
Leveraging State to Facilitate Separation of Concerns in
Reuse-oriented Performance Models

Dominik Werle
dominik.werle@kit.edu

Karlsruhe Institute of Technology

Stephan Seifermann, Sebastian D. Krach
{seifermann,krach}@fzi.de

FZI Research Center for
Information Technology

Abstract
Each of the five dedicated roles of the Palladio pro-
cess considers one or more concerns that form a per-
formance prediction model, altogether. Modeling sys-
tems that vary their behavior based on a request his-
tory, however, requires to break role separation and
create dependencies between concerns, thus reduc-
ing the reusability of components. Model elements
that allow expressing such behavior while maintain-
ing role separation do not exist. We propose a model
extension that allows expressing behavior statefully
and a transformation to a basic stateless Palladio
model. This allows to maintain the role separation
and thereby the reusability of components without the
need for changes of existing analyses.

1 Introduction
Palladio enables software architects to predict the per-
formance of a component-based system before imple-
menting or deploying it. The Palladio performance
analysis requires performance abstractions delivered
by five dedicated roles [3, pp. 203-205]: (1) software
architects, (2) component developers, (3) system de-
ployers, (4) domain experts, and (5) quality analysts.
Each role owns specific knowledge about the system
and is active in different stages of the development
process. The separation between the component de-
velopers and the other roles is important to facilitate
component reuse by hiding implementation details be-
hind defined interfaces.

However, we observed that predicting performance
for system behaviors dependent on previous requests
often weakens this separation. Heinrich et al. [2] iden-
tified the need for explicit modeling of this type of be-
havior as well for expressing queue-dependent behav-
ior. For instance, there are two modeling approaches
for systems that behave differently after k requests by
a user that both violate role separation: (a) The do-
main expert has to model two usage scenarios (USCs):
One regular and one misuse scenario. The latter in-
cludes k regular and the remaining amount of alterna-
tive requests explicitly. This carries information from
the component behavior into the usage model. (b) The
component developer has to integrate the amount of

IService
IDS Service

optional

(a)

(b)

normal
User

3
get 15s

malicious
User

100
get

Figure 1: Example (a) system and (b) usage models

malicious
User

k
get

100− k
get′

Figure 2: Usage scenario to describe IDS behavior

alternatively handled requests into a branch probabil-
ity. This requires modeling user behavior in the com-
ponent model, thus impeding the component reuse.

In this paper, we propose Session Count Expres-
sions (SCEs) that enable state-based behavior de-
scriptions using call counters. Thereby, component
developers and domain experts do not have to inter-
twine their concerns anymore. We apply the model-
ing extension for a specific kind of state in an exam-
ple. Additionally, we sketch a transformation from the
newly introduced elements to existing ones. There-
fore, analyses do not have to be altered, while the
semantics of a stateful model are approximated.

The remainder of the paper is structured as follows:
In Section 2, we introduce a running example for the
violation of the role separation. Section 3 covers ex-
isting solutions (3.1) and our proposed solution (3.2).
We conclude the paper in Section 4.

2 Exemplary Violation of Separation
In the following, we introduce a minimal example that
illustrates the issue. We omit the models of the re-
source environments and the deployment in favor of
comprehensibility. Figure 1 (a) shows a service inter-
face IService with a single method get and a com-
ponent Service that provides it. In this example,
we want to investigate the performance impact of the
addition of an intrusion detection system (IDS). In
our scenario, the IDS acts as a proxy for Service and



passes requests from the system interface to the imple-
menting component. Our usage model of the system
(Figure 1 (b)) contains two USCs: normalUser is a
user that calls the method get, waits 15 seconds, and
repeats this twice. maliciousUser is an attacker that
performs 100 calls to the method in quick succession
to impair the performance of the system.

We assume that our IDS operates according to the
following heuristic: If the requesting user has already
made more than k requests in the current session, the
IDS performs a deep package inspection (DPI), which
entails an additional overhead and can e.g. result in a
message to an administrator. We do not model this
alarm functionality and restrict our model to the DPI
overhead. A session represents a USC user’s lifetime.

The changed USC maliciousUser shows one possi-
bility of expressing the IDS behavior in Figure 2. The
USC normalUser is not altered. get′ is a method
added to IService that includes the DPI. Fig-
ure 3 (a) shows the behaviors of get and get′.

This approach violates the separation of concerns
as follows. The component developer specifies the be-
havior of the implemented IDS in the modeled compo-
nent. This component and its model should then be
reusable by a third party without knowing its internals
according to the Palladio definition of components [3,
pp. 8-9]. However, the behavior of the IDS influences
the usage model and therefore no black-box reuse is
given. Furthermore, the software architect must alter
the system interface to allow the call of an additional
method get′. Additionally, the responsibilities of the
roles in a component-based software development pro-
cess [3, pp. 203-205] are not properly separated. The
domain expert, who models the usage of the system,
is now concerned with the inner workings of the IDS.
Using only existing abstractions, we do not see an
appropriate way to model this behavior without vio-
lating the presented separation of concerns.

A behavior model as depicted in Figure 4 (a) would
be desirable, where the component developer can ref-
erence the number of previous calls to the method.
The component developer can model an stochastic
approximation of the IDS behavior as shown in Fig-
ure 4 (b). U(0, 99) is an uniform distribution between
0 and 99 and characterizes the number of previous
calls to the method in USC maliciousUser without
accounting for the order of calls. For the other USC,
U(0, 2) is an equivalent approximation, that does how-
ever not express different behavior if k > 3. However,
this also violates the separation, because the compo-
nent behavior model now represents user behavior.

3 Proposed Solutions
In our scenario, the service effect specification (SEFF)
must be able to distinguish between a USC execution
that has already called the method k times and one
that has not. Therefore, any approach that allows the
representation and simulation of this kind of usage-

«call» IService.get

«CPU demand» d «call» IService.get

(a) IDS.get

(b) IDS.get′

Figure 3: Behaviors of IDS.get and IDS.get′

«CPU demand»
d

«call» IService.get

[
number of previous calls ≥ k

][
U(0, 99) ≥ k

][
SCIDS.get ≥ k

]
alternatives

(a)

(b)

(c)

[
else

]

Figure 4: Alternatives for modeling IDS.get: (a) nat-
ural language expression, (b) uniform distribution as
an approximation, (c) model with SCEs.

scenario-related state is a viable means to solve the
introduced problem.

3.1 Existing Solutions
Stateful component-based performance models, as in-
troduced by Happe et al. [1], allow the definition and
manipulation of state related to components, systems,
and users including session state. Their approach im-
proves the result of simulations when behavior de-
pends heavily on the state of the system. The sim-
ulator is extended to support stateful models. Ana-
lytical solving is, however, not possible anymore using
the existing approaches.

3.2 Session Count Expressions
We propose Session Count Expressions (SCEs), a
light-weight modeling construct for expressing behav-
ior depending on the number of requests originating
from the current USC execution. A transformation re-
solves SCEs to stochastic expressions before the anal-
ysis of the model. Thus, existing simulations or anal-
yses can be reused. In contrast to stateful simulation,
which allows deterministic simulation of state, SCEs
stochastically approximate stateful behavior. The
transformation is transparent to the user and does,
therefore, not violate the separation of roles. After
introducing SCEs and the transformation, we show

g

m()

(a) cgm = 1

g

g1

g2

(b) cgm = cg1m + cg2m

g

m′() g′

(c) cgm = cg
′

m

g

g1

p

1− p

(d) cgm = p · cg1m

g

X
g1

(e) cgm = X · cg1m

Figure 5: Subgraphs g and corresponding values of cgm



normal
User

3
get(3 · U(0, 1)) 15s

malicious
User

100
get(100 · U(0, 1))

Figure 6: Stochastic approximation of the USCs

how to use the proposed construct to specify the be-
havior for our running example.

SCEs make an additional term SCm available in
stochastic expressions. These expressions are used in
the specification of USCs and SEFFs. SCm is a ran-
dom variable that characterizes the amount of pre-
vious calls to a method m during the current USC.
The characterization depends on its environment in
the USC or SEFF. In the following, we use the term
subgraph to refer to a connected subgraph of steps in
a USC/SEFF. To derive SCm, we first describe how
to determine cmg , which characterizes the number of
calls to m in a subgraph g. This process is illustrated
in Figure 5. (a) The base case of a call to m results
in cgm = 1. (b) For subsequent subgraphs, the number
of calls can be summarized (cgm = cg1

m + cg2
m ). (c) For

calls to methods m′ (m′ 6= m), we derive cgm = cg
′

m

from the behavior of m′. (d) A branch with probabil-
ity p results in cgm = p·cg1

m . We restrict our description
to probabilities branch conditions that are not depen-
dent on input parameters. (e) For a loop action with
iteration count specified by the random variable X,
cgm = X · cg1

m . Similar to the simulative performance
prediction, the derivation does not support (direct or
indirect) recursion of calls to m.

A transformation that reduces a model with SCEs
to a model without them works as follows. (1) For
each use of a random variable SCM in a SEFF, add
a parameter pinM to all signatures of all methods in
the model, (2) replace each reference to SCM inside a
SEFF by pinM + cgM +L where g is the subgraph of all
preceding actions. The loop approximation is L = 0,
except for references to SCM inside loops. In favor
of comprehensibility, we will not explain the general
case of arbitrary subgraphs that call M before or after
the current reference to SCM inside the loop. Instead,
we will focus on the case where M is only called once
inside the subgraph and all references to SCM are after
the call. Then, we can derive an approximation for the
number of previous calls inside the loop by sampling
a uniform distribution between 0 and the number of
iterations X minus 1 which gives us L. (3) For each
external service call in a SEFF and for each service
call in a USC, pass pinM + cgM + L as the parameter.

Using this transformation, we can for example re-
fer to SCIDS.get in our behavior description as depicted
in Figure 4 (c). The parameter pinIDS.get is added to
the signature of the method. Because there are no
other calls to SCIDS.get in the model (cgM = 0) and
we are not in a loop (L = 0), we derive SCIDS.get =

pinIDS.get. Figure 6 shows the transformed USCs. The
arguments are the approximated number of calls to
IDS.get (SCIDS.get) for the normal and malicious sce-
nario respectively (cgIDS.get = 0, L = 2 · U(0, 1) resp.
99 · U(0, 1)). Note that the transformed normal USC
models the same behavior as before, because the dis-
tribution only yields values smaller than k.

4 Conclusion
In this paper, we demonstrated a shortcoming regard-
ing black-box reusability caused by stateless behavior
modeling of Palladio. More precisely, we have shown
an example, where the component behavior influ-
ences the usage model and vice versa. As an alterna-
tive to stateful behavior simulation [1], we introduced
SCEs, a light-weight modeling extension that can be
transformed to stateless stochastic performance mod-
els without violating the separation of concerns.

Enabling the description and simulation of state in
a performance model allows a cleaner separation of
concerns regarding the roles involved in a component-
based software development process. Our proposed
extension supports this separation for behavior based
on request amounts while maintaining support for ex-
isting analyses. Additionally, we demonstrated that
modeling of behavior which depends on sets of re-
quests, including for example data streams or flows,
is not only necessary to analyze new quality proper-
ties such as security, but can also help to align system
development with the component-based software de-
velopment process of Palladio.

Next steps encompass generalizing the approach to
other stochastic performance modeling formalisms be-
sides Palladio, the implementation of the transforma-
tion, and the comparison of the accuracy of the trans-
formed models with models that simulate state, as
it is done in stateful Palladio [1]. Additional trans-
formation rules for other kinds of state (component,
system, user) would allow a more comprehensive use
of the approach.

Acknowledgements. This work was partially funded by the
German Research Foundation (DFG) as part of the Research
Training Group GRK 2153: “Energy Status Data – Informatics
Methods for its Collection, Analysis and Exploitation”.

References
[1] L. Happe, B. Buhnova, and R. Reussner.

“Stateful component-based performance models”.
In: Software & Systems Modeling 13.4 (2013),
pp. 1319–1343.

[2] R. Heinrich, H. Eichelberger, and K. Schmid.
“Performance Modeling in the Age of Big Data:
Some Reflections on Current Limitations”. In:
Proceedings of ModComp. 2016.

[3] R. H. Reussner et al. Modeling and Simulating
Software Architectures – The Palladio Approach.
MIT Press, 2016. 408 pp.

http://dx.doi.org/10.1007/s10270-013-0336-6
http://ceur-ws.org/Vol-1723
http://ceur-ws.org/Vol-1723
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures

	Introduction
	Exemplary Violation of Separation
	Proposed Solutions
	Existing Solutions
	Session Count Expressions

	Conclusion

