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Abstract

The field of Explainable Artificial Intelligence (XAI) tries to make learned models more
understandable. One type of explanation for such models are counterfactual explanations.
Counterfactual explanations explain the decision for a specific instance, the factual, by pro-
viding a similar instance which leads to a different decision, the counterfactual. In this
work a new approaches around the idea of counterfactuals was developed. It generates a
data structure over the feature space of a classification problem to accelerate the search for
counterfactuals and augments them with global explanations. The approach maps the feature
space by hierarchically dividing it into regions which belong to the same class. It is applicable
in any casewhere predictions can be generated for input data, evenwithout direct access to the
model. The framework works well for lower-dimensional problems but becomes unpractical
due to high computation times at around 12 to 15 dimensions.

Keywords: XAI, Counterfactual Explanations, Global Explanations.

1. INTRODUCTION

Machine learning and Artificial Intelligence have become a hot topic in recent years. Learning
models have achieved unprecedented results in many tasks such as image recognition, language
translation and a variety of classification tasks. However there is still some hesitance in the adoption
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of learning systems, especially in critical areas such as medicine or finance. One reason that hinders
the deployment of machine learning models in such areas is a lack of trust. This distrust is caused
in part by missing transparency of learning models. Because of their complexity most models,
especially deep neural networks, can not explain their decisions and even experts are unable to
understand the model’s inner workings. The newly emerging field of Explainable Artificial Intelli-
gence or XAI [1], tries to overcome this problem by making learned models more understandable.
A variety of different approaches for explaining learned decisions have been proposed. Some try to
explain the model as a whole or completely replace it with an inherently understandable model, like
for example a decision tree [2]. Other approaches try to steer the model during the learning process
to a more explainable state or focus on explaining single predictions for example by highlighting
important features [3] or contrasting them to other decisions [4]. One of the latter type of explanation
are counterfactuals.

In psychology counterfactual thinking refers to the imagination of an alternative reality that differs to
the actual reality in one or multiple specific aspects [5]. In machine learning counterfactuals explain
a models decision for a specific instance, the factual, by providing a similar instance which leads
to a different decision, the counterfactual. By comparing the factual and counterfactual a user can
see the differences that caused the model to make another decision. The factual and counterfactual
should ideally lie close to each other in the feature space. In this case the counterfactual represents
the minimum change required to alter the models prediction.

Counterfactual explanations have many advantages. They can be generated without access to train-
ing data and without any information of the inner working of the models they explain. The only
information needed are the inputs and outputs of the model. This makes them applicable to any
model, even non-learning ones. Counterfactual explanations are also intuitively understandable
and can be expressed in natural language. Because no previous knowledge is required they are ideal
for end users that are unfamiliar with computer science and machine learning. Counterfactuals have
additional advantages in terms of privacy.

The explanation reveals no additional information, it consists only of an instance and its prediction.
And because no direct access to the model is required no information about its inner workings are re-
vealed, which may be a trade secret. However there are also some disadvantages to counterfactuals.
For any instance that should be explained there usually exist multiple counterfactual explanations
which requires additional work by developers to deal with the ambiguity. A counterfactual expla-
nation is also local which means that it only explains the prediction of a single instance and can
usually not be generalized to other instances.

To tackle the issue of locality we propose a new approach called the global explanation framework
which tries to give counterfactuals amore global scope. It would be desirable tomake counterfactual
explanations more global, meaning that they explain multiple instances or ideally the whole feature
space. To achieve this the global explanation framework maps the feature space and builds a
representation of it in form of two graphs. In these graphs counterfactuals can be foundmore quickly
and can be augmented with global explanations of the feature space. These global explanations are
visualizations of the feature space and instances that are representative of the models decisions
generated with submodular pick [3].

This paper is structured as follows: Section 2 explains the basics of XAI and counterfactual ex-
planations followed by some related work in section 3. Afterwards, section 4 covers the global
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explanation framework. Section 5 presents the insights gained by comparing the new approach to
existing ones. The last section 6 summarizes everything as well as giving an outlook on possible
future work.

2. COUNTERFACTUAL EXPLANATIONS

The word counterfactual consists of two parts: counter and factual so the literal meaning is some-
thing contrary to the facts. Humans engage in counterfactual thinking in their everyday life when
they think about things that could have happened in the past that would have lead to a different
present or future. For example: If the weather had been sunny instead of rainy, I would have gone
for a walk instead of staying at home. Counterfactuals can be expressed in a more formal form as
follows: If X had been X’, Y would have been Y’. The factual X has the consequence Y, however if
X changes to the counterfactual X’ the consequence changes to Y’. In the example above X is the
rainy and X’ the sunny weather. The rain (X ) lead to the present state of staying at home (Y ) whereas
the sun (X’) would have resulted in going for a walk (Y’). Some psychologists and philosophers like
Lipton [6] argue that, when people ask why a certain event happened they actually ask why this
event happened and not some other one. In other words: If somebody asks “Why Y?” the implicit
question they actually want to get answered is “Why Y and not Y’?”. This kind of question asks for
a counterfactual explanation.

If counterfactuals are used as an explanation for machine learning systems X and X’ are instances
in the input space of a model while Y and Y’ are outputs or predictions made by the model. The
instance that should be explained X was classified as belonging to the class Y. The counterfactual
explanation X’ is an instance that is classified as belonging to the desired class Y’. Thus the problem
of finding a counterfactual explanation turns into a search problem in the feature space with the
goal of finding an instance in close proximity that leads to the prediction of the desired class. The
difference between the two instances X and X’ explains which requirements were not met by X to
achieve the desired prediction.

A counterfactual explanation can be presented either by itself, or as the difference from its factual to
highlight the changes responsible for the different classification. This can be done in either a tabular
or graphical form to quickly see the differences or in natural language to make the explanations
accessible to laypeople. Counterfactual explanations can also be used for image classification tasks
[7] in this case the presentation of the results can also be pictorial.

A counterfactual explanation is only valid for a single instance, the factual, and can not be gen-
eralized to other instances. This makes counterfactuals local explanations in contrast to global
explanations which explain multiple instances or the whole feature space. Because the explanation
comes in form of another instance from the feature space counterfactuals are also example based
explanations. Another property of counterfactuals is that they are model agnostic which means that
there is no knowledge of the decision process required, the only information needed to generate
the explanations are the inputs and corresponding outputs of a model. The fact that they can
be found with only access to the model without any further information is a strong advantage of
counterfactuals.
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For any instance that should be explained there are often multiple possible counterfactual expla-
nations. Every point in the feature space that is classified differently could theoretically be used
as a counterfactual explanation. However to be a viable explanation a counterfactual should be
relatively close to the instance it tries to explain. A closer counterfactual requires less changes to
the original instance and is therefore briefer, easier to understand and an overall better explanation.
Another important criterion is the actionability. If for example a credit application gets denied and
the explanation states that the applicant has to become 5 years younger in order to receive a credit
it would be a rather unpractical explanation.

Counterfactual explanations should take into account which features are mutable, like a credit
amount or duration, and which features are immutable, like an applicants sex, age or race. But
even if the distance between factual and counterfactual and its actionability are taken into account
it is still possible and often likely to find multiple equally suited counterfactuals. This poses a
challenge for developers trying to utilize counterfactual explanations. Should they present all the
counterfactuals that are found, which can lead to a better explanation but can also confuse the user,
or should they only pick one counterfactual which would result in a more precise explanation but
also requires some kind of rating. This is an open research question [8].

Counterfactuals have many advantages as explanations for a machine learning system. Because
counterfactual thinking is intuitive to humans and counterfactuals can be expressed formally as
well as in natural language they are especially useful as explanations for end users. Counterfactuals
are also rather easy to implement because they are model-agnostic which means that they can be
used on top of any prediction model. The models do not have to be learned, it can also be a rule
based system [9]. This makes them for example useful for prototyping or any modular situation
where the underlying model may be switched out. Because they are model-agnostic counterfactuals
have the additional advantage that they do not reveal any information about the underlying model
and data which is not accessible through the models predictions. So counterfactuals can for example
be used by a company interested in protecting trade secrets or customer data [9]. Counterfactuals
also satisfy the GDPRs [10] right to explanation. This combined with the previously mentioned
advantages makes them very useful to companies that need to satisfy the GDPR.

However counterfactuals also have some disadvantages. The results are usually ambiguous, mean-
ing that there are often multiple counterfactuals for any given data instance. This raises additional
challenges that need to be addressed. All the found counterfactuals can be presented to the user
to be as transparent as possible and leave the choice to the user. As shown by Sokol et al. [11]
this option should only be regarded with caution. Multiple counterfactuals reveal more information
which may enable malicious users to gain unwanted knowledge about a system. The other option
is to provide only chosen counterfactuals. This means that the found counterfactuals have to be
evaluated or scored by some kind of metric and may result in worse explanations. On the other
hand it might be impossible in some cases to find a counterfactual for a given instance that satisfies
all desired constraints. In this case some constraints like the distance have to be reduced or another
form of explanation has to be considered.
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3. GLOBAL EXPLANATION FRAMEWORK

Counterfactual explanations are local explanatnios, which means, that they only explain a single
instance in the feature space and can not be generalized to other instances. The approach described
in this section tries to tackle this problem by giving counterfactual explanations a more global scope.

The global explanation framework creates a data structure over an interesting part of the feature
space, which can encompass the whole feature space, with the goal of getting a representation of
that region and speeding up the process of finding counterfactuals. The whole approach is depicted
in FIGURE 1. It starts with a feature space given in the form of a classifier. The process has three
main steps: division, labeling and building a search graph. The first two steps: division and labeling
are iterated in order to map the feature space and create a representation of it. Afterwards a search
graph is created on this representation.

The algorithms for all three phases are implemented in interfaces and can therefore be easily changed.
The implemented division algorithm splits every region in half along each dimension. For labeling
an algorithm that samples a number of random points from a region and passes them to the classifier

Figure 1: The global explanation framework. First the feature space is divided and labeled
afterwards a search graph is created.
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was implemented. If all the points belong to the same class the region can be labeled as belonging
to this class, otherwise it is labeled as “uncertain” and divided further in the next iteration. The
algorithm that creates the search graph connects each node to all the nodes it shares a border with.
These three implementations are presented in more detail in the following.

3.1 Division and Labeling

The goal of the first two steps which are depicted in FIGURE 1 is to hierarchically divide the feature
space into areas belonging to the same class. Alongside the division a hierarchy tree is created to
keep track of all the divisions. The hierarchy tree represents a parent child relation of all the regions
in the feature space. The trees root node represents the chosen region in the feature space which can
be the entire feature space. If a region gets divided, new children are added to the respective node.
The sum of all children always adds up to the same region as the parent. This process is depicted in
detail in FIGURE 2.

Figure 2: The feature space is divided hierarchically and a tree is used to keep track of the created
regions.

The divide algorithm implemented here splits regions in half along each dimension. At the be-
ginning the feature space gets divided by splitting it into two intervals of equal size along each
dimension. The initial division is shown in detail in FIGURE 3 step 1. After every dimension is
split the feature space is implicitly split into orthotopes. An orthotope is the Cartesian product of
intervals so the higher-dimensional analogue of a rectangle or cuboid. Because every dimension is
split in half there are 2D orthotopes created with every split where D is the dimensionality of the
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feature space. In a two-dimensional case the feature space is a two-dimensional orthotope, which
is a rectangle. So the feature space is divided into smaller and smaller rectangles, as shown in
FIGURE 2 and FIGURE 3.

Figure 3: The four steps of dividing and labeling a region.

Now the orthotopes have to be labeled. The implemented algorithm labels an orthotopes by ran-
domly sampling multiple data points in each orthotope and passing them to the black-box classifier
for classification. Another way of labeling could be to deterministically get the samples from some
kind of grid. FIGURE 3 shows a random sampling using six points in step 2. The sampled points
are then classified using the black-box classifier as shown in step 3. With the labeled points the
labels for the regions are inferred in step 4. If all the sampled data points inside an orthotope belong
to the same class (FIGURE 3, region 1) it can be assumed that there are no decision boundaries
in the orthotope and therefore all the data points in the orthotope belong to the same class. In this
case the orthotope is labeled as belonging to the respective class. If there are data points from
different classes inside the orthotope (FIGURE 3, regions 0, 2, 3) then there must be at least one
decision boundary passing through the orthotope. In this case the orthotope is labeled as “uncertain”
and the process is repeated. With every subdivision a depth counter is increased. The subdivision
and labeling steps are repeated until all orthotopes can be labeled or the depth counter reaches a
predefined maximal depth.

During each division step all the created regions are added to a tree called the hierarchy tree. The
hierarchy tree is defined by three things:

• The maximal depth of the tree

• Dimensionality of the feature space: Determines how much the tree branches

• Structure of the feature space: Determines the structure of the tree

Every node in the tree represents a region in the feature space. Whenever a node is split 2D children
are created, each representing one orthotope in the feature space. These 2D new children are added to
the respective node in the tree. The orthotopes of all the direct children of a node always combine to
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the nodes orthotope. The hierarchy tree starts with the root node which represents the whole feature
space. Internal nodes of the tree are orthotopes that are divided further into smaller orthotopes, leafs
are final orthotopes that aren’t divided anymore. Between these leafs the search graph is spanned in
the next step. Each node is numbered by a number between 0 and 2D−1. The numbers are assigned
in such a way that their binary representation represent the corners of a D-dimensional hypercube.
This binary representation is important for the creation of the search graph in section 4.2.

This approach can be naturally adapted to only a region of the feature space. The only thing that
has to change is the root node. If the orthotope of the root node only comprises a part of the feature
space than only this part is mapped.

3.2 Building the Search Graph

In order to keep track of all orthotopes and search for counterfactuals two graphs are created.
The first one is the already mentioned hierarchy tree which is created during the division and
labeling steps. The second graph is the search graph which spans over all the leafs of the hierarchy
tree. It connects orthotopes to enable the search for counterfactuals in neighboring orthotopes.
The algorithm implemented here connects all orthotopes with a common border. Some steps of
the creation of the search graph for the division created in the previous example can be seen in
FIGURE 4.

We are only interested in the neighbors of the leafs of the hierarchy tree because higher nodes
only a summarization of the leafs. If, like before, the feature space has a dimensionality of D our
orthotope has at least 2D neighbors, two in each direction, except for orthotopes on the border of the
feature space. To be more efficient we only look for the neighbors in the positive direction of each
dimension and add edges in both ways. During the division steps all regions are numbered with
binary numbers These numbers of the nodes in the hierarchy tree are used to calculate neighboring
nodes. The binary representation of all the direct children of a node can be seen as the corners of
a D-dimensional hyper-cube. In the feature space each corner of the hyper-cube is analog to an
orthotope. A property of such a hyper-cube also known as a hamming cube is that adjacent corners
have a hamming distance of 1. Therefore adjacent orthotopes in the feature space can be found by
their hamming distance. This is important for the calculation of the edges in the search graph.

For each node the search for neighbors is conducted separately for each dimension of the feature
space. In the followingwe name the currently searched dimension d. There are three possibilities for
the border between the current node and its neighbors in each dimension: the border can lie inside
a common parent, it can be outside of the current nodes parent or it can be the border of the feature
space. An example for every case is depicted in FIGURE 5. For each case the figure shows a one-
dimensional feature space on the bottom and the corresponding hierarchy tree above. Red marks the
currently regarded node and blue the path the algorithm takes through the tree. The algorithm for
the search for neighbors is outlined in algorithm 6. This function 𝑠𝑒𝑎𝑟𝑐ℎ_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠() is executed
for every node and every dimension.

Case 1 is rather trivial to check, which is done in line 3. Due to the binary numbering the neighbor
in this case is the node in the same parent with the binary digit of the currently regarded dimension
flipped. In the other two cases higher parents have to be traversed which is done in function
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Figure 4: The creation of the search graph

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑖𝑛_ℎ𝑖𝑔ℎ𝑒𝑟_𝑝𝑎𝑟𝑒𝑛𝑡 (). In any case if a neighboring node was found it doesn’t have to
be a leaf. In this case the algorithm has to find the children of the found node that are on the
border of interest. This is done by the function 𝑛𝑜𝑑𝑒𝑠_𝑜𝑛_𝑏𝑜𝑟𝑑𝑒𝑟 (). The 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠()
function in line 41 generates these children which are of the form:

[0.1]𝐷−𝑑𝑖𝑚−10[0, 1]𝑑𝑖𝑚

Where 𝐷 is the dimensionality of the feature space and 𝑑𝑖𝑚 the currently regarded dimension.
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Figure 5: The three cases in the search for neighbors

As described earlier this search is only conducted in one direction of every dimension. This means
that all edges have to be added bidirectionally. The process is repeated for every dimension and
every leaf of the hierarchy tree to build the complete search graph.

3.3 Counterfactual Explanations

To get a counterfactual explanation for a data point the hierarchy tree is used to find the orthotope
in which the data point lies and the search graph is used to find one or multiple closest orthotopes
with a different label.

If a orthorope has a different label it has to contain data points with different labels which are by
definition counterfactuals. To find the orthotope in which the data point lies the hierarchy tree is
traversed. Starting at the root node the child containing the data point is calculated. To calculate the
containing child the following formula can be used:

∑𝑑−1

𝑖=0
2𝑖 ·

𝑠𝑖𝑔𝑛
(
𝑥𝑖−𝑤𝑖𝑑𝑡ℎ𝑖

2

)
+ 1

2
Where x_i is the coordinate of the data point and width_i the width of the current orthotope in
the i-th dimension. This returns the binary number of the child in which the current data point
lies. Once the correct child node if found it is entered and the same process is repeated until a
leaf is reached. The orthotope represented by this leaf contains the data point. Once the correct
orthotope is found the class of the data point is compared to the label of the orthotope. The classes
can be different because the label of an orthotope is determined only by a sample of points inside.
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So the label of the orthotope can be a different class or “uncertain” because the maximal depth of the
tree was reached during the division process. In both cases there is a counterfactual in this orthotope.

Algorithm 1 Algorithm for searching neighboring nodes
1: function SEARCH_NEIGHBORS(node, dim)
2: binary = binary_digit(node, dim)
3: if binary == 0 then ⊲ case 1
4: n = node_across_border(node, dim)
5: else if binary == 1 then ⊲ case 2 or 3
6: n = NEIGHBOR_IN_HIGHER_PARENT(node, dim)
7: end if
8: neighbors = NODES_ON_BORDER(n, dim) ⊲ find all the nodes on the

border
9: return neighbors
10: end function
11:
12: ⊲ find the neighbors if they are outside the current parent
13: function NEIGHBOR_IN_HIGHER_PARENT(node, dim)
14: current = node.parent
15: path = [node]

⊲ go up the tree until current and its neighbors lie inside a common
parent or the root is reached

16: if current ≠ None then
17: if current.is_root then return [] ⊲ case 3
18: else if binary_digit(current, dim) == 0 then
19: current = node_across_border(current, dim)
20: break ⊲ case 2
21: end if
22: path.append(current)
23: current = current.parent
24: end if
25: ⊲ reverse the steps on the other side of the border
26: path.reverse()
27: for node in path do
28: if current.is_leaf then return [current]
29: else
30: current = node_across_border(node, dim)
31: end if
32: end for
33: return current
34: end function
35:
36: ⊲ returns the node if it is a leaf or all the children of the node that lie on

the ”left” border of the specified dim
37: function NODES_ON_BORDER(node, dim)
38: if node.is_leaf then return [node]
39: else
40: nodes = []
41: for n in generate_candidates(dim) do
42: nodes.add(NODES_ON_BORDER(n, dim))
43: end for
44: end if
45: return nodes
46: end function
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If the label of the data point and the orthotope are the same the search graph is used to find the
closest orthotopes with different labels. A search algorithm similar to Dijkstra’s algorithm is used
for the search. Starting at the initial orthotope all its neighbors in the search graph are added to a
list This list is then sorted by the distance of the data point to the respective orthotopes. The list is
expanded by the neighbors of the closest orthotope until the first orthotope in the list has a different
label. It is important to use a distance metric in the feature space to measure the distance between
the data point and orthotopes as the distance in the search graph is not very representative of the
real distance in the feature space. The framework is agnostic to the used distance metric. For all
the experiments conducted in later sections the euclidean distance over normalized features was
used. A better option may be the weighted euclidean distance to represent the different difficulty of
changing different features this is however out of the scope of this work.

Now counterfactuals have to be found in the returned orthotopes. The simplest way is to use the
points used earlier to label the orthotopes. Because the label of the orthotopes is different than the
label of the factual there is at least one point from a different class in each orthotope that can be
used as a counterfactual. Afterwards a binary search between the factual and counterfactual can be
conducted to find a closer counterfactual. The binary search searches on the line between the factual
and counterfactual to find the counterfactual with the smallest distance to the factual.

The search algorithm can also be used to find multiple diverse explanations. In this case the
search is continued until a desired number of orthotopes is found. From each orthotope one or
multiple counterfactuals can be chosen as before. Using multiple orthotope results in more diverse
explanations. Alternatively any literature procedure, like the optimization approach by Wachter et
al. [4] can be used and constrained to the found region.

3.4 Global Explanations

In addition to counterfactual explanations the global explanation framework can also provide global
explanations for the machine learning model. Two forms of global explanations can be generated.
The first form of global explanations are created with submodular pick [3] which chooses instances
from the feature space that best explain the model. These instances are presented together with a
counterfactual explanation as the first form of the global explanation. Additionally visualizations
of the feature space can be used as global explanations. They are created by visualizing the regions
in the feature space created during the division steps of the global explanation framework. These
visualizations show a two-dimensional cut through the feature space where the decisions of the
model in dependence of two variables can be seen. Regions from different classes are shown in
different colors to let the user see where the model makes which decisions. An example can be seen
in FIGURE 6.

3.5 Presenting Results and Explanations in Natural Language

Once explanations are generated they have to be displayed to the user. Counterfactuals can be
displayed in tabular form or in natural language. Additionally different two-dimensional represen-
tations of the feature space with the labeled regions from the global approach can be shown. In
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the two-dimensional representations the different orthotopes can be shown in different colors to see
what decisions the model makes in which regions.

One big advantage of counterfactual explanations is that they can be expressed in natural language
which makes them easily understandable even for laypersons. The global framework can create
such sentences in natural language for the found counterfactuals. Explanations presented in this
way are easy to generate and can be understood by everyone. The sentences can be created using
simple string substitution. This makes the creation of the sentences very easy and extensible. Here
are some examples generated with predefined templates:

• The prediction for the data point 𝑖𝑛𝑐𝑜𝑚𝑒 : 5000, 𝑎𝑔𝑒 : 25, 𝑐𝑟𝑒𝑑𝑖𝑡 : 11000 is 𝑟𝑒 𝑗𝑒𝑐𝑡𝑒𝑑. If the
data point had been 𝑖𝑛𝑐𝑜𝑚𝑒 : 6000, 𝑎𝑔𝑒 : 25, 𝑐𝑟𝑒𝑑𝑖𝑡 : 10000 the prediction would have been
𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑.

• In order to change the prediction from 𝑟𝑒 𝑗𝑒𝑐𝑡𝑒𝑑 to 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 you have to apply these changes:
𝑖𝑛𝑐𝑜𝑚𝑒 + 1000, 𝑐𝑟𝑒𝑑𝑖𝑡 − 1000.

• To achieve the desired prediction of 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 the features 𝑖𝑛𝑐𝑜𝑚𝑒+1000, 𝑐𝑟𝑒𝑑𝑖𝑡−1000 have
to change.

• Your request has been classified as 𝑟𝑒 𝑗𝑒𝑐𝑡𝑒𝑑. To change the prediction to 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 these
values have to change: 𝑖𝑛𝑐𝑜𝑚𝑒 + 1000, 𝑐𝑟𝑒𝑑𝑖𝑡 − 1000.

Figure 6: A 2D Visualization of a feature space.

These generated sentences can be used for local counterfactual explanations and the first form of
global explanations described in section 4.4. In addition to this visualizations of the mapped feature
space can be shown to the user. The visualizations are easy to understand and show the user two
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complete dimensions of the feature space. For feature spaces with more than two dimensions only
a cut through the feature space can be shown. This means that some values have to be fixed. These
values are then listed in the title of the visualization. These visualizations can serve different pur-
poses. They can be used in a more local form by visualizing the surroundings of a specific instance
to better understand the models behavior around this instance. To serve as a global explanation
visualizations at different points can be used to give the user a representation of the feature space
as a whole. The visualizations are generated by showing the regions generated in the divide and
label steps of the global explanation framework in a color representing their label. An example
can be seen in FIGURE 7. It shows the feature space of a two-dimensional two-class classification
problem. Each leaf of the hierarchy tree is shown in the plot and colored according to its label. The
unlabeled regions, in which instances from both classes were found, are colored purple to make a
visually smooth transition [12-16].

4. EVALUATION

In this chapter the work presented in the previous sections is evaluated. The datasets used in the
experiments are listed in TABLE 1. A model was trained for each dataset and explained using
different methods.

Table 1: Datasets
Dataset Reference Dimensionality
Adult [12] 14
Moons [13] 3
Titanic [14] 7

Transfusion [15] 5
Wine [16] 13

The method of finding counterfactuals with the global explanation framework is compared to other
methods for finding counterfactuals. In section 5.1 the different methods are compared in terms
of the distances from the found counterfactuals to their factuals. In section 5.2 the methods are
compared in terms of the calculation time needed in order to find a counterfactual.

4.1 Distance

Here counterfactuals from the global explanation framework are compared to counterfactuals found
using other methods. The methods are compared in terms of the distance between the factuals the
their respective counterfactuals. The euclidean distance over normalized features is used as the norm
for determining the distance. For each dataset multiple hierarchy trees with differentmaximal depths
are created and compared. In all the tests 10 randomly sampled points are used to determine a regions
label. Some rows in the table are empty because the calculation time needed to set up the graphs
exceeded one hour. The distances are compared to the optimization approach by Wachter et al. [4].
The results can be seen in TABLE 2.
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Table 2: Global Explanation Framework (GEF) vs. Wachter: Distance (sampling points: 10).

Dataset GEF Wachter
Depth Distance

Adult 2 2.19 0.59
3 -
4 -

Moons 2 0.81 0.54
3 0.71
4 0.62

Titanic 2 1.69 0.75
3 1.54
4 1.22

Transfusion 2 1.36 1.23
3 1.28
4 1.2

Wine 2 2.38 1.81
3 -
4 -

The distances decrease with an increasing depth of the hierarchy tree. This was expected because
a deeper hierarchy tree contains more regions which results in a finer division. This means that the
feature space can be mapped in more detail, which in turn results in a more accurate representation
in which better counterfactuals can be found.

It can also be seen that the counterfactuals found by the global explanation framework mostly
have greater distances from their factuals than the ones found by the other approach. The distance
between the factual and its counterfactual explanation is a measure of how much an instance has
to be changed to achieve the desired prediction. Explanations with a greater distance are still valid
explanations they may however be less relevant because they require more change to reach the
desired result.

4.2 Performance

The next metric under which the counterfactual search of the global explanation frameworks is
evaluated is performance. The performance of different models is measured by the calculation time
needed to find counterfactuals. For the graph search multiple measurements are again conducted
with different maximal depths of the hierarchy tree. Some rows in the table are again empty because
the calculation time needed to set up the graphs exceeded one hour.

The results show that the setup time increases very rapidly with the depth of the hierarchy tree and
even more rapidly with the dimensionality of the feature space. The reason is that the depth of the
hierarchy tree as well as the dimensionality, increase the number of created nodes exponentially.

108



https://www.oajaiml.com/ | August-2021 MAXIMILIAN BECKER, ET AL.

This makes the global explanation framework less useful for problems with more than about 15
features.

The calculation time for counterfactuals on the other hand is much lower than the time needed by
the other approach. The setup has to be done only once for a specific feature space. Afterwards
the graphs can be stored and any number of counterfactuals can be calculated. This means that the
global explanation framework could be used in cases where the calculation time during an execution
is a bigger concern than the initial setup time.

4.3 Results

The tests done in this section show that the global explanation framework has problems with higher-
dimensional feature spaces. The time needed to build the graphs goes up exponentially with the
number of dimensions because the number of nodes in the graphs grows exponentially. Section 6.1
shows some possible solutions to this problem. However the setup has to be executed only once to
create the graphs. Afterwards the created search graph can be used to find as many counterfactuals
as needed. The time needed to search counterfactuals in the graph is much smaller than the time
needed by the approach from Wachter et al. The presented framework makes a trade-off between a
longer setup time and a much smaller calculation time per counterfactual.

The distances between factuals and counterfactuals decreases with increasing depth of the hierarchy
tree. This is because a deeper hierarchy tree means more divisions which in turn means a more
precise mapping of the feature space.

5. RELATEDWORK

Burkart et al. [17] propose a framework to generate decision boundary centered explanations which
come in form of surrogate models and counterfactuals. The goal is to find the local decision
boundary for a given point and create a representation of the boundary with a simpler model.
The simpler model enables the user to understand the decision made by the model in this area.
The framework consists of five phases. Suggested implementations are presented for every phase
however the framework itself is agnostic to changes in every phase. In the first phase an initial
counterfactual has to be found. This can be done with any method found in the literature, the method
described in the paper is an adaption of the optimization approach by Wachter et al. [4].

The goal of the second phase is to find support points which are other counterfactuals that are close
to the same decision boundary. Afterwards an implicit representation of the decision boundary is
created. The points found in the previous phase are all counterfactuals so the decision boundary
passes between each of them and the factual. For each point a binary search is conducted on the line
between it and the factual to find the respective border touchpoint which, as the name suggests, is
a point that lies on the decision boundary. In phase 4 the surrogate model is trained. To do so more
points around the border touchpoints are sampled. With these points the surrogate model can be
trained. The surrogate model is chosen from a class of models by the loss to the original model. It is
deliberately kept simple by constraining its complexity. In the last phase the results are presented.
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There is a special focus on three main aspects to make the approach as accessible as possible:
understandability, actionability and simulatability. For understandability the reasons for the classi-
fication of the instance should be made clear. Feature importance, using for example LIME [3], is
a good way to convey understandability. For actionability the user has to receive advice that can
be implemented. This advice is given by the counterfactuals as they show changes to the instances
that can be applied to change the classification. The last aspect of the explanation is simulatability
which means that a user gets information that allows him to understand or simulate the decision
process.

This information is given in the form of the surrogate model. The constraints put on the model keep
it simple and therefore make it understandable. Decision trees are especially useful for this task.
The framework presented by Burkart et al. is similar to this work in so far as it also builds on coun-
terfactuals and augments them with other forms of explanations. The global explanation framework
proposed in this paper accelerates the search for counterfactuals and can generate visualization of
the whole feature space.

Goyal et al. [7] developed a system to generate counterfactual visual explanations which apply the
concept of counterfactuals to images. In an image I that is classified as class c they try to find a
minimal number of regions that need to change in order to make the model predict a desired class
c’. The regions to change are swapped from a distractor image I’ that is already classified as c’.
Spacial feature maps from a convolutional neural network are used as the exchange regions to make
this approach feasible. The authors emphasize the usefulness of visual explanations for machine
teaching. They claim that visual explanations can aid humans in learning image classification. To
demonstrate this they conducted a user study in which humans learn to distinguish different bird
species and are shown important regions for the classification if they make a mistake. They find
that visual explanations help the subjects in learning and improve the test accuracy. The global
explanation framework also generates visual explanations which are however separate from the
generated counterfactual explanations, TABLE 3.

Grath et al. [18] contributed two new concepts to the state of the art, namely positive counterfactuals
and weighted counterfactuals. Positive counterfactuals are counterfactual explanations that should
explain a desired outcome like an accepted credit application in contrast to explaining only negative
predictions. Because they are counterfactuals they can be generated the same way.

The authors claim that users can gain valuable information from these explanations. They are shown
to the users as tolerances that tell them, assuming that all the other values stay the same, how much
each value can change in order to keep the desired prediction. This could for example let the user
make informed financial decisions in the future. Positive counterfactuals can also be generated
with the global explanation framework. Weighted counterfactuals assign a weight to each feature
that should represent the features ability to change. The idea has similarities to the approach by
Fernandez et al. [19] but utilizes the approach fromWachter et al. [4] to generate the counterfactuals.
They adapt the distance function as follows to incorporate the weight:

𝑑2(𝑥, 𝑥′) =
∑𝑝

𝑗=1

|𝑥 𝑗 − 𝑥′𝑗 |
MAD 𝑗

𝜃 𝑗 (1)

The value of 𝜃 𝑗 determines how much it costs to change the 𝑗-th feature. A bigger 𝜃 𝑗 has the effect
that other instances in the 𝑗-th direction get assigned a greater distance. This penalizes the change
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Table 3: Global Explanation Framework vs. Wachter: Calculation Time (sampling points: 10).

Dataset Dimensions Global Explanation Framework Wachter
Depth Setup Time Calculation Time

Adult 14 2 1001 0.0038 6.91
3 - -
4 - -

Moons 2 2 0.042 0.0007 0.52
3 0.064 0.0009
4 0.102 0.0008

Titanic 6 2 9.97 0.0014 3.78
3 209 0.004
4 11934 0.0211

Transfusion 4 2 0.305 0.0008 2.9
3 1.21 0.0026
4 11.26 0.0056

Wine 13 2 386 0.0904 6.96
3 - -
4 - -

of the feature 𝑗 and therefore makes it more likely to retain the current value. If 𝜃 𝑗 is smaller the
effect is reversed. The framework presented in this paper can generate counterfactuals with different
distance metrics so it would be possible to generate weighted counterfactuals with the metric from
equation 1.

An additional challenge of counterfactuals to keep in mind is that they may explain unwanted
artifacts of the classifier that are not part of the training data. Laugel et al. [20] define what it
means for a counterfactual to be justified and provide an algorithm that checks the justification
of counterfactuals. They define that a counterfactual is justified if there exists a continuous path
between the counterfactual and an instance from the training data that is classified in the same class.
Every point on the path that connects the two instances also has to be classified as the same class.
This should ensure that the counterfactual is not part of an artifact of the classifier that is represented
in the training data. The global explanation framework searches counterfactuals in an approximation
of the feature space. This could help to reduce unjustified counterfactuals because small artifacts
will not be represented in the approximation.

6. CONCLUSION

This paper presented a new approaches that tries to overcome a big problem of counterfactual expla-
nations, their locality. Three types of explanations can be generated by the presented framework:
First instances picked by submodular pick [3] and their counterfactual explanations are used as
global explanations to give an first overview of the models decisions. Secondly visualizations of
two-dimensional cuts through the feature space can be created which serve as an explanation of the
models decisions in dependence of two features. Lastly the framework allows a quick search for
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counterfactual explanations for individual instances. These three parts give the user an understand-
ing of the feature space as a whole as well as giving the ability to examine specific instances or
regions more deeply.

The counterfactual explanations generated by the global explanation framework were compared to
counterfactuals generated using an optimization approach by Wachter et al. [4]. The global expla-
nation framework needs a longer setup time to create the graphs used to generate the explanations
but once this is done the search for counterfactuals is much faster than existing approaches. The
approach by Wachter et al. however generates in most cases counterfactuals with a smaller distance
to their factual.

6.1 Future Work

The global explanation framework was developed as a framework with the ability to extend it in
mind. The processing of the feature space consists of three major steps which are all implemented
as interfaces. The feature space is hierarchically divided into regions of instances which ideally all
belong to the same class. The regions are labeled during the division process and at the end a search
graph is build over these regions that is used to generate explanations. Because the three steps are
implemented as interfaces the algorithms presented here can be exchanged with other ones. This
leaves room for improvements of the framework.

The evaluation discovered that a high number of dimensions poses a challenge for the global ex-
planation framework. The reason is that the proposed division algorithm splits each region once
along each dimension. This results in an exponential growth in operations to create the graphs. One
solution for this problem could be to be more selective about the dimensions along which splits are
performed.

Dimensions with protected attributes could be omitted by the division algorithm which would have
the added benefit of the respective features being unchanged in the generated counterfactuals. Al-
ternatively feature importance could be calculated and less important features could be divided
less or omitted completely. A reduction of the dimensions would most likely result in better, more
relevant explanations andwould reduce the computation time because less operations are performed.
Another way could be to parallelize the division and labeling steps. This should be easily achievable
because once split the different regions are completely independent from each other.

It could also be possible to improve the counterfactuals found by the framework. The division
algorithm presented here splits the regions exactly in half along each dimension. In addition to
omitting unchangeable or less important dimensions the splits could be performed at more strategic
positions. Divisions closer to a decision boundary could for example result in a more precise
mapping of the feature space. Another improvement could be weights on the edges of the search
graph or a different distance metric in the search algorithm. For example the metric by Grath et al.
[18] in equation 1 or the weighted euclidean distance.

This could incentivise the search algorithm to search preferably along certain dimensions. Harder to
change features could get a higher cost making them less attractive in the search for counterfactuals.
This could be used to reflect user preferences or keep some features unchanged by giving them an
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infinite cost. These changes would make the generated explanations more relevant to the user or
could speed up the search.
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