Mapping Data Flow Models to the Palladio Component Model

Stephan Seifermann
stephan.seifermann@kit.edu

Dominik Werle
dominik.werle@kit.edu

Mazen Ebada
utxqw@student.kit.edu

Karlsruhe Institute of Technology (KIT)

Abstract

Predicting quality properties such as privacy are rea-
sonable use cases for Data Flow Models (DFMs).
For other use cases such as performance prediction,
component-based software architecture models focus-
ing on control flows are more suitable. Designers can
derive a Control Flow Model (CFM) from a DFM
but they have to make numerous design decisions like
defining operation signatures. Currently, this deriva-
tion is a creative process without a clear design space
and without guidelines for navigating this space. In
this paper, we present design alternatives for given
data flow examples and derive mapping rules that al-
low to choose between reasonable alternatives. Our
results are a first step towards a catalogue of rules for
deriving CFMs from DFMs in a systematic way and
providing semi-automated transformations.

1 Introduction

Structured Design [4] uses Data Flow Models (DFMs)
to bridge the gap between requirements and soft-
ware design, i.e. designers derive software designs from
DFMs. Many definitions of DFMs exist but always
contain fundamental concepts that DeMarco [1, p. 51]
describes as follows: Sources start a data flow and
sinks end a data flow. Processes take data, transform
it, and yield modified data. Files are temporary stores
of data. Data Flows are pipelines transporting pieces
of information (so called data) between those entities.

Besides serving as a documentation or transition
model between development phases, models are valu-
able for quality analyses. DFMs are particularly use-
ful for analyzing privacy as already discussed by the
authors [9]. Control Flow Models (CFMs) can predict
performance properties amongst other things. We see
CFMs as models describing the realization of systems
with respect to structure, procedures, and sequences
of procedures. The Palladio approach [8] is one of
these prediction approaches. Architects benefit from
using models tailored for specific quality analyses that
might not be feasible in one single model.

Deriving software designs from DFMs is a way of
using both models together. The main source of com-
plexity is that DFMs are analysis models lacking de-
sign information, i.e. DFMs specify what shall be done
and CFMs specify how it shall be done. DFMs and
CFMs must not hold contradicting information.

Several approaches for transforming DFMs into
CFMs exist. However, handling ambiguities in DFMs
is still difficult. For instance, the DFM to Object
Oriented Design (OOD) mapping Tad [3] is closely
related to our work but struggles in giving easy step-
by-step guidelines for solving ambiguities because of
its genericness. Approaches that extend DFMs avoid
such ambiguities by additional specifications. In real-
time systems modeling [2], additional control flow de-
scriptions can solve ambiguities in execution orders.
However, this breaks the separation of views and roles
between analysis time, i.e. requirements engineering,
and design time. Therefore, information from de-
sign time might not be available during analysis time.
Other formal approaches like the one proposed by
Larsen, Plat, and Toetenel [7] are tailored to a spe-
cific formalism, which impedes reuse. However, some
introduced concepts like specifying relations between
input and output data [5] are valuable. To the best of
our knowledge, all approaches lack strong guidance in
collecting of and deciding for design alternatives while
transforming DFMs into CFMs.

In this paper, we provide an initial set of mapping
guidelines that support designers in deriving a Pal-
ladio Component Model (PCM) model from a DFM.
We exploit restrictions of the design space imposed by
PCM to make the guidelines of Tad [3] more precise
and better applicable to PCM. However, we do not
claim this set to be complete but rather see it as a
starting point for discussions and further research.

The remainder of the paper is structured as follows:
In Section 2, we describe DFMs requirements and a
minimal extension in order to specify the relations be-
tween input and output data in an unambiguous way.
We explain our running example in Section 3. In Sec-
tion 4, we describe the mapping guidelines. We con-
clude the paper in Section 5.

2 Data Flow Model Requirements

We formulate requirements for DFMs to allow the def-
inition of useful mapping guidelines. In general, we re-
quire properly modeled DFMs as defined by DeMarco
[1, part 2]. This means that a DFM only consists of
sources, sinks, processes, files, and data flows. It is
beneficial if the modeler applied the refinement mech-
anism of DFMs that allows to use another DFM to
describe a process or set of processes in more detail

while maintaining the incoming and outgoing data
flows. DeMarco calls this leveled DFMs. The data
types of DFMs are hierarchically defined as done in
PCM by composite and collection data types.

In addition, we require a definition of the data de-
pendencies between input and output data of a pro-
cess, source, or sink as suggested by Brunza and Weide
[6]. We define a triple (E, Dy, Doyt) with E as entity,
i.e. process, source, or sink, D;,, as a set of input data,
and D,,; as a set of output data. The semantics of the
triple is that as soon as all input data D;,, is available,
the entity F can yield output data D,,:. There can
be multiple triples involving an entity E. Especially,
this means that not always all data inputs have to be
available in order to send or produce data.

3 Running Example

We use the example shown on the left of Figure 1 to
illustrate the challenges in mapping DFMs to PCMs.
The figure shows a simple ordering system consisting
of an order and a payment process: A customer orders
and pays goods and a shipment department sends a
package containing the goods and a bill. The right
hand side of the figure shows a part of the PCM model
resulting from the mapping procedure described in the
next section. Data dependencies of processes, sources,
and sinks are given in the equation list below and
annotated in the figure. ccd means creditCardData.

(Customer, §), {order}) (

(Customer, {orderConfirmation}, {ccd}) (
(order, {order}, {bill, orderConfirmation}) (3

(order, {paidBill}, {paidBill, inventoryltems}) (

(pay, {ced, bill}, {paidBill, payConfirmation}) (

(Shipment, (),) (

=)

4 Mapping Guidelines

The mapping of DFMs to PCM models consists of
a fixed and a variable part. The fixed part contains
mappings that always apply to models. The variable
part requires the software architect to make design
decisions. We base our mapping guidelines on the
transformation from data flow diagrams to OOD in-
troduced by Alabiso [3]. We replace OOD concepts
with PCM concepts and elaborate on design decisions.
In this paper, we focus on the variable parts.
Therefore, we only explain the fixed part briefly: DFM
data types map to PCM data types. DFM sources and
sinks are external entities and therefore map to users,
i.e. usage scenarios. DFM files map to components
that provide data access services. DFM processes map
to PCM services, i.e. operational signatures and cor-
responding Service Effect Specifications (SEFFs).
The variable part consists of two mappings: The
architect has to 1) group services to interfaces, as well
as decide which component provides that interface,
and 2) map data flows to service calls and parameters.

In the following subsections, we describe how to de-
rive stubs for the PCM usage, system, and repository
models, as well as how to handle ambiguous situa-
tions for our running example in Figure 1. By stubs,
we mean reasonable structures that have to be param-
eterized and further specified to predict quality. For
instance, we cannot derive resource demands because
this information is not part of a DFM.

4.1 Operational Interfaces

DFMs characterize interfaces by incoming and out-
going data. PCM characterizes interfaces by callable
operational interfaces with input and return parame-
ters. Intuitively, each executable action of a process,
source, or sink maps to an operation signature. Con-
sumed and provided data maps to the parameters.

In a first step, we have to identify executable parts
and corresponding triggers, i.e. callers. As specified in
Section 2, execution does not always require all input
data to be present. Therefore, data dependencies de-
scribe executable parts most closely. In our running
example, the customer and the order process have two
data dependency triples each. The shipment depart-
ment and the pay process have one data dependency
each. All data dependencies of sources and sinks map
to system services to be called. For instance, there
have to be two system services to be called by the
user. Data dependencies of processes map to services
specified in internal interfaces. For instance, there
have to be two services offered by the order process.

Mapping data to parameters is only straight for-
ward if all incoming and all outgoing data come from
and go to the same entity. In any other case, addi-
tional control flows have to fulfil the data flow spec-
ification. In our running example, mapping the user
data dependencies (1), (2), and (6) is straight forward
as can be seen for the interfaces IOrderCustomer,
IPayCustomer, and IOrderShipment in Figure 1.

In contrast, the data dependency of the order pro-
cess taking an order (3) returns two data items, of
which one goes to the user and one to the pay process.
In that case, we group returned data by recipients. All
data going to the triggering entity is a return param-
eter. For all remaining groups, we can either push the
information to the recipients or let the recipients pull
it. In this paper, we only consider pulling. Therefore,
we create an operation in TPullBill that returns a bill.

The data dependency (5) of the pay process re-
quires credit card data from the user and a bill from
the order process. To solve this, we identify the trig-
gering entity, keep data of the trigger a parameter,
and acquire remaining data via pulling. Only archi-
tects can clearly identify triggers. However, a good
heuristic is to identify data that directly or transi-
tively comes from users because this is the origin of
the control flow in PCM. Therefore, we create the
IPayCustomer interface that receives credit card data
from the user as shown in Figure 1. To acquire a bill,

‘ Customer ‘ IPullBill IO0rderCustomer IOrderShipment IPayCustomer [PullPaidBill
4\(5) creait- (‘i (3)| | pull() : bill || order(order) : order() : paidBill, pay(creditCardData): || pull() : paidBill
payCon- CardData order orderConfirmation || inventoryltems payConfirmation
firmation derC o .
(}r er t.on— IOrderPay ayCustomer
irmation | ———M—M8 —— Y| S —— ‘
order(paidBill) % e O— Pay z]

(3) paidBill

I ¥
IOrder- a
Customer g | —O<-IPullBill-— |
Order ——O<-IOrderPay---'

——O<-1PullPaidBill;

T o .
paidBill, inventoryItems % ****** dj
V()

Shipment é

‘ Shipment ‘

Oi
\\ <_ iiiiiiii i
O—

S IOrderShipment §
T O— Shipment %:‘ g !

Figure 1: Simple DFM of ordering process (left) and PCM model resulting from mapping (right).

we use the previously created IPullBill interface. To
determine output parameters, we apply the approach
described in the previous paragraph, which introduces
the IPullPaidBill interface.

The same approaches apply for the second data de-
pendency (4) of order. This yield the IOrderPay and
the I0rderShipment interfaces.

4.2 Usage Model

Each source and sink maps to a usage scenario. There-
fore, we create a usage scenario for customer and ship-
ment. In usage scenarios, users call system services
identified in the previous step. The sequence of entry
level system calls depends on the data dependencies.
In our running example, the customer calls the service
not requiring any data (1) before the service requiring
the order confirmation (2). The shipment department
only has one service to call.

4.3 Components and Interfaces

Each process maps to a component. The interface
mapping process of Subsection 4.1 already provides
us with all required information for required and pro-
vided roles: The component provides the interfaces
that we derived from its output data. The component
requires the interfaces that replaced input parameters
in its data dependencies.

4.4 System Model and SEFFs

We create an assembly for each component in the sys-
tem model. The wiring is unambiguous because our
mapping yields exactly one component providing and
exactly one component requiring an interface. The
same holds true for the system provided roles in PCM.
SEFFs only consist of external service calls. First,
the component pulls all required data not contained
in input parameters. We already determined pull
sources when creating operational interfaces. Second,
the component calls all services that require data from
the component via an input parameter because this
means that the component has to trigger the service.
As already said, we cannot provide resource demands
because this information is missing from DFMs.

5 Conclusion

DFMs are valuable for quality analyses but are hard
to transform into CFMs like PCM. To ease transfor-
mation, we introduced mapping guidelines tailored for
PCM. The guidelines require an extended version of
classic DFMs defined by DeMarco that allows specify-
ing relationships between input and output data. We
demonstrated ambiguous situations and initial heuris-
tics for solving them in our running example. The re-
sulting set of mapping guidelines is not complete yet.
As soon as the set is exhaustive, automated mappings
can support using both DFMs and CFMs in parallel
without contradicting information in the models.

In future work, we plan completing the mapping
guidelines by constructing examples, evaluating real
world models, and deriving new guidelines. We plan
to automate the transformation from a DFM to PCM
and evaluate our guidelines against case studies.

Acknowledgements. This work was partially funded by the
the German Federal Ministry of Education and Research under
grant 01IS17106A (Trust 4.0).

References

[1] T.DeMarco. Structured analysis and system specification.
Prentice-Hall, 1979.

[2] P.T. Ward and S. J. Mellor. Structured development for
real-time systems. Vol. 3: Implementation modeling tech-
niques. Yourdon Press, 1986.

[3] B. Alabiso. “Transformation of Data Flow Analysis Mod-
els to Object Oriented Design”. In: OOPSLA’88. ACM,
1988, pp. 335-354.

[4] M. Page-Jones. The Practical Guide to Structured Sys-
tems Design. 2nd ed. Prentice-Hall, Inc., 1988.

[5] T. H. Tse and L. Pong. “Towards a Formal Foundation
for DeMarco Data Flow Diagrams”. In: The Computer
Journal 32.1 (1989), pp. 1-12.

[6] P.Brunza and T. van der Weide. The Semantics of Data
Flow Diagrams. Technical Report TR 89-16. Dept. of In-
formation Systems, University of Nijmegen, 1993.

[71 P. G. Larsen, N. Plat, and H. Toetenel. “A Formal Se-
mantics of Data Flow Diagrams”. In: FAOC 6.6 (1994),
pp. 586—606.

[8] R. H. Reussner et al. Modeling and Simulating Software
Architectures — The Palladio Approach. MIT Press, 2016.

[9] S. Seifermann, R. Heinrich, and R. H. Reussner. “Data-
Driven Software Architecture for Analyzing Confidential-
ity”. In: ICSA’19. IEEE, 2019, pp. 1-10.

	Introduction
	Data Flow Model Requirements
	Running Example
	Mapping Guidelines
	Operational Interfaces
	Usage Model
	Components and Interfaces
	System Model and SEFFs

	Conclusion

