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Abstract
Objective. To present an efficient uncertainty quantificationmethod for range and set-up errors in
MonteCarlo (MC) dose calculations. Further, we show that uncertainty induced by interplay and
other dynamic influencesmay be approximated using suitable error correlationmodels.Approach.
We introduce an importance (re-)weightingmethod inMChistory scoring to concurrently construct
estimates for error scenarios, the expected dose and its variance from a single set ofMC simulated
particle histories. The approach relies on amultivariate Gaussian input and uncertaintymodel, which
assigns probabilities to the initial phase space sample, enabling the use of different correlationmodels.
Throughmodification of the phase space parameterization, accuracy can be traded between that of the
uncertainty or the nominal dose estimate.Main results. Themethodwas implemented using theMC
codeTOPAS and validated for proton intensity-modulated particle therapy (IMPT)with reference
scenario estimates.We achieve accurate results for set-up uncertainties (γ2 mm/2%� 99.01% (E[d]),
γ2 mm/2%� 98.04% (σ(d))) and expectedly lower but still sufficient agreement for range uncertainties,
which are approximatedwith uncertainty over the energy distribution.Here pass rates of 99.39%
(E[d])/ 93.70% (σ(d)) (range errors) and 99.86% (E[d])/ 96.64% (σ(d)) (range and set-up errors) can
be achieved. Initial evaluations on awater phantom, a prostate and a liver case from the public CORT
dataset show that theCPU time decreases bymore than an order ofmagnitude. Significance. The high
precision and conformity of IMPT comes at the cost of susceptibility to treatment uncertainties in
particle range and patient set-up. Yet, dose uncertainty quantification andmitigation, which is usually
based on sampled error scenarios, becomes challengingwhen computing the dosewith computation-
ally expensive but accurateMC simulations. As the results indicate, the proposedmethod could reduce
computational effort while also facilitating the use of high-dimensional uncertaintymodels.

1. Introduction

MonteCarlo (MC)methods are considered the gold standard for dose calculation in radiotherapy treatment
planning due to their accuracy (Weng et al 2003, Paganetti 2012). However, the accuracy of a simulated
compared to a delivered dose is not only determined by the chosen dose engine, but also compromised by
treatment uncertainties inwater-equivalent path length, patient set-up and anatomy. Especially in proton and
carbon-ion therapy, the high dose localization in the Bragg-peak usually does not allow for uncertainty
quantification andmitigation using approximations known for photon therapy, such as the static dose cloud
(Lomax 2008a, 2008b).

Consequently, particle therapy demands personalized robustness analyses andmitigation. Such techniques
may be based on explicit propagation of input uncertainties using probabilisticmethods and statistical analysis
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(Bangert et al 2013, Kraan et al 2013, Park et al 2013, Perkó et al 2016,Wahl et al 2017, 2020) orworst-case
estimates (Casiraghi et al 2013,McGowan et al 2015, Lowe et al 2016).Most of thesemethods then further
translate to robust and probabilistic optimization to extend the conventional, genericmargin approach to
uncertaintymitigation (Sobotta et al 2010, Fredriksson 2012, Liu et al 2012,Unkelbach et al 2018).

The additional computational effort of robustness analyses and robust optimization techniques, however,
clasheswith the long computation times ofMCdose calculation. The use of faster, less accurate deterministic
pencil-beamdose calculation algorithms instead is not always feasible, because their accuracy is low in
particularly heterogeneous anatomies like lung (Taylor et al 2017), which at the same time showhigh sensitivity
to uncertainties in range and set-up.

More efficient uncertainty quantification approaches forMCmethods, developed for example by the
radiative transport community (e.g. Hu and Jin 2016, Poëtte 2018), often do not demonstrate an application to
realistic patient data and it is not clear howwell the results transfer. Also inmany cases,more sophisticated
methods are intrusive, which limits the applicability when using proprietaryMC simulation engines.

In this paper, we introduce a simple,minimally-intrusivemethod for uncertainty quantification inMCdose
computations. It is based on (re-)weighting a single set ofMC simulated particle histories. Histories can either be
weighted during the simulation, usingmultiple scoring routines, or post simulation given the storage of
individual histories. Theweighting, which can also be represented asmultiplications of aweight vector with a
history dosematrix, replaces simulations of different dose scenarios. Themethod enables uncertainty
propagation during the simulation,making it possible to estimate the dose uncertainty induced by range and set-
up errors fromnominal dose calculations. In contrast to the conventional approach of simulating different
scenarios separately, ourmethod significantly reduces the required computational effort.We demonstrate the
application of thismethod to specifically approximate expected value and variance of dose, given a respective
uncertaintymodel for set-up and range errors, which includes the choice of different beam and pencil beam
correlation scenarios.

The remainder of this paper is organized as follows: in section 2, we introduce basic definitions and notation,
derive a direct computation of the expected value before introducing the concept of importance (re-)weighting
for set-up and range uncertaintymodels. Section 3 then compares estimated expected doses and corresponding
standard deviations to reference computations based on scenario sampling. The accuracy and convergence of
the proposedmethod are discussed in section 4. Discussion and conclusion follow in sections 5 and 6,
respectively.

2.Materials andmethods

2.1. TheMCmethod for dose computation
First, we briefly recapitulate the basic principles of theMCmethod for radiotherapy. This serves the purpose of
establishing notation and parameters used to introduce ourmethod and simplifying the illustration of later
adaptations. For amore detailed descriptionwe refer to other sources, such as Paganetti (2012), Fippel and
Soukup (2004),Ma et al (2002), Bielajew (1994),Mackie (1990), amongmany others.

TheMCmethod is a numerical integration technique, based on random sampling.When used for dose
calculations, a set of particles is createdwith properties including position,momentum and energy, which evolve
dynamically over the course of a simulation. The initial values of these properties constitute the random input
parameters of theMC simulation and are sampled from a knownprobability distribution function.On this
basis, the trajectories of each primary particle and its secondaries are simulated and the deposited dose is
aggregated, by sampling interactions such as scattering and energy loss according to physical laws andmaterial
properties.While this appears to be an intuitive simulation of the actual physical process, it is essentially a
statisticalmethod to solve the linear Boltzmann transport equation and therefore compute the expected value of
amodel with random input.

Let ξ be the vector of random input parameters of the dose simulation.Φ0(ξ) is the joint density of these
parameters and is assumed to be known. For our purposes, whichwill not interfere with the simulation itself, we
assume that the trajectory of a primary particle is given by the ‘black box’ simulation engine, yielding the dose
deposited in voxel iwithin an individual particle’s history hi(ξ).

The nominal dose di in voxel i is given by the expected value [ ( )]xF hi0
. The associated integration problem

can be solved numerically using theMCmethod, which is equivalent to computing themean over a sample of
histories corresponding to realizations of ξ:

[ ( )] ( ) · ( ) ( ) ( )ò åx x x x X= = F »F
=F

d h h
H

hd
1

, 1i i i
p

H

i p0
1

0

0
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whereH is the sample size (number of computed primary particle histories) andΞp, p= 1,K,H are realizations
of the primary particle properties ξ∼Φ0. In the following, wewriteΞp←Φ0 whenΞp is a realization of the
randomvariable ξ∼Φ0.

Here we omit the dependence on random factors within the simulation, such as particle scattering, as well as
their probability distribution. Particle histories hi(Ξp), for input realizationsΞp, implicitly also include
realizations of these randomparameters. For a large number of histories, their effect on the dose estimates can
however be assumed to be constant.

2.2. Beammodel
The initial state of each particle is represented by a point in the seven-dimensional phase space, which
encompasses the particle position r= (rx, ry, rz), momentum p= (px, py, pz) and energy E.We assume aGaussian
emittancemodel, i.e. the parameters within each pencil beam aremultivariate normal distributedwith

( ) ( ) ( )x j m SF = F = x xr E, , ,b b b b
0 0 , for pencil beams b= 1, ..,B. Here, ( ) ( )j j j= =

dp

dp
, ,x y

x

z

dp

dp

y

z

describes

the transverse divergence of themomentumdirection from the axial beamdirection.
The joint density over all pencil beams is then defined by aGaussianmixturemodel

( ) ( ) ( )åx xF = F
=

w , 2
b

B

b
b

0
1

0

wherewb are the pencil beamweights.
To introduce ourmethod, wewill initially assume a simplified phase space wherejx= jy= 0. Results

including a distribution in themomentumdirection can be found in the appendix.

2.3. Uncertainties
Among themost important sources of uncertainty in proton therapy are errors in the patient set-up

( )d d d d= , ,r r r rx y z
and the proton range δρ (comp. Lomax 2008a, 2008b, Liu et al 2012, Park et al 2013, Perkó et al

2016).While these errors are randomvariables with, in principle, unknown probability distributions, we follow
the common approach of assuming normally distributed errors (Unkelbach et al 2007, Fredriksson et al 2011,
Bangert et al 2013, Perkó et al 2016,Wieser et al 2020).

Set-up errors directly affect the primary particle positions in an additive way, such that the actual position rδ
of a primary particle under uncertainty is given by its position r according to the emmitancemodel, plus the
error δr.

Uncertainties in the particle range are caused by a variety of factors, ranging from the conversion of
Hounsfield units to stopping powers and imaging artifacts, over changes in the patient geometry to biological
effects and inaccuracies in physicsmodels (Unkelbach et al 2007, Lomax 2008a, Paganetti 2012,McGowan et al
2013). Here, we focus on calculational uncertainties, such as conversion errors, andmodel these by scaling the
complete tissue density with the random factor δρ (comp. Lomax 2008a,Malyapa et al 2016, Souris et al 2019).
Since the density is assumed to be deterministic, the error is not directly linked to a random input parameter. In
section 2.7, we however present an approximationwhichmodels range errors using the initial energy
distribution.

Sampling-based uncertainty quantification approaches, similar to Park et al (2013) orKraan et al (2013), rely
on repeated dose calculations for different realizationsΔk, k= 1,K,K of the error vector. For an individual
error scenarioΔk, the dose is computed as

[ ( )] ( ) ( ) ( )( ) åx xD X X D= » ¬ Fx D
D

F
=

d h
H

h,
1

, , . 3i i k
p

H

i p p k,
1

k
k

In the case of set-up uncertaintiesΦ(ξ,Δk) for example corresponds to the nominal parameter density
Φ0(ξ), where all particle positions are shifted byΔr;k. Due to its accuracy, this procedure is later used to obtain
reference values to validate our results (see section 2.9). It is however extremely computationally expensive, since
it requires numerous runs of the completeMCdose simulation.

2.4.Direct computation of the expected value
When the distributionΨ(ξδ) of the initial parameters under uncertainty can be explicitly defined, it is possible to
compute the expected dose directly by replacing the nominal parameter distributionΦ0 withΨ in theMCdose
simulation as follows:
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( ) [ ( )] ( ) ( ) ( )( ) åx xX X= » ¬ Yx d dY
=

d
E d h

H
h

1
, . 4i i

p

H

i p p
1

For examplewhen the error is additive, i.e.

( )x x d= +d 5

and ( )x m S~ x x , , as well as ( )d m S~ d d , , the distribution of ξδ is the convolution

( )m m S SY = + +x d x d , . Forμδ= 0, this is just awiderGaussian distribution.

2.5. Importance (re-)weighting
Wenow consider the dose deposited by histories h(ξ, δ), which are a function of the random input parameters
ξ∼Φ0(ξ) and randomerror vector δ∼ pδ. In the followingwe focus on computing estimates for the dose
expected value and standard deviation, themethod can however be analogously applied to the computation of
several worst case scenarios.

We propose a replacement of the dose calculations for different error scenarios by amore efficient weighting
of particle histories h. For this, we adopt the concept of importance sampling (Kahn 1950,Hastings 1970).
Instead of sampling primary particles fromΦ(ξ,Δk) for different error scenarios, we sample from a different
density function—e.g. the nominal parameter distributionΦ0(ξ). Then, the dose for all scenarios can be
estimated using histories from the nominal dose calculation:
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Thus, scenario computation reduces to a scoring problem. Equation (6) can either be applied directly during
the simulation,making use of weighted dose scoring, or as a re-weighting step using stored history information.
We collectively refer to both approaches as importance (re-)weighting. The dose expectation and variance can
nowbe computed through the samplemean and variance over the respectively obtained scenarios

( ) ( [ ]) ( )å»
-

-
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K

d E d
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Instead, when it is possible to derive the distributionΨ of the uncertain parameters, the expected value can
also be computed as discussed in section 2.4. In this case, the importance (re-)weighting estimate does not
require a discretization of the error distribution or the computation of several scenarios, but rather determines
the expected dose directly fromΨ:

[ ] ( )
( )
( )

( ) ( )å xX
X
X
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E d
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1

, . 9i
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i p
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1 0
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2.6.Modeling set-up uncertainties
Set-up uncertainties correspond to a shift of the patient position or equivalently the positions of primary
particles relative to the patient.While errors occur in three dimensional space, shifts along the beamaxis do not
affect the dose distribution. In theGaussianmodel, set-up errors can hence be assumed to follow a bivariate
normal distribution for each pencil beam b= 1, ..,B:

( ) ( ) ( )d md d S= ~ d d, , , 10r
b

r
b

r
b b b

x y r r

withm Îd b 2
r

andS Îd
´b 2 2

r
.

Particles are initialized in a 2Dplane, thus the primary particle positions follow a bivariate Gaussian
mixture (2.2)

( ) ( ) ( ) ( )å m SF = F F =
=

r r rw , ; , . 11r
b

B

b r
b

r
b

r
b

r
b

0;
1

0; 0;

Heremr
b is themean lateral position of initial particles in pencil beam b in beam’s eye view i.e. in the 2Dplane

perpendicular to the central beam axis. Then, according to 2.3 the initial position rδ of a particle under
uncertainty is determined by
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( )d= +dr r 12r

and rδ is distributedwith the convolution function

( ) ( )å m m S SY = Y Y = + +d d
=

w , , . 13r
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b r
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r
b

r
b b

r
b b

1
r r

An individual error realizationD ¬ dpr k; r
then formally just corresponds to a shift of the original primary

particle positions, which now follow the distribution

( ) · ( ) ( )å mD D SF = +
=

r rw, ; , , 14r k
b

B

b r
b

r k
b

r
b

1
;

corresponding to the nominal distribution shifted byΔr;k.
The above distributions can be directly usedwith (6), (7) and (9) to obtain the expected dose and variance for

set-up uncertainties.

2.7.Modeling range uncertainties
The proposed approach could be analogously applied to any type of uncertainty directly affecting input
parameters of the simulation, which have an a-priori probability distribution. Range uncertainties, however,
modify the density values, which are deterministic and can thus not be directlymodeledwithin the proposed
framework.

To still approximate our quantities of interest, we exploit that the largest dose uncertainty is induced near the
range of a beam (Bortfeld 1997), although the uncertain density variation affects thewhole trajectory. Range can
be expressed in terms of the initial energy of particles, using the Bragg–Kleemann rule

· ( )a=R E , 15p
0

whereR is the range,E0 is the initial energy andα and p are application-specific parameters. For the case of the
slow-downof therapeutic protons inwater, values ofα= 0.022 mm/MeVp and p= 1.77 can be chosen (Ulmer
andMatsinos 2011).

The initial energy spectrumof a scanned pencil beam at the exit of the nozzle can be approximately
represented by aGaussian (Bortfeld 1997, Soukup et al 2005, Tourovsky et al 2005, Kimstrand et al 2007).We
can use this tomodel range uncertainties through random variations of the initial energy (compare treatment of
range straggling in Pedroni et al (2005)).

Let us assume range uncertainties are normally distributed, i.e. ( )d s~r  0, R
2 (comp. Lomax 2008a, Yang

et al 2012).With a Taylor approximation (order 1 for themean and 2 for the variance) aroundX= E[X], we can
determine the parameters m s,E E

2
0 0

of the energy distribution due to range uncertainties

⎛
⎝

⎞
⎠

≕ ( [ ])) ( )
a

=E R g E R
1

160

p
1

⎛
⎝

⎞
⎠

[ ( [ ])] ( [ ]) [ ] ( )m
a

= » =E g E R g E R E R
1

17E

p

0

1

( ( [ ])) ( [ ]) ( [ ]) ( )s = » ¢Var g E R g E R Var E R 18E
2 2

0

⎜ ⎟
⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠
[ ]

a a
s=

-

p
E R

1 1
.R

1 2
2

p
1

Thus the randomness in range is approximated through an energy distribution ( )m s~ E ,E E0
2

0 0
and the

expected dose and variance can be computed by (re-)weighting histories analogously to 2.6. This can again be
extended tomultiple pencil beams usingGaussianmixtures.

Note that, again, the expected value can be directly computed from simulationswith an energy spectrum
convolvedwith theGaussian uncertainty kernel. Alternatively to the nominal energy distribution, this
convolved distribution can also be used to obtain the required histories. In this case, the nominal distribution is
replaced by the convolved distribution in (6)–(9).

2.8. Correlationmodels
In the previous sections, the distributions of different types of phase space parameters were considered
independently. Note that the derived distributions are however allmarginals of the jointmultivariate Gaussian
mixture spanning the complete phase space and all pencil beams (see also 2.2).

Similarly, the univariate normal distributions of errors of different types and in different pencil beams can be
connected using a jointmultivariate Gaussian distribution. This framework in principle allows for the definition
of arbitrary correlationmodels for uncertainties between pencil beams. For the dose variance computation,
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these correlations can be easily implemented using the covariancematrix of this joint distribution, since the
samples for theweighted scenarios are directly drawn from the respectivemultivariate normal distribution.

Mathematically, the expected value is independent of correlation assumptions.While our results could still
vary slightly due to the stochastic nature of theMCmethod, these randomfluctuations are not related to
uncertainties and thus no separate considerations of correlation assumptions are necessary for the expecteddose.

Using the example of set-up uncertainties, if we define the errors in each beamby ( )d d d= ¼, ,r r r
B T1 , the

multivariate Gaussian ( )m C, would be parametrizedwith
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where rxy
ab is the covariance between set-up errors in the x-direction in pencil beam a and errors in the y-

direction in pencil beam b.
A few simple examples for correlationmodels are shown infigure 1,more can be found in literature

(Pflugfelder et al 2008,Unkelbach et al 2009, Bangert et al 2013).
In case the correlationmatrix is singular (perfect correlationbetween somepencil beams), thedimensionof the

uncertain vector canbe reducedandone joint error canbe sampled for the respectiveperfectly correlatedpencil beams.
More complex correlationmodels are possible.

2.9. Implementation
For theproof-of-concept in thiswork, theweightingmethodwas implemented as a post-processing routine in
Matlab.Radiationplanswere generatedwithmatRad (Wieser et al2017) and exported to theMCsimulation engine
TOPAS (Perl et al2012) for dose calculations. The requiredparticle historiesh(ξ) are storedduring the simulation
using a customextension forTOPAS.Onaverage, this requires around500bytes of storage perhistory (whenusing
double precision), divided into 34bytes perprimary particle and12bytes for each event in theparticle’s trajectory.

For both the references and the estimates using the proposed (re-)weightingmethod, the expecteddose is
determineddirectly according to the approach introduced in section 2.4. The variance on the other hand is
approximatedbasedon randomerror scenarios. Thus, for the expected value a direct simulationofΨ inTOPAS is
compared to a reconstructionusing 9. In case of the variance, numerous scenarios are sampled from the error

Figure 1.Covariancematrices for different correlation assumptions.Rows and columns of thematrices correspond to the individual
pencil beams, beamand ray separators indicate sectionsof pencil beamswith the same irradiation angle and lateral position, respectively.
(a)Nocorrelationbetweenpencil beams, (b) correlation of energy levelswithinone beam, (c) ray-wise correlation, all pencil beamswith
the same lateral position, i.e. hitting the samematerial are fully correlated (d) beam-wise correlation, pencil beamswith the same
irradiation angle are fully correlated and (e) errors in all pencil beams are fully correlated. Reproducedwithpermission fromWahl (2018).
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distribution and thedose for each error scenario is determinedusingTOPASor 14, for the reference and (re-)
weighting estimate respectively.The variance can thenbe estimatedusing the sample variance formula inboth cases.

To reduce the number of required realizations, both for the reference computation and the (re-)weighting
steps, a quasi-MC approachwas used to sample the randomparameters (see e.g. Caflisch 1998). Here, the
randomnumbers in the classicMCmethod are replaced by low-discrepancy sequences to ensure amore
uniform coverage of the random space. This results in a faster convergence rate and typically less required
samples for the same accuracy, compared to theMCmethod.However, quasi-random samples are not
independent, which can affect themathematical properties of estimates.

2.10. Patient data
Weevaluate the proposedmethod on three different patient cases of varying complexity: a water phantom, as
well as a liver and prostate patient obtained from the openCORT (commonoptimization for radiation therapy)
dataset (Craft et al 2014).

Table 1 shows the irradiation angles and table 2 the number of histories andpencil beams for each considered
patient.Note, that thenumber of histories per pencil beamwere determinedbased onweights from the optimized
radiationplan (see 2.9), where around 105 histories are computed for the pencil beamswith thehighestweights.

2.11. Investigated uncertainties
In the following, we consider range and set-up uncertainties, as well as a combination of both. For the set-up
uncertainties, we assume a symmetric, bivariate normal distributionwith zeromean (no systematic errors) and a
standard deviation of 3 mm (comp. Perkó et al 2016,Wahl 2018). For range uncertainties, in the reference
computationswe scale the density with a normally distributed factor, where themean is equal to the nominal
density and the standard deviation is 3% (as recommended in Lomax (2008b), Yang et al (2012)). The
corresponding parameters of the energy distribution, used to approximate range errors in the importance (re-)
weighting estimate, are determined based on this distribution as detailed in 2.7. Table 1 provides an overview of
which uncertaintymodels were computed forwhich patient.

The number of error scenarios computed for the importance (re-)weighting estimates can be found in table 2.

2.12. Evaluation criteria
To compare our results to the respective reference computations,weplot two-dimensional slices of thedose cubes
aswell as a differencemap and employ a global three-dimensionalγ-analysis. For the differencemaps,we compute

( ) ( )= -d d d ddiff , , 20i i i i i
ref est ref est

for each voxel i in the reference result dref and (re-)weighting estimate dest. For the γ-analysis, we use thematRad
implementation based on Low et al (1998), with a distance to agreement of 2 mmand a dose difference criterion
of 2%.

Table 1.Overview of uncertainties investigated for each patient/test case. Beam irradiation angles
are given as (couch angle, gantry angle) in degrees and error values refer to the standard deviations
of the corresponding normal distributions.

Patient Water phantom Prostate Liver

Angles (0°, 0°) (0°, 90°/270°) (0°, 315°)
Correlation Type

Full Set-up 3 mm 3 mm 3 mm

Range 3% — 3%

Both 3 mm/3% — 3 mm/3%

Beam Set-up — 3 mm —

Ray Set-up — 3 mm —

Energy Both — 3 mm/3% —

None Set-up — 3 mm -

Table 2.Overview of simulated plans and error scenarios per patient.

Patient Water phantom Liver Prostate

Irradiation angles (0°, 0°) (0°, 315°) (0°, 90°) (0°, 270°)
Number of pencil beams 147 1 378 1 375 1 383

Number of histories 2 566 453 13 528 430 16 992 193 16 748 034

Number of error scenarios 100 100 100
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3. Results

In the followingwe present results for the cases given in table 1. Unless specified otherwise, results were
computed on the basis of histories fromnominal dose calculations, i.e. with phase space parameters sampled
fromΦ0 (see 2.2). The references computed for nominal and expected dose stem fromMCdose calculations
with the respective phase space distributionsΦ0 andΨ (see 2.4), the reference standard deviation is derived using
numerous suchMC simulations for different error scenarios sampled from the joint error distribution.
Therefore, the importance (re-)weighting estimate for the nominal dose only differs from the reference by
round-off errors introduced in post-processing, as can be seen infigure 2. It is omitted in the following section,
as is the reference.

3.1. Set-up errors
Figure 2 displays the nominal dose, expected value and standard deviation estimates for awater phantom,
computed using the (re-)weighting approach in comparison to the respective references.While we see some
minor deviations in the differencemaps for the expected dose and standard deviation, they do not appear
systematic.

The distance-to-agreement analysis using the γ-criterion supports this quantitatively (table 3(a)), with a
g2%

2mm-pass rate of 99.95% for the expected dose and 98.04% for the standard deviation. Figure 3 demonstrates

that this is transferable to themore complex patient cases.With overall g2%
2 mm-pass rates of 99.82% (prostate

Figure 2.Nominal dose d, expected dose E[d] and standard deviationσ(d)w.r.t. set-up uncertainties with 3 mmstandard deviation
for a spread out Bragg peak in awater phantom. The left column shows the estimate computedwith the proposed (re-)weighting
approach, themiddle column the respective reference and the right column the difference between both simulations.
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patient) and 99.81% (liver patient), the standard deviation agrees as well with the reference computations as the
expected value, with 99.99%and 99.01%, respectively (table 3(a)).

3.2. Range errors
In contrast to the set-up errors, for which dose estimates can also be shown to bemathematically accurate, range
errors can only bemodeled through an approximation introduced in 2.7. Figures 4 and 5 display results for
range errors aswell as a combination of range and set-up errors in thewater phantom, respectively.

The differencemaps for both expected value and standard deviation show that the deviations when
including range errors are expectedly higher.We observe a systematic bias primarily at the distal edge, where our

Table 3. g2%
2 mm-pass rates in volumes of interest (VOI) of thewater phantom, liver and prostrate patient for (a) set-up errors, (b)

range errors and (c) set-up and range errors. All estimates were computed from the nominal distributionΦ0 and in (b) and (c) also
compared against such from the expected distributionΨ.

(a) Set-up errors

Patient VOI

Waterbox Total Body Target

E[d] 99.95 99.95 99.81

σ(d) 98.04 98.04 98.44

Liver Total GTV Liver Heart CTV Contour PTV

E[d] 99.01 98.07 97.71 99.83 94.99 97.83 96.59

σ(d) 99.81 100 99.79 99.67 100 99.72 99.49

Prostrate Total Rectum Penile Lymph Femoral Prostate PTV PTV Bladder Body

bulb nodes heads bed 68 56

E[d] 99.99 100 100 99.75 100 99.71 99.85 99.88 99.96

σ(d) 99.82 99.85 95.92 100 100 100 100 99.36 99.94 99.79

(b)Range errors

Distribution Patient VOI

Waterbox Total Body Target

Φ0 E[d] 99.58 99.58 99.44

σ(d) 91.63 91.63 92.58

Ψ d 99.98 99.98 100

σ(d) 93.55 93.55 87.88

Liver Total GTV Liver Heart CTV Contour PTV

Φ0 E[d] 99.91 99.71 99.91 100 99.74 99.93 99.81

σ(d) 73.32 79.47 70.68 83.38 66.49 72.16 57.38

Ψ d 99.93 99.90 99.96 100 99.85 99.85 99.91

σ(d) 93.70 99.05 92.17 95.51 90.06 93.80 86.22

(c) Set-up and range errors

Distribution Patient VOI

Waterbox Total Body Target

Φ0 E[d] 99.39 99.39 99.81

σ(d) 95.10 95.10 82.76

Ψ d 99.93 99.93 99.81

σ(d) 99.50 99.50 97.04

Liver Total GTV Liver Heart CTV Contour PTV

Φ0 E[d] 99.86 99.71 99.86 99.93 99.61 99.91 99.67

σ(d) 95.56 96.76 89.87 87.77 95.85 91.74 91.89

Ψ d 99.87 100 99.94 100 99.77 99.97 99.86

σ(d) 96.64 100 93.39 84.96 98.67 92.50 92.58
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Figure 3.ExpecteddoseE[d] and standarddeviationσ(d)w.r.t. set-upuncertaintieswith 3 mmstandarddeviation for (a) aprostatepatient
(couchangle 0°, gantry angles 90° and270°) and (b) a liverpatient (couchangle 0°, gantry angle 315°). The left columns show the estimates
computedwith theproposed (re-)weighting approachand the right columns thedifference to the corresponding references.

Figure 4.Nominal dose d, expected dose E[d] and standard deviationσ(d)w.r.t. range uncertainties with a 3% standard deviation for
a spread out Bragg peak in awater phantom. The left columns show the estimate computedwith the proposed (re-)weighting
approach, reconstructed either from the nominal distributionΦ0 or its convolutionΨwith the error kernel. The right columns show
the difference to the corresponding references.
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method seems to consistently underestimate the variance. The standard deviation estimate using our
importanceweightingmethod also expresses strong local artifacts, as evident in the differencemaps (compare
figures 4 and 5). This is an indicator of too little statisticalmass, i.e. computed particle trajectories, in the original
simulation. Formore extreme error realizations, relatively highweights are assigned to a small number of
particles, thereby amplifying single realizations or errors. Especially in case of a relatively small beam energy
spread in the original simulation (here 1%), compared to the range error of 3%, such artifacts are likely to
appear. In order to prevent this, one could either compute a larger number of particle histories in the simulation
or sample the particles from a different distributionwhich hasmore densitymass in its outer regions or tails.

Tounderline the explanation for the appearance of the artifacts above,we recomputed the estimates using the
(re-)weightingmethodbasedon adirect computationof the expected value,which canbe calculatedusing the
convolutionΨof theGaussian error kernelwith the nominal phase space parameter distribution (compare 2.4).
Figures 4 and5 show that this alleviates the discrepancy from the references, causing artifacts to disappear and also
reducing the overall amount of deviationdisplayed in the differencemaps.

Therebywe can conclude that the irregularities in the solution can be attributed to the lack of statistical
support in certain areas. Contrary to this, parts of the systematic differences remain and are thusmost likely a
result of themodel approximations.

Figures 6 and 7 validate these observations for a liver patient. The differencemaps for estimates computed
based on the expected distributionΨ, have less severe artifacts and systematic deviations. The g2%

2 mm-pass rate
also consistently increases for both the liver patient andwater phantom (see table 3(b), (c)).

Figure 5.Nominal dose d, expected dose E[d] and standard deviationσ(d)w.r.t. range uncertainties with 3%and set-up errors with
3 mmstandard deviation for a spread out Bragg peak in awater phantom. The left columns show the estimate computedwith the
proposed (re-)weighting approach, reconstructed either from the nominal distributionΦ0 or its convolutionΨwith the error kernel.
The right columns show the difference to the corresponding references.
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Figure 6.Nominal dose d, expected dose E[d] and standard deviationσ(d)w.r.t. range uncertainties with a 3% standard error in a liver
patient (couch angle 0°, gantry angle 315°). The left columns show the estimate computedwith the proposed (re-)weighting approach,
reconstructed either from the nominal distributionΦ0 or its convolutionΨwith the error kernel. The right columns show the
difference to the corresponding references.

Figure 7.Expected dose E[d] and standard deviationσ(d)w.r.t. range uncertainties with 3% and set-up errors with 3 mmstandard
deviation in a liver patient (couch angle 0°, gantry angle 315°). The left columns show the estimate computedwith the proposed (re-)
weighting approach, reconstructed either from the nominal distributionΦ0 or its convolutionΨwith the error kernel. The right
columns show the difference to the corresponding references.
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Also, it has to be noted, that usingΨ to sample the initial particles leads to an expected dose estimatewhich is
equivalent to the reference computations (compare 9), but a nominal dose estimate which now shows deviations
from a nominal standardMC reference computation in the order ofmagnitude that we could previously observe
for the expected dose (see table 3(b), (c)). This is due to the fact that the importance sampling error depends on
the similarity of the sampling and target distribution.One can however expect a slightly lower errorwhen
constructing the nominal dose from a simulation ofΨ, since here the deviations of the target distribution occur
in a regionwith a higher probabilitymass.

3.3. Correlationmodels
So far, we have only shown results for the case of fully correlated pencil beams,meaning one global shift of the
patient position or scaling factor for the beam range.One of the advantages of the proposedmethod is, however,
the highflexibility in changing the uncertaintymodel. Infigure 8we therefore present the standard deviation
estimate for four examples of different error correlationmodels discussed in section 2.8.

The results indicate, that different correlation assumptions have a crucial impact on the standard deviation
of dose distributions.While it is in principle possible to define arbitrary correlationswithin the proposed
framework, estimates can be prone to artifacts due to a lack of statistical information, especially for the ray-wise
correlationmodel.When sampling error realizations independently for smaller beam components, the
reconstruction depends solely on the particle histories associatedwith these components. For rayswith small
weights, only very few histories are computed, therefore we observe similar artifacts as encountered in the above
range uncertainty computations (3.2).

4. Accuracy and convergence

Mathematically, it can be shown, that the expected and nominal dose estimates are unbiased in the case of set-up
errors. This also holds for the doses corresponding to each individual error realization.While it does not
generally apply for the variance, the g2%

2 mm-pass rates of the variance estimates are not significantly lower than
those of the expected dose (compare table 3). Considering the additional effect of the use of discrete error
scenarios, this indicates that the bias does not have a significant impact on the quality of variance estimates.

For quicker convergence we used quasi-randomnumbers throughout thewhole comparisons, both for the
reference computation and the importance (re-)weighting approach. Note, that the combination of importance
samplingwith quasi-MCmethods has been shown to be not only possible, but advantageous and preserves the
convergence properties of quasi-MC (Caflisch 1998,Ökten 1999, Schürer 2004,Hörmann and Leydold 2005).
Since the proceduremimics a (quasi-)MCmethod for uncertainty quantification, where the repeated
simulation runs are replaced by (re-)weighting steps, the convergence of the variance per computed error
realization is identical. However, due to the lower cost of the (re-)weighting steps, the convergence per time is
much faster (see figure 9).

For run-time comparisons, the reference computations using TOPAS and the (re-)weighting approach,
implemented as post-processing inMatlab, were run on the same virtualmachine6.We observe reducedCPU
times by a factor of 80, 32 and 23 for thewater phantom, liver and prostate patient, respectively (see table 4).

Figure 8. Standard deviation of dose in a prostate patient for (a)no correlation (b) correlation between pencil beams in the same
energy level (c) ‘ray-wise’ correlation (i.e. between pencil beamswith the same lateral position) and (d) correlation between pencil
beamswith the same irradiation angle (compare figure 1), w.r.t set-up errors and in case (c) also range errors.

6
Virtualmachine including 64CPUswith 1.995 GHz and 200 GBRAM.
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5.Discussion

In this paper, we introduce an efficient approach for uncertainty quantification inMCdose calculations using
history (re-)weighting.We demonstrate howparticle histories fromone simulation can be scored to construct
estimates for error scenarios, the expected dose and standard deviation, for set-up and range errors in intensity
modulated proton therapy. As demonstration example, Gaussian range and set-up uncertainties, with 3%and
3mmstandard deviation respectively, were considered for awater phantom, a liver patient and a prostate
patient.

For set-up uncertainties, we observed good agreement of at least 99.01% for the expected dose and 98.04%
for the dose standard deviation in the γ2 mm/2%-criterion for all quantities of interest. Range error propagation
could be approximated by transforming the assumed range uncertainty into energy uncertainty via the range-
energy relationship.High pass rates of at least 99.39% in the γ2 mm/2%-criterion indicate that the error caused by
thismodel approximation does not noticeably affect the accuracy of the expected dose estimate. Lower pass rates
are to be expected for the standard deviation, since it exhibits stronger inhomogeneity compared to the expected
or nominal dose. The standard deviation estimates are, however, also sensitive to the number of histories and
usage of the nominal Gaussian pencil beamwidth or the convolved distribution. Agreement within the
γ2 mm/2%-criterion significantly increases and visible artifacts in the standard deviation estimate can be partly
eliminated, by simulating the initial phase-space parameters using the convolved beamparameterization. Areas
of systematic deviations remain, as evidenced by the low pass rates in particular volumes of interest, especially in
the heterogeneous patient cases. Therefore, when computing the dose standard deviation in the presence of
range uncertainties, the proposedmethod can currently only be recommended if no exact estimate is required.
However, these local pass rates have to be interpretedwith cautionwhen considering organswhich are far

Figure 9.Mean square error (MSE) of the dose standard deviation estimate for thewater phantom, computed using a (quasi)Monte
Carlomethod and the importance (re-)weighting approach and compared for the error convergence (a) per number of samples and
(b)per corresponding computation time.

Table 4.CPU time comparison for the reference versus (re-)weighting
approach applied to different patients and computed on the samemachine.
All values are given in seconds. Note that the times for 100 realizations include
the initialization times, while the time for a single realization only refers to the
dose computation time.

Reference (re-)weighting

Water phantom Initialization 2.35 61.53

One realization 2331.30 28.51

100 realizations 233 126.93 2912.53

Liver Initialization 2.44 2038.75

One realization 39 066.44 1198.74

100 realizations 3906 650.90 121 912.75

Prostate Initialization 4.26 4867.75

One realization 58 762.40 2479.07

100 realizations 5876 253.86 252 774.75
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removed from the beam center, such as the heart in the liver patient case. Here only a lownumber of particles
passing through a small percentage of the voxels contribute to the result and therefore random fluctuations are
probable, especially considering the error inherent in the reference values based on 100 samples. Since areas of
high uncertainty are still correctly identified, a use for robust optimization is, for example, plausible. Also, parts
of the inaccuracies can be attributed to the comparably largemagnitude of the assumed range errors in relation
to the initial energy spread. Improvements in the actual range accuracy, for example through dual energy CTs,
might soon allow for the realistic assumption of relative range errors significantly lower than 3%.

As the case of range uncertainties demonstrates, the use of different distribution functions for the initial
phase space parametrization of theMC simulation can substantially impact the results of the reconstructions.
We initially presented the approach and results based on a nominal dose calculation, which is especially of
interest for use cases such as dose verification.Here, the accuracy of the nominal dose is not compromised and
one can gain some additional insight into uncertainties. However, the lack of statisticalmass in parts of the
domain impedes the dose computation formore extreme error realizations. Therefore, the use of awider
distribution, such as the convolution of the nominal parameter density with the error kernel, can improve the
expected value and standard deviation estimate and be beneficial for applications in planning or robust
optimization. Other configurations, such as amixture of several Gaussians, are also thinkable and could be
specifically tunedwith regard to uncertainty quantification. Thus, the choice of parameter distributions gives the
user a degree offlexibility in putting the focus on either retaining accuracy in the nominal dose computation or
trading it against better accuracy of the uncertainty estimate according to the specific use case.

We also demonstrate the use of different pencil beam correlationmodels within the framework. It is clear
that the choice of correlationmodel has a significant impact on the standard deviation estimate. Therefore, it is
particularly convenient that the (re-)weightingmethod allows for the definition of principally arbitrary
correlationmatrices to put into the underlyingmultivariate Gaussian errormodel. These could possibly be
extended to simulate interplay effects or other dynamic influences in the context of 4D treatment planning.
Since the applied correlationmodels are not only experimental but also difficult and time-consuming to
evaluate in scenario sampling, we did not quantitatively compare them to reference computations. Further
studies could explore whether they agree with othermethods computing such correlations based on an
analytical probabilistic dose engine (Bangert et al 2013,Wahl et al 2017,Wieser et al 2020).

Compared to the reference scenario estimates, which rely on performing fullMCdose calculations
repeatedly, theCPU-time for standard deviation estimates could be reduced bymore than an order of
magnitude using ourmethod in combinationwith a quasi-MC approach. This is achieved by reducing the costs
of repeated expensive simulations to those of scoring based onmatrix-vectormultiplications. Consequently, it
has to be noted, that the time reduction depends largely on the proportion of computational overhead of the
initialization and simulation steps in theMCengine. Therefore the factor of speed increase varies strongly
between different test-cases and,most likely, implementations. But even then, ourmethod holds two
performance advantages: first, it can directly compute the expected dose by using the convolved phase space
parameterization (2.4) in one standard simulation. Second,multiple uncertaintymodels with different
correlation patterns andmagnitude can be reconstructed from the same set of histories. This could for example
be used to investigate the impact of fractionation effects, using the framework proposed byWahl et al (2018) or
to consider a number of (worst case) scenarios besides the expected dose and standard deviation.

A combination of our approachwith other efficient uncertainty quantification approaches, which rely on
scenario computations could lead to run-time improvements. For instance a polynomial chaos expansion as
introduced in Perkó et al (2016) could be adjusted such that the evaluations are computed by (re-)weighting
histories instead of the usual dose calculations.

Further, we argue that computational performance can be improved through amore efficient, performance-
tuned implementation. The computational complexity is inherently reduced compared to scenario
computations, since no physics simulations are required in addition to scoring.We therefore expect
performance benefits alsowith fasterMCdose calculation algorithms, given an equivalently tuned
implementation. In particular, when one chooses to apply importanceweighting on-the-fly usingmultiple sub-
scoring routines, performance gains should be achievable since the existing efficient structures of theMCcode
could be directly used.However, in this case the number of error scenarios has to be predetermined, causing a
loss inflexibility, and is also limitedwith regard tomemory constraints.

Last but not least, themethod is not inherently limited to the discussed application in proton therapy; a
calculation of uncertainty estimates using the (re-)weighting approachwould also be feasible for other intensity-
modulated particle therapymodalities like carbon ions but also photons. In its current description, it is however
limited to uncertainties which can bemodeled in terms of variations of phase space parameters with a prior
probability distribution (this excludes biological parameters, like RBE). Application to, for example, pre-
simulated phase spacesmight also be feasible using numerical convolution techniques. Also, a
disproportionately highmagnitude of uncertainties in relation to this probability distribution can compromise
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the accuracy of results. Furthermore, it needs to bementioned, that the current computational speed, especially
for the standard deviation,might still not be sufficient for optimization purposes, where a full dose influence
matrix needs to be computed. Due to the simplicity of the process and the highflexibility in post-processing at
virtually no cost for the original simulation, we are confident that the approach has the potential for further
development and use.

6. Conclusion

Dose distributions in intensitymodulated proton therapy are known to be sensitive to uncertainties. The
computational efforts in estimating such uncertainties become particularly evidentwhenMCdose calculation is
used.We showed how the concept of importance sampling can be adapted to estimate the expected dose and its
variance using histories fromonly a singleMC simulation. Set-up uncertainties can be efficientlymodeled and
exhibit almost exact agreementwith reference computations. The inclusion of range uncertainties, bymodeling
them as energy uncertainty via the range-energy relationship, yields comparably high agreements with respect to
the expected dose.While the standard deviation estimate is substantially less accurate, it can give a rough insight
into the dose variations, which can be sufficient for some application purposes. Further, the physical simulation
of particles is completely decoupled fromuncertainty quantification, thereby allowing for the incorporation of
arbitrary correlation assumptions and the comparison of different scenarios, at no additional cost to the
nominal dose calculation. Therefore, the presented approach has several benefits over classic non-intrusive
methods and is a step towards reconciling efficient uncertainty quantification and, in the future, robust
optimization based onMCdose calculations.
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AppendixA. Importance sampling

Importance sampling is amethodmost frequently used for variance reduction (Kahn 1950,Hastings 1970).
Assume the integral I(g)= ∫g(x)p(x)dx is to be computed for x∼ p(x)without directly sampling from p(x). The
importance sampling estimate is defined as
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Thus, the integral of g(x)with the probability distribution x∼ p(x) can be reconstructed from samples of a
suitable density function q(x).

Appendix B. Full phase spacemodel

The simplifiedmodel used in themain paper can be extended to include distributions in themomentum
directionj= (jx,jy,jz)≠ 0. The additional variables are included in theGaussianmixturemodel:
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where the respective entries in the covariancematrixSx
b can be chosen≠ 0 tomodel randomness in the

momentumdirection aswell as correlations of themomentumdirectionswith primary particle positions.
Figure B1 presents results for the nominal dose, expected dose and standard deviation in a liver patient, for

set-up uncertainties with 3 mmstandard deviation, 0.2 standard deviation in themomentumdirection and 0.3
correlation betweenjv and rv, v ä {x, y}. Estimates were computed based on the convolution functionΨ of the
error and beamparameter densities, as well as the nominal parameter densityΦ0. The corresponding global γ-
analysis pass rates can be found in table B1.
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