Kd1)).

If we denote by Γ̃ < G × H̃ the lattice from (5.7), then we can rewrite this as

η̂((|f̂ |2) = δΓ̃
(
(f ⊗ 1{e}×W ) ∗ (f ⊗ 1{e}×W )∗

)
. (5.8)

This formula is the starting point of our investigation.

5.3. Regularization

A technical difficulty in manipulating the right-hand side of (5.8) arises from the fact 
that f is not smooth, and that 1W is not even continuous. To circumvent this problem 
we argue as follows.

The key observation is that not only (G, Kd1), but also (G × H̃, Kd1 × Kd2) is a 
Gelfand pair, and that δΓ̃ is a positive-definite Radon measure on G × H̃. It thus follows 
from the absolute case of the Godement-Plancherel theorem (Corollary 2.22) that the 
measure δΓ̃ admits a spherical Fourier transform δ̂Γ̃ with respect to the Gelfand pair 
(G × H̃, Kd1 ×Kd2). This measure satisfies

δ̂Γ̃(|F̂ |2) = δΓ̃(F ∗ F ∗) (5.9)

for all bounded measurable bi-Kd1 × Kd2 -invariant functions F : G × H̃ → C with 
compact support, but it is already uniquely determined by the fact that it satisfies (5.9)
for all smooth functions F ∈ C∞

c (G ×H̃, Kd1 ×Kd2). From the former property and (5.8)
we may deduce that
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η̂(|f̂ |2) = δ̂Γ̃(|f̂ |2 ⊗ |1̂{e}×W |2),

and using the latter property we deduce:

Lemma 5.12 (Regularity lemma). Let m ∈ M+(S +(G ×H̃, Kd1 ×Kd2)) and assume that 
for all smooth functions f1 ∈ C∞

c (Nd1)Kd1 and f2 ∈ C∞
c (Nd2)Kd2 we have

∑
(δ1,δ2)∈Δ

∑
(ξ1,ξ2)∈Ξ

(f1 ∗ f∗
1 )(ξ1, δ1)(f2 ∗ f∗

2 )(ξ2, δ2) = m(|ι̂−1
d1

(f1)|2 ⊗ | ̂ι−1
d2

(f2)|2).

Then m = δ̂Γ̃, and thus for all ψ ∈ Cc(S +(G, Kd1)) we have

η̂(ψ) = m(ψ ⊗ (|1̂{e}×W |2)). �
5.4. The Poisson summation formula and the horizontal contribution

From now on we consider functions f1 ∈ C∞
c (Nd1)Kd1 and f2 ∈ C∞

c (Nd2)Kd2 . By 
Lemma 5.12, in order to determine the auto-correlation measure we have to express the 
sum

Ξ(f1, f2) :=
∑

(δ1,δ2)∈Δ

∑
(ξ1,ξ2)∈Ξ

(f1 ∗ f∗
1 )(ξ1, δ1)(f2 ∗ f∗

2 )(ξ2, δ2)

in terms of the spherical Fourier transforms of the functions F1 := ι−1
d1

(f1) and F2 :=
ι−1
d2

(f2).
If we formally apply the Poisson summation formula in the ξ-variables and then apply 

Lemma 5.6 we obtain

Ξ(f1, f2) =
∑

(δ1,δ2)∈Δ

∑
(ξ1,ξ2)∈Ξ

(f1 ∗ f∗
1 )(ξ1, δ1)(f2 ∗ f∗

2 )(ξ2, δ2)

=
∑

(δ1,δ2)∈Δ

∑
(τ1,τ2)∈Ξ⊥

(f1 ∗ f∗
1 )τ1(δ1)(f2 ∗ f∗

2 )τ2(δ2)

=
∑

(τ1,τ2)∈Ξ⊥

∑
(δ1,δ2)∈Δ

((f1)τ1 ∗τ1 (f1)∗τ1)(δ1)((f2)τ2 ∗τ2 (f2)∗τ2)(δ2).

Here the sum over Δ is actually finite, hence the final rearrangement is legitimate. To 
justify the application of the Poisson summation formula, we need to ensure that the 
function

R2 → C, τ �→
(
(f1 ∗ f∗

1 ) ⊗ (f2 ∗ f∗
2 )
)

(δ1, δ2), for τ ∈ R2,

τ
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has fast enough decay for a fixed (δ1, δ2) ∈ Δ. By (5.2), we know that the absolute value 
of this function is bounded from above by the function

τ �→ ‖(f1)τ1‖2
L2(Vd1 ) ‖(f2)τ2‖2

L2(Vd2 ).

To justify our formal computation we thus need to ensure that this majorant is summable 
over Ξ⊥. This, however, follows from the smoothness assumptions on f1 and f2, which 
ensure that their central Fourier transforms decay superpolynomially fast.

Now recall from Lemma 4.13 that Ξ⊥ ⊂ R̂2 projects injectively onto both coordinates, 
hence (0, 0) is the only point in Ξ⊥ which has a 0 coordinate. We may thus split Ξ(f1, f2)
into a sum of a horizontal part (corresponding to (τ1, τ2) = (0, 0))

Ξhor(f1, f2) =
∑

(δ1,δ2)∈Δ

((f1)0 ∗0 (f1)∗0)(δ1)((f2)0 ∗0 (f2)∗0)(δ2), (5.10)

and a vertical part

Ξver(f1, f2) =
∑

(τ1,τ2)∈Ξ⊥

τ1 
=0
=τ2

∑
(δ1,δ2)∈Δ

((f1)τ1 ∗τ1 (f1)∗τ1)(δ1)((f2)τ2 ∗τ2 (f2)∗τ2)(δ2). (5.11)

The computation of the horizontal part is exactly as in the virtually abelian case: If for 
j ∈ {1, 2} we abbreviate gj := (fj)0, then using that ∗0 is just the usual (untwisted) 
convolution then the Poisson summation formula (which applies in view of the regularity 
assumptions of the fj) yields

Ξhor(f1, f2) =
∑

(σ1,σ2)∈Δ⊥

|ĝ1(σ1)|2|ĝ2(σ2)|2.

Now for σj ∈ Vdj
we have by definition of gj and Fj and (5.6)

ĝj(σj) =
∫

Vdj

gj(vj)e−i〈σj ,vj〉dmVdj
(vj)

=
∫

Ndj

fj(tj , vj)e−i〈σj ,vj〉dmNdj
(tj , vj)

=
∫
Nd

Fj(e, (t, v))e−i〈σj ,vj〉dmNd
(t, v)

= F̂j(ω0,|σj |).

We have thus established:
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Corollary 5.13 (Computation of the horizontal contribution). For f1 ∈ C∞
c (Nd1)K1 and 

f2 ∈ C∞
c (Nd2)K2 we have

Ξhor(f1, f2) =
∑

(σ1,σ2)∈Δ⊥

|F̂1(ω0,|σ1|)|2|F̂2(ω0,|σ2|)|2. �

5.5. Laguerre polynomials and the vertical contribution

The computation of the vertical part requires entirely new arguments based on prop-
erties of Laguerre polynomials. We have

Ξver(f1, f2) =
∑

(τ1,τ2)∈Ξ⊥

τ1 
=0
=τ2

Sτ1,τ2 ,

where Sτ1,τ2 :=
∑

(δ1,δ2)∈Δ

((f1)τ1 ∗τ1 (f1)∗τ1)(δ1)((f2)τ2 ∗τ2 (f2)∗τ2)(δ2),

and we are going to first consider the sum Sτ1,τ2 for a fixed pair (τ1, τ2) ∈ Ξ⊥ with 
τ1 �= 0 �= τ2. We are going to use the following properties of the functions qτ,α.

Proposition 5.14 (Properties of τ -spherical functions). Let τ ∈ R \ {0}.

(i) The functions (qτ,α)α∈Nd form an orthogonal basis for L2(Vd)Kd with

‖qτ,α‖L2(Vd) =
(
2π|τ |−1)d/2 .

(ii) For α, β ∈ Nd with α �= β we have

qτ,α ∗τ qτ,α = qτ,α and qτ,α ∗τ qτ,β = 0.

(iii) For all α ∈ Nd we have

‖qτ,α‖∞ ≤
(
2π|τ |−1)d .

(iv) For all ϕ, ψ ∈ L1(Vd)Kd ∩ L2(Vd)Kd we have

ϕ ∗τ ψ = |τ |d
(2π)d

∑
α∈Nd

〈ϕ, qτ,α〉〈ψ, qτ,α〉qτ,α,

where the convergence is absolute in L∞-norms, and thus uniform in Cb(Vd)Kd .

Proof. (i) See e.g. [28, Prop. 1.4.1]. (ii) From τ -sphericity we deduce that for α, β, γ ∈ Nd

with α �= β we have
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〈qτ,α ∗ qτβ , qτ,γ〉 = 〈qτ,α, qτ,γ〉〈qτβ , qτ,γ〉 = 0,

since the first factor vanishes if γ �= α and the second factor vanishes if γ = α. Similarly,

〈qτ,α ∗τ qτ,α, qτ,β〉 = 〈qτ,α, qτ,β〉2 = 0.

It thus follows from (i) that qτ,α ∗τ qτ,α = λqτ,α for some λ ∈ C, and τ -sphericity yields

λ =
(
2π|τ |−1)−d 〈λqτ,α, qτ,α〉 =

(
2π|τ |−1)−d 〈qτ,α ∗τ qτ,α, qτ,α〉

=
(
2π|τ |−1)−d 〈qτ,α, qτ,α〉2 = 1.

(iii) follows from (i), (ii) and (5.2), since

‖qτ,α‖∞ = ‖qτ,α ∗τ qτ,α‖∞ ≤ ‖qτ,α‖2
L2(Vd)

(iv) By (i) and (ii) we have

ϕ ∗τ ψ =

⎛⎝ ∑
α∈Nd

(|τ |(2π)−1)d/2〈ϕ, qτ,α〉qτ,α

⎞⎠ ∗τ

⎛⎝ ∑
β∈Nd

(|τ |(2π)−1)d/2〈ψ, qτ,β〉qτ,β

⎞⎠
= |τ |d

(2π)d
∑

α∈Nd

〈ϕ, qτ,α〉〈ψ, qτ,α〉qτ,α.

The proof that the convergence is absolute in L∞-norm (and hence uniform) can be 
seen as follows. By the Cauchy–Schwartz and Bessel inequalities, the function α �→
〈ϕ, qτ,α〉〈ψ, qτ,α〉 belongs to �1(Nd). Since α �→ ‖qτ,α‖L∞(V ) is bounded by (ii), we see 
that the sum of the L∞-norms of the terms in the sum above converge, hence the absolute 
convergence follows from the Weierstraß M -test. �

Applying (iv) to the functions fj , f∗
j ∈ C∞

c (Ndj
)Kj ⊂ L1(Ndj

)Kdj ∩ L2(Ndj
)Kdj we 

obtain

((fj)τj ∗τj (fj)∗τj )(δj) = |τj |dj

(2π)dj

∑
α∈Ndj

〈(fj)τj , qτj ,α〉〈(f∗
j )τj , qτj ,α〉qτj ,α(δj).

Recall that Fj = ι−1
dj

(fj) ∈ C∞
c (Kdj

� Ndj
, Kdj

). Using (5.4) we obtain

〈(fj)τj , qτj ,α〉〈(f∗
j )τj , qτj ,α〉 = 〈Fj , ωτj ,α〉〈F ∗

j , ωτj ,α〉 = |F̂j(ωτj ,α)|2,

and hence we find

Sτ1,τ2 = |τ1|d1 |τ2|d2

(2π)d1+d2

∑ ∑
d +d

|F̂1(ωτ1,α)|2|F̂2(ωτ2,β)|2qτ1,α(δ1)qτ2,β(δ2).

(δ1,δ2)∈Δ (α,β)∈N 1 2
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Using properties of Laguerre polynomials one can show:

Lemma 5.15 (Absolute convergence). For all τ1 �= 0 �= τ2 the expression

∑
(δ1,δ2)∈Δ

∑
(α,β)∈Nd1+d2

|F̂1(ωτ1,α)|2|F̂2(ωτ2,β)|2qτ1,α(δ1)qτ2,β(δ2)

converges absolutely.

We defer the proof to Appendix B, but emphasize that smoothness of f1 and f2 enters 
crucially. Using absolute convergence we may now freely reorder the sums inside Sτ1,τ2

for every fixed (τ1, τ2). In particular, if we define a function σΔ
τ1,τ2 : Nd1 ×Nd2 → C by

σΔ
τ1,τ2(α, β) := |τ1|d1 |τ2|d2

(2π)d1+d2

∑
(δ1,δ2)∈Δ

qτ1,α(δ1)qτ2,β(δ2), (5.12)

then we obtain:

Corollary 5.16 (Computation of the vertical contribution). For f1 ∈ C∞
c (Nd1)K1 and 

f2 ∈ C∞
c (Nd2)K2 we have

Ξver(f1, f2) =
∑

(τ1,τ2)∈Ξ⊥

τ1 
=0
=τ2

∑
(α,β)∈Nd1+d2

σΔ
τ1,τ2(α, β)|F̂1(ωτ1,α)|2|F̂2(ωτ2,β)|2. �

5.6. The polyradial diffraction formula

Combining the vertical and the horizontal contribution we finally obtain with 
Lemma 5.12 the following formula:

Theorem 5.17 (Diffraction formula for the minimal Heisenberg motion group). The 
diffraction measure η̂ of the regular model set Λ = Λ(Gd1 , H, Γ, W = I ×Wo) is given by 
the formula

η̂ =
∑

(σ1,σ2)∈Δ⊥

|mR(I)|2|1̂Wo
(σ2)|2δω0,|σ1|

+
∑

(τ1,τ2)∈Ξ⊥

τ1 
=0
=τ2

∑
(α,β)∈Nd1+d2

σΔ
τ1,τ2(α, β)|1̂I(τ2)|2|〈1Wo

, qτ2,β〉|2δωτ1,α
,

where σΔ : Ξ⊥ \ {(0, 0)} → C is given by (5.12).
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Proof. By Lemma 5.12, Corollary 5.13 and Corollary 5.16 we have

δ̂Γ̃ =
∑

(σ1,σ2)∈Δ⊥

δω0,|σ1| ⊗ δω0,|σ2| +
∑

(τ1,τ2)∈Ξ⊥

τ1 
=0
=τ2

∑
(α,β)∈Nd1+d2

σΔ
τ1,τ2(α, β) · δωτ1,α

⊗ δωτ2,β
.

On the other hand, by Lemma 5.12 we also have

η̂(ψ) = m(ψ ⊗ (|1̂{e}×W |2)), (ψ ∈ Cc(S +(G,Kd1))),

and since W = I ×Wo we see from (5.6) and Proposition 5.8 that

|1̂{e}×W (ω0,|σ2|)|2 = |mR(I)|2|1̂Wo
(σ2)|2

and |1̂{e}×W (ωτ2,β)|2 = |1̂I(τ2)|2|〈1Wo
, qτ2,β〉|2.

The theorem follows. �
6. Semisimple examples: SL2(R)

6.1. The auto-correlation distribution of a weighted model set in the hyperbolic plane

As explained in [8] the auto-correlation measure of a weighted model set in the hyper-
bolic plane can be re-interpreted as an evenly positive-definite distribution on the real 
line. We briefly recall the relevant results and notations. As in [8] we define elements of 
G := SL2(R) by

kθ :=
(

cos 2πθ sin 2πθ
− sin 2πθ cos 2πθ

)
, at :=

(
et/2 0
0 e−t/2

)
and nu :=

(
1 u
0 1

)
,

and denote by K, A and N the respective subgroups of G consisting of these matrices. 
Multiplication induces a diffeomorphism A ×N ×K → G and thus every g ∈ G can be 
written uniquely as

g = atnukθ. (6.1)

If f ∈ L1(G) and F (t, u, θ) := f(atnukθ), then we will normalize Haar measure on G
such that ∫

G

f(g) dmG(g) =
∫

[0,1)

∫
R

∫
R

F (t, u, θ) dt du dθ.

We then identify

K\G → H2, Kg �→ g−1.i,
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where the action of G on H2 is by fractional linear transformations. The auto-correlation 
measure of a weighted regular model set Λ in the hyperbolic plane H2 then gets identified 
with a Radon measure η on K\G/K. Now if we denote by C∞

c (R)ev ⊂ C∞
c (R) the 

subspace of even functions, then by [8, Lemma 5.2] (or [20, Theorems V.2.2 and V.2.3]) 
the Harish transform defines an isomorphism of ∗-algebras

H : C∞
c (G,K) → C∞

c (R)ev, (Hf)(t) = et/2
∫
R

f(atnu) du.

By [8, Prop. 5.7] the map

ξ : C∞
c (R)ev → C, f �→ η(H−1f)

is an evenly positive-definite distribution, i.e. a continuous linear functional on C∞
c (R)ev

such that ξ(ϕ ∗ ϕ∗) ≥ 0 for all ϕ ∈ C∞
c (R)ev. Since it determines the auto-correlation 

measure of Λ, it is called the auto-correlation distribution of Λ. In view of exponential 
volume growth of the hyperbolic plane, this distribution is not tempered.

While tempered distribution can be studied via their Fourier transforms, for non-
tempered distributions one has to consider a complex version of the Fourier transform 
known as the Mellin transform. Define the Paley-Wiener space PW(C) as the space of 
entire functions f : C → C such that for every N ∈ N there exist constants C1, C2 ≥ 1
such that

f(σ + it) < C1 ·
C

|σ|
2

(1 + |t|)N .

We denote by PW(C)ev ⊂ PW(C) the subspace consisting of functions with f(−z) =
f(z). Then the even Mellin transform is the isomorphism [20, Thm. V.3.4]

M : C∞
c (R)ev → PW(C)ev, Mϕ(z) :=

∫
R

ϕ(t)etz/2 dt.

We can thus consider an evenly positive-definite distribution as a linear functional on 
the even part of a Payley-Wiener space. By a classical result of Gelfand and Vilenkin 
(generalizing previous work of Krein) such a linear functional actually extends to a Radon 
measure:

Theorem 6.1 (Gelfand–Vilenkin–Krein, [16, Thm. II.6.5]). If ξ : C∞
c (R)ev → C is 

an evenly positive-definite distribution, then there exists a measure μξ ∈ M+(C) with 
supp(μξ) ⊂ R ∪ iR such that

ξ(ϕ) = μξ(Mϕ) (ϕ ∈ C∞
c (R)ev). � (6.2)
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We refer to any measure μξ ∈ M+(C) which satisfies (6.2) and supp(μξ) ⊂ R ∪ iR

as a Mellin transform of the evenly positive-distribution ξ. For general evenly positive-
definite distributions such a measure is not unique [16, Sec. II.4]. Using the well-known 
relation between the Mellin transform, the Harish transform and the spherical Fourier 
transform of the Gelfand pair (G, K) we are going to show:

Theorem 6.2 (Pure point diffraction). Let Λ be a uniform regular model set in the hyper-
bolic plane. Then its auto-correlation distribution ξ admits a Mellin transform μξ which 
is a pure point measure.

6.2. Mellin transform vs. spherical Fourier transform

We now explain the proof of Theorem 6.2. Let η ∈ M+(G, K) denote the auto-
correlation measure of Λ. By Theorem 3.10 and Proposition 3.12 the diffraction measure 
η̂ ∈ M+(S +(G, K)) is pure point. We now relate it to the auto-correlation distribution 
ξ of Λ.

Remark 6.3 (Spherical functions). Denote by ρ : G → R the function given by

ρ(atnukθ) = et/2.

Note that ρ(at) = et/2 (corresponding to the half-sum of positive roots) and that ρ is 
right-K-invariant. Integrating complex powers of ρ against the left-K-action provides 
bi-K-invariant functions

ωz : G → C, ωz(g) :=
1∫

0

ρ(kθg)z+1dθ,

and it turns out that these are precisely the spherical functions of the Gelfand pair 
(G, K). Moreover, given z1, z2 ∈ C we have ωz1 = ωz2 iff z2 ∈ {±z1}. We may thus 
identify the spherical transform of the Gelfand pair (G, K) with the map

S : Cc(G,K) → C(C)ev, S(f)(z) :=
∫
G

f(g)ωz(g−1)dmG(x) =
∫
G

f(g)ωz(g)dmG(g),

where the final equality follows from the fact that KgK = Kg−1K for all g ∈ G. 
Finally, the positive definite spherical functions are precisely those of the form ωz with 
z ∈ [−1, 1] ∪ iR. For z ∈ iR these correspond to spherical principal series, whereas for 
z ∈ [−1, 1] they correspond to spherical complementary series. We now recall the relation 
between the Mellin transform, the Harish transform and the spherical transform of the 
Gelfand pair (G, K) [20, Thm. V.4.5]:
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Proposition 6.4. For all f ∈ C∞
c (G, K) we have

Sf = M(Hf) ∈ PW(C)ev.

Proof. Let z ∈ C. Using bi-K-invariance of f and right-K-invariance of ρ we obtain

M(Hf)(z) =
∫
R

⎛⎝et/2
∫
R

f(atnu) du

⎞⎠ etz/2 dt =
∫
R

∫
R

f(atnu)(et/2)z+1 du dt

=
∫
R

∫
R

1∫
0

f(atnukθ)ρ(atnukθ) dθ du dt =
∫
G

f(g)ρ(g)z+1 dmG(g)

=
∫
G

1∫
0

f(k−θg)ρ(g)z+1 dθ dmG(g) =
∫
G

f(g)

⎛⎝ 1∫
0

ρ(kθg)z+1 dθ

⎞⎠ dmG(g)

= Sf(z).

This proves the proposition. �
If we identify S (G, K) with C/{±1} (via ωz → {±z}), then the spherical diffraction 

measure η̂ ∈ M+(S +(G, K)) corresponds to a pure point Radon measure μ on [−1, 1] ∪
iR ⊂ C such that μ(A) = μ(−A) and for all f ∈ C∞

c (G, K) we have

μ(Sf) = η̂(f̂) = η(f).

We thus obtain the following refinement of Theorem 6.2.

Theorem 6.5. The measure μ is a Mellin transform of the auto-correlation distribution 
ξ. In particular, ξ has a pure point Mellin transform, which is supported on [−1, 1] ∪ iR.

Proof. Let ϕ ∈ C∞
c (R)ev and f := H−1(ϕ) ∈ C∞

c (G, K). In view of Proposition 6.4 we 
have

ξ(ϕ) = ξ(Hf) = η(f) = μ(Sf) = μ(M(Hf)) = μ(Mϕ).

This proves that μ is a Mellin transform of ξ. �
Appendix A. An elementary proof of the Godement–Plancherel theorem

This appendix is devoted to the proof of the Godement-Plancherel theorem in its 
most general form (Theorem 2.21). The proof is by reduction to the spherical Bochner 
theorem, which is easily accessible from the literature and which we recall in the next 
subsection. The remainder of the proof is self-contained and inspired by the proof in the 
abelian case as presented in the book of Berg and Forst [5].
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A.1. Reminder of the spherical Bochner theorem

Recall that M+
b (S +(G, K)) denotes the space of bounded (positive) Radon measures 

on the locally compact space S +(G, K) of positive-definite spherical functions. Our 
starting point is the following spherical version of the classical Bochner theorem [29, 
Thm. 9.3.4]:

Theorem A.1 (Spherical Bochner theorem). Let ϕ ∈ P (G, K). Then there exists a unique 
μϕ ∈ M+

b (S +(G, K)) such that

ϕ(x) =
∫

S +(G,K)

ω(x)dμϕ(ω). �

Definition A.2. For ϕ ∈ P (G, K) the measure μϕ from Theorem A.1 is called the asso-
ciated measure of ϕ.

A.2. A convenient reformulation of the Godement-Plancherel theorem

We now turn to the proof of Theorem 2.21. From now on we fix a measure μ ∈
M(G, K) which is of positive type relative K. We have to show existence and uniqueness 
of a measure μ̂ ∈ M(S +(G, K)) satisfying the equivalent conditions (God1)-(God3) 
from Proposition 2.19 and to show that it is positive. That μ̂ uniquely determines μ is 
immediate from (God2) and the fact that {f ∗f∗ | f ∈ Cc(G, K)} spans a dense subspace 
of Cc(G, K), [8, Lemma A.13]. Using bi-K-invariance of μ we can reformulate Conditions 
(God1)-(God3) as follows:

Lemma A.3. For a right-K-invariant measure μ ∈ M(G) Conditions (God1)-(God3) 
from Proposition 2.19 are equivalent to the following condition.

(God4) For every f ∈ Cc(G, K) we have f̂ ∈ L2(S +(G, K), ̂μ) and for every f ∈ Cc(G)
and x ∈ G we have

μ ∗ f ∗ f∗(x) =
∫

S +(G,K)

|f̂(ω)|2ω(x)dμ̂(ω).

Proof. Since ω(e) = 1, (God2) follows from (God4) by choosing x := e. For the converse, 
assume that (God3) holds, let f ∈ Cc(G, K), x ∈ G and define g := L�

xf ∈ Cc(G, K) as 
in Lemma 2.16. We recall from (2.5) that

ĝ(ω) = f̂(ω) · ω(x).

Then, using right-K-invariance of μ and applying (God3) we obtain
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μ ∗ f ∗ f∗(x) =
∫
G

f ∗ f∗(y−1x)dμ(y) =
∫
G

∫
G

f(z)f∗(z−1y−1x) dmG(z) dμ(y)

=
∫
G

∫
G

f(z)f(x−1ky−1z) dmG(z) dμ(yk−1)dmK(k)

=
∫
G

∫
G

f(z)L�
xf(y−1z) dmG(z) dμ(y) = μ(f ∗ g∗)

=
∫

S +(G,K)

f̂(ω)ĝ(ω) dμ̂(ω) =
∫

S +(G,K)

|f̂(ω)|2ω(x)dμ̂(ω),

which establishes (God4) and finishes the proof. �
To simplify this condition further, we use the following relation between measures and 

functions of positive type, which in the abelian case was pointed out in [5, Prop. 4.4].

Lemma A.4. Let (G, K) be a Gelfand pair. If μ ∈ M(G, K) is of positive type relative 
K, then for all f ∈ Cc(G, K) the function μ ∗ f ∗ f∗ is positive-definite and continuous, 
hence of positive type.

The proof relies on the following slight extension of Axiom (Gel3) of a Gelfand pair.

Lemma A.5. Let (G, K) be a Gelfand pair and μ, ν ∈ M(G, K). If at least one of the two 
measures has compact support, then μ ∗ ν and ν ∗ μ converge and satisfy μ ∗ ν = ν ∗ μ. 
In particular μ ∗ f = f ∗ μ for all f ∈ Cc(G, K).

Proof. Assume that ν ∈ M(G, K) has compact support and let h ∈ Cc(G). Choose 
a compact set C ⊂ G which contains both supp(h)supp(ν)−1 and supp(ν)−1supp(h). 
Then there exists a measure μ0 ∈ Mb(G, K) which coincides with μ on C, and using 
commutativity of Mb(G, K) we have

(μ ∗ ν)(h) = (μ0 ∗ ν)(h) = (ν ∗ μ0)(h) = (ν ∗ μ)(h),

hence μ ∗ ν = ν ∗ μ. �
Proof of Lemma A.4. Note first that by Lemma A.5 we have μ ∗ f ∗ f∗ = f ∗ μ ∗ f∗, 
hence for all f ∈ Cc(G) and x ∈ G we have

μ ∗ f ∗ f∗(x) = f ∗ μ ∗ f∗(x) =
∫
G

f(z)
∫
G

f∗(y−1z−1x)dμ(y)dmG(z)

=
∫ ∫

f(z)f(x−1zy)dmG(z)dμ(y).

G G
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Now let f ∈ Cc(G), λ1, . . . , λn ∈ C, g1, . . . , gn ∈ G. We define h ∈ Cc(G, K) by

h(z) :=
n∑

i=1
λi

∫
K

f(xikz)dmK(k).

Using Lemma A.5 again we deduce that∑
λiλj(μ ∗ f ∗ f∗)(xix

−1
j )

=
∑

λiλj

∫
G

∫
G

f(z)f(xjx
−1
i zy)dmG(z)dμ(y)

=
∑

λiλj

∫
G

∫
G

∫
K

∫
K

f(xik1z)f(xjk2zy)dmK(k1)dmK(k2)dmG(z)dμ(y)

=
∫
G

∫
G

h(z)h(zy)dmG(z)dμ(y)

= h ∗ μ ∗ h∗(e) = μ ∗ h ∗ h∗(e)

= μ(h ∗ h∗) ≥ 0.

This shows that μ ∗ f ∗ f∗ is positive-definite, and continuity is obvious. �
Combining this with Lemma A.3 and the spherical Bochner theorem (Theorem A.1) 

we have reached the following convenient reformulation of Conditions (God1)-(God3):

Corollary A.6. If μ ∈ M(G, K) is of positive type relative K, then a measure μ̂ ∈
M(S +(G, K)) is a Fourier transform of μ if and only if the following condition holds:

(God5) For every f ∈ Cc(G) we have f̂ ∈ L2(S +(G, K), ̂μ) and |f̂ |2μ̂ = σf , where σf

denotes the associated measure of μ ∗ f ∗ f∗ in the sense of Definition A.2. �
A.3. Proof of the Godement–Plancherel theorem

We now show that given μ ∈ M(G, K) which is of positive type relative K there is a 
unique (positive) measure satisfying the condition (God5) from Corollary A.6. For the 
proof of uniqueness we need the following auxiliary observation:

Lemma A.7. For every compact subset C ⊂ S +(G, K) there exists a positive-definite 
function f ∈ Cc(G, K) such that f̂(ω) > 0 for all ω ∈ C.

Proof. Since F (Cc(G, K)) is dense in C0(Sb(G, K)) we find for every ω ∈ Ω some 
hω ∈ Cc(G) such that ĥω(ω) �= 0. Then fω := hω ∗ h∗

ω is continuous, positive-definite 
and compactly supported, and
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f̂ω(ξ) = |ĥω(ξ)|2 ≥ 0 for all ξ ∈ Sb(G,K) and f̂ω(ω) = |ĥω(ω)|2 > 0.

Consequently, f̂ω is non-negative, and strictly positive on some open neighbourhood Uω

of ω. Since C is compact there exist ω1, . . . , ωn ∈ C such that Uω1 , . . . , Uωn
cover C, and 

then f := fω1 + · · · + fωn
has the desired properties. �

Now let ψ ∈ Cc(S +(G, K)). By the lemma we can choose f ∈ Cc(G, K) such that 
f̂(ω) �= 0 for all ω ∈ supp(ψ). Then ψ/|f̂ |2 defines a continuous function on supp(ψ), 
and we can extend this function continuously to all of S +(G, K) by 0. Now, if μ̂ is any 
measure satisfying (God5), then

μ̂(ψ) = σf (ψ/|f̂ |2). (A.1)

In particular, there is at most one measure μ̂ satisfying (God5) or, equivalently, (God1)-
(God4). The proof of the existence of a measure satisfying (A.1) is based on the following 
convolution formula:

Lemma A.8. Let ϕ ∈ P (G, K) with associated measure μϕ. Then for every f ∈ Cc(G, K)
we have ϕ ∗ f ∗ f∗ ∈ P (G, K) and its associated measure is given by |f̂ |2μϕ.

Proof. Note first that since ϕ is positive-definite, the measure ϕmG is of positive type, 
and hence ϕ ∗f ∗f∗ = ϕmG∗f ∗f∗ ∈ P (G, K) by Lemma A.4. Moreover, by Corollary A.5
we have for all g ∈ G,

ϕ ∗ f ∗ f∗(g) = ((f ∗ f∗) ∗ ϕ)(g) =
∫
G

(f ∗ f∗)(x)ϕ(x−1g)dmG(x)

=
∫

S +(G,K)

∫
G

(f ∗ f∗)(x)ω(x−1g)dmG(x)dμϕ(ω)

=
∫

S +(G,K)

((f ∗ f∗) ∗ ω)(g)dμϕ(ω).

By (S4) and the subsequent remark we have

((f ∗ f∗) ∗ ω)(g) = F (f ∗ f∗)(ω) · ω = |f̂(ω)|2 · ω.

We deduce that

ϕ ∗ f ∗ f∗(g) =
∫

S +(G,K)

ω(g)|f̂(ω)|2dμϕ(ω),

which finishes the proof. �
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Now let f, g ∈ Cc(G, K). Since Cc(G, K) is commutative we have

(μ ∗ f ∗ f∗) ∗ g ∗ g∗ = (μ ∗ g ∗ g∗) ∗ f ∗ f∗,

and hence the associated measures must coincide. With Lemma A.8 we deduce that

|ĝ|2σf = |f̂ |2σg. (A.2)

Using this formula one readily concludes:

Lemma A.9. There exists a (necessarily unique) positive Radon measure on S +(G, K)
which satisfies (A.1) for all ψ ∈ Cc(S +(G, K)) and all f ∈ Cc(G, K) whose Fourier 
transform does not vanish on supp(ψ). Any such measure satisfies the equivalent Condi-
tions (God1)–(God5).

Proof. Let ψ ∈ Cc(S +(G, K)) and let f, g ∈ Cc(G) such that f̂ and ĝ are positive on 
supp(ϕ); such functions exist by Lemma A.7. It then follows from (A.2) that Λ(ϕ) :=
σf (ψ/|f̂ |2) is equal to σg(ψ/|ĝ|2), and hence independent of the function f used to 
define it. Since σf is a positive continuous linear functional on Cc(S +(G, K)) for every 
f ∈ Cc(G, K) one concludes that Λ is a positive continuous linear functional, hence given 
by a measure μ̂. By construction, μ̂ satisfies (G5). �

This completes the proof of Theorem 2.21.

Appendix B. Some estimates concerning Laguerre polynomials

In this appendix we collect the estimates concerning Laguerre polynomials which are 
required for the proof of Lemma 5.15.

With the notation of the lemma we set d := d1 + d2, V := Cd, κ := (α, β) ∈ Nd and 
define functions

g : V → C, bκ : V → C and cκ : V → [0,∞)

by the formulas

g = f1,τ1 ⊗ f2,τ2 , bκ = qτ1,α ⊗ qτ2,β and cκ = |bκ|.

Then Lemma 5.15 amounts to showing that∑
κ∈Nd

∣∣〈g, bκ〉∣∣2 (∑
δ∈Δ

cκ(δ)
)
< ∞ (B.1)

To show this, it suffices to establish the following two Properties (P1) and (P2):
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(P1) For every M ≥ 1, ∣∣〈g, bκ〉∣∣ �M

(
κ1 · · ·κd)−M , for all κ ∈ Nd.

(P2) There exists Mo ≥ 1 such that∑
δ∈Δ

cκ(δ) � (κ1 · · ·κd)Mo for all κ ∈ Nd.

To establish (P1), we recall that

bκ(v1, . . . , vd) =
d∏

j=1

(
e−ηj |vj |2/4Lαj

(ηj |vj |2/2)
)

and cκ = |bκ|,

for some η = (η1, . . . , ηd) ∈ Rd
+. Let us first pretend that g is of the form

g(v) = g1(|v1|2) · · · gd(|vd|2), for v = (v1, . . . , vd) ∈ Cd,

since the general case is not much harder except for notation. After a straightforward 
variable substitution, we find a positive number Aη and ξ = (ξ1, . . . , ξd) ∈ Rr

+ such that

〈g, bκ〉 = Aη

d∏
j=1

( ∞∫
0

gj(ξjtj)Lκj
(t)e−t/2 dt

)
.

Let us write hj(t) = et/2gj(ξjtj). To prove (P1) it suffices to show that for all M ≥ 1,

∣∣∣ ∞∫
0

hj(t)Ln(t)e−t dt
∣∣∣ �M n−M , for all n.

Since hj is compactly supported and smooth, [30, Theorem 2.1] tells us that

∣∣∣ ∞∫
0

hj(t)Ln(t)e−t dt
∣∣∣ �M n−M

( ∞∫
0

t1+r|h(2M)
j (t)|2e−t dt

)1/2
�M n−M ,

for all M , and thus (P1) is established for g in the above product form. If g is not such a 
product, then one applies the same argument inductively, freezing all but one variables 
at a time.

We now turn to the proof of (P2). By Proposition 5.14.(ii) we have bκ = bκ ∗bκ, hence 
taking absolute values yields

cκ ≤ cκ ∗ cκ, for all κ. (B.2)
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Lemma B.1. If c : V → [0, ∞) is a function satisfying c ≤ c ∗ c, then for every sub-
multiplicative function ρ : V → (0, ∞) we have

c(v) ≤ ρ(v)−1/2
∫
V

c(u)2 ρ(u) du, for all v ∈ V.

Proof. For every v ∈ V we have the estimate

c(v) ≤
∫
V

c(u)c(v − u) du =
∫
V

c(u)ρ(u)1/2 c(v − u)ρ(v − u)1/2
(
ρ(u)ρ(v − u)

)−1/2
du

≤ ρ(v)−1/2
∫
V

c(u)ρ(u)1/2 c(v − u)ρ(v − u)1/2 du ≤ ρ(v)−1/2
∫
V

c(u)2ρ(u) du,

where the last inequality holds by Cauchy-Schwarz. �
In view of (B.2) we thus have

∑
δ∈Δ

cκ(δ) ≤
(∑

δ∈Δ

ρ(δ)−1/2
) ∫

V

cκ(v)2 ρ(v) dv, (B.3)

for every submultiplicative function ρ : V → (0, ∞). To establish (P2), it is then enough 
to find a sub-multiplicative ρ such that the following hold:

(P3)

∑
δ∈Δ ρ(δ)−1/2 < ∞.

(P4) The map

κ �→
∫
V

cκ(v)2 ρ(v) dv

grows at most polynomially.

The sub-multiplicative functions that we will use will be of the form

ρN (v) = (1 + ‖v‖)N , where v ∈ V and ‖v‖2 = |v1|2 + . . . + |vd|2.

If N is large enough, (P3) is clearly satisfied, and to establish (P4) we only need to show 
that for every r, the map

κ �→
∫

cκ(v)2 ‖v‖r dv (B.4)

V
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grows at most polynomially (with a degree which is allowed to depend on r). Upon 
expanding the norm ‖ · ‖ and using the product structure of cκ, condition (B.4) amounts 
to proving that for every integer r, the map

n �→
∞∫
0

trLn(t)2 e−t dt

grows at most polynomially. We recall that

∞∫
0

Ln(t)Lm(t)e−t dt = δmn

and

tLn(t) = (2n + 1)Ln(t) − nLn−1(t) − (n + 1)Ln−1(t), for all n.

Hence, if r is an integer, trLn is a linear combination of the Laguerre polynomials Ln+j

for |j| ≤ r, with coefficients which are polynomials in n of degrees at most r. If we denote 
by βn the coefficient in front of Ln, we conclude that

∞∫
0

trLn(t)2 e−t dt = βn,

which is a polynomial of n of degree at most r. This proves (B.4), whence (P4), and we 
are done.
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