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Abstract

Objective. To present an efficient uncertainty quantification method for range and set-up errors in
Monte Carlo (MC) dose calculations. Further, we show that uncertainty induced by interplay and
other dynamic influences may be approximated using suitable error correlation models. Approach.
We introduce an importance (re-)weighting method in MC history scoring to concurrently construct
estimates for error scenarios, the expected dose and its variance from a single set of MC simulated
particle histories. The approach relies on a multivariate Gaussian input and uncertainty model, which
assigns probabilities to the initial phase space sample, enabling the use of different correlation models.
Through modification of the phase space parameterization, accuracy can be traded between that of the
uncertainty or the nominal dose estimate. Main results. The method was implemented using the MC
code TOPAS and validated for proton intensity-modulated particle therapy IMPT) with reference
scenario estimates. We achieve accurate results for set-up uncertainties (72 mm /20 = 99.01% (E[d]),
Y2 mm/2% = 98.04% (o(d))) and expectedly lower but still sufficient agreement for range uncertainties,
which are approximated with uncertainty over the energy distribution. Here pass rates 0f 99.39%
(Eld])/ 93.70% (o(d)) (range errors) and 99.86% (E[d])/ 96.64% (o(d)) (range and set-up errors) can
be achieved. Initial evaluations on a water phantom, a prostate and a liver case from the public CORT
dataset show that the CPU time decreases by more than an order of magnitude. Significance. The high
precision and conformity of IMPT comes at the cost of susceptibility to treatment uncertainties in
particle range and patient set-up. Yet, dose uncertainty quantification and mitigation, which is usually
based on sampled error scenarios, becomes challenging when computing the dose with computation-
ally expensive but accurate MC simulations. As the results indicate, the proposed method could reduce
computational effort while also facilitating the use of high-dimensional uncertainty models.

1. Introduction

Monte Carlo (MC) methods are considered the gold standard for dose calculation in radiotherapy treatment
planning due to their accuracy (Weng et al 2003, Paganetti 2012). However, the accuracy of a simulated
compared to a delivered dose is not only determined by the chosen dose engine, but also compromised by
treatment uncertainties in water-equivalent path length, patient set-up and anatomy. Especially in proton and
carbon-ion therapy, the high dose localization in the Bragg-peak usually does not allow for uncertainty
quantification and mitigation using approximations known for photon therapy, such as the static dose cloud
(Lomax 2008a, 2008b).

Consequently, particle therapy demands personalized robustness analyses and mitigation. Such techniques
may be based on explicit propagation of input uncertainties using probabilistic methods and statistical analysis

© 2021 Institute of Physics and Engineering in Medicine
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(Bangertetal 2013, Kraan eral 2013, Park et al 2013, Perko et al 2016, Wahl et al 2017, 2020) or worst-case
estimates (Casiraghi etal 2013, McGowan et al 2015, Lowe et al 2016). Most of these methods then further
translate to robust and probabilistic optimization to extend the conventional, generic margin approach to
uncertainty mitigation (Sobotta et al 2010, Fredriksson 2012, Liu et al 2012, Unkelbach et al 2018).

The additional computational effort of robustness analyses and robust optimization techniques, however,
clashes with the long computation times of MC dose calculation. The use of faster, less accurate deterministic
pencil-beam dose calculation algorithms instead is not always feasible, because their accuracy is low in
particularly heterogeneous anatomies like lung (Taylor et al 2017), which at the same time show high sensitivity
to uncertainties in range and set-up.

More efficient uncertainty quantification approaches for MC methods, developed for example by the
radiative transport community (e.g. Huand Jin 2016, Poétte 2018), often do not demonstrate an application to
realistic patient data and it is not clear how well the results transfer. Also in many cases, more sophisticated
methods are intrusive, which limits the applicability when using proprietary MC simulation engines.

In this paper, we introduce a simple, minimally-intrusive method for uncertainty quantification in MC dose
computations. Itis based on (re-)weighting a single set of MC simulated particle histories. Histories can either be
weighted during the simulation, using multiple scoring routines, or post simulation given the storage of
individual histories. The weighting, which can also be represented as multiplications of a weight vector with a
history dose matrix, replaces simulations of different dose scenarios. The method enables uncertainty
propagation during the simulation, making it possible to estimate the dose uncertainty induced by range and set-
up errors from nominal dose calculations. In contrast to the conventional approach of simulating different
scenarios separately, our method significantly reduces the required computational effort. We demonstrate the
application of this method to specifically approximate expected value and variance of dose, given a respective
uncertainty model for set-up and range errors, which includes the choice of different beam and pencil beam
correlation scenarios.

The remainder of this paper is organized as follows: in section 2, we introduce basic definitions and notation,
derive a direct computation of the expected value before introducing the concept of importance (re-)weighting
for set-up and range uncertainty models. Section 3 then compares estimated expected doses and corresponding
standard deviations to reference computations based on scenario sampling. The accuracy and convergence of
the proposed method are discussed in section 4. Discussion and conclusion follow in sections 5 and 6,
respectively.

2. Materials and methods

2.1. The MC method for dose computation

First, we briefly recapitulate the basic principles of the MC method for radiotherapy. This serves the purpose of
establishing notation and parameters used to introduce our method and simplifying the illustration of later
adaptations. For a more detailed description we refer to other sources, such as Paganetti (2012), Fippel and
Soukup (2004), Ma et al (2002), Bielajew (1994), Mackie (1990), among many others.

The MC method is a numerical integration technique, based on random sampling. When used for dose
calculations, a set of particles is created with properties including position, momentum and energy, which evolve
dynamically over the course of a simulation. The initial values of these properties constitute the random input
parameters of the MC simulation and are sampled from a known probability distribution function. On this
basis, the trajectories of each primary particle and its secondaries are simulated and the deposited dose is
aggregated, by sampling interactions such as scattering and energy loss according to physical laws and material
properties. While this appears to be an intuitive simulation of the actual physical process, it is essentially a
statistical method to solve the linear Boltzmann transport equation and therefore compute the expected value of
amodel with random input.

Let & be the vector of random input parameters of the dose simulation. ®,(&) is the joint density of these
parameters and is assumed to be known. For our purposes, which will not interfere with the simulation itself, we
assume that the trajectory of a primary particle is given by the ‘black box’ simulation engine, yielding the dose
deposited in voxel i within an individual particle’s history h;(§).

The nominal dose d; in voxel i is given by the expected value Eqg, [;(£)]. The associated integration problem
can be solved numerically using the MC method, which is equivalent to computing the mean over a sample of
histories corresponding to realizations of &:

H
&= Ba @1 = [ (- 2©d~ -3 hiEy), M
p=1

Doy
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where H is the sample size (number of computed primary particle histories) and &, p = 1, ..., H are realizations
of the primary particle properties § ~ ®,. In the following, we write =, « ®, when =, is a realization of the
random variable £ ~ ®,,.

Here we omit the dependence on random factors within the simulation, such as particle scattering, as well as
their probability distribution. Particle histories h(Z,), for input realizations =, implicitly also include
realizations of these random parameters. For a large number of histories, their effect on the dose estimates can
however be assumed to be constant.

2.2. Beam model

The initial state of each particle is represented by a point in the seven-dimensional phase space, which
encompasses the particle position r = (r,, r,, 7,), momentum p = (p,, p,, p,) and energy E. We assume a Gaussian
emittance model, i.e. the parameters within each pencil beam are multivariate normal distributed with

d
@g(f) = q)(b,(r, @, E) = ./\/(u’g, 2?),forpencilbeamsb =1,.,B.Here, p = (¢, <py) = (d—px, Z—?’) describes
pz z

the transverse divergence of the momentum direction from the axial beam direction.
The joint density over all pencil beams is then defined by a Gaussian mixture model

B
Dy(&) = S wyp ®5(8), )

b=1

where wj, are the pencil beam weights.
To introduce our method, we will initially assume a simplified phase space where ¢, = ¢, = 0. Results
including a distribution in the momentum direction can be found in the appendix.

2.3. Uncertainties

Among the most important sources of uncertainty in proton therapy are errors in the patient set-up

0, = (6, 0y, 6,,) and the proton range 6, (comp. Lomax 2008a, 2008b, Liu et al 2012, Park et al 2013, Perkd et al
2016). While these errors are random variables with, in principle, unknown probability distributions, we follow
the common approach of assuming normally distributed errors (Unkelbach et al 2007, Fredriksson et al 2011,
Bangert et al 2013, Perké et al 2016, Wieser et al 2020).

Set-up errors directly affect the primary particle positions in an additive way, such that the actual position r
of a primary particle under uncertainty is given by its position r according to the emmitance model, plus the
error 9,.

Uncertainties in the particle range are caused by a variety of factors, ranging from the conversion of
Hounsfield units to stopping powers and imaging artifacts, over changes in the patient geometry to biological
effects and inaccuracies in physics models (Unkelbach et al 2007, Lomax 2008a, Paganetti 2012, McGowan et al
2013). Here, we focus on calculational uncertainties, such as conversion errors, and model these by scaling the
complete tissue density with the random factor 6, (comp. Lomax 20082, Malyapa et al 2016, Souris et al 2019).
Since the density is assumed to be deterministic, the error is not directly linked to a random input parameter. In
section 2.7, we however present an approximation which models range errors using the initial energy
distribution.

Sampling-based uncertainty quantification approaches, similar to Park et al (2013) or Kraan et al (2013), rely
on repeated dose calculations for different realizations Ay, k = 1, ..., K of the error vector. For an individual
error scenario Ay, the dose is computed as

1L - -
4 = Bogaolhi(6 Al ~ — 37 hi(Ey), By — @€ A, )
p=1

In the case of set-up uncertainties ®(&, A;) for example corresponds to the nominal parameter density
Dy(&), where all particle positions are shifted by A ;. Due to its accuracy, this procedure is later used to obtain
reference values to validate our results (see section 2.9). It is however extremely computationally expensive, since
it requires numerous runs of the complete MC dose simulation.

2.4. Direct computation of the expected value

When the distribution W(&;) of the initial parameters under uncertainty can be explicitly defined, it is possible to
compute the expected dose directly by replacing the nominal parameter distribution ®, with ¥ in the MC dose
simulation as follows:




10P Publishing

Phys. Med. Biol. 66 (2021) 205003 P Stammer et al

H
E(d)) = B, [hi(€)] ~ %Z h(E,), E, — U(Ey. @)
p=1

For example when the error is additive, i.e.
& =6+ 0 (5

and &€ ~ M( e, X¢),aswellas § ~ Mg, X), the distribution of €5 is the convolution
U= J\/(ug + ps, B¢ + ). For ps = 0, this is just a wider Gaussian distribution.

2.5.Importance (re-)weighting
We now consider the dose deposited by histories h(&, 8), which are a function of the random input parameters
& ~ ®y(&) and random error vector & ~ ps. In the following we focus on computing estimates for the dose
expected value and standard deviation, the method can however be analogously applied to the computation of
several worst case scenarios.

We propose a replacement of the dose calculations for different error scenarios by a more efficient weighting
of particle histories h. For this, we adopt the concept of importance sampling (Kahn 1950, Hastings 1970).
Instead of sampling primary particles from ®(§, A,) for different error scenarios, we sample from a different
density function—e.g. the nominal parameter distribution ®4(§). Then, the dose for all scenarios can be
estimated using histories from the nominal dose calculation:

A = B, ap[hi(€, Ap)
l (b(Epa Ak)

~ = ()
PR 9y(Z,)

- , B, — Do(8). ©

Thus, scenario computation reduces to a scoring problem. Equation (6) can either be applied directly during
the simulation, making use of weighted dose scoring, or as a re-weighting step using stored history information.
We collectively refer to both approaches as importance (re-)weighting. The dose expectation and variance can
now be computed through the sample mean and variance over the respectively obtained scenarios

K
Var(dy) ~ —— 5" (d™ — E[d}])? %
K—-1,5
Eld] ~ if df ®)
N S

Instead, when it is possible to derive the distribution ¥ of the uncertain parameters, the expected value can
also be computed as discussed in section 2.4. In this case, the importance (re-)weighting estimate does not
require a discretization of the error distribution or the computation of several scenarios, but rather determines
the expected dose directly from U:

U(Z,)
Dy(E,)’

H
Eld] ~ 5 hi(E,) =, — By(£). ©)
HZ

2.6. Modeling set-up uncertainties

Set-up uncertainties correspond to a shift of the patient position or equivalently the positions of primary
particles relative to the patient. While errors occur in three dimensional space, shifts along the beam axis do not
affect the dose distribution. In the Gaussian model, set-up errors can hence be assumed to follow a bivariate
normal distribution for each pencilbeam b = 1, .., B:

87 = (67, 87) ~ My, =), (10)

with g € R*and X} € R**2,
Particles are initialized in a 2D plane, thus the primary particle positions follow a bivariate Gaussian
mixture (2.2)

B
(I)O;r(r) = Z qu)g;r(r)’ (I)g;f = N(r; u‘f’ Elfj) (11)
b=1

Here ul: is the mean lateral position of initial particles in pencil beam b in beam’s eye view i.e. in the 2D plane
perpendicular to the central beam axis. Then, according to 2.3 the initial position rs of a particle under
uncertainty is determined by
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rs=1r-+ 0, (12)
and r5is distributed with the convolution function
B
U= wp W, Ur= Ny + pl, B0+ 53). (13)
b=1

Anindividual error realization A,;; + p, then formally just corresponds to a shift of the original primary
particle positions, which now follow the distribution

B
O(r, A =Y wy - NMrs ! + Ay, D), (14)
b=1
corresponding to the nominal distribution shifted by A ;.
The above distributions can be directly used with (6), (7) and (9) to obtain the expected dose and variance for
set-up uncertainties.

2.7.Modeling range uncertainties
The proposed approach could be analogously applied to any type of uncertainty directly affecting input
parameters of the simulation, which have an a-priori probability distribution. Range uncertainties, however,
modify the density values, which are deterministic and can thus not be directly modeled within the proposed
framework.

To still approximate our quantities of interest, we exploit that the largest dose uncertainty is induced near the
range of a beam (Bortfeld 1997), although the uncertain density variation affects the whole trajectory. Range can
be expressed in terms of the initial energy of particles, using the Bragg—Kleemann rule

R=a-Ef, (15)

where R is the range, E, is the initial energy and v and p are application-specific parameters. For the case of the
slow-down of therapeutic protons in water, values of & = 0.022 mm/MeV? and p = 1.77 can be chosen (Ulmer
and Matsinos 2011).

The initial energy spectrum of a scanned pencil beam at the exit of the nozzle can be approximately
represented by a Gaussian (Bortfeld 1997, Soukup et al 2005, Tourovsky et al 2005, Kimstrand et al2007). We
can use this to model range uncertainties through random variations of the initial energy (compare treatment of
range straggling in Pedroni et al (2005)).

Let us assume range uncertainties are normally distributed, i.e. §, ~ A(0, o'}) (comp. Lomax 20082, Yang
etal2012). With a Taylor approximation (order 1 for the mean and 2 for the variance) around X = E[X], we can
determine the parameters yp,, U%O of the energy distribution due to range uncertainties

1

Ey = (éR)f = g(E[R)) (16)
g, = E[g(EIRD] ~ g (E[R]) = (ém])E a7)
o}, = Var(g(E[R]) ~ ¢'(E[R])*Var (E[R]) (18)

1 V1Y
= (—(E[R]—) ) o3
j e’ «

Thus the randomness in range is approximated through an energy distribution Ey ~ N(j,, J%O) and the
expected dose and variance can be computed by (re-)weighting histories analogously to 2.6. This can again be
extended to multiple pencil beams using Gaussian mixtures.

Note that, again, the expected value can be directly computed from simulations with an energy spectrum
convolved with the Gaussian uncertainty kernel. Alternatively to the nominal energy distribution, this
convolved distribution can also be used to obtain the required histories. In this case, the nominal distribution is
replaced by the convolved distribution in (6)—(9).

2.8. Correlation models
In the previous sections, the distributions of different types of phase space parameters were considered
independently. Note that the derived distributions are however all marginals of the joint multivariate Gaussian
mixture spanning the complete phase space and all pencil beams (see also 2.2).

Similarly, the univariate normal distributions of errors of different types and in different pencil beams can be
connected using a joint multivariate Gaussian distribution. This framework in principle allows for the definition
of arbitrary correlation models for uncertainties between pencil beams. For the dose variance computation,

5
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= = =1 = beam separator === ray separator

(a) (b) (c) (d) (e)

Figure 1. Covariance matrices for different correlation assumptions. Rows and columns of the matrices correspond to the individual
pencil beams, beam and ray separators indicate sections of pencil beams with the same irradiation angle and lateral position, respectively.
(a) No correlation between pencil beams, (b) correlation of energy levels within one beam, (c) ray-wise correlation, all pencil beams with
the same lateral position, i.e. hitting the same material are fully correlated (d) beam-wise correlation, pencil beams with the same
irradiation angle are fully correlated and (e) errors in all pencil beams are fully correlated. Reproduced with permission from Wahl (2018).

these correlations can be easily implemented using the covariance matrix of this joint distribution, since the
samples for the weighted scenarios are directly drawn from the respective multivariate normal distribution.
Mathematically, the expected value is independent of correlation assumptions. While our results could still
vary slightly due to the stochastic nature of the MC method, these random fluctuations are not related to
uncertainties and thus no separate considerations of correlation assumptions are necessary for the expected dose.
Using the example of set-up uncertainties, if we define the errors in each beam by 4, = (61,. . .,6? )T, the
multivariate Gaussian A(u, C) would be parametrized with

1
ks,
2
I
p=|"
B
I,
12 12 1B plB
! e Ty T Ty
r 12 12 1B 1B
Pyx Pyy Pyx Py
21 21
XX Xy 2
>
C=| .2 2 r (19)
Pye Py ’
Bl Bl
P Pry B
Bl Bl r
Py

where pf;’, is the covariance between set-up errors in the x-direction in pencil beam a and errors in the y-
direction in pencil beam b.

A few simple examples for correlation models are shown in figure 1, more can be found in literature
(Pflugfelder et al 2008, Unkelbach et al 2009, Bangert et al 2013).

In case the correlation matrix is singular (perfect correlation between some pencil beams), the dimension of the
uncertain vector can be reduced and one joint error can be sampled for the respective perfectly correlated pencil beams.

More complex correlation models are possible.

2.9. Implementation
For the proof-of-concept in this work, the weighting method was implemented as a post-processing routine in
Matlab. Radiation plans were generated with matRad (Wieser et al 2017) and exported to the MC simulation engine
TOPAS (Perl etal 2012) for dose calculations. The required particle histories k(&) are stored during the simulation
using a custom extension for TOPAS. On average, this requires around 500 bytes of storage per history (when using
double precision), divided into 34 bytes per primary particle and 12 bytes for each event in the particle’s trajectory.
For both the references and the estimates using the proposed (re-)weighting method, the expected dose is
determined directly according to the approach introduced in section 2.4. The variance on the other hand is
approximated based on random error scenarios. Thus, for the expected value a direct simulation of U in TOPAS is
compared to a reconstruction using 9. In case of the variance, numerous scenarios are sampled from the error

6
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Table 1. Overview of uncertainties investigated for each patient/test case. Beam irradiation angles
are given as (couch angle, gantry angle) in degrees and error values refer to the standard deviations
of the corresponding normal distributions.

Patient Water phantom Prostate Liver
Angles (0°,0°) (0°,90°/270°) (0°,315°)
Correlation Type
Full Set-up 3 mm 3 mm 3 mm
Range 3% — 3%
Both 3 mm/3% — 3 mm/3%
Beam Set-up — 3 mm —
Ray Set-up — 3 mm —
Energy Both — 3 mm/3% —
None Set-up — 3 mm -

Table 2. Overview of simulated plans and error scenarios per patient.

Patient Water phantom Liver Prostate
Irradiation angles (0°,0% (0°,315°) (0°,90°) (0°,270°)
Number of pencil beams 147 1378 1375 1383
Number of histories 2566 453 13 528 430 16 992 193 16 748 034
Number of error scenarios 100 100 100

distribution and the dose for each error scenario is determined using TOPAS or 14, for the reference and (re-)
weighting estimate respectively. The variance can then be estimated using the sample variance formula in both cases.

To reduce the number of required realizations, both for the reference computation and the (re-)weighting
steps, a quasi-MC approach was used to sample the random parameters (see e.g. Caflisch 1998). Here, the
random numbers in the classic MC method are replaced by low-discrepancy sequences to ensure a more
uniform coverage of the random space. This results in a faster convergence rate and typically less required
samples for the same accuracy, compared to the MC method. However, quasi-random samples are not
independent, which can affect the mathematical properties of estimates.

2.10. Patient data
We evaluate the proposed method on three different patient cases of varying complexity: a water phantom, as
well as aliver and prostate patient obtained from the open CORT (common optimization for radiation therapy)
dataset (Crafteral 2014).

Table 1 shows theirradiation angles and table 2 the number of histories and pencil beams for each considered
patient. Note, that the number of histories per pencil beam were determined based on weights from the optimized
radiation plan (see 2.9), where around 10° histories are computed for the pencil beams with the highest weights.

2.11. Investigated uncertainties
In the following, we consider range and set-up uncertainties, as well as a combination of both. For the set-up
uncertainties, we assume a symmetric, bivariate normal distribution with zero mean (no systematic errors) and a
standard deviation of 3 mm (comp. Perké et al 2016, Wahl 2018). For range uncertainties, in the reference
computations we scale the density with a normally distributed factor, where the mean is equal to the nominal
density and the standard deviation is 3% (as recommended in Lomax (2008b), Yang et al (2012)). The
corresponding parameters of the energy distribution, used to approximate range errors in the importance (re-)
weighting estimate, are determined based on this distribution as detailed in 2.7. Table 1 provides an overview of
which uncertainty models were computed for which patient.

The number of error scenarios computed for the importance (re-)weighting estimates can be found in table 2.

2.12. Evaluation criteria
To compare our results to the respective reference computations, we plot two-dimensional slices of the dose cubes
as well as a difference map and employ a global three-dimensional y-analysis. For the difference maps, we compute

diff,‘(diref, diest) — diref _ diest’ (20)

for each voxel i in the reference result d"*f and (re-)weighting estimate d**'. For the y-analysis, we use the matRad
implementation based on Low et al (1998), with a distance to agreement of 2 mm and a dose difference criterion
of 2%.
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Estimate Reference Difference

Figure 2. Nominal dose d, expected dose E[d] and standard deviation o(d) w.r.t. set-up uncertainties with 3 mm standard deviation
for a spread out Bragg peak in a water phantom. The left column shows the estimate computed with the proposed (re-)weighting
approach, the middle column the respective reference and the right column the difference between both simulations.

3. Results

In the following we present results for the cases given in table 1. Unless specified otherwise, results were
computed on the basis of histories from nominal dose calculations, i.e. with phase space parameters sampled
from @, (see 2.2). The references computed for nominal and expected dose stem from MC dose calculations
with the respective phase space distributions ®, and ¥ (see 2.4), the reference standard deviation is derived using
numerous such MC simulations for different error scenarios sampled from the joint error distribution.
Therefore, the importance (re-)weighting estimate for the nominal dose only differs from the reference by
round-off errors introduced in post-processing, as can be seen in figure 2. It is omitted in the following section,
asis the reference.

3.1. Set-up errors
Figure 2 displays the nominal dose, expected value and standard deviation estimates for a water phantom,
computed using the (re-)weighting approach in comparison to the respective references. While we see some
minor deviations in the difference maps for the expected dose and standard deviation, they do not appear
systematic.

The distance-to-agreement analysis using the v-criterion supports this quantitatively (table 3(a)), with a
7§ﬁ2m-pass rate 0f 99.95% for the expected dose and 98.04% for the standard deviation. Figure 3 demonstrates
that this is transferable to the more complex patient cases. With overall fy%ozlm—pass rates of 99.82% (prostate
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Table 3. 'y;,‘/‘:m—pass rates in volumes of interest (VOI) of the water phantom, liver and prostrate patient for (a) set-up errors, (b)

range errors and (c) set-up and range errors. All estimates were computed from the nominal distribution ®, and in (b) and () also
compared against such from the expected distribution W.

(a) Set-up errors

Patient VOI
Waterbox Total Body Target
E[d] 99.95 99.95 99.81
o(d) 98.04 98.04 98.44
Liver Total GTV Liver Heart CTV Contour PTV
E[d] 99.01 98.07 97.71 99.83 94.99 97.83 96.59
o(d) 99.81 100 99.79 99.67 100 99.72 99.49
Prostrate Total Rectum Penile Lymph Femoral Prostate PTV PTV Bladder Body
bulb nodes heads bed 68 56
E[d] 99.99 100 100 99.75 100 99.71 99.85 99.88 99.96
o(d) 99.82 99.85 95.92 100 100 100 100 99.36 99.94 99.79
(b) Range errors
Distribution Patient VOI
Waterbox ~ Total ~ Body  Target
o, E[d] 99.58  99.58  99.44
o(d) 91.63 91.63 92.58
)4 d 99.98 99.98 100
o(d) 9355 93.55  87.88
Liver Total GTV Liver Heart CTV Contour PTV
D, E[d] 99.91 99.71 99.91 100 99.74 99.93 99.81
o(d) 73.32 79.47 70.68 83.38 66.49 72.16 57.38
v d 99.93 99.90 99.96 100 99.85 99.85 99.91
o(d) 93.70 99.05 92.17 95.51 90.06 93.80 86.22
(c) Set-up and range errors
Distribution Patient VOI
Waterbox ~ Total ~ Body  Target
o, E[d] 9939 99.39  99.81
o(d) 95.10 95.10 82.76
)4 d 99.93 99.93 99.81
o(d) 99.50  99.50  97.04
Liver Total GTV Liver Heart CTV Contour PTV
[ E[d] 99.86 99.71 99.86 99.93 99.61 99.91 99.67
o(d) 95.56 96.76 89.87 87.77 95.85 91.74 91.89
v d 99.87 99.94 100 99.77 99.97 99.86
o(d) 96.64 93.39 84.96 98.67 92.50 92.58

patient) and 99.81% (liver patient), the standard deviation agrees as well with the reference computations as the
expected value, with 99.99% and 99.01%, respectively (table 3(a)).

3.2.Range errors

In contrast to the set-up errors, for which dose estimates can also be shown to be mathematically accurate, range
errors can only be modeled through an approximation introduced in 2.7. Figures 4 and 5 display results for
range errors as well as a combination of range and set-up errors in the water phantom, respectively.
The difference maps for both expected value and standard deviation show that the deviations when
including range errors are expectedly higher. We observe a systematic bias primarily at the distal edge, where our
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Estimate Difference Estimate Difference

(a) Prostate (b) Liver

Figure 3. Expected dose E[d] and standard deviation o(d) w.r.t. set-up uncertainties with 3 mm standard deviation for (a) a prostate patient
(couch angle 0°, gantry angles 90° and 270°) and (b) a liver patient (couch angle 0°, gantry angle 315°). The left columns show the estimates
computed with the proposed (re-)weighting approach and the right columns the difference to the corresponding references.

Estimate (Pg) Difference Estimate (W) Difference

E[d]
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Figure 4. Nominal dose d, expected dose E[d] and standard deviation o(d) w.r.t. range uncertainties with a 3% standard deviation for
aspread out Bragg peak in a water phantom. The left columns show the estimate computed with the proposed (re-)weighting
approach, reconstructed either from the nominal distribution @, or its convolution ¥ with the error kernel. The right columns show
the difference to the corresponding references.
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Figure 5. Nominal dose d, expected dose E[d] and standard deviation o(d) w.r.t. range uncertainties with 3% and set-up errors with
3 mm standard deviation for a spread out Bragg peak in a water phantom. The left columns show the estimate computed with the
proposed (re-)weighting approach, reconstructed either from the nominal distribution @, or its convolution ¥ with the error kernel.
The right columns show the difference to the corresponding references.

method seems to consistently underestimate the variance. The standard deviation estimate using our
importance weighting method also expresses strong local artifacts, as evident in the difference maps (compare
figures 4 and 5). This is an indicator of too little statistical mass, i.e. computed particle trajectories, in the original
simulation. For more extreme error realizations, relatively high weights are assigned to a small number of
particles, thereby amplifying single realizations or errors. Especially in case of a relatively small beam energy
spread in the original simulation (here 1%), compared to the range error of 3%, such artifacts are likely to
appear. In order to prevent this, one could either compute a larger number of particle histories in the simulation
or sample the particles from a different distribution which has more density mass in its outer regions or tails.

To underline the explanation for the appearance of the artifacts above, we recomputed the estimates using the
(re-)weighting method based on a direct computation of the expected value, which can be calculated using the
convolution ¥ of the Gaussian error kernel with the nominal phase space parameter distribution (compare 2.4).
Figures 4 and 5 show that this alleviates the discrepancy from the references, causing artifacts to disappear and also
reducing the overall amount of deviation displayed in the difference maps.

Thereby we can conclude that the irregularities in the solution can be attributed to the lack of statistical
support in certain areas. Contrary to this, parts of the systematic differences remain and are thus most likely a
result of the model approximations.

Figures 6 and 7 validate these observations for a liver patient. The difference maps for estimates computed
based on the expected distribution W, have less severe artifacts and systematic deviations. The *y%ol/’(‘)‘m-pass rate
also consistently increases for both the liver patient and water phantom (see table 3(b), (c)).
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Figure 6. Nominal dose d, expected dose E[d] and standard deviation o(d) w.r.t. range uncertainties with a 3% standard error in a liver
patient (couch angle 0°, gantry angle 315°). The left columns show the estimate computed with the proposed (re-)weighting approach,
reconstructed either from the nominal distribution @ or its convolution ¥ with the error kernel. The right columns show the
difference to the corresponding references.

Estimate (®g) Difference Estimate (7) Difference

Figure 7. Expected dose E[d] and standard deviation o/(d) w.r.t. range uncertainties with 3% and set-up errors with 3 mm standard
deviation in a liver patient (couch angle 0°, gantry angle 315°). The left columns show the estimate computed with the proposed (re-)
weighting approach, reconstructed either from the nominal distribution ®; or its convolution ¥ with the error kernel. The right
columns show the difference to the corresponding references.
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(a) (b) (c) (d)

Figure 8. Standard deviation of dose in a prostate patient for (a) no correlation (b) correlation between pencil beams in the same
energy level (c) ‘ray-wise’ correlation (i.e. between pencil beams with the same lateral position) and (d) correlation between pencil
beams with the same irradiation angle (compare figure 1), w.r.t set-up errors and in case (c) also range errors.

Also, it has to be noted, that using ¥ to sample the initial particles leads to an expected dose estimate which is
equivalent to the reference computations (compare 9), but a nominal dose estimate which now shows deviations
from a nominal standard MC reference computation in the order of magnitude that we could previously observe
for the expected dose (see table 3(b), (c)). This is due to the fact that the importance sampling error depends on
the similarity of the sampling and target distribution. One can however expect a slightly lower error when
constructing the nominal dose from a simulation of ¥, since here the deviations of the target distribution occur
in a region with a higher probability mass.

3.3. Correlation models

So far, we have only shown results for the case of fully correlated pencil beams, meaning one global shift of the
patient position or scaling factor for the beam range. One of the advantages of the proposed method is, however,
the high flexibility in changing the uncertainty model. In figure 8 we therefore present the standard deviation
estimate for four examples of different error correlation models discussed in section 2.8.

The results indicate, that different correlation assumptions have a crucial impact on the standard deviation
of dose distributions. While it is in principle possible to define arbitrary correlations within the proposed
framework, estimates can be prone to artifacts due to a lack of statistical information, especially for the ray-wise
correlation model. When sampling error realizations independently for smaller beam components, the
reconstruction depends solely on the particle histories associated with these components. For rays with small
weights, only very few histories are computed, therefore we observe similar artifacts as encountered in the above
range uncertainty computations (3.2).

4. Accuracy and convergence

Mathematically, it can be shown, that the expected and nominal dose estimates are unbiased in the case of set-up
errors. This also holds for the doses corresponding to each individual error realization. While it does not
generally apply for the variance, the vg(g‘m—pass rates of the variance estimates are not significantly lower than
those of the expected dose (compare table 3). Considering the additional effect of the use of discrete error
scenarios, this indicates that the bias does not have a significant impact on the quality of variance estimates.

For quicker convergence we used quasi-random numbers throughout the whole comparisons, both for the
reference computation and the importance (re-)weighting approach. Note, that the combination of importance
sampling with quasi-MC methods has been shown to be not only possible, but advantageous and preserves the
convergence properties of quasi-MC (Caflisch 1998, Okten 1999, Schiirer 2004, Hérmann and Leydold 2005).
Since the procedure mimics a (quasi-) MC method for uncertainty quantification, where the repeated
simulation runs are replaced by (re-)weighting steps, the convergence of the variance per computed error
realization is identical. However, due to the lower cost of the (re-)weighting steps, the convergence per time is
much faster (see figure 9).

For run-time comparisons, the reference computations using TOPAS and the (re-)weighting approach,
implemented as post-processing in Matlab, were run on the same virtual machine®. We observe reduced CPU
times by a factor of 80, 32 and 23 for the water phantom, liver and prostate patient, respectively (see table 4).

® Virtual machine including 64 CPUs with 1.995 GHz and 200 GB RAM.
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Figure 9. Mean square error (MSE) of the dose standard deviation estimate for the water phantom, computed using a (quasi) Monte
Carlo method and the importance (re-)weighting approach and compared for the error convergence (a) per number of samples and
(b) per corresponding computation time.

Table 4. CPU time comparison for the reference versus (re-)weighting
approach applied to different patients and computed on the same machine.
All values are given in seconds. Note that the times for 100 realizations include
the initialization times, while the time for a single realization only refers to the

dose computation time.
Reference (re-)weighting
Water phantom Initialization 2.35 61.53
One realization 2331.30 28.51
100 realizations 233 126.93 2912.53
Liver Initialization 2.44 2038.75
One realization 39 066.44 1198.74
100 realizations 3906 650.90 121 912.75
Prostate Initialization 4.26 4867.75
One realization 58 762.40 2479.07
100 realizations 5876 253.86 252 774.75

5. Discussion

In this paper, we introduce an efficient approach for uncertainty quantification in MC dose calculations using
history (re-)weighting. We demonstrate how particle histories from one simulation can be scored to construct
estimates for error scenarios, the expected dose and standard deviation, for set-up and range errors in intensity
modulated proton therapy. As demonstration example, Gaussian range and set-up uncertainties, with 3% and
3 mm standard deviation respectively, were considered for a water phantom, a liver patient and a prostate
patient.

For set-up uncertainties, we observed good agreement of at least 99.01% for the expected dose and 98.04%
for the dose standard deviation in the 7, ym /20,-criterion for all quantities of interest. Range error propagation
could be approximated by transforming the assumed range uncertainty into energy uncertainty via the range-
energy relationship. High pass rates of at least 99.39% in the ¥, mm/20-criterion indicate that the error caused by
this model approximation does not noticeably affect the accuracy of the expected dose estimate. Lower pass rates
are to be expected for the standard deviation, since it exhibits stronger inhomogeneity compared to the expected
or nominal dose. The standard deviation estimates are, however, also sensitive to the number of histories and
usage of the nominal Gaussian pencil beam width or the convolved distribution. Agreement within the
Y2 mm,/29-Criterion significantly increases and visible artifacts in the standard deviation estimate can be partly
eliminated, by simulating the initial phase-space parameters using the convolved beam parameterization. Areas
of systematic deviations remain, as evidenced by the low pass rates in particular volumes of interest, especially in
the heterogeneous patient cases. Therefore, when computing the dose standard deviation in the presence of
range uncertainties, the proposed method can currently only be reccommended if no exact estimate is required.
However, these local pass rates have to be interpreted with caution when considering organs which are far
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removed from the beam center, such as the heart in the liver patient case. Here only a low number of particles
passing through a small percentage of the voxels contribute to the result and therefore random fluctuations are
probable, especially considering the error inherent in the reference values based on 100 samples. Since areas of
high uncertainty are still correctly identified, a use for robust optimization is, for example, plausible. Also, parts
of the inaccuracies can be attributed to the comparably large magnitude of the assumed range errors in relation
to the initial energy spread. Improvements in the actual range accuracy, for example through dual energy CTs,
might soon allow for the realistic assumption of relative range errors significantly lower than 3%.

As the case of range uncertainties demonstrates, the use of different distribution functions for the initial
phase space parametrization of the MC simulation can substantially impact the results of the reconstructions.
We initially presented the approach and results based on a nominal dose calculation, which is especially of
interest for use cases such as dose verification. Here, the accuracy of the nominal dose is not compromised and
one can gain some additional insight into uncertainties. However, the lack of statistical mass in parts of the
domain impedes the dose computation for more extreme error realizations. Therefore, the use of a wider
distribution, such as the convolution of the nominal parameter density with the error kernel, can improve the
expected value and standard deviation estimate and be beneficial for applications in planning or robust
optimization. Other configurations, such as a mixture of several Gaussians, are also thinkable and could be
specifically tuned with regard to uncertainty quantification. Thus, the choice of parameter distributions gives the
user a degree of flexibility in putting the focus on either retaining accuracy in the nominal dose computation or
trading it against better accuracy of the uncertainty estimate according to the specific use case.

We also demonstrate the use of different pencil beam correlation models within the framework. It is clear
that the choice of correlation model has a significant impact on the standard deviation estimate. Therefore, it is
particularly convenient that the (re-)weighting method allows for the definition of principally arbitrary
correlation matrices to put into the underlying multivariate Gaussian error model. These could possibly be
extended to simulate interplay effects or other dynamic influences in the context of 4D treatment planning.
Since the applied correlation models are not only experimental but also difficult and time-consuming to
evaluate in scenario sampling, we did not quantitatively compare them to reference computations. Further
studies could explore whether they agree with other methods computing such correlations based on an
analytical probabilistic dose engine (Bangert et al 2013, Wahl et al 2017, Wieser et al 2020).

Compared to the reference scenario estimates, which rely on performing full MC dose calculations
repeatedly, the CPU-time for standard deviation estimates could be reduced by more than an order of
magnitude using our method in combination with a quasi-MC approach. This is achieved by reducing the costs
of repeated expensive simulations to those of scoring based on matrix-vector multiplications. Consequently, it
has to be noted, that the time reduction depends largely on the proportion of computational overhead of the
initialization and simulation steps in the MC engine. Therefore the factor of speed increase varies strongly
between different test-cases and, most likely, implementations. But even then, our method holds two
performance advantages: first, it can directly compute the expected dose by using the convolved phase space
parameterization (2.4) in one standard simulation. Second, multiple uncertainty models with different
correlation patterns and magnitude can be reconstructed from the same set of histories. This could for example
be used to investigate the impact of fractionation effects, using the framework proposed by Wahl et al (2018) or
to consider a number of (worst case) scenarios besides the expected dose and standard deviation.

A combination of our approach with other efficient uncertainty quantification approaches, which rely on
scenario computations could lead to run-time improvements. For instance a polynomial chaos expansion as
introduced in Perkd et al (2016) could be adjusted such that the evaluations are computed by (re-)weighting
histories instead of the usual dose calculations.

Further, we argue that computational performance can be improved through a more efficient, performance-
tuned implementation. The computational complexity is inherently reduced compared to scenario
computations, since no physics simulations are required in addition to scoring. We therefore expect
performance benefits also with faster MC dose calculation algorithms, given an equivalently tuned
implementation. In particular, when one chooses to apply importance weighting on-the-fly using multiple sub-
scoring routines, performance gains should be achievable since the existing efficient structures of the MC code
could be directly used. However, in this case the number of error scenarios has to be predetermined, causing a
loss in flexibility, and is also limited with regard to memory constraints.

Lastbut not least, the method is not inherently limited to the discussed application in proton therapy; a
calculation of uncertainty estimates using the (re-)weighting approach would also be feasible for other intensity-
modulated particle therapy modalities like carbon ions but also photons. In its current description, it is however
limited to uncertainties which can be modeled in terms of variations of phase space parameters with a prior
probability distribution (this excludes biological parameters, like RBE). Application to, for example, pre-
simulated phase spaces might also be feasible using numerical convolution techniques. Also, a
disproportionately high magnitude of uncertainties in relation to this probability distribution can compromise
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the accuracy of results. Furthermore, it needs to be mentioned, that the current computational speed, especially
for the standard deviation, might still not be sufficient for optimization purposes, where a full dose influence
matrix needs to be computed. Due to the simplicity of the process and the high flexibility in post-processing at
virtually no cost for the original simulation, we are confident that the approach has the potential for further
development and use.

6. Conclusion

Dose distributions in intensity modulated proton therapy are known to be sensitive to uncertainties. The
computational efforts in estimating such uncertainties become particularly evident when MC dose calculation is
used. We showed how the concept of importance sampling can be adapted to estimate the expected dose and its
variance using histories from only a single MC simulation. Set-up uncertainties can be efficiently modeled and
exhibit almost exact agreement with reference computations. The inclusion of range uncertainties, by modeling
them as energy uncertainty via the range-energy relationship, yields comparably high agreements with respect to
the expected dose. While the standard deviation estimate is substantially less accurate, it can give a rough insight
into the dose variations, which can be sufficient for some application purposes. Further, the physical simulation
of particles is completely decoupled from uncertainty quantification, thereby allowing for the incorporation of
arbitrary correlation assumptions and the comparison of different scenarios, at no additional cost to the
nominal dose calculation. Therefore, the presented approach has several benefits over classic non-intrusive
methods and is a step towards reconciling efficient uncertainty quantification and, in the future, robust
optimization based on MC dose calculations.
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Appendix A. Importance sampling

Importance sampling is a method most frequently used for variance reduction (Kahn 1950, Hastings 1970).
Assume the integral I(g) = fg(x)p(x)dx is to be computed for x ~ p(x) without directly sampling from p(x). The
importance sampling estimate is defined as

10)= [seop@as = [ 50 Eqax

p(X)

~YN g(X; ,
Zi=18( )Q(Xi)

X — gq(x). (A1)

Thus, the integral of g(x) with the probability distribution x ~ p(x) can be reconstructed from samples of a
suitable density function g(x).

Appendix B. Full phase space model

The simplified model used in the main paper can be extended to include distributions in the momentum
direction ¢ = (¢, ¥, ¢.) = 0. The additional variables are included in the Gaussian mixture model:

B
Do(&) = Y wy®G(&), BG(E) = Vf(r, @, B) = Mpl, D), (B.1)
b=1

where the respective entries in the covariance matrix Eg can be chosen = 0 to model randomness in the
momentum direction as well as correlations of the momentum directions with primary particle positions.

Figure B1 presents results for the nominal dose, expected dose and standard deviation in a liver patient, for
set-up uncertainties with 3 mm standard deviation, 0.2 standard deviation in the momentum direction and 0.3
correlation between ¢, and r,, v € {x, y}. Estimates were computed based on the convolution function ¥ of the
error and beam parameter densities, as well as the nominal parameter density ®,. The corresponding global -
analysis pass rates can be found in table B1.
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Figure B1. Nominal dose, expected dose and standard deviation w.r.t. set-up uncertainties with 3 mm standard deviation for one
beam (couch angle 0°, gantry angle 315°), computed using the full phase space parameterizations.

Table B1. 42 ™™-pass rates in volumes of interest (VOI) of the liver patient

2%

computed using the full phase space parameterizations.

From &, From ¥
Set-up

Error type

Liver d E[d] o(d) d E[d] o(d)
Overall 100 99.86 95.88 99.85 100 96.32
GTV 100 99.52 95.09 99.23 100 97.21
Liver 100 99.96 94.63 99.93 100 95.32
Heart 100 100 95.10 100 100 97.04
CTV 100 99.79 92.78 99.67 100 94.22
Contour 100 99.99 95.89 99.97 100 96.30
PTV 100 99.89 90.92 99.78 100 89.93
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