
1

A Step towards Global Counterfactual Explanations:
Approximating the Feature Space through
Hierarchical Division and Graph Search

Maximilian Becker, maximilian.becker@kit.edu∗,
Nadia Burkart, nadia.burkart@iosb.fraunhofer.de†,

Pascal Birnstill, pascal.birnstill@iosb.fraunhofer.de†,
Jürgen Beyerer, juergen.beyerer@iosb.fraunhofer.de∗†

∗Vision and Fusion Lab, Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT)
†Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB

Abstract—The field of Explainable Artificial Intelligence (XAI)
tries to make learned models more understandable. One type
of explanation for such models are counterfactual explanations.
Counterfactual explanations explain the decision for a specific
instance, the factual, by providing a similar instance which leads
to a different decision, the counterfactual. In this work a new
approaches around the idea of counterfactuals was developed.
It generates a data structure over the feature space of a
classification problem to accelerate the search for counterfactuals
and augments them with global explanations. The approach
maps the feature space by hierarchically dividing it into regions
which belong to the same class. It is applicable in any case
where predictions can be generated for input data, even without
direct access to the model. The framework works well for
lower-dimensional problems but becomes unpractical due to high
computation times at around 12 to 15 dimensions.

Index Terms—XAI, Counterfactual Explanations, Global Ex-
planations.

I. INTRODUCTION

Machine learning and Artificial Intelligence have become
a hot topic in recent years. Learning models have achieved
unprecedented results in many tasks such as image recognition,
language translation and a variety of classification tasks.
However there is still some hesitance in the adoption of
learning systems, especially in critical areas such as medicine
or finance. One reason that hinders the deployment of machine
learning models in such areas is a lack of trust. This distrust
is caused in part by missing transparency of learning models.
Because of their complexity most models, especially deep
neural networks, can not explain their decisions and even
experts are unable to understand the model’s inner workings.
The newly emerging field of Explainable Artificial Intelligence
or XAI[1], tries to overcome this problem by making learned
models more understandable. A variety of different approaches
for explaining learned decisions have been proposed. Some
try to explain the model as a whole or completely replace
it with an inherently understandable model, like for example
a decision tree[2]. Other approaches try to steer the model
during the learning process to a more explainable state or focus
on explaining single predictions for example by highlighting
important features[3] or contrasting them to other decisions[4].
One of the latter type of explanation are counterfactuals.

In psychology counterfactual thinking refers to the imagi-
nation of an alternative reality that differs to the actual reality
in one or multiple specific aspects[5]. In machine learning
counterfactuals explain a models decision for a specific in-
stance, the factual, by providing a similar instance which
leads to a different decision, the counterfactual. By comparing
the factual and counterfactual a user can see the differences
that caused the model to make another decision. The factual
and counterfactual should ideally lie close to each other in
the feature space. In this case the counterfactual represents
the minimum change required to alter the models prediction.
Counterfactual explanations have many advantages. They can
be generated without access to training data and without any
information of the inner working of the models they explain.
The only information needed are the inputs and outputs of the
model. This makes them applicable to any model, even non-
learning ones. Counterfactual explanations are also intuitively
understandable and can be expressed in natural language.
Because no previous knowledge is required they are ideal
for end users that are unfamiliar with computer science and
machine learning. Counterfactuals have additional advantages
in terms of privacy. The explanation reveals no additional
information, it consists only of an instance and its prediction.
And because no direct access to the model is required no
information about its inner workings are revealed, which may
be a trade secret. However there are also some disadvantages
to counterfactuals. For any instance that should be explained
there usually exist multiple counterfactual explanations which
requires additional work by developers to deal with the ambi-
guity. A counterfactual explanation is also local which means
that it only explains the prediction of a single instance and
can usually not be generalized to other instances.

To tackle the issue of locality we propose a new approach
called the global explanation framework which tries to give
counterfactuals a more global scope. It would be desirable to
make counterfactual explanations more global, meaning that
they explain multiple instances or ideally the whole feature
space. To achieve this the global explanation framework maps
the feature space and builds a representation of it in form of
two graphs. In these graphs counterfactuals can be found more
quickly and can be augmented with global explanations of the

2

feature space. These global explanations are visualizations of
the feature space and instances that are representative of the
models decisions generated with submodular pick[3].

This paper is structured as follows: Section II explains the
basics of XAI and counterfactual explanations followed by
some related work in section V. Afterwards, section III covers
the global explanation framework. Section IV presents the
insights gained by comparing the new approach to existing
ones. The last section VI summarizes everything as well as
giving an outlook on possible future work.

II. COUNTERFACTUAL EXPLANATIONS

The word counterfactual consists of two parts: counter
and factual so the literal meaning is something contrary to
the facts. Humans engage in counterfactual thinking in their
everyday life when they think about things that could have
happened in the past that would have lead to a different present
or future. For example: If the weather had been sunny instead
of rainy, I would have gone for a walk instead of staying
at home. Counterfactuals can be expressed in a more formal
form as follows: If X had been X’, Y would have been Y’.
The factual X has the consequence Y, however if X changes
to the counterfactual X’ the consequence changes to Y’. In
the example above X is the rainy and X’ the sunny weather.
The rain (X) lead to the present state of staying at home
(Y) whereas the sun (X’) would have resulted in going for a
walk (Y’). Some psychologists and philosophers like Lipton[6]
argue that, when people ask why a certain event happened
they actually ask why this event happened and not some
other one. In other words: If somebody asks “Why Y?” the
implicit question they actually want to get answered is “Why
Y and not Y’?”. This kind of question asks for a counterfactual
explanation.

If counterfactuals are used as an explanation for machine
learning systems X and X’ are instances in the input space of a
model while Y and Y’ are outputs or predictions made by the
model. The instance that should be explained X was classified
as belonging to the class Y. The counterfactual explanation X’
is an instance that is classified as belonging to the desired class
Y’. Thus the problem of finding a counterfactual explanation
turns into a search problem in the feature space with the
goal of finding an instance in close proximity that leads to
the prediction of the desired class. The difference between
the two instances X and X’ explains which requirements
were not met by X to achieve the desired prediction. A
counterfactual explanation can be presented either by itself,
or as the difference from its factual to highlight the changes
responsible for the different classification. This can be done in
either a tabular or graphical form to quickly see the differences
or in natural language to make the explanations accessible to
laypeople. Counterfactual explanations can also be used for
image classification tasks[7] in this case the presentation of
the results can also be pictorial.

A counterfactual explanation is only valid for a single
instance, the factual, and can not be generalized to other
instances. This makes counterfactuals local explanations in
contrast to global explanations which explain multiple in-
stances or the whole feature space. Because the explanation

comes in form of another instance from the feature space
counterfactuals are also example based explanations. Another
property of counterfactuals is that they are model agnostic
which means that there is no knowledge of the decision
process required, the only information needed to generate the
explanations are the inputs and corresponding outputs of a
model. The fact that they can be found with only access to the
model without any further information is a strong advantage
of counterfactuals.

For any instance that should be explained there are often
multiple possible counterfactual explanations. Every point in
the feature space that is classified differently could theoret-
ically be used as a counterfactual explanation. However to
be a viable explanation a counterfactual should be relatively
close to the instance it tries to explain. A closer counterfactual
requires less changes to the original instance and is therefore
briefer, easier to understand and an overall better explanation.
Another important criterion is the actionability. If for example
a credit application gets denied and the explanation states
that the applicant has to become 5 years younger in order
to receive a credit it would be a rather unpractical expla-
nation. Counterfactual explanations should take into account
which features are mutable, like a credit amount or duration,
and which features are immutable, like an applicants sex,
age or race. But even if the distance between factual and
counterfactual and its actionability are taken into account it
is still possible and often likely to find multiple equally suited
counterfactuals. This poses a challenge for developers trying
to utilize counterfactual explanations. Should they present all
the counterfactuals that are found, which can lead to a better
explanation but can also confuse the user, or should they only
pick one counterfactual which would result in a more precise
explanation but also requires some kind of rating. This is an
open research question[8].

Counterfactuals have many advantages as explanations for
a machine learning system. Because counterfactual thinking
is intuitive to humans and counterfactuals can be expressed
formally as well as in natural language they are especially
useful as explanations for end users. Counterfactuals are also
rather easy to implement because they are model-agnostic
which means that they can be used on top of any prediction
model. The models do not have to be learned, it can also
be a rule based system[9]. This makes them for example
useful for prototyping or any modular situation where the
underlying model may be switched out. Because they are
model-agnostic counterfactuals have the additional advantage
that they do not reveal any information about the underlying
model and data which is not accessible through the models
predictions. So counterfactuals can for example be used by
a company interested in protecting trade secrets or customer
data[9]. Counterfactuals also satisfy the GDPRs[10] right to
explanation. This combined with the previously mentioned
advantages makes them very useful to companies that need
to satisfy the GDPR.

However counterfactuals also have some disadvantages.
The results are usually ambiguous, meaning that there are
often multiple counterfactuals for any given data instance.
This raises additional challenges that need to be addressed.

3

All the found counterfactuals can be presented to the user
to be as transparent as possible and leave the choice to
the user. As shown by Sokol et al.[11] this option should
only be regarded with caution. Multiple counterfactuals reveal
more information which may enable malicious users to gain
unwanted knowledge about a system. The other option is to
provide only chosen counterfactuals. This means that the found
counterfactuals have to be evaluated or scored by some kind of
metric and may result in worse explanations. On the other hand
it might be impossible in some cases to find a counterfactual
for a given instance that satisfies all desired constraints. In this
case some constraints like the distance have to be reduced or
another form of explanation has to be considered.

III. GLOBAL EXPLANATION FRAMEWORK

Counterfactual explanations are local explanatnios, which
means, that they only explain a single instance in the feature
space and can not be generalized to other instances. The
approach described in this section tries to tackle this problem
by giving counterfactual explanations a more global scope.

The global explanation framework creates a data structure
over an interesting part of the feature space, which can
encompass the whole feature space, with the goal of getting
a representation of that region and speeding up the process
of finding counterfactuals. The whole approach is depicted in
figure 1. It starts with a feature space given in the form of a
classifier. The process has three main steps: division, labeling
and building a search graph. The first two steps: division and
labeling are iterated in order to map the feature space and
create a representation of it. Afterwards a search graph is
created on this representation.

The algorithms for all three phases are implemented in
interfaces and can therefore be easily changed. The imple-
mented division algorithm splits every region in half along
each dimension. For labeling an algorithm that samples a
number of random points from a region and passes them to
the classifier was implemented. If all the points belong to the
same class the region can be labeled as belonging to this class,
otherwise it is labeled as “uncertain” and divided further in
the next iteration. The algorithm that creates the search graph
connects each node to all the nodes it shares a border with.
These three implementations are presented in more detail in
the following.

A. Division and Labeling

The goal of the first two steps which are depicted in
figure 1 is to hierarchically divide the feature space into areas
belonging to the same class. Alongside the division a hierarchy
tree is created to keep track of all the divisions. The hierarchy
tree represents a parent child relation of all the regions in
the feature space. The trees root node represents the chosen
region in the feature space which can be the entire feature
space. If a region gets divided, new children are added to the
respective node. The sum of all children always adds up to the
same region as the parent. This process is depicted in detail
in figure 2.

Fig. 1. The global explanation framework. First the feature space is divided
and labeled afterwards a search graph is created.

The divide algorithm implemented here splits regions in half
along each dimension. At the beginning the feature space gets
divided by splitting it into two intervals of equal size along
each dimension. The initial division is shown in detail in figure
3 step 1. After every dimension is split the feature space is
implicitly split into orthotopes. An orthotope is the Cartesian
product of intervals so the higher-dimensional analogue of a
rectangle or cuboid. Because every dimension is split in half
there are 2D orthotopes created with every split where D is
the dimensionality of the feature space. In a two-dimensional
case the feature space is a two-dimensional orthotope, which
is a rectangle. So the feature space is divided into smaller and
smaller rectangles, as shown in figures 2 and 3

Now the orthotopes have to be labeled. The implemented
algorithm labels an orthotopes by randomly sampling multiple
data points in each orthotope and passing them to the black-
box classifier for classification. Another way of labeling could
be to deterministically get the samples from some kind of
grid. Figure 3 shows a random sampling using six points in
step 2. The sampled points are then classified using the black-
box classifier as shown in step 3. With the labeled points
the labels for the regions are inferred in step 4. If all the
sampled data points inside an orthotope belong to the same
class (Figure 3, region 1) it can be assumed that there are

4

Fig. 2. The feature space is divided hierarchically and a tree is used to keep
track of the created regions.

Fig. 3. The four steps of dividing and labeling a region.

no decision boundaries in the orthotope and therefore all the
data points in the orthotope belong to the same class. In this
case the orthotope is labeled as belonging to the respective
class. If there are data points from different classes inside the
orthotope (Figure 3, regions 0, 2, 3) then there must be at
least one decision boundary passing through the orthotope.
In this case the orthotope is labeled as “uncertain” and the
process is repeated. With every subdivision a depth counter
is increased. The subdivision and labeling steps are repeated
until all orthotopes can be labeled or the depth counter reaches

a predefined maximal depth.
During each division step all the created regions are added

to a tree called the hierarchy tree. The hierarchy tree is defined
by three things:

• The maximal depth of the tree
• Dimensionality of the feature space: Determines how

much the tree branches
• Structure of the feature space: Determines the structure

of the tree

Every node in the tree represents a region in the feature
space. Whenever a node is split 2D children are created, each
representing one orthotope in the feature space. These 2D new
children are added to the respective node in the tree. The
orthotopes of all the direct children of a node always combine
to the nodes orthotope. The hierarchy tree starts with the
root node which represents the whole feature space. Internal
nodes of the tree are orthotopes that are divided further into
smaller orthotopes, leafs are final orthotopes that aren’t divided
anymore. Between these leafs the search graph is spanned in
the next step. Each node is numbered by a number between 0
and 2D−1. The numbers are assigned in such a way that their
binary representation represent the corners of a D-dimensional
hypercube. This binary representation is important for the
creation of the search graph in section III-B.

This approach can be naturally adapted to only a region of
the feature space. The only thing that has to change is the root
node. If the orthotope of the root node only comprises a part
of the feature space than only this part is mapped.

B. Building the Search Graph

In order to keep track of all orthotopes and search for
counterfactuals two graphs are created. The first one is the
already mentioned hierarchy tree which is created during the
division and labeling steps. The second graph is the search
graph which spans over all the leafs of the hierarchy tree. It
connects orthotopes to enable the search for counterfactuals
in neighboring orthotopes. The algorithm implemented here
connects all orthotopes with a common border. Some steps of
the creation of the search graph for the division created in the
previous example can be seen in Figure 4

We are only interested in the neighbors of the leafs of the
hierarchy tree because higher nodes only a summarization of
the leafs. If, like before, the feature space has a dimensionality
of D our orthotope has at least 2D neighbors, two in each
direction, except for orthotopes on the border of the feature
space. To be more efficient we only look for the neighbors in
the positive direction of each dimension and add edges in both
ways. During the division steps all regions are numbered with
binary numbers These numbers of the nodes in the hierarchy
tree are used to calculate neighboring nodes. The binary
representation of all the direct children of a node can be seen
as the corners of a D-dimensional hyper-cube. In the feature
space each corner of the hyper-cube is analog to an orthotope.
A property of such a hyper-cube also known as a hamming
cube is that adjacent corners have a hamming distance of
1. Therefore adjacent orthotopes in the feature space can be

5

Fig. 4. The creation of the search graph

found by their hamming distance. This is important for the
calculation of the edges in the search graph.

For each node the search for neighbors is conducted sepa-
rately for each dimension of the feature space. In the following
we name the currently searched dimension d. There are three
possibilities for the border between the current node and its
neighbors in each dimension: the border can lie inside a
common parent, it can be outside of the current nodes parent
or it can be the border of the feature space. An example for
every case is depicted in figure 5. For each case the figure
shows a one-dimensional feature space on the bottom and the

Fig. 5. The three cases in the search for neighbors

corresponding hierarchy tree above. Red marks the currently
regarded node and blue the path the algorithm takes through
the tree. The algorithm for the search for neighbors is outlined
in algorithm 1. This function search neighbors() is executed
for every node and every dimension. Case 1 is rather trivial to
check, which is done in line 3. Due to the binary numbering
the neighbor in this case is the node in the same parent with the
binary digit of the currently regarded dimension flipped. In the
other two cases higher parents have to be traversed which is
done in function neighbor in higher parent(). In any case
if a neighboring node was found it doesn’t have to be a leaf.
In this case the algorithm has to find the children of the found
node that are on the border of interest. This is done by the
function nodes on border(). The generate candidates()
function in line 41 generates these children which are of the
form:

[0.1]D−dim−10[0, 1]dim

Where D is the dimensionality of the feature space and dim
the currently regarded dimension.

As described earlier this search is only conducted in one
direction of every dimension. This means that all edges have
to be added bidirectionally. The process is repeated for every
dimension and every leaf of the hierarchy tree to build the
complete search graph.

C. Counterfactual Explanations

To get a counterfactual explanation for a data point the
hierarchy tree is used to find the orthotope in which the data
point lies and the search graph is used to find one or multiple
closest orthotopes with a different label. If a orthorope has a
different label it has to contain data points with different labels

6

Algorithm 1 Algorithm for searching neighboring nodes
1: function SEARCH NEIGHBORS(node, dim)
2: binary = binary digit(node, dim)
3: if binary == 0 then . case 1
4: n = node across border(node, dim)
5: else if binary == 1 then . case 2 or 3
6: n = NEIGHBOR IN HIGHER PARENT(node, dim)
7: end if
8: neighbors = NODES ON BORDER(n, dim) . find all

the nodes on the border
9: return neighbors

10: end function
11:
12: . find the neighbors if they are outside the current parent
13: function NEIGHBOR IN HIGHER PARENT(node, dim)
14: current = node.parent
15: path = [node]

. go up the tree until current and its neighbors lie
inside a common parent or the root is reached

16: if current 6= None then
17: if current.is root then return [] . case 3
18: else if binary digit(current, dim) == 0 then
19: current = node across border(current, dim)
20: break . case 2
21: end if
22: path.append(current)
23: current = current.parent
24: end if
25: . reverse the steps on the other side of the border
26: path.reverse()
27: for node in path do
28: if current.is leaf then return [current]
29: else
30: current = node across border(node, dim)
31: end if
32: end for
33: return current
34: end function
35:
36: . returns the node if it is a leaf or all the children of the

node that lie on the ”left” border of the specified dim
37: function NODES ON BORDER(node, dim)
38: if node.is leaf then return [node]
39: else
40: nodes = []
41: for n in generate candidates(dim) do
42: nodes.add(NODES ON BORDER(n, dim))
43: end for
44: end if
45: return nodes
46: end function

which are by definition counterfactuals. To find the orthotope
in which the data point lies the hierarchy tree is traversed.
Starting at the root node the child containing the data point
is calculated. To calculate the containing child the following
formula can be used:

d−1∑
i=0

2i ·
sign(xi−widthi

2) + 1

2

Where x i is the coordinate of the data point and width i
the width of the current orthotope in the i-th dimension. This
returns the binary number of the child in which the current data
point lies. Once the correct child node if found it is entered
and the same process is repeated until a leaf is reached. The
orthotope represented by this leaf contains the data point. Once
the correct orthotope is found the class of the data point is
compared to the label of the orthotope. The classes can be
different because the label of an orthotope is determined only
by a sample of points inside. So the label of the orthotope can
be a different class or “uncertain” because the maximal depth
of the tree was reached during the division process. In both
cases there is a counterfactual in this orthotope.

If the label of the data point and the orthotope are the
same the search graph is used to find the closest orthotopes
with different labels. A search algorithm similar to Dijkstra’s
algorithm is used for the search. Starting at the initial orthotope
all its neighbors in the search graph are added to a list This
list is then sorted by the distance of the data point to the
respective orthotopes. The list is expanded by the neighbors
of the closest orthotope until the first orthotope in the list has
a different label. It is important to use a distance metric in the
feature space to measure the distance between the data point
and orthotopes as the distance in the search graph is not very
representative of the real distance in the feature space. The
framework is agnostic to the used distance metric. For all the
experiments conducted in later sections the euclidean distance
over normalized features was used. A better option may be the
weighted euclidean distance to represent the different difficulty
of changing different features this is however out of the scope
of this work.

Now counterfactuals have to be found in the returned
orthotopes. The simplest way is to use the points used earlier
to label the orthotopes. Because the label of the orthotopes
is different than the label of the factual there is at least one
point from a different class in each orthotope that can be used
as a counterfactual. Afterwards a binary search between the
factual and counterfactual can be conducted to find a closer
counterfactual. The binary search searches on the line between
the factual and counterfactual to find the counterfactual with
the smallest distance to the factual.

The search algorithm can also be used to find multiple
diverse explanations. In this case the search is continued until
a desired number of orthotopes is found. From each orthotope
one or multiple counterfactuals can be chosen as before.
Using multiple orthotope results in more diverse explanations.
Alternatively any literature procedure, like the optimization
approach by Wachter et al. [4] can be used and constrained to
the found region.

7

D. Global Explanations

In addition to counterfactual explanations the global expla-
nation framework can also provide global explanations for the
machine learning model. Two forms of global explanations can
be generated. The first form of global explanations are created
with submodular pick[3] which chooses instances from the
feature space that best explain the model. These instances are
presented together with a counterfactual explanation as the first
form of the global explanation. Additionally visualizations of
the feature space can be used as global explanations. They are
created by visualizing the regions in the feature space created
during the division steps of the global explanation framework.
These visualizations show a two-dimensional cut through the
feature space where the decisions of the model in dependence
of two variables can be seen. Regions from different classes
are shown in different colors to let the user see where the
model makes which decisions. An example can be seen in
Figure 6.

E. Presenting Results and Explanations in Natural Language

Once explanations are generated they have to be displayed
to the user. Counterfactuals can be displayed in tabular form
or in natural language. Additionally different two-dimensional
representations of the feature space with the labeled re-
gions from the global approach can be shown. In the two-
dimensional representations the different orthotopes can be
shown in different colors to see what decisions the model
makes in which regions.

One big advantage of counterfactual explanations is that
they can be expressed in natural language which makes
them easily understandable even for laypersons. The global
framework can create such sentences in natural language for
the found counterfactuals. Explanations presented in this way
are easy to generate and can be understood by everyone. The
sentences can be created using simple string substitution. This
makes the creation of the sentences very easy and extensible.
Here are some examples generated with predefined templates:
• The prediction for the data point income : 5000, age :

25, credit : 11000 is rejected. If the data point had been
income : 6000, age : 25, credit : 10000 the prediction
would have been accepted.

• In order to change the prediction from rejected to
accepted you have to apply these changes: income +
1000, credit− 1000.

• To achieve the desired prediction of accepted the features
income+ 1000, credit− 1000 have to change.

• Your request has been classified as rejected. To change
the prediction to accepted these values have to change:
income+ 1000, credit− 1000.

These generated sentences can be used for local counter-
factual explanations and the first form of global explanations
described in section III-D. In addition to this visualizations
of the mapped feature space can be shown to the user.
The visualizations are easy to understand and show the user
two complete dimensions of the feature space. For feature
spaces with more than two dimensions only a cut through
the feature space can be shown. This means that some values

Fig. 6. A 2D Visualization of a feature space

TABLE I
DATASETS

Dataset Reference Dimensionality
Adult [12] 14

Moons [13] 3
Titanic [14] 7

Transfusion [15] 5
Wine [16] 13

have to be fixed. These values are then listed in the title
of the visualization. These visualizations can serve different
purposes. They can be used in a more local form by visualizing
the surroundings of a specific instance to better understand
the models behavior around this instance. To serve as a
global explanation visualizations at different points can be
used to give the user a representation of the feature space
as a whole. The visualizations are generated by showing the
regions generated in the divide and label steps of the global
explanation framework in a color representing their label. An
example can be seen in figure 6. It shows the feature space of a
two-dimensional two-class classification problem. Each leaf of
the hierarchy tree is shown in the plot and colored according
to its label. The unlabeled regions, in which instances from
both classes were found, are colored purple to make a visually
smooth transition.

IV. EVALUATION

In this chapter the work presented in the previous sections
is evaluated. The datasets used in the experiments are listed
in table I. A model was trained for each dataset and explained
using different methods.

The method of finding counterfactuals with the global ex-
planation framework is compared to other methods for finding
counterfactuals. In section IV-A the different methods are com-
pared in terms of the distances from the found counterfactuals
to their factuals. In section IV-B the methods are compared
in terms of the calculation time needed in order to find a
counterfactual.

8

TABLE II
GLOBAL EXPLANATION FRAMEWORK (GEF) VS. WACHTER: DISTANCE

(SAMPLING POINTS: 10)

Dataset GEF WachterDepth Distance

Adult
2 2.19

0.593 -
4 -

Moons
2 0.81

0.543 0.71
4 0.62

Titanic
2 1.69

0.753 1.54
4 1.22

Transfusion
2 1.36

1.233 1.28
4 1.20

Wine
2 2.38

1.813 -
4 -

A. Distance
Here counterfactuals from the global explanation framework

are compared to counterfactuals found using other methods.
The methods are compared in terms of the distance between
the factuals the their respective counterfactuals. The euclidean
distance over normalized features is used as the norm for deter-
mining the distance. For each dataset multiple hierarchy trees
with different maximal depths are created and compared. In all
the tests 10 randomly sampled points are used to determine
a regions label. Some rows in the table are empty because
the calculation time needed to set up the graphs exceeded one
hour. The distances are compared to the optimization approach
by Wachter et al.[4]. The results can be seen in table II.

The distances decrease with an increasing depth of the
hierarchy tree. This was expected because a deeper hierarchy
tree contains more regions which results in a finer division.
This means that the feature space can be mapped in more
detail, which in turn results in a more accurate representation
in which better counterfactuals can be found.

It can also be seen that the counterfactuals found by the
global explanation framework mostly have greater distances
from their factuals than the ones found by the other approach.
The distance between the factual and its counterfactual expla-
nation is a measure of how much an instance has to be changed
to achieve the desired prediction. Explanations with a greater
distance are still valid explanations they may however be less
relevant because they require more change to reach the desired
result.

B. Performance
The next metric under which the counterfactual search of

the global explanation frameworks is evaluated is performance.
The performance of different models is measured by the calcu-
lation time needed to find counterfactuals. For the graph search
multiple measurements are again conducted with different
maximal depths of the hierarchy tree. Some rows in the table
are again empty because the calculation time needed to set up
the graphs exceeded one hour.

The results show that the setup time increases very rapidly
with the depth of the hierarchy tree and even more rapidly

with the dimensionality of the feature space. The reason is
that the depth of the hierarchy tree as well as the dimen-
sionality, increase the number of created nodes exponentially.
This makes the global explanation framework less useful for
problems with more than about 15 features.

The calculation time for counterfactuals on the other hand
is much lower than the time needed by the other approach.
The setup has to be done only once for a specific feature
space. Afterwards the graphs can be stored and any number
of counterfactuals can be calculated. This means that the
global explanation framework could be used in cases where
the calculation time during an execution is a bigger concern
than the initial setup time.

C. Results

The tests done in this section show that the global ex-
planation framework has problems with higher-dimensional
feature spaces. The time needed to build the graphs goes
up exponentially with the number of dimensions because the
number of nodes in the graphs grows exponentially. Section
VI-A shows some possible solutions to this problem. However
the setup has to be executed only once to create the graphs.
Afterwards the created search graph can be used to find as
many counterfactuals as needed. The time needed to search
counterfactuals in the graph is much smaller than the time
needed by the approach from Wachter et al. The presented
framework makes a trade-off between a longer setup time and
a much smaller calculation time per counterfactual.

The distances between factuals and counterfactuals de-
creases with increasing depth of the hierarchy tree. This is
because a deeper hierarchy tree means more divisions which
in turn means a more precise mapping of the feature space.

V. RELATED WORK

Burkart et al.[17] propose a framework to generate de-
cision boundary centered explanations which come in form
of surrogate models and counterfactuals. The goal is to find
the local decision boundary for a given point and create a
representation of the boundary with a simpler model. The
simpler model enables the user to understand the decision
made by the model in this area. The framework consists of
five phases. Suggested implementations are presented for every
phase however the framework itself is agnostic to changes in
every phase. In the first phase an initial counterfactual has to
be found. This can be done with any method found in the
literature, the method described in the paper is an adaption
of the optimization approach by Wachter et al.[4]. The goal
of the second phase is to find support points which are other
counterfactuals that are close to the same decision boundary.
Afterwards an implicit representation of the decision boundary
is created. The points found in the previous phase are all
counterfactuals so the decision boundary passes between each
of them and the factual. For each point a binary search is
conducted on the line between it and the factual to find the
respective border touchpoint which, as the name suggests, is
a point that lies on the decision boundary. In phase 4 the
surrogate model is trained. To do so more points around

9

TABLE III
GLOBAL EXPLANATION FRAMEWORK VS. WACHTER: CALCULATION TIME (SAMPLING POINTS: 10)

Dataset Dimensions Global Explanation Framework WachterDepth Setup Time Calculation Time

Adult 14
2 1001 0.0038

6.913 - -
4 - -

Moons 2
2 0.042 0.0007

0.523 0.064 0.0009
4 0.102 0.0008

Titanic 6
2 9.97 0.0014

3.783 209 0.0040
4 11934 0.0211

Transfusion 4
2 0.305 0.0008

2.903 1.21 0.0026
4 11.26 0.0056

Wine 13
2 386 0.0904

6.963 - -
4 - -

the border touchpoints are sampled. With these points the
surrogate model can be trained. The surrogate model is chosen
from a class of models by the loss to the original model. It
is deliberately kept simple by constraining its complexity. In
the last phase the results are presented. There is a special
focus on three main aspects to make the approach as accessible
as possible: understandability, actionability and simulatability.
For understandability the reasons for the classification of the
instance should be made clear. Feature importance, using for
example LIME[3], is a good way to convey understandability.
For actionability the user has to receive advice that can be
implemented. This advice is given by the counterfactuals as
they show changes to the instances that can be applied to
change the classification. The last aspect of the explanation is
simulatability which means that a user gets information that
allows him to understand or simulate the decision process.
This information is given in the form of the surrogate model.
The constraints put on the model keep it simple and therefore
make it understandable. Decision trees are especially useful for
this task. The framework presented by Burkart et al. is similar
to this work in so far as it also builds on counterfactuals and
augments them with other forms of explanations. The global
explanation framework proposed in this paper accelerates the
search for counterfactuals and can generate visualization of
the whole feature space.

Goyal et al.[7] developed a system to generate coun-
terfactual visual explanations which apply the concept of
counterfactuals to images. In an image I that is classified
as class c they try to find a minimal number of regions
that need to change in order to make the model predict a
desired class c’. The regions to change are swapped from
a distractor image I’ that is already classified as c’. Spacial
feature maps from a convolutional neural network are used
as the exchange regions to make this approach feasible. The
authors emphasize the usefulness of visual explanations for
machine teaching. They claim that visual explanations can
aid humans in learning image classification. To demonstrate
this they conducted a user study in which humans learn to
distinguish different bird species and are shown important
regions for the classification if they make a mistake. They

find that visual explanations help the subjects in learning and
improve the test accuracy. The global explanation framework
also generates visual explanations which are however separate
from the generated counterfactual explanations.

Grath et al.[18] contributed two new concepts to the state
of the art, namely positive counterfactuals and weighted
counterfactuals. Positive counterfactuals are counterfactual
explanations that should explain a desired outcome like an
accepted credit application in contrast to explaining only
negative predictions. Because they are counterfactuals they can
be generated the same way. The authors claim that users can
gain valuable information from these explanations. They are
shown to the users as tolerances that tell them, assuming that
all the other values stay the same, how much each value can
change in order to keep the desired prediction. This could
for example let the user make informed financial decisions in
the future. Positive counterfactuals can also be generated with
the global explanation framework. Weighted counterfactuals
assign a weight to each feature that should represent the
features ability to change. The idea has similarities to the
approach by Fernandez et al.[19] but utilizes the approach
from Wachter et al.[4] to generate the counterfactuals. They
adapt the distance function as follows to incorporate the
weight:

d2(x, x
′) =

p∑
j=1

|xj − x′j |
MADj

θj (1)

The value of θj determines how much it costs to change the
j-th feature. A bigger θj has the effect that other instances
in the j-th direction get assigned a greater distance. This
penalizes the change of the feature j and therefore makes it
more likely to retain the current value. If θj is smaller the
effect is reversed. The framework presented in this paper can
generate counterfactuals with different distance metrics so it
would be possible to generate weighted counterfactuals with
the metric from equation 1.

An additional challenge of counterfactuals to keep in mind
is that they may explain unwanted artifacts of the classifier
that are not part of the training data. Laugel et al.[20] define
what it means for a counterfactual to be justified and provide

10

an algorithm that checks the justification of counterfactuals.
They define that a counterfactual is justified if there exists a
continuous path between the counterfactual and an instance
from the training data that is classified in the same class.
Every point on the path that connects the two instances also
has to be classified as the same class. This should ensure that
the counterfactual is not part of an artifact of the classifier
that is represented in the training data. The global explanation
framework searches counterfactuals in an approximation of the
feature space. This could help to reduce unjustified counter-
factuals because small artifacts will not be represented in the
approximation.

VI. CONCLUSION

This paper presented a new approaches that tries to over-
come a big problem of counterfactual explanations, their
locality. Three types of explanations can be generated by the
presented framework: First instances picked by submodular
pick[3] and their counterfactual explanations are used as global
explanations to give an first overview of the models decisions.
Secondly visualizations of two-dimensional cuts through the
feature space can be created which serve as an explanation
of the models decisions in dependence of two features. Lastly
the framework allows a quick search for counterfactual ex-
planations for individual instances. These three parts give the
user an understanding of the feature space as a whole as well
as giving the ability to examine specific instances or regions
more deeply.

The counterfactual explanations generated by the global
explanation framework were compared to counterfactuals gen-
erated using an optimization approach by Wachter et al.[4].
The global explanation framework needs a longer setup time
to create the graphs used to generate the explanations but once
this is done the search for counterfactuals is much faster than
existing approaches. The approach by Wachter et al. however
generates in most cases counterfactuals with a smaller distance
to their factual.

A. Future Work

The global explanation framework was developed as a
framework with the ability to extend it in mind. The processing
of the feature space consists of three major steps which are all
implemented as interfaces. The feature space is hierarchically
divided into regions of instances which ideally all belong to
the same class. The regions are labeled during the division
process and at the end a search graph is build over these
regions that is used to generate explanations. Because the three
steps are implemented as interfaces the algorithms presented
here can be exchanged with other ones. This leaves room for
improvements of the framework.

The evaluation discovered that a high number of dimensions
poses a challenge for the global explanation framework. The
reason is that the proposed division algorithm splits each re-
gion once along each dimension. This results in an exponential
growth in operations to create the graphs. One solution for this
problem could be to be more selective about the dimensions
along which splits are performed. Dimensions with protected

attributes could be omitted by the division algorithm which
would have the added benefit of the respective features being
unchanged in the generated counterfactuals. Alternatively fea-
ture importance could be calculated and less important features
could be divided less or omitted completely. A reduction
of the dimensions would most likely result in better, more
relevant explanations and would reduce the computation time
because less operations are performed. Another way could be
to parallelize the division and labeling steps. This should be
easily achievable because once split the different regions are
completely independent from each other.

It could also be possible to improve the counterfactuals
found by the framework. The division algorithm presented
here splits the regions exactly in half along each dimen-
sion. In addition to omitting unchangeable or less important
dimensions the splits could be performed at more strategic
positions. Divisions closer to a decision boundary could for
example result in a more precise mapping of the feature
space. Another improvement could be weights on the edges
of the search graph or a different distance metric in the search
algorithm. For example the metric by Grath et al.[18] in
equation 1 or the weighted euclidean distance. This could
incentivise the search algorithm to search preferably along
certain dimensions. Harder to change features could get a
higher cost making them less attractive in the search for
counterfactuals. This could be used to reflect user preferences
or keep some features unchanged by giving them an infinite
cost. These changes would make the generated explanations
more relevant to the user or could speed up the search.

ACKNOWLEDGMENT

This work was supported by the Competence Center Karl-
sruhe for AI Systems Engineering (CC-KING, https://www.ai-
engineering.eu) sponsored by the Ministry of Economic Af-
fairs, Labour and Tourism Baden-Württemberg.

REFERENCES

[1] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explain-
able artificial intelligence: Understanding, visualizing and interpreting
deep learning models. 2017.

[2] Alex A Freitas. Comprehensible classification models: a position paper.
ACM SIGKDD explorations newsletter, 15(1):1–10, 2014.

[3] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why
should i trust you?” explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–1144, 2016.

[4] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual
explanations without opening the black box: Automated decisions and
the gdpr. Harv. JL & Tech., 31:841, 2017.

[5] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267:1–38, 2019.

[6] D. Knowles, Royal Institute of Philosophy, Royal Institute of Philosophy
Conference on Explanation, University of Glasgow) its Limits (1989,
and Royal Institute of Philosophy. Conference. Explanation and Its
Limits. Landmarks of World Literature. Cambridge University Press,
1990.

[7] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan
Lee. Counterfactual visual explanations. In International Conference on
Machine Learning, pages 2376–2384. PMLR, 2019.

[8] Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser,
Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcı́a,
Sergio Gil-López, Daniel Molina, Richard Benjamins, et al. Explainable
artificial intelligence (xai): Concepts, taxonomies, opportunities and
challenges toward responsible ai. Information Fusion, 58:82–115, 2020.

11

[9] Christoph Molnar. Interpretable Machine Learning. 2019. https:
//christophm.github.io/interpretable-ml-book/.

[10] Council of European Union. Regulation on the protection of natural
persons with regard to the processing of personal data and on the free
movement of such data, and repealing directive 95/46/ec (data protection
directive), 2016.
https://gdpr-info.eu/.

[11] Kacper Sokol and Peter A Flach. Counterfactual explanations of machine
learning predictions: opportunities and challenges for ai safety. In
SafeAI@ AAAI, 2019.

[12] Dheeru Dua and Casey Graff. UCI machine learning repository: Adult
dataset, 1996. https://archive.ics.uci.edu/ml/datasets/Adult.

[13] scikit learn. Moons dataset. https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make moons.html.

[14] Ben Hamner Anthony Goldbloom. Kaggle: Titanic dataset. https://www.
kaggle.com/c/titanic.

[15] Dheeru Dua and Casey Graff. UCI machine learning repository: Blood
transfusion service center dataset, 2008. https://archive.ics.uci.edu/ml/
datasets/Blood+Transfusion+Service+Center.

[16] Dheeru Dua and Casey Graff. UCI machine learning repository: Wine
dataset, 1991. https://archive.ics.uci.edu/ml/datasets/wine.

[17] Nadia Burkart, Maximilian Franz, and Marco F Huber. Explanation
framework for intrusion detection. In Machine Learning for Cyber
Physical Systems, pages 83–91. Springer Vieweg, Berlin, Heidelberg,
2021.

[18] Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod
Kamiab, Zhao Shen, and Freddy Lecue. Interpretable credit application
predictions with counterfactual explanations. In NIPS 2018-Workshop on
Challenges and Opportunities for AI in Financial Services: the Impact
of Fairness, Explainability, Accuracy, and Privacy, 2018.

[19] Carlos Fernandez, Foster Provost, and Xintian Han. Counterfactual
explanations for data-driven decisions. 2019.

[20] Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Re-
nard, and Marcin Detyniecki. The dangers of post-hoc interpretability:
Unjustified counterfactual explanations. In Twenty-Eighth International
Joint Conference on Artificial Intelligence {IJCAI-19}, pages 2801–
2807. International Joint Conferences on Artificial Intelligence Orga-
nization, 2019.

