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Abstract

Natural language is constantly evolving and adapts to changes in society and technology.

Studying such linguistic changes is of interest since it helps to understand the language

and society of today. Due to the limited reading speed of humans and the large amounts

of books, such studies are laborious, costly, and time-consuming. The digitization of

existing books has resulted in large text corpora, that is, sets of words and phrases and

their usage frequency in the source text. A temporal extension to text corpora takes the

time into account when the source text was written. Such temporal text corpora allow one

to consider the usage frequency of words and phrases over time and, therefore, provide the

potential to systematically analyze changes in language in a data-driven way. Currently,

historians and linguists use temporal text corpora to empirically study simple questions,

like the importance of a word over time. To study more complex questions, however, the

information needs exceed the usage frequency of words. It is an open question which

specic information needs exist, how to formulate them as database query, and how to

eciently process queries on large temporal text corpora.

In this thesis, we study these questions and design an information system to eciently

query the relevant information on a temporal text corpus. We, initially, investigate the

information needs together with domain experts as part of an interdisciplinary project and

develop a way to formulate them as query. Subsequently, we provide query optimization

and improve data access for these queries. Altogether, we make the following contributions.

Our rst contribution is a query algebra for temporal text corpora. In cooperation with

philosophers, we identify the information needs to examine linguistic changes in a data-

driven way. The information needs originate from the works of Reinhart Koselleck, one of

the most important historians of the 20th century. To gain the relevant information from

the data, we specify necessary data transformations and dene these as operators. We

show that one can formulate the information needs as an algebraic expression in our query

algebra. Our second contribution deals with cardinality estimation of strings, especially

of so-called co-occurrences, namely, words that occur next to each other in phrases. Co-

occurrences are of particular interest since a word’s co-occurrences indicate its meaning.

We conceive a lossy compression technique that reduces the size of strings but keeps

the co-occurrence information. Our technique provides accurate cardinality estimation

and enables query optimization for this kind of query. Our third contribution is a data

structure for time series similarity search in arbitrary time intervals. Queries on temporal

text corpora usually focus on specic time intervals, like the period around a historical

event. To accelerate such queries, we develop a data structure that resembles a search tree

but uses time series envelopes, in other words, curves outlining the extremes of time series.

Once constructed on the entire time domain, we can eciently query all possible time

intervals. In summary, this thesis presents techniques to systematically analyze temporal

text corpora and allow experts to gain new knowledge about the evolution of language.
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Zusammenfassung

Natürliche Sprache ist eine Art der menschlichen Kommunikation und sie unterliegt

ständiger Veränderung. Sowohl Inhalt als auch Aufbau natürlicher Sprache gleicht sich

Änderungen in Gesellschaft und Technik an. Beispiele für derartige Sprachveränderungen

sind der Bedeutungswandel existierender Wörter oder das Entstehen neuer Wörter. Die

Untersuchung von Sprachveränderungen ist von Interesse, da es unser heutiges Verständ-

nis von Sprache und Gesellschaft erklärt. Der entsprechende Forschungsbereich ist die

Begrisgeschichte, ein Zweig der Geisteswissenschaften. Ein wesentlicher Bestandteil

begrisgeschichtlicher Untersuchungen ist, dass Geisteswissenschaftler existierende Lite-

ratur lesen, also aktuelle und auch historische Texte. Die begrenzte Lesegeschwindigkeit

und die große Menge an Büchern machen derartige Untersuchungen aufwändig und

erschweren umfangreiche Recherchen.

Moderne Texterkennungsverfahren ermöglichen die Digitalisierung existierender Texte

zu digitalen Bibliotheken. Diese Bibliotheken liegen in aggregierter Form als Textkorpus

vor. Ein Textkorpus enthält einzelne Wörter und Wortketten, sogenannten Ngrams, sowie

deren Verwendungshäugkeit in den Quellwerken. Zeitabhängige Textkorpora enthal-

ten zusätzlich Zeitstempel, also das Veröentlichungsjahr des Texts. Das erlaubt es die

Verwendungshäugkeit der Ngrams als Zeitreihe darzustellen.

Aufgrund ihres Umfangs und der Möglichkeit einer technischen Verarbeitung, haben

Geisteswissenschaftler ein großes Interesse an der Verwendung digitaler Textkorpora.

Betrachten wir beispielsweise die folgende Fragestellung: “War Emanzipation bereits vor
100 Jahren Teil des gesellschaftlichen Diskurses?” Die Verwendungshäugkeit des Worts

Emanzipation über die letzten 100 Jahre liefert Indizien um diese Frage zu beantworten.

Geisteswissenschaftler können somit statistische Untersuchungen einfacher Fragestellun-

gen durchführen und Erkenntnisse aus Millionen von Büchern ziehen.

Interessante Fragestellungen der Begrisgeschichte gehen jedoch über die Betrachtung

der Verwendungshäugkeiten hinaus. Ein Beispiel für eine solche Fragestellung ist die

folgende: “Hat sich das Wort Emanzipation bereits vor 100 Jahren hauptsächlich auf die
Emanzipation der Frau bezogen?” Derart komplexe Fragestellungen erfordern die Suche

nach Wörtern, die häug zusammen mit dem Zielwort verwendet werden, oder Wörtern

mit einem ähnlichen Verlauf der Verwendungshäugkeit zu der des Zielworts. Die Unter-

suchung komplexer Fragestellungen ist aus den folgenden Gründen schwierig: Erstens

fehlt eine Möglichkeit für technische Laien, wie Geisteswissenschaftler, ihre Anfragen an

ein technisches System zu formulieren. Dabei ist es aktuell unklar welche Wortmerkmale

für die Untersuchungen benötigt werden, die über die Verwendungshäugkeit hinaus

gehen. Zweitens sind Textkorpora üblicherweise sehr große Datenmengen. Das führt dazu,

dass die Ausführung von Anfragen und insbesondere das Errechnen der erforderlichen

Wortmerkmale viel Rechenzeit benötigen.
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Zusammenfassung

In dieser Arbeit entwickeln wir ein Informationssystem, dass es erlaubt komplexe

Anfragen der Geisteswissenschaftler an zeitabhängigen Textkorpora zu formulieren und

ezient auszuwerten. Die Thesis umfasst die folgenden drei Beiträge zur Informatik, die

es ermöglichen ein solches System ezient umzusetzen.

Eine Anfragealgebra für zeitabhängige Textkorpora. Im ersten Teil des Projekts denieren

wir eine Anfragealgebra für zeitabhängige Textkorpora. Diese Anfragealgebra ermög-

licht es Fragestellungen aus der Begrisgeschichte zu formulieren. Die Identikation der

Informationsbedürfnisse ist eine interdisziplinäre Aufgabe, die wir in Kooperation mit

Wissenschaftlern aus dem Bereich der Philosophie erarbeiten. Unsere Untersuchungen

dazu basieren auf den Arbeiten von Reinhart Koselleck, der Pionierarbeit im Bereich

Begrisgeschichte geleistet hat. Aus Kosellecks Informationsbedürfnissen leiten wir syste-

matisch die notwendigen Operatoren für unsere Anfragealgebra ab. Unsere Anfragealgebra

enthält (1) einfache Operatoren, beispielsweise zum Auswählen von Elementen anhand

des Ngram-Texts, (2) zeitliche Operatoren, beispielsweise zur Suche ähnlicher Elemente

anhand des Verlaufs der Verwendungshäugkeit und (3) sprachliche Operatoren, bei-

spielsweise zur Suche gemeinsam auftretender Wörter. Wir beweisen die Vollständigkeit

unserer Anfragealgebra, indem wir zeigen, dass sich alle von Koselleck betrachteten Wort-

merkmale durch unsere Operatoren ausdrücken lassen. Unsere Anfragealgebra erlaubt es

Fragestellungen der Geisteswissenschaftler für die Verarbeitung mit einem technischen

System zu formulieren.

Eiziente Kardinalitätsschätzung für gemeinsam auretendeWörter. Im zweiten Teil des

Projekts entwickeln wir eine Methode zur Kardinalitätsschätzung von Suchmustern auf

Ngram-Datenbeständen. Häug starten Anfragen zur Begrisgeschichte mit der Suche

nach gemeinsam auftretendenWörtern, sogenannten Kookkurrenzen, die mittels Suchmus-

ter selektiert werden. Ein Beispiel für solche Anfragen ist: “Welche Kookkurrenzen existieren
für das Wort Emanzipation im Jahr 1975, die es 1875 noch nicht gab?” Zur Optimierung

dieser Anfrage muss abgeschätzt werden wie viele Ngrams im Jahr 1975 das Wort Emanzi-

pation enthalten und wie viele es im Jahr 1875 sind. Anfrageoptimierer tolerieren geringe

Schätzfehler, weshalb Schätzer üblicherweise ihren Speicherverbrauch auf Kosten der

Genauigkeit reduzieren. Eine Möglichkeit der Kardinalitätsschätzung bieten Sux-Bäume.

Um den Speicherbedarf eines Sux-Baums zu reduzieren, wird dieser üblicherweise in der

Tiefe limitiert. Insbesondere bei Ngrams kann eine Tiefenlimitierung dazu führen, dass

ganze Wörter abgeschnitten werden. Wir entwickeln einen Ansatz, der Buchstaben mit

geringem Informationsgehalt aus den Ngrams entfernt. Das reduziert den Speicherbedarf

des Baums und ermöglicht eine eziente Kardinalitätsschätzung von Suchmustern auf

Ngram-Datenbeständen.

Eiziente Ähnlichkeitssuche auf Zeitreihen in beliebigen Zeitintervallen. Im dritten Teil des

Projekts erarbeiten wir eine Datenstruktur zur Ähnlichkeitssuche auf Zeitreihen in belie-

bigen Zeitintervallen. Begrisgeschichtliche Untersuchungen erfordern die Suche nach

Wörtern mit einem ähnlichen Verlauf der Verwendungshäugkeit in einem bestimmten

Zeitintervall. Ein Beispiel für solche Anfragen ist die folgende: “Welche 5 Wörter haben

vi



Zusammenfassung

den ähnlichsten Verlauf der Verwendungshäugkeit zu dem Wort Krieg zwischen 1914 und
1945?” Derartige Anfragen werden auch als 𝑘-nächste-Nachbarn-Suche bezeichnet. Um zu

vermeiden, dass das gegebene Element mit jedem Element des Datenbestands verglichen

werden muss, wird der Datenbestand zur Ähnlichkeitssuche üblicherweise indiziert. Bei

Anfragen zur Begrisgeschichte wird das Zeitintervall erst mit einer Anfrage deniert.

Existierende Ansätze benötigen allerdings ein vorab festgelegtes Zeitintervall um die

Datenstrukturen aufbauen zu können. Wir entwickeln einen Suchbaum, dessen Knoten

Hüllkurven für Zeitreihen enthalten. Unsere Datenstruktur ermöglicht es Anfragen zur

Ähnlichkeitssuche auf Zeitreihen in einem beliebigen Intervall ezient durchzuführen.

Insgesamt bilden unsere drei Beiträge die technische Grundlage, um komplexe Frage-

stellungen der Begrisgeschichte in einer Anfragealgebra zu formulieren und ezient

auf großen zeitabhängigen Textkorpora auszuwerten. Ein darauf aufbauendes Informa-

tionssystem ermöglicht es systematische Untersuchungen auf Millionen von Büchern

durchzuführen und neue Erkenntnisse über die Entwicklung von Sprache zu gewinnen.
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1 Introduction

Natural language is an evolving and dynamic way of human communication. The content

we communicate and the structure we use are constantly adapting to changes in society

and technology [Mic+10]. Such linguistic changes can be diverse, like changes in word

meanings or the creation of new words [FB16; HLJ16a; HLJ16b; Pra+16; Eng+19]. Studying

these linguistic changes is of interest to explain the nowadays understanding of language

and society [BCK04; Kos06; RGG07; Bla12; Kol12; Ols12; MS16]. The respective research

eld is called conceptual history, a branch of humanities. Philosophers, historians, and

sociologists who deal with conceptual history are called conceptual historians. Example 1.1

depicts questions that help conceptual historians to dene and improve the cultural,

conceptual, and linguistic understanding of words.

Example 1.1 Take the word “emancipation”. When someone, nowadays, talks about emanci-
pation, a majority of people rst think of “emancipation of women”. So in our daily language
use today, emancipation primarily refers to women. In the past, however, emancipation also
referred to other concepts, like Catholics. Generally, emancipation describes liberation from a
state of dependence. Its usage has changed over time to its present reference on women. To
better understand the relationship between emancipation and women, conceptual historians
ask questions of the following kind:

1. Since when has the word emancipation primarily referred to women?

2. What words have been associated with emancipation previously?

3. When did its relation change to the nowadays focus on women?

Studying conceptual history is dicult since conceptual historians have to answer their

questions by reading. The core of conceptual history research is developing and testing

hypotheses. Basically, one can summarize a usual research procedure to the following

three points [Kos04]: First, a conceptual historian comes across an unfamiliar word or a

particular application of a word. Second, she hypothesizes one or more possible reasons

that may cause this change. For example, a conceptual historian reads a text about the

Catholic Church in the United Kingdom that was written in the early 19th century. A

typical hypothesis from such a text would be: emancipation referred to Catholics in the

early 19th century. Third, she tests her hypothesis by manual and example-driven literature

research that includes reading texts from various points in time. In this procedure, the rst

two steps form the core of the intellectual work of a conceptual historian. The reading

speed in the third step, however, is obviously a limiting factor here. This makes research

dicult and limits broad hypothesis testing.

1
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Figure 1.1: The usage frequency of the word “emancipation” when co-occurring with the

words “women” and “catholic” from 1801 to 2000.
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With the digitization of libraries and of the humanities, conceptual historians strive to

break away from their example-driven studies to become a data-driven discipline [Her99;

Mor13]. Many libraries have already digitalized their book inventory to provide digi-

tal libraries. Projects, like Google Books, gather digital libraries and create large and

comprehensive temporal text corpora. A temporal text corpus is a set of single words

and word chains, so-called ngrams, as well as their usage frequency over time as time

series [Mic+10; Lin+12]. Making use of temporal text corpora would—for the rst time

ever—allow statistical investigations of important hypotheses on a large scale, i. e., on

millions of books.

Let us return to our questions introduced in Example 1.1. To answer the questions about

emancipation, one can look at the usage frequency time series of the word “emancipation”

when co-occurring either with the word “women” or “catholic” in, say, the 19th and 20th

century. Figure 1.1 shows both usage frequency time series for this time interval. This

plot provides indicators to answer the questions as follows:

1. Emancipation has been related to women since the beginning of the 20th century.

2. Emancipation was previously used to describe the emancipation of Catholics.

3. The relation of emancipation changed around 1920.

Interestingly, one comes to similar results by manual literature research [Kos02]. Such

manual research, however, requires considerably more time and eort. Achieving a

similar result with signicantly less eort illustrates that temporal text corpora contain

interesting information about the historical semantics of words and their potential to

support conceptual historians in their research.

1
This graph is also available at https://books.google.com/ngrams/graph?content=emancipation%3D%

3Ewomen%2Cemancipation%3D%3Ecatholic&year_start=1801&year_end=2000&corpus=15&smoothing=3.
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1.1 Challenges

Conceptual historian Information system Temporal text corpus

(C2) Query formulation (C5) Data access

(C4) Cardinality estimation

Figure 1.2: The challenges to build an information system that answers queries regarding

conceptual history based on a temporal text corpus.
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So far, we have illustrated how a conceptual historian formulates questions regarding

a hypothesis and how to answer such a question with a temporal text corpus. A natural

solution to answer questions based on a database is to use an information system. One

reason for this is that questions, or queries, are usually written in a declarative manner.

Declarative means that the user species what information she requests, and the system

creates a plan how to receive this information. A popular service to query a temporal text

corpus is the Google Ngram Viewer.
2
The Google Ngram Viewer provides an easy way

to query the usage frequency time series of a given ngram. It, however, is limited to this

functionality and lacks support for corpus analysis, like querying related words or nding

similar ngrams. This means that one, for example, cannot query ngrams with a similar

usage frequency to the word “emancipation”. As a result, the Google Ngram Viewer is

insucient to answer questions that require more than a simple time series plot.

This brings us to the question ofwhich information is relevant to conceptual historians or,

in other words, what are the information needs of conceptual history. The only information

need that is necessary to answer our example questions is the usage frequency. Our

questions, however, are reasonably easy to answer. In real-world hypotheses, there are

more complex information needs. For example, one information need is to nd and analyze

surrounding words, so-called co-occurrences [Her99; Fri06; Fri11]. This is of interest since

a change in a word’s co-occurrences indicates a change in its meaning [HLJ16b; Eng+19].

This makes the analysis of co-occurrences an essential information need of conceptual

history. Altogether, considering the usage frequency of ngrams is necessary but not

sucient. Existing inquiry systems lack the support to query complex information needs

that are required to examine conceptual history hypotheses.

Our objective is to design an information system to examine complex hypotheses of

conceptual history. To this end, we study the information needs, how to formulate these

as queries, and how to eciently execute them on large temporal text corpora.

1.1 Challenges

To query temporal text corpora, one needs to consider two sides: the user side and the

data side. On the user side, one needs to translate the user’s information needs to an

executable analysis. On the data side, one has to handle large amounts of data. Searching

2
The Google Ngram Viewer is part of Google Books and is available at https://books.google.com/ngrams.

3
Icons by https://icons8.com.
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and analyzing large amounts of data is a dicult task. Figure 1.2 illustrates both sides and

its connections. Beyond this, there are more specic challenges in the following.

(C1) InformationNeeds in Conceptual History. Currently, it is unclear which information is

relevant to conceptual historians. The main part when studying conceptual history is the

intellectual work of the conceptual historian. Thus, each conceptual historian potentially

has their own methodology. This makes it dicult to identify objective information

needs in this eld. Literature reects this issue. The best-known books of conceptual

history [BCK04; RGG07] primarily present results rather than the methodology or analysis

steps that the authors take. The lack of a consistent source or a complete list makes it

dicult to identify the information needs in conceptual history.

(C2) Query Formulation. The interface between a user, who has information needs, and a

technical system, that generates answers, is the query language. To receive the desired

information, a user writes her question as a query in a particular query language or query

algebra. A query language that is suitable for this project must allow formulating the

information needs of conceptual history. In literature, there are several query languages.

One very popular query language is the Structured Query Language (SQL) [Cod70; Mai83;

AHV95]. SQL basically supports structured data, i. e., data and its relations. In literature,

there are several query languages for more specic purposes. On the one hand, there exist

temporal query languages [Sno87; Sno95; LS03] to query time-referenced data. However,

existing temporal query languages lack support to formulate necessary word features, e. g.,

co-occurrences or textual evidence—a key aspect in conceptual history. On the other hand,

there exist query languages for text corpora [Con13; Jak+10; Zel+09]. Text corpus query

languages provide support to query grammatical or lexical patterns. However, existing

query languages for text corpora cannot handle temporal information. A missing query

language for a temporal text corpus makes it complicated to formulate the information

needs of conceptual history in an easy way.

(C3) Eiciency. To support real-world scenarios, the targeted information system requires

to work eciently. This is for the following two reasons. First, we aim at using large text

corpora. Each text corpus is a sample of written language. The larger the sample, the more

convincing are inferences about language based on that sample. For example, the Google

Books Ngram Corpus with more than 8 million books has a size of more than 2 terabytes

of data. Second, to enable users to explore a corpus, the information system requires short

query run times. Exploring a corpus means that a user needs the result of one query to

formulate a next query, i. e., the second query is based on the result of the rst one. In this

scenario, a user executes queries interactively, i. e., actively waits for the query result. To

sum up, one needs to process a large amount of data and, at the same time, achieve short

query run times. To realize this, each component of the information system needs to work

eciently.

Information systems usually make query processing ecient by optimizing the query

and accelerating data access. Both, however, are dicult to apply to temporal text corpora.

We describe why this is challenging in both cases in the following.
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Figure 1.3: Our contributions as part of an information system to formulate, optimize, and

execute queries on temporal text corpora.

(C4) Cardinality Estimation. Modern cost-based query optimizers search for the most

ecient plan to execute a query by considering cost estimations, like the expected number

of elements. In conceptual history, one essential kind of query is the co-occurrence query,

i. e., a query for words that occur alongside each other. Such queries require keeping

the words of an ngram connected. Existing cardinality estimation approaches ignore

this connection between words. The resulting inaccurate cardinality estimation for co-

occurrence queries makes query optimization on temporal text corpora inecient.

(C5) Data Access. Database indices provide an ecient way to access specic elements

in a large data set. When conceptual historians search for ngram with a similar usage

frequency time series, they mostly focus on a specic time interval, e. g., to focus the

time around a historical event or to compare two time intervals with each other. Existing

indices cannot focus on arbitrary intervals when searching for similar time series. The

lack of a suitable index for similarity search in arbitrary intervals makes the data access

inecient.

1.2 Contributions

In this dissertation project, we developmethods and approaches to overcome the challenges

and enable users to eciently query temporal text corpora. Thus, our information system

5
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supports conceptual historians to analyze large amounts of books that are impossible

to read within a lifetime to gain new insights into the use and change of language. To

realize such an information system, we make several contributions that extend the current

state-of-the-art in computer science. Figure 1.3 shows the links between our contributions

to formulate, optimize, and execute queries. We describe our contributions in more detail

in the following.

A Query Algebra for Temporal Text Corpora. Our rst contribution is a query algebra for

temporal text corpora. We design our query algebra to formulate information needs of

conceptual history. Finding relevant information needs is an interdisciplinary research

task. For this contribution, we cooperate with scientists from the eld of philosophy. We

study the information needs based on the works of Reinhart Koselleck. Koselleck is one

of the most important historians of the 20th century and contributed pioneering work

to conceptual history. To design our query language, we see two subtasks: one for the

philosophers and one for the computer scientists. The philosophers’ subtask is to identify

and structure relevant information needs in conceptual history. Our subtask, as computer

scientists, is to nd transformations from the corpus data to the desired information and,

hence, dene a set of algebraic operators. As a result, our algebra includes (1) simple

operators, e. g., to select ngrams by its text attribute, (2) temporal operators, e. g., to search

for similar ngrams by its frequency pattern, and (3) linguistic operators, e. g., to nd words

that frequently co-occur within ngrams. As the basis for our operators, we dene a data

model to structure a temporal text corpus with a high spatial data locality. To prove the

completeness of our query algebra, we show that our operators satisfy all information needs

that Koselleck used in his works. This contribution addresses Challenges (C1) Information
Needs in Conceptual History and (C2) Query Formulation.

Accurate Cardinality Estimation of Co-occurring Words. Our second contribution is an

accurate cardinality estimation approach for co-occurrence queries. The estimate of the

expected number of elements and the size of intermediate results substantially aects

the quality of the query execution plan. To provide accurate estimates for co-occurrence

queries, we present a novel entropy-based pruning approach for sux trees that keeps the

words of an ngram together and in order. The basic idea is to remove specic characters

to shorten the strings. More precisely, we dene a set of characters that we remove from

all the strings in the data set. Our approach is inspired by the fact that natural language

and its words have redundancy. For example, one can usually clearly read a word with a

missing character. To provide a proper way to specify the set of characters to remove, we

consult the information content of the characters in natural language. For this purpose,

we use the alphabet’s empirical entropy and conditional entropy. As a result, our pruning

approach removes the most common characters from the strings. Removing specic

characters from the strings preserves the full functionality of the sux tree, especially to

search for arbitrary string patterns. We show that our pruning approach keeps almost full

accuracy while reducing the memory requirement by half. Thus, our pruning approach for

sux trees enables ecient cardinality estimation on ngram data sets. This contribution

addresses Challenges (C3) Eciency and (C4) Cardinality Estimation.

6
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Eicient Interval-focused Time Series Similarity Search. Our third contribution is an ef-

cient access method for time series similarity search in arbitrary time intervals. We

develop a search tree with time series envelopes in its nodes. A time series envelope is an

upper and lower band that encloses either a single time series or a group of time series.

Thus, a time series envelope supports estimating a lower bound distance to a group of time

series. This enables us to construct a search tree. To reduce the tree traversal cost, our

tree starts with a coarse-grained envelope at the root node and becomes fully accurate at

the leaf nodes. Our search tree approach avoids scanning through the entire database but

prunes most time series with its hierarchical tree structure. In addition, we use envelopes

also to determine a lower bound in time intervals. This facilitates building the search tree

once on the full time domain and species the time interval at query time. For time series

similarity search in arbitrary intervals, we show that our search tree has low tree traversal

costs and only needs a small number of expensive similarity computations. Our search tree

enables similarity search on time series in arbitrary intervals and works signicantly more

eciently than competing methods. This contribution addresses Challenges (C3) Eciency
and (C5) Data Access.

1.3 Thesis Outline

This thesis consists of six chapters. Chapter 2 describes the fundamentals, including the

basics of conceptual history, details on the Google Books Ngram Corpus, and how query

processing generally works. Chapter 3 features related work to each of our contributions.

In Chapter 4, we present CHQL, a query algebra for temporal text corpora. This chapter

starts with how we identify the information needs in conceptual history. Subsequently,

we dene CHQL’s data model and algebraic operators. In Chapter 5, we focus on the

cardinality estimation of co-occurring words in an ngram corpus. This chapter introduces

the Thin Sux Tree (TST), an entropy-based pruning method for sux trees. In Chapter 6,

we turn towards time series similarity search in arbitrary intervals. This chapter proposes

the Time Series Envelopes Index Tree (TSEIT), a search tree with time series envelopes as

tree nodes. We complete this thesis in Chapter 7 with the conclusions and an outlook on

future research questions.

7





2 Fundamentals

In this chapter, we describe the fundamentals of this thesis in ve sections. First, we

give a brief introduction to conceptual history, the application case of this thesis. Second,

we describe details on temporal text corpora. Third, we write on the fundamentals of

query processing. Fourth, we outline basic string data structures. Last, we depict a short

overview of information theory.

2.1 Conceptual History

This section gives an overview of conceptual history. First, we give a brief introduction to

the topic and, second, point out its importance to research history and the evolution of

language. In the third part, we describe some particularities of conceptual history. Fourth,

we introduce the idea of concept types, and last, we describe essential terms in this eld.

2.1.1 An Introduction to Conceptual History

Conceptual history is a method to study history based on textual sources. The basic idea

is to examine concepts that are central to political and social life. Such examinations

include looking at a larger semantical, ideological, and rhetorical setting that lls a concept

with meaning. One signicant aspect of conceptual history is to take temporal change

into account. In other words, conceptual historians analyze the relevance of particular

concepts and track their changes over time [Wil+19b]. For example, take the concept of

socialism: It might mostly express generic hopes at some moment and mostly specic fears

at some other [Wil+19b]. In general, conceptual history dierentiates between a word

and its concepts, i. e., the ideas that are expressed by this word. For example, conceptual

historians draw distinctions between the word socialism and the concept of socialism that

also includes social, economic, and political aspects. Furthermore, words and concepts

are interrelated since words form a concept and concepts give words their semantics. The

interrelation between concepts and words is not xed and may change over time.

One of the most important researchers in this eld is Reinhart Koselleck. Koselleck made

major contributions to conceptual history [Kos02; Kos04; Kos06]. Furthermore, he was

the lead editor of the multi-volume compendium “Geschichtliche Grundbegrie” [BCK04].

This 8-volume compendium with over 9,000 pages examines 122 German concepts on their

respective historical semantics. Geschichtliche Grundbegrie presents many examples of

how fundamental concepts—viewed from a social perspective—change over time. Thus, this

compendium is by far the most successful attempt to reconstruct our today’s understanding

of society and history.

9



2 Fundamentals

Concepts Social and
political reality

Capture

Indicate changes of

Figure 2.1: The connections between concepts and the social and political reality.

Koselleck splits conceptual history research into three tasks.
1
At the rst task, one

identies the concepts that characterize history. At the second task, one hypothesizes the

relation to social and political discourses and conicts of that period. At the third task,

one critically evaluates these concepts and hypotheses.

2.1.2 The Importance of Conceptual History

To understand the history and historical situations, one needs to use the proper vocabulary

of that particular point in time. Therefore, conceptual historians see history as conceptual-
ization of the past by the people who wrote the historical text, e. g., historians, politicians,

or citizens. As a consequence, in order to understand historical texts, it is crucial to exam-

ine the historical concepts that have been used to describe the past. Figure 2.1 illustrates

the connection between concepts and social and political reality.

Language is the way we report on the past. Since language is constantly changing,

considering the used historical concepts matters in a similar way as the historical develop-

ments within this period. This means, understanding language is of signicant importance

to understand history. From this perspective, conceptual history becomes a key to all

historical studies [Vog12].

Koselleck denes a separate space within the philosophy of history, a eld that deals

with meanings of concepts in history by analyzing historical facts in text. It takes the

evolution of language into account to distinguish between a concept’s semantic when

writing history and a concept’s semantic when discovering history. As a result, Koselleck

provides an innovative way to examine historical representations and knowledge.

2.1.3 Text as the Primary Source

At rst glance, conceptual history seems closely related to social history since both disci-

plines analyze changes in society and social life. However, both disciplines signicantly

dier in their practices. On the one hand, social history deals with circumstances and

movements that inuenced history but which are not necessarily named or referred to

within the texts. For example, social history might introduce new economic theorems to

study individual events or political actions. In this case, the text serves as a reference point

only. On the other hand, conceptual history derives from philosophical and linguistic

1
The details on conceptual history largely originate from the following sources: (1) Reinhart Kosel-

leck [Kos04]. 2004. “Futures Past: On the Semantics of Historical Time”, (2) Daniel Little. 2016.

“What is conceptual history?”, available at https://understandingsociety.blogspot.com/2016/10/

what-is-conceptual-history.html, and (3) Kai Vogelsang [Vog12]. 2012. “Conceptual History: A Short

Introduction”
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disciplines, like the philosophical history of terminology, historical philology, and sema-

siology. Findings in conceptual history are directly based on text. This means, textual

examinations form the semantics of historical concepts. In conclusion, historical concepts

can be evaluated through text while they, at the same time, are based on text [Kos04].

Interestingly, conceptual history refers to history in two ways. Firstly, Koselleck studied

the logic and semantics of concepts that describe historical events and processes. Secondly,

he was interested in the historical evolution of some specic concepts over time. Hence,

Koselleck (1) derives the methodology of conceptual history from text and (2) also examines

the history of specic concepts based on text. Through this interaction, Koselleck aims to

nd the meaning that was associated with key historical concepts in dierent historical

periods.

2.1.4 Types of Concepts

The knowledge about the logic and semantics of a concept enables conceptual historians

to group similar concepts to a concept type. Concepts may belong to a particular concept

type at a particular moment, depending on their particular semantics at this moment. Two

important concept types are parallel concepts and counter concepts. Examining a concept

mostly also requires analyzing its parallel and counter concepts to fully understand the

semantics of a concept. Details on characteristics of concept types and the number of

existing concept types are still a subject of research in the eld of conceptual history.

2.1.5 Important Terms in Conceptual History

To summarize the introduction of conceptual history, we describe themeaning of important

terms in conceptual history.

Concept A concept is a word with a wide range of social and political meanings. This

wide range makes it ambiguous, which creates space for interpretations [And03].

Concept Type A concept type outlines a group of concepts with similar characteristics.

One objective of conceptual history is to determine which concept belongs to a

particular concept type during a particular period. For example, a parallel concept is
a concept type that contains concepts with a similar role in a particular discourse,

such as “love” and “peace”.

2.2 Temporal Text Corpus

This section gives details on a temporal text corpus. First, we describe a text corpus and

how it is built. In the second part, we extend our denition of a text corpus from storing

only single words to one that stores word chains. In the third part, we dene a temporal

text corpus as a text corpus with a temporal dimension. Last, we show the Google Books

Ngram Corpus as the largest real-world example of a temporal text corpus.
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Word POS Frequency

. . .
mine <all> 395,162
mine <noun> 195,455
mine <verb> 5,333
mine <adjective> 56,561
. . .

Table 2.1: An example of an annotated text corpus.

1-grams:

2-grams:

3-grams:

This

This is

This is an

is

is an

is an example

an

an example

an example sentence

example

example sentence

sentence

Figure 2.2: The 1-grams, 2-grams, and 3-grams of the sentence “This is an example sen-

tence”.

2.2.1 Text Corpus

A text corpus is a large collection of digital texts of a specic language [McA98]. It consists

of words and their usage frequency in the source text. The primary purpose of a text

corpus is to perform statistical analysis and test hypotheses on the source text or about

language in general. For example, one uses a text corpus to determine the variability of a

particular word or to analyze the syntactic construction of phrases [Cry92].

To make a corpus more valuable for analyses, most corpora include additional word

information in the form of annotations. A popular annotation is part-of-speech tagging, i. e.,

each word is tagged with its part of speech (POS). Parts of speech describe the grammatical

property of a word within a sentence. Examples of parts of speech are nouns, verbs, or

adjectives. Table 2.1 shows an example of an annotated text corpus.

Based on this simple kind of text corpus, there are two dimensions to expand a text

corpus. First, instead of storing only single words, a text corpus can additionally store

word chains. Second, a temporal dimension is added in the form of timestamps when the

source text has been written. This results in time-dependent frequency counts. We show

both dimensions in more detail in the following.

2.2.2 Word Chains

A simple text corpus consists of single words and their usage frequency. In addition, a

corpus can also store word chains. This is of interest since word chains imply information

about the relation between words, e. g., what words are commonly used together, or what

words modify which others.

12
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Ngram POS Frequency

. . .
drink coffee <all> <all> 2,408
drink coffee <all> <noun> 2,402
drink coffee <verb> <all> 2,229
drink coffee <verb> <noun> 2,226
hot coffee <all> <all> 4,219
hot coffee <all> <noun> 4,214
hot coffee <adjective> <all> 4,219
hot coffee <adjective> <noun> 4,214
. . .

Table 2.2: An example of an annotated text corpus of 2-grams.

A word chain is a consecutive sequence of words. A chain of 𝑛 words is called 𝑛gram.

For example, Figure 2.2 shows the 1-grams, 2-grams, and 3-grams of the sentence “This

is an example sentence”. In terms of a text corpus, a 1-gram text corpus contains single

words, a 2-gram text corpus contains word chains of length 2. One example of an ngram

text corpus is the Microsoft Web Ngram Corpus [Wan+10]. Table 2.2 shows an example of

an annotated text corpus that stores 2-grams.

Extending a corpus from single words to word chains provides signicant additional

value, namely the words that occur alongside each other in a specic order. This additional

information is called word co-occurrence information and allows analyzing the word mean-

ings. Generally, the meaning of a word is determined by its context, i. e., by the words that

surround it [Har54; Fir57]. This means that ngram text corpora allow to analyze a word’s

meaning by looking at its surrounding words.

Analyzing surrounding words is the foundation of many modern text analysis methods.

For example, there are techniques to identify the similarity betweenwords [Li+15b; HLJ16b]

andmethods to performword-sense disambiguation [NZ97]. Generally, there are two terms

to describe relations between words in an ngram: co-occurrence and collocation [Kol16].

We explain both in the following.

Co-occurrences. Co-occurrences are words within an ngram that occur alongside each

other in a specic order. Such a word co-occurring triggers a relation between both words.

Common co-occurrences are between adjectives and nouns, like “drink” and “coee”, or

nouns and nouns, like “coee” and “tea”. Co-occurrences can be found by looking at the

surrounding words without considering syntactic or semantic reasons [Kol16].

Collocations. In contrast to co-occurrences that may be a random word combination,

collocations are word combinations with a semantic relation. Since a semantic relation

between words depends on the interpretation and application, there is no general denition

of collocation. Usually, collocations are frequently recurrent combinations of words that

13
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time
Author Author Author

Book BookBookBook Book

Millions of
books published

Millions of
books digitalized

Corpus of
the year 1713

Corpus of
the year 1884

Corpus of
the year 1943

. . .

. . . . . .

. . .. . . . . .

. . . . . .. . .. . .. . .. . .

Frequency of a word
over time

Author

. . . . . . . . .

Figure 2.3: The creation of a temporal text corpus to analyze the evolution of language.
2

Word Year Frequency

. . .
mine 2001 392,977
mine 2002 457,423
mine 2003 519,400
mine 2004 616,434
. . .

Table 2.3: An example of a temporal text corpus.

have a direct syntactic relationship [Kol16]. For example, the co-occurrence “drink coee”

is simultaneously also a collocation.

2.2.3 Temporal Dimension

Simple text corpora contain words and their usage frequency in the source texts. When the

digitization process also captures and adds the times when each source text was written,

the usage frequencies become time-dependent. These time-dependent usage frequencies

allow inspecting changes in language. We call a text corpus with a temporal dimension

2
This gure is based on a gure in the article [Mic+10]: Jean-Baptiste Michel, Yuan Kui Shen, Aviva

Presser Aiden, Adrian Veres, Matthew K. Gray, The Google Books Team, Joseph P. Pickett, Dale

Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, Steven Pinker, Martin Andreas Nowak, and Erez Lieber-

man Aiden. 2010. “Quantitative Analysis of Culture Using Millions of Digitized Books.” In Science.
URL: https://doi.org/10.1126/science.1199644. Icons by https://icons8.com.
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2.2 Temporal Text Corpus

Language Number of ngrams

English 468,491,999,592
French 102,174,681,393
Spanish 83,967,471,303
Russian 67,137,666,353
German 64,784,628,286
Italian 40,288,810,817
Chinese 26,859,461,025
Hebrew 8,172,543,728

Table 2.4: The languages and number of ngrams per language that are included in the

Google Books Ngram Corpus.

temporal text corpus. Figure 2.3 illustrates the creation of a temporal text corpus. Table 2.3

shows an example of a temporal text corpus.

The time-dependent usage frequencies of a word form a time series. Mathematically, a

time series is a time-ordered sequence of data points. In the above example, the time axis

of a time series is discrete, and the data points are equally spaced. Recall Figure 1.1 for an

example of time series from a temporal text corpus.

2.2.4 The Google Books Ngram Corpus

The most popular temporal text corpus is the Google Books Ngram Corpus. The corpus

exists in three versions
3
that were released in 2009 (version 1), 2012 (version 2), and 2020

(version 3). In this thesis, we use the second version from 2012.

Version 2 of the Google Books Ngram Corpus contains data from 8,116,746 books

written over the past ve centuries [Lin+12]. Relatively speaking, this is 6 % of all books

ever published. Due to its size, the Google Books Ngram Corpus is a suitable choice for

quantitative analyses of the evolution of natural language [Mic+10]. In the following, we

describe the technical details of the corpus.

Languages. The Google corpus contains over 860 billion ngrams. This corresponds to

approximately 3 terabytes of information. The full corpus is grouped into 8 languages.

Table 2.4 shows all languages that the corpus includes as well as the number of ngrams

for each language.

Part-of-Speech Annotations. The corpus includes 12 universal POS tags that exist in a

similar form in most languages. Table 2.5 lists and describes the POS tags [Lin+12].

Google Ngram Viewer. In addition to the raw corpus data, Google provides an online

web frontend to query the frequency time series for a given ngram. This web frontend is

3
All three versions of the Google Books Ngram Corpus are available at https://storage.googleapis.com/

books/ngrams/books/datasetsv3.html.
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2 Fundamentals

POS tag Description

NOUN Nouns
VERB Verbs
ADJ Adjectives
ADV Adverbs
PRON Pronouns
DET Determiners and articles
ADP Prepositions and postpositions
NUM Numerals
CONJ Conjunctions
PRT Particles
. Punctuation marks
X A catch-all for other categories such as

abbreviations or foreign words

Table 2.5: Part-of-speech annotations of the Google Books Ngram Corpus.

named Google Ngram Viewer.
4
The Ngram Viewer creates plots of the frequency time

series over a selected time range.

2.3 Information Systems and Query Processing

A database is a collection of data that is digitally stored and accessed from a computer

system. The computer system to access a database is a database management system

(DBMS). For this purpose, a DBMS interacts with users as well as the database to search

and analyze the data. Existing DBMSs dier in their database model, the query language

to access the database, and other features, like their internal engineering. Typically, a user

writes a question in the form of a query and sends it to a DBMS. The DBMS accesses the

database, generates the answer for the given query, and sends the answer back to the user.

Thus, a DBMS provides an easy way for the user to retrieve information from a database.

The entire procedure from receiving a query to deliver the query result is called query
processing.

In general, query processing includes the following three steps:

1. Translate the query into an executable query plan.

2. Optimize the query plan.

3. Execute the plan to create the result.

Figure 2.4 shows the architecture for this kind of query processing. The gure illustrates

the following steps. First, the query parser translates the query into a series of data

manipulation operations, called query plan. Second, the optimizer rewrites the query plan

4
The Google Ngram Viewer is available at https://books.google.com/ngrams.
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2.3 Information Systems and Query Processing

Information need

Query

Code generation
& execution

Optimizer

Parser

Query graph

Execution plan

Query
formulation

Query
optimization

Query
execution





Answer

Data statistics

Data

Figure 2.4: An overview of query processing in a database management system.

to provide a more ecient query processing. Third, the execution engine creates the result

by executing the optimized query plan. We describe these three aspects in more detail in

the following.

2.3.1 Query Language and Query Algebra

A query language species a way to formulate queries for a database system or an infor-

mation system. In general, two kinds of query languages exist.

Declarative languages A declarative language species what information to retrieve, but

not how to retrieve it. For example, a relational declarative language is the relational

calculus.

Procedural languages A procedural language species what information to retrieve as

well as how to evaluate it. For example, a relational procedural language is the

relational algebra.

Independent of the specic query language, an information system creates an inter-

nal representation of the query. Transforming a specic query language to its internal

representation is the task of the query parser. Internally a query is represented in a proce-

dural language, typically a query algebra. Thus, the internal query representation always

species how to evaluate the query. Figure 2.5 illustrates this transformation step.

In a query algebra, an algebraic expression represents a query. To write algebraic

expressions, a query algebra consists of a set of operators and a domain of elements, e. g.,

17
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Query language statement

Parser

Algebraic expression

Information need

Query formulation

Figure 2.5: The path from an information need to an algebraic expression.

Query graph

Query plan generator

Execution plan

Cost estimator

(Partial) plan

Cost estimation

Data statistics

Hardware parameters

Figure 2.6: Query optimization consists of plan generation and cost estimation.

a set of words. An operator maps an element of the domain to other elements of the

same domain. Each of the operators has dened semantics, i. e., a denition of how the

result looks like when applying the operator to some input. Since both the operands and

the result of an operator are of the same format, one can combine operators to express

potentially complex queries. Each algebraic expression can be depicted as an operator tree

that represents the equivalent query.

2.3.2 Query Optimization and Cardinality Estimation

Often, dierent algebraic expressions are semantically equivalent. This means, all these

algebraic expressions generate the same result. The operator tree of each algebraic ex-

pression species the query execution plan, i. e., how to execute the individual expression.

Consequently, there are various ways to generate a result that dier in their eciency.

The initial operator tree corresponds directly to the user-formulated query without any

optimization done. The query optimizer takes this initial operator tree and rewrites it

into a semantically equivalent, nal operator tree that is ecient to execute. The query

optimizer strives to nd the most ecient way to execute a given query by considering

possible query plans. Figure 2.6 shows the components of a query optimizer.

To nd ecient query plans, a query optimizer depends on heuristic rules for query

transformation and also estimates and compares the expected costs of dierent query plans.

Among all considered query plans, the query optimizer chooses the one with the lowest

18
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cost estimate. A fair cost-based comparison of dierent query plans requires accurate cost

estimates [EN16].

Estimating the cost of a query plan includes the following components [EN16].

Disk I/O cost These are the costs to read data and store intermediate results.

Computation cost These are the costs for in-memory operations.

Memory usage These are the costs in terms of main memory requirements.

Communication These are the costs to ship the result.

To estimate the cost of a query plan, a crucial input is the expected number of elements.

The estimation of the expected size of a query result or subquery result is called cardinality
estimation. An accurate estimation of the cardinality is crucial since it has an impact on

multiple costs: disk I/O cost, computation cost, and memory usage. In addition, cardinality

estimates are also valuable to allocate buers of an adequate size before the query execution

starts. Thus, the quality of the cardinality estimate highly inuences the quality of the

query optimizer.

2.3.3 Data Access

The data of a database is a set of records. In turn, a record is a sequence of a xed number

of data values. Each data value represents a member or attribute of a record. During the

query processing, the record order in a database is random with respect to the search

condition of the query. Searching a randomly ordered database for specic records is

costly since it requires scanning the entire database.

To address this problem, one uses additional data structures, called database indices.
A database index accelerates the retrieval of records with respect to a specic search

condition. To this, an index provides an alternative access path to the data without

changing the order or placement of the records in the database. Example 2.1 illustrates

how an index works.

Example 2.1 Take the index of a book as an example for an additional access path. Envision
we have a book with, say, 1,000 pages and we want to nd the pages that contain or describe a
particular word. Without index pages, our only option is to scan through the entire book, i. e.,
through 1,000 pages. Only at the very end of the book, we know that we have seen every page
that contains our particular word. This is an analogy to a sequential scan of a database. If
index pages exist, we know where we have to look. The words of the index are in alphabetical
order. This makes it easy for us to scan the index, nd the particular word, and observe the
page numbers. We can now eciently jump to the corresponding pages and skip the rest of
the book. In this way, a book index provides a method to directly access book pages when
searching for particular words.

The literature describes various types of indices. These indices use dierent algorithms

and dierent data structures to suit best to a corresponding query operation. Examples of

such operations are to select specic records, sort records, or nd similar records. Two
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Data

Sequential scan Access method 1 Access method 2 Access method 3

E. g., list E. g., tree E. g., hash table

Figure 2.7: Each index provides an individual method to access data.

commonly used index structures are hash tables and tree structures, e. g., B
+
trees [EN16].

On the one hand, the speed of a hash table is constant and, thus, independent of the

number of records in a database. However, hash tables only support equality comparisons

as the search condition. On the other hand, the speed of a B
+
tree logarithmically depends

on the number of records in a database, but such trees also support inequality comparisons

and sorting. Figure 2.7 illustrates various methods to access data.

2.4 String Data Structures

To eciently process text, one needs data structures for strings. One important string

data structure is the sux tree. A sux tree provides a fast implementation of many

common string operations, like nding the longest common substring in two words or

locate matches of a search pattern. In this section, we describe some essential string data

structures. At rst, we give a formal denition of a string and an alphabet. Subsequently,

we describe the data structures trie and compressed trie and, lastly, describe the sux tree

and its more compact version, the sux array.

2.4.1 Strings and Alphabets

This section gives a formal denition of an alphabet, a string, and a sux.

Denition 2.1 (Alphabet) An alphabet Σ is a nite non-empty set of symbols [Hig10]. The
symbols of an alphabet are also called characters.

One uses the cardinality |Σ| to denote the size of the alphabet, i. e., the number of characters

that are available in alphabet Σ.

Denition 2.2 (String) A string 𝑤 over Σ is a nite sequence of symbols that are chosen
from an alphabet Σ [Hig10]. A string with no characters is called empty string and denoted
with 𝜖 .

One can dene operations on strings. A standard operation is a concatenation of two strings

that results in a single string. Given two strings 𝑝 and 𝑠 , we denote the concatenation by

𝑝 · 𝑠 [Hig10]. For example, water · proof = waterproof or 𝜖 · water = water.

Denition 2.3 (Sux) A string 𝑠 is a sux of a string𝑤 , if there exists a string 𝑝 such that
𝑤 = 𝑝 · 𝑠 [Lot02]. If string 𝑝 is not the empty string, then sux 𝑠 is a proper sux.
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Figure 2.8: A trie for the words kitten, sitten, and sittin.

2.4.2 Trie

A trie is a tree data structure that stores a collection of strings over an alphabet Σ [Knu98].

Each node has between 0 and |Σ| children. All edges in the tree are labeled with a single

character. Edges that leave a particular node receive dierent labels. In this way, a trie

stores each character of a string as a label on the path from the root node to a leaf node.

String Termination. Sharing an inner node with various strings may cause problems. If a

string 𝑤1 equals the prex of another string 𝑤2, string 𝑤1 ends at an inner node rather

than a leaf node. Therefore, it is impossible to decide whether both strings𝑤1 and𝑤2 are

part of the trie or only string𝑤2.

To solve this problem, each string in a trie ends with a special symbol that is unequal

to any other character of the strings. Literature usually denotes this termination symbol

with symbol $. The termination symbol ensures that no word equals a prex of another

word. For example, the termination symbol enables one to distinguish between a trie that

contains the two words system and systematically from a trie that contains only the

word systematically.

String Representation. Due to the termination symbol, for each string stored in the tree, a

leaf node exists that represents this particular string. The root node represents the empty

string. Inner nodes represent a prex of a string. Therefore, strings that share a prex also

share an inner node in the trie. Figure 2.8 shows the trie for the words kitten, sitten,

and sittin.
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Figure 2.9: A compressed trie for the words kitten, sitten, and sittin.
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Figure 2.10: A sux tree for the words kitten, sitten, and sittin.

2.4.3 Compressed Trie

A compressed trie is a space-optimized trie [Mor68]. Each node of a trie that has only a

single child is merged with its parent node. The label of the removed edge is appended to

the incoming edge of the merged node. Thus, this reduces the number of nodes but keeps

the information of the edge labels. Figure 2.9 shows the compressed trie for the words

kitten, sitten, and sittin.

2.4.4 Suix Tree

A sux tree is a compressed trie that includes a string and all its suxes [Gus97]. For

example, the string nana is a sux of the string banana. To eciently construct a sux

tree, we refer to Ukkonen’s algorithm [Ukk95] and Farach’s algorithm [Far97]. Figure 2.10

shows the sux tree for the words kitten, sitten, and sittin.

2.4.5 Suix Array

A sux array addresses the same problems as a sux tree by using a linear array [MM93;

AN95]. Enhanced with some additional information, a sux array provides the same

functionality with the same run time complexity as a sux tree [AKO04]. However, a

sux array requires less memory space as a sux tree. Sux arrays and sux trees are

closely related to each other and can be used interchangeable [NB00; AKO04].

A sux array is a sorted array of all suxes of a string. Instead of storing each sux

explicitly, a sux array only stores the indices of the suxes within this string. Table 2.6

shows the suxes of the string kitten. The resulting sux array for the string kitten is

[4, 1, 0, 5, 3, 2] .

To nd a sux, one runs a binary search on the sux array.
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Suix Index

kitten 0
itten 1
tten 2
ten 3
en 4
n 5

(a) All suxes and their corresponding

index.

Sorted suix Suix array

en 4
itten 1

kitten 0
n 5

ten 3
tten 2

(b) All suxes in lexicographic order pro-

duce the sux array.

Table 2.6: The index and the sux array for the string kitten.

2.5 Information Theory

Information theory studies what information generally is and how to measure the amount

of information. Hence, information theory is the basis for the coding, compression, and

transmission of information. The mathematical foundation of information theory was

established by Claude Elwood Shannon [Sha48]. Shannon dened ameasure, called entropy,
to quantify the information that a message carries. Shannon’s entropy is a key component

in information theory.

2.5.1 Entropy

Entropy measures the information content of a message by determining the surprisal

value of the message content. We illustrate the connection between information and

surprisal value in the following. If one observes an expected event, it is hardly surprising.

Hence, such an event contains very little information. If, in contrast, an event happens

unexpectedly, it carries much more information. This means that, for an event 𝐸𝑣 , the infor-

mation content increases when the probability 𝑝 (𝐸𝑣) of this event decreases. Example 2.2

illustrates this.

Example 2.2 Let us consider a coin toss. With a fair coin, the probability of observing heads
is the same probability as observing tails. Since there are two possible outcomes that occur
with the same probability, the actual outcome contains one bit of information. Now, we use
another coin that has two heads and no tail. The outcomes of coin tosses will always be heads.
Since this outcome is predictable, the actual outcome contains no information.

Equation 2.1 denes the entropy 𝐻 (𝑋 ) of a discrete random variable 𝑋 [CT06].

𝐻 (𝑋 ) = −
∑︁
𝑥∈𝑋

𝑝 (𝑥) · log𝑝 (𝑥) (2.1)

Literature [CT06] has the convention that 0 · log 0 = 0. If using the logarithm to the

base 2, the entropy is of unit bits. To explain relationships between the entropy of dierent
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𝐻 (𝑋 ) 𝐻 (𝑌 )

Figure 2.11: The individual entropy of two independent random variables.

𝐻 (𝑋 ) 𝐻 (𝑌 )

𝐻 (𝑋,𝑌 )

Figure 2.12: The relationship between individual entropy and joint entropy.

variables 𝑋 and 𝑌 , it is common to illustrate entropy as a Venn diagram. Figure 2.11 shows

the individual entropy of two variables 𝑋 and 𝑌 .

In Example 2.2, the true probability distribution is known. However, there are cases

where the true probability distribution is unknown. In such cases, we can use an estimate

of the probability distribution to calculate the entropy. Literature calls this empirical
entropy [CT06].

Entropy of Text. One application of empirical entropy is to analyze texts that are written

in a natural language, like English. Formally, a text is a string of characters from a nite

alphabet. The true distribution of the characters in English text is unknown, but one can

estimate the distribution by an empirical analysis of an English text corpus.

The usage frequency of characters in natural language is unevenly distributed [SEW04].

For example, it is far more likely to observe character e than character q, and it is more

likely to observe character chain er than chain em. This makes natural language text easy

to predict [Sch15] and demonstrates the low entropy of natural language text.

2.5.2 Joint Entropy

Joint entropy extends entropy to a pair of discrete random variables 𝑋,𝑌 [CT06]. Equa-

tion 2.2 denes joint entropy.

𝐻 (𝑋,𝑌 ) = −
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑝 (𝑥,𝑦) · log𝑝 (𝑥,𝑦) (2.2)

Again, it is convention that 0 · log 0 = 0. Figure 2.12 depicts the relationship between

individual entropy and joint entropy as Venn diagram.

24



2.5 Information Theory

𝐻 (𝑋 ) 𝐻 (𝑌 |𝑋 )

Figure 2.13: The relationship between individual entropy and conditional entropy.

2.5.3 Conditional Entropy

Conditional entropy 𝐻 (𝑋,𝑌 ) quanties the amount of information of a discrete random

variable 𝑌 given knowledge of another discrete random variable 𝑋 [CT06]. Equation 2.3

denes conditional entropy.

𝐻 (𝑌 |𝑋 ) = −
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑝 (𝑥,𝑦) · log 𝑝 (𝑥,𝑦)
𝑝 (𝑥) (2.3)

Similar to above, it is convention that 0 · log 𝑐
0
= 0 · log 0 = 0; for a constant 𝑐 > 0.

Figure 2.13 depicts the relationship between individual entropy and conditional entropy

as Venn diagram.
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3 RelatedWork

This chapter features related work to each of our contributions. In the rst part, we

classify related work on query algebras. In the second part, we outline string compression

algorithms and cardinality estimation techniques. In the last part, we describe types of

time series similarity search and the mathematical background.

3.1 Query Algebras

Developing methods (and systems) allowing to analyze large text corpora, e. g., from

a linguistic or philosophic perspective, is a current trend that has created the digital

humanities. We now review solutions from this eld and declarative query languages in

general.
1

Work in digital humanities mainly consists of data processing and the analysis of

text corpora [Hai17; War12]. For example, distant reading is a known idea for text

analysis [Mor13]. Distant reading is a vision to study literature by applying digital methods

to large text corpora. Thereby, the term distant reading refers to the higher vision rather

than particular methods or systems. Distant reading contrasts with the conventional

human close reading of individual texts.

Existing text-analysis solutions focus on linguistic and reective properties as well as

their evolution, i. e., changes over time, such as [HLJ16a; Pra+16; HLJ16b]. Respective

systems cannot output the required information to conduct research on conceptual history

in a comprehensive way. In addition, such systems do not provide a suciently abstract

interface, a reason why experts are reluctant in using them [Hai17].

A very common query algebra is the relational algebra [Cod70; Mai83; AHV95]. How-

ever, it does not contain suciently specic operators, e. g., temporal or linguistic operators.

There are extensions to add temporal operators [Sno87; Sno95], but not linguistic operators.

To query relation between words, there are special-purpose query languages. For example,

SQWRL is a language to query an ontology [OD09]. Querying word relations, e. g., from

an ontology, does not include all linguistic relationships needed. Further, ontologies do

not provide temporal information. SQWRL does not contain any temporal operator.—All

of these algebras have in common that they do not cover both linguistic and temporal

operators required for research on conceptual history.

1
This section is an extended version of the related work section in our article [Wil+18]: Jens Willkomm,

Christoph Schmidt-Petri, Martin Schäler, Michael Schefczyk, and Klemens Böhm. 2018. “A Query Algebra

for Temporal Text Corpora.” In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries
(JCDL '18). DOI: 10.1145/3197026.3197044.
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3.2 String Cardinality Estimation

This section shows related work in the eld of cardinality estimation for string attributes.
2

We split this section into two parts. First, we summarize lossless methods to compress

strings and sux trees. These methods reduce the memory consumption without loss of

quality, i. e., they allow for a perfect reconstruction of the data and provide exact results.

Second, we turn to pruning methods for sux trees. Pruning is a lossy compression

method that approximates the original data. In most cases, lossless compression can be

applied in addition to a pruning technique to reduce the memory requirements of a string

data structure.

3.2.1 String Algorithms and Lossless Suix Tree Compression

This section gives a brief overview of string algorithms. First, we show lossless string

compression methods. Second, we dierentiate cardinality estimation from approximate

string matching. Last, we describe techniques to compress sux trees. In contrast to

cardinality estimation, most string algorithms provide exact answers, i. e., without false

positives, and aim at optimizing the space-time trade-o, i. e., they make the representation

of the data structure more concise to save space. Therefore, lossless string compression

methods are orthogonal to cardinality estimation methods and can be applied additionally.

String Compression Methods. There exist various methods to compress strings. One is

statistical compression. Statistical compression exploits the variable frequency of symbols

by assigning shorter codewords to more frequent symbols. Well-known codes are Human

coding [Huf52] and Hu-Tucker coding [HT71]. Second, there are compressed text self-

indexes. A self-index stores the full-text and supports indexed searches on the text [NM07;

Fer+09]. A well-known compressed text self-index is the FM-index [FM05; Fer+07]. Third,

there is dictionary-based compression. The approach is to construct an adaptive dictionary

of symbol chains. The most common representative of this technique is the Lempel and

Ziv (LZ) compression family [ZL77; ZL78; Wel84; AF14]. Fourth, there is an approach,

called antidirectories, which denes a set of forbidden words. On a binary alphabet, the

knowledge of forbidden words is used to achieve compression [Cro+00; CN02; FH08;

OM10; FG19]. Fourth, there are grammar-based compression methods. The idea is to nd

a context-free grammar that generates a given string uniquely. For example, there exist

Sequitur [NW97], Re-Pair [LM00], and other methods [Kie+00; CGW16]. However, all

these compression methods are either incompatible with pattern matching or, as already

stated, orthogonal to pruning methods.

Approximate String Matching. Approximate string matching is the problem of nding

strings that are similar to the search string. This means to nd either all strings within

a maximal string distance [GG88; Bin+19] or the most similar strings [HD80; Ukk92].

2
This section is an extended version of the related work section in our article [WSB21]: Jens Willkomm,

Martin Schäler, and Klemens Böhm. 2021. “Accurate Cardinality Estimation of Co-occurring Words

Using Sux Trees.” In Proceedings of the 26th International Conference on Database Systems for Advanced
Applications (DASFAA '21). DOI: 10.1007/978-3-030-73197-7_50.

28



3.2 String Cardinality Estimation

Therefore, approximate string matching nds slightly dierent strings but does not allow

false-positive results.

Related to approximate string matching, there is string neighborhood generation that

constructs a list of strings within a certain distance. One denition of a neighborhood is

the reduced-alphabet neighborhood [Boy11]. The idea is a hash function that maps a string

character-wise from the full alphabet to a reduced alphabet. The neighborhood generation

works in two steps. First, it creates a neighborhood candidate list by using the reduced

alphabet. To receive the exact string neighborhood, it, secondly, lters the candidate list

by using the full alphabet. The approach to use a hash function to manipulate the alphabet

is also of interest when working on cardinality estimation.

Suix Tree Compression Methods. A sux tree (or trie) is a data structure to index text. It

eciently implements many important string operations, e. g., matching regular expres-

sions. To reduce the memory requirements of the sux tree, there exist approaches to

compress the tree based on its structure [NT02]. Earlier approaches are path compres-

sion [KP86; KP88; KMF17] and level compression [AN93; AN94]. More recent compression

methods and trie transformations are path decompositions [Fer+08; HO13; GO15], top

trees [Bil+15; HR15; BFG17], and hash tables [DCW93; PR15]. Such methods optimize

the memory representation of the sux tree structure to be more concise and, as already

stated, are orthogonal to tree pruning methods.

In addition to structure-based compression, there exist alphabet-based compression

techniques. Examples are the compressed sux tree [GV05], the sparse sux tree [KU96]

and the idea of alphabet sampling [Cla+12; GR15]. These methods reduce the tree size at

the expense of the query time. All these methods provide exact results, i. e., are lossless

compression methods. Lossless tree compression is applicable in addition to tree pruning

methods.

Relation to Cardinality Estimation. We presented important works on string indexing and

string compression. All mentioned algorithms answer queries exactly, i. e., without false

positives. Exact data structures often serve as fundament to store the necessary information

to provide a cardinality estimate. Hence, cardinality estimation directly benets from

future improvements in the eld of exact string compression.

3.2.2 Suix Tree Pruning

Sux trees allow estimating the cardinality of string predicates, i. e., the number of occur-

rences of strings of arbitrary length [VMS15]. With large string databases, in particular, a

drawback of sux trees is their memory requirement [DN00; VMS15]. To reduce the mem-

ory requirements of the sux tree, variants of it save space by removing some information

from the tree [KVI96].

We are aware of three approaches to select the information to be removed: A rst cate-

gory is data-insensitive, application-independent approaches. This includes shortening

suxes to a maximum length [KVI96]. Second, there are data-sensitive, application-

independent pruning approaches that exploit statistics and features of the data, like remov-
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ing infrequent suxes [Gog+14]. Third, there are data-sensitive, application-dependent

approaches. They make assumptions on the suxes which are important or of interest for

a specic application. Based on the application, less useful suxes are removed [SAB08].

For example, suxes with typos or optical character recognition errors are less useful for

most linguistic applications. It is also possible to combine dierent pruning approaches.

Here, we focus on data-sensitive and application-independent pruning.

Horizontal Pruning Approaches. Existing pruning techniques usually reduce the height

of the tree by pruning nodes that are deeper than a threshold depth [KVI96]. Another

perspective is that all nodes deeper than the threshold are merged into one node. We name

such depth-limiting approaches horizontal pruning.

3.3 Time Series Similarity Search

This section describes related work in the eld of time series similarity search using 𝑘-

nearest neighbors (kNN) algorithms.
3
We split this section into six parts. First, we discern

interval-focused kNN search from other similarity search problems. Second, we present

three techniques that are used in related work to accelerate time series similarity search.

Third, we show the mathematical denition of interval-focused kNN. Fourth, we dene

the dynamic time warping distance, a common similarity measure for time series data.

Fifth, we write on lower bounds for the dynamic time warping distance measure. Last, we

describe a cascade of lower bounds.

3.3.1 Types of Time Series kNN Search

Categories of related work in the eld of time series kNN search are whole matching,
subsequence matching and interval-focused matching [Aßf+07]. A whole matching query

kNN(𝑘,𝑄) returns the 𝑘 time series with the smallest distance to the query time series 𝑄

over the full time period, i. e., the full time series length. There are various approaches

for whole matching kNN search [KJF97; CF99; CFY03; KR05; NRR10]. Whole matching is

dierent from interval-focused kNN, as one would have to, say, build a whole matching

kNN index for each window [𝑎, 𝑏]. A subsequence matching query kNN(𝛿,𝑀) returns
all time series containing a time series motif𝑀 , at any point in time. A time series motif

is a pattern for time series [CKL03]. Parameter 𝛿 denes the maximal deviation of the

subsequence from the motif. Again, there are many approaches [FRM94; Li+02; LPK07;

Du+08; Rak+13; LR13; Gil+15], and again, the problem is dierent from interval-focused

kNN. An interval-focused matching query kNN(𝑘,𝑄, [𝑎, 𝑏]) returns the 𝑘 time series

most similar to the query time series 𝑄 where only the similarity in the range [𝑎, 𝑏]
matters [Aßf+07]. This is the problem of interest here.

3
This section is an extended version of the related work section in our article [Wil+19a]: Jens Willkomm,

Janek Bettinger, Martin Schäler, and Klemens Böhm. 2019. “Ecient Interval-focused Similarity Search

under Dynamic TimeWarping.” In Proceedings of the 16th International Symposium on Spatial and Temporal
Databases (SSTD '19). DOI: 10.1145/3340964.3340969.
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3.3.2 Techniques to Accelerate Similarity Search

Due to the scarcity of work on interval-focused kNN, we have analyzed existing approaches

from whole matching and subsequence matching and now review three basic techniques

to accelerate time series kNN queries.

Spatial AccessMethods. A common technique to speed up similarity search for time series

is to index time series with a spatial search tree, e. g., an R-tree or one of its variants [Bec+90;

SK91; AFS93; FRM94; Agr+95; LLM04; KR05; Fu+07; Ass+08; Gil+15]. Vanilla spatial search

trees are not ideal to handle time series for the following reasons. First, spatial search trees

poorly handle high dimensional spaces [WSB98; Sch+13]. Second, the usage of bounding

rectangles restricts an R-tree to metric distance measures [Gut84], like the Euclidean

distance. Third, spanning bounding rectangles across time series data points leads to

hypercubes of very large volumes and, thus, insuciently separate the elements. To avoid

the problem of high dimensional space indexing, some approaches extract time series

features, e. g., wavelet coecients, and index the feature vectors instead of the time series

using a spatial tree [CF99; Keo+01; KPC01; CFY03]. However, time series feature extraction

approaches are unusable for interval-focused similarity search, since they usually remove

the time domain.

Data Partitioning. When partitioning similar time series into groups [NRR10; KS10], a

query starts with sequentially scanning the group most similar to the query. It continues

scanning the groups in descending order of their similarity to the query and stops when

the remaining groups are less similar than the best ones so far. This approach can achieve

a high pruning rate if the time series groups have signicantly dierent shapes. However,

the number of partitions tends to grow linearly with the time series, i. e., browsing and

deciding whether to scan or discard a partition becomes more expensive. This makes this

approach inecient for large data sets.

Lower Bounding Cascade. Various approaches improve a sequential scan by checking

a lower bound or a cascade of lower bounds before computing the real distance [SYF05;

Rak+12]. This works best for long time series, as it saves time by pruning time series

without computing its real distance. However, since it relies on a sequential scan, it

necessarily needs to sequentially scan the entire database and consider every time series.

Combining Various Techniques. Based on this analysis, we conclude that any existing

approach that can (also) be used for interval-focused kNN only uses one of the above

techniques. It is of interest to study their performance and combine existing approaches to a

generalized technique. Before we study such a generalization, we look at the mathematical

background in the following.

3.3.3 Mathematical Definition of Interval-focused Similarity Search

This section, rst, describes the mathematical denition of a time series and, second, of

interval-focused kNN search.
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TimeSeries. A time series𝐶 is a sequence 〈𝑐1, . . . , 𝑐𝑎, . . . , 𝑐𝑏, . . . , 𝑐𝑙〉 of length 𝑙 > 0. 𝐶 [𝑎, 𝑏]
denotes a subsequence of time series 𝐶 beginning at element 𝑐𝑎 and ending at element 𝑐𝑏 .

S is a set of time series that contains |S| = 𝐿 time series. All time series of set S have the

same length 𝑙 . The Google Books Ngram Corpus, for example, has this property.

Interval-focused k-Nearest Neighbor. Querying the 𝑘-nearest neighbors of a query time

series𝑄 results in a setR ⊆ S ofmin(𝑘, |S|) time series so that for any two time series𝐶𝑅 ∈
R and 𝐶𝑆 ∈ S \ R it holds that 𝑑 (𝑄,𝐶𝑅) ≤ 𝑑 (𝑄,𝐶𝑆 ) regarding a distance measure 𝑑 . This

kNN variant is whole-matching kNN. A generalization is the interval-focused kNN query,

dened as kNN(𝑘,𝑄, [𝑎, 𝑏]) [Aßf+07]. The interval-focused kNN query only considers

the interval [𝑎, 𝑏] within time series 𝑄 and 𝐶 to determine the distance. Obviously,

kNN(𝑘,𝑄, [1, 𝑙]) = kNN(𝑘,𝑄).

3.3.4 Dynamic TimeWarping Distance

The result of a kNN query depends on the distance measure 𝑑 . Here, we focus on the

dynamic time warping distance (DTW). Equation 3.1 shows the distance between two

time series 𝑄 and 𝐶 of length𝑚 and 𝑙 using DTW [SC78].

𝐷𝑇𝑊 (𝑄,𝐶) = 𝑝
√︁
𝐷 (𝑚, 𝑙) (3.1)

𝐷 (𝑖, 𝑗) = |𝑞𝑖 − 𝑐 𝑗 |𝑝 +min


𝐷 (𝑖 − 1, 𝑗 − 1)
𝐷 (𝑖 − 1, 𝑗)
𝐷 (𝑖, 𝑗 − 1)

(3.2)

where 𝐷 (0, 0) = 0 and 𝐷 (𝑖, 0) = 𝐷 (0, 𝑗) = ∞ for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑙 .

3.3.5 Lower Bound for a Group of Time Series

In the following, we say how to represent a group of time series and how to compute a

lower bound to such a group. We divide this section into four parts. The rst part describes

the idea of envelopes and denes them. The second part denes piecewise aggregate

approximation, a technique to approximate time series. The third part says how to use

piecewise aggregate approximation on time series envelopes. The last part shows how to

compute a lower bound of the DTW distance for both an envelope and an approximate

envelope.

Time Series Envelope. An envelope 𝐸 = 〈𝑒1, . . . , 𝑒𝑖, . . . , 𝑒𝑙〉 represents a set C of time

series 𝐶 = 〈𝑐1, . . . , 𝑐𝑖, . . . , 𝑐𝑙〉. Envelope 𝐸 consists of elements 𝑒𝑖 = 〈𝑢𝑒𝑖, 𝑙𝑒𝑖〉 representing a

so-called upper sequence 𝑢𝑒𝑖 = max𝐶∈C (𝑐𝑖) and a lower sequence 𝑙𝑒𝑖 = min𝐶∈C (𝑐𝑖) [KR05].
Figure 3.1 illustrates the idea.

Piecewise Aggregate Approximation. A piecewise aggregate approximation (PAA) reduces

the dimensionality of a time series, i. e., the number of data points [Keo+01]. To do so, PAA

creates segments of a xed size and aggregates all data points of a segment to one data
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Figure 3.1: A set of time series enclosed by an envelope.

point, e. g., to the mean, min, or max value. We refer to the PAA version of time series 𝐶

with a xed segment length of 𝑇 as 𝐶𝑇 . The DTW distance for two PAA time series 𝐶𝑇

and𝑄𝑇 is a lower bound for the DTW distance of the original time series𝐶 and𝑄 [SYF05].

Equation 3.3 shows this property.

DTW(𝐶𝑇 , 𝑄𝑇 ) ≤ DTW(𝐶,𝑄) (3.3)

PAAEnvelope. Since an envelope consists of an upper and a lower sequence, one can create

a PAA version 𝐸𝑇 of an envelope 𝐸. To receive a valid PAA envelope, one must aggregate

the upper sequence to the maximum and the lower sequence to the minimum [NRR10].

Equation 3.4 denes a PAA envelope.

𝐸𝑇 = 〈𝑒𝑇
1
, . . . , 𝑒𝑇𝑖 , . . . , 𝑒

𝑇
𝑡 〉 (3.4)

𝑒𝑇𝑖 = 〈𝑢𝑒𝑇𝑖 , 𝑙𝑒𝑇𝑖 〉 (3.5)

𝑢𝑒𝑇𝑖 = max(𝑒𝑢, . . . , 𝑒𝑣 ) (3.6)

𝑙𝑒𝑇𝑖 = min(𝑒𝑢, . . . , 𝑒𝑣 ) (3.7)

where 𝑢 = (𝑖 − 1) ·𝑇 + 1 is the start of segment 𝑖 and 𝑣 = 𝑖 ·𝑇 the end. PAA reduces the

envelope length to 𝑡 with 1 ≤ 𝑡 ≤ 𝑙 . Figure 3.1 illustrates an envelope and its coarse PAA

variant.

Group Lower Bound. The lower bound for a group of time series (LBG) is a lower bound

of the DTW distance from a time series 𝑄 to an envelope 𝐸, i. e., to all time series that

envelope 𝐸 encloses [NRR10]. See Equation 3.8.

LBG(𝑄, 𝐸) ≤ arg min

𝐶∈C
DTW(𝑄,𝐶) (3.8)
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LBG works as follows: For every point in time 𝑖 , the data point 𝑞𝑖 of time series 𝑄 can

either be inside envelope 𝐸, i. e., 𝑙𝑒𝑖 ≤ 𝑞𝑖 ≤ 𝑢𝑒𝑖 , or outside of it, i. e., 𝑞𝑖 > 𝑢𝑒𝑖 or 𝑞𝑖 < 𝑙𝑒𝑖 . If
data point 𝑞𝑖 is outside the envelope, LBG adds the DTW distance from 𝑞𝑖 to the nearest

envelope border, i. e., either 𝑢𝑒𝑖 or 𝑙𝑒𝑖 . In turn, if data point 𝑞𝑖 is inside the envelope, LBG

adds a distance of 0 for point 𝑖 . If envelope 𝐸 encloses a time series 𝑄 , a lower bound is 0.

A proof is in [NRR10].

LBG is also a valid lower bound on the PAA representations𝑄𝑇 and 𝐸𝑇 of a time series𝑄

and an envelope 𝐸 [SYF05]. See Equation 3.9.

LBG(𝑄𝑇 , 𝐸𝑇 ) ≤ LBG(𝑄, 𝐸) (3.9)

This may lead to a less tight lower bound, but may speed up its calculation of the lower

bound signicantly.

Equation 3.10 shows the denition of the LBG lower bound.

LBG(𝑄𝑇 , 𝐸𝑇 ) = 𝑝
√︁
𝐷 (𝑚, 𝑙) (3.10)

𝐷 (𝑖, 𝑗) = 𝑇 · 𝐷𝑠𝑒𝑔 (𝑞𝑇𝑖 , 𝑒𝑇𝑗 ) +min


𝐷 (𝑖 − 1, 𝑗 − 1)
𝐷 (𝑖 − 1, 𝑗)
𝐷 (𝑖, 𝑗 − 1)

(3.11)

𝐷𝑠𝑒𝑔 (𝑞𝑇𝑖 , 𝑒𝑇𝑗 ) =


|𝑙𝑞𝑇𝑖 − 𝑢𝑒𝑇𝑗 |𝑝 if 𝑙𝑞𝑇𝑖 > 𝑢𝑒𝑇𝑗

|𝑙𝑒𝑇𝑗 − 𝑢𝑞𝑇𝑖 |𝑝 if 𝑙𝑒𝑇𝑗 > 𝑢𝑞𝑇𝑖

0 otherwise

(3.12)

where 𝐷 (0, 0) = 0 and 𝐷 (𝑖, 0) = 𝐷 (0, 𝑗) = ∞ for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑙 .
Observe the following properties of LBG. First, a smaller segment size𝑇 usually leads to

a tighter lower bound. Second, Equation 3.10 is also valid for the LBG calculation on the

full dimensionality, i. e., segment size𝑇 = 1. Third, LBG is also a valid lower bound for the

DTW distance of two time series [SYF05]. In this case, envelope 𝐸 only contains a single

time series element. On a segment size of 𝑇 = 1, LBG leads to the exact DTW distance of

two time series. Fourth, LBG also works for dierent segment sizes for 𝑄𝑇1 and 𝐸𝑇2 when

substituting factor 𝑇 with min(𝑇1,𝑇2) in Equation 3.11 [SYF05]. This property becomes

interesting when studying interval-focused queries.

3.3.6 Cascading Lower Bounds

Rakthanmanon et al. analyze and compare the run times and tightness of lower bounds

for the DTW distance [Rak+12]. To achieve a good compromise between run time and

pruning factor, they propose to use two lower bounds in a cascade, as follows.

LB_KimFL(Q, C) was published by Kim et al. [KPC01] and modied by Rakthanmanon

et al. [Rak+12]. It is the Euclidean distance for the rst (F) and last (L) point of time

series𝑄 and𝐶 , since these points always have an alignment of 0. Kim’s lower bound

has a run-time complexity of O(1). Thus, it is a very fast lower bound that removes

many time series in spite of its looseness.
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LB_Keogh(Q, C) was published by Keogh et al. [KR05]. It is the Euclidean distance between

a bounding envelope around time series𝑄 and time series𝐶 . Its run-time complexity

is in O(𝑛), i. e., depends linearly on the length of the time series. Thus, the Keogh

lower bound is cheaper than the quadratic run time of DTW, but prunes further

candidate time series.

Rakthanmanon et al. additionally use max(𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(𝑄,𝐶), 𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(𝐶,𝑄)) as third
step in their lower bound cascade [Rak+12], since LB_Keogh is not commutative, i. e.,

𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(𝑄,𝐶) ≠ 𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(𝐶,𝑄).
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4 A Query Algebra for Temporal Text
Corpora

In this chapter, we design a query algebra to formulate queries for temporal text corpora.

Thereby, we aim to provide an interface to examine complex hypotheses and questions

in the eld of conceptual history. To examine complex hypotheses, a query algebra must

provide the functional scope to express information needs in conceptual history. This

enables empirical analyses of questions about conceptual history on large amounts of

books. Hence, a query algebra to formulate conceptual history hypotheses is the key to

turn conceptual history into a data-driven discipline.

Example 4.1 depicts a complex real-world hypothesis that conceptual historians want

to analyze.

Example 4.1 A conceptual historian examines the impact of World War II and the Cold War
on the German language. She hypothesizes that the words “Osten” and “Westen” (German for
East and West) have acquired a political meaning after 1945. Put dierently, both words have
changed their semantics from only cardinal directions to also political concepts.

To examine a complex hypothesis, a conceptual historian splits this hypothesis into

a number of specic questions. To examine such questions regarding Example 4.1, a

query algebra requires operators to express the usage frequency, co-occurring words, and

how words relate to and contrast with each other over time [BCK04; RGG07].
1
Existing

query algebras, like the one for the Structured Query Language [Cod70; Mai83; AHV95],

have proven their worth, but lack specic support for such analyses. Other approaches

from the literature, e. g., the Contextual Query Language [Con13], the Corpus Query

Language [Jak+10], or the ANNIS Query Language [Zel+09], have similar issues. In the

end, there exists no query language to query word features over time, e. g., co-occurrences.

In this chapter, we propose a query algebra to analyze temporal text corpora. The goal

is to provide an algebra that can match all actual hypotheses of conceptual history. We

address this problem by designing an algebra that is inspired by the work of Reinhart Kosel-

leck [Ols12] (cf. Section 2.1.1). This chapter describes the outcome of an interdisciplinary

collaboration with philosophers working on conceptual history.

Challenges. We have to solve two challenges: data characteristics and showing the

completeness of our query algebra. We describe these challenges in more detail in the

following.

1
The remainder of this chapter bases on our article [Wil+18]: Jens Willkomm, Christoph Schmidt-Petri,

Martin Schäler, Michael Schefczyk, and Klemens Böhm. 2018. “A Query Algebra for Temporal Text

Corpora.” In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (JCDL '18).
DOI: 10.1145/3197026.3197044.
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Data Characteristics Koselleck has given intuitive denitions of his concept types that

are more concrete for some concept types and more abstract for others. In contrast,

when working with real data, we need observable data characteristics that specify

the behavior of individual words.

Completeness To guarantee that domain experts can examine the whole conceptual his-

tory using our query algebra, we must show its completeness. We call our query

algebra complete when one can formulate all potential hypotheses regarding Kosel-

leck’s conceptual history.

Contributions. In this section, we present a data model for temporal text corpora and

a set of algebra operators that forms our CHQL algebra. Our algebra allows analyzing

conceptual history related to arbitrary words and addresses the aforementioned challenges

as follows.

We need to overcome the gap between the philosophical descriptions of information

needs and their implementation. Therefore, we dene a set of data characteristics. Such

a data characteristic is a concrete and quantiable piece of information, e. g., how often

has a word been used in a specic year, or which words are used around this word. The

philosophers’ part is to propose data characteristics that allow to realize all of Koselleck’s

information needs. Our part, as computer scientists, is to oer data characteristics and

suggest its realization. Our algebra is mostly based on these characteristics. We realize

every data characteristic with one algebra operator. For example, our operator surrounding-
words creates a set of words used around a target word. Another example is our sentiment
operator. It maps every word to an integer that represents the sentiment value of this

word.

Our completeness criterion is to cover all of Koselleck’s hypotheses. We argue that

using his hypotheses is a suitable and meaningful criterion, given his academic standing

in the eld. To show the completeness of our algebra in turn, we show that it completely

covers the information needs to analyze conceptual history.

Finally, we arrive at rst novel insights from experimenting with a proof-of-concept

implementation.

Outline. We structure this chapter as follows. Section 4.1 presents the information needs

to examine conceptual history. We depict the process to develop a query algebra in

Section 4.2. We dene the data model of our query language in Section 4.3 and list the

operators in Section 4.4. Section 4.5 shows a proof of concept in which we formulate and

test real-world hypotheses on conceptual history.

4.1 Koselleck’s Information Types

Koselleck distinguishes a number of concept types by various criteria. His criteria are, for

example, changes in the sentence structure or changes in a word’s linguistic context. We

denote Koselleck’s criteria as information types and use these information types as the

information needs in conceptual history.
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Koselleck does not explicitly give a set of information types he uses for his research.

However, experts in this eld have extensive knowledge about the information Kosel-

leck uses, and how he argues. We, and the philosophers in particular, now assemble all

information types Koselleck considers in his work, as follows.

Geography What is the geographical dispersion of words? In which country are specic

words used and which are not?

Conceptual Design Conceptual design means that words can be used as proxies for a more

complex topic than their literal meaning. For instance, when talking about the topic

war, one often does not mean the single word “war”, but also words that belong to

war, like “soldiers” and “death”.

Context The context refers to the linguistic context. A linguistic context is the set of words

that are used around a target word. The context is of special interest for concepts and

ambiguous words. Considering the context of a word allows to detect its meanings.

This is not restricted to ambiguous words. For distinct words, the context might

describe a dierent view on the same circumstance. Take the word “ecology”: It is

used at least in political as well as in economic contexts. It has the same meaning, but

triggers dierent targets, namely to take care of people’s health—and a restriction to

maximize the prot.

Sentence Structure The arrangement of words and phrases denes the structure of a

sentence. Keeping track of changes in the arrangement of phrases is an indicator of

a social change. For example, the phrase “the history of the farmers” changed to “the

history of the trade”. This might mean that trade has now taken the role agriculture

used to have.

Neologisms A neologism is a word or phrase that either is completely new to a language

or is used with a new meaning. It is not necessarily part of the mainstream language.

A revolution usually goes along with new words to describe and categorize the new

conditions.

World Aairs Conceptual history and the ability to interpret a concept and its meaning

require knowledge about world aairs, e. g., changes of economic, political, or social

circumstances. Such historical events often trigger a social change which is reected

in the language.

Coverage in the Query Algebra. We decide to not deal with geographical information in

our algebra. Using a certain language data set, e. g. the British English or the German one,

implicitly contains important geographical information already. We also do not explicitly

model world aairs, for two reasons. First, the user needs extensive knowledge about

world aairs to correctly interpret the results. Second, a user may be looking for special

world aairs and their impact on language. When we explicitly model some events, we

would only facilitate the investigation of known events.
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Figure 4.1: The relationship between concept types, information types, data characteristics,

and operators.
2

4.2 From Concept Types to Operators

In this section, we describe how one can search for concept types with the operators

which we formally dene in Section 4.4. We show that one can search for concept types

that follow the denitions of Koselleck [BCK04]. We explain completeness in three steps,

which Figure 4.1 illustrates. In Section 4.1, we show that Koselleck has come up with

a relationship between concept types and a set of information types. Since Koselleck’s

specications of information types are rather abstract, we now describe an interpretation

of his information types. This interpretation is an original contribution of our work, based

on the expert knowledge of the philosophers in our team. As part of this step, we also

describe a mapping of those types to so-called data characteristics. A data characteristic

is a quantitative feature either explicitly present in the data, e. g., the usage frequency of

word “peace” in 1969, or a derived piece of information, e. g., the dierence between the

usage frequency of words “peace” and “war” in 1941. In principle, we can create numerous

data characteristics from a temporal text corpus. Hence, in the second step, we describe

which data characteristics are needed to simulate Koselleck’s information needs. In the

third step, we explain our realization of all data characteristics and their implementation

as operators.

4.2.1 Step 1: From Concept Types to Information Types

One of Koselleck’s assumptions is that any concept type has its specic characteristic, i. e.,

any concept type can be described as a combination of information types. For example,

2
This gure is based on the one in our article [Wil+19b]: Jens Willkomm, Christoph Schmidt-Petri,

Martin Schäler, Michael Schefczyk, and Klemens Böhm. 2019. “The CHQL Query Language for Con-

ceptual History Relying on Google Books.” In Digital Humanities 2019: Book of Abstracts (DH '19).
URL: https://dev.clariah.nl/files/dh2019/boa/0646.html.

40



4.2 From Concept Types to Operators

words that form a parallel concept might have a signicant number of equal surrounding

words. However, for most concept types, he does not specify this relationship explicitly.

This means that we cannot directly look for concept types. We need to dene operators to

nd the information types that are indicators for concept types. We give an example for

Step 1 in the following.

Example 4.2 We illustrate a relationship between concept types and information types,
using counter concepts as example. Counter concepts shape an asymmetric relation between
us and them [And03].—Examples that are part of the following subsections will continue this
example and say what concept types and information types are in this specic case. We use
counter concepts as a running example in this section wherewith we illustrate each of the
three steps.

4.2.2 Step 2: From Information Types to Data Characteristics

Every concept type has its own characteristics, e. g., roles and functions in text. Koselleck’s

information types are a set of such characteristics. If Koselleck’s theory holds, one can

describe every concept type 𝑐𝑡 as a combination of information types which characterizes 𝑐𝑡 .

This combination always is a subset of all of Koselleck’s information types. We therefore

strive for a system that nds these information types in large corpora. To this end, we

need a formal denition of any information type which is observable and quantiable. We

call such a denition data characteristic. Our philosophy experts dene a mapping from

information types to data characteristics. Before dening all our data characteristics, here

is an example for Step 2.

Example 4.3 This example continues Example 4.2. Words that are often used either near the
word “us” or “them” potentially are counter concepts. Well-known counter concepts [And03]
are:

• the bourgeois opposing to the proletarian

• the socialist opposing to the liberal

• the West opposing to the East

• the Protestant opposing to the Catholic

Hence, one must consider the context of the information type to nd indications for counter
concepts.

Our Data Characteristics. We now describe our data characteristics which identify each

of Koselleck’s information types. In Section 4.4, we dene one operator for each of these

characteristics.

Conceptual Design Words can have single or multiple meanings, i. e., be ambiguous. We

realize nding conceptual design by checking whether a word describes a topic

additionally to its own meaning. A topic is a group of words that are used to
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write about the same issue, e. g. politics or economy. Our experts dene the data

characteristic of conceptual design as the sum of the usage numbers of all words that

belong to a topic. Hence, we propose an operator topicgrouping that groups words

by their topic and sums their usage numbers. If a word has multiple topics, we sum

it into all of these topics.

Context To determine a word’s context in Koselleck’s spirit requires two data characteris-

tics: (1) a set of surrounding words for a target word, i. e., the linguistic context, and

(2) the sentiment for this context, by summing up the sentiment values of the words

of the context. Our surroundingwords operator and sentiment operator implement

this.

Sentence Structure One needs to consider two data characteristics: (1) the function of a

word, i. e., dierentiate between the parts of speech, and (2) completing phrases, i. e.,

search for missing words in a phrase. The rst data characteristic is implemented by

our operator plter. We implement the second one as a pattern-matching operator

which we call textsearch.

Neologisms The data characteristic of a neologism is an increasing word-usage frequency

over time. To nd this characteristic, we propose an operator time series-based
selection that compares the time-series values with a constant. To allow for a temporal

restriction, we also provide a subsequence operator that limits the selection to an

arbitrary time interval. The combination of both operators facilitates the search for

neologisms.

4.2.3 Step 3: Finding Data Characteristics with Operators

In the third step, we implement operators to nd the specied data characteristic in a large

text corpus. This allows to search for any of Koselleck’s information types. The following

example illustrates Step 3.

Example 4.4 This example continues Example 4.3. To nd potential counter concepts, we
apply the surroundingwords operator to our data. It returns a set of surrounding words for
every word in the corpus. We now use our textlter operator to search these sets of surrounding
words for words like “us” or “them”. The more often one of these words is found, the stronger
is the indication that this word is part of a counter concept.

If our operators can identify all data characteristics, one can search for any of Koselleck’s

information types. Thismeans that one can formulate and test all hypothetical relationships

between information and concept types. Hence, we claim that our set of operators is

complete with respect to the set of possible hypotheses.

4.3 Data Model

In this section, we dene the data model behind our query algebra. We then describe

additional data sources which would be necessary to realize all information types described
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®𝑤 ∈𝑊 1 ®𝑝 ∈ 𝑃1 𝐶 ∈ Z3

1980 1981 1982

Begrisgeschichte ∅ 70 54 58

peace NOUN 312,031 330,389 295,867

war NOUN 875,479 878,696 873,246

soldier NOUN 70,196 72,941 72,587

(a) Example elements of set 𝐺1.

®𝑤 ∈𝑊 2 ®𝑝 ∈ 𝑃2 𝐶 ∈ Z3

1980 1981 1982

Reinhart Koselleck ∅ ∅ 65 24 19

conceptual history ∅ ∅ 37 31 27

modern history ∅ ∅ 3,074 3,165 3,459

history modern ∅ ∅ 1 6 4

history books ∅ ∅ 2,248 2,205 2,333

(b) Example elements of set 𝐺2.

Table 4.1: Example sets for 𝑔𝑟𝑎𝑚𝑛 .

in Section 4.2. In the last part of this section, we describe shorthand notations and our

data sources.

4.3.1 Ngram

There are three elementary types: words, parts of speech, and time series. We use 𝑤

to represent an individual word and 𝑊 for a set of words, e. g., 𝑊 = {∅, 𝑝𝑒𝑎𝑐𝑒,𝑤𝑎𝑟,
𝑠𝑜𝑙𝑑𝑖𝑒𝑟, . . .}. ®𝑤 ∈𝑊 𝑛

is a vector of 𝑛 words. For example,𝑊 2 = {(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑢𝑎𝑙, ℎ𝑖𝑠𝑡𝑜𝑟𝑦),
. . .}. A part of speech 𝑝 is an element of 𝑃 = {∅, 𝑁𝑂𝑈𝑁,𝑉𝐸𝑅𝐵,𝐴𝐷𝐽,𝐴𝐷𝑉 , 𝑃𝑅𝑂𝑁, 𝐷𝐸𝑇,
𝐴𝐷𝑃, 𝑁𝑈𝑀,𝐶𝑂𝑁 𝐽, 𝑃𝑅𝑇,𝑋 }. ®𝑝 ∈ 𝑃𝑛 is a vector of parts of speech of length 𝑛. For example,

𝑃2 = {(𝐴𝐷𝑉,𝑉𝐸𝑅𝐵), . . .}. A time series 𝐶 ∈ Z𝑙 is a vector of integer values of length 𝑙 .
Using these basic types, we now dene 𝑔𝑟𝑎𝑚𝑛 .

Denition 4.1 A 𝑔𝑟𝑎𝑚𝑛 is a tuple ( ®𝑤, ®𝑝,𝐶) ∈𝑊 𝑛 ×𝑃𝑛 ×Z𝑙 consisting of a vector of 𝑛 words,
a vector of 𝑛 parts of speech and a time series of length 𝑙 . We abbreviate a set of 𝑔𝑟𝑎𝑚𝑛 as𝐺𝑛 .

Parts of speech are classes of words with similar grammatical properties, e. g., nouns or

verbs. The part of speech elements are intuitive, e. g., NOUN denotes a noun and VERB

a verb. A full description of the part of speech elements is in [Lin+12]. Table 4.1 shows

example elements of sets 𝐺1 and 𝐺2.

Projecting on Single Elements. We dene functions that project a 𝑔𝑟𝑎𝑚𝑛 tuple to its

components. To access the word vector, we have function projwords of type 𝐺𝑛 →𝑊 𝑛
, as

follows:

projwords(𝑔𝑟𝑎𝑚𝑛) := ®𝑤 (4.1)
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𝑤 sentiment

peace +1

war -1

Table 4.2: An example of sentiment information.

To access the parts of speech of a 𝑔𝑟𝑎𝑚𝑛 tuple, we have function projpos of type 𝐺𝑛 → 𝑃𝑛:

projpos(𝑔𝑟𝑎𝑚𝑛) := ®𝑝 (4.2)

To access the time series, we have function projts of type 𝐺𝑛 → Z𝑙 :

projts(𝑔𝑟𝑎𝑚𝑛) := 𝐶 (4.3)

4.3.2 Shorthand Notations

We write 𝑔𝑟𝑎𝑚𝑛 .𝑤 as shorthand for projwords(𝑔𝑟𝑎𝑚𝑛), to access the word vector ®𝑤 . We

use 𝑔𝑟𝑎𝑚𝑛 .𝑝 and 𝑔𝑟𝑎𝑚𝑛 .𝐶 to project on the parts of speech element and the time series,

respectively. We use the notation𝑤𝑖 to access the 𝑖-th element of vector ®𝑤 . The same holds

for 𝑝𝑖 and vector ®𝑝 . We additionally dene two shorthand notations to access time-series

values. The rst one 𝑐𝑦 projects a time series to its value of a specic year 𝑦. The second

notation maps a time series 𝐶 to a subsequence Z𝑙 → Z𝑡 where 0 ≤ 𝑡 ≤ 𝑙 . The access to a

subsequence from year 𝑎 to year 𝑏 inclusively is as follows.

𝐶 [𝑎, 𝑏] :=


subsequence from 𝑎 to 𝑏 if 𝑎 < 𝑏

subsequence with element 𝑐𝑎 if 𝑎 = 𝑏

empty subsequence else

(4.4)

4.3.3 Sentiment and Category

To realize all the information types, we need to combine information from dierent sources.

We need to consider two additional kinds of information: the sentiment value of a word

and its category. A word sentiment can be positive, negative, or neutral. To implement

such a contrast-word rating, we use a binary word-classication mechanism. A category

is a group of words that are used in the same topic, such as religion or economy. To realize

this, we need the information which category a word belongs to. We now dene both

kinds of additional information: the sentiment and the category.

4.3.3.1 Sentiment

In conceptual history, it is important to investigate the relations between concepts, e. g.,

dierences in positive and negative sentiments, or their orientation towards the past or

the future. Signal words typically make these dierences explicit. To illustrate, in the

phrase “the hope for peace” the word “hope” is a word that signals a positive phrasing of

the sentence. The additional information is the knowledge about signal words and their

44



4.4 Query Operators

𝑤 category

war military

soldier military

military military

Table 4.3: An example of category information.

positive or negative classication. To dene the sentiment value for a word, we dene a

function wordsentiment:𝑊 𝑛 → Z. The function maps single words as well as word vectors

to a sentiment value. For example, the single word “power” is a positive word and may

have a sentiment value of +1. The 2-gram “electrical power” in turn does neither have

a positive nor a negative sentiment value. The sentiment value for a neutral rating is 0.

wordsentiment returns integer values to allow modeling dierent grades of positive and

negative sentiments. Table 4.2 lists example words and their sentiments.

4.3.3.2 Category

A category is a word that is used as proxy for a more complex topic than its literal meaning,

e. g., the category military includes the word “war” as well as “soldiers” and others. To

implement information type conceptual design, we need to model the relationship between

words and their categories. We dene category as a function of type𝑊 𝑛 → 𝐶𝑎𝑡 that

maps words to the category they belong to, where 𝐶𝑎𝑡 ⊂𝑊 1
is a set of categories. Every

category in 𝐶𝑎𝑡 is described as a single word of the set of all words𝑊 1
. For example, the

word “military” is a word (“military” ∈𝑊 1
) and a category (“military” ∈ 𝐶𝑎𝑡 ). The word

“soldier” in turn is a word “soldier” ∈𝑊 1
, but does not describe a category “soldier” ∉ 𝐶𝑎𝑡 .

Table 4.3 shows an example of such a category grouping.

4.3.3.3 Information Sources

We store the sentiment information as well as the category information independent

of one specic source. Therefore, we are able to use every source that contains this

information and also to replace a source if a better one is available. Due to their expertise

regarding text and word interpretation, the philosophers in our team have decided for the

following sources. We extract the sentiment information from the LIWC list [Wol+08].

This list is a common reference in computerized text analysis. We use the OpenThesaurus
3

database [Nab05] for the mapping between words and categories.

4.4 Query Operators

Section 4.1 lists a complete set of information types to analyze conceptual history. We

now propose a corresponding set of query operators. Some operators realize an entire

information type, while one needs a combination of operators to realize other, more

3
The OpenThesaurus word net is available at https://www.openthesaurus.de.
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®𝑤 ∈𝑊 1 ®𝑝 ∈ 𝑃1 𝐶 ∈ Z3

1980 1981 1982

military ∅ 945,675 951,637 945,833

Table 4.4: Example result set of the topic grouping operator.

complex types. This section introduces the operators, gives their denitions and shows

how they implement the information types.

4.4.1 Topic Grouping Operator

We realize information type conceptual design by dening a topic grouping operator. To

realize this abstraction, this operator groups all words from the same topic. The groups have

names consisting of one word. Thus, the result is of type 𝑔𝑟𝑎𝑚1. This allows us to dene

word categories e. g., military or religious, and analyze or compare their developments over

time. We rst dene the set of occurrence topics for a given set of words and afterwards

we dene our topicgrouping operator.

Denition 4.2 𝐶𝑎𝑡𝐺 is the set of categories that appear in set 𝐺 .

𝐶𝑎𝑡𝐺 :=
⋃
𝑔∈𝐺
{category(𝑔. ®𝑤)} (4.5)

Denition 4.3 topicgrouping is an operator of type P(𝐺𝑛) → P(𝐺1). It has the following
semantics:

topicgrouping(𝐺) :=
⋃

𝑐𝑎𝑡∈𝐶𝑎𝑡𝐺

©«𝑐𝑎𝑡, ∅,
∑︁

{𝑔∈𝐺 |category(𝑔. ®𝑤)=𝑐𝑎𝑡}
𝑔.𝐶

ª®¬ (4.6)

The topicgrouping operator groups all ngrams by their topic and sums together their

time series.

Example. This example, as well as the ones that follow, use the data in Tables 4.1, 4.3,

and 4.2. topicgrouping sums up the time series of all words belonging to category military.

The result is a time series with the number of times authors have written about a military

topic. For our example data, the operator yields the result in Table 4.4.

4.4.2 Surrounding Words Operator

When computing the context of words, a target word is the word we determine the context

for, whereas context words are the words used around the target word. Before dening

the operator, we dene two auxiliary functions. The rst one maps a word vector to

the set of words. The second function maps a word vector to a word vector of a higher

dimensionality that includes the same elements as the original word vector. We rst dene

the help functions split and expandwords and secondly use these functions to dene our

surroundingwords operator.
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Denition 4.4 split is a function of type𝑊 𝑛 → P(𝑊 1).

split(𝑤 ∈𝑊 𝑛) := {𝑤1,𝑤2, . . . ,𝑤𝑛} (4.7)

split maps a vector of 𝑛 words to a set of 𝑛 words.

Denition 4.5 expandwords is a function of typeN×𝑊 𝑛 → P(𝑊𝑚) with𝑛 < 𝑚;𝑛,𝑚 ∈ N.

expandwords(𝑚, ®𝑞 ∈𝑊 𝑛) :=
{
(𝑤1,𝑤2, . . . ,𝑤𝑚) ∈𝑊𝑚

����∃𝑜 :

𝑛∧
𝑖=1

𝑤𝑖+𝑜 = 𝑞𝑖

}
(4.8)

with 0 ≤ 𝑜 ≤ 𝑚 − 𝑛

expandwords maps a vector of words to a set of vectors that are of higher dimensionality

and contain the original word vector. This includes word vectors with new words in the

front or in the back or both. Parameter𝑚 denes the dimensionality of the target vectors.

Function expandwords adds𝑚 − 𝑛 words to the input vector. For example, we expand the

word vector “history” of length 𝑛 = 1 to a word vectors of length𝑚 = 2. A partial result

are the word vectors “the history”, “conceptual history”, or “history of”.

Denition 4.6 surroundingwords is an operator of type N × 𝐺𝑛 → P(𝐺1). It has the
following semantics:

surroundingwords(𝑚,𝑔 ∈ 𝐺𝑛) :=
⋃

𝑖∈expandwords(𝑚,𝑔. ®𝑤)

⋃
𝑗∈split(𝑖)

{projwords−1( 𝑗)} (4.9)

The surroundingwords operator returns a set of context words occurring together with

at least one of the target words in a window of size𝑚. We split the description into three

steps. First, we lter all multigrams of size𝑚 for those that contain at least one target

word vector. Second, we split these multigrams into single words and, third, we add the

corresponding usage-frequency time series to the context words.

Here are the three steps in more detail.

1. The help function expandwords selects all word vectors of size 𝑚 which contain

the target word vector ®𝑞, no matter at which position of the window it occurs.

expandwords returns a set of word vectors.

2. Having the set of word vectors that contain the target word vector, we split these

word vectors into single words. To perform this splitting, we need function split.
This results in a set of single words.

3. To return elements of type𝑔𝑟𝑎𝑚1 instead of single words, we use the inverse function

projwords
−1

to get the 𝑔𝑟𝑎𝑚1 elements that contain the corresponding word. We do

this for every single word that function split returns. The result is the union over all

𝑔𝑟𝑎𝑚1 elements of all surrounding words.

Example. Suppose that we want all surrounding words for the word “history” within a

window of size𝑚 = 2. Then we get the result shown in Table 4.5.
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®𝑤 ∈𝑊 1 ®𝑝 ∈ 𝑃1 𝐶 ∈ Z3

1980 1981 1982

conceptual ∅ 75,586 78,319 84,518

modern ∅ 523,599 510,492 532,338

books ∅ 447,885 436,655 462,202

Table 4.5: Example result set of the surroundingwords operator.

®𝑤 ∈𝑊 1 ®𝑝 ∈ 𝑃1 𝐶 ∈ Z3

1980 1981 1982

peace NOUN +312,031 +330,389 +295,867

war NOUN -875,479 -878,696 -873,246

Table 4.6: Example result set of the sentiment operator.

4.4.3 Sentiment Operator

Another important information for conceptual history is a word’s sentiment, i. e., the

positive or negative emotions associated with a word. This operator can be used to

determine the sentiment for a single word or for a set of context words. This operator is

the second part to completely cover the context information types from Section 4.1.

Denition 4.7 sentiment is an operator of type 𝐺𝑛 → 𝐺𝑛 . It has the following semantics:

sentiment(𝑔 ∈ 𝐺𝑛) := (𝑔. ®𝑤,𝑔.®𝑝,𝑔.𝐶 · wordsentiment(𝑔. ®𝑤)) (4.10)

This operator multiplies the usage frequency of a word by the word’s sentiment value.

This multiplication takes both into account, the word’s sentiment value and the word’s

usage frequency in the text. The sentiment operator changes the meaning of the time-

series values. The time-series values then no longer stand for the usage frequency of the

word, but its sentiment over time. More precisely, the time-series values represent the

sentiment value of an ngram over time.

The sentiment operator is dened for all lengths of ngrams. However, it only matches

the same ngram length that is specied in the sentiment mapping, but not shorter or

longer ones. For instance, the sentiment for “war” only matches the 1-gram “war”, but

not the 2-gram “civil war”. This allows a ne-grained denition of sentiment values, as it

becomes possible to have dierent sentiment values for “War”, “Civil War”, “First World

War”, “Second World War” and “Cold War”.

Example. Table 4.6 shows an example result of sentiment.
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®𝑤 ∈𝑊 2 ®𝑝 ∈ 𝑃2 𝐶 ∈ Z3

1980 1981 1982

history modern ∅ ∅ 1 6 4

history books ∅ ∅ 2,248 2,205 2,333

Table 4.7: Example result set of the textsearch operator.

4.4.4 Text Search Operator

Having a large set of words, a fundamental need is to search for the words conceptual

historians might be interested in and which matches some pattern 𝑝𝑡 . 𝑃𝑡 is short for a set

of patterns. 𝑍 = {∃,∀} is the set of standard quantiers.

Denition 4.8 textsearch is an operator of type 𝑃𝑡 × 𝑍 × P(𝐺𝑛) → P(𝐺𝑛). It maps its
input as follows:

textsearch(𝑝𝑡, 𝜁 ,𝐺𝑛) := {𝑔 ∈ 𝐺𝑛 | 𝜁𝑖 : 𝑔.𝑤𝑖 matches 𝑝𝑡} (4.11)

The operator selects all tuples that satisfy the given condition with 𝜁 ∈ {∃,∀} as
quantier and 𝑝𝑡 as a search pattern. The quantier controls whether all words need to

match 𝑝𝑡 or just one of them.

Example. When searching for the pattern histo* the textsearch operator returns the set

in Table 4.7.

4.4.5 Part of Speech Filtering

Analyses in conceptual history often only refer to specic parts of speech, such as nouns.

So we propose a lter to keep only ngrams having a specic part of speech, e. g., it allows

to select all nouns.

Denition 4.9 plter is an operator of type 𝑃𝑛 × 𝑍 × P(𝐺𝑛) → P(𝐺𝑛). It maps its input
as follows:

plter(𝑝, 𝜁 ,𝐺𝑛) := {𝑔 ∈ 𝐺𝑛 | 𝜁𝑖 : 𝑔.𝑝𝑖 = 𝑝} (4.12)

Like in the denition of the textsearch operator, we use the quantier 𝜁 ∈ {∃,∀} to
match the part of speech for at least one element or for all elements. In contrast to the

textsearch operator, we can only search for part of speech tags.

Example. Selecting all nouns returns a set like the one in Table 4.8.

4.4.6 Time Series-based Selection

Wemaywant to excludewords with extreme time-series values from our analysis, e. g., very

rarely used words, because they might falsify our results. So we need a lter for time-series

characteristics. Θ = {<, ≤,=,≠, ≥, >} is the set of standard comparison operators.
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®𝑤 ∈𝑊 1 ®𝑝 ∈ 𝑃1 𝐶 ∈ Z3

1980 1981 1982

peace NOUN 312,031 330,389 295,867

war NOUN 875,479 878,696 873,246

Table 4.8: Example result set of the plter operator.

®𝑤 ∈𝑊 1 ®𝑝 ∈ 𝑃1 𝐶 ∈ Z3

1980 1981 1982

peace NOUN 312,031 330,389 295,867

war NOUN 875,479 878,696 873,246

Table 4.9: Example result set of the time series-based selection.

Denition 4.10 cond is a tuple (𝜁 , 𝜃, 𝑣) ∈ 𝑍 × Θ × Z of conditions Cond.

Denition 4.11 𝐹𝑐𝑜𝑛𝑑 ⊆ Z𝑙 is a set of time series that fulll condition cond.

𝐹(𝜁 ,𝜃,𝑣) := {𝐶 ∈ Z𝑙 | 𝜁𝑖 : 𝑐𝑖 𝜃 𝑣} (4.13)

Denition 4.12 tsselection is an operator of type 𝐶𝑜𝑛𝑑 × P(𝐺𝑛) → P(𝐺𝑛). It maps its
input as follows:

tsselection(𝑐𝑜𝑛𝑑,𝐺𝑛) := {𝑔 ∈ 𝐺𝑛 |𝑔.𝐶 ∈ 𝐹𝑐𝑜𝑛𝑑} (4.14)

The time series-based selection operator selects 𝑔𝑟𝑎𝑚𝑛 elements based on their time-

series properties.

Example. Condition 𝑐𝑜𝑛𝑑 = (∀, >, 1000) is the condition to select all ngrams whose usage

frequency is larger than 1,000 for every available year. The resulting set is shown in

Table 4.9.

4.4.7 kNN Operator

Another information that is of interest for analyzing conceptual history is to nd words

with a similar evolution of usage frequency, sentiment, or surrounding words. This leads

us to the denition of a kNN operator, which returns the 𝑘 ngrams having the most similar

time series to a given ngram. This information type is part of analyzing the grammatical
structure.

Denition 4.13 kNN is an operator of type N ×𝐺𝑛 × P(𝐺𝑛) → P(𝐺𝑛). It maps its input
as follows:

kNN(𝑘, 𝑞,𝐺𝑛) := arg min

{𝑆∈P(𝐺𝑛):|𝑆 |=𝑘}
max

𝑠∈𝑆
‖𝑠 .𝐶 − 𝑞.𝐶 ‖

2
(4.15)
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®𝑤 ∈𝑊 2 ®𝑝 ∈ 𝑃2 𝐶 ∈ Z3

1980 1981 1982

conceptual history ∅ ∅ 37 31 27

Table 4.10: Example result set of the kNN operator.

®𝑤 ∈𝑊 2 ®𝑝 ∈ 𝑃2 𝐶 ∈ Z2

1980 1981

Reinhart Koselleck ∅ ∅ 65 24

conceptual history ∅ ∅ 37 31

Table 4.11: Example result set of the subsequence operator.

Our kNN operator implements a kNN search based on the time-series values of the

𝑔𝑟𝑎𝑚𝑛 elements. Input 𝑘 denes the number of resulting elements, i. e., the number of

nearest neighbors to search for. 𝑞 denes the target 𝑔𝑟𝑎𝑚𝑛 to search the neighbors for.

Input set 𝐺𝑛 denes the search space, i. e., the set of possible results. The kNN operator

can be used with dierent distance measures. For example, our implementation currently

supports the Euclidean distance and dynamic time warping.

Example. Searching for the 𝑘 = 2 nearest neighbors of the target word “Reinhart Kosel-

leck” yields the result in Table 4.10.

4.4.8 Subsequence Operator

Most time-specic information has a specic start or end date or is in a specic temporal

range of historical events, e. g., in the period from 1945 to 1990. However, the operators

above work over the whole time range. Hence, we need an operator that reduces time

series to a certain time interval.

Denition 4.14 subsequence is an operator of type𝐺𝑛 ×N ×N→ 𝐺𝑛 . It maps its input as
follows:

subsequence(𝑔, 𝑎, 𝑏) := (𝑔. ®𝑤,𝑔.®𝑝,𝑔.𝐶 [𝑎, 𝑏]) (4.16)

The subsequence operator has three parameters: the 𝑔𝑟𝑎𝑚𝑛 element 𝑔, the start year 𝑎

and the end year 𝑏. It takes the input ngram element and reduces its time series to the

time window [𝑎, 𝑏].

Example. When applying function subsequence to consider only the years from 1980 to

1981, the result looks like the set in Table 4.11.

51



4 A Query Algebra for Temporal Text Corpora

®𝑤 ∈𝑊 2 ®𝑝 ∈ 𝑃2 𝐶 ∈ Z3

1980 1981 1982

peace NOUN +312,031 +330,389 +295,867

war NOUN +875,479 +878,696 +873,246

Table 4.12: Example result set of the absolute operator.

4.4.9 Absolute Value Operator

Using the sentiment operator allows generating positive and negative time-series values

representing positive or negative word emotions. For some investigations of conceptual

history, one needs to quantify word’s emotions, no matter whether they are positive or

negative. To archive this, we rst apply the sentiment operator and secondly the absolute

value operator that maps all sentiment values to positive values, i. e., the absolute value of

the sentiment value.

Denition 4.15 tsabs is a function of type Z𝑙 → N𝑙
0
, as follows:

tsabs(𝐶) := ( |𝑐1 |, |𝑐2 |, . . . , |𝑐𝑙 |) (4.17)

tsabs maps every value of a given time series to its absolute value.

Denition 4.16 absolute is an operator of type 𝐺𝑛 → 𝐺𝑛 . It maps its input as follows:

absolute(𝑔) := (𝑔. ®𝑤,𝑔.®𝑝, 𝑡𝑠𝑎𝑏𝑠 (𝑔.𝐶)) (4.18)

The absolute value operator turns every time-series value of a 𝑔𝑟𝑎𝑚𝑛 element into its

absolute value. Function tsabs maps the values for every single year to its absolute value

and creates a new time series with absolute values.

Example. Applying this operator to the previous set yields the result in Table 4.12.

4.4.10 Count Operator

When working with huge data sets, which is preferred for statistical analysis, for many

queries a human user simply cannot look at all elements or count them manually. The

count operator counts the number of elements of a given set.

Denition 4.17 count is an operator of type P(𝐺𝑛) → N. It maps its input as follows:

count(𝐺 ∈ P(𝐺𝑛)) := |𝐺 | (4.19)

Given an input set, count counts its elements and returns the number of containing

elements.

Example. When we want to count the number of nouns in our data set in Table 4.1, we

rst lter for nouns, using the plter operator, followed by the count operator. Table 4.13
shows the result.
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integer value

3

Table 4.13: Example result of

operator count.

𝐶 ∈ Z3

1980 1981 1982

−563, 448 −548, 307 −577, 379

Table 4.14: Example result of operator sumup.

4.4.11 Sumup Operator

There is often the need to sum up the time series of ngrams, e. g., to compare the frequency

of all nouns or adjectives. The sumup operator gets a set of ngrams, sums up their time

series and returns the resulting time series. In comparison to the topicgrouping operator,

the sumup operator does not group the elements, but sums up all received time series.

Denition 4.18 sumup is an operator of type P(𝐺𝑛) → Z𝑙 . It maps its input as follows:

sumup(𝐺 ∈ P(𝐺𝑛)) :=
∑︁
𝑔∈𝐺

𝑔.𝐶 (4.20)

The sumup operator iterates over the given set of ngrams and sums together their time

series. In the case of summing up sentiment time series, the operator may return a time

series containing negative values.

Example. The result set when applying this operator to the example set from the senti-

ment operator looks like the one in Table 4.14.

4.4.12 Set Operators

Since we are working on sets, we are able to use the set operators intersection (∩), union
(∪), and minus (\). The key on which these operators work is a combination of the word

vector𝑤 and the corresponding part of speech, i. e., vector ®𝑝 . The time-series attribute of

the result set is taken from the left input set.

4.4.13 Algebraic Expressions

So far, we have introduced individual operators. In order to formulate complex hypotheses

revealing novel insights for conceptual history, one generally needs to combine operators.

For instance, in case one wants to nd the 𝑘-nearest nouns to some given ngram in a

specic time period, we can combine the existing operators to formulate an expression to

compute the desired result. Operators are compatible if the output of the rst operator is

of the same type as the input of the second operator. Most of our operators result in a set

of ngram tuples, but not all of them. There are two operators that do not result in such a

set: count and sumup. Both operators yield a single value. These operators usually are

the nal operation in an algebraic expression, e. g., summing up the input tuples. How to

come from a philosophical hypothesis to concrete queries, and how example results may

look like is the topic of the next section.
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Figure 4.2: Testing Hypotheses H1.

4.5 Proof of Concept

Our query algebra allows (1) hypotheses testing and (2) hypotheses engineering. We

explain both in this section.

4.5.1 Hypotheses Testing

Hypotheses testing enables scholars to empirically test existing hypotheses regarding

properties of dierent concept types. For example, scholars want to test a hypothesis that

characterizes parallel concepts. This consists of the following steps: First, they formulate

their hypothesis, i. e., translate it to an algebraic expression. Second, they let a machine

evaluate it on a huge corpus. Third, they interpret the results. To illustrate, think of the

two hypotheses:

Hypothesis H1 The words “Osten” and “Westen” (German for East andWest) have acquired

a political meaning, i. e., a political context, during the Cold War, while the words

“Norden” and “Süden” (German for North and South) have not changed their merely

geographical meaning.

Hypothesis H2 The two words “Osten” and “Westen” have developed into contrasting

classes, i. e., have changed from parallel concepts to counter concepts.

Formulate Hypothesis H1. To formulate Hypothesis H1, we use several operators, see

Figure 4.2a for the operator tree. First, we need the text-search operator for occurrences

of the four cardinal directions. We then generate the common context of “Osten” and

“Westen” as well as the one of “Norden” and “Süden”. To remove the context words related
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Figure 4.3: Testing Hypotheses H2.

to cardinal directions, we subtract the common context of “Norden” and “Süden” from the

one of “Osten” and “Westen”. This leads to the context of “Osten” and “Westen” that is not

related to cardinal directions. In a nal step, we categorize the remaining context words.

Figure 4.2b visualizes the result of computing this operator tree.

Formulate Hypothesis H2. Given the validation of Hypothesis H1 that the words “Osten”

and “Westen” become a political context, in Hypothesis H2we check whether the semantics

of the context for these two words develop into contrasting directions, i. e., if one word

gets a positive context while the other one gets a negative one. We again start using our

text-search operator to select the appropriate occurrences. We then separately generate

the context for “Osten” and for “Westen” and perform a sentiment analysis. The operator

tree to test Hypothesis H2 is shown in Figure 4.3a. Figure 4.3b visualizes the result. The

result shows that the word “Westen” is used in a context mainly consisting of positive

words while the words around “Osten” sum up to a negative sentiment. There can be

two reasons for this: (1) The word “Westen” has more positive surrounding words that

overcome the negative ones, or (2) the word “Osten” misses some surrounding words that

the word “Westen” has and therefore sums to a negative sentiment. One can test these

two possible reasons with a corresponding expression in our algebra.

4.5.2 Hypotheses Engineering

Hypotheses engineering means developing criteria and hypotheses to distinguish between

concept types, i. e., speculating about their dierences, formulating and executing algebraic

expressions, and interpreting the result. We, especially the philosopher team, are interested

in checking hypotheses to get a better understanding of the dierences between parallel
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and counter concepts. From close reading, they already have some hypotheses regarding

the characteristics of parallel concepts. These hypotheses relate to the usage frequency,

the surrounding words, and the sentiment values of words. We have formulated and

tested all these hypotheses with the outcome that we could not conrm any of them. Our

conceptual history experts then have had a closer look at the results of the expression.

They have observed that some queries produce better results than others, i. e., contain more

parallel concepts. This conrms that our approach gives access to important information

for conceptual history experts to develop new hypotheses. At the end of this process, our

experts have been able to identify important information types of a parallel concept, as

follows: A parallel concept features two concepts whose surrounding words have a similar

sentiment, and they share numerous surrounding words.

4.6 Summary

In this chapter, we design a query algebra for temporal text corpora. In contrast to existing

query languages and algebras, our query algebra paves the way to formulate hypotheses

about conceptual history. As part of our query algebra, we dene a data model for temporal

text corpora. In cooperation with domain experts, we identify primary information needs

in conceptual history and study how this information manifests in a temporal text corpus.

Based on our ndings, we dene a set of algebraic operators that reects this information.

In this way, our operators satisfy all information needs that Koselleck used in his works.

Furthermore, our operators can be combined to expressions to represent arbitrary complex

queries. In a proof of concept, we show that our query algebra allows to formulate

important hypotheses in conceptual history. In addition, we test two hypotheses on the

Google Books Ngram Corpus and discuss the results together with domain experts. Our

query algebra is an essential building block to turn conceptual history into a data-driven

discipline.
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Co-occurring Words

In this chapter, we describe accurate cardinality estimation of co-occurring words to

improve query optimization on large corpora. The declarative way to write queries and the

existence of semantically equivalent algebraic expressions make room to generate dierent

query plans, i. e., dierent ways to create the desired result that are dierently expensive.

Modern information systems provide a query optimizer that searches for the query plan

that produces the lowest execution costs. To estimate these costs, one key factor of cost-

based optimizers is cardinality estimation [Wu+13; Lei+15]. Such cardinality estimators

determine the expected size of an intermediate result and the number of elements in a

database that corresponds to a selection predicate. Since query optimization substantially

relies on cardinality, nding a good query execution plan requires accurate cardinality

estimation.

The estimation methods dier depending on both the data type, e. g., numerical at-

tributes [KM10; MMK18] and textual attributes [KVI96; CGG04; SL19], and the operation

to be estimated. In conceptual history, one essential kind of query is to analyze co-

occurrences, i. e., two words alongside each other in a certain order [MS99; Min+12]. This

is of special interest because changes in co-occurrences indicate changes in the word

semantics [Kro15]. Example 5.1 illustrates such kinds of questions.

Example 5.1 We continue Example 4.1. A conceptual historian examines the semantic
change of the words “east” and “west” in the 20th century. To obtain more detailed information
about this change, she studies the co-occurrences of both words. This leads to questions of the
following kind:

1. What were the co-occurrences of “west” in the 20th century?

2. How did the co-occurrences of “west” change during the 20th century? In other words,
which of its co-occurring words came up or disappeared in this period?

3. What words co-occur with “east”, but not with “west”?

Queries that select co-occurring words are dubbed co-occurrence queries. In CHQL, these

are queries that contain the surroundingwords operator (cf. Section 4.4.2). Co-occurrence

queries use the output of this operator as input for analyses. For example, such analyses

are to compare co-occurrences for various words or various time intervals.
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Optimizing a co-occurrence query is dicult.
1
A particularity of co-occurrences is that

they only exist in chains of several words (word chain), like ngrams or phrases. This calls

for cardinality estimates on a set of word chains. Compared to individual words, word

chains form signicantly longer strings, with a higher variance in their lengths. Our focus

in this chapter is on the accuracy of such estimates with little memory consumption at the

same time.

One approach to index string attributes is to split the strings into trigrams, i. e., break

them up into sequences of three characters [AM93; KVI96; CGG04]. This seems to work

well to index individual words. However, the trigram approach will not reect the con-

nection between words that are part of a word chain. Another method to index string

attributes is the sux tree [KVI96; Li+15a]. Since sux trees tend to be large, respective

pruning techniques have been proposed. A common technique is to prune the tree to

a maximal depth [KVI96]. Since the size of a sux tree depends on the length of the

strings [Sad07], other pruning methods work similarly. We refer to approaches that limit

the depth of the tree as horizontal pruning. With horizontal pruning however, all branches

are shortened to the same length. So horizontal pruning takes away more information

from long strings than from short ones. This leads to poor estimation accuracy for long

strings and more uncertainty compared to short ones.

Challenges. Designing a pruning approach for long strings faces the following challenges.

First, the reduction of the tree size should be independent of the length of the strings.

Second, one needs to prune, i. e., remove information, from both short and long strings

to the same extent rather than only trimming long strings. Third, the pruning approach

should provide a way to quantify the information loss or, even better, provide a method to

correct estimation errors.

Contributions. In this chapter, we propose what we call vertical pruning. In contrast

to horizontal pruning that reduces any tree branch to the same maximal height, vertical

pruning aims at reducing the number of branches, rather than their length. The idea is

to map several strings to the same branch of the tree, to reduce the number of branches

and nodes. This reduction of tree branches makes the tree thinner. So we dub the result
of pruning with our approach Thin Sux Tree (TST). A TST removes characters from

words based on the information content of the characters. We propose dierent ways

to determine the information content of a character based on empirical entropy and

conditional entropy. We also present an approach to correct estimation errors. At build

time, TST counts the number of suxes merged into a node while, at query time, TST

splits the merged cardinality counts on the merged suxes. Our evaluation shows that our

pruning approach reduces the size of the sux tree depending on the character distribution

in natural language (rather than depending on the length of the strings). TST prunes both

short and long strings to the same extent. Our evaluation also shows that TST provides

1
The remainder of this chapter bases on our article [WSB21]: Jens Willkomm, Martin Schäler, and Klemens

Böhm. 2021. “Accurate Cardinality Estimation of Co-occurring Words Using Sux Trees.” In Proceed-
ings of the 26th International Conference on Database Systems for Advanced Applications (DASFAA '21).
DOI: 10.1007/978-3-030-73197-7_50.
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5.1 The Thin Sux Tree

signicantly better cardinality estimations than a pruned sux tree when the tree size is

reduced by 60 % or less. Due to the redundancy of natural language, TST yields hardly any

error for tree-size reductions of up to 50 %.

Outline. We structure this chapter as follows. We introduce the thin sux tree in

Section 5.1. We say how to correct estimation errors in Section 5.2. We describe the

procedures insert and query in Section 5.3. Our evaluation is in Section 5.4.

5.1 The Thin Suix Tree

To store word chains as long strings in a sux tree eciently, we propose TST, a novel

pruning technique for sux trees. In contrast to horizontal pruning approaches, it aims

at reducing the number of branches in the tree, rather than their length. We refer to

this as vertical pruning. The idea is to conate branches of the tree to reduce its memory

consumption. This means that one branch stands for more than one sux. As usual, the

degree of conation is a trade-o between memory usage and accuracy. In this section,

we (1) present the specics of TST and (2) dene interesting map functions that specify

which branches to conate.

5.1.1 Our Vertical Pruning Approach

To realize the tree pruning, we propose a map function that discerns the input words from

the strings inserted into the tree. For every input word (preimage) that one adds to the

tree, the map function returns the string (image) that is actually inserted. TST stores the

image of every sux. This map function is the same for the entire tree, i. e., we apply the

same function to any sux to be inserted (or to queries). Tree thinning occurs when the

function maps several words to the same string. The map function is surjective.

Fixing a map function aects the search conditions of the sux tree. A sux tree

and sux tree approximation techniques usually search for exactly the given sux, i. e.,

all characters in the given order. Our approximation approach relaxes this condition to

words that contain the given characters in the given order, but may additionally contain

characters that the map function has removed. For example, instead of querying for the

number of words that contain the exact sux mnt, one queries the number of words that

contain the characters m, n, and t in this order, i. e., a more general pattern. We implement

this by using a map function that removes characters from the input strings. We see the

following two advantages of such a map function: (1) Branches of similar suxes conate.

This reduces the number of nodes. (2) The sux string becomes shorter. This reduces the

number of characters. Both features save memory usage.

5.1.2 Character-removing Map Functions

A character-removing map function removes characters from a given string.

Denition 5.1 A character-removing map function is a function that maps a preimage
string to an image string by removing a selection of specic characters.
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5 Accurate Cardinality Estimation of Co-occurring Words

To remove characters systematically, we consider the information content of the charac-

ters. According to Shannon’s information theory, common characters carry less informa-

tion than rare ones [Bro+92; MGR98]. This is known as Shannon entropy of the alphabet.

The occurrence probability 𝑃 (𝑐) of a character 𝑐 is its occurrence frequency relative to the

one of all characters of the alphabet Σ.

𝑃 (𝑐) = frequency(𝑐)∑
𝜎∈Σ frequency(𝜎)

(5.1)

The information content of a character 𝑐 is inversely proportional to its occurrence proba-

bility 𝑃 (𝑐).
I(𝑐) = 1

𝑃 (𝑐) (5.2)

According to Zipf’s law, the occurrence probability of each 𝑐 is inversely proportional to

its rank in the frequency table [SEW04].

𝑃 (𝑐) ∼ 1

rank(𝑐) (5.3)

Thus, the information content of character 𝑐 is proportional to its rank.

I(𝑐) ∼ rank(𝑐) (5.4)

To create a tree of approximation level 𝑧, a map function removes the 𝑧 most frequent

characters in descending order of their frequency. Example 5.2 shows this for approxima-

tion level 3. Example 5.3 illustrates the eect of a character-removing map function on a

sux tree, especially on the memory requirement.

Example 5.2 The characters e, t, and a (in this order) are the three most frequent characters
in English text. At approximation level 3, a map function maps the input word requirements

to the string rquirmns.

Example 5.3 Figure 5.1a shows the full sux tree for the words kitten, sitten, and sittin.
Its size is 288 bytes. The exact result of the regular expression *itten is 2 counts. For illustrative
purposes, we rst show the impact of a map function that removes character i and of a second
function that removes i and e. Figure 5.1b shows the rst approximation level, i. e., character i
removed. The tree is of size 224 bytes, i. e., it saves 22 % of memory used. When we query this
tree for the regular expression *itten, the result is 2 counts. The tree still estimates correctly.
Figure 5.1c shows a tree with character e removed additionally. It has a size of 192 bytes and,
thus, saves 33 % of memory usage. When we query the regular expression *itten, the result
is 3 counts. So it now overestimates the cardinality.

5.1.3 More Complex Map Functions

When removing characters of the input words, one can also think of more complex map

functions. We see two directions to develop such more complex functions: (1) Consider

character chains instead of single characters or (2) respect previous characters. We will

discuss both directions in the following.
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(a) A full sux tree for the words kitten, sitten, and sittin.

en$ stt
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t
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(b) The tree when using a map function that removes i.

kttn$ t

n$ tn$

n$ sttn$

(c) The tree when using a map

function that removes i and e.

Figure 5.1: The impact of character-removing map functions on a sux tree.

Removing Character Chains. The map function considers the information content of

combinations of several consecutive characters, i. e., character chains. Take a string

𝑤 = 𝑐1𝑐2𝑐3 that consists of characters 𝑐1, 𝑐2, and 𝑐3. We consider character chains of

length 𝑜 and create a frequency table of character chains of this length. The information

content of a character chain 𝑐1 . . . 𝑐𝑜 is proportional to its rank.

I(𝑐1 . . . 𝑐𝑜) ∼ rank(𝑐1 . . . 𝑐𝑜) (5.5)

Our character-chain-removing map function is a character-removing map function that

removes every occurrence of the 𝑧 most frequent character chains of the English language

of length 𝑜 . See Example 5.4.

Example 5.4 A character-chain-removing map function removing the chain re maps the
input requirements to quiments.

Using Conditional Entropy. We dene a character-removing map function that respects

one or more previous characters to determine the information content of a character 𝑐1.

Given a string𝑤 = 𝑐0𝑐1𝑐2, instead of using the character’s occurrence probability 𝑃 (𝑐1),
a conditional-character removing map function considers the conditional probability

𝑃 (𝑐1 |𝑐0). Using Bayes’ theorem, we can express the conditional probability as follows.

𝑃 (𝑐1 |𝑐0) =
frequency(𝑐0𝑐1)
frequency(𝑐0)

(5.6)

Since the frequencies for single characters and character chains are roughly known (for

the English language for instance), we compute all possible conditional probabilities

beforehand. So we can identify the 𝑧 most probable characters with respect to previous

characters to arrive at a tree approximation level 𝑧. See Example 5.5.
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5 Accurate Cardinality Estimation of Co-occurring Words

Example 5.5 A map function removes e if it follows r. Thus, the function maps the input
word requirements to rquirments.

5.1.4 A General Character-removing Map Function

In this section, we develop a general representation of the map functions proposed so far,

in Sections 5.1.2 and 5.1.3. All map functions have in common that they remove characters

from a string based on a condition. Our generalized map function has two parameters:

Observe The length of the character chain to observe, i. e., the characters we use to

determine the entropy. We refer to this as 𝑜 . Each map function requires a character

chain of at least one character, i. e., 𝑜 > 0.

Remove The length of the character chain to remove. We refer to this as 𝑟 with 0 <

𝑟 ≤ 𝑜 . For 𝑟 < 𝑜 , we always remove the characters from the right of the chain

observed. In more detail, when observing a character chain 𝑐0𝑐1, we determine the

conditional occurrence probability of character 𝑐1 using 𝑃 (𝑐1 |𝑐0). Therefore, we
remove character 𝑐1, i. e., the rightmost character in the chain observed.

Our generalized map function allows to simulate all character-removing map functions

as follows. We parameterize our generalized map function to observe a single character

and, if necessary, remove a single character, i. e., 𝑜 = 𝑟 = 1. To simulate a character-chain-

removing function, we observe and if necessary remove the same number of characters,

i. e., 𝑜 > 1 and 𝑟 = 𝑜 . We simulate a character-removing map function that respects one or

more previous characters by observing more characters than we potentially remove, i. e.,

𝑜 > 𝑟 . To remove a single character depending on the two previous characters, we use

𝑜 = 3 and 𝑟 = 1. Example 5.6 illustrates this.

Example 5.6 To remove character t if it occurs after the characters m, e, and n (in this order),
we specify a map function that observes character chains of length four (𝑜 = 4) and removes
individual characters (𝑟 = 1). So this function takes the previous 4 − 1 = 3 characters into
account to decide whether to remove character t or not. Technically, the map function searches
for the four-digit character chain ment and replaces it with the chain men.

We refer to a map function that observes and removes single characters as o1r1, to ones

that additionally observe one previous character and remove one character as o2r1, and

so on. The map function in Example 5.6 is o4r1.

5.1.5 Cases of Approximation Errors

Character-removing map functions may lead to two sources of approximation error, by (1)

conating tree branches and (2) by the character reduction itself.
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(a) A complete sux tree for the words water (4 times)
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(b) The tree when using a map function

that removes characters e and t.

Figure 5.2: Each node of the thin sux tree includes a sux count and, additionally to

calculate the correction factor, a Bloom lter.

Case 1: Branch Conflation. In most cases, when removing characters, words still map

to dierent strings and, thus, are represented in separate tree nodes. But in some cases,

dierent words map to the same string and these words correspond to the same node. For

example, when removing the characters e and t, the map function maps water and war to

the same string war. The occurrences of the two words are counted in the same node, the

one of war. Thus, the tree node of war stores the sum of the numbers of occurrences of

war and water. So TST estimates the same cardinality for both words.

Case 2: Character Reduction. A character-removing map function shortens most words.

But since it removes the most frequent characters/character chains rst, it tends to keep

characters with high information content. However, with a very high approximation

degree, a word may be mapped to the empty string. Our estimation in this case is the

count of the root node, i. e., the total number of strings in the tree.

5.2 Error Correction

Since we investigate the causes of estimation errors, we now develop an approach to

correct them. Our approach is to count the number of dierent input strings that conate

to a tree node. Put dierently, we count the number of dierent preimages of a node. To

estimate the string cardinality, we use the multiplicative inverse of the number of dierent

input strings as a correction factor. For example, think of a map function that maps two

words to one node, i. e., the node counts the cardinality of both strings. TST estimates half

of the node’s count for both words. Example 5.7 illustrates how to compute a correction

factor.

Example 5.7 Imagine a sux tree that contains the words water and war. water occurs
4 times and war occurs 2 times in the database. Figure 5.2a shows the full sux tree. We now
build a thin sux tree by removing characters e and t. Both words map to the string war.
Its node holds a count of 4 + 2 = 6, and the tree will answer both queries, i. e., for water and
for war with 6. Figure 5.2b shows the corresponding tree. When we query the cardinality of
the two words, the relative error is 6

4
= 1.5 for water and 6

2
= 3 for war. Since we know that

this node is reached by 2 dierent input words, we can answer a query with a cardinality of
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5 Accurate Cardinality Estimation of Co-occurring Words

6 · 1
2
= 3. Using the correction factor 1

2
reduces the relative error to 3

4
= 0.75 for water and

3

2
= 1.5 for war.

5.2.1 Counting the Branch Conflations

To compute the correction factor, we need the number of dierent input words that map

to a node. To prevent the tree from double counting input words, each node has to record

words already counted. A rst idea to do this may be to use a hash table. However, this

would store the full strings in the tree nodes and increase the memory usage by much.

The directed acyclic word graph (DAWG) [Blu+85] seems to be an alternative. It is a

deterministic acyclic nite state automaton that represents a set of strings. However,

even a DAWG becomes unreasonably large, to be stored in every node [BEH89]. There

also are approximate methods to store a set of strings. In the end, we choose the Bloom

lter [Blo70] for the following reasons: Firstly, it needs signicantly less memory than

exact alternatives. Its memory usage is independent of the number as well as of the length

of the strings. Secondly, the only errors are false positives. In our case, this means that we

may miss to count a preimage. This can lead to a slightly higher correcting factor, e. g.,
1

3

instead of
1

4
or

1

38
instead of

1

40
. As a result, the approximate correction factor is always

larger than or equal to the true factor. This means that our correction factor only aects

the estimation in one direction, i. e., it only corrects an overestimated count.

To sum up, our approach to bring down estimation errors has the following features: For

ambiguous suxes, i. e., ones that collide, it yields a correction factor in the range (0, 1).
This improves the estimation compared to no correction. For unambiguous suxes, i. e.,

no collision, the correction factor is exactly 1. This means that error correction does not

falsify the estimate.

5.2.2 Counting Fewer Input Strings

TST stores image strings, while our error correction relies on preimage strings. Since

the preimage and the image often have dierent numbers of suxes (they dier by the

number of removed characters), our error correction may count too many dierent suxes

mapped to a node. For example, take the preimage water. A map function that removes

characters a and t returns the image war. The preimage water consists of 5 suxes, while

the image war consists of 3. This renders the correction factor too small and may result in

an underestimation. Example 5.8 illustrates how to avoid counting too many preimage

strings.

Example 5.8 Think of the input word water and its suxes ater, ter, er, and r. We use
a map function that removes the characters e and t. This will create a thin sux tree with
nodes that represent war, ar, and r. See Figure 5.2b. The preimage suxes ter, er, and r

are mapped to the same node. Since ter and er are mapped to the same string as their next
shorter sux, i. e., er and r respectively, we do not count these suxes for the correction
factor. The only sux we count in node r is sux r. All this yields a thin tree with three
nodes and a correction factor of 1

1
in every node.
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We count too many preimages i a preimage sux maps to the same image as its next

shorter sux. This is the case for every preimage sux that starts with a character that is

removed by the map function. We call the set of characters a map function removes trim
characters. This lets us discern between two cases: First, the map function removes the

rst character of the sux (and maybe others). Second, the map function keeps the rst

character of the sux and removes none, exactly one or several characters within it. To

distinguish between the two cases, we check whether the rst character of the preimage

sux is a trim character. This dierentiation also applies to complex map functions that

reduce multiple characters from the beginning of the sux. To solve the issue of counting

too many dierent preimages, our error correction only counts preimage strings which do

not start with a trim character.

5.3 Functions Insert and Query

After describing the details of TST, we now turn to the implementation. We rst cover the

map function and then describe our realization of the functions insert and query.

5.3.1 Map Function

Algorithm 1 shows an implementation of our general character-removing map function (cf.

Section 5.1.4). The function is parametrized by a dictionary that denes which characters

to observe and which ones to remove. For example, it contains the three most frequent

chains of a length of two characters. For English words, these are th, he, and in. To this

end, it removes character h if it occurs after character t, e if it occurs after h, and n if it

occurs after i. The map function manipulates only strings that include one of these chains.

Algorithm 1: Function to map words from an input alphabet to a string in tree

alphabet.

Input: String in input alphabet

Result: String in tree alphabet

1 Function map(inputstring):
2 dict←− getGlobalDictionary()

/* E.g., {‘th’ : ‘t’, ‘he’ : ‘h’, ‘in’ : ‘i’} */

3 imagestring←− inputstring

4 foreach (k, v) ∈ dict do
5 imagestring←− imagestring.replace (k, v)
6 end

7 return imagestring
8 end
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5.3.2 Insert Function

Algorithm 2 inserts a new word into the TST. It consists of the following steps: (1) map

the string from the input alphabet to the tree alphabet (Line 3), (2) insert all its suxes

into the tree (Line 4), and (3) add the associated sux in input alphabet to the Bloom lter

of the respective end node of the tree (Line 9).

Algorithm 2: Function to insert a string.

Input: String to add to the tree

1 Function insert(inputstring):

2 foreach sux of inputstring do
3 imagestring←− map(sux) /* Map sux to the tree alphabet */

4 insertionpath←− Go down the tree path according to imagestring

5 foreach node n on insertionpath do

/* Increment the cardinality counter */

6 n.count←− n.count + 1

7 if sux[0] equals imagestring[0] then

8 if not sux in n.bloomFilter then
9 n.bloomFilter.add(sux)

/* Increment the number of seen suffixes */

10 n.nbDiffSuffixes←− n.nbDiffSuffixes + 1

11 end
12 end
13 end
14 end
15 end

5.3.3 Query Function

Algorithm 3 is the implementation of how to query the TST. It contains the following three

steps: (1) map the given string from input alphabet to tree alphabet (Line 2), (2) search

the tree node for this string using the same map function as for function insert (Line 3),
and (3) estimate the frequency of the string by taking the number of node visits during

insertion divided by the number of dierent suxes corresponding this node (Line 7).

5.4 Experimental Evaluation

In this section, we evaluate our thin sux tree approach. We (1) dene the objectives of

our evaluation, (2) describe the experimental setup, and (3) present and discuss the results.
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Algorithm 3: Function to query the cardinality of a string pattern.

Input: String or regular expression

Result: Cardinality estimation for inputstring

1 Function query(inputstring):
2 imagestring←− map(inputstring) /* Map input to the tree alphabet */

3 node n←− Go down the tree path according to imagestring

4 if n not exists then
5 return 0

6 end

/* Correct the estimation (n.count) with the number of different

input strings that map to node n (n.nbDiffSuffixes). */

7 return n.count / n.nbDiffSuffixes
8 end

5.4.1 Objectives

The important points of our experiments are as follows.

Memory Usage We examine the impact of our map functions on the size of the sux tree.

Map Function We study the eects of our map functions on the estimation accuracy and

analyze the source of estimation errors.

Accuracy We investigate the estimation accuracy as function of the tree size.

Query Run Time We evaluate the query run times, i. e., the average and the distribution.

We rely on two performance indicators: memory usage, i. e., the total tree size, and the

accuracy of the estimations. To quantify the accuracy, we use the q-error, a maximum

multiplicative error commonly used to properly measure the cardinality estimation accu-

racy [KM10; Cor+11; Moe+14]. The q-error is the preferred error metric for cardinality

estimation, since it is directly connected to costs and optimality of query plans [MNS09].

Given the true cardinality
ˆ𝑓 and the estimated cardinality 𝑓 , the q-error is dened as

follows.

q-error := max

(
𝑓

ˆ𝑓
,
ˆ𝑓

𝑓

)
(5.7)

5.4.2 Setup

Our intent is to benchmark the approaches in a real-world scenario. In addition, we inspect

and evaluate the impact of dierent character-removing map functions on the tree. We

now describe the database, the queries used in the experiments, the parametrization, and

technical details on the implementation and the hardware.
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Database. For pattern search on word chains, we use the 5-grams from the English part

of the Google Books Ngram Corpus [Lin+12] (cf. Section 2.2.4). We lter all words that

contain a special character, like a digit.
2
At the end, we randomly sample the data set to

contain 1 million 5-grams.

Queries. Users may be interested in querying the number of 5-grams that start with

a specic word or a specic word chain. Others may want to query for the number of

dierent words that are used together with a specic word or word chain. The answer

to both types of question is the cardinality of a search pattern. For our evaluation, we

create 1000 queries requesting the cardinality of the 1000 most common nouns in the

English language. For example, we query the number of 5-grams containing words like

way, people, or information.

Parametrization. Each TST uses a single character-removingmap function. The indicators

𝑜 and 𝑟 specify the character-removing map function, i. e., how a map function works

(cf. Section 5.1.4). Each function has a character frequency list that stores all characters

in descending order of their frequency. Hence, we use the list provided by Peter Norvig

in English Letter Frequency Counts: Mayzner Revisited or ETAOIN SRHLDCU 3
. To specify

the approximation level of the sux tree, we parametrize the chosen character-removing

map function with the number of characters 𝑧 that are removed by it. This means that the

function takes the rst 𝑧 characters from the character frequency list to specify the set of

characters removed by the map function. The competitor has the level of approximation

as parameter. The parameter species the maximal length of the suxes to store in the

tree. Depending on the string lengths of the database, reasonable parameter values lie

between 50 and 1 [SEW04].

Technical Details. Our implementation makes use of SeqAn
4
, a fast and robust C++ library.

It includes an ecient implementation of the sux tree and of the sux array together

with state-of-the-art optimizations. We run our experiments on an AMD EPYC 7551

32-Core Processor with 125GB of RAM. The machine’s operating system is an Ubuntu

18.04.4 LTS on a Linux 4.15.0-99-generic kernel. We use the C++ compiler and linker from

the GNU Compiler Collection in version 5.4.0.

5.4.3 Experiments

We now present and discuss the results of our experiments.

5.4.3.1 Experiment 1: Memory Usage

In Experiment 1, we investigate how a character-removing map functions aects the

memory consumption of a TST. We also look at the memory needs of a pruned sux

2
We use Java’s denition of special characters. See function isLetter() of class Java.lang.Character for

the full denition.

3
The article and the list are available at https://norvig.com/mayzner.html

4
The SeqAn library is available at https://www.seqan.de.
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Figure 5.3: TST’s memory usage for various map functions and approximation levels.

tree (PST) and compare the two. In our evaluation, we inspect chains of lengths up to 3

(𝑜 = {1, 2, 3}) and in each case remove 1 to 𝑜 characters.

Figure 5.3 shows the memory usage of the TST for various map functions and approxi-

mation levels. The gure contains four plots. The two upper plots and the lower left plot

show the memory usage for map functions that observe character chains of length 1, 2,

or 3. The lower right plot shows the memory usage of the pruned sux tree contingent

on the maximal length of the suxes. Note that there are dierent scales on the x-axis.

The database we use in this evaluation includes 179 dierent characters, 3,889 dierent

character chains of length two, and 44,198 dierent chains of length three.

The Eect of Character-Removing Map Functions. For a deeper insight into our pruning

approach, we now study the eect of character-removing map functions on the memory

consumption of a sux tree in more detail. As discussed in Section 5.1.5, there are two

eects that reduce memory consumption: branch conation and character reduction. See
Figure 5.3. All map functions yield a similar curve: They decrease exponentially. Hence,

removing the ve most frequent characters halves the memory usage of a TST with map

function o1r1.
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The frequency of characters and character chains in natural language follows Zipf’s law,

i. e., the Zeta distribution [SEW04]. Zipf’s law describes a relation between the frequency

of a character and its rank. According to the distribution, the rst most frequent character

nearly occurs twice as often as the second one and so on. All character-removing map

functions in Figure 5.3 show a similar behavior: Each approximation level saves nearly

half of the memory as the approximation level before. For example, map function o1r1

saves nearly 65MB from approximation level 0 to 1 and nearly 40MB from approximation

level 1 to 2. This shows the expected behavior, i. e., character reduction has more impact

on the memory usage of a TST than branch conation.

The Eect of Horizontal Pruning. The lower right plot of Figure 5.3 shows the mem-

ory usage of a pruned sux tree. The lengths of words in natural language are Poisson

distributed [Rot86; SEW04]. In our database, the strings have an average length of 25.9 char-

acters with a standard deviation of 4.7 characters. Since the pruning only aects strings

longer than the maximal length, the memory usage of the pruned sux tree follows the

cumulative distribution function of a Poisson distribution.

Summary. Experiment 1 reveals three points. First, the tree size of TST and of the pruned

sux are markedly dierent for the various approximation levels. Second, the memory

reduction of a TST is independent of the length of the strings in the database. Its memory

reduction depends on the usage frequency of characters in natural language. Third, the

tree sizes for the dierent character-removing map functions tend to be similar, except

for one detail: The shorter the chain of observed characters, i. e., the smaller 𝑜 , the more

linear the reduction of the tree size over the approximation levels.

5.4.3.2 Experiment 2: Map Functions

In Experiment 2, we investigate the impact of map functions on estimation accuracy. We

take the map functions from Experiment 1 and measure the q-error at several approxima-

tion levels. See Figure 5.4. The right plot is the q-error with the pruned sux tree. The

points are the median q-error of 1000 queries. The error bands show the 95 % condence

interval of the estimation. Note that Figure 5.4 shows the estimation performance as a

function of the approximation level of the respective map function. So one cannot compare

the absolute performance of dierent map functions, but study their behavior. The plots

show the following. First, the map functions behave dierently. At low approximation

levels, the map function o1r1 has a very low q-error. The q-error for this function be-

gins to increase slower than for map functions considering three-digit character chains.

At high approximation levels, the q-error of map function o1r1 is signicantly higher

than for all the other map functions. The other map functions, the ones that consider

three-digit character chains in particular, only show a small increase of the q-error for

higher approximation levels. Second, the sizes of the condence interval dier. With

map functions that remove characters independently from previous characters, i. e., o1r1,

o2r2, and o3r3, the condence interval becomes larger with a larger approximation level.

For map functions that remove characters depending of previous characters, i. e., o2r1,

o3r1, or o3r2, the condence interval is smaller. This means that, for lower approximation
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Figure 5.4: TST’s q-error for various map functions and approximation levels.

levels and map functions that remove characters depending on previous characters in

particular, our experiments yield reliable results. We expect results to be the same on other

data. Third, the accuracy of the pruned sux tree increases nearly linear with increasing

approximation levels until it sharply increases for very short maximal strings lengths.

This means that every character that is removed from the back of the sux contributes a

similar extent of error to an estimation.

Summary. None of our map functions dominates all the other ones. It seems to work

best to remove single characters dependent on either 0, 1, or 2 previous characters, i. e.,

map functions o1r1, o2r1, or o3r1. For low approximation levels, say up to a reduction

of 50 % of the tree size, map function o1r1 performs well. For high approximation levels,

say starting from a reduction of 50 % of the tree size, one should use a map function that

removes characters dependent on previous ones, i. e., map function o2r1 or o3r1.

The rst ve approximation levels of map function o1r1 are of particular interest, as

they show good performance in Experiments 1 and 2. In the rst approximation levels,

this map function yields a very low q-error, see Figure 5.4, while the tree size goes down

very rapidly, see Figure 5.3. In Experiments 1 and 2, we inspect (1) the tree size depending

on the approximation and (2) the q-error depending on the approximation level. In many
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Figure 5.5: The estimation accuracy as function of the tree size.

applications, one is interested in the q-error depending on the tree size rather than on the

approximation level. In our next experiment, we compare the q-error of our map functions

for the same tree sizes.

5.4.3.3 Experiment 3: Accuracy

In Experiment 3, we compare the map functions from Experiment 1 against each other

and against existing horizontal pruning. Figure 5.5 shows the q-error as function of the

tree size. For the sake of clarity, there are two plots for this experiment: The plot on the

left side shows the map functions that remove characters independently from previous

characters. The plot on the right side is for the remaining map functions.

Vertical Pruning vs. Horizontal Pruning. Figure 5.5 shows the following: TST produces

a signicantly lower q-error than the pruned sux tree for all map functions used and

for tree sizes larger than 60 % of the one of the full tree. For smaller sizes, the accuracy of

most map functions does not become much worse than the one of the pruned sux tree.

The only exception is o1r1. At a tree size of 50 %, the q-error of o1r1 starts to increase

exponentially with decreasing tree size.

Summary. As Experiments 1 and 2 already indicate, map function o1r1 achieves a very

low q-error to tree size ratio, for tree size reductions of up to 60 %. For this map function,

TST yields a signicantly lower q-error than the pruned sux tree for comparable tree

sizes. The intuition behind this result is that our vertical pruning respects the redundancy

of natural language. Due to this redundancy, map function o1r1 keeps most input words

unique. This results in almost no errors for reductions of the tree size that are less than

50 %. TST also shows a higher degree of condence, i. e., a smaller 95 % condence interval,

than the pruned sux tree for reductions that are less than 40 %.

5.4.3.4 Experiment 4: Query Run Time

In Experiment 4, we compare the query run time of the TST using dierent map functions

with the one of a pruned sux tree. We consider sample tree sizes of 300 and 200MB.
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Figure 5.6: The query run time of the TST.

Figure 5.6 shows the average and distribution of the run time for all queries. There is no

signicant dierence in the run time. TST potentially needs a slightly higher run time

than a pruned sux tree. This is because TST is potentially deeper than a pruned sux

tree and additionally executes a map function. To conclude, the additional work of TST is

of little importance for the query run time compared to a pruned sux tree.

5.5 Summary

In this chapter, we study cardinality estimation for co-occurrence queries, i. e., the co-

occurrence of two words within an ngram. In contrast to existing work, our approach

aims at databases with long strings, especially ngrams. One way to estimate cardinality on

string databases is the sux tree. But since they tend to use much memory, they usually

are pruned down to a certain size. We propose a novel pruning technique for sux trees

for long strings. Existing pruning methods mostly are horizontal, i. e., prune the tree to a

maximum depth. Here we propose what we call vertical pruning. It reduces the number

of branches by merging them. We dene map functions that remove characters from the

strings based on the entropy or conditional entropy of characters in natural language. Our

experiments show that our thin sux tree approach does result in almost no error for

tree size reductions of up to 50 % and a lower error than horizontal pruning for reductions

of up to 60 %. TST is a crucial part for query optimization on large ngram databases and

temporal text corpora.
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6 Eicient Interval-focused Time Series
Similarity Search

In this chapter, we look at an ecient way to access ngrams based on their usage frequency

time series. A typical way to provide ecient data access is to index the database. The

resulting index data structure facilitates to quickly locate specic data. Index structures

dier depending on the particularities of both the data and the query to accelerate. When

using temporal text corpora, the data consist of ngrams and frequency time series. We

already presented our data model in Section 4.3. We now look at a typical query that

requires accessing ngrams based on their time series. Example 6.1 depicts a typical

examination of conceptual historians.

Example 6.1 A conceptual historian studies the impact of a world war on language and
society. This means, her interest is conned to the time interval, say, between the two world
wars or the time interval from the end of World War I to the end of World War II. To examine
the social changes coming and going with a war, a conceptual historian might search for
words that have a similar usage frequency to the word “war”. Since a social system needs
some time to adjust to a change, the usage frequency of interesting words might also rise and
fall somewhat delayed to “war”.
We further specify this example in the following. A conceptual historian examines the

economic eects of the two world wars. For this purpose, she searches for words similar to the
word “battleship” in the time interval from 1910 to 1960. When searching the Google Books
Ngram Corpus, the result set contains the word “reparations” whose shape is similar to the
one of “battleship” with an oset of approximately 5 years. Figure 6.1 shows both time series.

Example 6.1 illustrates the following two requirements to search for words with a similar

usage frequency. First, one needs a warping similarity measure to determine the similarity

between two time series. Warping describes a non-linear temporal alignment, i. e., it allows

a temporal delay between the two time series. A popular warping similarity measure is

DTW (cf. Section 3.3.4) [SC78; KR05; SYF05].
1
Figure 6.1 illustrates DTW’s non-linear

alignments for the usage frequencies of the words “reparations” and “battleship” in the

Google Books Ngram Corpus. Second, the information need in the above example is

the nearest neighbor search on time series conned to arbitrary intervals. This kind of

information need is called interval-focused similarity search [Aßf+07].

1
The remainder of this chapter bases on our article [Wil+19a]: Jens Willkomm, Janek Bettinger, Martin

Schäler, and Klemens Böhm. 2019. “Ecient Interval-focused Similarity Search under Dynamic Time

Warping.” In Proceedings of the 16th International Symposium on Spatial and Temporal Databases (SSTD '19).
DOI: 10.1145/3340964.3340969.
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Figure 6.1: DTW’s non-linear alignments between the usage frequency of the words “repa-

rations” and “battleship” in the time interval [1910, 1960].

In this chapter, we address the problem of eciently answering interval-focused kNN

queries on many time series. A kNN search returns 𝑘 time series with the smallest distance

to the query time series regarding a time series distance measure. Its generalized version,

the interval-focused kNN search kNN(𝑘,𝑄, [𝑎, 𝑏]), restricts the distance measure to a time

range [𝑎, 𝑏] that the user species as part of the query. As described in Example 6.1, we

focus on DTW as distance measure. However, this does not impose any limitation, as one

can easily replace the DTW measure with the Euclidean distance or any other 𝐿𝑝 norm

without violating any lower bound used subsequently. This is because these distances are

special cases of DTW, i. e., the DTW distance without any alignment.

The literature gives only little attention to interval-focused similarity search. However,

an extensive study—of whole matching similarity search—has resulted in two fundamental

techniques. One common technique uses a spatial data structure, like an R- or R*-tree,

to index time series using minimal bounding boxes [Bec+90; SK91; FRM94; Agr+95;

Fu+07; Ass+08]. This only works for metric distances, like the Euclidean distance, but

does not work for semimetric distances that miss the triangle inequality, like the DTW

distance [Vid+88]. In contrast, there are other techniques that use lower bounds for

the DTW distance to prune either single time series [KPC01; KR05] or groups of time

series [KS10; NRR10]. These techniques sequentially scan the data element-wise or group-

wise. We refer to the rst one as lower bound and the second one as partitioning. To
sum up, most related works either lack supporting DTW as a distance measure, require

considering every element, or do not work for interval-focused queries. This indicates

that eciently answering interval-focused kNN queries is dicult.

Challenges. To eciently answer kNN queries on time series, like the one shown in

Example 6.1, one must cope with the following challenges.
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Interval-focused Queries Since a query can refer to an arbitrary time interval, i. e., having

an arbitrary start and endpoint, an index has to hold relevant information, like a

lower bound estimation, for every possible time interval.

Eicient Pruning A data structure needs to organize the data in a way so that the search

needs to only deal with a share of the elements. This reduces the number of distance

computations.

High Dimensionality Time series are high-dimensional objects. This typically leads to

high tree-traversal costs.

Contributions. In this chapter, we present the Time Series Envelopes Index Tree (TSEIT)2,
a novel tree-based index structure to eciently evaluate interval-focused kNN queries.

TSEIT is a dynamic data structure that supports operations to insert, query and delete time

series. Our rst contribution is the notion of hierarchically organized envelopes that form

the basis of our tree structure TSEIT. The leaf nodes store the time series, and the inner

nodes store envelopes that allow TSEIT to prune subtrees during query evaluation. Our

second contribution is a tree-height-based envelope approximation. It sets the envelope

approximation degree based on the node’s height. This speeds up the tree traversal near

the root node and at the same time yields strong lower bounds near the leaf nodes. Our

third contribution is a lower bound for arbitrary time intervals between an envelope and a

time series. The lower bound holds for envelopes and time series in full dimensionality

as well as for their piecewise aggregate approximation representation. We compare our

approach against state-of-the-art methods for whole matching similarity search that we

have modied to replace the whole time series with the queried interval during query

time. TSEIT reduces the query execution time for a data set of 5 million time series by up

to 50 %.

Outline. We structure this chapter as follows. In Section 6.1, we describe the details of

our data structure. Section 6.2 shows the superiority of our approach.

6.1 The Time Series Envelopes Index Tree

In this section, we introduce TSEIT, our novel time series index. First, we focus on the

tree structure and, second, describe the operations.

6.1.1 Tree Structure

TSEIT is a search tree that stores time series envelopes in its nodes. Envelopes seem to be

a more suitable representation of time series groups than rectangles. Figure 6.2 illustrates

a Time Series Envelopes Index Tree with two leaf nodes and one inner node. TSEIT is a

balanced tree that grows upwards, i. e., towards the root. Every node stores an envelope

that wraps all time series reachable by this node. TSEIT distinguishes between two types

2
TSEIT is pronounced [ţaI

“
t], like the German word Zeit (English: time).
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Inner node

Leaf node Leaf node

Figure 6.2: An example of a Time Series Envelopes Index Tree with two leaf nodes and a

single inner node.

of nodes: leaf nodes and inner nodes including the root node. Leaf nodes hold envelopes in

full dimensionality, whereas inner nodes store PAA envelopes. The envelopes of the inner

nodes towards the root grow into two directions: (1) They grow on the domain axis: The
envelope encloses the minimum and maximum of its child nodes. (2) They grow on the

time axis, i. e., the PAA segment size increases with the tree height and thus the envelope

dimensionality of higher nodes decreases. In other words, we start from the root node

with a loose envelope that gets tighter every step downwards the tree on the domain axis

as well as on the time axis. Using envelopes instead of bounding boxes is our solution

to address the problem of large-volume rectangles discussed in Section 3.3.2. Figure 6.2

illustrates TSEIT’s envelope-growing behavior. We describe the PAA envelope of inner

nodes in the following.

6.1.1.1 PAA Envelope of Inner Node

Recall that leaf nodes store envelopes in full dimensionality. This is equal to a PAA

representation with a segment size of 1. In contrast, inner nodes at the same height have

the same dimensionality. Parent nodes double the PAA segment size of their children. This

is, inner nodes at height 1 have envelopes with segment size 2, while the nodes one level

up have envelopes with segment size 4 and so on. Since TSEIT grows upwards and thus

all its child nodes have the same depth, the PAA segment size 𝑇 of a node is a function of

the node’s height ℎ:

𝑇 (ℎ) = 2
ℎ

(6.1)
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6.1.2 Interval-focused Query

To answer query(𝑄,𝑘, [𝑎, 𝑏]), TSEIT searches its leaf nodes in ascending order of the

node’s lower bound to 𝑄 until the lower bound distance is larger than the best-so-far

distance. See Algorithm 4.

Algorithm 4: query(Q, k, [a, b])
Input: Q← query time series

k← desired number of results

[a, b]← query interval

Data: root← root node of TSEIT

L← a priority queue

R← a sorted list of tuples of 〈DTW(𝑄,𝐶),𝐶〉
bsf← the best-so-far distance

Result: A list with 𝑘 elements having the lowest DTW distance to time series 𝑄

1 begin
2 L.enqueue(root)

3 while L.has_next() do
4 node← L.next()

5 T← 2
node.height /* node’s segment size */

6 if bsf ≤ LBG(Q
T
[a, b], node.E

T
[a, b]) then

7 break

8 end

9 if node.is_leaf_node() then
10 cands← seq_scan(node, Q[a, b], k, bsf)

11 R.insert(cands); R.set_size(k)

12 bsf← max(R.get_distances())

13 else
14 L.enqueue(node.get_child_nodes())

15 end
16 end

17 return R

18 end

The following describes specics of TSEIT’s query algorithm: (1) tree traversal with PAA

envelopes, (2) query an interval that diers from PAA segment borders, and (3) scanning a

leaf node.

6.1.2.1 Tree Traversal Based on PAA Envelopes

The tree traversal is based on the LBG lower bound between query time series 𝑄𝑇 and the

node’s envelope 𝐸𝑇 (Line 6). 𝑄𝑇 and 𝐸𝑇 are PAA versions of the query time series and the
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Figure 6.3: An LBG computation that partially includes the PAA segments at start and end

of interval [𝑎, 𝑏].

envelope of the current node. Line 5 species the PAA segment length used on the current

tree level. Note that the PAA version of the envelope 𝐸𝑇 is already available. Note also

that we need to compute the PAA representations of the query time series 𝑄𝑇 only once

per query. The number of necessary PAA representations depends on the height of the

tree. Using height based PAA representations has the following nice properties: It speeds

up the tree traversal, and the lower bounds become more accurate towards the leaf nodes.

6.1.2.2 Query Interval Border Inside a PAA Segment

The approximation with PAA replaces all data points inside a segment with a single

data point. The query intervals 𝑎 and 𝑏 might lie inside a PAA segment. We call these

segments side segments. Figure 6.3 illustrates a query whose interval borders lie inside

a PAA segment. Including the side segments to the lower bound invalidates the bound.

Excluding the side segments leads to a less tight lower bound and thus to a lower pruning

rate. Therefore, we modify the lower bound to partially include the side segments and

thus keep the lower bound’s tightness in arbitrary intervals.

The rst relevant segment ends at the rst PAA border 𝑢 inside the interval [𝑎, 𝑏]. See
Equation 6.2.

𝑢 = arg min

1≤𝑥≤𝑡
(𝑥 ·𝑇 ≥ 𝑎) (6.2)

The last relevant segment starts at the last PAA border 𝑣 inside the interval [𝑎, 𝑏]. See
Equation 6.3.

𝑣 = arg max

1≤𝑦≤𝑡
(𝑦 ·𝑇 ≤ 𝑏) (6.3)

Altogether, the rst relevant PAA segment 𝑢 inside the interval ends at position 𝑢 ·𝑇
and the last relevant PAA segment 𝑣 starts at position 𝑣 ·𝑇 . We have to include the rst
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segment with length (𝑢 ·𝑇 ) − 𝑎 and the last segment with 𝑏 − (𝑣 ·𝑇 ). Figure 6.3 illustrates
the side segments and its length.

Equation 6.4 is a version of LBG lower bound that includes side segments.

LBG(𝑄𝑇 , 𝐸𝑇 , [𝑎, 𝑏]) = 𝑝
√︁
𝐷 (𝑣, 𝑣) (6.4)

𝐷 (𝑖, 𝑗) = 𝑇𝑠𝑒𝑔 (𝑖, 𝑗) · 𝐷𝑠𝑒𝑔 (𝑞𝑇𝑖 , 𝑒𝑇𝑗 ) +min


𝐷 (𝑖 − 1, 𝑗 − 1)
𝐷 (𝑖 − 1, 𝑗)
𝐷 (𝑖, 𝑗 − 1)

(6.5)

𝑇𝑠𝑒𝑔 (𝑖, 𝑗) =


(𝑢 ·𝑇 ) − 𝑎 if 𝑖 < 𝑢 or 𝑗 < 𝑢

𝑏 − (𝑣 ·𝑇 ) if 𝑖 > 𝑣 or 𝑗 > 𝑣

𝑇 otherwise

𝐷𝑠𝑒𝑔 (𝑞𝑇𝑖 , 𝑒𝑇𝑗 ) =


|𝑙𝑞𝑇𝑖 − 𝑢𝑒𝑇𝑗 |𝑝 if 𝑙𝑞𝑇𝑖 > 𝑢𝑒𝑇𝑗

|𝑙𝑒𝑇𝑗 − 𝑢𝑞𝑇𝑖 |𝑝 if 𝑙𝑒𝑇𝑗 > 𝑢𝑞𝑇𝑖

0 otherwise

where 𝐷 (𝑢 − 1, 𝑢 − 1) = 0 and 𝐷 (𝑖, 𝑢 − 1) = 𝐷 (𝑢 − 1, 𝑗) = ∞ for 1 ≤ 𝑖, 𝑗 ≤ 𝑡 .

6.1.2.3 Optimized Leaf Node Sequential Scan

If the lower bound between a query time series and a node’s envelope is smaller than

the best-so-far distance, we need to sequentially scan a leaf node. Since LBG computes

a lower bound for all time series of this node, we rst compute a lower bound to the

individual time series or, more precisely, a cascade of lower bounds. Because of its good

performance [Rak+12], we use a cascade of the two lower bounds LB_KimFL and LB_Keogh

(cf. Section 3.3.6). This might already prunemany time series of the node. For the remaining

time series, we need to compute the true DTW distance.

6.1.3 Insert Operation

To insert a new time series, we search the tree for the leaf node with the lowest insertion

cost. This section describes: (1) TSEIT’s insertion cost functions, (2) the node overow

handling, and (3) TSEIT’s parameters.

6.1.3.1 Insertion Cost

Recall that the LBG results in a lower bound of 0 if the time series completely lies between

the upper and lower sequence of the envelope (cf. Section 3.3.5). To maximize the lower

bound, TSEIT minimizes the size of the envelopes, i. e., the area surrounded by the upper

and lower sequence. TSEIT’s primary insertion cost function is the enlargement of an

envelope, i. e., the area it will grow by after inserting the new time series. Equation 6.6 de-
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nes function enlargement(𝐸,𝐶) that returns the size envelope 𝐸 will grow when inserting

time series 𝐶 .

enlargement
2(𝐸,𝐶) =

𝑡∑︁
𝑖=1


(𝑐𝑖 − 𝑙𝑒𝑖)2 if 𝑐𝑖 > 𝑢𝑒𝑖

(𝑢𝑒𝑖 − 𝑐𝑖)2 if 𝑐𝑖 < 𝑙𝑒𝑖

0 otherwise

(6.6)

If there are several envelopes with the same enlargement costs, TSEIT picks the envelope

with the least expansion. The expansion of an envelope is the area between its upper and

lower sequence. See Equation 6.7.

expansion(𝐸𝑇 ) =
𝑡∑︁
𝑖=1

𝑇 ·
(
𝑒𝑢𝑇𝑖 − 𝑒𝑙𝑇𝑖

)
(6.7)

While function enlargement considers the growth of an envelope, function expansion

considers its total area. In other words, if two envelopes do not need an enlargement,

TSEIT chooses the smaller envelope.

6.1.3.2 Node Overflow Treatment

If an overow occurs to a node for the rst time, TSEIT reinserts time series of this node, to

globally minimize envelope expansion. If an overow occurs the second time, TSEIT splits

this node. A node split aims to locally minimize envelope expansion. Since its envelope

wraps all time series of a node, we initialize the split with the envelope’s upper and lower

sequence and minimize the sum of the expansion of the resulting envelopes using k-means.

We call this heuristic EnvelopeSplit.

6.1.3.3 TSEIT Parameters

Like any tree, TSEIT has parameters to control the tree development. The rst parameter

pair sets the minimal and maximal capacity of the leaf nodes. We call these param-

eters minNodeSize and maxNodeSize. The second parameter pair denes the minimal

and maximal number of child nodes. We call these parameters minNodeChildren and

maxNodeChildren.

6.1.4 Generalizing Other Approaches

We design TSEIT as a generalization of two state-of-the-art approaches: TWIST [NRR10]

and UCR Suite Cascading Lower Bounds (UCR) [Rak+12]. TSEIT can simulate the TWIST

approach by setting the maximal number of child nodes to innity. This forces TSEIT to

always append new leaf nodes to the root and keep a tree height of two. The leaf nodes

simulate the partitions, and the traversal step of the root node simulates the pruning of

single partitions. TSEIT can also simulate the UCR approach by setting TSEIT’s node size

to innity. This prevents TSEIT from splitting the root and always keeps a single node.

82



6.2 Experimental Evaluation

6.2 Experimental Evaluation

In this section, we conduct three experiments to gain insights into the benets and draw-

backs of TSEIT. We start with a micro benchmark (Experiment 1) systematically evaluating

the inuence of parameters, such as the maximum node size, on the response time. We are

primarily interested in the response-time robustness of dierent parameters. In addition,

we aim at revealing the most signicant parameters inuencing the response time and

nding a good parameter combination for the remaining experiments. In Experiment 2,

we compare the query performance of TSEIT the reference points. The primary objective

is to investigate whether TSEIT’s combined usage of lower bounding and partitioning,

i. e., our generalization, results in signicant performance improvements. To this end, we

examine how LBG and DTW computations are related to performance dierences of the

approaches. In the nal experiment, we evaluate whether the build times of TSEIT are

reasonable. Before we start with the experiments, we describe the experimental setup of

all subsequent experiments.

6.2.1 Experimental Setup

This section explains (1) the selection of reference points for this evaluation, (2) technical

details, (3) used data sets, and (4) data preprocessing.

Reference Points In the experiments, our primary objective is to investigate whether

one of the existing techniques (cf. Section 6.1.4) is dominant, i. e., the main reason for

performance increases, or whether the combination of techniques is required. To this end,

we rely on a sequential scan as baseline. Further, we use two state-of-the-art approaches:

one applying only partitioning, named TWIST [NRR10], and one using only lower bounds,

named UCR Suite Cascading Lower Bounds [Rak+12]. As we described in Section 6.1.4,

our own approach generalizes both approaches, i. e., it can also be congured to mimic

them.

Technical Details. We run all our benchmarks on a machine having an Intel
®
Xeon

®
CPU

E5-2630 v3 @ 2.40GHz and 126GB of RAM. Our machine runs Ubuntu 16.04.4 LTS as

operating system. We implement all approaches in Java and execute them on an OpenJDK

64-Bit Server VM in version 1.8.0_181. Our implementation ensures that all approaches,

our TSEIT approach as well as the competitors, keep all their data in memory.

Data Sets. For our experiments, we rely on the Google Books Ngram Corpus [Lin+12] (cf.

Section 2.2.4). To ensure generality of our ndings, we use the 2-gram data of the English,

German, and Spanish corpus. For each 2-gram, the corpus contains its usage frequency

starting at year 1800 and ending with year 2008.

Data Preprocessing. The raw data of the Ngram corpus has several quality issues, such

as OCR errors. To this end, we preprocess the data as follows. We remove words from the

data set that contain:
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Special characters We lter words that contain special characters, e. g., digits. For the def-

inition of special characters, we use the Java function java.lang.Character.isLetter().

Annotations The corpus oers semantic annotations of the words, e. g., whether the word

is used as noun or as verb. We lter the annotated words and keep the ones without

annotation.

As nal preprocessing step, we normalize the time series, to remove the autocorrelation

of the time series. Google provides the corpus with the word’s absolute usage frequency.

With a rising number of published books, the number of word usages also rises every year,

leading to autocorrelation. We remove this trend by calculating the word’s relative usage,

i. e., the share of the word usage in the total usage of all words in this year.

6.2.2 Experiment 1: Parameter Influence

TSEIT is congurable by four parameters: Two specify the node size and two specify a

valid number of child nodes. In this subsection, we have the following two objectives:

First, we inspect the robustness of the parameters and analyze their eect on the query

run time. Second, we aim to nd the best parameter settings to benchmark the query

performance in Section 6.2.3.

6.2.2.1 Influence Analysis

We create data sets of dierent sizes by randomly subsampling the English corpus. Fig-

ure 6.4 shows the results of our analysis over data sets of dierent sizes.

6.2.2.2 Result Interpretation

Recollect that we have two interests: (1) robustness of kNN query performance, and

(2) nding the best parameter settings used subsequently. The second item will also result

in rst insights whether a combination of lower bounding and partitioning minimizes the

query time. For instance, in case the best performance is achieved if the maximal node size

is close to the data set size, i. e., TSEIT behaves like UCR, it is lower bounding that aects

the performance. In contrast, in case every leaf node contains a share of the elements, we

see this as an indication that lower bounding and partitioning are advantageous.

Parameter Robustness. The results clearly indicate that the most relevant parameter for

TSEIT’s query performance is maxNodeSize. Since we nd good values for this parameter

independent of the size of the data set (even if the optimal values slightly increase with

the size of the data set), we conclude that TSEIT’s kNN query performance is robust.

Optimized Parameter Setting. Based on the parameter inuence analysis, we found the

following parameter setting to be most ecient on the considered data sets, and we

therefore rely on it in the subsequent experiments: We set the maximum node size to

1,000 time series and the minimum node size to 250 time series. We set the valid number

of node children from 1 to 3, i. e., we allow a maximum of three child nodes per node. This
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Figure 6.4: The impact of TSEIT’s node size on the number of required DTW computations.

optimized conguration reveals that TSEIT organizes its envelopes hierarchically, without

any degeneration yielding behavior like the one of TWIST or UCR. This suggests that our

generalization is superior to existing approaches. We investigate this in detail as part of

Experiment 2.

So we x those parameter settings for all further experiments. To have a fair comparison,

we set TWIST’s partition size to TSEIT’s node size. UCR is parameter-free.

6.2.3 Experiment 2: kNN Query Performance

TSEIT’s main purpose is minimizing the response time of interval-focused kNN queries.

The prior experiment in Section 6.2.2 gives rst indications that our generalized approach

is faster than approaches optimizing a single pruning technique. We now examine the

query run times in more detail using the following setup.

6.2.3.1 Benchmark Setup

To provide reproducible, valid results, we provide details of how we have implemented

this benchmark. To this end, we rst describe the process to select the parameter values

of a query. We then specify our performance indicators.
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QuerySelection. An interval query kNN(𝑘,𝑄, [𝑎, 𝑏]) depends on the number of neighbors

to search 𝑘 , the query time series 𝑄 , and the interval [𝑎, 𝑏]. This section species how we

set these parameters.

To have dierent result sizes, we uniformly vary parameter 𝑘 from 1 to 10. These

sizes yield results interpretable by domain experts, conceptual historians in our case.

Parameter𝑄 species the query time series. Here, we select a random time series from the

full corpus. To simulate a real-world workload, we weight the probability of every time

series with its usage frequency, i. e., more frequent words have a proportionally higher

probability to be selected. This reects the fact that a common word as a query is more

likely than, say, a word with a typo in reality. We also vary the start and endpoint of the

query interval [𝑎, 𝑏] uniformly, i. e., even if the same time series is selected by chance, the

interval is most likely dierent. Since the run time of DTW depends on the length of the

time series and thus the length of the interval query, we have to keep a xed interval size

for our experiments. Otherwise, the interval length dominates the query run time and

thus disturbs the variance of our benchmarks. We choose an interval size of 150 years and

set DTW’s warping window to the same value.

Performance Indicators. Since our main objective is to minimize the query run time, this

is our main performance indicator. To explain run time dierences and to investigate

whether our generalization is the main reason for the observed dierences, we rely on two

additional implementation-independent measures. The rst one quanties the overhead of

the data structure to search for elements, by counting the LBG computations. The rationale

is that this computation is the only expensive operation in the traversal (cf. Algorithm 4).

The second one counts the distance computations between the query and candidate time

series to quantify the eect of partitioning. For both additional indicators, we use the

fraction instead of the absolute count to obtain a number unbiased from the size of the

data set size that makes dierent sizes comparable. To sum up, we use the following

performance indicators.

Data Structure Search Costs (LBG) We investigate the average fraction of LBG computa-

tions necessary to search the data structure, e. g., to traverse the index. A value of

100 % means that the approach needs as many LBG computations as it contains time

series. Fewer LBG computations means lower costs to search the data structure and

thus should accelerate query processing. Note that, by denition, this measure is 0

for the sequential scan and UCR. This is because these approaches do not use this

technique.

Necessary Distance Computations (DTW) We investigate the average fraction of full DTW

computations necessary to nd the nearest neighbors. A value of 100 % means that

the exact distance to each other time series in the data set is computed, i. e., the

approach computes as many distances as the sequential scan.

Query Wall-clock Time Wemeasure the time from calling the query routine until it returns.

For statistical soundness, we use the mean and variance of executing 100 randomly

selected query time series and intervals.
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Figure 6.5: The query performance measurements depending on the number of elements

and dierent corpora.

6.2.3.2 Benchmark Results

Figure 6.5 plots all performance indicators depending on the number of time series, on

three dierent language corpora. We now describe these results.

LBG Computations. The rst row of Figure 6.5 plots the mean and the condence band

(95 %) of the share of LBG computations necessary to answer a single query. Recall that

UCR and the sequential scan do not do any LBG computation. We observe that TSEIT

performs very few LBG computations for all sizes of the data set on all three corpora.

The value is smaller than 0.4 % in any case. In contrast, TWIST needs 8 to 10 times

more LBG computations than TSEIT. TWIST is inecient for very small data sets, but

gets more ecient for larger ones. So we conclude that the working of TSEIT with our

optimized parameter settings is signicantly dierent from the one of TWIST. This is

another indication that both partitioning and lower bounding are required.

DTW Computations. The second row of Figure 6.5 plots the mean and the condence

band (95 %) of the number of DTW distance computations necessary to answer a query.
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Remember that a sequential scan computes for each query point 𝑄 the distance to all

points in the data set, i. e., has a value of 100 % for this measure. For all other approaches,

we observe that they compute only some of the distances. The only exception is very

small data sets, where all approaches converge towards a sequential scan. For larger data

sets, we clearly see that the most DTW computations are required after applying UCR.

Interestingly, the graphs for TSEIT and TWIST have a very similar shape. Observe the

small number of distance computations, which usually is between 10 and 20 %. This saves

a lot of distance computations since there are up to 5 million time series.

The results regarding this measure allow the following conclusions. First, there is a

signicant dierence between TSEIT and UCR: UCR does not prune groups of irrelevant

candidate time series. Second, since TSEIT and TWIST rely on partitioning, both have few

DTW distance computations as an eect of LBG pruning. Since the plots of the numbers

of DTW computations required for TSEIT and TWIST are very similar, a signicant

dierence in the query run times would mean that indeed lower bounding and partitioning

are required.

Query Run Time. The third row of Figure 6.5 plots the mean and the condence band

(95 %) of the wall-clock time to answer a query. As expected, the run time of the sequential

scan grows linearly with the size of the data set. We observe that, for any corpus and size

of the data set, all approaches outperform this baseline. On the English corpus, TWIST is

faster than UCR, while both have a similar run time on the German and Spanish corpus.

Our TSEIT approach shows the best run time on all three corpora. On average, it performs

a query 50 % faster than TWIST or UCR.

We conclude that indeed the combination of lower bounding and portioning results in

the best response times. These times are not observed for any competitor relying only

on one of these techniques. Considering the kNN query times, TWIST is second even if

TSEIT clearly outperforms it. To get the full picture, we examine the build times of the

index in the next experiment.

6.2.4 Experiment 3: Index Build Times

The purpose of studying the build time is to evaluate whether a large build time is a

counterargument for TSEIT. To this end, we compare TSEIT’s build time to the one of the

reference points. To avoid biasing our results, we shue all time series before inserting

them, i. e., we insert them in a random order.

Figure 6.6 plots the build time of our TSEIT data structure as well as of TWIST, contingent

on the size of the data set. UCR and the sequential scan do not build any index, so they

are not part of this experiment. The results suggest that the build times of TWIST are

quadratic and might rather be an argument against this approach. This is important as

TWIST is second behind TSEIT according to Experiment 2.

In contrast to TWIST, the build times for our TSEIT approach appear to be linear.

Building the TSEIT index for a data set of 5 million times series in less than 5 minutes is

not constraining for most purposes. Thus, our insertion benchmark reveals that TSEIT

also is suitable to index large sets of time series.
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Figure 6.6: Build times for the English 2-gram corpus.

6.2.5 Results

Based on Experiment 2, we conclude that TSEIT consistently results in the lowest run

times. This is because TSEIT is able to prune large parts of the data by lower bounding

and exclusion of child nodes. On average, TSEIT traverses only small parts of the index,

indicated by the small number of LBG computations. Moreover, due to partitioning, it also

requires the fewest DTW computations. Our results also indicate that TSEIT’s optimal

conguration does not converge towards TWIST or UCR.

Finally, studying the build times reveals that indexing even large sets with millions of

time series is not a problem for TSEIT. In contrast, the quadratic costs of inserting a time

series with the next fastest approach (TWIST) might be problematic for various use cases.

6.3 Summary

In this chapter, we address the problem of ecient similarity search in time series data.

In contrast to existing work, our approach features similarity search in an arbitrary time

interval. We present the idea of hierarchically structured envelopes and, based on it,

propose a novel tree-like data structure, named TSEIT. TSEIT is a search tree with an

envelope for each node that wraps all time series of the subtree of the node. Time series

envelopes allow to search the tree given a time series as similarity query and a time interval.

Moreover, TSEIT combines various pruning techniques from literature. We are rst to

systematically consider combinations of pruning techniques for time series. Our evaluation

systematically compares the performance with our data structure to the ones of state-of-

the-art approaches. The run time of our reference points is either dominated by searching

the data structure or by distance computations. According to our experiments, we achieve

the best query performance with a compromise between minimizing the costs of searching

the data structure and the number of distance computations. Our data structure features a
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parameter to trade o these two aspects. All this reduces the query times of TSEIT by up

to 50 % in comparison to the reference points. TSEIT is a major component to eciently

access temporal text corpora, especially when the access is limited to subperiods.
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In this thesis, we designed an information system to query and eciently search large

temporal text corpora, like the Google Books Ngram Corpus. The intended purpose of our

system is to study conceptual history, especially by testing hypotheses empirically on large

amounts of books. To realize such a system, we proposed the technical foundations to (1)

query Koselleck’s information needs, (2) optimize queries for co-occurring words, and (3)

provide ecient interval-focused similarity search. We summarize our contributions and

highlight their value for the overall system in the following.

We started our research by identifying the information needs in conceptual history. This

is an interdisciplinary task that we accomplished in cooperation with philosophers that

have expertise in conceptual history. Together with these experts, we studied the works

of the famous conceptual historian Reinhart Koselleck and identied information needs in

conceptual history (Chapter 4). To formulate these information needs as queries for an

information system, we dened a query algebra for temporal text corpora, named CHQL.

Queries formulated in CHQL allow testing conceptual history hypotheses on large digital

corpora. This includes hypotheses that had to be tested by manual literature research

until now. We empirically evaluated our algebra by formulating major hypotheses of

conceptual history in CHQL and tested them on the Google Books Ngram Corpus. Our

interdisciplinary study shows empirical support for existing hypotheses.

After designing CHQL and testing some hypotheses, we noticed two query types that

run ineciently. Since both query types appear quite often, they were the performance

bottleneck in the system. We overcame these performance issues with the following two

contributions.

One frequently used query type is the co-occurrence query, i. e., to query for a set of

words that co-occur with a given word or pattern in the ngrams. To optimize this kind

of query, we developed a pruning technique for sux trees, namely Thin Sux Tree

(TST). TST provides accurate cardinality estimations when using co-occurrence selection

predicates (Chapter 5). To that, TST removes characters with low information content

from all strings before adding the strings to the tree. Our pruning method is inspired

by the redundancy of natural language. This means, humans are usually able to read a

word with a typo or a missing character. We found that sux trees are very often able to

uniquely identify words when removing a few characters from the input strings. More

specically, character removal has two eects on the tree: (1) the strings become shorter

and (2) it may cause collisions when two or more preimage strings map to the exact image

string. The rst eect saves memory while the second eect produces estimation errors.

However, our evaluation shows that our pruning method produces hardly any error when

reducing the memory consumption by half.

Another frequently used query type is the similarity search in arbitrary time intervals. To

provide ecient data access for this kind of query, we presented the Time Series Envelopes
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Index Tree (TSEIT). TSEIT is a time series index that generalizes existing approaches

from literature (Chapter 6). We found that the run time of existing approaches is either

dominated by searching the data structure or by distance computations between time series.

Both aspects are related since searching the data structure usually reduces the number

of necessary distance computations. Furthermore, the cost for distance computations

depends on the length of the time series. Hence, this cost varies for interval-focused

similarity search, where the time series length depends on the query. All told, TSEIT

provides a balance between those two cost aspects and, thus, works particularly eciently

for interval-focused similarity search. We achieve the best query performance with a

compromise between minimizing the costs of searching the data structure and the number

of distance computations. Our evaluation shows that our generalization reduces the query

times by up to 50 % compared to the original approaches.

Altogether, our three contributions shape the technical foundations to implement an

information system to support studying conceptual history on the basis of temporal text

corpora, i. e., millions of books. As part of an interdisciplinary research project, we imple-

mented such a system and also produced insights on the application side. In cooperation

with conceptual history experts, we used our system to test real-world hypotheses in con-

ceptual history on the Google Books Ngram Corpus. We published a function description

of our system as well as novel insights into conceptual history [Wil+19b; Wil+19c] on the

agship Digital Humanities conference1, a competitive conference in the intersection of

digital technologies and the disciplines of the humanities.

To conclude, the availability of large temporal text corpora and our research work on

an information system to query, search, and analyze these corpora enable researchers to

systematically study the origin and history of concepts—which has never been possible

before. Most notably, this enables conceptual historians to test fundamental hypotheses

with large amounts of data empirically. As a result, our system gives researchers new

insights into temporal text corpora and allows them to gain new knowledge about the

evolution of language.

We conclude this thesis with possible next steps and future research directions based

on our ndings and contributions.

7.1 Outlook

In this thesis, we showed how to design an information system to examine language

changes using a temporal text corpus. During our research, we came across several ideas

and open questions for future work. This section gives an outlook on questions that are

related to our work.

Discover Unknown Concept Changes. Our system allows conceptual history examinations

on large temporal text corpora. Conceptual historians can use our system to analyze known

semantic changes of concepts. For example, we analyzed the change of “emancipation” from

its previous relation to “Catholics” to its present relation to “women” (cf. Example 1.1). With

1
For more information on the Digital Humanities conference (DH), see https://dh2019.adho.org.
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such specic analyses, it is very improbable to nd unknown semantic changes. To identify

unknown changes on large corpora, one needs an automated discovery process. Beyond

this thesis, we did work on change detection on the Google Books Ngram Corpus [Eng+19].

We achieved promising results to detect semantic changes of words since we were able to

detect existing and also novel word changes in the corpus. Using change detection may

also be interesting to automatically detect changes in conceptual history, where one has

to consider both the words and their underlying concepts (cf. Sections 2.1.5 and 4.5). This

leads to the questions of whether one can generalize change detection to concepts and

how to integrate such a feature into our system, i. e., into our query algebra CHQL.

Data Cleansing for Temporal Text Corpora. The Google Books Ngram Corpus is a huge,

automatically constructed corpus that contains errors, e. g., optical character recognition

errors. Such errors can inuence the examination results, especially when analyzing

marginal language changes or rarewords. To produce reliable results, a clean and consistent

database is desirable. The process to detect and correct errors in a database is data cleansing.

Data cleansing methods, however, mostly depend on the application for which the data

will be used. At this point, several questions emerge. One question is which methods are

required to detect errors in a text corpus. A follow-up question is how to correct detected

errors. Furthermore, it is interesting to know whether dierent objects of conceptual

history examinations require dierent detection or correction methods. Answering these

questions is an interdisciplinary task and requires the expertise of data scientists and

conceptual historians. All things considered, data cleansing methods for temporal text

corpora might increase the reliability of the results of our system.

A Compact Representation of High-dimensional Temporal Data. The count values of a

temporal text corpus depend on both the ngram and the year. Basically, there are two

physical representations to store such data: horizontally, which means to build 2-tuples

of ngram and its frequency time series, or vertically, which means to build 3-tuples of

ngram, year, and count. In general, the horizontal data model is more compact than the

vertical data model since it avoids storing the year for each count value. Therefore, we

decide to use the horizontal data model (cf. Section 4.3). However, our data model stores

each count value as a single integer value. In literature, many time series compression

techniques and time series transformations exist, like the Fourier transform or wavelets.

Most of these approaches also work on multi-dimensional data. Now, the question arises

to what extent these approaches can reduce the storage requirements of a temporal text

corpus. In addition, it is interesting to study how good multi-dimensional approaches can

handle the high-dimensional Google Books Ngram Corpus with its billions of ngrams. A

further question is whether a concise corpus representation improves the data selection

speed of our system.

Query-based Corpus Sampling. This thesis considers exact processing of queries on a

temporal text corpus. To further reduce the query run times signicantly, one may allow

approximate results. This requires the user to accept a slight inaccuracy of the results in

exchange for noticeably shorter run times. One promising way to achieve this is to sample
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the corpus. For example, if we leave out 10 % of the rarest ngrams, we may have almost

no eect on the end result but likely save 10% of the query run time. Currently, it is an

open question to what extent dierent sampling methods inuence run time and accuracy

of dierent query types in CHQL. For example, some queries may be more accurate

when using the most common words, while others may be more accurate when using

other sampling methods, like random sampling. To that end, one should systematically

investigate the interrelation between query type, query run time, and result accuracy. With

this knowledge, one may be able to design and implement a query execution engine that

automatically samples the corpus depending on the query type. In other words, the query

execution engine should choose the best sampling strategy depending on the received

query. In addition, a sampling approach enables the user to manually control the trade-o

between run time and result accuracy for each query.

Query Log Analyses to Optimize Intermediate Result Usage. A query log is a record of

queries that users have sent to a database system, including the timestamp of the query

arrival. Such query logs contain a wealth of information, like the user’s topical interests or

temporal search behavior. One can analyze query logs to detect more complex information.

For example, a query log might provide interesting semantic relationships between queries

or allows one to learn the user’s querying patterns to predict the probable next queries.

Due to our research and implementation of our information system, it is now possible

to create query logs on how users explore temporal text corpora. With such query logs

available, several questions arise on both the application side and the technical side. On

the application side, analyzing this data may help to better understand similarities and

dierences in the research methodology of conceptual history and help to establish a

consistent methodology in this eld. On the technical side, one research question is if and

how accurate one can predict the next queries. This may allow managing intermediate

results ahead of time, i. e., before receiving the query. Suppose one can predict the next

query accurately enough. In that case, one might be able to decide which intermediate

results to keep and which to precompute to accelerate the probable next queries best.
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