Towards Language-Agnostic Reuse of Palladio Quality Analyses

Malte Reimann, Stephan Seifermann, Maximilian Walter, Robert Heinrich
malte.reimann@student.kit.edu, {seifermann,maximilian.walter heinrich}@kit.edu
Karlsruhe Institute of Technology

Tomas Bures, Petr Hnétynka
{bures,hnetynka}@d3s.mff.cuni.cz
Charles University, Czech Republic

Abstract

Palladio is the foundation for many research projects
because of its increasing support for various quality
properties. However, the Eclipse-based infrastructure
does not always integrate well with other tools, which
impedes or makes it tedious to reuse existing analyses.
The Palladio tooling does not yet provide a language-
agnostic interface that would support such integration
scenarios. In this paper, we present the architecture
and a prototypical implementation of such an inter-
face based on gRPC and REST.

1 Introduction

Palladio [3] is a quality prediction approach for
component-based software architectures. Various re-
search projects use its quality analyses or extend
them. For instance, CACTOS? integrates energy con-
sumption analyses into Palladio. New reliability anal-
yses are the topic of Smartload?. KASTEL? integrates
security and privacy analyses into Palladio. To extend
the Eclipse-based Palladio implementation, projects
contribute new bundles to the codebase.

Restricting all contributions to be code compati-
ble with the Eclipse ecosystem is not useful. Project
partners often have their own tools that also provide
a functionality required for the project. For instance,
we had to use Palladio from within a complex opti-
mization implementation in our research project Trust
4.0 4. Porting Palladio to a non-Eclipse platform is
not feasible as well. Therefore, integrating all tools via
defined interfaces is the most realistic option. How-
ever, Palladio does not provide such an interface.

Existing interfaces to Palladio address performance
analyses. Experiment Automation [1, 2] provides a
command-line interface to performance analyses on
the local system. A recently created Docker image
[6] encapsulates this interface. Adding further analy-
ses is possible. However, retrieval of results is limited
to the local file system. Simulation as a Service [4]

Ihttps://cactos.github.io/
%http://www.smartload-project.de/
Shttps://www.kastel.kit.edu
4nttp://trust40.ipd.kit.edu/home/

also uses Docker and adds sophisticated load balanc-
ing and scaling strategies. However, none of these
approaches provides a generic approach for accessing
quality analyses of Palladio and their results from re-
mote systems. Therefore, each research project has to
decide about interface technologies and styles.

To ease interface definitions, this paper proposes a
reference architecture for interfaces to quality analyses
based on gRPC® and REST. We assume the perfor-
mance of gRPC to be better but REST provides supe-
rior compatibility. This architecture aims for saving
effort and has potential to become a central access
point to various quality analyses of Palladio.

We implemented an architecture prototype with an
Eclipse-based server and an Eclipse-independent in-
terface to the analyses. To show its feasibility, we
integrated a confidentiality analysis. Additionally, we
tried to replace gRPC with RMI® to investigate the
effort in switching communication infrastructures.

2 API Architecture

Our first objective is to use Palladio quality analy-
ses from different programming languages. We need
to interact with an interface, without using Palladio
or Eclipse directly. To achieve this, we define a gRPC
and a REST interface, that hide the underlying Palla-
dio and Eclipse infrastructure. Replacing gRPC with
other communication infrastructures like RMI is pos-
sible, which we did in a prototype. For a sake of
simplicity, we only report on gRPC in the following.
The interfaces have to provide functionality to manage
projects, upload files, run analyses, and retrieve re-
sults of analyses. Secondly, we want to be able to add
analyses without having to modify our infrastructure.
We allow new services to integrate into the architec-
ture by OSGi service discovery. In the following, we
describe the interface and the integration of services.

We propose the server-side architecture shown in
Figure 1. The sum of all components shown builds
the server. The gRPC Server and the REST inter-
face provide the interfaces to be used by external

Shttps://grpc.io/
Shttps://docs.oracle.com/javase/tutorial/rmi


https://cactos.github.io/
http://www.smartload-project.de/
https://www.kastel.kit.edu
http://trust40.ipd.kit.edu/home/
https://grpc.io/
https://docs.oracle.com/javase/tutorial/rmi

Remote Analyses
? Analysis APT {l eRPC Analyscs{l gRPC Result
e o Management Management
? IAnalysesManager ¢\IR,esult1\'Ianager
RPC Server gRPC Service Result
& E o API E Management il
! Service IService®
| 15¢ Discovery Requirements
REST interface gRPC Project gRPC File {l
Management Management
é‘lProjectl\rlanager ¢\IFile1\rla‘nager
Project File
Management il Management E

Figure 1: Remote Analysis Architecture (gRPC)

tools. The components of Remote Analyses run in an
Eclipse application. However, using the interface does
not require Eclipse or even Java. External tools em-
ploying other technologies can use provided services
as clients. gRPC allows our gRPC interface to offer
Palladio analyses to thirteen languages”. For all other
languages, we provide a REST interface. The REST
interface realized with Spring Boot translates calls to
the gRPC interface. By the REST interface, our ar-
chitecture becomes language-agnostic. In our archi-
tecture, the REST server or a program directly calling
the gRPC interface is a client. As a result, each ser-
vice needs to provide its functionality as gRPC inter-
faces. There are four predefined services: (1) project
management, (2) file management, (3) analyses man-
agement, and (4) result management. Services (1)
and (2) offer CRUD operations for managing projects
and project files. Service (3) accepts input parame-
ters and runs a specific analysis. Service (4) provides
the results of an analysis.

A new service has to implement the interface
IServiceRequirements for two reasons. First, the
server automatically discovers and serves the new ser-
vice via OSGi declarative services, which eases extend-
ing existing services. Second, IServiceRequirements
requires a gRPC interface. Extending the REST back-
end to use the new gRPC interface exposes the new
service. We favor a dedicated business logic compo-
nent for a service to decouple logic from communica-
tion infrastructures. The downside of this approach is
that implementors must have a rough understanding
of how gRPC works. To ease integrating new analyses,
the services analyses and result management provide
generic and extensible functionality for all analyses. A
new analysis has to implement the IAnalysis inter-
face. Again, OSGi declarative services discovers the
analysis and provides it to the analyses management.
Adding a new analysis does not require changes with
the gRPC interface or REST backend. IAnalysis
requires the analysis to define the input schema it ex-
pects. Inputs are specific values or links to files the
analysis uses. The analysis must implement an en-

"https://grpc.io/docs/languages/

=W N =

try point that calls existing analysis logic of Palla-
dio. Every analysis provides a unique identifier (ID)
that clients use to invoke the analysis together with
required inputs. When invoking an analysis, analy-
ses management passes provided input values to the
entry point of the analysis. The server will return im-
mediately with an ID for the analysis run that clients
can use to retrieve the results from the result manage-
ment later. We decide on this behavior because most
analyses are long-running, and clients often expect an
immediate response. Once complete, the analysis reg-
isters the result with the result manager. Any seri-
alizable structure for the result works. If an analysis
cannot convert its result to a serializable structure, a
new service for querying results is a solution.

3 Security Analysis Interface

We demonstrate integrating a specific analysis by a
data processing analysis [5] from the context of our
research project Fluid Trust. The analysis compares
required access rights for transmitted data with roles
assigned to components. The analysis needs paths to
a usage model, allocation model and characteristics
model from the analysis input. Additional inputs are
an ID for a logic prover factory, an ID for an anal-
ysis goal and optional flags to specify optimizations
for the solving process. The data processing analysis
integrates into our architecture by implementing the
IAnalysis interface, as the previous section describes.
Our architecture dispatches input from a client to the
data processing analysis. It is not possible to describe
the full implementation within the page limits, so we
refer to our repository® for the implementation details.

We demonstrate how to execute an analysis by
the ContactSMSManager example available in our
Github repository?. Executing the data processing
analysis consists of the following steps. The clients
sends a POST request to the /projects REST
endpoint with a body containing an identifier for
a new project. We use SMS as the identifier.
Second, we create and upload each of the files
the data processing analysis needs. We create the
default.repository file by calling PUT on end-
point /files/project/SMS/default.repository.
Third, we run the data processing analysis on
the SMS project, with PUT, to the endpoint
/launch/dataprocessing/contactSMSManager and
using the JSON body from Listing 1.

Listing 1: JSON Body

"usageModelPath":"SMS/default.usagemodel",

"allocModelPath":"SMS/default.allocation",

"characteristicsModelPath":"SMS/
characteristicTypes.xmi",

"proverFactoryId":"org.prolog4j.tuprolog.
proverfactory",

Shttps://git.i0/JUJzr
9nttps://git.io/JULPV


https://grpc.io/docs/languages/
https://git.io/JUJzr
https://git.io/JUfPV

S © 0w

11
12

"analysisGoalId":"pcm.dataprocessing.
analysis.launcher.returnquery",

"launchFlags": [],

"parameters":{

"Role characteristic type (ID)":"uuidO",
"Access rights characteritic type (ID
)" :"uuid1"

}
}

The URL contains the ID of the analysis to exe-
cute. In this case the ID is dataprocessing. The
client provides contactSMSManager as a meaning-
ful name. Our architecture uses the name to build
an ID for the launch. The body contains all in-
puts required by the data processing analysis. To
reference the launch later, the response body re-
turns a ID, for example contactSMSManager-2020-
08-16T10:30:15.329451500Z. We poll /results/{ID}
with GET to retrieve the analysis results.

4 Discussion

The effort required to integrate a new quality analysis
might differ. If it is sufficient to provide inputs and
outputs complete at one point in time as described
in Section 2, the integration is easy. The analysis
only needs to implement one interface. For analysis
with more specific requirements, integration is more
complicated. If clients cannot provide a complete set
of inputs at one time but have to create it assisted by
the server, the integration is more complex because
dedicated services are required.

So far, there is no tenant support because we
did not integrate a concept for Identity & Access
Management (IAM) yet. However, gRPC provides a
built-in authentication mechanism'® that we just have
to translate to mechanisms compatible with REST.
Therefore by using gRPC, the architecture can be ex-
tended with ITAM. Anyhow, missing IAM is usually
no problem in the context of research projects. Since
our architecture uses a single Eclipse instance and one
workspace, scaling out by using multiple instances of
Eclipse and load balancing is not feasible. Storing files
in blob storage and not inside Eclipse, where we run
analyses, could solve this.

Switching the communication infrastructure be-
tween gRPC and RMI was possible but the effort for
doing so is considerable. Many infrastructure code
has to be replaced and reimplemented. Therefore, we
suggest to carefully select the infrastructure and stick
to it. So far, we did not experience issues with gRPC.
In contrast, RMI is Java-specific. Therefore, many
research projects would be excluded from using this
interface directly but are forced to use REST.

We considered using REST as the only interface
technology but favored a combination of gRPC and
REST. Obviously, only using REST would imply less
indirection and the performance should be compara-
ble when integrating the REST server into Eclipse.

Onttps://grpc.io/docs/guides/auth/

However, we decided to use remote calling between
the REST interface and the Eclipse instance for sepa-
ration of concerns and decoupling. Reusing the REST
server architecture for other projects might be of inter-
est. The performance penalty of the REST to gRPC
communication is expected to be low when consider-
ing that quality analyses usually require much more
time than starting the analysis and receiving results.

Different analyses have different result types. This
is a drawback when combining analyses into one in-
terface. Right now, we require serializable analysis re-
sults. We think this gives enough flexibility. However,
streamlining results of all analyses would be beneficial
for clients working with the results.

5 Conclusion and Future Work

This paper presented a reference architecture to use
Palladio quality analyses in a language-agnostic way.
The primary benefit of the presented architecture
is its extensibility with respect to further analyses.
This easily allows to implement new specific analysis
or provide additional REST endpoints. Additionally,
the presented architecture enables the usage of Palla-
dio quality analysis outside the eclipse ecosystem.
We plan to integrate more analyses into the ar-
chitecture, allowing us to reason on how well the ar-
chitecture scales. Evaluating the performance of the
used technologies gRPC, RMI and REST is also sub-
ject to future work. More work on how to streamline
Palladio analyses into one interface is necessary. In
general, we see an opportunity for new applications of
Palladio. For example, offering Palladio as an action
for continuous integration pipelines. Building out a
front-end based on our architecture will enable us to
evaluate the architecture in a real-world scenario.
Acknowledgements This work has been funded by the DFG
(German Research Foundation) — project number 432576552,
HE8596/1-1 (FluidTrust), supported by the Czech Science
Foundation project 20-24814J, and also partially supported
by Charles University institutional funding SVV 260451. We

thank Sandro Speth (University of Stuttgart) for providing
feedback.

References

[1] P. Merkle. “Comparing Process- and Event-oriented
Software Performance Simulation”. MA thesis. KIT,
Germany, 2011.

[2] S. Lehrig. Quality Analysis Lab (QuAL): Software
Design Descriptionand Developer Guide Version 1.1.
University of Paderborn. 2016.

[3] R. H. Reussner et al. Modeling and Simulating Soft-
ware Architectures — The Palladio Approach. Cam-
bridge, MA: MIT Press, Oct. 2016. 408 pp.

[4] F. Willnecker et al. “SiaaS: Simulation as a Service”.
In: Softwaretechnik-Trends 36.4 (2016).

[5] S. Seifermann et al. “Data-Driven Software Archi-
tecture for Analyzing Confidentiality”. In: ICSA’19.
IEEE, 2019, pp. 1-10.

[6] T. Weber. Dockerifizierung of Palladio. Practical
Course Report. KIT, Germany. 2020.


https://grpc.io/docs/guides/auth/

	Introduction
	API Architecture
	Security Analysis Interface
	Discussion
	Conclusion and Future Work

