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Abstract

Under fatigue-loading, short-fiber reinforced thermoplastic materials typically show a progressive degradation of the stiffness
ensor. The stiffness degradation prior to failure is of primary interest from an engineering perspective, as it determines when

fatigue cracks nucleate. Efficient modeling of this fatigue stage allows the engineer to monitor the fatigue-process prior to
failure and design criteria which ensure a safe application of the component under investigation.

We propose a multiscale model for the stiffness degradation in thermoplastic materials based on resolving the fiber
microstructure. For a start, we propose a specific fatigue-damage model for the matrix, and the degradation of the thermoplastic
composite arises from a rigorous homogenization procedure. The fatigue-damage model for the matrix is rather special, as its
convex nature precludes localization, permits a well-defined upscaling, and is thus well-adapted to model the phase of stable
stiffness degradation under fatigue loading. We demonstrate the capabilities of the full-field model by comparing the predictions
on fully resolved fiber microstructures to experimental data.

Furthermore, we introduce an associated model-order reduction strategy to enable component-scale simulations of the local
stiffness degradation under fatigue loading. With model-order reduction in mind and upon implicit discretization in time,
we transform the minimization of the incremental potential into an equivalent mixed formulation, which combines two rather
attractive features. More precisely, upon order reduction, this mixed formulation permits precomputing all necessary quantities in
advance, yet, retains its well-posedness in the process. We study the characteristics of the model-order reduction technique, and
demonstrate its capabilities on component scale. Compared to similar approaches, the proposed model leads to improvements
in runtime by more than an order of magnitude.
c⃝ 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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. Introduction

.1. State of the art

To understand the complex failure behavior of structures made of fiber-reinforced composites, which might
e studied experimentally [1–3] or by simulative [4,5] means, it is imperative to account for the underlying
icrostructure. Indeed, the introduced fillers disturb the homogeneity of the material, giving rise to natural “notch”

ffects at the matrix–filler interfaces from which damage may evolve.
We are interested in fiber-reinforced thermoplastic (SFRP) components under fatigue loading. Thermoplastic

aterials show a complex non-linear material behavior that depends on temperature, the processing conditions
e.g., on crystallinity) and the loading rate [6,7]. For high-cycle fatigue of thermoplastic composites, in contrast to
ost polycrystalline materials, a significant decrease of the material stiffness is observed prior to the emergence of
acroscopic fatigue cracks [8]. This phenomenon is believed to be primarily driven by molecular rearrangements in

he matrix (e.g., crazing) and coalescing microcracks [9,10]. This decrease of stiffness is also observed in polymer
omposites, and the level of stiffness loss is typically on the order of ten percent [11].

At high loading frequencies, the self-heating of the material leads to a thermally induced shift in the mechanical
roperties of the material [12]. Therefore, one usually restricts the load frequency to several Hz for the load
mplitudes typical for high-cycle fatigue [13,14]. The resulting temperature increase does not exceed 3–5 K [15],

so that thermally induced fatigue can be neglected. For mechanics-driven fatigue, the dependence of the material
behavior on the frequency is less pronounced.

The most common damage mechanisms in short-fiber reinforced polymers are fiber fracture, fiber pull-out, matrix
damage and failure at the matrix–fiber interface [16]. Microvoids in the matrix are consistently reported to contribute
to the material damage significantly [17–20]. Under fatigue loading, the number of microvoids increases not only
in regions of high stress, such as at the fiber tips [17,20], but also in zones of low fiber density [20]. Starting
from these microvoids, microcracks start to form at the fiber tips and alongside the fibers. Belmonte et al. [17]
report these primary microvoids to form several tenths of a micrometer away from the matrix–fiber interface. This
observation indicates that matrix failure represents the dominant damage mechanism. Other authors report adhesive
fracture at the interface (matrix–fiber failure) [18,19] or both failure modes [20]. These differences may be due to
different chemical coatings used by the supplier to improve the fiber–matrix adhesion [17]. From a macroscopic
perspective, several authors [21–24] identified three stages of evolving fatigue damage in thermoplastic composites.
An initially rapid decrease of the stiffness is followed by a stable phase of fatigue-damage evolution, and a phase
of final failure.

Modeling strategies for the fatigue of polymer composites encompass phenomenological progressive damage
models and physics-based progressive damage models. The former model damage growth based on macroscopic
observable properties and thus require extensive (typically rather costly) experimental studies [22–26]. The second
approach accounts for fatigue effects on the microstructure, such as matrix damage, fiber fracture and matrix–
fiber debonding, explicitly. The macroscopic material behavior emerges by homogenization in a natural way, see
Matouš et al. [27] for a recent overview on computational homogenization methods. Mean-field techniques [28]
for fatigue modeling of fiber reinforced polymers were developed by Krairi et al. [29] and Kammoun et al. [30].
Moreover, Jain et al. [31,32] consider a master S/N-curve approach based on a mean-field model. More precisely,
they account for damage on the microscopic scale via fiber–matrix debonding and assess final failure via a criterion
based on the amount of stiffness degradation, which is assumed to be independent of the fiber orientation. Jain
et al. [31] reported their method to be fast, reliable and more accurate than established methods, e.g., based on
empirical reduction coefficients [33–35] and rescaling based on the tensile strength [36–40]. These analytical
methods are complemented by computational approaches. Developed for general two-scale problems, the FE2

method [41] associates a finite-element model of the microstructure to every integration point of the macroscale.
In the context of damage in composite structures, the method was successfully applied [42,43]. To speed up the
computations on the microscale, methods based on the fast Fourier transform (FFT) [44,45] were used to replace
the finite element models on the microscale, giving rise to the FE-FFT method [46–48], and applied to damage in
short-fiber reinforced composites [46]. To further reduce the computational burden of the simulations, model-order
reduction (MOR) strategies prove useful, like the transformation-field analysis of Dvorak and coworkers [49,50], its
nonuniform extension [51–53] and the self-consistent clustering analysis [54–56]. Alternatively, machine-learning
methods [57–63] may be used for multiscale simulations.
2
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Fig. 1. Comparison of the effective fatigue damage reported in the literature [23] (left) and predicted by the proposed model (right),
istinguishing constant strain amplitude (top) and constant stress amplitude (bottom) for reversible loading (i.e., R = 0).

Recently, Köbler et al. [64] proposed an efficient multiscale fatigue-damage model for short-fiber reinforced
hermoplastics based on a modification of classical phase-field fracture [65–67], combined with non-uniform
ransformation-field analysis (NTFA) [51–53] and fiber-orientation interpolation [68]. After an implicit discretization
n time, the incremental potential of the model is a fourth-order polynomial in the involved fields. In particular, a
recomputation strategy could be used to speed up the online evaluation, enabling component-scale simulations. The
OR ansatz of Köbler et al. [64] and the mean-field approach of Jain et al. [31] share a common strategy. First,

he stable phase of fatigue damage is modeled. Then, a failure criterion based on the relative stiffness degradation
s utilized for predicting the fracture cycle. However, both articles differ in the computational approach to the

icroscale, with mean-field [31] and full field/MOR [68] models representing the different strategies.

.2. Contributions

This work builds upon the approach introduced by Jain et al. [31] and refined in Köbler et al. [64] in terms
f a suitable multiscale fatigue-damage model of short-fiber polymer composites. Following their strategy, we are
nterested in modeling the progressive stiffness degradation in the stable phase prior to failure, serving as the basis
f a subsequent failure assessment via an appropriate criterion. To be more precise, we introduce a scalar fatigue-
amage model for the polymer matrix, and the stiffness degradation of the composite arises from a suitable MOR
trategy in a computational homogenization framework.

Köbler et al. [64] used a fatigue-damage model that is quite similar to classical phase-field fracture models
65–67] and exploited the fact that the corresponding incremental potential is a fourth-order polynomial in the
nvolved fields, which permits to express the incremental potential in a MOR framework exactly in terms of suitable
recomputed quantities. In particular, no special quadrature [69] is necessary in the NTFA procedure.

Taking a closer look at the typical stiffness degradation of polymer composites upon fatigue loading [21,23],
ee Fig. 1, we notice that the first and the second phase of the fatigue-damage evolution on the macroscale are
haracterized by a steady and stable damage evolution. Only for prescribed stress amplitude and in the third, final

¨
hase, localization occurs. As the models of Jain et al. [31] and Kobler et al. [64] only require modeling the

3



N. Magino, J. Köbler, H. Andrä et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114198

fi
a
i
m
a

rst and the second phase of the fatigue-damage evolution to assess the lifetime of the component, we sought an
lternative damage model which permits a more efficient numerical treatment. Indeed, to model this stable phase,
t appears sufficient to employ a fatigue-damage model which avoids the negative side effects of softening damage

odels, like the inherently high number of modes necessary to capture the evolution in the strain softening regime
ppropriately [64, Fig. 21] and the loss of representativity upon softening [70].

For this purpose, we build upon the convex, rate-independent damage model [71,72] of Görthofer et al. [73].
Inspired by the work of Govindjee [74], Görthofer et al. [73] proposed a framework for damage models that directly
operates on the compliance matrix as an internal variable and satisfies Wulfinghoff’s damage criterion [75]. The
resulting strain energy is jointly convex in the strain and internal variables and thus precludes strain softening [76],
leading to mesh-independent results without the necessity of introducing a gradient term of the damage variable
[77–83]. In contrast to elastoplastic models, which may be used for modeling a shift in the ”secant stiffness”, our
approach permits to predict the degradation of the full stiffness tensor, accounting for anisotropy effects.

To reproduce the characteristic behavior of the fatigue-damage evolution in the first two stages, see Fig. 1, we
formulate the model in the logarithmic cycle space. In addition to closely matching what is observed in experiments,
see Fig. 1, this formulation leads to a high computational efficiency, as a large number of cycles can be simulated
quickly. Endowing the thermoplastic matrix with this model leads to a naturally emerging multiscale model, see
Section 2.2, which we demonstrate to be appropriate to capture the loss of stiffness upon fatigue loading for a glass–
fiber reinforced polybutylene terephthalate (PBT), see Section 2.3, at least if the stiffness reduction introduced in
the initial phase, which can be determined experimentally with little effort, is considered.

Unfortunately, in its original form, the introduced fatigue-damage model is not directly suitable for efficient
model-order reduction. In contrast to the model of Köbler et al. [64], the class of models introduced by Görthofer
et al. [73] leads to an incremental potential whose integrand is no longer a polynomial in the fields. In particular,
the precomputing strategy of Köbler et al. [64] does not apply. Of course, approximation procedures [84,85],
Gauss quadrature [69] or polynomialization [86] could be applied. To avoid the resulting decrease in accuracy
or increase in computational effort, we follow a different route. More precisely, we exploit a reformulation of the
fatigue-damage evolution in terms of the stress amplitude. Mathematically speaking, we apply a partial Legendre
transform in the strain amplitude. By this nonlinear transformation, the underlying saddle-point problem has an
incremental potential which is a third-order polynomial in the involved stress-amplitude and fatigue-damage field.
In particular, the precomputation strategy of Köbler et al. [64] applies. However, this reformulation comes at a
cost. The original, primal minimization principle is replaced by a mixed variational principle, and its structure
needs to be studied anew, in particular concerning model-order reduction. Fortunately, see Section 3 for details, the
corresponding mixed variational principle turns out to be well-posed, even upon model-order reduction, as long as
suitable (physically sound) conditions hold. We thoroughly investigate the sensitivity of the multiscale model and
its reduced-order model w.r.t. the involved parameters in Section 4, and demonstrate the capabilities of the ensuing
model on component scale, see Section 5.

2. A fatigue-damage model for the stiffness degradation

In Section 2.1, we introduce a (homogeneous) material model for the polymer matrix which models the stiffness
degradation upon fatigue loading. The material model may appear simple, but was selected with its favorable
properties concerning model-order reduction in mind.

Köbler et al. [64] work directly in cycle space for reasons of efficiency. In a similar direction, we consider a
time-like variable directly in logarithmic cycle space. We investigate the material behavior in a one-dimensional
stress- and strain-driven load case and compare the material behavior to fatigue degradation of short-fiber reinforced
polymers reported in the literature [22,23,87]. Subsequently, in section 2.2, the described model enters as a
constituent in a composite, mathematically encoded by an appropriate first-order homogenization framework. Upon
discretization in cycle space and for prescribed stress (amplitude), we also discuss the naturally associated variational
principle. We close this section by showing that the introduced model captures the phase of second, stable stiffness
degradation of fiber-reinforced composite microstructures quite accurately, at least if the initial stiffness degradation

is accounted for.
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.1. Matrix modeling

We introduce a fatigue-damage material model at small strains using the framework of generalized standard
aterials (GSMs) of dissipative solids [88,89]. We formulate our model in logarithmic cycle space, described by
continuous variable N ≥ 0, instead of the more standard time framework. To be precise, we use the rescaling

N = log10 (N ) throughout this work, where N refers to the current cycle, and introduce a time like derivative
′
≡ dq/dN . This choice permits taking large steps △N in logarithmic cycle space, necessary for treating high-

cycle fatigue problems, instead of small time steps △t . The GSM framework is carried over to the cycle setting, by
simply relabeling the time t by the cycle N (some care has to be taken with the dimensions, as the time-like scale
N is dimensionless).

The proposed model involves a scalar damage variable d ≥ 0 as the only internal variable. We consider the free
nergy

w (ε, d) =
1

2 (1 + d)
ε : C : ε, (2.1)

where ε refers to the elastic (small) strain tensor and C denotes the (undamaged) fourth-order stiffness tensor. The
model is completed by the dissipation potential

φ
(
d ′
)

=
1

2α

(
d ′
)2

, (2.2)

where α > 0 determines the speed of evolution and d ′ denotes the derivative of the fatigue-damage variable d w.r.t.
the continuous logarithmic cycle variable N . The associated Cauchy stress-tensor σ is defined by

σ ≡
∂w

∂ ε
(ε, d) =

1
(1 + d)

C : ε, (2.3)

i.e., the stiffness tensor is reduced by a factor 1/ (1 + d) for growing fatigue-damage variable d . Biot’s equation
associated to the described model reads

0 !
=

∂w

∂d
(ε, d) +

∂φ

∂d ′

(
d ′
)

= −
1

2 (1 + d)2 ε : C : ε +
d ′

α
, (2.4)

i.e., in explicit form

d ′
=

α

2 (1 + d)2 ε : C : ε . (2.5)

As the right-hand side is always non-negative, the damage variable is non-decreasing for increasing cycles N .
An implicit Euler discretization of Eq. (2.5) in logarithmic cycle space leads to the equation

dn+1
− dn

△N
=

α

2
(
1 + dn+1

)2 ε : C : ε, (2.6)

where dn refers to the damage value at the previous and dn+1 to the damage value at the current state.
To gain some understanding of the predictions made by the model, we shall discuss uniaxial extension for the

ne-dimensional case in more detail. In this context, we denote the Young’s modulus by E .
For a constant peak stress σmax, the differential equation (2.5) with initial condition d (0) = 0 may be integrated

exactly,

d
(
N
)

=
α

2
σ 2

max

E
N . (2.7)

Thus, the damage variable d grows linearly in the variable N . In Fig. 2(a), the solution is plotted for a stress
amplitude of σmax = 25 MPa and the Young’s modulus E = 3 GPa. The fatigue-damage variable depends linearly
on the parameter α, resulting in a faster evolution of the damage variable d with increasing α. The damage variable
has no upper bound and evolves towards +∞ under fatigue loading. This corresponds to an asymptotic degradation
of the effective stiffness Eeff

=
1

1+d E towards zero,

Eeff
=

1
1 2

E, (2.8)

1 + 2ασmax N/E

5
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Fig. 2. Effect of changing the parameter α on the model for constant stress amplitude σmax = 25 MPa.

as shown in Fig. 2(b). At the undamaged state d = 0, the current effective Young’s modulus Eeff equals the elastic
modulus E . Under fatigue loading, the effective Young’s modulus decreases. The slope of the E-N -curve decreases
with increasing N . Thus, for high number of cycles, the degradation of the effective Young’s modulus is slowed

own. Indeed, since the damage variable d never reaches +∞, the state E = 0 of the material is not reached.
For a constant peak strain εmax and the initial condition d (0) = 0, the damage evolution integrates to the

xpression

d
(
N
)

=

(
1 +

3α

2
E ε2

max N
) 1

3
− 1. (2.9)

The solution is plotted for a strain amplitude of εmax = 8.33 × 10−3 and a Young’s modulus of E = 3 GPa in
Fig. 3(a). The corresponding evolution of the effective Young’s modulus

Eeff
=

1(
1 +

3
2αE ε2

max N
) 1

3
E (2.10)

is shown in Fig. 3(b). The exponent in the evolution of the damage variable of 1/3 is smaller than under constant
stress, where the exponent is one. Still, as for stress loading, the fatigue damage evolution grows to +∞ as
N → +∞. Under constant strain amplitude, the evolution of the effective Young’s modulus asymptotically goes to
ero, as well. However, due to the cubic root-type evolution of the damage variable under constant strain amplitude
ompared to the linear evolution under constant stress amplitude, the degradation of the material progresses at a
lower rate.

Both under constant stress and constant strain amplitude, the model does not feature a fatigue limit. Instead, the
odel predicts a stable stiffness degradation to zero, due to fatigue damage. To predict the complete failure upon

atigue loading, an additional failure criterion needs to be supplemented.
In Fig. 1, the introduced fatigue-damage model is compared to typical experimental results from the literature.

he stiffness evolution of the proposed model is given for α = 1.5 1/MPa and a Young’s modulus of E = 3 GPa.
The loadings are chosen with a stress amplitude of σa = 25 MPa and a strain amplitude of εmax = 8.33 × 10−3. In
strain-controlled fatigue experiments of short-fiber reinforced polymers, two distinct stages emerge in cycle space.
Starting from an initial damage value evoked by the preloading step (and whose magnitude depends on the applied
6
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Fig. 3. Effect of the parameter α on the model for constant strain amplitude εmax = 8.33 × 10−3.

displacement [23]), the stiffness decreases rapidly in the first stage of fatigue loading. The proposed fatigue-damage
model may reproduce the initial loss in stiffness by considering a positive initial value d0 > 0. If d0 = 0 is used,
the stiffness degradation experienced in the first cycle will not be accounted for. The model at hand qualitatively
reproduces the rapid degradation of the material in stage-1 fatigue. Subsequently, in experimental stage-2 fatigue,
the material degradation enters a stable phase of stiffness degradation. The effective Young’s modulus of the material
decreases gradually. The model at hand may reproduce this fatigue-loading regime quite accurately.

Under constant stress-amplitude loading, the stiffness degradation is also characterized by these two phases, but
enters a third stage, which was not observed for displacement-driven experiments. In this third stage, a critical
damage state forms which leads to a complete fracture of the test specimen. This stage-3 fatigue is not accounted
for by the proposed fatigue model on the microscale. Rather, the onset of macroscopic failure can be determined
via a suitable failure criterion, like a prescribed amount of stiffness lost [31,32,64].

2.2. Model on the microscale

Consider a cubic cell Y ⊆ Rm , and suppose that a microscopic stiffness distribution Y ∋ x ↦→ C (x), associating
(non-degenerate) linear elastic stiffness tensor to each microscopic point, and a (bounded) field α : Y → [0, ∞),

are given. For a prescribed path of macroscopic stress amplitudes

Σ : [0, N max] → Sym(m), (2.11)

apping into the space Sym(m) of symmetric m × m tensors, we seek a displacement fluctuation field u, a strain
field ε, a stress field σ and a damage field d, all defined on the microscopic scale, satisfying kinematic compatibility

ε
(
N , x

)
=
⟨
ε
(
N , ·

)⟩
Y + ∇

su
(
N , x

)
, (2.12)

here ⟨.⟩Y stands for averaging over the cell Y , the constitutive equation

σ
(
N , x

)
=

1(
1 + d

(
N , x

)) C (x) : ε
(
N , x

)
, (2.13)

the (quasi-static) balance of linear momentum

div σ
(
N , x

)
= 0 (2.14)
7



N. Magino, J. Köbler, H. Andrä et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114198

a

t

t

f

F

a
e
w
i

c
t
p
t
a
w

2

r
p
r
o

T
a
p
o

nd Biot’s equation

d ′
(
N , x

)
=

α (x)

2
(
1 + d

(
N , x

))2 ε
(
N , x

)
: C (x) : ε

(
N , x

)
, (2.15)

ogether with the prescribed stress amplitude Σ
(
N
)⟨

σ
(
N , ·

)⟩
Y = Σ

(
N
)

(2.16)

and the initial condition

d (0, x) = 0 (2.17)

for all x ∈ Y . Upon an implicit discretization in time and eliminating all fields except for ε̄n , un and dn , where the
macroscopic strain ε̄n at cycle N

n
is defined as

ε̄n
=

⟨
ε
(

N
n
, ·
)⟩

Y
, (2.18)

he latter set of equations, at the current cycle step, corresponds to a critical point of the variational principle

Fn+1 (ε̄, u, d) −→ min (2.19)

or the Ortiz–Stainier functional [90,91]

Fn+1 (ε̄, u, d) =

⟨
1

2 (1 + d)

(
ε̄ + ∇

su
)

: C :
(
ε̄ + ∇

su
)
+

1

2α△N

(
d − dn)2

⟩
Y

− ε̄ : Σ n+1. (2.20)

or the latter definition, we use the convention that Fn+1 (ε̄, u, d) = +∞ if α (x) = 0 and d (x) ̸= dn (x) for
x ∈ Y . Also, the short-hand notation Σ n

= Σ
(

N
n
)

is used.
For the article at hand, we are primarily interested in the evolution of the effective stiffness upon fatigue loading.

The latter arises from the local stiffness tensor field C/ (1 + d) by linear elastic homogenization [92].
If C is uniformly positive and bounded and α is bounded as well, it is not difficult to see that the problem (2.20)

dmits a unique minimizer in a suitable Sobolev space [93]. Indeed, eliminating the damage variable d via Biot’s
quation (2.6) leads to a strictly convex optimization problem in the strain field, whose condensed energy grows
ith an exponent between 4/3 and 2 in the strain, depending on whether α vanishes or not. Once the strain field

s obtained, the (square-integrable) damage field may be recovered via Biot’s equation.
Thus, the presented model is well-defined for Sobolev spaces with exponents larger than one. In particular, by

onstruction, no damage localization is permitted by the mathematical model. Indeed, such localization behavior is
ypically observed for energies with linear growth in the strain. The superlinear growth of the condensed energy
recludes localization. Thus, focusing on the stable fatigue damage regime, see stage-1 and stage-2 fatigue in Fig. 1,
he presented damage model comes with a beneficial numerical treatment, as it leads to mesh-independent results
lso without gradient enrichment. Physically speaking, the model at hand monitors the phase of stiffness decrease
hich does not (yet) have fracture mechanical ramifications. This contrasts with comparable models [64].

.3. Parameter identification

After discussing the ability of the model to reproduce the typical fatigue-damage behavior of short-fiber
einforced polymers in the one-dimensional case, see Section 2.1, this section is devoted to identifying the single free
arameter α, which governs the speed of fatigue-damage growth for the model at hand. We compare experimental
esults to simulations on representative volume elements (RVE) to determine this parameter. Moreover, the capability
f the model to reproduce the stiffness decrease is further discussed.

We performed experiments on specimens made of polybutylene terephthalate (PBT) reinforced by E-glass fibers.
he isotropic elastic moduli for these materials are given in Table 1. The elastic properties of the E-glass fibers
re standard, whereas the elastic properties of the polymer matrix were identified via quasi-static testing of the
ure matrix material using so-called Becker samples, see [94], on a Zwick universal testing machine. We restrict
urselves to stress ratios

R =
Σmin (2.21)

Σmax

8
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Fig. 4. Setup and geometries for experiments.

Fig. 5. Comparison of experimental data and simulation results.

Table 1
Model parameters adjusted to experimental data.

Material E in GPa ν Additional parameters

E-glass fibers 72 0.22 –
PBT matrix 2.69 0.4 α = 15 1/GPa

of R = 0 throughout this work.
The specimens used for the fatigue tests were cut from an injection-molded plate as shown in Fig. 4(a). Each

specimen has a thickness of 2 mm and the geometric properties of the specimens are shown in Fig. 4(b).
The fatigue tests were performed on a Schenk hydropulser as shown in Fig. 4(c). With respect to time-efficient

testing, the frequencies of the experiments were chosen in the range from 2 Hz to 12 Hz depending on the loading
amplitudes. Of course, induced self-heating of the samples limits the maximum frequency that can be applied. The
chosen frequency ensures that the temperature increase during testing, measured at the sample surface, does not
exceed 2 K. For the positioning of the temperature sensor on the sample, see Fig. 4(c). The local deformation in
the middle of the sample is recorded using extensometers with a gauge length l0 = 10 mm, see Fig. 4(c).

In accordance with the literature [18,23,87], the experiments show an initial rapid decrease of the stiffness for
low cycles and a secondary steady regime in the linear cycle space, see Fig. 5(a). The strain results are normalized
by a reference strain ε0, more precisely ε0 = εxx (N = 0) at a stress amplitude of 60 MPa. This decrease corresponds
to a linear evolution when displayed in logarithmic cycle space, see Fig. 5(b).
9
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For parameter identification using numerical computations on representative volume elements, it is necessary
o characterize the fiber orientation state of the experimental specimens. Thus, the microstructural properties of
he specimens were examined via high-resolution X-ray microcomputed tomography (µCT) analysis. For details

of the characterization process, we refer to Hessman et al. [3]. The fiber volume content was found to be 17.8%.
The identified aspect ratio depends on the segmentation algorithm and the chosen batch. The algorithm proposed
by Hessman et al. [3] predicts an aspect ratio of 26.1, whereas the aspect ratio obtained from the commercial
Simpleware ScanIP software is 23.9. As such small changes in the fibers’ aspect ratio have little influence on the
effective material behavior, we use the aspect ratio of 25 for the numerical simulations throughout this work.

The fiber orientations in these specimens show a layered structure over the thickness. To keep the procedure
simple, we consider a homogeneous, averaged fiber orientation and compute the second-order Advani–Tucker tensor
from the scan over the complete specimen thickness. The second-order Advani–Tucker fiber-orientation tensor
A [95] is computed from the fiber directions pi ∈ S := {p ∈ R3, ∥p∥ = 1} via the formula

A =
1

Nfiber

Nfiber∑
i=1

pi ⊗ pi . (2.22)

The obtained eigenvalues in the specimens are λ1 = 0.770, λ2 = 0.213 and λ3 = 0.017. We use these parameters
o generate the microstructure in Fig. 4(d) by the sequential addition and migration algorithm [96].

Subsequently, the microstructure shown is subjected to uni-axial extension in the principal fiber direction at the
ame stress amplitudes that were used in the experiment. We identified the parameter α = 0.015 1/MPa. In Fig. 5,
e compare the measurements to numerical experiments for using a log-cycle scale N .
For the stress amplitudes at hand, the strain evolution curves are captured quite well by the model. Both the

slopes of the strain evolution as well as the initial strain amplitude, corresponding to the strain amplitude at the
first cycle, are captured. However, for computations at higher or lower stress amplitudes than shown here, the initial
strain amplitudes at the first cycle deviate from the experimental results. This kind of initial stiffness decrease in
the first few cycles prior to stage-1 fatigue shown in Fig. 1(b) is not accounted for by the proposed model.

For the work at hand, we focus on the region between initial damage (or plastic deformation) and fracture,
namely stage-1 and stage-2 fatigue. The prediction of the initial strain amplitude decrease is left for subsequent
work.

The damage evolution in the fatigue damage region between initial loading and final fracture has been observed
to be of logarithmic character. The formulation of the model at hand in log-cycle space N is thus reasonable.

3. A model-order reduction strategy based on a mixed formulation

3.1. A reformulation in terms of the stress

In the previous section we formulated our model based on the Ortiz–Stainier potential (2.20)

F (ε̄, u, d) =

⟨
1

2 (1 + d)

(
ε̄ + ∇

su
)

: C :
(
ε̄ + ∇

su
)
+

1

2α△N

(
d − dn)2

⟩
Y

− ε̄ : Σ , (3.1)

where we drop the superscript n+1 for this section. This formulation is not ideally suited for model-order reduction.
For a basis of preselected modes, we would like to express the functional to be minimized in terms of quantities
that can be precomputed, avoiding any access to full fields. However, such a precomputation is not possible, as the
damage variable d enters the denominator in the Ortiz–Stainier potential. Instead of relying upon an approximation,
for instance by a Taylor polynomial [69,84,85], we follow a different route.

Let us invert the stress–strain relationship (2.3) of the matrix model,

ε = (1 + d) S : σ (3.2)

in terms of the compliance tensor S = (C)−1. Similarly, we may recast Biot’s equation (2.5) in the form

d ′
=

α

2
σ : S : σ, or,

d − dn

△N
=

α

2
σ : S : σ (3.3)

upon an implicit Euler discretization in logarithmic cycle space. With precomputations useful for model-order

reduction in mind, this reformulation is very convenient. Indeed, Eqs. (3.2) and (3.3) involve only terms that are

10
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ointly quadratic in the internal variables (σ, d). A lower degree of homogeneity in the joint internal variables is
favorable for precomputations, as this degree affects the number of the precomputed system matrices in the reduced
order model, see Section 3.2.

As for the primal model, see section equations (2.1) and (2.2), we may establish a (mixed) variational principle

S (σ, d) −→ min
d

max
div σ=0
⟨σ ⟩Y =Σ

(3.4)

in terms of the saddle-point function

S (σ, d) =

⟨
−

(1 + d)

2
σ : S : σ +

1

2α△N

(
d − dn)2

⟩
Y

. (3.5)

The equivalence of the strain- and the stress-based formulations, (2.19) and (3.4), respectively, in terms of the
relation (3.2) is shown in Appendix A. However, some care has to be taken with this formulation. Please notice that
the function S is always convex in d, but concavity in σ is only ensured for d ≥ −1. Thus, instead of the formal
mixed variational principle (3.4), it is recommended to fix some d− ∈ (−1, 0] and to consider the constrained mixed
ariational principle

S (σ, d) −→ min
d≥d−

max
div σ=0
⟨σ ⟩Y =Σ

(3.6)

nstead. Please notice that the considered mixed variational principle differs from the mixed variational principle of
ritzen–Leuschner [53]. Indeed, we perform a partial Legendre transform in the strain, whereas Fritzen–Leuschner
ely upon a partial Legendre transform in the internal variable.

Suppose that Md damage modes

δa : Y → R, a = 1, . . . , Md , (3.7)

nd Mσ stress modes

si : Y → Sym(m), i = 1, . . . , Mσ , (3.8)

atisfying

⟨si ⟩Y = 0 and div si = 0, i = 1, . . . , Mσ , (3.9)

re given. Then, for M = (Mσ , Md), and coefficients

d⃗ =
(
d1, . . . , dMd

)
∈ RMd and σ⃗ =

(
σ1, . . . , σMσ

)
∈ RMσ , (3.10)

e consider the reduced-order model determined by the mixed variational principle (3.6)

SM

(
σ⃗ , d⃗

)
−→ min

d⃗, d≥d−

max
σ⃗

(3.11)

nvolving the function

SM

(
σ⃗ , d⃗

)
≡ S (σ, d) with σ = Σ +

Mσ∑
i=1

σi si and d =

Md∑
a=1

daδa, (3.12)

nd where the previous cycle step is represented in the form

dn
=

Md∑
a=1

dn
a δa for a suitable d⃗n

∈ RMd . (3.13)

otice that, in the reduced-order setting, it is not readily apparent that the problem (3.11) is solvable, and that there
s a unique solution. For this purpose, let us introduce the non-linear operator

Mσ Md Mσ Md
AM : R ×R → R ×R , (3.14)
11
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mplicitly defined via⟨
AM

(
σ⃗ β, d⃗β

)
,
(
σ⃗ γ , d⃗γ

)⟩
M

=⟨(
1 + dβ

) (
Σ + σ β

)
: S : σ γ

+
1

α△N

(
dβ

− dn) dγ
−

1
2

dγ
(
Σ + σ β

)
: S :

(
Σ + σ β

)⟩
Y

,

for any
(
σ⃗ β, d⃗β

)
,
(
σ⃗ γ , d⃗γ

)
∈ RMσ ×RMd , where we use the abbreviations

σ κ
=

Mσ∑
i=1

σ κ
i si as well as dκ

=

Md∑
a=1

dκ
a δa for κ ∈ {β, γ } (3.15)

and the inner product⟨(
σ⃗ β, d⃗β

)
,
(
σ⃗ γ , d⃗γ

)⟩
M

=

⟨
Mσ∑

i, j=1

σ
β

i σ
γ

j si : s j +

Md∑
a,b=1

dβ
a dγ

b δaδb

⟩
Y

(3.16)

on the space RMσ ×RMd . The operator (3.14) is closely related to the mixed variational principle (3.11) and (3.12).
Indeed, AM may be written in the form

AM

(
σ⃗ , d⃗

)
=

(
−

∂SM

∂σ⃗
,
∂SM

∂ d⃗

)
. (3.17)

Thus, any saddle point
(
σ⃗ , d⃗

)
of the mixed variational principle (3.11) which satisfies d > d− is a root of the

operator AM . Conversely, any root
(
σ⃗ , d⃗

)
of the operator AM is a saddle point of the variational principle (3.11).

Of course, the same holds with the gradient of the function SM in place of the operator AM . However, the simple sign
reversal (3.17) in the first component provides the operator AM with better properties. Indeed, with the abbreviations
(3.15), the identity⟨

AM

(
σ⃗ β, d⃗β

)
− AM

(
σ⃗ γ , d⃗γ

)
,
(
σ⃗ β, d⃗β

)
−

(
σ⃗ γ , d⃗γ

)⟩
M

=⟨
2 + dβ

+ dγ

2

(
σ β

− σ γ
)

: S :
(
σ β

− σ γ
)
+

1

α△N

(
dβ

− dγ
)2
⟩

Y
(3.18)

olds for any
(
σ⃗ β, d⃗β

)
,
(
σ⃗ γ , d⃗γ

)
∈ RMσ × RMd . Suppose that the stiffness distribution C is uniformly bounded

rom above and from below

c− ε : ε ≤ ε : C (x) : ε ≤ c+ ε : ε, x ∈ Y, ε ∈ Sym(m), (3.19)

with positive constants c±, and let α+ be an upper bound for α. Then, under the condition dκ
≥ d− for κ ∈ {β, γ },

the identity (3.18) implies the estimate⟨
AM

(
σ⃗ β, d⃗β

)
− AM

(
σ⃗ γ , d⃗γ

)
,
(
σ⃗ β, d⃗β

)
−

(
σ⃗ γ , d⃗γ

)⟩
M

≥

c− (1 + d−)
⟨(
σ β

− σ γ
)

:
(
σ β

− σ γ
)⟩

Y +
1

△Nα+

⟨(
dβ

− dγ
)2
⟩
Y

. (3.20)

In particular, as d− > −1, the operator AM is strongly monotone, and the monotonicity constant does not
epend on the chosen bases. We refer to Appendix B for a derivation of the identity (3.18). By similar arguments,
he identity⟨

AM

(
σ⃗ , d⃗

)
,
(
σ⃗ , d⃗

)⟩
M

=

⟨
1 + d

2
(Σ + σ) : S : σ +

1

α△N

(
d − dn) d

⟩
Y

, (3.21)

sing the abbreviations (3.15), may be deduced. Hence, the operator AM is also coercive. Moreover, due to its
epresentation by a polynomial, the operator AM is continuous. Thus, as long as the constraint d ≥ d− > −1 is
atisfied, classical monotone operator theory [97] implies that there is a unique root of the operator AM .

For our computational experiments, it was not necessary to enforce the constraint d ≥ d− explicitly, see
ection 4.3.1. Thus, the latter constraint may be regarded as a theoretical prerequisite that may not always be
equired in practice.
12
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.2. Implementation and solution of the discretized system

The proposed fatigue model permits a straightforward model-order reduction. Thus, precomputations on the
icroscale can be completed once and for all in an offline phase. The derivation of macroscopic equations and

ystem matrices from the POD modes are discussed in this section.
The polynomial character of the saddle point functional (3.12) permits this saddle point functional, considered as

function of the mode coefficients, to be precomputed exactly (up to numerical precision). In particular, no access to
he full fields is required during the online evaluation of the proposed multiscale fatigue-damage model. Let us first
iscuss why a polynomial potential enables a precomputation strategy. Suppose a function f of a vectorial variable

z⃗ is given. We assume the variable z⃗ to be finite-dimensional with dimension Mz , and denote the components of z⃗ by
zi , reserving Latin indices i, j, k for this purpose. Suppose furthermore that a number of modes z⃗a (a = 1, . . . , Mm)

ere selected, and we seek an approximation

z⃗ =

Mm∑
a=1

ξa z⃗a (3.22)

n terms of suitable mode coefficients ξa (a = 1, . . . , Mm). In particular, we are interested in the function

f̃ (ξ1, . . . , ξMm ) = f

(
Mm∑
a=1

ξa z⃗a

)
, (3.23)

hich only depends on the mode coefficients. For MOR to be effective, the number of mode coefficients Mm in the
epresentation (3.23) should be much smaller than the number of vector components Mz . For general functions f ,
ittle is gained by considering the function f̃ (3.23), as its definition follows the indirect way via the variable z⃗.
or polynomial functions f , in contrast, a different strategy can be followed. For concreteness, let us assume the
unction f to be a polynomial of degree 3, i.e., it may be expressed in the form

f (z⃗) = C +

Mz∑
i=1

fi zi +

Mz∑
i, j=1

fi j zi z j +

Mz∑
i, j,k=1

fi jk zi z j zk (3.24)

n terms of suitable coefficients C , fi , fi j and fi jk . Then, inserting the mode representation (3.23), we obtain the
xpression

f̃ (ξ1, . . . , ξMm ) = C +

Mm∑
a=1

f̃a ξa +

Mm∑
a,b=1

f̃ab ξaξb +

Mm∑
a,b,c=1

f̃abc ξaξbξc, (3.25)

hich turns out to be a third-order polynomial in the mode coefficients and involves the precomputable
oefficients

f̃a =

Mz∑
i=1

fi za
i ,

f̃ab =

Mz∑
i, j=1

fi j za
i zb

j ,

f̃abc =

Mz∑
i, j,k=1

fi jk za
i zb

j z
c
k

(3.26)

or a, b, c = 1, . . . , Mm .
Let us return to the fatigue-damage model at hand. For fixed modes (3.7) and (3.8), we set z⃗ = (σ⃗ , d⃗),

.e., Mz = Mσ + Md , and consider the objective function f =SM (3.12), which is a third-order polynomial in
he unknowns. Similar to the representation (3.25) involving the quantities (3.26), we obtain an expression of the
13
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bjective function SM in the form

SM

(
σ⃗ , d⃗

)
= −

1
2
Σ : ⟨S⟩Y : Σ − Σ : Πiσi −

1
2

Si jσiσ j

−
1
2
Σ : Da : Σ da − Σ : Λiaσi da −

1
2

Ti jaσiσ j da

+
1

2α△N
Dabdadb −

1

α△N
Dabdadn

b +
1

2α△N
Dabdn

a dn
b .

(3.27)

rom Eq. (3.27) onwards, we use Einstein’s summation convention, i.e., we sum over pairs of appearing indices.
or clarity, we reserve the indices a and b for damage modes, i.e., they sum from one to Md , and use i as well as j
or the stress modes, summing from one to Mσ . In the expression (3.27), the following quantities are precomputed:

Πi = ⟨S : si ⟩Y ,

Si j =
⟨
si : S : s j

⟩
Y ,

Da = ⟨δaS⟩Y ,

Λia = ⟨δaS : si ⟩Y ,

Ti ja =
⟨
δasi : S : s j

⟩
Y ,

Dab = ⟨δaδb⟩Y ,

(3.28)

here the appearing indices have the same range as above. Notice also that all appearing quantities in (3.28) are
ymmetric in the index pairs (a, b) and (i, j), respectively. To increase notational clarity, we use a Greek letter for
ym(m)-valued objects, Roman letters for scalar-valued objects and double stroke letters for fourth order tensor
bjects. The memory consumption for precomputing the quantities (3.28) is O

(
Md M2

σ

)
. As already mentioned in

ection 3.1, the evolution equations of the proposed damage model (3.2), (3.3) are jointly quadratic in the internal
ariables. For a Galerkin-discretization using constant POD-modes the highest complexity in the precomputed
atrices is thus in the order of three. Here, for Md = O (Mσ ), the array Ti ja has the highest complexity with

Md × Mσ (Mσ + 1) /2 independent components.
Saddle points of the function SM (3.27) satisfy the balance of linear momentum

Si jσ j + Σ : Λiada + Ti jaσ j da = −Σ : Πi (i = 1, . . . , Mσ ) (3.29)

nd Biot’s equation

1

α△N
Dabdb −

1

α△N
Dabdn

b =
1
2
Σ : Da : Σ + Σ : Λiaσi +

1
2

Ti jaσiσ j (a = 1, . . . , Md) . (3.30)

Please notice that, if the macroscopic strain ε̄ is specified instead of the macroscopic stress Σ , the equation

⟨S⟩Y : Σ + Πiσi +Da : Σ da + Λiaσi da = ε̄ (3.31)

needs to be added to the system in order to determine Σ .
For the convenience of the reader, an overview of offline and online computation is given in Fig. 6: Based on

he fiber orientation interpolation concept [68], a finite number of fiber orientations is chosen. For each of these
rientations, a short-fiber microstructure is generated [96]. For specified material parameters of matrix and fiber,
he fatigue-damage evolution is computed using an FFT-based solver and a number of load cases, see Section 4.1
or details. Using the resulting solution fields, stress and damage modes are extracted via proper orthogonal
ecomposition (POD). More precisely, the damage and stress full-field solutions for all precomputed load cases
nd either all or a subset of cycle steps (see Section 4.3.2 for a study) are stored on disk. For a microstructure
ith N 3 voxels, this amounts to storing N 3 or 6 × N 3 double-precision floating-point numbers per (damage or

tress) snapshot, corresponding to either one or six scalars per voxel. Then, the POD correlation matrices are set
p based on the L2 inner product both for the fatigue-damage variable and the stress field, and the damage and
tress modes are extracted by the usual eigenvalue thresholding [98,99], see Section 4.3 for a study. Eventually, the
elevant system matrices (as discussed in this section) are precomputed, and the model is ready for application on
he component scale.
14
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Fig. 6. Concept of precomputations and online phase.

Table 2
Properties of the generated microstructures and the spatial discretization.

Parameter Value Unit

Fiber length 250 µm
Fiber diameter 10 µm
Aspect ratio 25 –
Fiber-volume content 17.8 %
Minimum fiber distance 5 µm
Average voxels per diameter 6.4 –
Cell length/fiber length 2.4 –

For solving Eqs. (3.29), (3.30) and (3.31), we use Newton’s method with backtracking. For strongly monotone
perators, the latter scheme converges quadratically. As the termination condition for the scheme, we use

∥∇S∥
!

≤ 10−8
∥ε̄∥, (3.32)

where we chose the Frobenius norm for the strain-amplitude tensor.

4. Computational investigations

4.1. Setup

The multiscale fatigue model described in Section 2.2 is discretized in time via an implicit Euler scheme and on
a staggered grid in space [100]. For resolving the balance of linear momentum, we rely upon a nonlinear conjugate
gradient method [101] to reduce the strain-based residual suggested in Kabel et al. [102] below a tolerance of 10−5.

The material model was implemented as a user subroutine in the FFT-based software FeelMath [103] and in
ulia [104], which also served as the environment for the model-order reduction. For the computations, a Linux
luster equipped with Intel Xeon Gold 1648 processors was used.

.2. Microscale studies

To study the material behavior on the microscale, we introduce three reference structures with different fiber
rientations: an isotropic structure, a planar-isotropic structure and a unidirectional structure. The structures were

enerated by the sequential addition and migration algorithm (SAM) [96] using the parameters listed in Table 2.

15
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Fig. 7. Reference microstructures with different fiber orientations.

The resulting reference structures are shown in Fig. 7, visualized with GeoDict.1 The SAM algorithm permits
achieving high accuracy for the second-order fiber-orientation tensors. For example, for the isotropic and the planar
isotropic microstructures shown in Fig. 7, the realized second-order fiber-orientation tensors read

A(2)
iso =

⎡⎣ 0.333334 −9.65272 × 10−8 4.43788 × 10−7

−9.65272 × 10−8 0.333333 2.71964 × 10−8

4.43788 × 10−7 2.71964e × 10−8 0.333333

⎤⎦ (4.1)

nd

A(2)
piso =

⎡⎣ 0.499739 −0.000526419 −4.66944 × 10−6

−0.000526419 0.499739 7.31379 × 10−6

−4.66944 × 10−6 7.31379 × 10−6 0.000521332

⎤⎦ , (4.2)

espectively.

.2.1. On the necessary spatial resolution
For a start, we investigate the resolution that is necessary to obtain mesh-insensitive results. As our reference, we

se 6.4 voxels per fiber diameter to resolve a fiber and call the respective voxel size h, see Table 2. Subsequently,
e increase and decrease the resolution by a factor of two and compare the effective properties obtained from

imulations on these structures to simulations on the reference structure. In Fig. 8, the evolution of the effective
oung’s moduli [105] for the selected fiber orientations under uni-axial extension in x- and z-direction are shown.
ue to the direction independence of the isotropic microstructure, only extension in x-direction is considered. For

ll three fiber orientations, the effective Young’s moduli are plotted in x- and z-direction.
We introduce the error measure

eYoung
= 2 max

i

∥E1(N i ) − E2(N i )∥

∥E1(N i ) + E2(N i )∥
(4.3)

to quantify the deviation between two Young’s modulus evolutions E1 and E2. For the isotropic structure, the
deviation between the 2 × h-discretization and the 0.5 × h-discretization is 1.01% in x-direction and 1.21%
n z-direction in terms of the stiffness-based error measure (4.3). Comparing the h-discretization and the 0.5 ×

h-discretization, the errors are below 0.5%, i.e., 0.25% in x-direction and 0.32% in z-direction.
For the planar-isotropic orientation, the observations are similar. For the unidirectional structure, the deviations

t the 2 × h discretization are even less pronounced. Indeed, the unidirectional microstructure under loading in x-
direction shows an error of 0.20% in x-direction and 0.01% in z-direction, when comparing the 2×h discretization
to the 0.5 × h discretization in terms of the stiffness-based error measure (4.3). Under loading in z-direction, the
deviation is 0.20% in x-direction and 0.06% in z-direction.

1 Math2Market GmbH, http://www.geodict.de.
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Fig. 8. Influence of the mesh size on the computational results.

Since the error measure (4.3) stays below 1% for all discussed load cases and directions, compared the h- to the
2 × h-discretization, we consider the deviation of the h discretization from the 2 × h discretization acceptable, and
fix the mesh spacing to h for all subsequent studies.

4.2.2. On the necessary resolution in log-cycle space
As a second verification step on the microscale, we investigate the necessary step size △N in logarithmic cycle

space. For an implicit Euler discretization with uniform step sizes △N ∈ {0.05, 0.1, 0.2}, results are shown in Fig. 9.
Please notice that the logarithmic cycle variable N is dimensionless.

The results show that the model turns out to be rather robust w.r.t. the chosen cycle step size. Even a step size
of 0.2 produces only small errors. We fix a constant step size of 0.1 for the succeeding investigations.

4.2.3. On the necessary size of the unit cell
After studying the necessary resolution per fiber and the necessary step size, we turn our attention to the necessary

size of the considered unit cell to produce representative results. Please keep in mind that the convexity of the model
permits classical homogenization theory [92] to be applicable, see Section 2.2. In particular, the emergence of an
effective material response on representative volume elements [70,106] is ensured, in contrast to the closely related
model of Köbler et al. [64].
17
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Fig. 9. Necessary resolution in logarithmic cycle space.

As our reference, we use volume elements with of 3843 voxels, see Table 2. To study necessity and sufficiency
of this fixed size, we increase and decrease the unit cell to comprise 2563 and 5123-voxels, respectively. The arising
edge length of the unit cells are 3.2 fiber lengths and 1.6 fiber lengths.

The evolving effective Young’s moduli are shown in Fig. 10, where we restrict to those cases with highest errors.
We observe non-negligible deviations of the effective properties obtained from the 1.6 fiber length structures to those
of the 3.2 fiber length structures for all considered loading scenarios. Comparing the Young’s modulus evolution of
the 2563-voxel volume element to the 5123-voxel volume element, the stiffness-based error measure (4.3) is of the
order of several percent for the considered load cases, with the highest error observed in the evolution of the Young’s
modulus body of the planar-isotropic structure. For the planar-isotropic structure under loading in x-direction, the
deviation reaches 3.0% in x-direction; for loading in z-direction, the deviation is 2.6% in x-direction. In particular,
the volume element with 2563 voxels fails to be representative.

Comparing the predictions for the 3843-structure, encompassing 2.4 fibers per edge, to the predictions of the
larger volume size with 5123 voxels and an edge length of 3.2 fiber lengths, these deviations decrease. For the
isotropic and unidirectional structures, the errors of the Young’s modulus evolution under loading in x- and z-
direction are smaller than 1.0%. The most critical case is the planar-isotropic structure under loading in x-direction.
In this case, the deviation of the predicted Young’s modulus evolution in x-direction is 1%. This deviation is well
within limits of engineering accuracy and we consider the 3843 structure to be representative for the model at hand.

or the remainder of the manuscript, we fix the size of the volume elements to be of an edge length of 2.4 fiber
engths.
18
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Fig. 10. Dependence of the computational results on the size of the unit cell.

4.2.4. Fields on the microscale
To gain some understanding of the local fields on the microscale, we discuss the evolution of the damage and

the strain field for the isotropic case under loading in x-direction. We load the structure shown in Fig. 7(b) at a
constant stress amplitude of σmax = 100 MPa.

The resulting damage and maximum principal strain fields in the x–y-plane are shown in Fig. 11. Taking a look
t the damage evolution, we observer that, in the early stages, damage is initiated at the fiber tips. Subsequently,
he damage spreads through the structure. At the last cycle shown in Fig. 11(c), damage evolved also close to fibers
hich are oriented perpendicular to the loading direction. The maximum reduction of the stiffness locally reached

or the isotropic structure under a load amplitude of 100 MPa in x-direction is 33%. This corresponds to a damage
alue of d = 0.5. The loss of the homogenized Young’s modulus of the complete RVE in load direction at this time
tep is 10% and thus well in the order of typical stiffness loss in short fiber reinforced polymers prior to failure [31].
igher loading amplitudes lead to more pronounced damage.
The strain evolution, starting from cycle N = 10 (N = 1) up to cycle N = 107 (N = 7), is shown in the bottom

row in terms of the maximum principal strain. The evolution of the strain closely corresponds to the damage field
evolution. In particular, it does not show localization. As for the damage field, the strain increases mainly at the
tips of fibers oriented in loading direction. However, there are no microcrack-like patterns evolving throughout the
matrix. Rather, the damage effects only lead to increasingly large strains at these critical spots.

4.3. Reduced-order model

We investigate the capability of the reduced model to approximate the full-field solution in this section. For the
sake of brevity, we use the isotropic, the planar isotropic and the unidirectional structure, shown in Fig. 7, for these
studies. For each of the structures, we precomputed the load cases listed in Table 3. For assessing the accuracy of the
reduced-order models, a strain-based error measure is introduced. For our stress driven simulations, the predicted
effective (peak) strains of the full-field simulation ε̄max and the reduced-order model ε̄rom

max are compared in terms of
the error measure

erom
=maxi

(ε̄max(N i ) − ε̄rom
max(N i )

ε̄max(N i )


)
. (4.4)
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Table 3
Tensor components of the stress amplitude (in MPa) for precomputed load cases used for database generation.

load case Σmax
xx Σmax

yy Σmax
zz Σmax

yz Σmax
xz Σmax

xy

# 1 100 MPa 0 0 0 0 0
# 2 0 100 MPa 0 0 0 0
# 3 0 0 100 MPa 0 0 0
# 4 0 0 0 100 MPa 0 0
# 5 0 0 0 0 100 MPa 0
# 6 0 0 0 0 0 100 MPa

Fig. 11. Local stiffness reduction (1 − 1/(1 + d) ≡ d/(1 + d), top) and maximum principal strain (bottom) on the isotropic structure under
oading in x-direction.

.3.1. Mode selection
For selecting the modes of the reduced-order model, we investigated different strategies. In the end, the simplest

trategy turned out to be the most powerful, and we shall report on it in the following.
Please recall that the continuous model discussed in Section 2.1 is uniquely solvable (upon implicit discretization

n cycle space) and is characterized by a damage variable which can only grow point-wise. In the mixed formulation
nd upon a Galerkin discretization, see Section 3.1, these properties needed to be re-evaluated. It turned out that
he mixed formulation is theoretically well-posed provided a lower bound d− (strictly greater than d = −1) is
mposed on the damage field. Indeed, under this assumption, the operator whose roots correspond to solutions of
he discretized equations turns out to be strongly monotone, and classical monotone-operator theory implies the
laim.

For the study at hand, we use classical proper orthogonal decomposition (POD) for extracting damage and stress
odes from the precomputed load cases. We chose the number of stress and damage modes to be identical, and

efer to this number briefly as the number of modes.
Please note that working with the lower bound d− is only sufficient for obtaining a well-posed model, and
ay be unnecessary in practice. Indeed, imposing such a constraint a priori may induce significant computational
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Fig. 12. Minimum value of the reconstructed damage field for the unidirectional structure under shear in the yz-plane for different numbers
f incorporated modes Mσ .

verhead. Also, for our computational experiments, the reduced-order model could be solved rapidly and robustly
ven without additionally imposed constraints. The reasons behind this surprising behavior is studied more closely
n the following. For this purpose, we reconstruct the damage fields predicted by the reduced-order model by
umming the mode coefficients multiplied by their precomputed and stored damage modes at each step and extract
he minimum damage-value from the corresponding full damage field.

The evolution of the minimum damage-value was computed for all load cases listed in Table 3. The most critical
ase in terms of the damage minimum for seven incorporated modes is the unidirectional structure under load case 4.
he minimum damage-value evolution for this case is shown in Fig. 12 for different numbers of incorporated modes.
or seven and eight modes, the minimum damage-value of the reconstructed damage field is d = −2.92 × 10−3.
lbeit negative, this value is far from d = −1. By increasing the number of modes incorporated into the reduced-
rder model, the minimum damage-value increases. This does not come unexpected. Indeed, the reduced-order
odel approximates the full-field prediction with higher accuracy. The full-field prediction, on the other hand,

atisfies the constraint d ≥ 0 by construction, see Section 2.1.
For 15 modes, the minimum damage-value is larger than d = −3.5×10−4 for all load cases listed in Table 3 and

ll considered microstructures. Using 15 modes thus appears sufficient to inherit the well-posedness and stability
roperties from the continuous model. We continue with discussing the accuracy of the mode-selection procedure.
n Fig. 13, the strain error (4.4) is shown vs. the number of incorporated modes for the isotropic, the planar isotropic
nd the unidirectional structure, respectively.

In general, the results of the reduced-order model agree well with the full-field predictions. Incorporating six
odes into the reduced-order model already leads to a strain error below 1% for all load cases computed on the

espective structures. Load cases with expected similar effective response, e.g., extension in x-direction, y-direction
r z-direction for the isotropic structure (load cases 1, 2 and 3, respectively), show similar approximation behavior.
his is remarkable, as we did not account for this symmetry explicitly in the mode-selection procedure.

We will use 15 POD-modes in the reduced-order model subsequently.

.3.2. Number of snapshots per path
To identify stress and damage modes, we use proper orthogonal decomposition. Some care has to be taken

oncerning the number of snapshots used for each considered loading path. We discuss the necessary choice for
he number of snapshots per loading path (NSPL) in this section.

We use equidistant sampling steps in the logarithmic cycle variable N . For the sake of brevity, we only discuss the
planar-isotropic case here. The other fiber orientations lead to similar qualitative and quantitative results. The effect
of including a different number of snapshots is shown in Fig. 14. We observe that the capability of the reduced-order
model to approximate the effective strain amplitude predicted by the full-field model does not strongly depend on
the chosen number of snapshots. Indeed, the strain-amplitude error (4.4) is in the same order of magnitude at all

number of modes in Fig. 14 regardless of the number of snapshots (NSPL). Even a model order reduction based
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Fig. 13. Accuracy study for the database generated from ten snapshots per loading path.

Fig. 14. Influence of the Number of Snapshots Per Loading path (NSPL) for the planar-isotropic structure (see Fig. 7(b))

on as few as three snapshots per load path appears to be reasonable. This appears to be a consequence of the
non-localizing nature of the fatigue-damage model.

However, if the number of snapshots is chosen too small, the number of extractable modes is limited. On the
ther hand, the achieved approximation quality is certainly limited by choosing too few modes. Therefore, we fix
SPL= 10. An extension to more snapshots does not seem necessary and is thus omitted for the sake of faster

precomputations.

4.3.3. Necessary loading paths for database generation
In this section, we investigate the capabilities of the reduced-order model to predict the effective stiffness

egradation for loading scenarios that were not accounted for in the database generation. More precisely, we discuss
wo variants: a change of the loading direction and a change of the loading amplitude. For the sake of brevity, we
estrict to the planar-isotropic structure.

We start with the effect of changing the loading direction. We consider load cases of pure extension at the
onstant stress amplitude of Σmax

xx = 100 MPa and stress ratio R = 0. The material parameters are chosen according
o Table 1. First, we study loading in x-direction. Additionally we consider an extension at a 45◦ angle around
he z-axis. Due to the symmetry of the planar-isotropic microstructure, both loading scenarios should give rise to
dentical responses (up to a rotation).

We consider a database built upon the load cases listed in Table 3, referred to as standard database in the
ollowing. Note that the first load case is part of the database. The enriched database comprises, in addition to
he load cases of the standard database, the 45◦-rotated full-field prediction.

The results of the reduced-order models for these two load cases, both, for the standard database and the enriched

atabase, are plotted in Fig. 15. The Young’s modulus computed from the full-field prediction is referred to as Efull
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Fig. 15. Deviation of the direction-dependent Young’s modulus from the full-field prediction in the x–y-plane for the planar-isotropic structure
or different databases.

Table 4
Strain-amplitude errors (4.4) for changing loading amplitude.

Strain errors for loading in

Σmax
xx Σmax

zz Σmax
yz Σmax

xy

20 MPa 1.1 × 10−5 6.0 × 10−6 1.3 × 10−6 9.8 × 10−7

100 MPa 1.3 × 10−5 1.3 × 10−5 2.6 × 10−6 4.1 × 10−6

500 MPa 9.2 × 10−2 3.9 × 10−2 2.9 × 10−3 9.2 × 10−2

and the Young’s modulus computed from the reduced-order model as Erom. The error measure (Efull − Erom)/Efull

s plotted over a range of 180◦ in the x–y-plane, where 0◦ corresponds to the x-axis and 90◦ to the y-axis.
We observe that the first load case, extension in x-direction, leads to a negligible relative error of about 0.1%,

oth, for the standard and the enriched database. On the contrary, when considering the 45◦-rotated load case, the
tandard database is not able to reproduce the load case with the same accuracy. At an angle of 135◦, the Young’s
odulus at N predicted with the standard database deviates from the full-field prediction by a relative error of

1.4%. Yet, the induced error remains on an acceptable level.
When including the 45◦-oriented extension load-case into the precomputations, the accuracy of the reduced-order

model is increased. Both load cases, tension in x-direction and tension in 45◦ are predicted with similar accuracy
in the order of 0.1%.

As a take-away message from these studies, we state that some caution has to be taken regarding a discretization
of the space of possible loadings to select the modes from. Yet, the standard sampling with six load cases appears
reasonable in terms of accuracy. To increase the accuracy, the sampling strategy could be extended in an adaptive
way. For the work at hand, we fix the standard six load cases.

As a second step in studying the necessary precomputations, we investigate the effect of varying the loading
amplitude. We restrict the computational examples to the planar-isotropic structure. Recall that precomputations
with a peak stress Σmax

xx = 100 MPa are used to generate the database, see Table 3. For this study, we multiply
these load amplitudes by factors of 5 and 0.2, respectively. Simulations at a peak stress of Σmax

xx = 500 MPa well
exceed typical stress values in fatigue experiments and are only chosen here to test the capability of the numerical
model to adapt to stress amplitudes higher than the training level. For the load cases with modified amplitudes,
we compute the strain-amplitude error (4.4) by comparison of the full-field to the reduced-order model predictions.

The results are shown in Table 4.
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N. Magino, J. Köbler, H. Andrä et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114198

i
a
1
t
s
ε

i
o
t
W
o

T
i
s
c
b
2
e
f
a
a

Fig. 16. Stiffness and strain results for planar-isotropic structure under 500 MPa loading: comparison of full-field predictions and reduced-order
model.

Table 5
Strain-amplitude errors (4.4) for changing loading amplitude, trained at 20MPa.

Strain errors for loading in

Σmax
xx Σmax

zz Σmax
yz Σmax

xy

20 MPa 2.9 × 10−5 3.5 × 10−5 4.1 × 10−5 4.2 × 10−5

100 MPa 1.4 × 10−3 6.3 × 10−4 7.1 × 10−4 2.0 × 10−3

500 MPa 1.1 × 10−1 6.2 × 10−2 8.6 × 10−3 2.4 × 10−1

We observe that the load case with Σmax
xx = 20 MPa, which is smaller than the training load case Σmax

xx = 100 MPa
ncluded into the database, is predicted accurately with strain-amplitude errors below 10−4. For a higher amplitude
t Σmax

= 500 MPa, the accuracy decreases significantly. We observe a maximum error of 9.23% in load cases
and 6. In Fig. 16(a), the strain amplitudes computed by the full-field model and the reduced-order model for

his load case are shown in more detail. Up to strains of 0.13 in loading direction, the deviation of the full-field
train curve to the reduced-order model predictions is small. Indeed, at N = 1.8, where the full-field model predicts
a,xx = 0.128, the reduced-order model predicts εa,xx = 0.130, which is a relative deviation of 1.6%. For further
ncreasing strain amplitudes, the deviation between the effective strain-amplitude curve of the full-field model and
f the reduced-order model increases, as well. In addition to the strain amplitude, we investigate the evolution of
he Young’s modulus body. For load case 1, the Young’s modulus body in the x–z-plane is plotted in Fig. 16(b).

e observe that, even though the magnitude is not accurately met, the reduced-order model still predicts the shape
f the Young’s modulus body in accordance with the full-field solution, also at high cycle numbers.

Unexpectedly, despite being trained at 100 MPa, the database is most accurate for a stress amplitude of 20 MPa.
o understand this effect more thoroughly, we trained a database with lower load amplitudes of 20 MPa and compare

ts accuracy to the standard database, trained at 100 MPa. We compare the errors produced by the 20 MPa database,
ee Table 5, to those of the standard database in Table 4. The most critical load case at an amplitude of 20 MPa
an be reproduced with an accuracy of 2.9 × 10−5, which has the same order of magnitude as the error produced
y the 100-MPa database for the same load case of 1.1 × 10−5. In contrast, the 100 MPa load cases treated by the
0-MPa database cannot be reproduced with the same accuracy as for the 100-MPa database. Indeed, the maximum
rror increases from 1.3×10−5 to 2.0×10−3, which corresponds to a loss in accuracy by a factor of 154. The trend
or even higher load amplitudes of 500 MPa is similar. This investigation reveals that the fatigue-damage evolution
t lower stress amplitude is easier to approximate – as a result of the underlying physics – than at higher stress

mplitudes. This is the reason for the higher accuracy of the 100 MPa database for a stress amplitude of 20 MPa.
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Fig. 17. Accuracy study on the fiber-orientation triangle: strain error (4.4) at precomputed and interpolated structures.

We conclude that the model may be safely used for computations where the strain evolution reaches strain levels
of the training level or below, but some caution is advised when exceeding the pre-training levels. This effect is a
consequence of the non-linearity of the model. It was with this insight at hand that we selected a training amplitude
of 100 MPa, as the reasonable stress amplitudes of interest are covered in this way. Despite some deviations in the
predicted effective strain amplitudes, the effective stiffness of the reduced-order model is predicted rather accurately.

4.3.4. Covering different fiber orientation states
With component-scale applications in mind, a variety of fiber-orientation states needs to be considered. Guided

by the state of the art in injection-molding simulations [4], we consider a varying second-order fiber-orientation
tensor [95] as the input for the generated microstructures. To create a database encompassing all possible second-
order fiber-orientation tensors, we utilize the fiber-orientation interpolation procedure proposed by Köbler et al. [68].
Up to an orthogonal transformation, second-order fiber-orientation tensors may be parameterized by a two-
dimensional triangle, corresponding to the two largest eigenvalues of the second-order fiber-orientation tensor.
Based on a triangulation of this fiber-orientation triangle, a reduced-order model is identified for every node of
this triangulation. Subsequently, the effective models are interpolated to the entire triangle. We refer to Köbler
et al. [68] for details.

We discretize the fiber-orientation triangle by 15 nodes as shown in Fig. 17, resulting in 16 sub-triangles. For each
of the 15 nodes, we generate microstructures and precompute all six load cases listed in Table 3 for these structures.
These precomputations are then used to build a database via proper orthogonal decomposition, as described in
Section 4.3. In a first verification step, we compare the evolution of the strain amplitude predicted by the full-field
computations on these 15 structures with the predictions of the reduced-order model by means of the error measure
(4.4). In Fig. 17(a), this error measure is plotted at each of the nodes for the reference load cases (lc) , see Table 3.
The accuracy on the precomputed structures is good for all microstructures and all considered load cases. The
maximum observed strain-amplitude error is 1.8 × 10−4 for the structure with eigenvalues λ1 = 0.417, λ2 = 0.417
and λ3 = 0.167 under extension in x-direction (load case 1). We observe the errors in the extension load cases to be
higher than the errors in the shear cases. The accuracy using 15 modes is sufficient for the precomputed structures.
Note that the choice of 15 modes arises from the study on the non-negativity of the damage field, see Section 4.3.1.
In terms of the accuracy choosing even fewer modes would be reasonable.

As a second verification step, we investigate the predictions of the model on fiber orientation states that have
not been precomputed directly, but are interpolated from nearby precomputed states. For these structures within
the faces of the discretized fiber-orientation triangle, as suggested by Köbler et al. [68], we compute the material
response of the surrounding structures at the nodes of the discretized fiber-orientation triangle via the reduced-order
model, and successively interpolate the effective stresses. This procedure increases the effort by a factor of three,
both, in terms of CPU time and memory usage, as, for each Gauss point, three material laws have to be evaluated.

To assess the predictive capabilities of the interpolation procedure, we generated microstructures at the centroids
of the 16 sub-triangles. The computed (full-field) effective strain-amplitude tensors serve as our reference. We
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Fig. 18. Relative degradation of the acoustic tensor (5.1) after 106 cycles.

compare these effective strain amplitudes to the effective strain amplitudes predicted by the reduced-order model
via interpolation in terms of the error measure (4.4). In Fig. 17(b), we observe that the strain errors do not exceed
5 % in the maximum strain-amplitude error. Since nodal errors are found to be very small, the latter error is mainly
caused by the interpolation procedure. For the remainder of this work, we will use the presented fiber-orientation
triangulation.

5. Component-scale simulations

We demonstrate the numerical capabilities of the presented model on component scale in terms of efficiency in
both computational and memory usage by comparison to the recently published approach of Köbler et al. [64]. This
models differs from the one presented in this work mainly in two aspects.

1. Non-local/local: The approach of Köbler et al. [64] introduces a damage-gradient term to avoid mesh-
dependent results. The model proposed in this work is well-defined without an additional damage-gradient
term.

2. Polynomial order: The highest polynomial order in the variables (σ, d) in Eqs. (3.2) and (3.3) is two, whereas
the approach by Köbler et al. [64] leads to polynomials of the order of three in (ε, d). Thus, less data needs
to be processed at the Gauss point level for the former model.

In contrast to the approach presented in the work at hand, the model of Köbler et al. [64] permits localization,
which makes the choice of the snapshots for proper orthogonal decomposition more difficult. Indeed, choosing an
equidistant sampling method, Köbler et al. [64] incorporate 40 strain and 40 damage modes to reach acceptable
accuracy. As discussed in Section 4.3, we make use of only 15 stress and 15 damage modes to ensure that the
damage field is accurately captured.

We chose to demonstrate the efficiency of the model at hand on the same component and load case as described
in Köbler et al. [64]: a short-fiber reinforced motor-housing subjected to fatigue loading. For details on the fiber-
orientation distribution inside the component, as well as on the load case, we refer to Köbler et al. [64]. We use
the simulation software ABAQUS [107] for computations on the macroscale. Both computations were performed
on the same Linux cluster with 256 CPUs distributed on 16 nodes up to the cycle 106.

Similar to Köbler et al. [64], we chose the determinant of the acoustic tensor Aaco as a quantitative measure for
the material degradation and define

Λ(N ) = max
∥n∥=1

[
1 −

det Aaco(n,C(N ))
det Aaco(n,C(0))

]
, (5.1)

where n denotes a unit-normal vector, to assess the current damage state in the macroscopic model. The damage
state of the motor housing component after 106 cycles is shown in Fig. 18 for, both, the quadratic type damage
model of Köbler et al. [64] (Fig. 18(a)) and the compliance-based damage model proposed in the work at hand
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Table 6
Computational effort for the considered fatigue-damage models.

CPU time max. memory usage av. memory usage

Quadratic damage model [64] 12200 h 65.5 GB 47.4 GB
Compliance based damage 712 h 39.0 GB 22.9 GB

(Fig. 18(b)). The regions of critical damage evolution, i.e., regions with a high relative decrease in the maximum
of the acoustic tensor determinant, are found to be similar for both models.

The CPU time and the memory usage are shown in Table 6. Both, in terms of CPU time and memory usage,
he efficiency of the model at hand is improved compared to the previous work. The CPU time of the compliance
ased damage model at hand leads to a speed up by a factor of 17 compared to the quadratic damage model [64].
he memory usage is on average improved by 52% and the peak memory usage by 40%.

This gain has three main causes. For a start, a lower number of incorporated modes is used, which decreases
he size of the system matrices. Secondly, the polynomial in the damage evolution and stress–strain relationship in
erms of the internal variables is of lower order. Thirdly, in contrast to Köbler et al. [64], we use a local model and

do not have to incorporate gradient terms. The last two factors decrease the number of system matrices which need
to be precomputed and stored.

6. Conclusions

We considered the problem of fatigue-damage evolution in short-fiber reinforced polymer composites. In order to
account for the influence of the fiber reinforcements, both, in terms of the fiber geometry and the fiber orientation,
we proposed a multiscale model for the fatigue-damage evolution in the stable second phase. The principal object
of interest for us is the anisotropic stiffness degradation of such composites when subjected to (high-cycle) fatigue
loading. Indeed, the failure behavior of thermoplastic components under fatigue loading appears to be difficult to
predict if the stiffness decrease under fatigue loading previous to failure is not accounted for.

Motivated by the stability of the second phase in the fatigue-damage evolution, we explored the recently
introduced class of damage models based on the compliance tensor [73]. Indeed, the inherent convexity of the
model class appears sufficient for representing the fatigue-damage phenomena of interest, and offer to alleviate the
computational burden associated to damage models with gradient extension [78].

We showed that, despite its simplicity, the model matches our experimental results rather well, provided the
initial damage occurring in the first few cycles is taken into consideration. The precise value of the initial damage
requires further studies.

With upscaling in mind, we studied a mixed formulation of the incremental potential of the multiscale fatigue-
damage model. In this formulation, the potential is a third-order polynomial in the mode coefficients, and thus
lends itself naturally to an efficient model-order reduction. Surprisingly, we could show that this mixed formulation
inherits well-posedness from the purely primal formulation by rewriting the mixed formulation in terms of a specific
operator, which is strongly monotone under a natural condition on the damage field.

The multiscale fatigue-damage model was tested thoroughly, both as a full-field and as a reduced-order model.
Due to the (strongly) convex nature of the model, emergence of effective properties via suitable representative
volume elements [106] is guaranteed. Also, due to the precluded localization, the multiscale model is characterized
by high computational efficiency, which could be demonstrated on component scale.

This work was mainly concerned with setting up the multiscale technology necessary to handle industrial-scale
applications. As a next step, it appears imperative to account for the initial damage caused in the first few cycles
by an appropriate modification of the model and to investigate the extension to R-values different from zero as well
as the dependence on the loading frequency. Supplemented by an appropriate failure criterion on the macroscopic
scale, the presented multiscale fatigue-damage model will be ready for applications.
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ppendix A. Derivation of the saddle-point problem

We wish to establish the equivalence of minimizing the Ortiz–Stainier potential (2.20)

F (ε̄, u, d) =

⟨
1

2 (1 + d)

(
ε̄ + ∇

su
)

: C :
(
ε̄ + ∇

su
)
+

1

2α△N

(
d − dn)2

⟩
Y

− ε̄ : Σ (A.1)

and the variational principle (3.4)

S (σ, d) ≡

⟨
−

(1 + d)

2
σ : S : σ +

1

2α△N

(
d − dn)2

⟩
Y

−→ min
d

max
div σ=0
⟨σ ⟩Y =Σ

(A.2)

in terms of the relationship (3.2)

ε = (1 + d) S : σ. (A.3)

This appendix provides a derivation based on convex duality. More precisely, suppose a convex function f : X → R

is given on a Banach space X . Let f ∗
: X ′

→ R be its Legendre transform

f ∗(y) = sup
x∈X

⟨x, y⟩ − f (x), (A.4)

where ⟨·, ·⟩ denotes the natural pairing ⟨·, ·⟩ : X × X ′
→ R. Suppose that a closed subspace U ⊆ X is given, and

let U ∗
⊆ X∗ be its annihilator

U ∗
= {y ∈ X∗

| ⟨y, x⟩ = 0 for all x ∈ U }. (A.5)

Then, according to convex duality [108, Thm. 31.4], the identity

min
x∈U

f (x) = − min
y∈U∗

f ∗(y) (A.6)

holds. For the problem at hand, we consider the space X to consist of square-integrable strain (or stress) fields on
he unit cell Y , and we consider the objective function

f (ε) =

⟨
1

2 (1 + d)
ε : C : ε +

1

2α△N

(
d − dn)2

⟩
Y

− ⟨ε⟩Y : Σ , (A.7)

reating the damage variable d as a parameter, and work on the subspace of kinematically compatible strains

U =
{
ε ∈ X | ε = ε̄ + ∇

su for some ε̄ and u
}
. (A.8)

The Legendre transform of the function (A.7) computes as

f ∗(τ ) =

⟨
(1 + d)

2
(Σ + τ) : S : (Σ + τ) −

1

2α△N

(
d − dn)2

⟩
Y

(A.9)

in terms of the compliance S = C−1. Indeed, the Legendre dual (A.4) is defined in terms of a maximization principle

f ∗(τ ) = sup
ε∈X

⟨τ : ε⟩Y −

⟨
1
2

ε : C̃ : ε +
1

2α△N

(
d − dn)2

⟩
Y

+ ⟨ε⟩Y : Σ , (A.10)

whose critical points ε ∈ X satisfy

τ − C̃ : ε +Σ = 0, i.e., ε = S̃ : Σ + τ . (A.11)
( )
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H

i
d

w

A

ere, we set

C̃ =
1

1 + d
C and S̃ = (1 + d)S (A.12)

for notational brevity. Inserting the explicit expression for the strain field ε into the definition (A.10) yields

f ∗(τ ) =

⟨
τ : S̃ : (Σ + τ)

⟩
Y

−

⟨
1
2

(Σ + τ) : S̃ : (Σ + τ) +
1

2α△N

(
d − dn)2

⟩
Y

+

⟨
Σ : S̃ : (Σ + τ)

⟩
Y

=

⟨
(Σ + τ) : S̃ : (Σ + τ)

⟩
Y

−

⟨
1
2

(Σ + τ) : S̃ : (Σ + τ) +
1

2α△N

(
d − dn)2

⟩
Y

=

⟨
1
2

(Σ + τ) : S̃ : (Σ + τ) −
1

2α△N

(
d − dn)2

⟩
Y

,

(A.13)

i.e., the representation (A.9) emerges. To complete the picture, we note that the orthogonal complement2 U ∗ takes
the form

U ∗
= {τ ∈ X | ⟨τ ⟩Y = 0 and div τ = 0} , (A.14)

.e., it consists of equilibrium stress fluctuations. Combined with the expression (A.10), we conclude by convex
uality (A.6) that we may transform

min
ε̄,u

⟨
1

2 (1 + d)

(
ε̄ + ∇

su
)

: C :
(
ε̄ + ∇

su
)
+

1

2α△N

(
d − dn)2

⟩
Y

− ε̄ : Σ

= − min
div τ=0
⟨τ ⟩Y =0

⟨
(1 + d)

2
(Σ + τ) : S : (Σ + τ) −

1

2α△N

(
d − dn)2

⟩
Y

= − min
div σ=0
⟨σ ⟩Y =Σ

⟨
(1 + d)

2
σ : S : σ −

1

2α△N

(
d − dn)2

⟩
Y

= max
div σ=0
⟨σ ⟩Y =Σ

⟨
−

(1 + d)

2
σ : S : σ +

1

2α△N

(
d − dn)2

⟩
Y

,

(A.15)

where we introduced the total stress field σ = Σ + τ . Moreover, the identification (A.11) turns into

ε = (1 + d)S : σ. (A.16)

Last but not least, we further minimize over the damage field to conclude

min
ε̄,u,d

⟨
1

2 (1 + d)

(
ε̄ + ∇

su
)

: C :
(
ε̄ + ∇

su
)
+

1

2α△N

(
d − dn)2

⟩
Y

− ε̄ : Σ

= min
d

max
div σ=0
⟨σ ⟩Y =Σ

⟨
−

(1 + d)

2
σ : S : σ +

1

2α△N

(
d − dn)2

⟩
Y

,

(A.17)

hat was to be shown.

ppendix B. Monotonicity of the operator AM

In this appendix, we wish to derive the identity (3.18)⟨
AM (σ⃗ β, d⃗β) − AM (σ⃗ γ , d⃗γ ), (σ⃗ β, d⃗β) − (σ⃗ γ , d⃗γ )

⟩
M

=

⟨
2 + dβ

+ dγ

2
(σ β

− σ γ ) : S : (σ β
− σ γ ) +

1

α△N
(dβ

− dγ )2
⟩

Y
.

(B.1)

For fixed compliance tensor S and dn, ᾱ ∈ R, we investigate the operator

A : Sym(m) ×R → Sym(m) ×R, (σ, d) ↦→

(
(1 + d)S : σ, ᾱ−1(d − dn) −

1
2
σ : S : σ

)
(B.2)

2 As we are working in a Hilbert space, we may canonically identify the dual space with the primal Hilbert space, and exchange the
annihilator by the orthogonal complement, both in view of Riesz’ representation theorem.
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F

I

R
c

R

or any (σ β, dβ), (σ γ , dγ ) ∈ Sym(m) ×R≥0, we observe[
A(σ β, dβ) − A(σ γ , dγ )

]
(σ β

− σ γ , dβ
− dγ ) =

[
(1 + dβ)S : σ β

− (1 + dγ )S : σ γ
]

: (σ β
− σ γ )

+ ᾱ−1(dβ
− dγ )2

−
1
2

(σ β
: S : σ β

− σ γ
: S : σ γ )(dβ

− dγ ).

(B.3)

ntroducing the short-hand notation d̃κ
= 1 + dκ , κ ∈ {β, γ }, we transform[

d̃β S : σ β
− d̃γ S : σ γ

]
: (σ β

− σ γ ) −
1
2

(σ β
: S : σ β

− σ γ
: S : σ γ )(d̃β

− d̃γ )

= d̃β σ β
: S : σ β

− (d̃β
+ d̃γ ) σ β

: S : σ γ
+ d̃γ σ γ

: S : σ γ

−
1
2

(d̃βσ β
: S : σ β

− d̃βσ γ
: S : σ γ

− d̃γ σ β
: S : σ β

+ d̃γ σ γ
: S : σ γ )

=
1
2

d̃β σ β
: S : σ β

− (d̃β
+ d̃γ ) σ β

: S : σ γ
+

1
2

d̃γ σ γ
: S : σ γ

+
1
2

(d̃βσ γ
: S : σ γ

+ d̃γ σ β
: S : σ β)

=
1
2

(d̃β
+ d̃γ ) (σ β

: S : σ β
− 2 σ β

: S : σ γ
+ σ γ

: S : σ γ )

=
d̃β

+ d̃γ

2
(σ β

− σ γ ) : S : (σ β
− σ γ ).

(B.4)

Inserting this result back into the original formula, we obtain[
A(σ β, dβ) − A(σ γ , dγ )

]
(σ β

−σ γ , dβ
−dγ ) =

2 + dβ
+ dγ

2
(σ β

−σ γ ) : S : (σ β
−σ γ )+ᾱ−1(dβ

−dγ )2. (B.5)

egarding C, ᾱ = α △N and dn as dependent on x ∈ Y , averaging the latter identity proves the formula (B.1), as
laimed.
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