
1.  Introduction
The subseasonal atmospheric variability in the extratropics is a key research topic within atmospheric sci-
ence and of broad socioeconomic relevance (White et al., 2017). A far-reaching paradigm is that a small 
number of states, termed “weather regimes,” can describe this variability. These are defined as recurrent or 
quasi-stationary states of the large-scale circulation (Hannachi et al., 2017). Weather regimes have impli-
cations for extended-range weather forecasting and in the understanding of climate variability (Merryfield 
et al., 2020).

The concept of weather regimes was first introduced by weather forecasters in the late 1940s (Levick, 1949). 
A corresponding theory was developed by Charney and DeVore (1979), who hypothesized that the large-
scale circulation transitions between multiple equilibria states, based on a spectral model. The multiple 
equilibria viewpoint has been later authenticated for the barotropic case (Legras & Ghil,  1985), and in 
two-layer models (Yoden, 1983), yet was criticized using models with higher spectral resolution (Cehelsky 
& Tung, 1987). Faranda et al. (2016) argued for linking blocked regimes to unstable fixed points rather than 
stable equilibria. Nowadays, there is little doubt that weather regimes emerge from different statistical clas-
sifications applied to long archives (Hannachi et al., 2017). However, it is a source of debate whether these 
regimes represent metastable states of the atmosphere (Majda et al., 2006), or are merely useful statistical 
categorizations lacking physical grounding (Fereday, 2017).

A variety of procedures has been used to classify weather regimes (Hannachi et al., 2017). They typically 
seek to define a low-dimensional phase-space reflecting the key aspects of the atmosphere's variability. A 
common choice is to compute the Empirical Orthogonal Functions (EOF) of the data. Clustering algorithms  
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define weather regimes as distinct states of the atmosphere that have a high probability of occurrence and 
are separated by transitional lower probability states. Several clustering techniques exist—the most common 
being the k-means approach (Michelangeli et al., 1995)—aiming to provide partitions of the phase-space  
into regions, to which datapoints are assigned. A difficulty with cluster analyses is determining the a priori 
ideal number of clusters (Falkena et al., 2020).

Different numbers of regimes based on geopotential height were proposed to characterize Atlantic-Europe-
an weather variability. For example, the North Atlantic Oscillation (NAO) provides a two-state classification 
(Wallace & Gutzler, 1981). Other classifications use 4 (Vautard, 1990) or 6 classes (Falkena et al., 2020). 
Classifications based on the zonal wind, yield 3–5 jet regimes (Dorrington & Strommen, 2020; Woollings 
et al., 2010), with four jet regimes corresponding to the four classical weather regimes (Madonna et al., 2017). 
However, neither are these definitions applicable year-round nor may the number of regimes sufficiently 
describe the intraseasonal weather variability in the region (Grams et al., 2017). Here, we use the year-round 
weather regime classification of Grams et al. (2017). This is based on combining EOF analysis and k-means 
clustering and identifies seven regimes.

We approach the discussion of the weather regimes' physical grounding by leveraging recent advances in 
dynamical systems theory. These allow to characterize instantaneous atmospheric states in terms of the 
local dimension (d)—which informs on how the atmosphere evolves to and from a given state—and per-
sistence in phase space (θ−1; Faranda et al., 2017). These metrics are related to the intrinsic predictability of 
the atmosphere and therefore to the stability (here in the context of atmospheric variability) of the flow: a 
highly persistent (low θ), low-dimensional (low d) state will be more stable than a low-persistence (high θ), 
high-dimensional (high d) one (Messori et al., 2017). This approach has been applied to various atmospher-
ic fields (e.g., Faranda et al., 2019a; Messori et al., 2021). Indeed, it has been shown that d and θ can offer a 
dynamical characterization of synoptic systems over several geographical regions (Faranda, Alvarez-Castro, 
et al., 2017; Hochman et al., 2019; Hochman, Alpert, et al., 2020). These studies have focused on individual 
time-slices of the atmosphere. Yet, recent studies have demonstrated the potential of using the temporal 
evolution of the metrics to study the predictability of extreme weather events (Hochman, Scher, et al., 2020; 
Hochman et al., 2021).

We leverage the dynamical systems approach to answer the question: Do weather regimes have a strong 
physical grounding in the dynamics of the atmospheric circulation, or are they simply convenient statistical 
categorizations? The governing hypothesis is that if weather regimes are dynamically meaningful states, 
they should demonstrate unstable flow characteristics (high d and θ) before their onset and after their decay, 
and relatively stable flow (low d and θ) during their mature stage.

2.  Materials and Methods
2.1.  Data

The Atlantic-European weather regime life cycle classification and the dynamical systems analysis are 
based on 6-hourly, 0.7° horizontal resolution European Centre for Medium-Range Weather Forecast (EC-
MWF) ERA-Interim reanalysis data for 1979–2019 (Dee et al., 2011). The analysis is performed on 500-hPa 
geopotential height (Z500) for the Atlantic-European region (80°W–40°E, 30–90°N; Figure 1). This variable 
is routinely used to diagnose the large-scale atmospheric flow characteristics (Ghil & Robertson, 2002).

2.2.  Weather Regime Life Cycle

We use the year-round Atlantic-European weather regime definition of Grams et al. (2017). First, we per-
form a k-means clustering in the phase space spanned by the leading seven EOFs (∼76% explained variance) 
of 6-hourly (1979–2015) 10-day low-pass filtered, normalized Z500 anomalies (Z500ʹ) over the Atlantic-Eu-
ropean region. Data is interpolated to a 1.0° grid spacing. Next, we compute the normalized projection of 
each 6-hourly Z500ʹ onto the cluster mean, which we term the Weather Regimes Index (IWR; Michel & 
Rivière, 2011). The IWR time series is extended until February 2019. We then define weather regime life 
cycles. The key characteristic of an active life cycle for a regime w is that at the time of onset, the respective 
IWRw exceeds the value of 1.0 for the first time. Subsequently, IWRw must remain above 1.0 for ≥5 days. At 
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the maximum stage, IWRw reaches its highest value and it then falls be-
low 1.0 in the decay stage. Still, the projection IWRi for any other regime i 
can be computed at each time and reflects the concurrent contribution of 
different regimes to the circulation pattern.

Dates with all IWR values below 1.0 or none of the IWRw fulfilling the 
life cycle criteria have “no regime” (24.1% of winter days). Negative Z500ʹ 
dominates in three out of the seven weather regimes (“Atlantic Trough”—
AT; “Zonal Regime”—ZO; “Scandinavian Trough”—ScTr), which are 
termed “cyclonic” regimes (Figures 1a–1c). The remaining regimes are 
dominated by positive Z500ʹ and are termed “blocked regimes” (“Atlantic 
Ridge”—AR; “European Blocking”—EuBL; “Scandinavian Blocking”—
ScBL; “Greenland Blocking”—GL; Figures 1d–1g). For more details on 
the regime characteristics, the reader is referred to Grams et al. (2017). 
This study focuses on weather regime life cycles being active in the win-
ter months (DJF); summer months (JJA) are briefly discussed. The Kol-
mogorov-Smirnov test is used for assessing the differences between re-
gime distributions at the 5% significance level.

2.3.  Dynamical Systems Analysis

To depict the dynamical evolution of Atlantic-European weather regimes, 
we rely on an approach combining extreme value theory with Poincaré 
recurrences (Lucarini et al., 2012, 2016). This approach allows the com-
putation of instantaneous properties of chaotic dynamical systems, and 
hence it is ideally suited to study the dynamics of the atmosphere. We in-
terpret a temporal succession of two-dimensional Z500 maps as discrete 
samples from a long trajectory in a reduced atmospheric phase space. For 
each map, we compute two instantaneous dynamical properties, which 
are termed local dimension (d) and persistence (θ−1).

The local dimension (d) is a proxy for the active number of degrees of 
freedom that a system can explore locally. It therefore reflects the way 
the system approaches and departs from a given atmospheric state. The 
computation of d stems from the fact that the cumulative probability 
distribution of suitably defined recurrences of the system converges to 
the exponential member of the Generalized Pareto Distribution (Freitas 
et al., 2010).

The persistence (θ−1) of a state intuitively relates to the persistence time 
of the system near said state. θ−1 tends to be more sensitive to small 
changes in the state of the system than other persistence metrics, such 
as the conventional definition of weather regime persistence. In the latter 

case, we are partitioning the atmospheric variability into a small number of states, while in the former we 
define “similar” states as a small number of close recurrences. Notwithstanding these differences, the two 
definitions show a close relationship (Hochman et al., 2019). To compute θ−1, we estimate the extremal in-
dex using the Süveges (2007) estimator. For details of the computation of the metrics, the reader is referred 
to Faranda, Messori and Vannistem (2019) and Messori et al. (2017).

Studies have shown that the dynamical systems metrics have a strong seasonal cycle (Faranda et al., 2017; 
Hochman, Scher, et al., 2020). Since we are comparing weather regime life cycles during different parts of 
the winter season, we deseasonalize the metrics prior to our analysis. The seasonal cycle is computed by 
averaging the metrics for a given time step over all years, repeating this for all time steps within the year 
and finally smoothing the series with a 30-day moving average. A bootstrap test is used to estimate the 95% 
confidence intervals for the mean temporal evolutions of the metrics. The same test as in Section 2.2 is used 
for comparing the metrics distributions.

Figure 1.  Atlantic-European weather regimes in winter. (a–g) 500-hPa 
geopotential height mean composites (contours, every 80 gpm) and 
their anomalies (shading, every 20 gpm) with respect to the seasonal 
climatology (h) during active regime life cycles (the onset to decay 
period) in December, January, February of 1979–2019. The weather 
regimes considered are: (a) Atlantic Trough (AT), (b) Zonal Regime (ZO), 
(c) Scandinavian Trough (ScTr), (d) Atlantic Ridge (AR), (e) European 
Blocking (EuBL), (f) Scandinavian Blocking (ScBL), (g) Greenland 
Blocking (GL). Numbers in the subfigure titles indicate the frequencies of 
winter days attributed to the respective regime (a–g). The frequency of “no 
regime” days is 24.1%.
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3.  Results
3.1.  Atlantic-European Weather Regimes Life Cycles

First, we analyze the temporal evolution of the mean IWRw during the active life cycle of regime w, and 
IWRi, for all other regimes i. The composites are centered on the maximum stage of regime w (Figures 2a–
2g). At the time of the maximum (0 days) the mean IWRw (very bold curves; Figures 2a–2g) is distinct from 
all other mean IWRi (bold curves). The distributions of IWRw over a time window of about ±5 days around 

Figure 2.  Average temporal evolution of the objective Weather Regimes Index (IWR) centered on the weather regime 
maximum stage (lag on x-axis = 0 days) during the respective active life cycle. Panels (a)–(g) display the mean IWR of 
all regimes during active regime life cycles (IWRw, see subtitles) of the (a) Atlantic Trough (AT), (b) Zonal Regime (ZO), 
(c) Scandinavian Trough (ScTr), (d) Atlantic Ridge (AR), (e) European Blocking (EuBL), (f) Scandinavian Blocking 
(ScBL), (g) Greenland Blocking (GL) regimes. (h) The mean temporal evolution of the respective IWRw if the weather 
regimes are active. Very bold sections in the curves for IWRw of the active regime indicate significant difference of the 
Cumulative Distribution Functions (CDF) of IWRw at the 5% level from the CDFs of all other regimes (IWRi; see text). 
Bold sections in the curves for IWRi indicate significant differences of the CDF of IWRi to the CDF of the active regime's 
IWRw.
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the maximum stage are significantly different from the distributions of IWRi over the same period (very 
bold sections of IWRw; Figures 2a–2g). Thus, the atmospheric state in a time window around the maximum 
stage of a regime is distinct from all other regime states, which suggests a coherent life-cycle evolution, and 
a low local dimension in terms of dynamical systems theory.

The period of mean IWRw > 1.0 is related to the duration of a regime life cycle, and fulfilled on average for 
≥9 days for all regimes (Figure 2h), while the persistence criterion in the life cycle definition is ≥5 days. The 
mean regime duration in winter, i.e., the mean period between the identified regime onset and decay for 
each regime life cycle ranges from 10.8 days for EuBL to 16.9 days for GL (not shown). Contrary to what 
might be expected, the blocked EuBL (10.8 days) and ScBL (11.0 days) regimes display lower mean duration 
than the cyclonic regimes (13.3–14.6 days).

To further determine whether the IWRw values are different from IWRi at the maximum stage, we evaluate 
their Cumulative Distribution Functions (CDFs; Figures 3a–3g). The CDFs for some regimes tend to be clos-
er to the CDF of the active regime (rightmost CDF; Figures 3a–3g) than others (left CDFs; Figures 3a–3g). 
During an active ZO regime, the CDFs of the AT and ScTr are closer to the CDF of ZO than the blocked 
regimes (Figure 3b). This similarity between ZO, AT, and ScTr is also reflected in the mean Z500 patterns, 
which are characterized by negative anomalies over the Eastern North Atlantic (Figures 1a–1c). During a 
ScTr regime, the CDFs of the cyclonic regimes, but also of the AR regime are closest to the ScTr (Figure 3c). 
Vice-versa during an active AR regime, the closest CDFs are those of ScTr, GL, and EuBL (Figure 3d). As 
a final example, the CDFs of the EuBL and ScBL regimes are closest to each other no matter which regime 
is active (Figures 3e and 3f). The CDF for GL shows higher IWRw values than all other regimes, and GL 
has a longer life cycle. On the other hand, the CDF for ScBL exhibits the overall lowest IWRw values during 
its active life cycle (cf. Figures 2h and 3h). It is nonetheless important to emphasize that the active regime 
CDF is always significantly different from all the others (the CDFs to the left) and this difference persists for 
about ±5 days around the maximum stage (Figure 2). Thus, the atmospheric state at maximum stage of a 
regime is distinct from all other regime states, again suggesting a low local dimension in terms of dynamical 
systems theory.

3.2.  Atlantic-European Weather Regimes From a Dynamical Systems Perspective

Next, we characterize the weather regime life cycles directly in terms of the two dynamical systems metrics: 
local dimension (d) and inverse persistence (θ; Figures 4 and 5). Both metrics are presented as deviations 
from climatology, thus values below zero indicate a more stable and persistent state compared to climatol-
ogy. We first discuss the temporal evolution of d and θ centered on the maximum stage (0 day; Figure 4). 
The metrics are in phase with one another for most regimes. The cyclonic weather regimes and GL display 
values of d and θ that are significantly below climatology at maximum stage, thus, indicating a low local 
dimension and enhanced persistence during an active weather regime. The other blocked regimes, except 
for θ in EuBL and d in ScBL, also display values below climatology, though not significantly so at maximum 
stage. In addition, d and θ are typically below climatology for several days around the maximum stage. This 
implies that most weather regimes can be regarded as stable and persistent states from a dynamical systems 
perspective. In particular, in the cyclonic (Figures 4a–4c) and the blocked AR and GL regimes (Figures 4d 
and 4g), d and θ start to steadily decrease about 5 days prior to the maximum stage and steadily increase in 
the 5 days thereafter. This pattern is also found for d in the EuBL regime (Figure 4e). Beyond ±5 days, d and 
θ exhibit a larger spread around their climatological values. This behavior of d and θ mirrors the onset and 
decay stages of the active regime life cycle (Figure 2), and is also evident when centering the plots on the 
onset or decay of the regimes (Figures S1 and S2 in Supporting Information S1). The evolution of d and θ 
is remarkably consistent with the earlier finding that IWRw is above 1.0 and significantly different from the 
other IWRi in a time window of about ±5 days around the maximum stage (Figure 2).

Some differences between the regimes deserve further attention. GL is the regime with the most pronounced 
change in amplitude of both d and θ (Figure 4g), indicating the transition from an atmospheric state of low 
persistence and predictability to a persistent and predictable state. Further, θ is below climatology from 
5 days prior to maximum stage until beyond 10 days thereafter, consistent with GL being the regime with 
the longest mean duration. The cyclonic regimes show a more symmetric evolution of d and θ compared to 
the others, and d and θ remain below climatology for around ±3 days (Figures 4a–4c). AR exhibits a roughly 
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symmetric decrease in d and θ toward the maximum stage and a subsequent increase, but the values fall 
below climatology only for a short period (Figure 4d). EuBL shows similar behavior for d (Figure 4e). Of all 
regimes, θ values remain highest during EuBL, which is consistent with the overall shortest mean duration. 
ScBL displays the least systematic changes and largest spread in d and θ; though a decrease toward maxi-
mum stage is still evident (Figure 4f). This may partly be due to the rarity of ScBL during winter (Figure 1f), 
giving a small sample size. The fact that d falls below climatology only for a short period around maximum 
stage for EuBL, AR, and remains above climatology for ScBL, hints that the statistical characterization of 
these regimes has a weaker link to the underlying dynamics of the atmospheric flow.

Finally, we analyze the CDFs of d and θ at maximum stage of the regimes (Figure 5). For AT, ZO, ScTr, GL, 
and to some degree AR, the CDFs for both d and θ shift toward values well below climatology, reflecting 

Figure 3.  Cumulative Distribution Functions (CDFs) of the objective Weather Regimes Index (IWR) at the maximum 
stage (lag = 0 days in Figure 2) of the Atlantic-European weather regimes. The active weather regimes considered are: 
(a) Atlantic Trough (AT), (b) Zonal Regime (ZO), (c) Scandinavian Trough (ScTr), (d) Atlantic Ridge (AR), (e) European 
Blocking (EuBL), (f) Scandinavian Blocking (ScBL), (g) Greenland Blocking (GL). (h) CDFs for all weather regimes at 
the times when they are active. Significant CDF differences between the active regime and all other regimes are marked 
with p < 0.05 (a–g). The differences between the weather regimes in (h) significant at the 5% level are shown in Table 
S1 in Supporting Information S1.
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the low local dimension and enhanced persistence at maximum stage. In 
contrast, the local dimension of ScBL and persistence of EuBL at maxi-
mum stage are close to climatology. The CDFs of d and θ display a rel-
atively large spread around climatology at onset and decay stages (not 
shown).

Though not being the focus of this study, our findings remain qualitative-
ly valid also in summer (Figures S3–S5 in Supporting Information S1). 
The metrics are in phase with one another for most regimes. The AT, 
ScBL, and GL display values of d and θ that are significantly below cli-
matology at maximum stage (Figures S4a, S4f, S4g, and S5 in Supporting 
Information S1). The other regimes, display a minimum value at the max-
imum stage of a regime, though not significantly different from clima-
tology. The most pronounced difference from the winter season is found 
for ScBL (cf. Figures S4f in Supporting Information S1 with Figure 4f). 
ScBL is more frequent in summer (16.0% of all days) compared to winter 
(6.5% of all days), and in the former season displays d and θ values that 
are significantly below climatology at maximum stage (Figures S4f and 
S5 in Supporting Information S1). This strengthens our interpretation of 
the winter composite as being affected by small sample size.

In summary, our analysis provides strong evidence that most Atlantic-Eu-
ropean weather regimes have a dynamical grounding (Figures 4 and 5), 
which is largely consistent with the statistical-based weather regime life 
cycle definition (Figures 2 and 3). In winter, this is most pronounced for 
the cyclonic regimes, as well as for the GL blocked regime.

4.  Discussion
We combine a refined weather regime classification with recent advanc-
es in dynamical systems theory to investigate the life cycle and physical 
grounding of Atlantic-European weather regimes. The agreement be-
tween the statistical classification and the dynamical systems analysis 
provides strong evidence for most Atlantic-European weather regimes 
being physically meaningful. Interestingly, cyclonic regimes and GL, 
which corresponds to the negative phase of the NAO, show enhanced 
flow stability and persistence whereas for the blocked regimes of EuBL, 
ScBL, and AR local dimension reduces toward maximum stage but re-
mains around climatology. Indeed, GL is the single regime with the low-
est local dimension and highest persistence, while the EuBL and ScBL 
regimes emerge as being amongst the lowest-stability regimes. This may 
be related to the difficulty in predicting these regimes in extended-range 

forecasts (Rodwell et  al.,  2013). The counter-intuitive finding of unstable blocking regimes agrees with 
Faranda et al. (2016), who linked blocking events to unstable fixed points of the atmospheric dynamics, and 
Lucarini and Gritsun (2020), who showed in an idealized context that blocking displays anomalously high 
instability relative to zonal flow.

More generally, we conclude that most Atlantic-European weather regimes display relatively stable flow 
characteristics (low d and θ) at their maximum stage, yet relatively unstable flow (high d and θ) at onset and 
decay. Large decreases in d and θ systematically occur toward the maximum stage of each weather regime, 
even for those that display above average d and θ, whereas large increases in these metrics arise toward their 
decay stage. We interpret these differences as pointing to most weather regimes being states which have a 
physical footprint, reflected in the dynamical properties of the atmospheric flow.

Cluster analysis is obviously a valuable tool for simplifying the investigation of large amounts of data, 
with applications that include revealing atmospheric teleconnections (Kucharski et  al.,  2010), model 

Figure 4.  Average temporal evolution of the deseasonalized dynamical 
systems metrics (d and θ) centered on the weather regime maximum stage 
(time = 0 days). The dynamical systems metrics are computed on 500-hPa 
geopotential height (Z500). A 95% bootstrap confidence interval is shown 
in shading. The weather regimes considered are: (a) Atlantic Trough (AT), 
(b) Zonal Regime (ZO), (c) Scandinavian Trough (ScTr), (d) Atlantic Ridge 
(AR), (e) European Blocking (EuBL), (f) Scandinavian Blocking (ScBL), 
and (g) Greenland Blocking (GL).
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evaluation (Maloney et  al.,  2019), quantifying the impact of external forcing on climate variability (Pe-
terson et al., 2012), and many more. The results presented here validate the relevance of weather regime 
clusters for such applications. For example, the dynamical systems metrics combined with cluster analysis 
may provide a quantitative framework for evaluating the dynamics of Atlantic-European weather regimes 
in climate models, thus providing the basis for studying the changes in the dynamics of weather regimes 
under future scenarios. Furthermore, as the dynamical systems metrics provide quantitative information 
on the intrinsic predictability of weather regimes, they may be used to identify windows of opportunity for 
subseasonal weather forecasting (Mariotti et al., 2020).

In summary, our findings support the potential of using a dynamical system view of weather regimes for 
improving our understanding of both weather predictions and climate projections. In particular, we argue 
that great potential for improvement in subseasonal weather forecasting lies in further understanding of 
weather regimes and their physical grounding.
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