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Kurzfassung

In dieser Arbeit wird die relativistische Theorie der exakten Entkopplung (engl. exact two-component theory,
X2C) auf chemische Verschiebungen und Kopplungskonstanten der Atomkerne in der Kernspinresonanz-
Spektroskopie (engl. nuclear magnetic resonance, NMR) angewandt, um damit Spektren von Molekülen
mit schweren Elementen zu interpretieren und vorherzusagen. Da der NMR-Abschirmungstensor und der
Kopplungstensor von der Elektronendichte in Kernnähe abhängt, wird für die akkurate Berechnung eine re-
lativistische Allelektronentheorie benötigt. In X2C wird die relativistische Entkopplung in einer Matrixform
realisiert, wobei unkontrahierte oder primitive Basisfunktionen genutzt werden, was zu erhöhten Dimen-
sionen führt. Ebenso müssen für die Ableitungen der Entkopplungsmatrix für NMR-Parameter Antwort-
gleichungen erster und zweiter Ordnung gelöst werden. Dies führt folglich zu einem hohen Rechenaufwand.
In dieser Arbeit wird die diagonale, lokale Näherung der unitären Entkopplung (engl. diagonal local

approximation to the unitary decoupling transformation, DLU) für NMR-Parameter hergeleitet und in einen
Computercode implementiert. Diese Näherung reduziert den Rechenaufwand um eine Potenz ohne dabei zu
einem nennenswerten Verlust an Genauigkeit zu führen. Die Antwortgleichungen werden nur innerhalb der
atomaren Blöcke gelöst, sodass der Rechenaufwand für die Ein- und Zweielektronen-Terme balanciert wird.

Das Modell der endlich ausgedehnten Atomkerne wird für das skalare Potential und das Vektorpotential
genutzt, da gerade die Fermi-Kontakt-Wechselwirkung der NMR-Kopplungskonstanten stark auf die Elek-
tronendichte am Kernort reagiert. Insbesondere für die sechste Periode ist dieses Modell von Bedeutung und
muss für eine genaue Berechnung berücksichtigt werden. Ebenso wird die Optimierung von Basissätzen auf
Grundlage der analytischen Ableitungen erst mit diesem Modell möglich. Für die chemische Verschiebung
werden optimierte Basissätze auf double-, triple-, und quadruple-ζ Niveau präsentiert. Somit wird X2C
zusammen mit den etablierten Näherungen für die Zweielektronen-Integrale zu einem nützlichen Werkzeug
für die Berechnung der NMR-Spektren von Hauptgruppen- und Übergangsmetall-Verbindungen.

Die Elektronenkorrelation wird im Rahmen der Dichtefunktionaltheorie (DFT) bis zur vierten Stufe der
Jakobsleiter zum exakten Funktional berücksichtigt, d.h. bis zu (lokalen) Hybridfunktionalen. Die para-
magnetische Stromdichte wird hierbei für die kinetische Energiedichte genutzt, um einen eichinvarianten
Formalismus zu gewährleisten. Im Rahmen dieser Arbeit werden die ersten formal eichinvarianten Berech-
nungen von NMR-Kopplungen mit entsprechenden Funktionalen präsentiert. Die Implementierung nutzt
einen verallgemeinerten Algorithmus zur Lösung der Antwortgleichungen, der für beliebige Eigenschaften
gültig ist. Eswerden nur die für die Eigenschaft spezifischen Integrale benötigt. Die Effekte desHamiltonian,
des Basissatzes und der Dichtefunktional-Näherungen werden über das Periodensystem evaluiert.

Die entwickelte Theorie und die Implementierung werden auf organometallische Phosphorverbindungen
angewandt und so die Phosphor-Metall pπ–pπ Bindung erklärt. Darüber hinaus konnte die Aromatizität des
rein metallischen Clusters [Th@Bi12]4− auf Basis einer Analyse der magnetisch induzierten Stromdichte
und experimenteller Befunde bestätigt werden. Nach heutigem Stand ist dies die größte rein metallische
aromatische Verbindung. Im Zuge dieser Analyse wurden die Ringströme aller bekannten rein metallischen
Aromaten und der typischen organischen Aromaten sowie der Heteroaromaten berechnet. Ein Vergleich
mit dem Ringstrom des Clusters [Th@Bi12]4− zeigt, dass dieser einen großen Strom für 2 π-Elektronen
aufweist. Daher erweitert [Th@Bi12]4− das Konzept der π-Aromatizität und verschiebt dessen Grenzen.
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Abstract

Herein, the relativistic exact two-component (X2C) theory is applied to the nuclear magnetic resonance
(NMR) shifts and indirect spin–spin coupling constants to interpret and predict the spectra of molecules
containing heavy elements. As the NMR shielding and coupling tensor depend on the electron density in the
vicinity of the nuclei, its calculations requires an all-electron relativistic description. In X2C, the relativistic
decoupling is carried out in a matrix form employing uncontracted or primitive basis functions, which
increases the corresponding dimensions. Furthermore, it is necessary to solve response equations for the
derivative of the decoupling matrix to calculate the NMR properties. Therefore, X2C comes with high com-
putational demands. In this work, the diagonal local approximation to the unitary decoupling transformation
(DLU) is derived and implemented for NMR shifts and coupling constants. This approximation reduces the
computation times by one power without significant loss of accuracy and allows for routine applications with
moderate computational costs. In DLU, the response equations of the relativistic decoupling matrix must be
solved within the atomic blocks only. In contrast to the full X2C approach, the one and two-electron part
are balanced in terms of computation time.

Furthermore, the finite nucleus model is used for both the scalar and the vector potential as especially the
Fermi-contact interaction for NMR coupling constants is very sensitive towards the electron density at the
nucleus. In particular for the sixth row of the periodic table of elements, the finite nuclear size effects need
to be considered to obtain accurate results. Moreover, the finite nucleus model allows to optimize basis
sets based on analytical energy gradients and the variational principle. Tailored basis sets are presented for
NMR shifts at double, triple, and quadruple-ζ quality. Together with well-established approximations of the
two-electron terms, X2C therefore becomes a valuable tool which can be used to predict and interpret the
NMR spectra of main-group and transition-metal systems.

Electron correlation is treated within a density functional framework. Density functional approximations
up to the fourth rung of Jacob’s ladder are employed, i.e. (local) hybrid density functionals. To arrive
at a gauge-invariant formalism for the NMR parameters, the paramagnetic current density is used for all
kinetic-energy-dependent functionals. Therefore, this work presents the first gauge-invariant calculations
of NMR coupling constants at the meta-generalized gradient approximation and local hybrid functional
level of theory. The implementation utilizes a generalized solver for response equations, which is able to
calculate arbitrary molecular properties if the required integrals are provided. The impact of the relativistic
Hamiltonian, the basis set, and the density functional approximation is assessed throughout the periodic
table of elements.

The developed computational methodology is applied to organometallic phosphorous compounds and the
phosphorous-metal pπ–pπ bond is rationalized. Moreover, the implementation allowed to confirm the all-
metal aromticity of the [Th@Bi12]4− cluster based on a magnetically induced current density analysis and
experimental findings. To date, this is the largest all-metal aromatic compound. The ring currents of all
known metal aromatic systems and the typical organic all-carbon aromatic molecules and the heteroaromatic
compounds are calculated and compared to the ring current of [Th@Bi12]4−. Notably, [Th@Bi12]4− sustains
a substantial ring current for 2 π-electrons and is therefore pushing the limits of π-aromaticity.
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is key to the analysis of newly synthesized compounds
in organic and inorganic chemistry. [1–3] NMR spectroscopy can be carried out in all phases but is most
commonly done for molecules in solution. The respective NMR spectra consist of two main parameters.
On the one hand, the NMR shift, δ, determining the position of the signal. One the other hand, the NMR
coupling constant, J , describing the splitting of the signal due to the coupling of the nuclear magnetic
moments. NMR spectra are regularly interpreted using reference databases, [3–5] semi-empirical methods, or
quantum chemical calculations. [6–10] Organic compounds are routinely analyzedwith the first two approaches
due to the vast amount of available data. In contrast, the amount of data is limited in inorganic chemistry—
in particular for molecules containing heavy elements or for metal clusters. Therefore, quantum chemical
calculations are indispensable in the interpretation of NMR spectra of such compounds. [11–15] To ensure
the applicability of quantum chemical methods to large molecules, an efficient implementation is highly
important. Yet, such an implementation has not been presented for heavy elements. Therefore, an efficient
computational methodology will be developed in this work. In addition to structure determination, quantum
chemical studies ofNMRparametersmay also be used to study the electron delocalization and the aromaticity
of organic and inorganic compounds based on magnetically induced ring currents. [16–19] In a simple picture,
placing a molecule with delocalized electrons into a magnetic field causes the electrons to move according
to Ampère’s circuital law. Magnetically induced ring currents allow to assign the degree of aromaticity for
both organic and inorganic compounds based on theoretical considerations. Generally, the accuracy of a
quantum chemical calculation mainly depends on the employed Hamiltonian, the method to treat electron
correlation, and the basis set used in the expansion of the quantum mechanical operators.

Most quantum chemical calculations are based on the Schrödinger equation of quantum mechanics. [20–23]

However, the Schrödinger Hamiltonian is insufficient for compounds consisting of heavy elements. In
such systems, the electrons move at a speed close to the speed of light and therefore the theory of special
relativity [24] needs to be considered. Thus, the Schrödinger equation is replaced by the Dirac equation, [25]

which is a (4 × 4) matrix equation, or an effective relativistic Hamiltonian as the basis for quantum
chemistry. [26–36] The difference between the results obtained with the Schrödinger and the Dirac equation,
respectively, are described as relativistic effects. Most prominent ofwhich are probably the color of gold, [37,38]

the high voltage of the lead-acid battery in conventional cars, [39] and the melting point of mercury. [40,41]

Relativistic effects are commonly partitioned into scalar-relativistic and spin–orbit effects. The first describe
the contraction of the density due to the mass-velocity relation [42] whereas the latter refer to the splitting
of energy levels due to magnetic induction. For instance, spin–orbit interactions lift the degeneracy of the
three p states, denoted by angular momentum quantum number l = 1, with respect to the magnetic quantum
number, ml. Note that these effects are not accessible in experimental studies as it is not possible to “turn
off relativity”. A common way to introduce relativistic effects in calculations are effective core potentials
(ECPs). [43–45] ECPs introduce an effective nuclear charge and replace the core electrons with a relativistic
pseudo potential. For instance, an ECP60 for mercury [46] means that the inner 60 electrons are “cut out”
and modeled by a pseudo potential. These pseudo potentials are fitted to explicit relativistic calculations
based on the Dirac equation or approximations thereof. Using ECPs results in a modified Schrödinger
equation, in which only the nuclear potential and the number of electrons are replaced. Consequently,
the computational demands are essentially the same as for the non-relativistic ansätze and the results are
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1 Introduction

sufficient for many molecular properties, which are dominated by the valence electrons. However, NMR
properties depend on the density in the vicinity of the nuclei. Thus, an all-electron relativistic treatment
is vital for accurate predictions. Four-component (4c) or so-called “fully” relativistic approaches make
direct use of the Dirac equation [47,48] and have been already applied to NMR spectroscopy. [49–64] Due to
the (4× 4) structure of the Dirac equation, the computational costs are significantly increased compared
to the non-relativistic Schrödinger equation or ECP-based methodologies. Furthermore, the Dirac equation
not only describes electrons but also the corresponding antiparticles, the positrons. The latter are of
minor importance in chemistry. Therefore, already in the 1950s Foldy and Wouthuysen [65] suggested to
decouple the electronic and the positronic states by block-diagonalization with a unitary transformation
to obtain a quasirelativistic two-component (2c) approach. However, no analytical closed form of such a
unitary transformation matrix is known. [66] Consequently, approximations for the unitary transformation
were suggested. In Douglas–Kroll–Hess (DKH) theory, [67–69] the decoupling is achieved by a sequence
of unitary transformations, trying to remove the off-diagonal elements order by order. In the limit of an
infinite number of unitary transformations, this will yield an exact decoupling. [70,71] The matrix elements
are evaluated using a resolution of the identity in the momentum space. This makes the calculation of
magnetic properties problematic or at least significantly more involved than energy calculations as the
momentum is generalized to account for the vector potential of the magnetic field and the magnetic moment
of the nuclei. [72–74] Another approximate quasirelativistic theory is the zeroth-order regular approximation
(ZORA), [75–78] which was also applied to NMR spectroscopy. [79–83] However, ZORA is less accurate than
high-order DKH and partly relies on error cancellation. [84] For instance, the NMR shielding constants itself
show a rather large deviation to the 4c results. While it is not possible to derive an analytical closed form
of the unitary transformation, it is possible to exactly decouple the electronic and the positronic states in a
matrix representation with a (finite) basis set expansion. [85–92] This is based on the pioneering work of Dyall
for the normalized elimination of the small component (NESC). [93–96] In such an exact two-component
(X2C) ansatz, the matrix representation of the Dirac–Hamilton operator is diagonalized to arrive at an
electrons-only equation. To yield computational benefits, this procedure is only applied to the one-electron
Dirac Hamiltonian. The quasirelativistic X2C Hamiltonian is not only formally more accurate than ZORA
or DKH theory but also allows for a rather straightforward evaluation of analytical derivatives for molecular
properties. [97,98] This was recently carried out for NMR shielding constants and shifts. [99–103] Despite these
significant formal advances, the computational effort is still considerably increased compared to the non-
relativistic ansatz due to the diagonalization of the one-electron Dirac matrix and the applicability of the
corresponding calculations is restricted to molecules with typically less than 40 atoms and one or two heavy
elements only. Therefore, one aim of this work is to introduce robust local approximations to reduce the
computational costs without significant loss of accuracy. For this purpose, the diagonal local approximation
to the unitary decoupling transformation [104,105] (DLU) will be applied to NMR shifts and NMR indirect
spin–spin coupling constants. Thus, the analytical derivatives of the DLU-X2C Hamiltonian derived by the
author [106,107] will be generalized to magnetic properties.

Obviously, electron correlation and the two-electron interaction needs to be treated as well. The most
sophisticated ansatz, currently used together with the discussed relativistic Hamiltonians, is coupled-cluster
(CC) theory. [101,108–112] It was shown that CC theory is highly accurate for NMR properties [113–116] but comes
with high computational costs. Namely, the “gold standard” of quantum chemistry coupled-cluster singles,
doubles, and perturbative triples [CCSD(T)] formally scales asO

(
N7
)
with system size,N . Therefore, the

calculations are often restricted to small molecules and benchmark studies. In contrast, density functional
theory (DFT) is applicable to large molecules thanks to its low-order scaling ofO(N) toO(N2) [117–120] and
offers a good cost-accuracy ratio for both main-group and transition-metal compounds. [121–125] However,
the exact exchange-correlation functional is not known and therefore approximations are introduced. In
this work, functionals up to the fourth rung of Jacob’s ladder [126] will be considered, that is hybrid density
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1 Introduction

functionals, which combine DFT with the non-local exchange contribution of Hartree–Fock (HF) theory.
Functionals incorporating a static amount of HF exchange, i.e. the same amount of exchange at every point
in space, are termed global hybrid density functionals. [127] The most prominent example of this class is
undoubtedly B3LYP using 20% HF exchange. [128–130] Varying the amount of HF exchange to reduce the
self-interaction error gives another class of functionals, called range-separated functionals. [131] This class is
able to describe charge-transfer interactions [132] as e.g. in the CAM-B3LYP functional. [133] Range separation
allows for tuning the amount of exchange in the long-range region. Alternatively, the molecule may be fully
divided into “normal” regions, where common semilocal density functional approximations perform well,
and into “abnormal” regions, where semilocal approximations fail. [134] For example, a simple one-electron
system is poorly described with semilocal approximations. This forms the basis of local hybrid functionals
(LHFs) like LH-BLYP, [135] allowing for a varying amount of HF exchange based on a local mixing function
(LMF). Here, the admixture of exchange is, for instance, controlled by the iso-orbital indicator. [136] Various
other parameters for the LMF were suggested and are reviewed in Ref. 137. With such indicators, a LMF
is able to increase the amount of HF exchange to 100% and therefore cancels self-electron interaction in
regions, where the density behaves similar to a one-electron system. The developed functionals are usually
assessed for rather small molecules and thermochemical properties [138–142] often lacking a comparison to
other classes of LMFs and LHFs presented by other groups. Thus, another aim of this work is to assess the
accuracy of various local hybrid density functional approximations for NMR properties and compare it to
conventional semilocal functionals.

Lastly, the finite basis set for the expansion of the quantum chemical operators is of major importance for
quantum chemistry. Almost all quantum chemical methods rely on a suitable basis set. [143–148] The basis set
expansion allows to make use of linear algebra operations, which are efficiently carried out on contemporary
central processing units (CPUs) and graphics processing units (GPUs). For this basis set expansions,
Gaussian-type functions or orbitals (GTOs) are usually chosen to make use of efficient integral evaluation
schemes. [149–160] The physically straightforward choice of Slater-type functions and orbitals (STOs) results
in more complicated integrals but describes the correct functional form of the atomic orbitals. A linear
combination of GTOs with the same angular momentum number is formed to approximate the correct
functional form of the atomic orbitals. Here, a fixed number of so-called primitive GTOs is combined with
fixed contraction coefficients, allowing for two different contraction schemes. On the one hand, the same
primitive GTOs may be combined with different contraction coefficients for the different atomic orbitals.
This general contraction scheme is used in the correlation consistent basis sets [46,161–177] and the atomic
natural orbital (ANO) basis sets. [178–185] Dyall and co-workers developed general-contracted four-component
relativistic all-electron basis sets. [186–193] These feature different contraction coefficients for the large and
the small component and are therefore employed in an uncontracted fashion in quasirelativistic approaches.
On the other hand, the contraction may be performed based on segments and spatial regions. Here, the first
contracted s-type GTO describes the 1s shell and the inner region of the other shells with the same angular
momentum number, e.g., the 2s and the 3s shells. Segmented-contracted basis sets are advantageous for
the integral evaluation in many program suites. In contrast to general-contracted basis sets, the contractions
do not correspond to atomic orbitals. The segmented-contraction scheme is utilized for the optimization
of the Karlsruhe “def” bases [194–197] and the error-balanced “def2” basis sets. [198–200] These basis sets were
developed for non-relativistic and scalar-relativistic ECP calculations. The self-consistent DFT treatment of
spin–orbit coupling requires extensions of the p and d functions to describe the energetic splitting. [201] This
was realized in the “dhf” basis sets. [202] Later, the Karlsruhe basis set library was extended by all-electron
relativistic basis sets optimized with the X2C Hamiltonian. [203,204] Other segmented-contracted relativistic
all-electron basis sets were developed by Jorge et al. [205–215] or Noro, Sekiya, and Koga at Sapporo [216–218]

with the low-order DKH Hamiltonian. All basis sets mentioned so far are optimized in energy calculations
based on the variational principle. Consequently, only functions with an impact on the energy are optimized
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1 Introduction

and added. As the NMR shielding constants depend on the electron density close to the nuclei, an accurate
treatment necessitates tight basis functions, i.e. GTOs with a large exponent. [219,220] However, tight functions
do not considerably affect the energy and such functions have to be added a posteriori. Therefore, the
development of tailored basis sets for NMR shielding constants and shifts will be discussed and evaluated
in this work.

To put it in a nutshell, the central aim of this thesis is to consider all three parameters of quantum chemical
NMR calculations for heavy elements, that is

1. derive and implement the DLU-X2C Hamiltonian for NMR shifts and coupling constants

2. assess the quality of the first four rungs of Jacob’s ladder in DFT for NMR properties

3. develop optimized Gaussian-type basis sets for relativistic all-electron calculations of NMR shifts

to arrive at a robust and efficient approach for NMR shifts and coupling constants throughout the periodic
table of elements. Therefore, X2C becomes an efficient tool for NMR spectroscopy of large molecules. The
respective implementation in TURBOMOLE [221–224] will be applied to chemical problems in organometallic
chemistry and heavy-element clusters. An efficient relativistic framework further allows to study all-metal
aromaticity based on ring currents.

This work is structured as follows. In chapters 2 and 3 the fundamentals of relativistic quantum chemistry
and density functional theory in quantum chemistry will be discussed. In chapters 4 and 5, the derivatives of
the DLU-X2CHamiltonian for NMR shifts and coupling constants will be derived. Chapters 6 and 7, discuss
the solution of the generalized coupled-perturbed Kohn–Sham equations to calculate the two-electron parts
in a density functional framework. The development of NMR-tailored basis sets is described in chapter 8
together with a comparison to other frequently employed relativistic all-electron basis sets. Chapters 9 and
10 assess the accuracy of the DLU-X2C Hamiltonian and the different density functional approximations
used herein. Applications of the developed computational methodology to phosphinidenide complexes and
all-metal aromaticity are presented in chapters 11 and 12, respectively. Finally, the work is summarized and
concluded in chapter 13.
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2 Fundamentals of Exact Two-Component
Theory

In this chapter, the derivation of the one-electron (local) exact two-component Hamiltonian is reviewed. The
derivation starts with the Dirac–Hamilton operator and introduces the matrix representation based on the ki-
netic balance condition. An exact two-componentHamiltonian is then obtained using a block-diagonalization
of the one-electron Dirac matrix. The introduced error and formal consequences by neglecting the many-
electron potential is discussed. The diagonal local approximation to the unitary decoupling transformation is
presented. This chapter concludes with the reduction of the two-component or quasirelativistic Hamiltonian
to a one-component or scalar-relativistic Hamiltonian.

2.1 Notation

A notation similar to Ref. 28 is adopted for operators and the respective matrix representations in a (finite)
basis of one-electron functions. Scalar operators are denoted as Ô and vector operators are denoted as
~̂O. Matrix representations using four-component basis functions are indicated as M whereas M denotes a
matrix in a two-component basis. The two-component basis functions, {φµ}, are chosen as a direct product
of spin-free basis functions, {λµ}, and the spin functions,{α, β}, according to {λµ} ⊗ {α, β}. The matrix
representation of the scalar functions, {λµ}, is indicated byM.Wewill employ atom-centered basis functions
and make use of Dirac’s bra-ket notation for quantum mechanics. [225] The split notation using large (L) and
small (S) component is employed for the four-component basis functions and wave functions. The wave
function is denoted as Ψ. The two-component complex spinor orbitals are indicated as {ϕi} whereas {ψi}
refer to one-component real molecular orbitals (MOs). Therefore, Greek indices denote the basis function
and Latin indices denote the MO or spinor orbitals. Gaussian-based atomic units are used unless explicitly
stated differently. The position space is considered and all matrix elements are formed in this space.

2.2 Dirac–Hamilton Operator

The physical framework for an electron moving at a speed close to the speed of light is relativistic quantum
mechanics. Here, the theory of special relativity is connectedwith quantummechanics. The two fundamental
postulates of Einstein’s theory of special relativity [24] are:

1. The physical laws are identical in all inertial frames of reference.

2. The speed of light, c, in vacuum is identical in all inertial frames of reference.

From a mathematical point of view, this means that the physical laws and equations must be invariant with
respect to a Lorentz transformation in the four-dimensional space consisting of the time, t, and the three
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2 Fundamentals of Exact Two-Component Theory

spatial components (x, y, z). [226] Such a transformation may consequently mix the space and the time
coordinates. The Schrödinger equation [20–23] forms the basis of quantum mechanics and reads

i ∂
∂t

Ψ =
~̂p 2

2
Ψ. (2.1)

Here, a single free electron is considered. Ψ denotes the wave function, which describes the state, and ~̂p is
the momentum operator, which is defined as

~̂p = −i~∇ = −i
(
∂
∂x

∂
∂y

∂
∂z

)T
(2.2)

with the Cartesian directions x, y, and z. However, the Schrödinger equation does not obey the laws of
special relativity. The fact that the Schrödinger equation is not Lorentz invariant can be easily rationalized
by the orders of the space and time derivatives. The left-hand side of Eq. 2.1 consists of the first-order
derivative with respect to the time, whereas the right-hand side consists of the second-order derivatives of
the space components. An equation connecting special relativitiy and quantum mechanics was derived by
Dirac in 1928 [25] and reads

[
βc2 + c~α · ~̂p

]
Ψ = i ∂

∂t
Ψ with Ψ =

(
ΨL

ΨS

)
. (2.3)

The first term of the left-hand side is the rest energy and the second term is the kinetic energy. The trace-less
quantities ~α and β are defined as

αi =

(
02 σi

σi 02

)
, β =

(
σ0 02

02 −σ0

)
, (2.4)

employing the Pauli spin matrices, ~σ = (σx, σy, σz), and the (2× 2) identity matrix, σ0,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (2.5)

Consequently, the complex (4× 4) Dirac equation intrinsically includes the electron spin by construction.
In contrast, the electron spin has to be introduced into the non-relativistic Schrödinger equation in an ad hoc
fashion. The (4× 4) dimension of the Dirac equation is a consequence of the electron spin and the fact that
the Dirac equation not only describes states with a positive energy but also states with a negative energy. [227]

This phenomenon was later assigned to the existence of the electron’s antiparticle, the positron. The spin
and both mentioned particles increase the dimension by a factor of four compared to the non-relativistic
Schrödinger equation. Thus, the wave function Ψ is termed the four-component spinor consisting of the two
component large and small wave functions, ΨL and ΨS . The names are derived from the absolute value
of the components for positive energy solutions where the large component is larger by a mean factor of c
as shown in the next section. The free-particle Dirac equation will be generalized to a molecular chemical
system, i.e. bound particles in an external potential, in two steps. First, a single electron in the presence of
N nuclei is treated. Second, the many-electron case is discussed.
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2.2 Dirac–Hamilton Operator

To consider an electron in the field of the nuclei, the electron-nucleus potential, V̂ , and the Born–
Oppenheimer approximation [228] are introduced. This yields the Dirac equation of an electron in the
field of the clamped nuclei [31]

ĥD

(
ΨL

ΨS

)
= E

(
ΨL

ΨS

)
(2.6)

with the one-electron Dirac–Hamilton operator

ĥD = (β − I4) c2 + c~α · ~̂p+ V̂ =

(
V̂ c~σ · ~̂p

c~σ · ~̂p V̂ − 2c2

)
. (2.7)

I4 is the (4× 4) identity matrix. Here, the relativistic energy scale was shifted by using (β − I4). This
ensures that the relativistic and the non-relativistic energy scale are aligned. Approximating the nuclei, N ,
as point charges yields the charge density

ρPC(~R) = Zδ(~R− ~RN ). (2.8)

Here, the nuclear charge density is defined via Dirac’s delta distribution. This results in the potential

V̂PC = −
∑
N

ZN

|~r − ~RN |
, (2.9)

where ZN refers to the charge of the corresponding nucleus. ~r and ~RN denote the position vectors of the
electron and the nucleus, respectively. The use of the point-charge model results in a singularity at the
origin. To remove this singularity, the finite nucleus model is introduced. [229,230] In this model, the potential
is commonly approximated by a Gaussian charge density

ρG(~R) = Z

(
ζ

π

)3/2

exp
(
−ζ(~R− ~RN )2

)
(2.10)

with the exponent ζ. The exponent ζ is defined with the root-mean-square (RMS) radius of the nucleus [231]

based on the isotope or atomic mass number,M ,√
〈R2

N 〉 =
(

0.836M1/3 + 0.570
)
fm (2.11)

according to [232]

ζ =
3

2 〈R2
N 〉
. (2.12)

For instance, the RMS radius of the 1H and 232Th nuclei is about 1.40822 fm and 5.70721 fm, respec-
tively. [204,232] The potential in this finite nucleus model reads [233]

V̂G = − Z

~r − ~RN
erf
(√

ζ|~r − ~RN |
)
, (2.13)

where the error function, erf(x), is defined as

erf(x) =
2√
π

∫ x

0

exp
(
−t2

)
dt. (2.14)

This comparably simple analytical form is the main reason to approximate the extended structure of the
nuclei with a Gaussian charge distribution. [232] The integral evaluation is described in detail in Sec. A.1.
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2 Fundamentals of Exact Two-Component Theory

For many electron systems, the Dirac–Hamilton operator in Eq. 2.7 is commonly combined with the
two-particle Coulomb operator, ĝC(i, j), for the electron-electron interaction. This results in the Dirac–
Coulomb–Hamilton operator

ĤDC =
∑
i

ĥD(i) +
∑
i<j

ĝC(i, j) =
∑
i

[
(β − I4) c2 + c~α · ~̂p+ V̂

]
+
∑
i<j

1

|~ri − ~rj |
. (2.15)

The resulting molecular Dirac–Coulomb equation

ĤDCΨ = EΨ (2.16)

is not strictly invariant with respect to a Lorentz transformation but serves as a good approximation. [27,28,31]

Note that further corrections such as the Gaunt [234] and Breit [235] term, which consider magnetic and current
interactions, are still not strictly Lorentz invariant. Furthermore, the Dirac–Coulomb Hamiltonian is not
bound from below. [236] Expanding thewave functionΨ as a Slater determinant of one-particle states gives rise
to bound states only. However, there will also be an indefinite number of degenerate Slater determinants with
one-particle states of the negative-energy continuum. This problem is termed Brown–Ravenhall disease
or continuum dissolution. [236–238] This drawback can be removed via the no-pair approximation, i.e. all
Slater determinants with negative-energy states are removed with projection operators. [239–241] Formally,
all negative-energy states will be excluded from the summation of the Dirac–Coulomb–Hamilton operator
in a second quantization form. [31] These four-component or often called “fully” relativistic approaches
result in considerable computational demands and their applicability is therefore limited compared to the
non-relativistic analogs of the Schrödinger equation. [29,242] Furthermore, the states of the negative-energy
subspace may lead to conceptional problems in chemical calculations. Thus, it is desirable to decouple the
negative-energy and the positive-energy states in order to obtain an electrons-only approach. [70,243] Note that
the energy scale in Eq. 2.7 is shifted by the term (β − I4) to be aligned with energy scale of the Schrödinger
equation. Consequently, the so-called positive energy states lead to a negative energy for bound molecular
orbitals or spinors. In the following, we will consider the one-electron Dirac equation only.

2.3 Pauli Equation and Non-Relativistic Limit

To demonstrate the reduction of the four-component Dirac equation to a two-component equation at the
operator level, the Pauli equation [244] as the simplest approximation is briefly discussed. This also illustrates
the different relativistic effects described by the one-electron Dirac Hamiltonian. A thorough derivation of
the Pauli equation is presented in Refs. 27, 28, and 245. To begin with, Eq. 2.6 can be reformulated as two
equations

V̂ΨL + c
(
~σ · ~̂p

)
ΨS = EΨL, (2.17)

c
(
~σ · ~̂p

)
ΨL +

(
V̂ − 2c2

)
ΨS = EΨS . (2.18)

Then, the small component is eliminated to find an equation for the large component only. Rearranging the
above equations results in a relation of the large and small component

ΨS =

(
1 +

E − V̂
2c2

)−1
~σ · ~̂p
2c

ΨL = Ŷ
~σ · ~̂p
2c

ΨL (2.19)
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2.3 Pauli Equation and Non-Relativistic Limit

with the energy-dependent operator Ŷ . Note that< V̂ > −E−2mc2 is non-zero for the electronic solutions
in a finite nucleus model. [27,31] The energy-dependent form of Ŷ can be simplified by a Taylor expansion
using the speed of light, c,

ˆ̄Y =

(
1 +

E − V̂
2c2

)−1

≈ 1− E − V̂
2c2

+ . . . (2.20)

In the non-relativistic limit, the speed of light approaches infinity, c → ∞. Thus, the expansion can be
terminated after the first term, Ŷ = 1, and the two-component form of the Schrödinger equation is obtained(

~̂p 2

2
+ V̂

)
ΨL = EΨL. (2.21)

Note that the electron spin is still included in ΨL. The first-order relativistic corrections are derived by
considering the second term in Eq. 2.20. After rearrangements, this yields the form of the Pauli equation
including first-order relativistic corrections[

~̂p 2

2
+ V̂ − ~̂p 4

2
+
~∇2V̂

8c2
+

1

4c2
~σ ·
(
~∇V̂ × ~̂p

)]
ΨL = EΨL. (2.22)

The additional terms are known as the mass-velocity term, the Darwin term, and the spin–orbit interaction.
The mass-velocity term considers the dependence of the electron mass on the velocity according to Einstein’s
equivalence of mass and energy. [42] The Darwin term describes the Zitterbewegung of the electron, i.e. the
electron shows oscillations around its mean position and therefore changes the electron–nucleus potential.
Note that both the mass-velocity term and the Darwin term do not depend on the Pauli matrices. Therefore,
they describe the scalar-relativistic corrections. In contrast, the spin–orbit interaction, ~σ ·

(
~∇V̂ × ~̂p

)
,

couples the momentum and the spin. In the point-charge model, the term can be simplified and cast into its
more familiar form

ĥSO =
1

4c2
~σ ·
(
~∇V̂ × ~̂p

)
=
∑
N

ZN

2c2|~r − ~RN |3
~̂s · ~̂lN . (2.23)

The spin operator, ~̂s, and the angular momentum operator, ~̂l, are defined as

~̂s =
1

2
~σ, (2.24)

~̂lN =
(
~r − ~RN

)
× ~̂p. (2.25)

The spin–orbit interaction introduces the energy splitting for orbitals with a non-vanishing angular momen-
tum quantum number. The Pauli Hamiltonian cannot be used in variational calculations since it is not bound
from below. So, the individual terms are only used as perturbation operators. However, perturbation theory
is only sufficient for light elements. [33] Moreover, the expansion by order of c is problematic for Coulomb
potentials. [76] An expansion in the potential results in the variationally stable regular approximation. [75,76]

Truncation of the latter after the first term leads to the zeroth-order regular approximation (ZORA). [75–78]

ĥZORA =
1

2

(
~σ · ~̂p

)
K̂
(
~σ · ~̂p

)
+ V̂ , (2.26)

K̂ =
2c2

2c2 − V̂
, (2.27)

where the operator K̂ leads to an effective kinetic energy term.
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2 Fundamentals of Exact Two-Component Theory

2.4 Restricted Kinetic Balance Condition and Basis Set
Expansion

The Pauli Hamiltonian and ZORA reduce the one-electron Dirac–Hamilton operator to a two-component
form at an operator level by a Taylor expansion. In quantum chemistry, a finite basis set is introduced
according to the linear combination of atomic orbitals (LCAO) ansatz. [245–247] For theHamiltonians discussed
so far, the basis set expansion is introduced after the positive-energy and negative-energy subspaces have
been decoupled by approximations. All equations are fully derived in an operator form. Alternatively,
the basis set expansion can be introduced right at the beginning by realizing that the decoupled relativistic
operator itself is not needed but only its matrix representation. However, the basis set expansion of the large
and the small component needs to consider the relation between these components to avoid a variational
collapse and to ensure the correct non-relativistic limit. [248] In the non-relativistic limit, the relation between
ΨL and ΨS according to Eq. 2.19 becomes

ΨS =
~σ · ~̂p
2c

ΨL. (2.28)

This recovers the kinetic energy and the quadratic terms in ~̂p of the Schrödinger equation. Eq. 2.28 forms
the foundation of the restricted kinetic balance condition (RKB) and the (finite) basis set expansion of the
wave functions ΨL

i and ΨS
i for the state i in a set of one-electron spinor functions, φµ, reads [248–250]∣∣ψLi 〉 =

∑
µ

cLµi |φµ〉 , (2.29)

∣∣ψSi 〉 =
∑
µ

cSµi
~σ · ~̂p
2c
|φµ〉 . (2.30)

Expanding the one-electron Dirac equation of Eq. 2.6 in such a basis results in the matrix form [249,251]

(
V T

T 1
4c2W − T

)(
CL

+ CL
−

CS
+ CS

−

)
=

(
S 02

02
1

2c2T

)(
CL

+ CL
−

CS
+ CS

−

)(
ε+ 02

02 ε−

)
, (2.31)

where indices of ε indicate the respective energy subspace. This equation can be written in a compact form
as

DC = MCE (2.32)

which defines the Dirac matrix, D, and the relativistic metric,M, as

D =

(
V T

T 1
4c2W − T

)
, (2.33)

M =

(
S 02

02
1

2c2T

)
. (2.34)

Note that in this form the Dirac equation is structurally similar to the Roothaan–Hall equations, [252,253] which
will be discussed in Sec. 3.2.
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2.4 Restricted Kinetic Balance Condition and Basis Set Expansion

The matrix representation of the overlap integrals, S, the kinetic energy, T , and the potential, V , are
block-diagonal in the two-component space.

S =

(
S 0

0 S

)
, Sµν = 〈λµ|λν〉 (2.35)

T =

(
T 0

0 T

)
, Tµν = 〈λµ|

1

2
~̂p 2|λν〉 (2.36)

V =

(
V 0

0 V

)
, Vµν = 〈λµ|V̂ |λν〉 (2.37)

The one-component Hermitianmatrices S,T, andV are the same as the correspondingmatrix representations
of the non-relativistic Schrödinger equation. [252,253] The relativistically modified potential matrix, W , is
Hermitian but not block-diagonal and complex in the two-component space [251]

Wµν = 〈φµ|
(
~σ · ~̂p

)
V̂
(
~σ · ~̂p

)
|φν〉 . (2.38)

However,W can be rearranged to consist of four real one-component matrices by applying Dirac’s vector
identity [25] (

~σ · ~A
)(

~σ · ~B
)

= σ0
~A · ~B + i~σ ·

(
~A× ~B

)
. (2.39)

This separates the spin-free and the spin-dependent terms of the relativistically modified potential and leads
to

W =

(
W

0 + iWz
W
y + iWx

−Wy + iWx
W

0 − iWz

)
(2.40)

with the symmetric matrix W
0 and the antisymmetric matricesWx,Wy , and W

z

W
0
µν = 〈λµ|p̂xV̂ p̂x + p̂yV̂ p̂y + p̂zV̂ p̂z|λν〉 , (2.41)

W
x
µν = 〈λµ|p̂yV̂ p̂z − p̂zV̂ p̂y|λν〉 , (2.42)

W
y
µν = 〈λµ|p̂zV̂ p̂x − p̂xV̂ p̂z|λν〉 , (2.43)

W
z
µν = 〈λµ|p̂xV̂ p̂y − p̂yV̂ p̂x|λν〉 . (2.44)

The structure of these matrices is a consequence of the cross-product in Eq. 2.39 and the hermiticity of the
Dirac matrix. The spin-free contribution W

0 describes scalar-relativistic effects whereas the matrices Wx,
W
y , and W

z making up the spin-dependent part describe spin–orbit coupling. Besides the incompleteness
of the basis set in practical calculations, no approximations were introduced into the one-electron Dirac
equation of Eq. 2.6 so far.
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2 Fundamentals of Exact Two-Component Theory

2.5 Exact Decoupling of the Dirac Hamiltonian in a Matrix
Representation

The Dirac equation in its matrix form still describes the positive-energy and the negative-energy subspaces.
The latter can be removed by a block-diagonalization of theDiracmatrix,D, based on a unitary transformation
as suggested by Foldy and Wouthuysen [65]

U†DU =

(
h+ 02

02 h−

)
with U†U = UU† = I4. (2.45)

Such a unitary transformation leads to the electrons-only or quasirelativistic two-component equation

h+C = E+SC. (2.46)

An explicit expression of the unitary transformation was derived by Heully et al.
[66] at an operator level

Û =

(
ÛLL ÛLS

ÛSL ÛSS

)
=

 1√
1+X̂†X̂

−X̂†√
1+X̂X̂†

X̂√
1+X̂†X̂

1√
1+X̂X̂†

 =

(
1 −X̂†

X̂ 1

)(
R̂ 0

0 R̂′

)
. (2.47)

Here the operator X̂ carries out the decoupling itself whereas the operators R̂ and R̂′ perform the renormal-
ization for the positive-energy and the negative-energy states. The decoupling operator, X̂ , is defined via
the relation of the large and the small component

ΨS = X̂ΨL. (2.48)

Note that X̂ is related to the operator Ŷ of Eq. 2.19 via X̂ = Ŷ ~σ · ~̂p/2c. However, there is no simple
energy-independent form of the decoupling operator but a non-linear operator identity [66]

X̂ =
1

2c2

(
c
(
~σ · ~̂p

)
−
[
X̂, V̂

]
− X̂c

(
~σ · ~̂p

)
X̂
)
, (2.49)

which involves the commutator of the decoupling and the potential operator, [X̂, V̂ ] = X̂V̂ − V̂ X̂ . This
formalism is impractical in actual calculations. The computational effort to solve this non-linear equation
is no improvement compared to employing four-component approaches directly. [28] However, one does not
need the decoupling operator itself. Eq. 2.48 can be solved in a matrix representation, [85–88,90] which then
becomes

CS
+ = XCL

+ ⇔ X = CS
+(CL

+)−1. (2.50)

The eigenvectors of the positive-energy states are obtained in one step by a diagonalization of the Dirac
equation in its matrix representation according to Eqs. 2.31 and Eq. 2.32. Therefore, an exact two-component
(X2C) theory is derived for the matrix representation of the decoupled electrons-only Dirac–Hamilton
operator. We note in passing that Eq. 2.31 can be transformed using the one-component momentum
eigenbasis. [90,105] This results in a unit metric and allows to use a standard diagonalization. However,
such an approach is detrimental for analytical derivatives as it requires to calculate the derivative of the
transformation, and the diagonalization of the Dirac equation is not the time-determining step for analytical
derivatives. [107] Therefore, a non-orthogonal basis is employed in this work.
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2.5 Exact Decoupling of the Dirac Hamiltonian in a Matrix Representation

The renormalization matrix,R, is defined by Eq. 2.47 and the known decoupling matrix,X , [91]

RR = S̃−1S with S̃ = S +
1

2c2
X†TX (2.51)

The choice in practical computations is

R = S−1/2
(
S−1/2S̃S−1/2

)−1/2

S1/2. (2.52)

The renormalization ensures the proper transformation from the Dirac picture to the Schrödinger picture, i.e.
the coefficients of the large component are transformed to coefficients of the two-component wave function
and the relativistic metric is transformed to the non-relativistic metric. This allows to incorporate the one-
electron X2C scheme into the non-relativistic machinery of a quantum chemical program suite. Note that
the renormalization matrix is not Hermitian but positive definite. [254]

The unitary transformation matrix is now fully defined and the X2C Hamiltonian reads

h+ =
(
ULL,† USL,†

)(V T

T 1
4c2W − T

)(
ULL

USL

)
= R†LNESCR. (2.53)

Here,LNESC denotes the matrix representation of Dyall’s operator in the normalized elimination of the small
component approach. [93–96] The NESC matrix reads

LNESC = V +X†T + TX +X†
(

1

4c2
W − T

)
X. (2.54)

  

4
 N

4N

Diagonalize
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Multiplication,

Inversion
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Memory

Unitary Transformation

CPU

Memory

2 N

2
 N

Figure 2.1:Workflow of the X2C transformation. N denotes the number of basis functions. The scaling of the CPU time and the
memory demands are reported for the individual steps. The most demanding step is denoted by red color.
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2 Fundamentals of Exact Two-Component Theory

The workflow of the X2C transformation is illustrated in Fig. 2.1 and consists of four main steps.

1. Set up the Dirac matrix.

2. Diagonalization of the Dirac matrix to obtain its eigenvectors.

3. Matrix multiplications and inversion to construct the decoupling and renormalization matrix.

4. Perform unitary transformation to calculate the electrons-only Hamiltonian.

The relativistic decoupling of the Dirac Hamiltonian is carried out in the uncontracted basis set as the
contraction coefficients of the large and small component differ significantly, see for instance Ref. 186.
Thus, the X2C Hamiltonian is transformed to the contracted basis after the decoupling. [242] In this way, the
computational effort for the remaining steps of the quantum chemical calculation is reduced.

2.6 Consequences of the Relativistic One-Electron Ansatz for
Many-Electron Systems

In the last sections, the one-electron Dirac equation was considered. For many-electron systems and
molecules, using the one-electron X2C Hamiltonian in combination with the uncorrected many-electron
Coulomb contribution results in an approximation of the four-component approaches. The X2C transforma-
tion is also applicable to the many-electron Dirac–Coulomb Hamiltonian by including the electron-electron
potential operator in Eqs. 2.37 and 2.38. This still decouples the negative-energy and the positive-energy
subspaces but does not result in a computationally more efficient approach as it requires the diagonalization
of the many-electron Dirac matrix just like the parent four-component approach. Alternatively, the unitary
transformation matrix of the one-electron part can be applied to the four-component Coulomb matrix. [92]

Formally, the X2C transformation of the one-electron Hamiltonian and the corresponding wave function
requires such a so-called picture-change transformation of the two-electron operators. The uncorrected or
non-relativistic Coulomb integrals are identical to the large-large block of the four-component Coulomb
matrix but not the positive-energy block. Therefore, the unitary transformation should be applied to all
two-electron operators and the property operators for expectation values. On the one hand, this picture-
change correction reduces the deviation from the full Dirac–Coulomb Hamiltonian. On the other hand,
such a scheme considerably increases the computational costs as it requires to set up the four-component
two-electron contribution and calculate all necessary integrals. Therefore, a common choice is to com-
bine the one-electron X2C Hamiltonian with the untransformed two-electron contributions. [31,242] However,
this choice leads to an overestimation of the spin-orbit splitting of the spinors. Approximate corrections
for the two-electron part are introduced by an effective one-electron potential [255–260] or by a mean-field
ansatz. [261,262] In this work, an effective one-electron potential according to Boettger [255] is considered.
Here, the screening of the full nuclear charge by the electron density is modeled and the correction is thus
termed screened nuclear spin–orbit (SNSO) approximation. Originally, Boettger suggested to rescale the
spin-orbit (SO) part of the one-electron Hamiltonian in second-order Douglas–Kroll–Hess theory

hSNSO
µν = hSO

µν −

√
Q(lµ)

Zµ
hSO
µν

√
Q(lν)

Zν
, (2.55)

where Zµ refers to the charge of the atom-center of the basis function φµ. Q(l) is a screening factor, which
depends on the orbit angular momentum of the basis function.

Q(l) = 0, 2, 10, 28, . . . for l = 0, 1, 2, 3, . . . (2.56)
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2.7 Local Approximations of the X2C Hamiltonian

For higher angular momentum numbers, this scheme can be generalized and the screening factor is calculated
by [263]

Q(l ≥ 4) = l(l + 1)(2l + 1)/3. (2.57)

Van Wüllen and Michauk later suggested to directly apply the screening factors to the spin-dependent
contributions of the relativistically modified potential, i.e. the matrices Wx,Wy , and W

z , [258]

W SNSO
µν = W SO

µν −

√
Q(lµ)

Zµ
W SO

µν

√
Q(lν)

Zν
. (2.58)

In this form, the screening factors are applied in the integral evaluation, which facilitates the computation of
the SNSO approximated Hamiltonian. The difference in the orbital energies and the SO splittings between
these two approaches is negligible. [260] The SNSO approximation efficiently corrects the energies of the
occupied spinors but the results deteriorate for the virtual spinors. Therefore, a modified SNSO (mSNSO)
approximation was introduced by Filatov and co-workers. [259] Here, the screening factor, Q′(l), is defined
by

Q′(l) =

{
Q(l) if Z > Q(l)

Q(l′) if Z ≤ Q(l)
, (2.59)

where l′ is the maximal orbital angular momentum number, l, so that Z > Q(l′). Additionally, the
parameters Q(l) were reoptimized at the X2C level to match the four-component SO splittings of the xenon
and the radon atom yielding

Q(1) = 2.34 erf (34500/ζp) , (2.60)
Q(2) = 11.0, (2.61)
Q(3) = 28.84, (2.62)

where ζp is the exponent of the p-type function.

Furthermore, an important conceptional difference between the molecular four-component approach and
the one-electron X2C scheme for many-electron systems is that the derivatives of the eigenvectors of the
Dirac matrix are needed in the latter. Therefore, the derivative of the decoupling and the renormalization
matrix are required. [97,98] In the four-component approaches, the Hellmann-Feynman theorem [264,265] may
be used directly and the derivatives of the spinor vectors can be avoided for first-order derivatives, see for
instance Ref. 266. However, the derivatives of the renormalization and the decoupling matrix are of crucial
importance for an exact decoupling in the presence of an external perturbation. Therefore, the complete
analytical energy derivative for a many-electron system necessitates the derivative of R and X . [109,267] A
simple picture-change correction of the integrals as done for the property operators of expectation values in
Sec. A.2 is generally not sufficient.

2.7 Local Approximations of the X2C Hamiltonian

The computational effort for diagonalization of the Dirac equation in a matrix form scales as O[(4N)3],
where N is the number of uncontracted basis functions. The one-electron part of the non-relativistic
Schrödinger equation consists only of the integral evaluation of the overlap matrix (Eq. 2.35), the kinetic
energymatrix (Eq. 2.36), and the electron-nucleus potential (Eq. 2.37). This formally scales asO(N2) and is
reduced by integral screening techniques. Efficient molecular implementations of density functional theory
scale betweenO(N) andO(N2). [117–120] Consequently, the X2C step may become the bottleneck in density
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2 Fundamentals of Exact Two-Component Theory

functional calculations of large molecules. Relativistic effects are local effects as illustrated by the success
of relativistic effective core potentials for many molecular properties. [43–45] Therefore, local approximations
of the unitary decoupling transformation were already considered in Dyall’s pioneering work on the NESC
approach. Here, the decoupling operator was approximated as a direct sum of the respective contributions
of the atomic Dirac equations. [95,96] This approximation was also introduced to the X2C Hamiltonian and
corresponds to the idea “from atoms to molecule”. [87–89] Such an approximation reduces the dimension of
the Dirac matrix for the diagonlization to obtain the eigenvectors. Yet, the full renormalization matrix is
used in this approximation and the reduction of the total computational effort is limited. Thus, Peng and
Reiher suggested to approximate the unitary transformation matrix as a diagonal local approximation of the
atomic blocks according to [104]

ULL =
⊕
A

ULL
AA =

⊕
A

RAA, (2.63)

USL =
⊕
A

USL
AA =

⊕
A

XAARAA. (2.64)

Here, the complete electron-nuclei potential is used to treat the molecular environment. The atomic blocks
are formed based on the atom center of the basis functions. An element of the Dirac matrix in Eq. 2.33 with
the same atom center, A, in the the bra and the ket belongs to the corresponding atomic diagonal block, AA,
whereas matrix elements with different atom centers in the bra (A) and the ket (B) belongs to the atomic off-
diagonal block, AB. This approximation is termed diagonal local approximation to the unitary decoupling
transformation (DLU). The atomic diagonal blocks of the X2C Hamiltonian are calculated as [104,105]

h+
AA =

(
ULL,†
AA USL,†

AA

)
DAA

(
ULL
AA

USL
AA

)
. (2.65)

The DLU scheme also considers the atomic off-diagonal blocks of the Hamiltonian

h+
AB =

(
ULL,†
AA USL,†

AA

)
DAB

(
ULL
BB

USL
BB

)
. (2.66)

Therefore, the diagonalization is only performed for the atomic diagonal blocks and the atomic off-diagonal
blocks are calculated based on matrix multiplications. The latter are of crucial importance to retain the
information about the molecular environment. Similar approximations were suggested previously but did
not consider the relativistic corrections to the atomic off-diagonal blocks. [257,268] Instead, the off-diagonal
blocks were approximated by the non-relativistic limit

h+
AB = TAB + VAB . (2.67)

However, such an approximation is not sufficient for an accurate description of the Hamiltonian. [269] Using
the atomic diagonal blocks only results in considerable errors for the potential energy surface and does
not allow for an accurate structure optimization. [104] Within the basis set representation herein, the explicit
expressions for Eqs. 2.65 and 2.66 are given as [107]

h+
AA = R†AA

(
VAA + TAAXAA +X†AATAA +X†AA

[
1

4c2
WAA − TAA

]
XAA

)
RAA, (2.68)

h+
AB = R†AA

(
VAB + TABXBB +X†AATAB +X†AA

[
1

4c2
WAB − TAB

]
XBB

)
RBB . (2.69)

16



2.8 Reduction to a Scalar-Relativistic One-Component Hamiltonian
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Figure 2.2:Workflow of the DLU-X2C transformation. A molecule consisting of different atoms is assumed. Natoms denotes the
number of atoms. The scaling of the CPU time is reported for most time-consuming steps. The most demanding steps are
denoted by orange color.

Thus, both the dimension for the diagonalization of the Dirac matrix and also for the matrix multiplications
to construct the renormalization matrix are reduced to the atomic dimensions in the DLU scheme. Still, it
is necessary to evaluate all blocks of the one-electron integrals.

The DLU scheme is illustrated in Fig. 2.2. The main steps are as follows.

1. Set up the atomic diagonal blocks and perform the X2C decoupling for all atomic blocks, i.e. obtain
the atomic diagonal blocks of the decoupling matrix and the renormalization matrix.

2. Perform the unitary decoupling transformation for the atomic diagonal blocks of the Hamiltonian.

3. Perform the matrix multiplications with the atomic diagonal blocks of the unitary transformation
matrix and the atomic off-diagonal blocks of the one-electron integrals to calculate the atomic off-
diagonal blocks of the Hamiltonian.

The computational effort of the atomic diagonal blocks scales as O(Natoms), where Natoms denotes the
number of atoms. The atomic off-diagonal blocks scale as O(N2

atoms) due to the number of the unique atom
pairs. Therefore, the DLU-X2C Hamiltonian can be applied to large molecular systems and clusters with
thousands of basis functions. [105,107,270]

2.8 Reduction to a Scalar-Relativistic One-Component
Hamiltonian

TheDLU-X2CHamiltonian significantly reduces the computational costs but still describes scalar-relativistic
effects and spin–orbit coupling in a complex matrix form. The quasirelativistic X2C and DLU-X2C
Hamiltonian can be reduced to a one-component scalar-relativistic form. A scalar-relativistic approximation
is desirable for properties or molecular groups, where the impact of spin–orbit coupling is minuscule. Dirac’s
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2 Fundamentals of Exact Two-Component Theory

vector identity in Eq. 2.39 can be used to separate the underlying operator products into its spin-free (SF)
and the spin-dependent (SD) contribution as shown for the matrixW in Eqs. 2.38 and 2.40, where(

~σ · ~̂p
)
V̂
(
~σ · ~̂p

)
= σ0 ~̂p · V̂ ~̂p+ i~σ ·

(
~̂p× V̂ ~̂p

)
(2.70)

was used. Consequently, the matrixW in Eq. 2.40 may also be written as

W =

(
W

0
0

0 W
0

)
+

(
iWz

W
y + iWx

−Wy + iWx −iWz

)
= W SF +W SD. (2.71)

Neglecting the spin-dependent terms ofW , i.e. neglecting the terms depending on the Pauli matrices σx,
σy , and σz , in the Dirac matrix results in the spin-free four-component Dirac matrix [251]

DSF =

(
V T

T 1
4c2W

SF − T

)
=


V 0 T 0

0 V 0 T

T 0
1

4c2W
0 − T 0

0 T 0
1

4c2W
0 − T

 . (2.72)

As all (2× 2) super blocks are block-diagonal, the dimension can be reduced according to

DSF =

(
V T

T
1

4c2W
0 − T

)
⊗ 12. (2.73)

Note that the metric in Eq. 2.34, M, does not include any spin-dependent terms and is thus already block-
diagonal. Therefore, the spin-free Dirac equation can be cast into a two-component form employing real
matrices only. Application of the X2C decoupling scheme to the two-component spin-free Dirac equation
yields an one-component spin-free or scalar-relativistic X2C Hamiltonian

h
+ = R

†
(
V + X

†
T + TX + X

†
[

1

4c2
W

0 − T

]
X

)
R. (2.74)

Since the scalar-relativistic X2C Hamiltonian matrix is real and symmetric, all symmetry properties and
dimensions are identical to the non-relativistic Hamiltonian.
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3 Fundamentals of Two-Component
Hartree–Fock and Density Functional Theory

In this chapter, Gaussian basis sets are described and the necessary fundamentals of two-component Hartree–
Fock and density functional theory are reviewed. Density functional approximations within the Kohn–Sham
framework are discussed up to the fourth rung of Jacob’s ladder.

3.1 Gaussian Atom-Centered Basis Sets

In quantum chemistry, the many-electron wave function is approximated with a single or multiple Slater
determinants. [271,272] So, the N -electron wave function is written as an antisymmetric tensor product of
one-electron wave functions, {ϕ}, the molecular orbitals (MOs) or spinors.

|ΨSD(1, 2, ..., N)〉 =
1√
N

det

[(
|ϕα1 〉
|ϕβ1 〉

)
⊗

(
|ϕα2 〉
|ϕβ2 〉

)
⊗ ...⊗

(
|ϕα〉
|ϕβ〉

)]
(3.1)

The antisymmetry considers the Pauli exclusion principle for fermions. [273] The complex spinor functions
are expanded in a set of real spin-free one-electron basis functions, λµ, as a linear combination of atomic
orbitals (LCAO)

|ϕi〉 =

(
|ϕαi 〉
|ϕβi 〉

)
= Cµi |φµ〉 =

(
Cαµi

Cβµi

)
|λµ〉 . (3.2)

Here, the expansion coefficients, Cσµi (σ = α, β), are complex. Employing real and spin-free basis functions
allows for an efficient integral evaluation as the complex integrals can be constructed based on the non-
relativistic integrals. [274,275] Note that uppercase letters are used for the LCAO expansion coefficients, Cσµi,
whereas lowercase letters are used for the expansion of the 4c spinors for the X2C approach, cLµi and cSµi.

Almost all quantum chemistry program suites employ Gaussian-type orbitals (GTOs) for the LCAO
ansatz. [143–148] Here, a molecular orbital or a spinor is expanded in the basis of atom-centered Gaussian
functions. A Cartesian GTO or Cartesian atomic orbital (CAO) reads

λµ (x, y, z) = Nµ (x−Xµ)
µx (y − Yµ)

µy (z − Zµ)
µz exp

[
−ζµ

(
~r − ~Rµ

)2
]
, (3.3)

where the lower case letters refer to the electronic coordinates and upper case letters to the nuclear coordinates.
The atom center is denoted as ~Rµ and Nµ is a normalization constant. Based on the analytical solution of
the hydrogen atom, [20] Slater functions or Slater-type orbitals (STOs) would be a more reasonable choice.
A Cartesian STO reads

λµ (x, y, z) = Nµ (x−Xµ)
µx (y − Yµ)

µy (z − Zµ)
µz exp

[
−ζµ|~r − ~Rµ|

]
. (3.4)
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3 Fundamentals of Two-Component Hartree–Fock and Density Functional Theory

These STOs are, for instance, used in the Amsterdam density functional (ADF) program suite, [276] which is
commonly used for ZORA calculations. However, STOs lead to more complicated integrals in molecular
calculations and are not necessarily superior. In contrast, the Gaussian product theorem allows for an efficient
integral evaluation as the product of two Gaussian functions is again a Gaussian function according to [151]

exp

[
−ζµ

(
~r − ~Rµ

)2
]

exp

[
−ζν

(
~r − ~Rν

)2
]

= Aµν exp

[
−p
(
~r − ~RP

)2
]

(3.5)

with the sum of the two exponents, p, the new center of the product Gaussian, P , and a constant Aµν

p = ζµ + ζν , (3.6)

P =
ζµ ~Rµ + ζν ~Rν

p
, (3.7)

Aµν = exp

[
− ζµζν
ζµ + ζν

(
~Rµ − ~Rν

)2
]
. (3.8)

Moreover, GTOs allow for more efficient screening procedures as the functional value rapidly decreases with
increasing distance from the atom center. [272] The functional form of the Slater-type orbitals is modeled by
a linear combination or contraction of Gaussian functions. Multiple primitive GTOs are combined with
fixed coefficients to form a single contracted GTO. The contraction is performed either based on atomic
orbitals directly in general-contracted basis sets or by dividing the atomic orbitals into segments based
on the nodes in segmented-contracted basis sets. General-contracted basis sets use the same Gaussian
functions of a given angular momentum, l, for all contracted functions. So, the contracted GTO directly
corresponds to an atomic orbital. In contrast, segmented-contracted basis sets use a contracted GTO of a
given angular momentum number to model the spatial region of all orbitals with that angular momentum
number. For instance, the contracted GTO of the 1s orbital is used to describe the spatial region up to the
(radial) node of the 2s orbital. Therefore, the contracted GTOs do not correspond to atomic orbitals directly.
The general-contracted scheme leads to larger basis sets in terms of primitive functions and more involved
integral algorithms are required to avoid calculating the same integrals multiple times. [277]

Describing each atomic orbital or segment with a single contracted GTO is not sufficient for an accurate
treatment. So, multiple contracted GTOs are employed and the cardinal number states the number of
contracted GTOs for each orbital or segment. For instance, DZ, TZ, and QZ refers to double-ζ, triple-ζ, and
quadruple-ζ meaning that two, three, or four contracted (or uncontracted) GTOs are employed. Chemical
bonds and many properties are driven by the valence region. Thus, it is computationally advantageous to
use multiple contracted functions only in the valence region. This is denoted by a V in the basis set name,
for instance, VTZ or TZV denote a valence triple-ζ basis set. Such bases can be optimized in atomic
calculations based on the variational principle, [194,195] which ensures that the minimum of the energy with
the chosen number of basis functions is reached. According to the variational principle the exact energy
with the true wave function, Ψ, is always lower than or identical to the energy with a trial function, Ψ̃,

Eexact =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≤

〈
Ψ̃
∣∣∣Ĥ∣∣∣Ψ̃〉〈
Ψ̃
∣∣∣Ψ̃〉 . (3.9)

The charge density in molecules may be non-symmetric or anisotropic due to polarization. Therefore,
functions with a higher l quantum number, describing the unoccupied shells, are needed. [278] Such functions
are called polarization functions and are denoted by a p or P in the basis set name, e.g., pVTZ or TZVP.
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3.2 Two-Component Hartree–Fock Theory

3.2 Two-Component Hartree–Fock Theory

Hartree–Fock (HF) theory approximates the many-electron wave function by a single Slater determinant and
minimizes the energy, i.e. the expectation value of the Hamiltonian, based on the variational principle. [279,280]

The orthonormality of the MOs or spinors imposes a constraint. Mathematically, this is realized by a
constrained minimization with the method of Lagrange multipliers. The detailed derivation can be found in
many textbooks. [245,272,281,282] The canonical generalized HF (GHF) equations are [47]

F̂i |ϕ〉i = εi |ϕi〉 (3.10)

and the Fock operator is defined as
F̂i = ĥi +

∑
j

(
Ĵj − K̂j

)
(3.11)

with the Coulomb and the exchange operators

〈ϕi|Ĵj |ϕi〉 = 〈ij|ij〉 =

∫∫
ϕ∗i (~r1)ϕ∗j (~r2)

1

|~r1 − ~r2|
ϕi(~r1)ϕj(~r2) d~r1 d~r2, (3.12)

〈ϕi|K̂j |ϕi〉 = 〈ij|ji〉 =

∫∫
ϕ∗i (~r1)ϕ∗j (~r2)

1

|~r1 − ~r2|
ϕj(~r1)ϕi(~r2) d~r1 d~r2. (3.13)

The integrals may also be written in Mulliken notation

〈ϕi|Ĵj |ϕi〉 = (ii|jj) =

∫∫
ϕ∗i (~r1)ϕi(~r1)

1

|~r1 − ~r2|
ϕ∗j (~r2)ϕj(~r2) d~r1 d~r2, (3.14)

〈ϕi|K̂j |ϕi〉 = (ij|ji) =

∫∫
ϕ∗i (~r1)ϕj(~r1)

1

|~r1 − ~r2|
ϕ∗j (~r2)ϕi(~r2) d~r1 d~r2. (3.15)

The Coulomb operator describes the electrostatic interaction whereas the exchange operator results from the
Pauli exclusion principle and cancels the self-interaction. The eigenvalues, εi, or orbital energies can be used
to calculate the ionization energies. [283] For a closed-shell system in non-relativistic quantum chemistry or
without magnetic induction, the orbitals are real and do not depend on the electron spin. If all orbitals are
either doubly occupied or unoccupied, GHF reduces to restricted Hartree–Fock (RHF) theory. Expansion
of the one-particle states into a basis set leads to the Roothaan–Hall equations. [252,253] In a two-component
GHF formalism, the Roothaan–Hall equations read

FC = SCε (3.16)

with the overlapmatrix,S, the coefficients,C, and the eigenvaluematrix ε. TheFockmatrix reads [27,28,275,284]

F =

(
h

0 + ihzSO h
x
SO − ihySO

h
x
SO + ihySO h

0 − ihzSO

)
+

(
J−K

αα −Kαβ

−Kβα J−K
ββ

)
, (3.17)

where the scalar-relativistic contribution is denoted by h
0 and the spin–orbit contributions by h

x,y,z
SO . The

first is symmetric whereas the latter are antisymmetric. So, the full one-electron Hamiltonian matrix and
the Fock matrix are complex and Hermitian. The Coulomb, J, and the exchange matrix, K, are given as

Jµν =
∑
i

ni 〈µκ|νη〉
(
Re(Cσκi) Re(Cσηi) + Im(Cσκi) Im(Cσηi)

)
, (3.18)

K
σ1σ2
µν =

∑
i

ni 〈µκ|ην〉 (Cσ1
κi )∗ Cσ2

ηi . (3.19)
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3 Fundamentals of Two-Component Hartree–Fock and Density Functional Theory

Here, ni denotes the occupation of the spinor |ϕi〉. As in the 1c case, the Roothaan–Hall equations can be
formulated in terms of a one-particle density matrix,

D =
∑
i

ni |ϕi〉 〈ϕi| =

(
D
αα

D
αβ

D
βα

D
ββ

)
. (3.20)

The density matrix is commonly partitioned into four real and imaginary complex blocks. In terms of
complex expansion coefficients of the LCAO approach, Cσµi, these blocks become

Re
(
Dσ1σ2
νµ

)
=

∑
i

ni
[
Re(Cσ1

νi ) Re(Cσ2
µi ) + Im(Cσ1

νi ) Im(Cσ2
µi )
]
, (3.21)

Im
(
Dσ1σ2
νµ

)
=

∑
i

ni
[
−Re(Cσ1

νi ) Im(Cσ2
µi ) + Im(Cσ1

νi ) Re(Cσ2
µi )
]
. (3.22)

Only the αα and the ββ block of the density matrix are Hermitian, while the two remaining blocks αβ
and βα are general matrices. Therefore, symmetric and antisymmetric linear combinations of the blocks
are formed as the Hamiltonian, the Fock matrix, and the complete density matrix are still Hermitian. The
symmetric combinations are given asRe(Dαα)±Re(Dββ), Re(Dαβ)+Re(Dβα), and Im(Dαβ)−Im(Dβα),
whereas the four antisymmetric linear combinations are Im(Dαα) ± Im(Dββ), Re(Dαβ) − Re(Dβα), and
Im(Dαβ)+Im(Dβα). The Coulombmatrix only requires the symmetric combination Re(Dαα)+Re(Dββ),
which forms the real total particle density matrix, D0. Therefore, the Coulomb integrals become

Jµν = 〈µκ|νη〉
[
Re(Dαα) + Re(Dββ)

]
µν

= 〈µκ|νη〉D0
µν = (µν|κη)D0

µν . (3.23)

In contrast, the exchange integrals are obtained with all eight linear combinations. [275,284] Using additional
symmetry restrictions, this may be reduced to six linear combinations. [275] The total energy is obtained as
the trace of the density and the Fock matrix, where the Coulomb and the exchange matrix are rescaled by a
factor of one half,

Etotal = tr

(
D

[
h+

1

2
(J −K)

])
. (3.24)

Thus, the total energy is not the sum of the spinor or MO energies. As the Coulomb and the exchange
integrals depend on the density matrix, an iterative procedure is required to solve the HF and the Roothaan–
Hall equations. Here, the equations are solved with a self-consistent field (SCF) approach. That is, the
density matrix is varied until the energy change within two iterations falls below a given threshold. More
sophisticated approaches consider the orbital energies and the root mean square of the density matrix to
indicate the convergence of the SCF procedure. The initial guess for the SCF procedure is commonly
obtained from the extended Hückel theory [285–288] or a core Hamiltonian guess.

In Hartree–Fock theory, an electron is embedded in the mean field of the other electrons. Therefore, the
electrons are uncorrelated per definitionem

[289] as the correlation energy is defined as the difference of the
exact energy and the HF energy. Therefore, the results of Hartree–Fock theory are rarely used nowadays but
form a basis for many accurate post-Hartree–Fock methods. In such methods, the electron correlation can be
considered via perturbation theory as outlined by Møller and Plesset [290] or by using a linear combination of
Slater determinants as ansatz for the wave function (configuration interaction). [291] The correlation energy
may also be calculated with the coupled-cluster method, [292,293] which uses HF as its reference as well.
Alternatively, the correlation energy can be expressed as a functional of the density and not in a wave
function context. This is done in density functional theory but its practical implementation for molecular
systems is fairly similar and commonly based on implementations of HF theory. [294]
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3.3 Approximations of the Two-Electron Integrals

3.3 Approximations of the Two-Electron Integrals

The evaluation of the Coulomb and exchange integrals scales as O(N4
bf), where Nbf denotes the basis

functions. Approximations are introduced to reduce the computational effort. Herein, we use the resolution
of the identity approximation for the Coulomb integrals [295–298] (RI-J) and the seminumerical exchange
approximation (semiK). [299–311] In theRI-J approximation, theCoulomb integrals are formally approximated
by inserting a resolution of the identity and introducing auxiliary basis functions according to

Jµν = (µν|κη)D0
µν ≈

∑
P,Q

(µν|P ) (P |Q)
−1

(Q|κη)D0
µν . (3.25)

Here, the products of two basis functions are approximated by an auxiliary basis set with Naux functions,

λµ(~r)λν(~r) ≈
∑
P

CPµνP (~r). (3.26)

This reduces the computational effort by one power to O(2N2
bfNaux + N3

aux). The O(N3
aux) scaling is

caused by the inversion of the matrix consisting of the integral (P |Q). The auxiliary basis functions are
optimized to fit the electron total density. [312] As the Coulomb integrals only depend on this quantity, the
RI-J approximation is identical in the one and two-component formalism. [275]

The seminumerical exchange approximation was originally developed in the context of pseudospectral
methods for HF theory [299–303] and later adapted by Neese and co-workers. [304] Here, the integration for the
one-component exchange integrals

Kµν =
∑
κη

(µκ|νη)Dκη (3.27)

is split into two separate steps. First, one integration is carried out analytically. Second, the other integration
step is performed numerically on a grid in real space. This yields

Kµν =
∑
g

wgX
g
µ

∑
η

AgνηF
g
η , (3.28)

Xg
µ = λµ (~rg) , (3.29)

F gη =
∑
κ

DκηX
g
κ, (3.30)

Agνη =

∫
1

|~rg − ~r2|
λν (~r2)λη (~r2) d~r2. (3.31)

Here, ~rg are the coordinates of the grid points and wg are the integration weights. In the two-component
formalism, the exchange integrals are split into the symmetric and the antisymmetric contributions [311]

K
sym
µν =

∑
g

wg
∑
κη

[
Xg
µX

g
κA

g
νη +AgνκX

g
µX

g
η

]
Dsym
κη , (3.32)

K
anti
µν =

∑
g

wg
∑
κη

[
Xg
µX

g
κA

g
νη −AgνκXg

µX
g
η

]
Danti
κη . (3.33)

The two-component semiK approximation was originally implemented by Plessow and Weigend. [305] This
implementation was later reworked by Holzer with an efficient screening procedure based on the Schwarz
inequality [313,314] and a suitable dealiasing scheme resulting in a scaling between O(N1) and O(N2). [311]

The numerical integration routines are taken from the density functional code and are described in detail in
Ref. 315.
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3 Fundamentals of Two-Component Hartree–Fock and Density Functional Theory

3.4 Two-Component Density Functional Theory and
Kohn–Sham Equations

Instead of calculating the many-electron wave function, Ψ (~r1, ~r2, . . . , ~rN ), and the energy as an expectation
value of the Hamiltonian, the density, ρ(~r), can be chosen as the basic variable. The density is given by

ρ(~r) = N

∫
· · ·
∫

Ψ∗(~r1, ~r2, . . . , ~rN )Ψ(~r1, ~r2, . . . , ~rN ) d~r2 . . . d~rN (3.34)

with the number of electrons N . This is the central idea of density functional theory (DFT) and reduces
the dimension from 3N to 3. [316–318] In contrast to the wave function, the density is also accessible in X-ray
experiments. This section will first discuss the non-relativistic DFT formalism. The generalization to a
relativistic two-component framework is considered afterwards. The first attempts of DFT were made by
Thomas [319] and Fermi [320] for the kinetic energy of the uniform electron gas. Here, the kinetic energy can
be expressed as a functional of the density according to

TTF [ρ (~r)] =
3

10

(
3

8π

)2/3 ∫
ρ5/3 (~r) d~r. (3.35)

The Thomas–Fermi model was generalized to account for the exchange interaction by Dirac, who derived
an exchange energy functional for the homogeneous electron gas [321]

EX [ρ (~r)] = −3

4

(
3

π

)1/3 ∫
ρ (~r)

4/3
d~r, (3.36)

which can be rewritten with the exchange energy density, εX [ρ (~r)],

EX [ρ (~r)] =

∫
ρ (~r) εX [ρ (~r)] d~r, (3.37)

εX [ρ (~r)] = −3

4

(
3

π

)1/3

ρ (~r)
1/3

. (3.38)

The Thomas–Fermi–Dirac model is not sufficient for molecules due to the kinetic energy expression. [322]

Nevertheless, it suggests that the wave function can be replaced by the electron density as the basic variable.
This was formally proven with the Hohenberg–Kohn theorems. [323] The Hohenberg–Kohn theorems state:

1. The external potential, V̂ (~r), is up to a constant a unique functional of the electron density, ρ (~r).
The external potential contains the information of the considered system in the Hamiltonian and thus
the ground-state is a unique functional of the electron density, ρ (~r).

2. A variational principle holds for the electron density, ρ (~r), as the basic variable.

We note in passing that the original proof of Hohenberg and Kohn is mathematically incomplete and a
rigorous formulation was presented by Levy [324,325] and Lieb. [326] Despite formally justifying the Thomas–
Fermi–Dirac model, the insufficient description of the kinetic energy persists. Kohn and Sham reintroduced
a wave function and the Slater determinant into DFT, [327] making use of the respective kinetic energy. The
Kohn–Sham model considers a non-interacting system with the same density as the real system of interest,
i.e. a molecule. This allows to write the ground-state energy as

E =

∫
V̂ (~r)ρ (~r) d~r +

1

2

∫ ∫
ρ (~r1) ρ (~r2)

|~r1 − ~r2|
d~r1 d~r2 + Ts[ρ (~r)] + EXC [ρ (~r)] (3.39)
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3.4 Two-Component Density Functional Theory and Kohn–Sham Equations

with the kinetic energy of the non-interacting system, Ts, and the exchange-correlation energy, EXC . The
exact wave function of a non-interacting system is a Slater determinant. Minimizing the energy leads to the
Kohn–Sham equations

F̂KS |ψi〉 = εi |ψi〉 . (3.40)

Here, the Kohn–Sham–Fock operator is defined as

F̂KS = T̂ + V̂ + Ĵ + V̂XC (3.41)

with the exchange-correlation (XC) potential

V̂XC [ρ (~r)] =
δEXC [ρ(~r)]

δρ(~r)
. (3.42)

The kinetic energy and the Coulomb interaction are evaluated like in HF theory with the one-component
Kohn–Sham orbitals, {|ψi〉}. The electron density is obtained as

ρ(~r) =
∑
i

|ψi (~r) |2. (3.43)

In quantum chemical calculations, the Kohn–Sham equations are expanded in a finite basis like the HF
equations and solved with the SCF procedure. [328] The exact exchange-correlation potential is not known
and therefore approximations are introduced. These are discussed in the next section. The exchange-
correlation terms are calculated on a grid to perform the integration numerically. [315,328,329]

So far, we considered a closed-shell system in the restricted Kohn–Sham (RKS) theory. For open-shell-
systems, not only the total density, ρ, but additionally the spin density, ρz , is required, resulting in the
so-called unrestricted Kohn–Sham (UKS) approach. The latter quantities are calculated based on the
electron density of each spin

ρ = ρα + ρβ , (3.44)
ρz = ρα − ρβ . (3.45)

Therefore, the exchange-correlation functional becomes spin-dependent

V̂ σXC [ρ(~r)] =
δEXC [ρα(~r), ρβ(~r)]

δρσ(~r)
with σ = α, β (3.46)

resulting in an energy difference of singlet and triplet states. In a two-component formalism, the spin vector
density and the corresponding matrices are introduced. [275,330,331] Here, these matrices are introduced in an
ad hoc fashion. A rigorous formulations requires to generalize the constrained-search formalism [324–326] to
a (relativistic) two-component or four-component framework and to proof the existence of EXC . The total
density matrix,M0, and the spin vector density matrices, Mi(i = x, y, z), are defined as

M0 = Re(Dαα) + Re(Dββ), (3.47)
Mx = Re(Dαβ) + Re(Dβα), (3.48)
My = Im(Dαβ)− Im(Dβα), (3.49)
Mz = Re(Dαα)− Re(Dββ). (3.50)
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3 Fundamentals of Two-Component Hartree–Fock and Density Functional Theory

The spin vector density or spin magnetization vector becomes

mi(~r) =
∑
µν

λµ(~r) [Mi]µ,ν λν(~r), (3.51)

where λµ denotes a real basis function. The spin density can be defined by the components of the spin
magnetization vector or the length of the spin magnetization vector, s = |m(~r)|. The first ansatz is termed
collinear approach as a fixed quantization axis is chosen to define the spin density. This does not requiremajor
modifications of the existing non-relativistic infrastructure when an unrestricted Kohn–Sham formalism is
available. [332] However, the spin density is not invariant with respect to rotations in spin space. Using
the length of the spin magnetization vector to define the spin density restores rotational invariance in spin
space. [275,331] The XC potential in a non-collinear generalized Kohn–Sham (GKS) ansatz reads

VXC [M0(r),Mi(r)] =
δEXC [M0(~r), ρi(~r)]

δM0(r)
+ ~σi

δEXC [M0(~r),Mi(~r)]

δMi(~r)

=

(
V

0
XC + iVzXC V

x
XC − iVyXC

V
x
XC + iVyXC V

0
XC − iVzXC

)
=

(
V
αα
XC V

αβ
XC

V
βα
XC V

ββ
XC

)
.

(3.52)

Here, the numerical integration requires the four density matricesM0 andMi. The extension is carried out
based on an UKS implementation as discussed in detail in Ref. 274. The Kohn–Sham–Fock matrix becomes

FKS =

(
h

0 + ihzSO h
x
SO − ihySO

h
x
SO + ihySO h

0 − ihzSO

)
+

(
J + V

αα
XC V

αβ
XC

V
βα
XC J + V

ββ
XC

)
. (3.53)

3.5 Density Functional Approximations

As the exact analytical form of the exchange-correlation potential is not known, approximations are intro-
duced. These are classified according to Jacob’s ladder, which forms the path from Hartree theory or the
“Hartree hell” with neither exchange nor correlation to chemical accuracy, where energy predictions are
in the range of ± 1 kJ/mol with respect to the exact result. [126] Currently, the first five rungs are defined
as: [124,125]

1. Local spin-density approximation (LSDA)

2. Generalized gradient approximation (GGA)

3. Meta-generalized gradient approximation (meta-GGA)

4. Hybrid functionals

5. Double hybrid functionals

The first three rungs represent the “pure” density functional approximations, where the exchange correlation
functional depends on the density and its derivatives only. Hybrid functionals incorporate exactHartree–Fock
exchange. This can be done with either a fixed amount of HF exchange in the global hybrid functionals [127]

or based on range-separation with a larger amount of exchange for the long-range region in the so-called
range-separated hybrid (RSH) functionals. [131,133] Alternatively, a fully local amount of HF exchange can be
used with functionals dubbed local hybrid functionals (LHFs). [135] Double hybrid functionals [333] include
the unoccupied orbitals in the functional approximation by introducing terms of second-orderMøller–Plesset
perturbation (MP2) theory [334] or the random phase approximation (RPA). [335] Double hybrid functionals
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3.5 Density Functional Approximations

show a formal scaling of O(N5) and their self-consistent implementation is significantly more involved
compared to hybrid functionals. [336] Therefore, double hybrid functionals will not be considered herein. In
the following, the first four rungs will be briefly described. For simplicity, we will focus on the exchange
contribution and consider the UKS formalism. The GKS expressions are obtained by replacing the one-
component Kohn–Sham MOs, {ψi}, with the two-component spinors, {ϕi}, and using the total density and
the spin vector density of Eq. 3.51.

3.5.1 Local Spin-Density Approximation

The local spin-density approximation is based on the considerations of the Thomas–Fermi–Dirac model.
It is assumed that the exchange-correlation potential and the energy solely depend on the density. The
exchange contribution is given by Dirac’s expression

ELSDA
X [ρσ (~r)] =

∑
σ

∫
εLSDAX,σ d~r =

∑
σ

−3

4

(
3

π

)1/3 ∫
ρσ (~r)

4/3
d~r (3.54)

and the correlation part is obtained by Monte–Carlo simulations of the homogeneous electron gas as shown
by Vosko, Wilk, and Nusair. [337] The combination of these two terms forms the S-VWN functional.

3.5.2 Generalized Gradient Approximation

The LSDA shows large errors for chemical systems and is therefore inappropriate in their description. To
arrive at an improvement, the inhomogenities in the density need to be addressed. This is most easily done
by a Taylor expansion based on the density and the first correction is obtained with the density gradient,
~∇ρσ . However, a simple expansion with the reduced spin density gradient, sσ = |~∇ρσ|

ρ
4/3
σ

, leads to issues
for the asymptotic limit. Becke suggested to calculate the GGA exchange energy with the inhomogenity
correction factor [338]

gGGAX,σ = 1 + cXuσ = 1 + cX
γs2
σ

1 + γs2
σ

, (3.55)

where γ and cX are optimized parameters. Therefore, the GGA exchange energy may be generally written
as [339]

EGGA
X =

∑
σ

∫
εLSDAX,σ g

GGA
X,σ d~r, (3.56)

gGGAX,σ =
∑
j

cX,j u
j
σ. (3.57)

Here gGGAX,σ is given as a polynomial series. Popular functionals of this class are BP86, [128,340] PBE, [341]

BLYP, [128,129] and the NMR-optimized KT3 functional. [342]

3.5.3 Meta-Generalized Gradient Approximation

The expansion can be carried out further to consider the Laplacian, ~∇2ρσ , or the kinetic energy density,
τσ , [343] which is formally related to the Laplacian by [344]

τσ =
~∇2ρσ

2
=

1

2

∑
j

|~̂p ψj,σ|2. (3.58)
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Note that the inclusion of the kinetic energy density requires additional care for the calculation of magnetic
properties as discussed in chapter 7. The functional form of the meta-GGA functionals are commonly
written with the dimensionless variables [345]

tσ =
5

6

(
6π2
)2/3 ρ5/3

σ

τσ
and wσ =

tσ − 1

tσ + 1
. (3.59)

Similar to the GGAs, the general form of a meta-GGAs (mGGAs) can be cast into an expression with a
polynomial series [125]

EmGGA
X =

∑
σ

∫
εLSDAX,σ g

mGGA
X,σ d~r, (3.60)

gmGGA
X,σ =

∑
i,j

cX,ij w
i
σu

j
σ. (3.61)

Popular functionals of this rung are TPSS, [346] SCAN, [347] and the Minnesota functionals. [348]

3.5.4 Global and Range-Separated Hybrid Density Functionals

The GGA and meta-GGA functionals provide a significant improvement upon LSDA functionals. Yet,
“pure” density functionals show a self-interaction error. While in HF theory the Coulomb and exchange
integrals in Eqs. 3.11–3.15 cancel each other for i = j, this is not necessarily the case when replacing K

by one of the previously discussed expressions for EX . Moreover, GGA functionals slightly overestimate
the atomization energies whereas HF dramatically underestimates the atomization energies. Thus, Becke
suggested to combine HF and DFT in global hybrid density functionals [349,350]

EGH
XC = cXE

HF
X + (1− cX)EDFT

X + coppE
DFT,opp
C (~r) + cparE

DFT,par
C (~r). (3.62)

cX is a fixed parameter while the coefficients copp and cpar consider the correlation of electrons with opposite
and parallel spin orientation. The sum of the two correlation contributions results in the total correlation
energy, EDFT

C . Global hybrid functionals are formally motivated with the adiabatic connection. [351–354]

Popular functionals of this rung are the BH&HLYP (50% HF exchange), [128,129,350] B3LYP (20% HF
exchange), [128–130] PBE0 (25% HF exchange), [355] and the TPSSh functional (10% HF exchange). [356]

However, the amount of HF exchange in these functionals is too small to completely cancel the self-
interaction error—especially in the long range region. Therefore, range-separation is introduced. [357,358]

Here the Coulomb operator is divided into a short range (sr) and a long range (lr) region according to

1

|~r1 − ~r2|
=

1− erf (ω|~r1 − ~r2|)
|~r1 − ~r2|

+
erf (ω|~r1 − ~r2|)
|~r1 − ~r2|

(3.63)

with the range-separation parameter ω. This is also called Coulomb attenuating method (CAM) as the
Coulomb operator of the short-range part is attenuated by the complementary error function and the long-
range part is attenuated by the error function itself. [357] The general functional form reads [125]

ERSH
XC =cX,srE

HF
X,sr + cX,lrE

HF
X,lr + (1− cX,sr)EDFT

X,sr + (1− cX,lr)EDFT
X,lr + EDFT

C . (3.64)

Setting cX,lr = 1 removes the self-interaction error of the exchange part. Frequently used RSH functionals
are LC-ωPBE, [359] ωB97X-D, [360] CAM-B3LYP, [133] CAM-QTP-00, [361] and CAM-QTP-02. [362]
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3.5 Density Functional Approximations

3.5.5 Local Hybrid Density Functionals

Local hybrid functionals constitute a more general hybrid density functional approximation with a position-
dependent admixture of HF exchange based on a local mixing function (LMF), a (~r), according to [135]

EXC =
∑
σ

∫
ρσ(~r)

[
(1− aσ(~r)) eDFTX,σ (~r) + aσ(~r)eHFX,σ(~r)

]
d~r + EDFT

C . (3.65)

Here, a spin-dependent LMF was assumed. Note that spin-independent as well as spin-dependent LMFs
were suggested. The impact of a spin-independent LMF on Eq. 3.65 will be discussed below for the t-LMF
based local hybrid functionals. Yet, the ansatz of a spin-independent LMF is not restricted to this local
mixing function.

The HF exchange expression is obtained as

EHF
X =

∫
eHFX (~r)ρ(~r) d~r. (3.66)

Perdew et al. motivated LHFs by observing that semilocal density functionals work well in some regions
but fail or perform poorly in others. Therefore, the molecule is divided into a “normal” and an “abnormal”
region. [134] In contrast to range-separated functionals, the LHF feature a smoother variation of the incorpo-
ration of HF exchange. However, the integration for the LHFs is significantly more involved than for global
and range-separated hybrid functions. The HF exchange integrals are typically evaluated analytically in
quantum chemistry codes whereas the integration for the XC parts is done numerically. Therefore, Plessow
and Weigend suggested to apply the seminumerical exchange approximation of Sec. 3.3 to LHFs. [305] With
this approximation, all contributions of Eq. 3.65 are calculated numerically on a grid. This allows for a
simultaneous evaluation of the exchange and the correlation parts. In the semiK approximation, the term

eHFX,σ(~r1)ρσ(~r1) = −1

2

∑
pqrs

Dσ
pqD

σ
rs

∫
λ∗µ(~r1)λκ(~r1)λ∗ν(~r2)λη(~r2)

|~r1 − ~r2|
d~r2 (3.67)

is calculated analytically. The remaining integration is carried out numerically on a grid

ELHF
X, HF =

∑
σ

∑
g

wga(~rg)e
HF
X,σ(~rg)ρσ(~rg). (3.68)

In the original implementation of Plessow and Weigend, [305] the energy was not calculated in a self-
consistent way but based on the HF orbitals. This implementation was later extended to allow for self-
consistent calculations [363] and applied to geometry gradients [364] based on the existing seminumerical
energy derivatives. [284,305] Jaramillo and co-workers suggested a local mixing function based on the iso-
orbital indicator [135] and subsequently various LMFs were proposed, see Refs. 132 and 137 for an overview.
In the following, we will consider LMFs based on the iso-orbital indicator (t-LMF), the correlation length
(z-LMF), and the second-order Görling–Levy perturbation limit (PSTS-LMF). This comparison is based on
Ref. 365.
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3 Fundamentals of Two-Component Hartree–Fock and Density Functional Theory

LMF Based on the Iso-Orbital Indicator

The most frequently used ansatz for the local mixing function a(~r) is based on the iso-orbital indicator of
the original LH-BLYP functional. [135] In an UKS formalism, the t-LMF reads

t-LMF: aσ(~r) = ct
τ vWσ
τσ

= ct
|~∇ρσ|2

8ρστσ
, (3.69)

where τ vW is the vonWeizsäcker approximation to the kinetic energy density, [366] and τ is the kinetic energy
density used for meta-GGAs. The fixed factor ct controls the maximum amount of Hartree–Fock exchange.
In one-electron regions, the von Weizsäcker approximation will be equal to the kinetic energy density,
τ vW = τ . Thus, 100% HF exchange can be incorporated to fully cancel the self-interaction error. Note
that many LHFs of the Kaupp group do not use 100% HF exchange in the one-electron regions to improve
the thermochemical properties. For instance, the LH07t-SVWN [138] and LH12ct-SsirPW92 functional [139]

use ct = 0.48 and ct = 0.646, respectively. LH12ct-SsirPW92 and LH20t feature a spin-independent or
so-called “common” LMF. In a common LMF, all spin quantities are replaced by the total quantities. For
most quantities, this means that simply the sum is formed, however, this is not true for the von Weizsäcker
approximation to the kinetic energy density as due to the denominator the total quantity is not generally the
sum of the two spin-resolved contributions, τ vWα and τ vWβ . Unlike for the correlation energy, which is the
sum of the opposite and parallel spin channels, Eq. 3.65 neglects the α-β cross terms due to the index σ and
the respective summation for the exchange energy. The common LMF consists of the α and β spin variables
and therefore introduces the coupling terms in a simple manner. The total energy of a common LMF reads

EXC =

∫
d~r

∑
σ=α,β

ρσ(~r)
[
(1− a(~r)) eDFTX,σ (~r) + a(~r)eHFX,σ(~r)

]
+ EDFT

C (~r) (3.70)

with the common t-LMF

a(~r) = ct
τ vW

τ
= ct
|~∇ρ|2

8ρτ
= ct
|~∇ρα|2 + 2~∇ρα · ~∇ρβ + |~∇ρβ |2

8 (ρα + ρβ) (τα + τβ)
. (3.71)

The idea of a common LMF is not restricted to the t-LMF. We note in passing that the spin cross terms may
be also considered with a LMF depending on the spin polarization [367] in the spirit of Becke’s B05 func-
tional, [368,369] however, this ansatz has stirred less interest than the common LMF. Popular functionals of this
class are the original local hybrid functional LH-BLYP and the LH07t-SVWN, [138] LH12ct-SsirPW92, [139]

LH14ct-calPBE, [140] and LH20t [370] functionals of the Kaupp group. Among these, the LH12ct-SsirPW92
and LH20t functional employ a common t-LMF.

LMFs Based on the Correlation Length

Another suitable indicator for the LMF is the correlation length as shown by Johnson. [141] Here, the exchange
energy is expressed with the exchange potential, UX , as

EDFT
X =

∑
σ

∫
ρσ UX,σ d~r. (3.72)

The exchange potential is defined with the exchange hole, hX,

UX,σ =

∫
1

s
|hX,σ(~r, s)| ds. (3.73)
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3.5 Density Functional Approximations

The correlation length is obtained with the inverse of the exchange potential [371]

zσσ′ = cσσ′
(
|UX,σ|−1 + |UX,σ′ |−1

)
(3.74)

with cαβ = 0.63 and cσσ = 0.88. [371] For the HF exchange contribution of LHFs, only the parallel spin
orientation was considered. This means that the α-β cross terms in Eq. 3.70 are neglected. The respective
z-LMF is constructed with the error function of the correlation length to obtain a smoothly varying function
between 0 and 1. Note that the correlation length itself may yield values outside this range. The respective
z-LMF is defined as

aσ(~r) = erf(cz zσσ). (3.75)

Similar to ct, the parameter cz controls themaximum amount of HF exchange. The only functional optimized
with this z-LMF is Johnson’s local hybrid functional [141] based on the B88 exchange [128] and correlation. [371]

Herein, we will refer to this functional as LHJ14. The empirical parameter cz was optimized with the G3
test set [372] consisting of 222 atomization energies. This yields cz = 0.10 and the optimized parameters for
the dynamic correlation are copp = 1.156 and cpar = 1.472.

PSTS Local Hybrid Functional

A considerably more involved LMF was suggested by Perdew, Staroverov, Tao, and Scuseria (PSTS) based
on the TPSS functional. [134] For the PSTS functional, the local mixing function consists of two contributions
according to

a(~r) = 1− [1− a1(~r)] [1− a2(~r)] (3.76)

The first LMF a1 considers regions where exchange should dominate and the second LMF a2 is optimized
for regions where the hole density does not integrate to −1. The first LMF, a1(~r), is defined as

a1(~r) =
1

1 +A ln(1 +Bu)
; u =

eGL2-TPSSC
eLSDAX

, (3.77)

where eGL2-TPSSC is the second order Görling–Levy perturbation (GL2) limit [373] of the TPSS correlation. [346]

A and B are thermochemically optimized constants described below. The LMF a1 is able to detect the
one-electron regions in a molecule and increases the amount of exchange to cancel the self-interaction error.

The second LMF a2 incorporates spin polarization based on the ratio of HF exchange and TPSS exchange
according to

a2(~r) = g

(
ζ2

rs

)
f(v); v =

eHFX
eTPSSX

. (3.78)

Note that the inclusion of the spin polarization in the PSTS LMF conceptually differs from inclusion of the
spin polarization as an additional variable to consider the α-β spin cross terms. [367] In Eq. 3.78, ζ denotes
the relative spin polarization

ζ =
ρα − ρβ
ρα + ρβ

(3.79)

and the uniform gas is considered, i.e. ρ = 3/4πr3
s was assumed to calculate rs. The function g(x) is

defined as
g(x) =

Dx

1 + Ex
(3.80)
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3 Fundamentals of Two-Component Hartree–Fock and Density Functional Theory

Figure 3.1: Comparison of choices for f(v) in Eq. 3.83 (red) and Eq. 3.81 (blue). The latter was originally used in Ref. 134 (blue).
Taken from Ref. 365.

with the empirical parameters D and E. The function f(v) was chosen to be

f(v) =


1 if v ≤ C

1
1+exp[1/(1−v)F−1/(v−C)F ]

if C < v < 1

0 if v ≥ 1

(3.81)

with the empirical parameter C and

F = − 3

2 ln [(1− C)/2]
> 0. (3.82)

Note that very few implementations of the Perdew-Staroverov-Tao-Scuseria (PSTS) LHF besides the original
not self-consistent implementation have been reported. [374,375] This may be due to the significantly more
complicated functional form but also due to the choice of the function f , which may result in numerical
instabilities for derivatives. Therefore, Holzer suggested to approximate f(v) as

f(v) = 0.5− 0.5 tanh

(
v − 0.5(1 + C)

0.017

)
(3.83)

resulting in the modified PSTS (mPSTS) functional. [365] Fig. 3.1 shows that the two choices for f(v) are
very similar. Note that the LMF a2 vanishes everywhere for closed-shell systems and therefore mPSTS and
PSTS become identical.

The parameters A, B, C, D, and E are optimized with the 148 standard enthalpies of formation of the
G2/97 test set [376] and the 53 reaction barrier heigths of the BH42/03 test set. [377] This yields the parameters
A = 3.14, B = 146, C = 0.930, D = 5.17, and E = 9.49. [134]
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3.5 Density Functional Approximations

Gauge Transformation of Local Hybrid Functionals

Tao et al. pointed out that the energy density ρ(~r)εxc(~r) is not unique. [378] The exact-exchange energy
density can be modified by a gauge transformation term, G(~r),

eHF,DFTX (~r) = eHFX (~r) +G(~r). (3.84)

To ensure that the total energy is unchanged by the gauge transformation, G(~r) must satisfy the condition∫
G(~r)ρ(~r) d~r = 0. (3.85)

Tao et al. suggested that G(~r) should be chosen so that eHF,DFTX (~r) is as close as possible to the semilo-
cal exchange-energy density in atoms. [378] Yet, most local hybrid functionals do not consider the gauge
transformation term. The LH14ct-calPBE [140] and LH20t [370] local hybrid functionals introduce a gauge
transformation term or calibration function. Here, the exchange-correlation energy is generalized to

EXC =
∑
σ

∫
ρσ(~r)

[
(1− aσ(~r))

{
eDFTX,σ (~r) +Gσ(~r)

}
+ aσ(~r)eHFX,σ(~r)

]
d~r + EDFT

C (~r). (3.86)

However, the calibration functions proposed by the Kaupp group are numerically demanding and often
worsen the SCF convergence behavior. [370] Self-consistent implementations of the LH-BLYP, LH07t-SVWN,
LH12ct-SsirPW92, PSTS, mPSTS, and LHJ14 functionals use the conventional gauge instead and neglect the
calibration function. Note that for PSTS a gauge transformed formulation was used in the not self-consistent
calculations based on TPSS orbitals. [134] The respective optimized parameters are A = 2.7, B = 132,
C = 0.940, D = 6.13, and E = 8.02.
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4 NMR Shieldings and Shifts in
Scalar-Relativistic X2C Theory

NMR shifts with the scalar-relativistic X2C Hamiltonian were first presented by Cheng et al.
[101] and later

the ansatz was generalized to account for spin–orbit coupling. [102,103] The presented approaches utilize HF
or CC theory and are restricted to rather small molecules due to the associated computational costs of both
the one and two-electron terms. Furthermore, they do not account for the finite nuclear size of the vector
potential and the scalar potential. Herein, efficiency is ensured by the DLU scheme in a DFT framework and
the finite nucleus model is used throughout all integrals. NMR shifts are implemented in a scalar-relativistic
approximation. [379] The scalar-relativistic approximation is sufficient for molecules, where the bonding is
dominated by p orbitals [380–382] such as in organometallic alkynyl compounds [383] and xenon fluorides. [101]

Moreover, it is sufficient for transition-metal oxo molecules and many halogen-free tin compounds. [12,384] If
the bonding contains considerable contribution of s orbitals, the Fermi-contact interaction dominates and a
spin–orbit approach is required for an accurate prediction of NMR shieldings and shifts. The impact of a
heavy atom on the NMR shifts of neighboring light atoms is described in more detail in Ref. 385.

The chapter is structured as follows. After an introduction to the basic concepts of relativistic NMR shielding
calculations in Sec. 4.1 and 4.2, the DLU-X2C is fully derived in the following sections. This includes a
complete derivation of the underlying X2C ansatz for the atomic diagonal blocks. The scalar-relativistic
one-electron part is connected to the DFT framework using the coupled-perturbed Kohn–Sham equations in
Sec. 4.7. Furthermore, the implementation can be used to calculate the magnetically induced current density
as shown in Sec. 4.8.

4.1 NMR Shielding Tensor, Vector Potential, and
Gauge-Including Atomic Orbitals

Magnetic fields are introduced into the Dirac equation by the generalized momentum operator according to
the principle of minimal coupling [386]

~̂p −→ ~̂π = ~̂p+
1

c
~̂A. (4.1)

Therefore, the linear momentum operator, ~̂p, is replaced with its generalization, ~̂π. In magnetostatics, the
vector potential is generally defined as [387,388]

~A(~r) =

∫ ~j(~r ′)

|~r − ~r ′|
d~r ′ (4.2)

with the current density ~j. The corresponding magnetic field is obtained as

~B(~r) = rot
(
~A
)

= ~∇× ~A. (4.3)
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4 NMR Shieldings and Shifts in Scalar-Relativistic X2C Theory

For a static and homogeneous external magnetic field, the vector potential becomes

~ABO(~r) =
1

2
~B × ~rO with ~rO = ~r − ~RO, (4.4)

where O denotes the gauge origin, which will be discussed in more detail below. The magnetic field is
uniquely defined by the vector potential but the opposite is not true. The vector potential may be changed by
a gauge transformation, that is a term ~∇g can be added to the vector potential without changing the magnetic
field as the rotation of this term is zero, where g is an arbitrary scalar function. Quantum chemistry
commonly employs the Coulomb gauge [6–10]

div
(
~A
)

= ~∇ · ~A = 0. (4.5)

Therefore, the linear momentum operator and the vector potential commute. We note in passing that the
Coulomb gauge is not strictly Lorentz invariant. For molecules, the nuclei need to be further considered.
The vector potential associated with the nuclear magnetic moments, ~mI , is given as [389]

~AmI (~r) = −~mI × ~∇GI(~r) with GI(~r) =

∫
wI(~RI)

|~r − ~R|
d~R, (4.6)

where a finite charge distribution is assumed. Here, wI is a weight function describing the finite nuclear
size and the shape of the nucleus. Note that ~∇ refers to the electronic coordinates. The weight function is
required to be normalized. Choosing a Gaussian charge distribution as outlined in Sec. 2.2 leads to

wI(~RI) =
( η
π

)3/2

exp
(
−ζ(~R− ~RI)

2
)
. (4.7)

Hennum et al.
[390] showed that this expressionmay be simplified using the lower incomplete gamma function,

P ( 1
2 , ζr

2
I ), to facilitate the integral evaluation according to

~AmI (~r) = ~mI × ~∇IGI = ~mI × ~∇I
(
P ( 1

2 , ζ~r
2
I )

|~rI |

)
, (4.8)

where ~∇I acts upon the nuclear coordinates. The lower incomplete gamma function is defined as

P (a, x) =
1

Γ(x)

∫ x

0

ta−1e−t dt with Γ(a) =

∫ ∞
0

ta−1e−t dt. (4.9)

The point-charge model is obtained for ζ → ∞, which is equal to GI = 1/|rI |. The vector potential then
reduces to the well known form

~AmI (~r) =
~mI × ~rI
|~rI |3

. (4.10)

The total vector potential is simply the sum of the contribution of the magnetic field and the nuclear magnetic
moments

~A = ~AB + ~Am = ~AB +

N∑
I

~AmI . (4.11)
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4.1 NMR Shielding Tensor, Vector Potential, and Gauge-Including Atomic Orbitals

Consequently, the total energy depends on the external magnetic field and the nuclear magnetic moments.
The energy may be written with a Taylor expansion

E
(
~B, ~mI

)
=E(0) +

∑
u

∂E

∂Bu

∣∣∣∣
~B=0

Bu +
∑
N

∑
u

∂E

∂mN
u

∣∣∣∣
~mN=0

mN
u

+
1

2

∑
u,v

∂2E

∂Bu∂Bv

∣∣∣∣
~B=0

BuBv +
∑
N

∑
u,v

∂2E

∂Bu∂mN
v

∣∣∣∣
~B,~mN=0

Bum
N
v

+
1

2

∑
N,N ′

∑
u,v

∂2E

∂mN
u ∂m

N ′
v

∣∣∣∣
~mN=0

mN
u m

N ′

v .

(4.12)

Here, the first-order terms are the Zeeman and the hyperfine coupling interaction, respectively. The second-
order terms are the magnetizability tensor, the NMR shielding tensor, and the NMR indirect spin–spin
coupling tensor. In this chapter, we only consider the NMR shielding tensor whereas the next chapter deals
with the NMR coupling tensor. The Schwarz theorem holds for the second-order terms thus the NMR
shielding tensor may be defined as

σIvu =
∂2E

∂Bu∂mI,v

∣∣∣∣
~B,~mN=0

with u, v ∈ {x, y, z}. (4.13)

Forming the trace of the shielding tensor results in the isotropic shielding constant

σI =
1

3

(
σIxx + σIyy + σIzz

)
. (4.14)

The anisotropy of the shielding tensor is defined as

∆σI =

√√√√3

2

(
1

4

∑
u,v

(σIuv + σIvu)
2 − 3 (σI)

2

)
. (4.15)

A straightforward calculation of the NMR shielding tensor will depend on the gauge origin due to the vector
potential of the external magnetic field. However, the results are required to be independent of the gauge
origin as it contains no physical meaning. Therefore, the dependence will vanish in the limit of a complete
basis set. However, calculations with the complete basis set limit are impractical and the gauge origin is
removed by including a phase factor in the one-electron basis functions

λµ

(
~B,~r
)

= exp (−iΛµO)λµ (~r) . (4.16)

This was first suggested by London [391] and later applied to quantum chemistry by Ditchfield. [392–394] The
complex phase factor is defined as

ΛµO

(
~B,~r
)

=
1

2c
(~RµO × ~r) · ~B (4.17)
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4 NMR Shieldings and Shifts in Scalar-Relativistic X2C Theory

where ~RµO = ~Rµ − ~RO. As these basis functions explicitly include the gauge origin, they are called
gauge-including atomic orbitals (GIAOs). Matrix elements with these basis functions do not depend on the
gauge origin as shown exemplarily for the overlap matrix

Sµν

(
~B,~r
)

=
〈
λµ

(
~B,~r
)∣∣∣λν ( ~B,~r)〉

= 〈λµ|eiΛµν |λν〉 =

∫
exp

[ i
2c

(
~Rµν × ~r

)]
λ∗µ (~r)λν (~r) d~r.

(4.18)

Throughout this work, GIAOs will be denoted by explicitly field-dependent basis functions, λν
(
~B,~r
)
.

Compared to the field-free basis functions, the GIAOs necessitate additional integral derivatives to calculate
the NMR shielding tensor of Eq. 4.13 as the one-electron and the two-electron integrals depend on the
magnetic field. The NMR shielding tensor with GIAOs in a one-component ansatz reads

σIvu =

(
∂2E

∂Bu∂mI,v

)
0

= tr

(
D

∂2
h

∂Bu∂mI,v

)
0

+ tr

(
∂D

∂Bu

∂h

∂mI,v

)
0

, (4.19)

where all derivatives are formed in the limit of a vanishing perturbation as indicated by (. . . )0. First taking
the derivative with respect to the nuclear magnetic moments and then forming the derivative with respect to
the magnetic field reduces the computational effort as only three perturbed density matrices, ∂D/∂Bu, have
to be calculated. To arrive at a (scalar-relativistic) gauge-invariant X2C formalism for NMR shieldings, the
following steps are necessary.

1. Set up the Dirac matrix in the presence of a magnetic field and the nuclear magnetic moments with
GIAOs.

2. Form the one-electron integral derivatives and separate the terms into the spin-free and the spin-
dependent contributions.

3. Calculate the derivatives of the decoupling and the renormalization matrix.

This allows to evaluate the three one-electron Hamiltonian derivatives, i.e. ∂h/∂Bu, ∂h/∂mv , and
∂2

h/∂Bu∂mI,v. The derivative of the X2C Hamiltonian with respect to the magnetic field is required
to calculate the perturbed density matrix as shown in Sec. 4.7.

4.2 Restricted Magnetic Balance Condition and Diamagnetic
Contribution

Accounting for magnetic perturbations with the generalized momentum operator leads to the one-electron
Dirac operator

ĥD = c~α · ~̂π + (β − I4) c2 + V̂ . (4.20)

Next, the Dirac operator has to be expanded in a basis set. This expansion must ensure the correct non-
relativistic limit as discussed in Sec. 2.4. Note that the Schrödinger equation contains the generalized
momentum in a quadratic or bilinear form and thus describes diamagnetic interactions. The Schrödinger
Hamiltonian reads in analogy to Eq. 2.1

ĥS =
1

2
~̂π 2 + V̂ =

1

2
~̂p 2 +

1

2c
~̂A · ~̂p+

1

2c
~̂p · ~̂A+

1

2c2
~̂A 2 + V̂ . (4.21)
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4.2 Restricted Magnetic Balance Condition and Diamagnetic Contribution

Simply expanding the Dirac Hamiltonian in a restricted kinetically balanced basis set will consequently
not ensure the exact non-relativistic limit with finite basis sets. Therefore, the linear momentum opera-
tor is generalized in the balance condition. [49,395] This results in the restricted magnetic balance (RMB)
condition [57] ∣∣φSµ〉 =

1

2c

(
~σ · ~̂p+

1

c
~σ · ~̂AB +

1

c
~σ · ~̂Am

) ∣∣φLµ〉 . (4.22)

The RMB ensures the variational stability to O
(
c−4
)
. For NMR shieldings and shifts, it is sufficient to

consider the vector potential of the magnetic field only [101–103] and the basis set expansion is∣∣ψLi 〉 =
∑
µ

cLµi e
−iΛµO |φµ〉 , (4.23)

∣∣ψSi 〉 =
∑
µ

cSµi e
−iΛµO

~σ ·
(
~̂p+ 1

c
~̂ABµ

)
2c

|φµ〉 , (4.24)

where we used the identity [58]

(
~̂p+

1

c
~̂ABO

)
e−iΛµO = e−iΛµO

(
~̂p+

1

c
~̂ABµ

)
. (4.25)

The one-electron Dirac equation in the presence of a magnetic perturbation follows as(
V Π †

Π 1
4c2W − T

)(
CL
− CL

+

CS
− CS

+

)
=

(
S 02

02
1

2c2T

)(
CL
− CL

+

CS
− CS

+

)(
ε− 02

02 ε+

)
, (4.26)

where the notation of Cremer et al. [98] is employed for convenience. This order of − and + is consistent
with the sorting of the LAPACK routines. [396] The overlap and potential matrix are still block-diagonal in
the two-component space

S =

(
S 0

0 S

)
with Sµν = 〈λµ|eiΛµν |λν〉 , (4.27)

V =

(
V 0

0 V

)
with Vµν = 〈λµ|eiΛµν V̂ |λν〉 . (4.28)

These matrices differ from their parents in Eqs. 2.35 and 2.37 by the use of field-dependent basis functions.
The other matrices in Eq. 4.26 depend on the Pauli matrices as they are obtained with the small component
basis functions. Thus, the kinetic energy matrix, T , the generalized momentum matrix, Π , and the
relativistically modified potential,W , are not block-diagonal according to

Tµν =
1

2
〈φµ|eiΛµν

[
~σ · (~̂p+

1

c
~̂ABν )

] [
~σ · (~̂p+

1

c
~̂ABν )

]
|φν〉 , (4.29)

Π †µν =
1

2
〈φµ|eiΛµν

[
~σ · (~̂p+

1

c
~̂ABν +

1

c
~̂AmI )

] [
~σ · (~̂p+

1

c
~̂ABν )

]
|φν〉 , (4.30)

Π µν =
1

2
〈φµ|eiΛµν

[
~σ · (~̂p+

1

c
~̂ABν
] [
~σ · (~̂p+

1

c
~̂ABν +

1

c
~̂AmI )

]
|φν〉 , (4.31)

Wµν = 〈φµ|eiΛµν
[
~σ · (~̂p+

1

c
~̂ABν )

]
V̂
[
~σ · (~̂p+

1

c
~̂ABν )

]
|φν〉 . (4.32)
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4 NMR Shieldings and Shifts in Scalar-Relativistic X2C Theory

Note that the Dirac matrix is Hermitian but the large-small,Π †, and the small-large block,Π , are not. The
quadratic terms in the vector potential solely arise due to the RMB condition and ensure the correct non-
relativistic limit of the unperturbed density contribution in Eq. 4.13. This part is often the largest absolute
contribution to the NMR shielding tensor. Hence, a proper relativistic and non-relativistic description is of
uttermost importance. The use of GIAOs throughout ensures gauge-origin invariance with small basis sets.

4.3 Derivatives of the X2C Hamiltonian and Scalar-Relativistic
Approximation

The calculations of the NMR shielding tensors requires the derivative of the Hamiltonian with respect to the
magnetic field, the magnetic moments, and the mixed derivative. To begin with, the X2C Hamiltonian in
the presence of magnetic fields based on Eqs. 2.53 and 4.26 is considered to identify the terms, which have
to be differentiated. The magnetic-field dependent X2C Hamiltonian reads

h+
(
~R, ~mI

)
= R†

(
~R, ~mI

)
LNESCR

(
~R, ~mI

)
, (4.33)

where all matrices are evaluated in the limit of a vanishing perturbation. Inserting the explicit expression
for the NESC matrix (see also Eq. 2.54) yields

h+
(
~R, ~mI

)
= R†

(
~R, ~mI

)
V
(
~B
)
R
(
~R, ~mI

)
+R†

(
~R, ~mI

)[
X
†
(
~R, ~mI

)
Π
(
~R, ~mI

)
+ Π †

(
~R, ~mI

)
X
(
~R, ~mI

)]
R
(
~R, ~mI

)
+R†

(
~R, ~mI

)[
X†

(
~R, ~mI

)( 1

4c2
W
(
~B
)
− T

(
~B
))
X
(
~R, ~mI

)]
R
(
~R, ~mI

)
,

(4.34)

where all matrices depend on themagnetic field due to the expansion with GIAOs. According to Eq. 4.34, the
derivative of the X2C Hamiltonian depends on the integral derivatives and the derivatives of the decoupling
and the renormalization matrix. The derivatives of the latter are required to ensure an exact decoupling in the
presence of a perturbation and to obtain the full analytical derivative of the energy with respect to ~mI and
~B. Note that the derivatives are evaluated in the limit of a vanishing perturbation. For clarity, the derivatives
of the Hamiltonian and the one-electron integrals are considered separately in the next subsections and the
derivatives of the decoupling and the renormalization matrix are described in Sec. 4.4 and 4.5, respectively.
The general derivative of the X2C Hamiltonian with respect to the perturbation λ is given as

h+,λ = R†,λLR+R†LλR+R†LRλ, (4.35)

where the derivative of the NESC matrix contains the derivative of the decoupling matrix and the one-
electron integrals according to the product rule. The superscript of the NESC matrix, L, is omitted for
brevity.
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4.3 Derivatives of the X2C Hamiltonian and Scalar-Relativistic Approximation

4.3.1 Magnetic Field Derivatives

All one-electron integrals depend on the magnetic field. Therefore, the derivatives of all matrices are
required. The potential matrix and the overlap matrix are block-diagonal in the two-component space.
Accordingly, the respective scalar-relativistic integral derivatives are(

∂Vµν
Bu

)
0

=
i

2c
〈λµ|(~Rµν × ~̂r)u V̂ |λν〉 , (4.36)(

∂Sµν
Bu

)
0

=
i

2c
〈λµ|(~Rµν × ~̂r)u|λν〉 . (4.37)

The derivatives are purely imaginary and antisymmetric. The other matrices contain a spin-dependent and
a spin-independent contribution, which are separated by applying the Dirac identity. The spin-independent
contribution of the kinetic energy matrix reads(

∂Tµν
∂Bu

)
0

=
i

4c
〈λµ|(~Rµν × ~̂r)u ~̂p 2|λν〉+

1

2c
〈λµ|(~̂r× ~̂p)u|λν〉 (4.38)

and the spin-dependent or spin–orbit part is not block-diagonal in the two-component space according to(
∂T SO

µν

∂Bu

)
0

= σu 〈λµ|λν〉 . (4.39)

The spin–orbit part may be evaluated with the overlap integrals and sorting onto the respective blocks
in the two-component space. However, all spin–orbit contributions are neglected in a scalar-relativistic
approximation.

The spin-independent integral and spin-dependent derivatives of the generalizedmomentummatrix are given
as (

∂Π†µν
∂Bu

)
0

=
i

4c
〈λµ|(~Rµν × ~̂r)u ~̂p 2|λν〉+

1

2c
〈λµ|(~̂r× ~̂p)u|λν〉 =

(
∂Tµν
∂Bu

)
0

, (4.40)(
∂Π †,SOµν

∂Bu

)
0

= σu 〈λµ|λν〉 =

(
∂T SO

µν

∂Bu

)
0

. (4.41)

The corresponding derivatives of the relativistically modified potential are(
∂W0

µν

∂Bu

)
0

=
i

2c
〈λµ|(~Rµν × ~̂r)u ~̂p · V̂ ~̂p|λν〉

+
1

2c
〈λµ|(~̂rν × ~̂p)u V̂ + V̂ (~̂rν × ~̂p)u|λν〉 , (4.42)(

∂W SO
µν

∂Bu

)
0

= 〈λµ|(~Rµν × ~̂r)u i~σ ·
(
~̂p× V̂ ~̂p

)
|λν〉+ σu 〈λµ|V̂ |λν〉

+ 〈λµ|
i

2c
σu

(
~̂p V̂
)
· ~̂rν −

i
2c

(
~̂p V̂
)
u

(
~σ · ~̂rν

)
|λν〉 . (4.43)

The notation
(
~̂p V̂
)
indicates that the momentum operator only acts on the potential operator and not on

the further terms on the right-hand side. All scalar-relativistic integral derivatives are purely imaginary and
antisymmetric. Thus, all matrices are Hermitian and complex algebra can be avoided by simply changing
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the sign for the adjoint matrix and adding a factor of −1 for the multiplication of two purely imaginary
matrices. The derivative of the NESC matrix becomes

L
B
u = V

B
u + Π†,Bu X + Π†XBu + X

†,B
u Π + X

†ΠB
u

+ X
†,B
u

(
1

4c2
W

0 − T

)
X + X

†
(

1

4c2
W

0,B
u − T

λ

)
X + X

†
(

1

4c2
W

0 − T

)
X
B
u ,

(4.44)

where a short-hand notationVBu = (∂V/∂Bu)0 is applied. Therefore, the derivative of the X2CHamiltonian
reads

h
+,B
u = R

†
L
B
uR + R

†,B
u LR + R

†
LR

B
u . (4.45)

The integral derivatives of the kinetic energy, the generalized momentum, and the overlap matrix are already
available in a non-relativistic implementation. [397,398] The relativistically modified potential only arises in
relativistic all-electron approaches and the finite nucleus model of the potential matrix is also commonly
employed in relativistic calculations only. These integrals are evaluated with a combination of Gauss–
Rys [155–158] and Gauss–Hermite integration as shown in the appendix A.1. Here, the integration over the
variable of the Laplace transformation is carried out with the Gauss–Rys method and the spatial integration
is done with Gauss–Hermite quadrature. Based on the nuclear potential integral, the other required integrals
are obtained as linear combinations. Consider a Cartesian atomic orbital and the spatial vector ~r. As the
three coordinates are independent of each other, the scalar x changes the integral according to

〈x|x̂|λµ〉 = (x−Xµ +Xµ) 〈x|λµ〉 = 〈x|λµ + 1x〉+Xµ 〈x|λµ〉 , (4.46)

where the short-hand notation

〈x|λµ + 1x〉 = (x−Xµ)
µx+1

(y − Yµ)
µy (z − Zµ)

µz exp

[
−ζµ

(
~r − ~Rµ

)2
]

(4.47)

was used. The other Cartesian directions are obtained by trivial substitutions. Therefore, the derivative of
the potential with respect to the magnetic field in x direction, Bx, is evaluated as(

∂Vµν
Bu

)
0

=
i

2c
〈λµ|(~Rµν × ~̂r)x V̂ |λν〉

=
i

2c
Yµν

(
〈λµ|V̂ |λν + 1z〉+ Zν 〈λµ|V̂ |λν〉

)
− i

2c
Zµν

(
〈λµ|V̂ |λν + 1y〉+ Yν 〈λµ|V̂ |λν〉

) (4.48)

since the spatial vector and the potential operator commute. The spatial vector may also act on the bra by
making use of its hermiticity. For the relativistically modified potential, the effect of the momentum operator
is required

〈x|p̂x|λµ〉 = −i µx 〈x|λµ − 1x〉+ 2iζµ 〈x|λµ + 1x〉 . (4.49)

In consequence, all required integrals of the relativistically modified potential can be constructed by the
application of the momentum operator and the spatial vector onto the bra and the ket basis functions. For
instance, the term with V̂ (~̂r× ~̂p)u in Eq. 4.42 is evaluated as

〈λµ|V̂ (~̂rν × ~̂p)x|λν〉 = 2iζν 〈λµ|V̂ |λν + 1y + 1z〉 − iµz 〈λµ|V̂ |λν + 1y − 1z〉
− 2iζν 〈λµ|V̂ |λν + 1y + 1z〉 − iµy 〈λµ|V̂ |λν − 1y + 1z〉

(4.50)
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and the term with (~̂rν × ~̂p)u V̂ is evaluated in similar fashion by applying the operator onto the bra basis
function and making use of ~rν = ~rµ + ~Rµν . The remaining term (~Rµν × ~̂r)u ~̂p · V̂ ~̂p is obtained as follows.
First, we consider the three parts of the p̂vV̂ p̂v with v ∈ {x, y, z} separately as they are independent of each
other. The matrix element is rearranged using the adjoint of (~Rµν × ~̂r)u p̂v .

First, consider the trivial case u = v,〈
p̂x(~Rµν × ~̂r)xλµ

∣∣∣V̂ p̂x∣∣∣λν〉 = µxνxYµν 〈λµ − 1x|V̂ |λν − 1x + 1z〉

+ µxνxYµνZν 〈λµ − 1x|V̂ |λν − 1x〉
− 2ζµνxYµν 〈λµ + 1x|V̂ |λν − 1x + 1z〉
− 2ζµνxYµνZν 〈λµ + 1x|V̂ |λν − 1x〉
− 2ζνµxYµν 〈λµ − 1x|V̂ |λν + 1x + 1z〉
− 2ζνµxYµνZν 〈λµ − 1x|V̂ |λν + 1x〉
+ 4ζµζνYµν 〈λµ + 1x|V̂ |λν + 1x + 1z〉
+ 4ζµζνYµνZν 〈λµ + 1x|V̂ |λν + 1x〉
− µxνxZµν 〈λµ − 1x|V̂ |λν − 1x + 1y〉
− µxνxZµνYν 〈λµ − 1x|V̂ |λν − 1x〉
+ 2ζµνxZµν 〈λµ + 1x|V̂ |λν − 1x + 1y〉
+ 2ζµνxZµνYν 〈λµ + 1x|V̂ |λν − 1x〉
+ 2ζνµxZµν 〈λµ − 1x|V̂ |λν + 1x + 1y〉
+ 2ζνµxZµνYν 〈λµ − 1x|V̂ |λν + 1x〉
− 4ζµζνZµν 〈λµ + 1x|V̂ |λν + 1x + 1y〉
− 4ζµζνZµνYν 〈λµ + 1x|V̂ |λν + 1x〉 .

(4.51)

Here, the momentum operator and the position operator act onto different Cartesian directions and therefore
they commute, which results in many terms and requires some bookkeeping but the integral evaluation itself
is similar to the unperturbed integrals. [106] For the other cases, the crossproduct term yields a scalar x and
thus the momentum operator will act onto x and the bra basis function. Adding zero to x leads to

〈p̂xx̂λµ|V̂ p̂x|λν〉 = 〈p̂x (x̂−Xµ)λµ|V̂ p̂x|λν〉+Xµ 〈p̂xλµ|V̂ p̂x|λν〉 . (4.52)

The first term is calculated as

〈p̂x (x̂−Xµ)λµ|V̂ p̂x|λν〉 = 4ζµζν 〈λµ + 2x|V̂ |λν + 1x〉
− 2ζν (µx + 1) 〈λµ|V̂ |λν + 1x〉
− 2ζµνx 〈λµ + 2x|V̂ |λν − 1x〉
+ (µx + 1) νx 〈λµ|V̂ |λν − 1x〉

(4.53)

and the second term becomes

Xµ 〈p̂xλµ|V̂ p̂x|λν〉 = µxνxXµ 〈λµ − 1x|V̂ |λν − 1x〉
− 2ζµνxXµ 〈λµ + 1x|V̂ |λν − 1x〉
− 2ζνµxXµ 〈λµ − 1x|V̂ |λν + 1x〉
+ 4ζµζνXµ 〈λµ + 1x|V̂ |λν + 1x〉 .

(4.54)
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The remaining terms for the derivative of W0 are obtained by interchanging the Cartesian directions and
indices.

4.3.2 Magnetic Moment Derivatives

Solely the generalized momentum matrix gives non-vanishing derivatives with respect to the magnetic
moments as the other matrices do not depend on the magnetic moments. The spin-free integrals read(

∂Π†µν
∂mI,u

)
0

=
1

2c
〈λµ|

(
~∇I ĜI × ~̂p

)
u
|λν〉 (4.55)

while the spin-dependent integrals are given as(
∂Π †,SOµν

∂mI,u

)
0

=
i

2c
〈λµ|

([
~σ · ~∇I ĜI

]
p̂u − σu

[
~∇I ĜI · ~̂p

])
|λν〉 . (4.56)

In the point charge model, the spin-dependent integrals reduce to(
∂Π†µν
∂mI,u

)
0

=
1

2c
〈λµ|r̂−3

I

(
~̂rI × ~̂p

)
u
|λν〉 . (4.57)

The spin-free integrals are imaginary and antisymmetric. The integrals are evaluated in similar fashion
to the previous subsection by exploiting the effect of px onto the ket basis function. The term involving
~∇G is calculated using translation invariance based on the considerations of Hennum and co-workers. [390]

The integrals involving G and ~∇ onto the ket basis functions are evaluated similar to the nuclear potential
integrals as

G(~r) =

∫
wI(~RI)

|~r − ~R|
d~R = − 1

Z
V (~r). (4.58)

The derivative of the X2C Hamiltonian follows as

h+,mI
u = R†,mIu LR+R†LmIu R+R†LRmI

u (4.59)

with the derivative of the NESC matrix

LmIu = X†,mIu Π +X†ΠmI
u + Π †,mIu X + Π †XmI

u

+X†,mIu

(
1

4c2
W − T

)
X +X†

(
1

4c2
W − T

)
XmI
u .

(4.60)

4.3.3 Mixed Derivatives

According to the last subsection, the generalized momentum matrix is also the only matrix with non-zero
mixed derivatives. The scalar-relativistic contribution is given as(

∂2Π†µν
∂BumI,v

)
0

=
1

4c2
〈λµ|δuv

(
(~∇I ĜI) · ~̂rν

)
− (~∇I ĜI)u(~̂rν)v|λν〉

+
i

4c2
〈λµ|(~Rµν × ~̂r)u

(
(~∇I ĜI)× ~̂p

)
v
|λν〉

(4.61)
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and the spin-orbit contribution reads(
∂2Π †,SOµν

∂BumI,v

)
0

=− 1

2c2
〈λµ|

(
~Rµν × ~̂r

)
u

[
~σ · ~∇I ĜI p̂v − σv ~∇I ĜI · ~̂p

]
|λν〉

− i
4c2
〈λµ|εvuw ~σ · ~∇I ĜI (~̂rν)w − σv

(
~̂rν × ~∇I ĜI

)
u
|λν〉

(4.62)

with the Levi–Civita tensor εvuw. The scalar-relativistic integrals are real and symmetric. In non-relativistic
calculations, the first term of these integrals is referred to as the diamagnetic integrals and the second term
gives rise to the paramagnetic unperturbed density contribution.

Differentiating the X2C-Hamiltonian in Eq. 4.34 yields

h
B,mI
u,v =

(
R
†,B,mI
u,v L R + R

†
L
NESC

R
B,mI
u,v

)
+
(
R
†,Bu

L R
mI
v + R

†,mI
v L R

B
u

)
+
(
R
†,B
u L

mI
v R + R

†
L
mI
v R

B
u

)
+
(
R
†,mI
v L

B
u R + R

†
L
B
u R

mI
v

)
+
(
R
†
L
B,mI
u,v R

)
.

(4.63)

The second derivative of the NESC matrix reads

L
B,mI
u,v = Π†,B,mIu,v X + Π†,Bu X

mI
v + Π†,mIv X

B
u + Π† XB,mIu,v

+ X
†,B,mI
u,v Π + X

†,B
u ΠmI

v + X
†,mI
v ΠB

u + X
† ΠB,mI

u,v

+ X
†,B,mI
u,v (W− T)X + X

†,mI
v

(
W
B
u − T

B
u

)
X

+ X
†,B
u (W− T)XmIv + X

†,mI
v (W− T)XBu

+ X
† (

W
B
u − T

B
u

)
X
mI
v + X

† (W− T)XB,mIu,v .

(4.64)

Note that the second derivative of the NESC matrix involves all one-electron integral derivatives discussed
previously. So, a strict separation into diamagnetic and paramagnetic contributions like in non-relativistic
quantum chemistry is problematic. Thus, the NMR shielding tensor is only partitioned into the perturbed and
the unperturbed density contribution in X2C calculations. The matrix multiplications for all Hamiltonian
derivatives are efficiently carried out with the basic linear algebra subroutine [399,400] (BLAS) DGEMM.

4.4 Response Equations for the Derivatives of the Decoupling
Matrix

This section compares different ansätze [108,109,254,267,379] for the calculation of the derivative of the decoupling
matrix. It is shown that these lead to the same result and the choice of the ansatz is made according to the
efficiency. The general two-component response equations are derived and the simplification as well as the
explicit expressions for the scalar-relativistic shielding tensor are given at the end of each subsection.

4.4.1 First Derivatives

A straightforward differentiation of Eq. 2.50 yields [108]

Xλ =
(
CS,λ

+ −XCL,λ
+

) (
CL

+

)−1
. (4.65)

The evaluation of this equation necessitates the perturbed coefficients, which are available with response
theory. As discussed in Sec. 2.4, the one-electron Dirac equation in a matrix representation is of the same

45



4 NMR Shieldings and Shifts in Scalar-Relativistic X2C Theory

structural form as the Roothaan–Hall equations. [252,253] Therefore, the application of response theory to the
perturbed decoupling matrix is similar to the perturbed density matrix. The one-electron Dirac equations
and the normalization condition read

DC = MCE, (4.66)
C†MC = I, (4.67)

where E is a diagonal matrix containing the energy eigenvalues and I is the (4× 4) identity matrix. The
perturbed coefficients,Cλ, are assumed as a linear combination of the unperturbed coefficients,C, according
to (

CL,λ
− CL,λ

+

CS,λ
− CS,λ

+

)
=

(
CL
− CL

+

CS
− CS

+

)
Uλ. (4.68)

The orbital rotation matrixUλ mixes the coefficients of the positive energy and the negative energy subspace.
A Taylor expansion is carried out to arrive at an explicit expression for the orbital rotation matrix

DλC + DCλ = MλCE + MCλE + MCEλ. (4.69)

Collecting all first-order terms is most easily done in the basis of the unperturbed solutions, which is obtained
by multiplication with C† from the left. The Dirac matrix and the metric in this basis read

D̃ = C†DC = E, (4.70)
M̃ = C†MC = I. (4.71)

The first-order response equation follows as

D̃λ − M̃λE = Ẽλ + UλE− EUλ, (4.72)

which may be rearranged using the commutator to the simplified form [102]

[
Uλ,E

]
=
(
D̃λ − M̃λE

)
− Eλ. (4.73)

In principle, this equation allows to calculate all matrix elements ofUλ. However, the expressionwill become
unstable for near-degenerate or degenerate states. Therefore, these matrix elements utilize the normalization
condition in Eq. 4.67. The respective first-order equation reads

U†,λ + M̃λ + Uλ = 0. (4.74)

Further assuming canonicity, i.e. the matrix Eλ is diagonal, results in the working equations

Uλpq =
D̃λpq − M̃λ

pqEqq
Eqq − Epp

∀p 6= q, (4.75)

Uλpp = −1

2
M̃λ
pp. (4.76)

Eq. 4.75 is used for elements with a larger energy difference and Eq. 4.76 is used for the near-degenerate
and degenerate states. The indices p and q run over all states, i.e. over both the negative and positive energy
subspace. The accuracy and the numerical stability of this ansatz consequently relies on the identification of
near-degenerate states. Cheng andGauss suggested to use a threshold of 10−4 a.u. [401] and this threshold was
also used in the preceding implementation of geometry gradients in TURBOMOLE. [106,107] For geometry
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gradients, the threshold is validated or optimized by comparison to numerical energy gradients of highly
symmetric systems like Ag13 in Oh and Ih symmetry. However, numerical gradients for the magnetic field
derivative of the NMR tensor requires major extensions of the implementation to support finite fields [402]

and using the same threshold of 10−4 a.u. for the NMR derivatives is a straightforward choice. Note that this
ansatz is similar to the semi-canonical coupled-perturbed Hartree–Fock (CPHF) and Kohn–Sham (CPKS)
equations. [403,404] However, the response equations are solved directly in one step. The drawback of this
ansatz is that the full orbital rotation matrix is required. Rewriting the response equations for the decoupling
matrix based on the non-canonical CPHF and CPKS equations [405] is thus desirable to avoid the calculation
of the full matrix Uλ and to avoid the optimization of the threshold for near-degenerate states to ensure the
numerical stability. [254]

In the non-canonical CPHF approach, the orbital rotation matrix is partitioned into the occupied-occupied,
occupied-virtual, virtual-occupied, and virtual-virtual blocks. In X2C response theory, the orbital rotation
matrix is therefore partitioned based on the energy subspaces according to

Uλ =

(
Uλ
−− Uλ

−+

Uλ
+− Uλ

++

)
, (4.77)

where the signs indicate the energy subspaces. This expression is now inserted into Eq. 4.68 to compute the
perturbed coefficients of the positive energy subspace as

CL,λ
+ = CL

− U
λ
−+ +CL

+ U
λ
++, (4.78)

CS,λ
+ = CS

− U
λ
−+ +CS

+ U
λ
++. (4.79)

Note that the orbital rotation matrix still mixes the positive and the negative energy subspace coefficients.
The derivative of the decoupling matrix becomes

Xλ =
[
CS
− U

λ
−+ +CS

+ U
λ
++ −X

(
CL
− U

λ
−+ +CL

+ U
λ
++

)] (
CL

+

)−1
. (4.80)

So, only two of the four blocks of Uλ are needed. The positive-positive block is further eliminated by using
the normalization condition of the large component [96]

C†L+ S̃ CL+ = I. (4.81)

The perturbed decoupling matrix is thus obtained as

Xλ =
(
CS
− −XCL

−
)
Uλ
−+ C

L,†
+ S̃. (4.82)

Therefore, only one block of the orbital rotation matrix is required and only matrices in the two-component
space are needed. Assuming Eλ

−+ = 02, the negative-positive or positronic-electronic subblock of the
orbital rotation matrix is given as

(Uλ
−+)kl =

(D̃λ
−+)kl − (M̃λ

−+)kl (E++)ll

(E++)ll − (E−−)kk
, (4.83)

47



4 NMR Shieldings and Shifts in Scalar-Relativistic X2C Theory

where the indices k and l only run over the respective subblock. The negative and positive energy subspace
are separated by a gap of 2c2 and therefore the denominator will always be numerically stable. The
corresponding derivative of the Dirac matrix and the metric read

D̃λ
−+ = CL,†

− V λCL
+ +CL,†

− Π †,λCS
+ +CS,†

− Π λCL
+ +CS,†

−

(
1

4c2
W λ − T λ

)
CS

+, (4.84)

M̃λ
−+ = CL,†

− SλCL
+ +

1

2c2
CS,†
− T λCS

+. (4.85)

Both ansätze are implemented for geometry gradients and identical results are obtained. However, the
non-canonical solver is faster by a factor of about 2 and the memory demands are decreased. Therefore,
only the non-canonical ansatz is pursued for second derivatives below.

The explicit expression for the magnetic field derivative of X is given as

X
B
u =

(
C
S
− − XC

L
−
) (

U
B
u

)
−+

C
L,†
+ S̃ (4.86)

with the orbital rotation matrix

(UBu,−+)kl =
(D̃

B

u,−+)kl − (M̃
B

u,−+)kl (E++)ll

(E++)ll − (E−−)kk
. (4.87)

The derivative of the Dirac matrix and the metric is obtained according to

D̃
B

u,−+ = C
L,†
− V

B
uC

L
+ + C

L,†
− Π†,Bu C

S
+ + C

S,†
− ΠB

uC
L
+ + C

S,†
−

(
1

4c2
W
B
u − T

B
u

)
C
S
+, (4.88)

M̃
B

u,−+ = CL,†
− S

B
uC

L
+ +

1

2c2
C
S,†
− T

B
uC

S
+. (4.89)

For the derivative of the magnetic moments, the corresponding derivatives of the decoupling matrix are
computed as

X
mI
u =

(
C
S
− − XC

L
−
)

(UmIu )−+ C
L,†
+ S̃, (4.90)

(UmIu,−+)kl =
(D̃

mI
u,−+)kl

(E++)ll − (E−−)kk
, (4.91)

D̃
mI
u,−+ = C

L,†
− Π†,mIu C

S
+ + C

S,†
− ΠmI

u C
L
+, (4.92)

since the derivative of the metric vanishes. All matrix multiplications are carried out with DGEMM and
the Dirac matrix is diagonalized with the metric using the LAPACK routine [396] DSYGV. The inverse of
the decoupling matrix is formed with DGETRF and DGETRI. [399,400] DGETRF computes the lower-upper
factorization of a matrix and DGETRI subsequently computes the inverse of the matrix.
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4.4.2 Second Derivatives

For the second-order perturbed coefficients, we introduce the ansatz for the linear combinations as

Cκλ = C
[
Uκ,λ + UκUλ

]
= CŨκ,λ. (4.93)

For the non-canonical solver, the second-order orbital rotation matrix, Ũκλ, is partitioned into the four
subblocks like for the first-order matrix in Eq. 4.77. Differentiating Eq. 4.82 and using the normalization
condition of the large component results in

Xκ,λ = (CS− −XCL−) [ Ũκ,λ
−+ −Uκ

−+ U
λ
++ −Uλ

−+ U
κ
++

−Uκ
−+ C

†
L+ S̃ CL− U

λ
−+

−Uλ
−+ C

†
L+ S̃ CL− U

κ
−+] C†L+ S̃.

(4.94)

Therefore, only the positronic-electronic block of the second-order orbital rotation matrix is needed whereas
also the electronic-electronic block of the first-order orbital rotation matrix is required. Differentiating Eq.
(4.73) the second-order orbital rotation matrix is given as [102,254][

Ũκ,λ,E
]

= D̃κ,λ − M̃κ,λE− Eκ,λ

+ Uκ[Uλ,E] + Uλ[Uκ,E]

+ U†,κ(D̃λ − M̃λE) + (D̃λ − M̃λE)Uκ

+ U†,λ(D̃κ − M̃κE) + (D̃κ − M̃κE)Uλ.

(4.95)

Note that the matrix products in this equation requires all four blocks of the first-order orbital rotation
matrix—even for the positronic-electronic block of Ũκλ only. In Ref. 102, Yoshizawa and co-workers
further separated the electronic-electronic block of Ũλ and Ũκ with the virtual and occupied spinors.
However, this is only applicable to molecular calculations with uncontracted basis sets and will not be
considered herein. In line with the non-canonical CPHF solver, [405] we assume

Eλ
−+ = 02, (4.96)

U †,λ−− = Uλ
−−, (4.97)

U †,λ++ = Uλ
++. (4.98)

This allows to calculate the positronic-positronic and electronic-electronic block of the orbital rotationmatrix
based on the normalization condition and ensures the numerical stability. The corresponding blocks are
computed as

Uλ
−− = −1

2
M̃λ
−−, (4.99)

Uλ
++ = −1

2
M̃λ

++. (4.100)
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The expression for the perturbation κ are obtained by interchanging λ and κ. Inserting this into Eq. 4.95 and
subsequent simplification, yields the positronic-electronic block of the second-order orbital rotation matrix

(Ũκ,λ
−+)kl =

1

(E++)ll − (E−−)kk

{
(D̃κ,λ
−+)kl − (M̃κ,λ

−+)kl(E++)ll

+
(
Uκ
−−U

λ
−+ +Uκ

−+U
λ
++ +Uλ

−−U
κ
−+ +Uλ

−+U
κ
++

)
kl

(E++)ll

−
(
Uκ
−−E−−U
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+
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}
.

(4.101)

The three other blocks of the Dirac matrix and the metric are obtained with the corresponding coefficients
similar to Eqs. 4.84 and 4.85.

For the explicit expressions to calculate the second-order orbital rotation matrix, the four blocks of UBu are
computed as

(UBu,−−)kl = −1

2
(M̃

B

u,−−)kl, (4.102)

(UBu,−+)kl =
(D̃

B

u,−+)kl − (M̃
B

u,−+)kl (E++)ll

(E++)ll − (E−−)kk
, (4.103)

(UBu,+−)kl =
(D̃

B

u,+−)kl − (M̃
B

u,+−)kl (E−−)ll

(E−−)ll − (E++)kk
, (4.104)

(UBu,++)kl = −1

2
(M̃

B

u,++)kl. (4.105)

Similarly, the magnetic moment derivatives read

(UmIu,−−)kl = 02, (4.106)

(UmIu,−+)kl =
(D̃

mI
u,−+)kl

(E++)ll − (E−−)kk
, (4.107)

(UmIu,+−)kl =
(D̃

mI
u,+−)kl

(E−−)ll − (E++)kk
, (4.108)

(UmIu,++)kl = 02. (4.109)

Therefore, the positronic-electron block of the he second-order orbital rotation matrix is calculated according
to

(Ũ
B,mI
u,v,−+)kl =

1

(E++)ll − (E−−)kk

{
(D̃

B,mI
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+
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B
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U
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B
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B
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)
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+
[
U
†,mI
v,+−
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B
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u,++)(E++)
) ]

kl
+
[ (

D̃
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u,−− − M̃
B

u,−−E−−

)
U
mI
v,−+

]
kl

+
[
U
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u,−−(D̃

mI
v,−+)

]
kl

+
[
D̃
mI
v,−+U

B
u,++

]
kl

}
.

(4.110)
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The respective derivative of the decoupling matrix follows as

XB,mI
u,v = (CS− −XCL−) [ ŨB,mI

uv,−+ −U
mI
v,−+ U

B
u,++

−UB
u,−+ C

†
L+ S̃ CL− U

mI
v,−+

−UmI
v,−+ C

†
L+ S̃ CL− U

B
u,−+] C†L+ S̃.

(4.111)

Again, all matrix multiplications are computed with DGEMM and the multiplications with the diagonal
matrices E−− and E++ are calculated with DAXPY. [399,400]

4.5 Sylvester Matrix Equations for the Derivatives of the
Renormalization Matrix

The derivatives of the renormalization matrix are obtained by solving Sylvester matrix equations. Cheng
and Gauss used the product rule for Eq. 2.52 and calculated the respective derivatives of S1/2 and(
S−1/2S̃S−1/2

)−1/2

with Sylvester equations. [108,109] Note that the individual matrices are Hermitian
but the renormalization matrix is non-Hermitian. Therefore, this ansatz avoids complex algebra in a scalar-
relativistic implementation. However, the number of Sylvester equations to be solved increases considerably
for second derivatives. Therefore, the ansatz of Zou et al.

[254] is used herein. Here, the positive definite-
ness and the mathematical structure of the renormalization matrix is exploited to avoid complex algebra
in scalar-relativistic calculations. Like in the previous subsection, the general two-component equations
are derived and then simplified for the scalar-relativistic NMR shielding tensor. The quadratic form of the
renormalization matrix [96]

RR = S̃−1S (4.112)

is used to set up the Sylvester matrix equation as differentiating this equations results in

RRλ +RλR = Qλ (4.113)

with the right-hand side
Qλ = S̃−1

(
Sλ − S̃λRR

)
. (4.114)

Differentiating Eq. 4.112 twice yields the Sylvester matrix equation for second derivatives

RRκλ +RκλR = Qκλ (4.115)

with the right-hand side

Qκλ = S̃−1

[
Sκλ − S̃κλRR+ S̃λS̃−1

(
S̃κRR− Sκ

)
+ S̃κS̃−1

(
S̃λRR− Sλ

)]
−RλRκ −RκRλ.

(4.116)

Note that this approach requires to solve only one Sylvester equation for first and second derivatives.

The Sylvester matrix equation can be solved using an eigenvalue decomposition method. Here, the renor-
malization matrix is diagonalized. For a non-Hermitian matrix, this is done by multiplication with the
eigenvectors, VR. These eigenvectors are obtained by a diagonalization of

K =
(
S−1/2S̃S−1/2

)−1/2

(4.117)
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and making use of the transformation in Eq. 2.52,

VR = S−1/2VK . (4.118)

Note thatK is Hermitian and therefore the diagonalization is performed with the standard diagonalization
routines DSYEV and ZHEEV. [396] The eigenvalues of the renormalization matrix are then obtained as

r = V 1
RRVR, (4.119)

where the generalized inverse [406] of VR is defined according to

V 1
R =

(
V †RVR

)−1

V †R = V †R

(
VRV

†
R

)−1

. (4.120)

Subsequently, the Sylvester matrix is transformed with the eigenbasis of the renormalization matrix to
simplify the left-hand side

rRλ +Rλr = V 1
RQ

λVR. (4.121)

This equation is rearranged as the matrix of the eigenvalues r is diagonal and the Sylvester matrix is solved
as

(R)
λ
µν =

∑
a,b

1

ra + rb
(VR)µa

[
V 1
RQ

λVR

]
ab

(
V 1
R

)
bν
. (4.122)

The result is then transformed back to the original basis using V 1
R and VR. The Sylvester matrix for second

derivatives is solved in the same manner by replacingQλ withQκλ andRλ withRκλ.

The magnetic field derivative of the scalar-relativistic matrix R is obtained with

Q
B
u = S̃

−1
(
S
B
u − S̃

B

uRR

)
(4.123)

and all two-component matrices,M , above are replaced by the one-component analogues,M. The derivative
with respect to the magnetic moments simplifies to

Q
mI
u = −S̃−1

S̃
mI
u RR. (4.124)

Here, the perturbed overlapmatrix vanishes whereas S̃ depends onX andXmIu . Themixed second derivative
is calculated with the right-hand side

Q
BmI
u,v = S̃

−1
[
− S̃

B,mI
u,v RR + S̃

B

u S̃
−1

S̃
mI
v RR + S̃

mI
v S̃

−1
(
S̃
B

uRR− S
B
u

)]
− R

B
uR

mI
v − R

mI
v R

B
u .

(4.125)

Again, the mixed derivative of the overlap matrix is zero and only the mixed derivative of S̃ is needed. No
complex algebra is employed as both the eigenvalues and eigenvectors ofR are real. [254] The implementation
was checked against the eigenvalue method of Cheng and Gauss [108,109] and using the LAPACK routine [396]

DTRSYL, which solves the general real Sylvester matrix equation with the canonical Schur form using the
LAPACK routine DHSEQR.

52



4.6 DLU-X2C for NMR Shifts

4.6 DLU-X2C for NMR Shifts

Applying the DLU scheme to the scalar-relativistic approximation of the X2C Hamiltonian in Eq. 4.34
results in the following equation for the atomic diagonal blocks

h
+
AA = R

†
AALAARAA

= R
†
AA

(
VAA + Π†AAXAA + X

†
AAΠAA

)
RAA

+ R
†
AA

[
X
†
AA

(
1

4c2
WAA − TAA

)
XAA

]
RAA.

(4.126)

The atomic off-diagonal blocks read

h
+
AB = R

†
AALABRBB

= R
†
AA

(
VAB + Π†ABXBB + X

†
AAΠAB

)
RBB

+ R
†
AA

[
X
†
AA

(
1

4c2
WAB − TAB

)
XBB

]
RBB .

(4.127)

All matrices are spin-independent and only the atomic diagonal block of the decoupling and the renormal-
ization matrix are required. Note that all blocks of the one-electron integrals are needed and consequently
it is necessary to compute all blocks of the integral derivatives for the perturbed DLU-X2C Hamiltonian.
Differentiating the atomic diagonal block with respect to the magnetic field results in

h
B
u,AA = R

†,B
u,AALAARAA + R

†
AAL

B
u,AARAA + R

†
AALAAR

B
u,AA (4.128)

and the atomic off-diagonal blocks are given as

h
B
u,AB = R

†,B
u,AALABRBB + R

†
AAL

B
u,ABRBB + R

†
AALABR

B
u,BB , (4.129)

with the derivative of the respective block of the NESC matrix

L
B
u,AB = V

B
u,AB + Π†,Bu,ABXBB + Π†ABX

B
u,BB + X

†,B
u,AAΠAB + X

†
AAΠB

u,AB+

+ X
†,B
u,AA

(
1

4c2
WAB − TAB

)
XBB + X

†
AA

(
1

4c2
W
B
u,AB − T

B
u,AB

)
XBB

+ X
†
AA

(
1

4c2
WAB − TAB

)
X
B
u,BB .

(4.130)

The derivatives of atomic diagonal blocks are calculated identically to the full X2C derivatives. Accordingly,
employing the DLU-X2C Hamiltonian requires solving the response equations for the perturbed decoupling
matrix and the Sylvester matrix equations for the renormalization matrix for the atomic diagonal blocks
only. This significantly reduces computational costs as the dimensions of the involved matrices are reduced
to the atomic dimensions. Therefore, the computation of these blocks scales as O (N) with the size of
the system, N . The derivative of the atomic off-diagonal blocks are subsequently calculated by ordinary
matrix multiplications, which are carried out with DGEMM. The computation of the atomic off-diagonal
blocks scales as O

(
N2
)
. Therefore, the calculations of the magnetic-field derivatives comes at nearly the

same computational costs as energy calculations. Only the memory requirements are increased as not only
the integrals but also the integral derivatives and the atomic diagonal blocks of perturbed decoupling and
renormalization matrix are needed.
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The derivatives with respect to the magnetic moment are computed similarly. the corresponding derivatives
of the DLU-X2C Hamiltonian are

h
mI
u,AA = R

†,mI
u,AALAARAA + R

†
AAL

mI
u,AARAA + R

†
AALAAR

mI
u,AA (4.131)

and the atomic off-diagonal blocks are given as

h
mI
u,AB = R

†,mI
u,AALABRBB + R

†
AAL

mI
u,ABRBB + R

†
AALABR

mI
u,BB , (4.132)

with the derivative of the NESC matrix

L
mI
u,AB = Π†,mIu,ABXBB + Π†ABX

mI
u,BB + X

†,mI
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†
AAΠmI
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(
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42
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)
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†
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(
1
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)
X
mI
u,BB .

(4.133)

For a molecule consisting of N nuclei, the computation time for the atomic diagonal blocks scales as
O
(
N2
)
andO

(
N3
)
for the off-diagonal blocks. Compared to the magnetic-field derivatives, many integral

derivatives are zero, which reduces the computational demands for the calculations of a single derivative. The
derivatives with respect to different magnetic moments are independent and are thus computed separately to
reduce the memory demands.

Further differentiation of the above equations yields the mixed derivatives. The mixed derivatives of the
atomic diagonal block for the unperturbed density contribution read

h
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(4.134)

and the off-diagonal blocks are given as
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(4.135)

The second derivatives of the NESC matrix read
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(4.136)

Therefore, the three first and second-order derivatives of all atomic blocks are needed to compute the atomic
off-diagonal blocks. Additionally, all first and second integral derivatives are required. The computational
algorithms for the DLU-X2C approach to NMR shieldings are based on the geometry gradients. [106,107] A
nuclear selection scheme is available for the derivatives with respect to the nuclear magnetic moments. [407,408]

54



4.6 DLU-X2C for NMR Shifts

The algorithm is presented in Fig. 4.1 for the unperturbed density contribution. The following steps are
performed for every nucleus of interest as it improves the readability of the code and allows for an easier
maintenance. The computation time of the initialization steps and all steps of the unperturbed quantities
is negligible for analytical derivatives. [106,107] First, the necessary initialization steps are performed. The
modules process contracted basis sets and therefore the information of the uncontracted basis sets needs
to be gathered in a first step together with the setup of the matrix for the transformation from Cartesian to
spherical basis functions (CAO-AO transformation). Next, unperturbed integrals are calculated in the CAO
basis and the integral batches are transformed into the AO basis on the fly. Heavy elements necessitate basis
functions with a large angular momentum and consequently storing the matrices in the AO basis significantly
reduces the memory demands. The integral evaluation supports the OpenMP scheme for a shared memory
parallelization. In the uncontracted basis space, every field of the integral array is calculated in one shot
without the need to sum up the contributions of different primitive basis functions. Therefore, no OMP
ATOMIC and OMP CRITICIAL directives are required to avoid race conditions. These directives avoid
that multiple thread simultaneously change the value of an array. Then, the atomic information for the DLU
scheme is supplied, i.e. the center of every basis function and the mapping of the indices is generated.

After these initialization steps, the program loops over the atomic diagonal blocks and performs the X2C
decoupling. The loop is parallelized with OpenMP. In this loop, the near-linear dependencies are removed
by a diagonalization of the overlap matrix with the LAPACK routine [396] DSPEV and subsequently removing
all eigenvectors referring to an eigenvalue smaller than 5 · 10−14. This value was optimized with general-
contracted basis sets and ensures the numerical stability of the inverse of CL+. The relativistic decoupling
of the atomic diagonal blocks is performed in the linear-independent AO (IAO) basis using the LAPACK
routine [396] DSYGV. All quantities for the DLU-X2C Hamiltonian derivatives are accumulated on a vector.
In principle, the integrals may be also calculated within the loop, however, this would result in a decreased
efficiency of the parallelization of the integrals as the number of basis functions is significantly larger than
the number of atoms.

For the perturbed quantities, all integral derivatives are first calculated in an OpenMP framework similar
to the unperturbed integrals. Then, the derivatives of the atomic diagonal blocks of the Hamiltonian are
computed. Again, the loop over atoms is parallelized with OpenMP. The derivative of the Hamiltonian
and all other X2C response quantities are obtained in the IAO basis and then transformed to the AO basis.
The derivatives of the decoupling and the renormalization matrix are collected on a second vector for the
atomic off-diagonal blocks. The atomic off-diagonal block of the Hamiltonian derivative is computed with
matrix multiplications in the AO basis. Note that due to the hermiticity of the perturbed Hamiltonian,
the loop over the atomic off-diagonal blocks exploits the permutation symmetry and the adjoint of the
perturbed Hamiltonian of a pair AB is obtained based on the antisymmetry of the perturbed Hamiltonian.
This loop also supports the OpenMP architecture. After computing all atomic diagonal and off-diagonal
blocks, the perturbed Hamiltonian is transformed to the CAO basis as the density is stored in this basis.
The perturbed Hamiltonian is then contracted and the trace with the density is formed simultaneously. This
step is parallelized with OpenMP using the OMP REDUCTION clause for the NMR shielding tensor to
avoid race conditions. Therefore, each thread uses its own array and the contributions are added after the
complete parallel calculation. The respective increase of the memory demands is absolutely negligible due
to the dimension of the shielding tensor.
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Calculate unperturbed density contribution of the NMR shielding tensor:

tr

(
D

∂2
h

∂Bu∂mI,v

)
0

with u, v ∈ {x, y, z}

Initialization

1. Initialization of transformations and uncontracted basis set
2. Calculate all unperturbed integrals: S, T, V,W0 in CAO basis

and transformation to spherical AO basis on the fly
3. Initialize atomic information for DLU scheme

Unperturbed quantities

4. Loop over atomic diagonal blocks
a) Get atomic diagonal blocks of S, T, V,W0

b) Diagonalize overlap matrix and remove linear dependencies
c) Transformation to linear-independent AO (IAO) basis
d) Perform X2C decoupling step and obtain the matrices X, R, S̃, VR, r, L etc.

e) Collect the atomic diagonal blocks of X, R, L, S̃, S̃−1, VR, V1
R,

C
L
−, CL+, CS−, CS+, E−−, E++, and the AO-IAO transformation matrix on a vector

5. End loop over atomic diagonal blocks

Perturbed quantities

6. Compute all integral derivatives: SB , ΠB , VB , W0,B , Πm, ΠB,m in CAO
and transformation to spherical AO on the fly

7. Loop over Cartesian directions u
a) Loop over Cartesian directions v

i. Loop over atomic diagonal blocks
A. Read atomic diagonal quantities on vector
B. Get atomic diagonal blocks of integral derivatives
C. Transformation to IAO basis
D. Compute mixed derivative of Hamiltonian and back-transformation to AO basis
E. Collect quantities for atomic off-diagonal blocks on another vector:

X
B , RB , Xm, Rm, XB,m, RB,m

ii. End Loop over atomic diagonal blocks
iii. Loop over atomic off-diagonal blocks

A. Read atomic diagonal quantities on vectors
B. Get atomic off-diagonal blocks of integral derivatives
C. Perform matrix multiplications for off-diagonal block of DLU-X2C Hamiltonian
D. Form conjugate transpose of atomic off-diagonal block

iv. End Loop over atomic off-diagonal blocks
v. Transform derivative of Hamiltonian to CAO basis
vi. Perform contraction of Hamiltonian derivative
vii. Form trace with unperturbed density

b) End Loop over Cartesian direction v
8. End Loop over Cartesian direction u

Figure 4.1: Algorithm for the calculation of the unperturbed density contribution of the NMR shielding tensor with the DLU-X2C
Hamiltonian. The sorting steps for the DLU-X2C Hamiltonian are omitted for clarity.
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4.7 Coupled-Perturbed Hartree–Fock and Kohn–Sham
Equations

This section reviews the CPHF and CPKS equations for NMR shielding tensors. [397,398,403–405,409–412] The
one-electron X2C scheme presented in the previous sections is integrated into the non-relativistic machinery
by replacing the non-relativistic integral derivativeswith the scalar-relativisticX2CorDLU-X2CHamiltonian
derivatives. Therefore, the existing program code regarding the two-electron integrals and the CPHF/CPKS
solver [14,398,407,413–416] are unaffected by the changes. As all first derivatives are purely imaginary and
antisymmetric, the imaginary unit may be explicitly written to employ real matrices. [14] However, it is more
convenient to use the imaginary matrices and complex LCAO coefficients for the next chapters. This allows
for a straightforward generalization of the CPHF and CPKS equations to a two-component framework. In a
closed-shell restricted Hartree–Fock formalism, the density matrix of Eq. 3.20 becomes

Dλ
µν = 2

N/2∑
i

C∗µiCνi (4.137)

as all orbitals are either doubly occupied or unoccupied. The perturbed density matrix is obtained by a
straightforward differentiation of Eq. 4.137

Dλ
µν = 2

N/2∑
i

(
Cλ∗µi Cνi + C∗µiC

λ
νi

)
(4.138)

with the short-hand notation λ = Bu. Similar to Sec. 4.4, the perturbed coefficients are assumed as a linear
combination of the unperturbed coefficients

Cλµi =
∑
p

CµpO
λ
pi =

∑
j

CµjO
λ
ji +

∑
a

CµaO
λ
ai, (4.139)

where i, j, . . . refer to occupied orbitals, a, b, . . . to virtual orbitals, and p, q, . . . to arbitrary orbitals. Oλpi
denotes the unitary orbital rotation matrix and is partitioned into an occupied-occupied tensor space and
a virtual-occupied tensor space. The virtual-virtual tensor space of the orbital rotation matrix does not
contribute. Differentiating the Roothaan–Hall equations for Hartree–Fock followed by multiplication with
C∗µp from the left results in∑

µ,ν

C∗µp
(
Fλµν − εiSλµνCνi

)
=
∑
p

∑
µ,ν

C∗µq
(
εiSµνCνpO

λ
pi − εpSµνCνpOλpi

)
=
∑
p

(εi − εp) δpqOλpi

= (εi − εq)Oλqi.

(4.140)

Similarly, differentiating the normalization condition yields

−
∑
µ,ν

C∗µiS
λ
µνCνj =

∑
p

∑
µ,ν

C∗µpO
∗,λ
pi SµνCνj + C∗µiSµνCνpO

λ
pj

=
∑
p

(
O∗,λpi δpj +Oλpjδpi

)
=
(
O∗,λji +Oλij

)
.

(4.141)
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These equations are called coupled-perturbed Hartree–Fock equations and form an under-constrained linear
system of equations. Therefore, additional assumptions are necessary. Assuming O∗,λji = Oλij

[405] allows to
compute the occupied-occupied block according to

Oλij = −1

2

∑
µ,ν

C∗µiS
λ
µνCνj = −1

2
Sλij . (4.142)

Therefore, an explicit and numerically stable expression for the occupied-occupied block of the orbital
rotation matrix is found. The elements of the virtual-occupied block read

Oλai =
Fλai − εiSλai
εi − εa

. (4.143)

The gap between the occupied and the virtual orbitals is usually large enough to avoid numerical inaccuracies
for closed-shell systems. Note that the perturbed Fock matrix depends on the perturbed density and thus on
the orbital rotation matrix according to

Fλµν = hλµν +
∑
κ,ω

(
Dλ
κωGµνκω +DκωG

λ
µνκω

)
, (4.144)

Gµνκω =
∑
κ,ω

(µν|κω)− 1

2
(µω|κν) , (4.145)

whereGµνκω indicates the two-electron integrals, i.e. the Coulomb and exchange integrals in HF. Therefore,
an iterative approach is required to solve the CPHF equations. The occupied-occupied response of the
density is already explicitly defined with the perturbed overlap matrix. Thus, Eq. 4.143 may be partitioned
into a left-hand side (LHS), which depends on the occupied-virtual block of the orbital rotation matrix, and
a right-hand side (RHS), which is independent of Oλai, [417]

(εi − εa)Oλai −Gai[Oλbj ] = RHSλai (4.146)

with the right-hand side
RHSλai = Fλai[D]− εiSλai +Gai[O

λ
jk]. (4.147)

Here, Fλai[D] denotes the integral derivatives of the Fock matrix with the unperturbed density matrix.
Gai[O

λ
bj ] and Gai[Oλij ] indicate that the two-electron integrals are obtained using the occupied-virtual and

the occupied-occupied orbital rotation matrix to calculate the perturbed density matrix,Dλ
µν . The Coulomb

integrals for the terms Gai[Oλbj ] and Gai[Oλij ] vanish as the perturbed density matrix is imaginary and
antisymmetric whereas the Coulomb integrals are real and symmetric. The RHS contribution Gµν [Oλjk]

reads

Gµν [Oλjk] =− 1

2

∑
κ,λ

∑
j,k

2
[
C∗κkO

∗,λ
kj Cωj + C∗κjCωkO

λ
kj

]
(µω|κν)

=
1

2

∑
κ,λ

∑
j,k

[
C∗κkS

∗,λ
kj Cωj + C∗κjCωkS

λ
kj

]
(µω|κν)

(4.148)

and Gai[Oλjk] is obtained by a transformation to the MO space. Similarly, Gµν [Oλbj ] is given as

Gµν [Oλbj ] = −1

2

∑
κ,λ

∑
a,j

2
[
C∗κaO

∗,λ
aj Cωi + C∗κjCωaO

λ
aj

]
(µω|κν) (4.149)

and Gai[Oλbj ] is again obtained by transformation to the MO space.
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For the CPKS equations, the exchange-correlation potential is considered in the Fock matrix

Gµνκω =
∑
κ,ω

[(µν|κω)Dκω] + VXC,µν . (4.150)

The terms Gai[Oλbj ] and Gai[Oλij ] include the matrix representation of the exchange-correlation kernel
instead of the exchange integrals. The XC kernel is defined as

fXC =
∂2EXC

∂ρ(~r)∂ρ(~r ′)
. (4.151)

In the uncoupled approximation [418,419] the exchange-correlation energy depends on the density and its
derivatives but not on the current density. Therefore, the XC kernel term vanishes as the perturbed density
matrix is purely imaginary and antisymmetric whereas the XC kernel is symmetric. The CPKS equations of
“pure” density functional approximations are consequently solved in a single step as Gai[Oλbj ] is zero.

The latter equations can be cast into a matrix form to show the connection to time-dependent density
functional theory [420–422] (TD-DFT) (

A B

B∗ A∗

)(
X

Y

)
=

(
Pν

Pν∗

)
(4.152)

with the matrices

Aia,jb = (εa − εi) δijδab + Cia,jb, (4.153)
Bia,jb = Cia,bj . (4.154)

In a non-relativistic and scalar-relativistic formalism, these matrices are Hermitian. Note that (ia) and (jb)

are the combined indices. The coupling matrix Cpq,rs is defined as

Cpq,rs =

{
(pq|fH |sr)− (pr|fH |sq) for HF
(pq|fH |sr) + (pq|fXC |sr) for DFT

(4.155)

with the Hartree and the XC kernel. Here, the Hartree kernel is defined as

fH =
1

|~r1 − ~r2|
(4.156)

and the exchange-correlation kernel is defined in Eq. 4.151. P collects the elements of the RHS.

4.8 Magnetically Induced Current Densities

As shown in the last section, the magnetic perturbation induces a response of density matrix and thus the
electron density of the molecule. In compounds with a cyclic delocalized π-system, this creates a ring
current in analogy to Ampère’s circuital law of classical mechanics. In the following, the gauge-including
magnetically induced current (GIMIC) method [19,423,424] to calculate the ring current of a quantum chemical
system is briefly derived.
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4 NMR Shieldings and Shifts in Scalar-Relativistic X2C Theory

In the presence of a homogeneous external magnetic field, ~B, and the nuclear magnetic moments, ~mI , the
wave function can be generally expanded as [425]

Ψ = Ψ(0) +
∑

u=x,y,z

ΨBu Bu +
∑
I

∑
u=x,y,z

ΨmI,u mI,u + . . . (4.157)

with the field free wave function Ψ(0). The current density may be expanded in a similar manner as the wave
function. Considering the magnetic field only yields

ju = j(0)
u + jBvu Bv + . . . , (4.158)

where jBvu is the current density susceptibility—usually denoted magnetically induced current density for
simplicity. The current density response with respect to the magnetic moments can be written in a similar
form [16,425]

jv = j(0)
v + jmI,vu mI,v + . . . (4.159)

In analogy to classical electrodynamics, [387,388] the second-order interaction energy can be expressed with
the first-order induced current densities as [16,425,426]

EB,B =
1

2

∫
~AB(~r) ·~jB(~r) d~r, (4.160)

EmI ,B = −
∫

~AmI (~r) ·~jB(~r) d~r = −
∫

~AB(~r) ·~jmI (~r) d~r, (4.161)

EmP ,mQ = −
∫

~AmP (~r) ·~jmQ(~r) d~r = −
∫

~AmP (~r) ·~jmQ(~r) d~r, (4.162)

where Schwarz’s theorem was used. Therefore, the nuclear magnetic shielding tensor can be evaluated with
a Biot–Savart-like expression as

σIuv =
∂2EmI ,B

∂mI,u∂Bv
= −εuwt

∫
(rw −RI,w)

|~r − ~RI |3
∂jt(~r)

∂Bv
d~r (4.163)

with the Levi–Civita tensor εuwt and the point-charge model. Assuming the Biot–Savart-like expression
and the quantum chemical expression yield the same results, Eqs. 4.19 and 4.163 allow to calculate the
magnetically induced current density by rearranging the equations. In non-relativistic quantum chemistry,
the magnetically induced current density is obtained as [423]

∂ju(~r)

∂Bv
=

∑
µν

Dµν

∂λ∗µ

(
~B,~r
)

∂Bv

∂
˜̂
h(~r)

∂mI,u
λν

(
~B,~r
)

+
∑
µν

Dµνλ
∗
µ

(
~B,~r
) ∂˜̂

h(~r)

∂mI,u

∂λν

(
~B,~r
)

∂Bv

+
∑
µν

∂Dµν

∂Bv
λ∗µ

(
~B,~r
) ∂˜̂

h(~r)

∂mI,u
λν

(
~B,~r
)

− εuwt

[∑
µν

Dµνλ
∗
µ

(
~B,~r
) ∂2˜̂

h(~r)

∂mI,u∂Bt
λν

(
~B,~r
)]

(4.164)
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4.8 Magnetically Induced Current Densities

with the non-singular Hamiltonian operator derivatives

∂
˜̂
h(~r)

∂mI,u
=

(
~r − ~RI

)
× ~̂p, (4.165)

∂2˜̂
h(~r)

∂mI,u∂Bv
=

1

2

(
(~r − ~RO) · (~r − ~RI)δuv − (~r − ~RO)u · (~r − ~RN )v

)
. (4.166)

The gauge-origin dependence is removed with GIAOs as the derivative of the GIAOs also result in a
gauge-origin dependence and the individual dependencies cancel each other. Eq. 4.164 only contains the
density matrix and the perturbed density matrix as well as the values of basis function (derivatives) and
the Hamiltonian derivatives at a certain point in space. Thus, the magnetically induced current density is
calculated on a grid. The current strength is then obtained by numerical integration along a plane. The
density matrix and the perturbed density matrix are available from NMR shift calculations with a quantum
chemistry program suite as described in Sec. 4.7. Following, the magnetically induced current density is
computed on a grid with the GIMIC code, [427] which also calculates the basis function (derivatives) and the
Hamiltonian derivatives. A fully consistent X2C treatment of themagnetically induced current density would
require to replace the derivatives of the Hamiltonian operator in Eq. 4.164. However, the X2C Hamiltonian
is only accessible in matrix form. Thus, a fully consistent X2C approach requires major modifications of the
GIMIC program. Moreover, the most important ingredient for the magnetic response of the current density
is the perturbed density matrix of a NMR shielding calculation. Herein, we evaluate Eq. 4.164 without the
complete X2C picture-change correction.
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5 Quasirelativistic NMR Indirect Spin–Spin
Coupling Constants

The NMR indirect spin–spin coupling constant (SSCC) describes the splitting of the NMR shifts based
on the molecular environment. The theoretical framework was developed by Ramsey in a non-relativistic
theory. [428] The NMR coupling constants consists of four contributions, namely the paramagnetic spin–orbit
(PSO) term, the Fermi-contact (FC) interactions, the spin-dipole (SD) term, and the diamagnetic spin–orbit
integrals. The FC and SD term are spin-dependent [429] and therefore only arise in a quasirelativistic X2C
framework. Recently, Yoshizawa presented an X2C implementation of NMR coupling constants at the HF
and MP2 level of theory. [430] However, results were only presented for diatomic molecules and the finite
nuclear size effects of the vector potential were neglected. Therefore, an efficient implementation in a DFT
framework with the finite nucleus model for both the scalar and the vector potential is presented in this work.
The implementation was carried out in collaboration with Fabian Mack, [431] who interfaced the relativistic
routines to the existing infrastructure for NMR coupling constants. [432]

The chapter is structured as follows. After a formal definition of the NMR coupling constant and a discussion
of the balance condition in Sec. 5.1, the derivatives of the X2C Hamiltonian are derived in Sec. 5.2 and the
DLU scheme is introduced in Sec. 5.3. The relativistic integrals are compared to the non-relativistic theory
in Sec. 5.4.

5.1 Definition and Balance Condition

In the Taylor expansion of the electronic energyE in Eq. 4.12, the NMR indirect nuclear spin–spin coupling
tensor is given as the second derivative with respect to the magnetic moments of the nucleiM and N in the
limit of a vanishing perturbation (mM,u = mN,v = 0). This defines the reduced NMR coupling tensor

(KM,N )uv =

(
∂2E

∂mM,u ∂mN,v

)
0

= Tr
(
D hM,N

u,v

)
+ Tr

(
DM
u hNv

)
(5.1)

introducing the short-hand notation

hM,N
u,v =

(
∂2h

∂mM,u ∂mM,v

)
mM,u=mN,v=0

(5.2)

and the (isotropic) reduced coupling constant, KMN , is defined as the average of the diagonal elements of
the (3× 3) matrix KM,N . The reduced coupling constant is commonly given in units of 1019 T J−2. The
equation for the coupling constant is of the same structural form as for the NMR shielding constant. One
of the two terms depends on the density matrix and the second derivative of the Hamiltonian, whereas the
other term includes the response of the density matrix. The calculation of the perturbed density matrix is
described in detail in the next chapter based on the generalized CPHF and CPKS equations.
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5 Quasirelativistic NMR Indirect Spin–Spin Coupling Constants

In experimental measurements, the coupling constant JMN in Hz is the quantity of interest and the corre-
sponding coupling tensor is defined as

(JM,N )uv = h
γM
2π

γN
2π

(KM,N )uv (5.3)

with the gyromagnetic ratio γM of a given nucleus M . [432–434] The isotropic coupling constant, JMN , is
given as

JMN =
1

3

(
(JM,N )xx + (JM,N )yy + (JM,N )zz

)
, (5.4)

whereas the anisotropic contribution reads

∆JMN =

√√√√3

2

(
1

4

∑
u,v

((JMN )uv + (JMN )vu)
2 − 3J2

MN

)
. (5.5)

The nuclear magnetic moments, i.e. the magnetic perturbation, is introduced in the Dirac Hamiltonian with
the principle of minimal coupling [386]

~̂p −→ ~̂π = ~̂p+
1

c
~̂A = ~̂p+

1

c

∑
M

~̂AM , (5.6)

where the vector potential, ~AM , of the nucleusM is defined as in Eq. 4.6,

~AM (~r) = −~mM × ~∇GM (~r) with GM (~r) =

∫
wM (~RM )

|~r − ~R|
d~R, (5.7)

where ~RM denotes the position of the nucleusM .

To ensure the exact non-relativistic limit, the RKB condition is generalized to the RMB condition including
the nuclear magnetic moments similar to NMR shifts as discussed in Sec. 4.2. The basis set expansion in a
restricted magnetically balanced basis set reads [60]∣∣ψL

i

〉
=

∑
µ

cLµi |φµ〉 , (5.8)

∣∣ψS
i

〉
=

∑
µ

cSµi
1

2c
~σ ·
(
~̂p+

1

c
~̂A

)
|φµ〉 . (5.9)

This leads to the four-component Dirac equation in a RMB basis,(
V Π †

Π 1
4c2W − T

)(
CL
− CL

+

CS
− CS

+

)
=

(
S 02

02
1

2c2T

)(
CL
− CL

+

CS
− CS

+

)(
ε− 02

02 ε+

)
, (5.10)

where the notation of Cremer et al. [98] is used. The structure is identical to Eq. 4.26, yet the matrices
differ. The overlap matrix, S and the potential matrix, V , are again block-diagonal in the space of the
two-component spinor functions

S =

(
S 0

0 S

)
, with Sµν = 〈λµ|λν〉 , (5.11)

V =

(
V 0

0 V

)
, with Vµν = 〈λµ|V̂ |λν〉 . (5.12)
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5.1 Definition and Balance Condition

These matrices are identical to the ones in Eq. 2.31 as no field-dependent basis functions are employed for
SSCCs. The other matrices depend on the balance condition and the vector potential. These matrices are
not block-diagonal and describe both scalar-relativistic and spin–orbit effects

Tµν =
1

2
〈φµ|

[
~σ · (~̂p+

1

c
~̂A)
] [
~σ · (~̂p+

1

c
~̂A)
]
|φν〉 , (5.13)

Π †µν =
1

2
〈φµ|

[
~σ · (~̂p+

1

c
~̂A)
] [
~σ · (~̂p+

1

c
~̂A)
]
|φν〉 , (5.14)

Π µν =
1

2
〈φµ|

[
~σ · (~̂p+

1

c
~̂A)
] [
~σ · (~̂p+

1

c
~̂A)
]
|φν〉 , (5.15)

Wµν = 〈φµ|
[
~σ · (~̂p+

1

c
~̂A)
]
V̂
[
~σ · (~̂p+

1

c
~̂A)
]
|φν〉 . (5.16)

Eq. 4.26 for NMR shifts considers the vector potential of the external magnetic field in the balance condition,
whereas the vector potential of the magnetic moments is used in the equations of this chapter. In contrast
to Eq. 4.26, Π is Hermitian as the complete vector potential is used in the generalized momentum for the
Dirac–Hamilton operator and the balance condition. Note that the RMB condition will result in quadratic
terms of the vector potential and diamagnetic interactions are described. [49,395] However, the derivatives of the
relativistically modified potential with respect to the magnetic moments are problematic [430] as they contain
divergent contributions in quasirelativistic ansätze [435,436] and even yield large values in the finite nucleus
model. [437] Yoshizawa computed these integrals with partial integration and the finite nucleus model for the
scalar potential but judges that he “failed in the accurate calculation of the integrals” [430] as the results show
an unreasonably large deviation from the experimental findings at the MP2 level. Neglecting the derivative
ofW in an RMB ansatz results in an imbalanced approach. [430] Therefore, we may ask the question whether
the RMB is needed for SSCCs from a pragmatic point of view, i.e. to obtain accurate results. One the one
hand, the RMB ensures variational stability and the exact non-relativistic limit regardless of the size of the
finite basis set. The deviation of of the orbital energies is ofO(c−4). [57] On the other hand, NMR SSCCs are
calculated in the limit of vanishing magnetic moments. Considering the above equations this means that the
quadratic term of ~A results in non-vanishing second-order integral derivatives of T , Π , andW . However,
this diamagnetic contribution is usually small or negligible for NMR SSCCs. [82,83,116] Consequently, the
RKB results in a good approximation of the non-relativistic limit [50–53] and is also commonly used for
the related hyperfine coupling constant in X2C and DKH. [438–440] Note that including the response of the
decoupling and renormalization matrix as outlined in Sec. 4.4 and 4.5 yields a non-zero second derivative.
Therefore, using the RKB condition instead of the RMB condition is expected to yield minor “errors” for
SSCCs. This approximation is not valid for NMR shielding constants as the absolute value of the diamagnetic
term is often the largest contribution.

Expanding the Dirac–Hamilton operator with the generalized momentum in a restricted kinetically balanced
basis set [248] ∣∣ψL

i

〉
=

∑
µ

cLµi |φµ〉 , (5.17)

∣∣ψS
i

〉
=

∑
µ

cSµi
~σ · ~̂p
2c
|φµ〉 , (5.18)

leads to the four-component Dirac equation in a RKB basis, which is of the same structure as Eq. 5.10.
However, the matrices T andW are independent of the vector potential. Note that the metric of the small
component, T , becomes identical to the kinetic energy matrix in Eq. 2.31 and is therefore block-diagonal.

65



5 Quasirelativistic NMR Indirect Spin–Spin Coupling Constants

For the sake of completeness, T reads

T =

(
T 0

0 T

)
, with Tµν = 〈λµ|

1

2
~̂p 2|λν〉 . (5.19)

W corresponds to the relativistically modified potential in Eq. 2.40

Wµν = 〈φµ|
(
~σ · ~̂p

)
V̂
(
~σ · ~̂p

)
|φν〉 (5.20)

and may be partitioned into the one-component matrices W0, Wx, Wy , and W
z . Only the generalized

momentum matrix, Π , depends on the vector potential. The generalized momentum matrix reads

Π †µν =
1

2

〈
φµ

∣∣∣~σ · (~̂p+
1

c
~̂A

)∣∣∣(~σ · ~̂p)φν〉 . (5.21)

The matrix Π † is not Hermitian with the RKB condition yet the full Dirac matrix is still Hermitian. The
X2C Hamiltonian with the nuclear magnetic moments in a RKB basis set follows as

h+ (~mN ) = R† (~mN )L (~mN )R (~mN ) (5.22)

with the NESC matrix

L (~mN ) = V +X† (~mN )Π (~mN ) +Π † (~mN )X (~mN ) +X† (~mN )

(
1

4c2
W − T

)
X (~mN ) . (5.23)

Note that the decoupling and the renormalization matrix still depend on the nuclear magnetic moments in
an RKB basis.

5.2 Derivatives of the X2C Hamiltonian

5.2.1 First Derivatives of the X2C Hamiltonian

The first derivative of the X2C Hamiltonian with respect to the magnetic moments was already discussed in
Sec. 4.3.2 for scalar-relativistic NMR shifts. For SSCCs, a two-component framework is employed, which
requires a complex matrix framework and consequently more general equations are obtained. Differentiating
Eq. 5.22 with respect to the nuclear magnetic moment ~mM results in

h+,M
u = R†,Mu LR+R†LMu R+R†LRM

u (5.24)

with the first-order derivative of the NESC matrix

LMu = X†,Mu Π +X†ΠM
u + Π †,Mu X + Π †XM

u

+X†,Mu

(
1

4c2
W − T

)
X +X†

(
1

4c2
W − T

)
XM
u .

(5.25)

OnlyR,X , andΠ depend on the nuclear magnetic moments and will yield non-zero derivatives. Compared
to the magnetic-field derivative of NMR shifts, the number of integral derivatives is significantly reduced
due to the RKB condition and field-independent basis functions.
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5.2 Derivatives of the X2C Hamiltonian

The derivative of the generalized momentum matrix is given as(
Π †µν

)M
u

=
1

2c

〈
φµ

∣∣∣(~∇M ĜM × ~σ)
u

∣∣∣(~σ · ~̂p)φν〉 . (5.26)

For an efficient implementation, it is advantageous to separate the integral derivative into the spin-independent
and the spin-dependent contributions using the Dirac identity, resulting in(

Π †µν

)M
u

=
∂

∂mM
u

[
1

2
〈λµ|~̂π · ~̂p|λν〉σ0 +

1

2
〈λµ|i~σ ·

(
~̂π× ~̂p

)
|λν〉

]
=

1

2c
〈λµ|

(
~∇M ĜM × ~̂p

)
u
|λν〉σ0

+
i

2c
〈λµ|

([
~σ · ~∇M ĜM

]
p̂u − σu

[
~∇M ĜM · ~̂p

])
|λν〉 .

(5.27)

This allows to construct the two-component matrix with the one-component integral derivative matrices
by sorting onto the respective spin blocks. The integrals are the same as for the NMR shielding constants
discussed in Sec. 4.3.2. In the point-charge limit,

(
Π †µν

)M
u

reduces to

(
Π †µν

)M
u

=
1

2c
〈λµ|r̂−3

M

(
~̂rM × ~̂p

)
u
|λν〉σ0 +

i
2c
〈λµ|r̂−3

M

(
~σ · ~̂rM p̂u − σu~̂rM · ~̂p

)
|λν〉 . (5.28)

The scalar-relativistic or spin-independent contribution is the PSO term. These integrals are imaginary and
antisymmetric. As shown in Sec. 5.4, the spin-dependent part corresponds to the Fermi-contact and the
spin-dipole term. The spin-dependent contribution is non-symmetric. Thus, the matrix is partitioned into
the symmetric and antisymmetric part according to

M
±
µν =

1

2
(Mµν ±Mνµ) , (5.29)

where M
+ indicates the symmetric contribution and M

− denotes the antisymmetric contribution. For
efficiency, the matrices are calculated in the CAO basis and are partitioned into the two contributions during
the transformation to the spherical AO basis set, thereby avoiding additional loops. The integral derivatives
are evaluated in the same way as outlined in Sec. 4.3.2.

The derivative of the decoupling matrix is obtained by solving response equations as shown for the general
two-component formalism in Sec. 4.4.1. For the magnetic moments, this results in

Xλ = (CS− −XCL−) Uλ
−+ C

†
L+ S̃ (5.30)

and the negative-positive block of the orbital rotation matrix is computed according to

(Uλ
−+)kl =

(D̃λ
−+)kl

(E++)ll − (E−−)kk
. (5.31)

This only requires to transform the integral derivatives of the generalized momentum matrix to the basis of
the unperturbed solutions according to

D̃λ
−+ = CL,†

− Π †,λCS
+ +CS,†

− Π λCL
+. (5.32)

The matrix multiplications are performed with the BLAS routine ZGEMM3M. [399,400] The inverse of the
coefficients CL

+ for the decoupling matrix is obtained with the routines ZGETRI and ZGETRF. [399,400]
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According to Sec. 4.5, the perturbed renormalization matrix is calculated by solving the Sylvester matrix
equation

RRM
u +RM

u R = S̃−1S̃Mu RR (5.33)

using the eigenvalue decomposition method. The complex matrixK in Eq. 4.117 is diagonalized with the
LAPACK routine [396] ZHEEV. The matrix multiplications for the generalized inverse of the eigenvectors of
the renormalization and the transformations are again performed with ZGEMM3M. The matrix multiplica-
tions scale as O(N3), where N measures the system size. Compared to the scalar-relativistic formalism,
the computation time formally increases by a factor of 32 due to the doubled dimension and the complex
numbers (4 · 23). [105]

5.2.2 Second Derivatives of the X2C Hamiltonian

The Dirac matrix possesses no bilinear terms regarding ~A in an RKB basis. So, the second derivative of the
X2C Hamiltonian becomes

h+,M,N
u,v = R†,M,N

u,v LR+R†,Mu LNv R+R†,Mu LRN
v

+R†,Nv LMu R+R†LM,N
u,v R+R†LMu R

N
v

+R†,Nv LRM
u +R†LNv R

M
u +R†LRM,N

u,v

(5.34)

with the derivative of the NESC matrix

LM,N
u,v = X†,M,N

u,v Π +X†,Mu ΠN
v +X†,Nv ΠM

u

+ Π †,Mu XN
v + Π †XM,N

u,v + Π †,Nv XM
u

+X†,M,N
u,v

(
1

4c2
W − T

)
X +X†,Mu

(
1

4c2
W − T

)
XN
v

+X†
(

1

4c2
W − T

)
XM,N
u,v +X†,Nv

(
1

4c2
W − T

)
XM
u .

(5.35)

Note that the derivative of the X2C Hamiltonian only arises due to the response of the decoupling and
the renormalization matrix. Neglecting these derivatives as commonly done for the hyperfine coupling
constant [438–440] or the g tensor [439] in electron paramagnetic resonance (EPR) spectroscopy will yield zero
for the second derivative and not result in the full analytical derivative of the energy. Here, the second-order
derivative of the decoupling matrix is given as

Xκλ = (CS− −XCL−) [ Ũκλ
−+ −Uκ

−+ C
†
L+ S̃ CL− U

λ
−+

−Uλ
−+ C

†
L+ S̃ CL− U

κ
−+] C†L+ S̃

(5.36)

with the second-order orbital rotation matrix

(Ũκλ
−+)kl =

1

(E++)ll − (E−−)kk

{ [
U †,κ+−D̃

λ
++

]
kl

+
[
D̃λ
−−U

κ
−+

]
kl

+
[
U †,λ+−D̃

κ
++

]
kl

+
[
D̃κ
−−U

λ
−+

]
kl

}
.

(5.37)

This is a simplified form of Eq. 4.101 as the metric vanishes in a RKB basis set and consequently the
negative-negative and the positive-positive block of the first-order orbital rotation matrix, Uλ

−− and Uλ
++,

vanish.
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The negative-positive block is given in Eq. 5.31 and the positive-negative block reads

(Uλ
+−)kl =

(D̃λ
+−)kl

(E−−)ll − (E++)kk
. (5.38)

The remaining blocks of the perturbed Dirac matrix in the basis of the unperturbed solutions are obtained
according to

D̃λ
−− = CL,†

− Π †,λCS
− +CS,†

− Π λCL
−, (5.39)

D̃λ
+− = CL,†

+ Π †,λCS
− +CS,†

+ Π λCL
−, (5.40)

D̃λ
++ = CL,†

+ Π †,λCS
+ +CS,†

+ Π λCL
+. (5.41)

Finally, the derivative of the renormalization matrix is calculated by solving the Sylvester matrix equation

RRM,N
u,v +RM,N

u,v R = Q (5.42)

with the right-hand side

Q = −S̃−1
[
S̃M,N
u,v RR+ S̃Mu S̃

−1S̃Nv RR+ S̃Nv S̃
−1S̃Mu RR−RM

u R
N
v −RN

v R
M
u

]
(5.43)

using an eigenvalue decomposition method as above. Compared to the first-order derivatives, the working
equations of the second-order derivatives include significantly more terms and are more demanding, however,
the implementation is very similar as all matrix multiplications can still be performed with ZGEMM3M.
The number of matrix multiplications is reduced compared to NMR shifts in the last chapter as the integral
derivatives of all matrices except for Π and Π † vanish.

5.3 Local Approximation of the X2C Hamiltonian

The second derivative or the DSO term in X2C is the most demanding contribution in terms of computational
effort as it requires to calculate a considerable number of matrix multiplications. However, the absolute
contribution of these terms is often small or even negligible compared to the first derivatives. Therefore,
reducing the computational costs is highly desirable. Applying the diagonal local approximation to the
unitary decoupling transformation to the Hamiltonian in Eq. 5.22 gives the atomic diagonal blocks

h+
AA = R†AA

(
VAA + Π †AAXAA +X†AAΠAA +X†AA

[
1

4c2
WAA − TAA

]
XAA

)
RAA (5.44)

and the atomic off-diagonal blocks

h+
AB = R†AA

(
VAB + Π †ABXBB +X†AAΠAB +X†AA

[
1

4c2
WAB − TAB

]
XBB

)
RBB . (5.45)

These equations are structurally identical to Eqs. 4.126 and 4.127, however, the matrices are formulated
in the two-component space. Differentiating these equations results in the perturbed spin–orbit DLU-
X2C Hamiltonian in analogy to Eqs. 4.131 and 4.132. As for NMR shifts, the atomic diagonal block is
simply obtained by considering the atomic dimensions in the response equations for the decoupling and the
renormalization matrix. The off-diagonal blocks are constructed by matrix multiplications with the obtained
atomic diagonal matrices and the atomic off-diagonal blocks of the integrals and the integral derivatives.
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For completeness, the atomic diagonal blocks read

h+,M
AA,u = R†,MAA,u

(
VAA + Π †AAXAA +X†AAΠAA +X†AA

[
1

4c2
WAA − TAA

]
XAA

)
RAA

+R†AA

(
VAA + Π †AAXAA +X†AAΠAA +X†AA

[
1

4c2
WAA − TAA

]
XAA

)
RM
AA,u

+R†AA

(
Π †,MAA,uXAA + Π †AAX

M
AA,u +X†,MAA,uΠAA +X†AAΠ

M
AA,u

)
RAA

+R†AA

(
X†,MAA,u

[
1

4c2
WAA − TAA

]
XAA +X†AA

[
1

4c2
WAA − TAA

]
XM
AA,u

)
RAA

(5.46)

and the off-diagonal blocks follow as

h+,M
AB,u = R†,MAA,u

(
VAB + Π †ABXBB +X†AAΠAB +X†AA

[
1

4c2
WAB − TAB

]
XBB

)
RBB

+R†AA

(
VAB + Π †ABXBB +X†AAΠAB +X†AA

[
1

4c2
WAB − TAB

]
XBB

)
RM
BB,u

+R†AA

(
Π †,MAB,uXBB + Π †ABX

M
BB,u +X†,MAA,uΠAB +X†AAΠ

M
AB,u

)
RBB

+R†AA

(
X†,MAA,u

[
1

4c2
WAB − TAB

]
XBB +X†AA

[
1

4c2
WAB − TAB

]
XM
BB,u

)
RBB .

(5.47)

The implementation is described Fig. 5.1. The initialization steps are essentially the same as for the
implementation of NMR shieldings except that the spin–orbit matrices Wx, Wy , Wz are computed. The
(m)SNSO approach is available for these matrices. First, the atomic diagonal blocks of the unperturbed X2C
quantities are calculated by removing the linear dependencies and transforming the one-component matrices
from the spherical AO basis to the linear-independent AO (IAO) basis. Secondly, the two-component
matrices are constructed in the IAO basis and the X2C decoupling step is carried out using the LAPACK
routine [396] ZHEGV for the diagonalization of the complex Dirac matrix. The obtained matrices are stored
on a vector in the IAO basis for the evaluation of Eq. 5.46 and 5.47.

The integral derivatives are evaluated in the one-component space and the two-component matrices are
constructed when needed using the Pauli matrices to sort the one-component matrix elements onto the
corresponding spin blocks. The atomic diagonal blocks of the perturbed Hamiltonian are obtained by
first gathering all required quantities in the IAO basis and then solving the first-order response equations
for the decoupling matrix and the Sylvester matrix equation for the renormalization matrix. The matrix
multiplications are generally performed with ZGEMM3M. The routine ZAXPY [399,400] is used for the
multiplication of a general matrix with a diagonal matrix. The derivatives of the decoupling and the
renormalization matrix are transformed to the AO basis, collected in a second vector, and used to compute
all matrix multiplications in Eq. 5.47 for the atomic off-diagonal block. After the computation of all atomic
diagonal and off-diagonal blocks, the resulting DLU-X2C Hamiltonian derivative is transformed to the CAO
basis and the contraction of the basis set is applied. Then, the perturbed Hamiltonian is transformed to the
AO basis and the spinor space. The result is stored on disk for the solver of the CPHF or CPKS equations. All
integral evaluations, the loops over the atomic diagonal and off-diagonal blocks, as well as the transformation
and contraction at the end of the algorithm are parallelized with OpenMP.
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Calculate the first derivatives of the DLU-X2C Hamiltonian for SSCCs:(
∂h

∂mN,v

)
0

with u ∈ {x, y, z}

Initialization

1. Initialization of transformations and uncontracted basis set
2. Calculate all unperturbed integrals: S, T, V,W0, Wx, Wy ,Wz

in CAO basis and transformation to spherical AO basis on the fly
3. Initialize atomic information for DLU scheme

Unperturbed quantities

4. Loop over atomic diagonal blocks
a) Get atomic diagonal blocks of S, T, V, W0,Wx,Wy , Wz

b) Diagonalize overlap matrix and remove linear dependencies
c) Transformation to linear-independent AO (IAO) basis
d) Perform X2C decoupling step and obtain the matricesX ,R, S̃, VR, r, L etc.
e) Collect the atomic diagonal blocks ofX ,R, L, S̃, S̃−1, VR, V 1

R ,
CL
−, CL

+, CS
−, CS

+, E−−, E++, and the AO-IAO transformation matrix on a vector
5. End loop over atomic diagonal blocks

Perturbed quantities

6. Compute all integral derivatives: spin blocks for ΠM in CAO
and transformation to spherical AO on the fly

7. Loop over Cartesian directions u
a) Loop over atomic diagonal blocks

i. Read atomic diagonal quantities on vector
ii. Get atomic diagonal blocks of integral derivatives
iii. Transformation to IAO basis
iv. Compute mixed derivative of Hamiltonian and back-transformation to AO basis
v. Collect quantities for atomic off-diagonal blocks on another vector:
XM ,RM

b) End Loop over atomic diagonal blocks
c) Loop over atomic off-diagonal blocks

i. Read atomic diagonal quantities on vectors
ii. Get atomic off-diagonal blocks of integral derivatives
iii. Perform matrix multiplications for off-diagonal block of DLU-X2C Hamiltonian
iv. Form conjugate transpose of atomic off-diagonal block

d) End Loop over atomic off-diagonal blocks
e) Transform derivative of Hamiltonian to CAO basis
f) Perform contraction of Hamiltonian derivative and

transformation to spherical AO basis
8. End Loop over Cartesian direction u

Connection to CPHF or CPKS solver

9. Transformation to spinor space for CPHF or CPKS equations

Figure 5.1: Algorithm for the calculation of the first derivatives of the DLU-X2C Hamiltonian. The sorting steps for the DLU-X2C
Hamiltonian are omitted for clarity.
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Further differentiating Eq. 5.46 and 5.47 gives the Hamiltonian contribution to the DSO term. The atomic
diagonal blocks become

hM,N
u,v,AA = RM,N

u,v,AA LAA RAA +R†,Mu,AA L
N
v,AA RAA +R†,Mu,AA LAA R

N
v,AA

+R†,Nv,AA L
M
u,AA RAA +R†AA L

M,N
u,v,AA RAA +R†AA L

M
u,AAR

N
v,AA

+R†,Nv,AA LAA R
M
u,AA +R†AA L

N
v,AA R

M
u,AA +R†AA LAA R

M,N
u,v,AA

(5.48)

and the off-diagonal blocks follow as

hM,N
u,v,AB = R†,M,N

u,v,AA LAB RBB +R†,Mu,AA L
N
v,AB RBB +R†,Mu,AA LAB R

N
v,BB

+R†,Nv,AA L
M
u,AB RBB +R†AA L

M,N
u,v,AB RBB +R†AA L

M
u,ABR

N
v,BB

+R†,Nv,AA LAB R
M
u,BB +R†AA L

N
v,AB R

M
u,BB +R†AA LAB R

M,N
u,v,BB .

(5.49)

The second derivatives of the NESC matrix read

LM,N
u,v,AB = Π†,Mu,AB X

N
v,BB + Π†,Nv,AB X

M
u,BB + Π†AB X

M,N
u,v,BB

+X†,M,N
u,v,AA ΠAB +X†,Mu,AA ΠN

v,AB +X†,Nv,AA ΠM
u,AB

+X†,M,N
u,v,AA

(
1

4c2
WAB − TAB

)
XBB +X†,Mu,AA

(
1

4c2
WAB − TAB

)
XN
v,BB

+X†,Nv,AA

(
1

4c2
WAB − TAB

)
XM
u,BB +X†AA

(
1

4c2
WAB − TAB

)
XM,N
u,v,BB .

(5.50)

The second derivative of the DLU-X2C is contracted with the unperturbed density matrix. Therefore, the
algorithm has a similar structure as in Fig. 4.1, however, it works in the two-component space for the
relativistic decoupling and the response steps for the derivatives. Therefore, the spin–orbit matrices Wx,
W
y , Wz are considered and the complex BLAS or LAPACK routines are used: DGEMM is replaced by

ZGEMM3M, DSYGV by ZHEGV, DAXPY by ZAXPY, and so on.

5.4 Comparison to the Non-Relativistic Integral Derivatives

To consider the impact of the RKB condition on the non-relativistic limit, the integral derivatives of the
previous sections are compared to Ramsey’s theory. [428] The four contributions of the Hamilton operator to
the NMR SSCC are given by

ĥFCN =
8π

3c

∑
i

δ (~r − ~riN ) ~̂si, (5.51)

ĥSDN =
1

c

∑
i

3~r T
iN ~̂si~riN − ~r 2

iN ~̂si
|~riN |5

, (5.52)

ĥPSON = − i
c

∑
i

~riN ×∇i
|~riN |3

, (5.53)

ĥDSON,M =
1

c2

∑
i

3~r T
iN~riLI3 − ~riN~r T

iN

|~riN |3|~riM |3
, (5.54)

with ~si denoting the spin of the electron i. Note that Ramsey employs the point charge model for the vector
potential and the scalar potential. The FC, SD, and the PSO term require the first-order response of the
density matrix, which is obtained similar to time-dependent density functional calculations [412,416,420,422,441]
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and the terms are considered separately for a closed-shell system with a total spin of zero. [6] The PSO term is
contracted with the density response of an imaginary singlet transition and the FC or SD term are contracted
with the density response of a real triplet transition. Due to spin–orbit coupling, the electron spin is no
longer a good quantum number, i.e. the wave function is no longer an eigenfunction of the electron spin. So,
the three terms have to be considered together in a relativistic framework.

In the non-relativistic limit, the speed of light, c, approaches infinity for all terms except the magnetic
perturbation, i.e. the generalized momentum. The needed blocks of the unitary transformation matrix,ULL

and USL, become unit matrices [104] and the derivatives vanish. Accordingly,X andR are unit matrices in
this limit. The non-relativistic (NR) limit of the X2C Hamiltonian derivative follows as

lim
NR
h+,M
u = Π †,Mu + ΠM

u . (5.55)

So, the derivatives ofΠ † andΠ can simply be added. Note that the sum of these two matrices is Hermitian.
Consequently, the hermiticity of the non-relativistic Hamiltonian is recovered. The PSO term directly
corresponds to the spin-independent contribution of the sum and requires no further simplification. The
remaining spin-dependent integral reads

∑
v

σv

∫
rM,v

r3
M

∇u (λµλν) d~r − 1

2c
σu

∫
~rM · ~∇
r3
M

(λµλν) d~r. (5.56)

As shown by Kutzelnigg, [429] the derivative can be moved to the operator using integration by parts. Here,
the integral is simplified following the formulation of Feng and co-workers for the hyperfine coupling
constant. [440] Therefore, the second integral becomes

− 1

2c
σu

∫
~rM · ~∇
r3
M

(λµλν) d~r =
1

2c
σu

∫ ~∇ · ~rM
r3
M

(λµλν) d~r

=
4π

2c
σu

∫
δ (~r − ~rM ) (λµλν) d~r.

(5.57)

The last rearrangement was made using the Green’s function for the electrostatic potential

~∇2 1

|~rM |
= −4πδ (~r − ~rM ) (5.58)

and
~∇ 1

|~rM |
= −~rM

r3
M

. (5.59)

Using integration by parts for the other term in Eq. 5.56 yields the same result for u = v with a prefactor of
−1/3. [440] Considering that the spin vector operator is defined as ~̂s = 1

2~σ. The non-relativistic Fermi-contact
term is recovered. The other parts of the sum with v 6= u yield the SD term similar to Ref. 442. Therefore,
all first-order terms of Ramsey’s theory are recovered in the non-relativistic limit in a RKB basis. The
additional term with the derivative of W , which only arises in a RMB basis, does not contribute to the
non-relativistic limit due to the prefactor of 1

4c2 .

As there are no bilinear terms in ~A in Π † and Π , the exact non-relativistic limit of the DSO term is not
recovered. In a RKB basis, the DSO term solely arises due to the matrix multiplications like Π †,Mu XN

v .
Again, the absolute value of the DSO term is usually negligible and the resulting calculations with the
X2C-RKB or the 4c-RKB Hamiltonian are in excellent agreement with the non-relativistic calculations for
molecules consisting of light elements only. [50–53] A similar behavior is observed for the hyperfine coupling
constant. [438–440]
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6 Generalized Solver for Two-Component
Response Equations

The calculation of the perturbed density matrix for the quasirelativistic treatment of NMR spin–spin coupling
constants requires a generalized solver for the CPHF or CPKS equations. Such a solver was developed in
collaboration with Max Kehry and Christof Holzer in the context of a two-component damped response
formalism for the Bethe–Salpeter equation in the GW approximation (GW-BSE) and also used to obtain
dynamic and static polarizabilties. [443] Here, the solver will be applied to the NMR couplings in a HF and
a DFT framework. Quasirelativistic static polarizabilities in an X2C framework are discussed in Appendix
A.3. Dynamic polarizabilities are not discussed as the frequency-dependent extension was implemented by
Max Kehry.

The perturbed densitymatrix is calculated by approximating the perturbed coefficients as a linear combination
of the unperturbed coefficients. The orbital rotation matrix for the perturbation λ of the generalized CPHF
and CPKS equations is obtained in the same manner as for the one-component approach outlined in Sec. 4.7
as [79,444]

Oλij = −1

2
Sλij , (6.1)

Oλai =
Fλai − Sλaiεi
εi − εa

, (6.2)

where i, j, . . . and a, b, . . . indicate occupied and virtual spinor orbitals, respectively. p, q, . . . denote
arbitrary spinor orbitals. Sλpq is the perturbed overlap matrix and Fλpq is the perturbed Fock matrix, which
depends on the perturbed density matrix and the integral derivatives. ε denotes the spinor energies, i.e. the
eigenvalues of the Hartree–Fock or Kohn–Sham equations. The first-order spinor coefficients are given as(

Cαµi
)λ

=
∑
p

CαµpO
λ
pi, (6.3)

(
Cβµi

)λ
=

∑
p

CβµpO
λ
pi. (6.4)

Note that the orbital rotation matrix includes α-β spin rotations as the Fock matrix and the overlap matrix
in the spinor space read

Fλai =
∑
µν

[
Cα∗µa

(
Fααµν

)λ
Cανi + Cα∗µa

(
Fαβµν

)λ
Cβνi + Cβ∗µa

(
F βαµν

)λ
Cανi + Cβ∗µa

(
F ββµν

)λ
Cβνi

]
, (6.5)

Sλai =
∑
µν

[
Cα∗µa

(
Sααµν

)λ
Cανi + Cα∗µa

(
Sαβµν

)λ
Cβνi + Cβ∗µa

(
Sβαµν

)λ
Cανi + Cβ∗µa

(
Sββµν

)λ
Cβνi

]
. (6.6)

The perturbed density matrix is obtained as the derivative of Eq. 3.20

Dλ =

(
(Dαα)

λ (
D
αβ
)λ(

D
βα
)λ (

D
ββ
)λ
)
, (6.7)
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where the individual real and imaginary contributions are given as the derivatives of Eqs. 3.21 and 3.22

Re
(
Dσ1σ2,λ
νµ

)
=

∑
i

ni

[
Re(Cσ1,λ

νi ) Re(Cσ2
µi ) + Im(Cσ1,λ

νi ) Im(Cσ2
µi )
]

+
∑
i

ni

[
Re(Cσ1

νi ) Re(Cσ2,λ
µi ) + Im(Cσ1

νi ) Im(Cσ2,λ
µi )

]
,

(6.8)

Im
(
Dσ1σ2,λ
νµ

)
=

∑
i

ni

[
−Re(Cσ1,λ

νi ) Im(Cσ2
µi ) + Im(Cσ1,λ

νi ) Re(Cσ2
µi )
]

+
∑
i

ni

[
−Re(Cσ1

νi ) Im(Cσ2,λ
µi ) + Im(Cσ1

νi ) Re(Cσ2,λ
µi )

]
.

(6.9)

σ1 and σ2 denote the spin. The occupied-occupied block is only non-zero for basis functions depending on
the perturbation. Thus, only the occupied-virtual block of the orbital rotation matrix is required for NMR
SSCCs. The generalization of the static response equations discussed in Sec. 4.7 is given in the spinor space
as (

A B

B∗ A∗

)(
X

Y

)
=

(
Pν

Pν∗

)
, (6.10)

where the first supermatrix on the left-hand side describes the electronic Hessian, H. In a complex two-
component formalism, A is a Hermitian matrix and the matrix B is complex symmetric. The electronic
Hessian is a Hermitian and positive semidefinite matrix of full rank for the ground state. The vectors X

and Y describe the occupied-virtual contribution of the perturbed density matrix. The matrices A and B

depend on the electronic structure theory, i.e. Hartree–Fock or Kohn–Sham density functional theory in
this work. The right-hand side contains the information on the perturbation and is specific to the desired
molecular property. Thus, the calculation of NMR coupling constants and static polarizabilties essentially
differs in the RHS. In a generalized Kohn–Sham DFT framework, the matrices A and B are given by

Aia,jb = (εKSa − εKSi )δijδab + via,jb + fXCia,jb , (6.11)
Bia,jb = via,bj + fXCia,bj , (6.12)

where εKSp is the Kohn–Sham energy of the spinor p and via,jb = 〈aj|ib〉 = (ai|jb) = (ia|bj) is a
two-electron integral, which may be evaluated with the RI approximation. fXCia,jb is the non-collinear
exchange-correlation kernel defined as

fXC =
∂2EXC

∂ρ(~r)∂ρ(~r ′)
1⊗ 1 +

∑
k=x,y,z

∂2EXC

∂s2
δ(~r − ~r ′)σk ⊗ σk (6.13)

including the HF exchange contribution for global, local, and range-separated hybrid functionals according
to the definition of the exchange-correlation energy in Sec. 3.5. The XC kernel is the first derivative of the
exchange-correlation potential with respect to the density. Note that the XC kernel is evaluated in the space
of the basis functions and subsequently transformed with the expansion coefficients of the spinors. In a
two-component non-collinear Kohn–Sham formalism, the exchange-correlation kernel is a combination of
the one-component XC kernels [421] for singlet-singlet and singlet-triplet excitations. [443,445] An expression
for the exchange-correlation kernel is given in the the next chapter.
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In generalized Hartree–Fock theory, the XC kernel and the Kohn–Sham spinor energies are replaced by the
exchange integrals,K, and the HF spinor energies, εHF, leading to

Aia,jb = (εHFa − εHFi )δijδab + via,jb −Kia,jb , (6.14)
Bia,jb = via,bj −Kia,bj , (6.15)

where the exchange integrals, Kia,jb = 〈ib|ja〉 = (ij|ba), may be calculated analytically or with the
seminumerical exchange approximation discussed in Sec. 3.3. The efficient implementation of the two-
electron integrals for the matrices A and B is described in detail in Refs. 446 and 447. Thanks to the
structural similarities of the response equations for time-dependent DFT and the CPKS equations, [420,422] all
two-electron integrals are already available. [311,416,441,445,448,449] The initial OpenMP implementation [450,451]

of the integrals, the XC kernel, and the matrix operations was reworked and extended with Christof Holzer
to match the capabilities of the current computer infrastructure. [450,452]

For NMR SSCCs, the RHS vector Pν contains the one-electron Hamiltonian derivatives with respect to the
nuclear magnetic moments, ~mI , in the spinor space

Pν
pq = (hmI )

ν
pq =

∑
κη

C∗pκ (hmI )
ν
κη Cηq with ν = x, y, z. (6.16)

Note that the three derivatives for each nucleus are independent of each other and a nuclear selection
scheme was implemented by Fabian Mack for the non-relativistic approach [432] and carried over to the
quasirelativistic two-component ansatz. The conductor-like screening model [453,454] (COSMO) does neither
result in additional terms for the RHS nor the LHS as COSMO does not depend on the magnetic moments
and the contributions to the LHS vanish like for triplet transitions according to their symmetry.

The dimension of the matrices A and B is (Nocc · Nvirt)
2, where Nocc and Nvirt denote the occupied and

virtual spinors. Thus, a straightforward solution of the response equation with a Cholesky decomposition
is impractical for large molecules due to the effective scaling of O

(
(Nocc ·Nvirt)

3
)
≈ O

(
N6
)
. Therefore,

Eq. 6.10 is not solved directly but with an iterative method. The solver outlined herein is based on the
non-Hermitian eigenvalue solver of Ref. 455 developed for excitation energies in time-dependent density
functional theory and the Bethe–Salpeter equation. This solver is described in more detail in Ref. 447.
The following (block) conjugate gradient or generalized Davidson algorithm to find theM roots of a linear
system of equations is proposed.
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1. A set ofM trial vectors is generated according to

v =

(
xν

yν

)
(6.17)

with

xνbj =
P νbj

εb − εj
, (6.18)

yνbj =
P ν∗bj
εb − εj

. (6.19)

2. Set n = M .

3. Setm = n. Note that in the first iteration the subspace dimension is consequentlym = n = M .

4. Loop for n > 0.

5. For i = 1 . . . n: Form the matrix-vector product wm−n+i = Hvm−n+i and subsequently form the
(m×m) LHS matrix Q and the RHS vector q of the subspace with

Q = w†V , (6.20)
q = V†p , (6.21)

where the trial vectors are collected column-wise in the matrix V and p is the supervector of the RHS,
Pν and Pν∗.

6. The linear system of equations is solved in the subspace

Qt = q (6.22)

using a Gaussian elimination with partial pivoting. So, the solution vectors t are obtained. This is
done with the LAPACK routines [396] ZPOTRF and ZPOTRS. Here, ZPOTRF computes the Cholesky
factorization of the complex Hermitian and positive definite matrix Q. ZPOTRS solves the linear sys-
tem of equations. Note that the numerical stability of this method relies on fulfilling the requirements
of the matrix properties for ZPOTRF. So, the conjugate gradient method will be aborted if the ground
state is not obtained successfully in the preceding SCF calculation. For the non-Hermitian case like
in dynamic polarizability calculations, ZGESV is used to solve the linear system of equations.

7. For i = 1, . . . n: Form the residual vectors r as

z = Vt , (6.23)
r = Hz− p . (6.24)

8. For i = 1, . . . n: The procedure is converged if ||ri|| < tol (default 10−6). Update n as n = n− 1 for
a converged trial vector.
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9. For i = 1, . . . n: Construct new trial vectors u for all non-converged trial vectors from the residual
vectors with a Jacobi–Davidson-like step

u = εM−1z−M−1r , (6.25)
M = diag(H) , (6.26)

ε =
z†M−1r

z†M−1z
, (6.27)

where the general Hermitian system of equations is preconditioned with the diagonal parts of the
electronic Hessian. [456] ε is a correction term. [457]

10. For i = 1, . . . n: Orthogonalization ofuwith respect to the old trial vectorsv using the Gram–Schmidt
procedure.

11. Increase the dimension of the trial space with m = m + n and add the new trial vectors u to the
existing trial vectors v and the matrix V.

12. End loop if n = 0

13. Calculate the property by contracting the solution vectors X and Y with the RHS vectors.
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7 Generalization of meta-GGA and Local
Hybrid Functionals for Gauge Invariance

The generalization of the momentum operator, ~̂p, to the generalized momentum, ~̂π, for magnetic properties
necessitates a generalization of the kinetic energy density, τ , for meta-GGAs and the τ -dependent hybrid
functionals. [458–462] Note that the respective implementation for NMR shifts and coupling constants was
carried out in collaboration with Christof Holzer. [365]

7.1 Gauge-Dependence of the Kinetic Energy Density

A fundamental requirement of electrodynamics is the invariance of all physical observables with respect to
a gauge transformation of the vector potential [387,388]

~A(~r) −→ ~A ′(~r) = ~A(~r) + ~∇Λ(~r), (7.1)

where Λ is a real gauge function. The total energy and therefore the exchange-correlation energy as a
function of the density, the density gradient, and the kinetic energy density

EXC =

∫
f
(
ρ(~r), ~∇ρ(~r), τ(~r)

)
d~r (7.2)

is consequently required to be gauge invariant. This implies that either all terms of the XC energy are
gauge-invariant or that the gauge-dependence of some terms cancel each other due to the explicit functional
form. It can easily be shown that the kinetic energy density, τ , becomes gauge dependent and thus the
XC energy is not gauge-invariant without further corrections. [461,462] Consider the application of the gauge
transformation in Eq. 7.1 to the Kohn–Sham orbitals

ψj(~r) −→ ψ′j(~r) = ψj(~r) exp
(
− i
c
Λ(~r)

)
, (7.3)

where a position dependent phase factor was introduced. Therefore, the kinetic energy density becomes

τ(~r) −→ τ ′(~r) = τ(~r)− 1

c

(
~∇Λ(~r)

)
·~jp(~r) +

1

2c2
|~∇Λ(~r)|2ρ(~r) (7.4)

with the paramagnetic current density ~jp [463]

~jp(~r) = − i
2

∑
i

(
ψ∗i
~∇ψi − ψi~∇ψ∗i

)
=

i
2

∑
i

(
ψi~∇ψ∗i − ψ∗i ~∇ψi

)
= Re

∑
i

ψ∗i ~̂p ψi. (7.5)

Here, the paramagnetic current density is the real part of the momentum density. [464] The total current
density in the presence of a vector potential is [463]

~j(~r) = Re
(

Ψ∗(~r)~̂πΨ(~r)
)

= ~jp(~r) +
1

c
ρ(~r) ~A(~r). (7.6)
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7 Generalization of meta-GGA and Local Hybrid Functionals for Gauge Invariance

In contrast to the physical or total current density, the paramagnetic current density does not depend on
the vector potential. The transformed kinetic energy in Eq. 7.4 is a quadratic function of Λ and explicitly
depends on the gauge. As no further corrections to cancel this gauge dependence were introduced so far,
a simple meta-GGA exchange-correlation energy will be gauge dependent or gauge variant. Consequently,
the iso-orbital constraint does not hold for τ ′(~r) as the gauge-transformed inhomogenity parameter

z′(~r) =
τvW (~r)

τ ′(~r)
(7.7)

may take any value between zero and one depending on the gauge—even in one-electron regions. [462]

7.2 Gauge-Invariant Formalism for NMR Shifts and Couplings

A first gauge-invariant generalization of the kinetic energy density was presented by Maximoff and Scuseria
for NMR shielding constants and shifts. [461] As discussed in Sec. 4.7, the CPKS equations are solved for
the magnetic field derivatives and it is therefore sufficient to consider the gauge-invariant generalization of
τ for the external magnetic field in the first place. Similar to the GIAOs, the external magnetic field may be
included in the kinetic energy density according to [461]

τ̃MS(~r) =
∑
i

(
~̂p+

1

c
~ABO

)
ψ∗j ·

(
~̂p+

1

c
~ABO

)
ψj (7.8)

with the gauge-origin-dependent vector potential of the external magnetic field

~ABO(~r) =
1

2
~B ×

(
~r − ~RO

)
. (7.9)

Here, τ̃MS may be interpreted as the magnetic-field-generalized momentum density. Thus, the gauge-
dependence is canceled for the generalized kinetic energy density and consequently for the exchange-
correlation energy. In the limit of a zero-field, τ̃ → τ holds. The tempting property of this choice is that it
only affects the derivatives with respect to the magnetic field of the right-hand side in the CPKS equations
to calculate the perturbed Fock matrix. The derivative of the XC contribution to the perturbed Fock matrix
is obtained as

∂FXCµν

∂Bu
=

∂

∂Bu

∂EXC
∂Dµν

=
∂

∂Bu

[
∂

∂Dµν

∫
f
(
ρ(~r), ~∇ρ(~r), τ̃(~r)

)
d~r

]
, (7.10)

where the derivative of f is calculated with the chain rule. The explicit expression for the derivative of the
generalized kinetic energy density with respect to the density matrix in a GIAO basis does not depend on the
density matrix. Consequently, no terms involving the perturbed density matrix arise for the XC contribution
and the CPHF equations of meta-GGA functionals are solved directly in one step like for LSDA and GGA
functionals. To show this, Eq. 7.8 is rearranged using τ according to

τ̃MS(~r) = τ(~r) +
1

c
~jp(~r) · ~ABO(~r) +

1

2c2
| ~ABO(~r)|2ρ(~r). (7.11)

Thus, the derivatives of ρ, τ , and ~jp with respect to the density matrix are needed to set up the Fock matrix.
The derivatives of the individual terms read

∂ρ

∂Dµν
= λ∗µ

(
~B,~r
)
λν

(
~B,~r
)
, (7.12)
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∂τ

∂Dµν
=

1

2
~∇λ∗µ

(
~B,~r
)
~∇λν

(
~B,~r
)
, (7.13)

∂~jp
∂Dµν

=
i
2

[
λν

(
~B,~r
)
~∇λ∗µ

(
~B,~r
)
− λ∗µ

(
~B,~r
)
~∇λν

(
~B,~r
)]
. (7.14)

Here, the complex GIAOs are indicated by the explicit field dependence, λµ
(
~B,~r
)
. The field-free basis

functions are denoted as λµ (~r). The magnetic field dependence and the corresponding terms for the
derivative with respect to the magnetic field arises due to the phase factor of the GIAOs. In linear response
theory, the second-order term | ~ABO(~r)|2 does not contribute to the first-order derivatives and the derivative
of the term with τ̃MS in Eq. 7.10 becomes

∂

∂Bu

∂τ̃MS

∂Dµν
=

∂

∂Bu

[
1

2
~∇λ∗µ

(
~B,~r
)
~∇λν

(
~B,~r
)]

+
∂

∂Bu

[ i
2c
~ABO

{
λν

(
~B,~r
)
~∇λ∗µ

(
~B,~r
)
− λ∗µ

(
~B,~r
)
~∇λν

(
~B,~r
)}]

.

(7.15)

So, this generalization preserves the symmetry of the derivatives of the XC energy of the left-hand side in the
CPKS equations. Thus, the symmetry considerations of the uncoupled approximation [418,419] still hold and
no iterative procedure is required for meta-GGA functionals. This generalization is implemented in most
quantum chemical program suites and was also implemented in TURBOMOLE. [407] The implementation
is described in detail in Ref. 414. However, the iso-orbital constraint is not satisfied. Moreover, the gauge
correction depends on the vector potential and its application to time-dependent density functional theory or
NMR coupling constants and related properties would require major modifications of the existing machinery
and the calculation of specific DFT integrals for each property. The general form of this generalization is
given as [462]

τ̃MS(~r) = τ(~r) +
1

c
~jp(~r) · ~A(~r) +

1

2c2
| ~A(~r)|2ρ(~r), (7.16)

where ~A is a general vector potential. Therefore, an application of this approach to NMR spin–spin
coupling constants or hyperfine coupling tensors in electron paramagnetic resonance (EPR) spectroscopy
is not desirable. Moreover, the loss of the iso-orbital constraint may be also problematic for local hybrid
functionals based on the t-LMF.

Alternatively, Becke [459] and Tao [460] suggested to generalize the kinetic energy density with the para-
magnetic current density in the spirit of current density functional theory (CDFT) to avoid the explicit
dependence on the vector potential and the magnetic perturbation [463,465]

τ̃BT = τ − |
~jp|2

2ρ
. (7.17)

The kinetic energy density is gauge invariant due to the gauge transformation of the paramagnetic current
density

~jp(~r) −→ ~j′p(~r) = ~jp(~r)−
1

c
~∇Λ(~r)ρ(~r). (7.18)

The static meta-GGA ground-state properties and electric response properties like polarizabilities are not
altered as τ̃BT coincides with τ for these properties. It was shown [462] that this choice ensures the iso-orbital
constraint with a gauge-invariant inhomogenity parameter and satisfies the von Weizsäcker inequality [466]

τ vW(~r) ≤ τ̃(~r). (7.19)
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7 Generalization of meta-GGA and Local Hybrid Functionals for Gauge Invariance

This ansatz was introduced into quantum chemistry program suites by Bates and Furche for time-dependent
density functional theory and excited-state properties. [462] A drawback of this ansatz is that for NMR shifts
and related magnetic properties, |~jp|2 leads to a magnetic XC kernel in the left-hand side of the CPKS
equations. Therefore, an iterative procedure is required even in non-hybrid DFT NMR calculations as noted
by Bates and Furche. [462] Essentially, the matrices of the XC kernel become non-symmetric and are thus
partitioned into the respective symmetric and antisymmetric contributions. To demonstrate this, the basis
set expansion of the magnetic-field derivatives of the paramagnetic current density is considered, [467]

∂

∂Bu

∂τ̃BT
∂Dµν

=
∂

∂Bu

[
1

2
~∇λ∗µ

(
~B,~r
)
~∇λν

(
~B,~r
)]

− ∂

∂Bu

[
i

2ρ
~jp

{
λν

(
~B,~r
)
~∇λ∗µ

(
~B,~r
)
− λ∗µ

(
~B,~r
)
~∇λν

(
~B,~r
)}]

.

(7.20)

The derivative of ~jp with respect to the magnetic field reads

∂~jp
∂Bu

=
i
2

∑
µν

∂

∂Bu

[
Dµν

{
λν

(
~B,~r
)
~∇λ∗µ

(
~B,~r
)
− λ∗µ

(
~B,~r
)
~∇λν

(
~B,~r
)}]

=
i
2

∑
µν

∂Dµν

∂Bu

{
λν

(
~B,~r
)
~∇λ∗µ

(
~B,~r
)
− λ∗µ

(
~B,~r
)
~∇λν

(
~B,~r
)}

− 1

4

∑
µν

Dµν
∂

∂Bu

{
~B ×

(
~Rµ − ~RO

)
+ ~B ×

(
~Rν − ~RO

)}
λ∗µ(~r)λν(~r)

− 1

2

∑
µν

Dµν

(
~Rµν × ~r

)
u

(
λν(~r)~∇λ∗µ(~r)− λ∗µ(~r)~∇λν(~r)

)
.

(7.21)

Here, the derivative of the paramagnetic current density depends on the perturbed density and the corre-
sponding term in the left-hand side of the CPKS equations does not vanish as the term is purely imaginary
and antisymmertic. The CPKS equations need to be solved in an iterative procedure for current-depending
meta-GGAs. Therefore, it has attracted less general interest for magnetic response properties. A pilot
implementation of NMR shifts with the current-dependent generalization was just presented recently for
meta-GGAs and t-LMF-based local hybrid functionals. [467] This implementation was reworked in collabo-
ration with Christof Holzer by interfacing the efficient routines developed in Ref. 462 for the left-hand side
of the CPKS equations. This ensures that the resulting left-hand side contribution is numerically stable and
strictly antisymmetric. Thus, a smooth convergence of the CPKS equations for large molecules is obtained.
The implementation was verified by interfacing the non-relativistic one-component integrals to the general
two-component non-Hermitian (block) conjugate gradient or Davidson solver, which simultaneously pro-
cesses symmetric and antisymmetric contributions. Moreover, the implementation was extended to local
hybrid functionals based on the z-LMF and the PSTS-LMF in conventional gauge.

NMR spin–spin coupling constants are commonly calculated with the gauge-variant kinetic energy density,
τ . [123,432,468] To the best of the author’s knowledge, no implementation with the generalized kinetic energy
density was presented so far. However, the generalization of the kinetic energy density based on the
paramagnetic current density can be applied straightforwardly to NMR coupling constants based on the
time-dependent density functional implementation as shown below. In a non-relativistic approach, the
response equations are solved separately for the paramagnetic spin–orbit, spin-dipole, and the Fermi-contact
term. [6] Here, the paramagnetic spin–orbit term is obtained directly for meta-GGAs with the gauge-variant
kinetic energy density. This is no longer sufficient when considering the paramagnetic current density
and τ̃BT as the paramagnetic spin–orbit integrals are imaginary and antisymmetric. So, the symmetry is
the same as for NMR shifts and consequently an iterative procedure is required for the current-dependent
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7.2 Gauge-Invariant Formalism for NMR Shifts and Couplings

meta-GGAs. Similar to static polarizabilities, the SD and the FC term are not altered by the generalization
as the one-electron integrals for the right-hand side of the CPKS equations are real and the paramagnetic
current density terms for the orbital rotation matrix of the left-hand side vanish. Therefore, the previously
presented non-relativistic implementation of meta-GGAs and local hybrid functionals [432] was extended to
account for the paramagnetic current density in a gauge-invariant Kohn–Sham formalism by interfacing the
routines of Ref. 462 for the PSO term. Compared to NMR shifts, the derivatives of τ̃BT are simplified as
the basis functions do not depend on the nuclear magnetic moments, ~mI ,

∂

∂mI,u

∂τ̃BT
∂Dµν

= − ∂

∂mI,u

[
i

2ρ
~jp

{
λν(~r)~∇λ∗µ(~r)− λ∗µ(~r)~∇λν(~r)

}]
. (7.22)

Thus, only the paramagnetic current density and the density have to be evaluated, which are available from
the time-dependent density functional theory implementation. [416,462]

The extension to a Kramers-restricted [469] (closed-shell) two-component framework, will be illustrated for
local hybrid functionals as the most general τ -dependent functional class considered herein. The non-
relativistic kernel of a local hybrid functional, fXCLH , was derived in Ref. 470 and the two-component XC
kernel was later derived by Holzer [443] in analogy to the GGA XC kernel. [445,471,472] The non-collinear LHF
XC kernel is defined as

fXC,ncLH =
∂2EXC

∂ρ(~r)∂ρ(~r ′)
1⊗ 1 +

∑
k=x,y,z

∂2EXC

∂s2
δ(~r − ~r ′)σk ⊗ σk

=
(
Cαµa

)∗
Cανi(µν|f

XC,s
LH |κη)Cακb

(
Cαηj
)∗

+
∑

k=x,y,z

∂2EXC

∂s2
δ(~r − ~r ′)σk ⊗ σk,

(7.23)

where s denotes the norm of the non-collinear spin magnetization vector of Eq. 3.51. The second term
can be simplified using the singlet and triplet kernels derived by Bauernschmitt and Ahlrichs, [421] fXC,s and
fXC,t. Further making use of the complex-conjugate structure of the Kramers-symmetric reference state
yields [443]

(ai|fXC,ncLH |jb) =
∑
µνκη

(Cαµa)∗Cανi(µν|f
XC,s
LH |κη)Cακb(C

α
ηj)
∗ + (Cαµa)∗Cανi(µν|f

XC,t
LH |κη)Cβκn(Cβηj)

∗

+ (Cβµa)∗Cβνi(µν|f
XC,s
LH |κη)Cβκb(C

β
ηj)
∗ + (Cβµa)∗Cβνi(µν|f

XC,t
LH |κη)Cακb(C

α
ηj)
∗

+ (Cβµa)∗Cανi(µν|f
XC,t
LH |κη)Cακb(C

β
λj)
∗ + (Cαµa)∗Cβνi(µν|f

XC,t
LH |κη)Cβκb(C

α
ηj)
∗,

(7.24)

where only 6 of 16 possible combinations are required to evaluate the XC kernel. All τ -dependent terms in
the singlet and triplet kernel are replaced by the current-dependent generalization τ̃ and the paramagnetic
current density is calculated with the respective density matrices. The density matrices of the spin blocks
({αα}, {αβ}, {βα}, {ββ}) are split into the symmetric and the antisymmetric contribution to utilize the
one-component routines. Note that the two-component meta-GGA and LHF XC kernels were implemented
by Holzer [452,455] and can be readily used for the two-component calculations of NMR SSCCs thanks to
the general solver outlined in the previous chapter. However, the thresholds for the addition of the matrix
elements to the kernel were tightened by five orders of magnitude in the two-component case to ensure a
rapid convergence of the CPKS procedure. Note that in a quasirelativistic two-component formalism all
three terms are evaluated simultaneously to set up the perturbed two-component Fock matrix. Thus, an
iterative procedure is required for all “pure” density functional approximations.
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8 Development of Tailored Basis Sets

The NMR shifts depend on the electron density in the vicinity of the nuclei. Therefore, optimized basis sets
are required. [219,220] The existing X2C orbital basis sets of double and triple-ζ quality [203] are chosen as a
starting point for the NMR-tailored basis sets of the same quality. These orbital basis sets were optimized
in a variational procedure utilizing numerical gradients. Such an approach is impractical for larger basis
sets. Therefore, analytical basis sets gradients were derived and implemented in this work to develop the
corresponding quadruple-ζ orbital basis sets.

8.1 Analytical Gradients and Symmetry Exploitation

In a variational procedure, the basis sets are optimized with a Newton–Raphson algorithm based on energy
calculations, gradients, and a Hessian update for the relaxation step. [194,195,473] The potential energy surface
with respect to the basis set parameters is very complicated as the parameters are coupled. Therefore, the
relaxation procedure requires to consider the exponents and the contraction coefficients simultaneously but
freezing some parameters or resetting the Hessian update. To ensure a local minima is found, the Broyden–
Fletcher–Goldfarb–Shanno algorithm [474–477] is a common choice for the Hessian update. The optimization
is performed for atoms in restricted-open-shell Hartree–Fock (ROHF) theory. [478] This requires to exploit
point group symmetry to prepare the atomic states.

To begin with, the analytical basis set gradients for the X2CHamiltonian are derived. A contracted Cartesian
Gaussian basis function centered at the nucleus A is defined as

λµ,A(lx, ly, lz) =
∑
i

ki gi,A(lx, ly, lz) (8.1)

with the contraction coefficient ki and the primitive Gaussian function gi,A

gi,A(lx, ly, lz) = Ni (x−Ax)
lx (y −Ay)

ly (z −Az)lz exp

[
−ζµ

(
~r − ~RA

)2
]
, (8.2)

Ni =

(
24L−1

π3

)1/4(
1

(2lx − 1)!! (2ly − 1)!! (2lz − 1)!!

)1/2

ζ
(1/2)(L+1/2)
i , (8.3)

where the number L is defined as L = lx + ly + lz + 1. [194] !! indicates the double factorial. The derivative
of the electronic energy [410,479] with respect to the exponents ζµ reads

∂E

∂ζµ
= tr

(
Dh

ζµ
)

+
1

2
tr
(
ΓGζµ

)
− tr

(
ZS

ζµ
)

(8.4)

with the one-electron density matrix D, the two-electron integrals G, the two-electron density matrix Γ,
and the energy-weighted density matrix Z. The explicit expressions of these matrices depend on the chosen
electronic structure theory.
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In restricted HF theory, the LCAO coefficients are real and the matrices are defined as

Dµν = 2
∑
i∈occ

CµiCνi , (8.5)

Zµν = 2
∑
i∈occ

εiCµiCνi , (8.6)

(ΓG)µν =
∑
κ,ω

DµνDκω

[
(µν|κω)− 1

2
(µκ|νω)

]
. (8.7)

However, basis sets are optimized in ROHF to prepare the atomic states and therefore a brief review of ROHF
is provided to derive the expressions. In ROHF, two sets of orbitals are considered. The first set, {ψck},
describes the doubly occupied closed-shell core. The second set, {ψor}, describes the partially occupied
open shells. The two subsets are constructed with a Slater determinant and are orthonormal. The total
energy is given as

E = 2
∑
k

hk +
∑
k,l

[2Jkl −Kkl]

+ f

(
2
∑
r

hr + f
∑
r,s

[2aJrs − bKrs] + 2
∑
k,r

[2Jkr −Kkr]

)
,

(8.8)

where hk denotes the expectation value of the one-electron Hamiltonian with the doubly occupied orbital k
and hr the expectation value with the open-shell orbital r. The Coulomb and exchange matrix elements are
defined accordingly. a, b, and f are parameters. a and b depend on the electronic state and f is the fractional
occupation of the open shell. The individual contributions to the Coulomb operator can be described as

Ĵc =
∑
k

Ĵk, Jo = f
∑
r

Ĵr, Ĵ = Ĵc + Ĵo (8.9)

and the other operators may be partitioned in the same manner. Minimization of the energy with respect to
the orbitals leads to the ROHF equations. This introduces coupling elements between the closed-shell and
the partially open-shell orbitals. The Roothaan–Hall form of the ROHF equations reads

FC = εSC, (8.10)

where the Fock matrix is defined as
F = h + P−Q + R. (8.11)

Here, P is the total contribution of the two-electron integrals defined with the 4-index supermatrix of the
Coulomb and the exchange operator

P = (2J −K)D, (8.12)

where D is the total density, D = D
c + D

o. The matrix Q describes the two-electron part of the open-shell
contribution

Q = (2aJ − bK)Do (8.13)

and the matrix R is defined as
R = SDQ + QDS. (8.14)

For analytical derivatives in Eq. 8.4, the one-electron terms depend on the total density only and the two-
electron terms are evaluated with the total contribution, P, and the open-shell contribution,Q, as well as the
coupling terms, R. The derivatives of the two-electron integrals J andK are used. In the scalar-relativistic
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one-electron X2C ansatz, only the derivatives of the Hamiltonian h
ζµ are different from the non-relativistic

formalism.

The derivative of the X2C Hamiltonian with respect to the basis set exponent follows as

h
ζµ = R

†,ζµ
LR + R

†
L
ζµ
R + R

†
LR

ζµ (8.15)

with the derivative of the NESC matrix

L
ζµ = V

ζµ + X
†,ζµ

T + X
†
T
ζµ + T

ζµ
X + TX

ζµ

+ X
†
(

1

4c2
W

0,ζµ − T
ζµ

)
X + X

†,ζµ
(

1

4c2
W

0 − T

)
X + X

†
(

1

4c2
W

0 − T

)
X
ζµ .

(8.16)

The derivatives of the one-electron integrals are computed with the derivative of the basis functions

∂ 〈x|λµ,A(lx, ly, lz)〉
∂ζµ

=
∂Nµ
∂ηµ

1

Nµ
〈x|λµ(lx, ly, lz)〉

− 〈x|λµ(lx + 2, ly, lz)〉 − 〈x|λµ(lx, ly + 2, lz)〉 − 〈x|λµ(lx, ly, lz + 2)〉 .
(8.17)

Therefore, all integrals are obtained by linear combinations. The derivative of the normalization constant
results in a prefactor. For instance, the derivative of the potential matrix is given by

V
ζµ
µν =

∂Nµ
∂ηµ

1

Nµ
〈λµ|V̂ |λν〉+ 〈λµ + 2x|V̂ |λν〉+ 〈λµ + 2y|V̂ |λν〉+ 〈λµ + 2z|V̂ |λν〉 . (8.18)

The other matrices are evaluated in the same manner. The derivatives of S and T are calculated with
Gauss–Hermite integration and the derivatives ofV andW by Gauss–Rys integration. The derivatives of the
decoupling and the renormalization matrix are obtained by solving response equations and Sylvester matrix
equations. The derivative of X is computed according to

X
ζµ =

(
C
S
− − XC

L
−
)
U
ζµ
−+ C

L,†
+ S̃ (8.19)

with the orbital rotation matrix

(U
ζµ
−+)kl =

(D̃
ζµ−+)kl − (M̃

ζµ
−+)kl (E++)ll

(E++)ll − (E−−)kk
. (8.20)

For the derivative of the renormalization matrix, the Sylvester equation

RRζµ +RζµR = S̃
−1
(
S
ζµ − S̃

ζµ
RR

)
(8.21)

is solved with an eigenvalue decomposition method. The algorithm for hζµ is based on the geometry gradi-
ents. [106,107] The derivative of the Hamiltonian with respect to the contraction coefficients, ki, significantly
differs from the derivatives discussed so far. The X2C Hamiltonian does not depend on the contraction
coefficients and therefore no response or Sylvester matrix equations have to be solved. The X2CHamiltonian
is calculated like in energy calculations and the derivative is formed in the contraction step according to

hki = C†,kicont hX2C Ccont +C†cont hX2C C
ki
cont. (8.22)

The matrix Ccont contains the contraction coefficients. Hence, the derivative of this matrix is trivial as
the elements are either zero or one and the routine of the contraction only requires minor modifications to
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calculate the respective derivative. As the basis sets are optimized in atomic calculations and then tested for
a large set of small and mid-sized molecules, the DLU scheme is not implemented for basis set gradients.

The implementation exploits Abelian and non-Abelian point group symmetry based on the considerations
of Ref. 105. Therefore, the integrals are still evaluated in C1 symmetry but the algebraic steps support
the point group symmetry to reduce the dimension of the involved matrices. After the integral evaluation
and the on the fly transformation to the spherical atomic orbital basis, the matrices S, T, V, and W

0 are
transformed to the symmetry-adapted (SAO) basis with the coefficients cAS as discussed in Ref. 480. In
this basis, the matrices SSS, TSS, VSS, and W

0
SS are block-diagonal. Therefore, the relativistic decoupling

is carried out separately for each block. The matrices XSS, RSS, S̃SS, S̃
−1

SS , VSS, the eigenvectors, and the
eigenvalues are obtained and kept in memory for the X2C response and Sylvester matrix equations. Similar
to the unperturbed integrals, the integral derivatives are computed in C1 symmetry in the spherical AO basis
and subsequently transformed to the SAO basis. Also, the integral derivative matrices are block diagonal in
this base and the response of XSS and RSS is obtained independently for every irreducible representation.
This yields the perturbed Hamiltonian in the SAO basis, which needs to be transformed back to the AO basis
with the inverse coefficients c−1

AS given as

c
−1
AS = S

−1
SS SSA. (8.23)

SSA indicates that only one index is transformed from the AO to the SAO basis. The inverse of the overlap
matrix S

−1
SS is calculated independently for every irreducible representation. The perturbed Hamiltonian

in the AO basis is further transformed to the CAO basis and contracted to form the trace with the density
matrix.

With the described basis set gradients, the computation time is reduced to a few seconds compared to a
few minutes with numerical gradients. The quadruple-ζ basis sets were then developed by Lucas Spiske,
Patrik Pollak, and Florian Weigend. For balanced errors, the developed basis sets are tested with a large set
of molecules featuring the oxidation states of nearly all elements up to radon. [481] The errors are measured
with respect to a large even-tempered basis set. [203,482,483] The exponents are constructed by a factor of 4

√
10

and functions are added until the energy is considered to be converged. The extensions for NMR shifts of
the quadruple-ζ bases were then optimized by the author. [483]

8.2 Optimized Basis Sets for NMR Shieldings and Shifts

The construction of the tailored basis sets is described in detail for the triple-ζ bases as these are the “default”
choice for relativistic NMR shielding calculations. The double-ζ basis sets are obtained in the same manner
and the description is shortened accordingly. The quadruple-ζ bases require different optimizations and
considerations. During the development of the quadruple-ζ orbital basis sets it turned out that the previously
constructed even-tempered basis set of Ref. 203 for the double and triple-ζ orbital and NMR-tailored basis
sets is not sufficiently accurate for quadruple-ζ basis sets. Therefore, a larger even-tempered basis set was
constructed in Ref. 483 and is used for the development of the NMR-tailored quadruple-ζ bases. The basis
sets for NMR shieldings are optimized by analyzing the deficiencies of the underlying orbital basis sets
and subsequent extensions to remove these shortcomings. Here, the central design principle is to keep the
additions of further functions at a minimum to ensure that the other properties are not negatively affected by
the extensions. Jensen previously showed that tight basis functions are needed for an accurate description of
the density in the core region. [219,220] Still, a detailed analysis of the deficits is necessary as Jensen studied
light elements up to krypton in a non-relativistic approach and relativistic all-electron basis sets may require
additional modifications.
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8.2.1 Analysis of Deficits and Development of Optimized Basis Sets

To analyze the present deficits of the x2c-TZVPall basis set for NMR shieldings, a large molecular test set
was chosen. The test set consists of 255 neutral closed-shell molecules [484] with 555 shielding constants and
is a subset of the previously collected test set for the development of the orbital basis sets. [198,199,202,481,485,486]

NMR shielding constants [398,407,413] are calculated at the PBE [341] level of theory with the scalar-relativistic
Hamiltonian. [105,107,379] The finite nucleus model is applied for both the scalar and the vector potential. Large
grids are employed for the numerical integration of the exchange-correlation terms (grid 4a) [482] and the
SCF energies were converged with a threshold of 10−8 Eh. The suffix “a” of the integration grid indicates
an increased number of radial points. TURBOMOLE’s standard grids [294,315] for heavy elements were
developed for ECP calculations. The NMR calculations use a criterion of 10−7 a.u. for the norm of the
residuum [416] to ensure a well converged perturbed density matrix. Point group symmetry is not exploited to
check for basis set incompleteness errors regarding symmetry-equivalent nuclei. However, only symmetry-
inequivalent nuclei are considered in the statistical evaluation. The mean absolute error of the x2c-TZVPall
basis, the x2c-TZVPPall bases with more polarization functions, and the x2c-TZVPall-2c bases with more p
and d functions to describe the spin–orbit splitting are shown in Fig. 8.1. Errors are measured with respect
to the even-tempered basis set of Ref. 203 and the shielding constants of the nuclei are sorted according to
the group in the periodic table of elements. As expected, the error and the standard deviation increase for
the heavy nuclei but also the range of the NMR shieldings increases. The x2c-TZVPPall basis set leads to
essentially the same results as x2c-TZVPall for all groups. Therefore, additional polarization functions are
not needed. In contrast, the two-component extensions lead to a significant improvement for the 6s, 5d, and
6p elements. Therefore, additional p and d functions are needed. Using the full two-component extensions
is disadvantageous for triple-ζ basis sets as these may increase the size of the uncontracted basis set by up
to 30%. The extensions for the p space are usually based on the first contracted p shell, those contraction
coefficients were reoptimized to describe the splitting into the P1/2 and P3/2 states. This increases the
flexibility of the basis set in the outer-core and the valence region. To reduce the number of functions to
be added, the two-component extensions are modeled by a few uncontracted or primitive p and d functions.
These functions were optimized by Robert Treß reducing the error with respect to the x2c-TZVPall-2c bases
in several cycles with the complete test set. Functions with a large exponent are added for the heavy elements,
e.g., an exponent between 280 and 330 for the 6p elements. This removes all shortcomings in the outer-core
and the valence region. Note that adding these functions differs from the approach of Jensen [219,220] but
is necessary for heavy elements. For the 6p group, this reduces the mean absolute error from more than
450 ppm to less than 150 ppm. However, the impact of these functions is negligible up to the 5s group.
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Figure 8.1: Mean absolute error in the shielding constants and standard deviation in ppm of all-electron relativistic triple-ζ bases with
respect to the even-tempered basis set of Ref. 203.
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Table 8.1: Exponents of the first segment for carbon. The exponents are shown in the left rows and the right rows contain the contraction
coefficients. The first contracted GTO consists of four primitive functions.

x2c-TZVPall x2c-TZVPall-s

4p 4p

34.707 038 490 0.005 368 429 499 9 225.595 750 19 0.000 294 631 690 00

7.955 898 785 1 0.035 952 788 969 34.707 038 490 0.005 174 918 299 8

2.379 171 553 6 0.142 320 109 89 7.955 898 785 1 0.036 091 895 998

0.814 393 594 87 0.342 778 420 56 2.379 171 553 6 0.141 975 700 01

1p

0.814 393 594 87 1.000 000 000 0

For the core region, it is necessary to add tight functions—especially for the light elements. These are
obtained as suggested by Jensen: [219,220]

1. Add a single p function for every element by scaling the inner-most function (largest exponent) of the
first segment with a factor of 6.5.

2. Exclude the outer-most primitive (smallest exponent) from the segment and use it as an additional
augmentation function.

3. Reoptimize the contraction of the first segment to avoid a deterioration of other properties.

Note that the factor of 6.5 is at least to some extent arbitrary. Using a factor between 5 and 8 is a reasonable
choice and essentially leads to the same results. We used 6.5 for consistency with the basis sets of Jensen.
Step 3 is carried outwith the analytical basis set gradients in atomicROHF calculations for all elements except
the lanthanides which utilize unrestricted HF theory to avoid convergence issues. The SCF calculations are
considered to be converged based on an energy threshold of 10−10 Eh and a root mean square of the density
of 10−10. The same atomic states as for the underlying orbital basis set [203] are prepared with the ROHF
parameters and the symmetry constraints. All exponents differ at least by a factor of 1.5 to avoid linear
dependencies and ensure a smooth SCF convergence. To illustrate the approach, consider the carbon atom.
The largest exponent of the inner-most segment is 34.707038490 and therefore a function with an exponent
of 225.59575019 is added. The p space is altered as shown in Tab. 8.1. The NMR-optimized basis sets
are indicated by the suffix “-s”. Sulfur and chlorine required further changes in the contraction patter for
error-balanced shieldings. Here, the contraction pattern of aluminium, silicon, and phosphorous (511111)
is changed to (42111). The x2c-TZVPPall-s basis sets are obtained by simply adding the same polarization
functions [198] as for x2c-TZVPPall. The x2c-SVPall-s basis set is constructed by using the same extensions
for the outer-core and the valence-region as well as reoptimizing the first segment. Likewise, the contraction
pattern for S and Cl is changed to (4211) compared to (5111) for Al, Si, and P.

The extensions of the quadruple-ζ bases are constructed similarly. The x2c-QZVPPall basis set does not
result in an improvement, whereas the two-component extensions lead to a significant improvement for heavy
elements. These extensions are available for the heavy elements only and the extensions are small compared
to the total size of the basis set. The number of basis functions throughout the test set is increased by about
7%. So, no minimal extensions were optimized and the two-component extensions are employed as is. Tests
showed that only the 1s, 2s, 2p, and 3d groups require additional tight functions. Consequently, a single
tight function is added as described above. For all other groups, the x2c-QZVPall bases already include
large exponents. The contraction pattern of the x2c-SVPall-s, x2c-TZVPall-s, and the x2c-QZVPall-s basis
sets are listed in Tab. 8.2. The bases are also available via the Basis Set Exchange library. [487,488]
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Table 8.3: Comparison of the errors in ppm with respect to the large even-tempered (ET) basis set of Ref. 483 for the previously
developed ET basis set of Ref. 203, the NMR-tailored x2c-SVPall-s, x2c-TZVPall-s, x2c-QZVPall-s bases, and the parent
basis sets. The prefix “x2c-” is omitted for brevity. The large deviation of the 5d group between the even-tempered
bases of Ref. 203 and the larger ET basis set of Ref. 483 is caused by Lanthanum. ng denotes the number of symmetry
non-equivalent nuclei of the group. σ indicates the standard deviation of the weighted overall error (WOE), see Eq. 8.24.
NBF denotes the total number of basis functions in the spherical AO basis. The reference basis set uses 202,340 functions
in total.

Group ng Previous ET SVPall SVPall-s TZVPall TZVPall-s QZVPall QZVPPall QZVPall-2c QZVPall-s
1s 93 0.1 0.6 0.4 0.4 0.3 0.2 0.1 0.1 0.1

2s 19 0.8 7.2 5.0 6.1 5.2 0.4 0.4 0.4 0.1

2p 195 1.3 19.0 20.6 11.1 5.5 6.1 6.0 6.1 5.1

3s 14 0.2 3.2 3.8 2.5 0.7 0.2 0.2 0.3 0.3

3p 76 3.2 37.6 35.2 14.6 11.4 3.3 3.3 2.9 2.9

4s 12 5.3 27.3 29.5 20.6 15.1 2.7 2.5 2.0 2.0

3d 27 1.0 205 159 67.4 29.1 21.1 21.7 21.4 20.3

4p 24 2.2 36.6 52.2 22.2 18.5 4.5 4.5 3.8 3.8

5s 8 0.1 21.6 40.2 18.2 13.0 7.9 7.9 3.7 3.7

4d 2 2.1 53.8 151 50.7 45.4 18.8 18.4 6.3 6.2

5p 18 7.7 184 192 64.6 35.9 29.3 29.5 8.3 8.1

6s 8 16.6 134 144 134 22.9 81.1 81.1 3.4 3.4

5d 21 67.9 423 483 373 123 194 193 11.7 12.1

6p 19 9.6 461 327 487 83.9 209 208 2.2 31.8

WOE 0.002 0.03 0.03 0.02 0.01 0.008 0.008 0.003 0.002

σ 0.006 0.04 0.04 0.02 0.02 0.008 0.009 0.007 0.007

NBF 165,741 23,396 23,946 33,161 37,599 65,408 67,314 69,813 71,628

The errors for the test set are assessed with a weighted overall error (WOE) as a simple indicator for the
basis set quality defined as

η =
∑
g

ngMAEg/wg
ntot

. (8.24)

ng is the number of symmetry non-equivalent nuclei in each group, g, throughout the test set, wg denotes
the range of the shieldings, and ntot is the total number of symmetry non-equivalent nuclei. The results are
presented in Tab. 8.3 and the individual shielding constants are available in the supporting information of
Ref. 482 and 483. The two even-tempered basis set result in a good agreement for all groups except the 5d
block. Here, the WOE of the larger even-tempered basis sets and the previously developed even-tempered
bases amounts to about 70 ppm. The x2c-SVPall-s basis sets result in a minor improvement only. Generally,
double-ζ bases are not sufficiently flexible for NMR calculations of heavy elements. Therefore, at least a
triple-ζ basis set should be used. Here, the extensions for NMR shieldings result in a notable improvement,
the WOE is halved and especially the errors of the sixth row are significantly reduced. For instance, the
error of the 6p elements is reduced from 487 ppm to 83.9 ppm. All quadruple-ζ basis sets are a considerable
improvement upon the double and triple-ζ basis sets, however, the number of functions is doubled compared
to the x2c-TZVPall basis and nearly increased by a factor of three compared to the x2c-SVPall bases. The
x2c-QZVPall and x2c-QZVPPall bases yield nearly the same results and larger errors for the 6s, 5d, and 6p
elements. These are reduced by the x2c-QZVPall-2c and x2c-QZVPall-s basis sets. The latter improves
the results of the light elements and yields the same weighted overall error as the previously developed
even-tempered basis sets. At first glance, the increased error for the 6p elements compared to the x2c-
QZVPall-2c bases and a decreased weighted overall error may come as a surprise. However, the range of
the NMR shieldings for the 6p group is very large and amounts to 3237 ppm. So, the improvement for the 2s
and the 2p group out-weights this deterioration. The different results for the groups with heavier elements
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8.2 Optimized Basis Sets for NMR Shieldings and Shifts

are explained by the impact of the basis functions at the light element on the heavy element. Based on
the results the x2c-TZVPall-s basis is recommended for general NMR shielding calculations whereas the
x2c-QZVPall-s bases may be used for benchmark calculations to approach the complete basis set limit. In a
density functional framework, the triple-ζ basis sets are often a reasonable choice whereas Møller–Plesset
theory, which yields excellent results for the NMR shifts of light elements, [489–492] may benefit from larger
bases. The existing x2c-type auxiliary basis sets can be used with the NMR-tailored bases for ground-state
calculations. These auxiliary basis sets fit the ground-state density. In contrast, tailored auxiliary basis sets
are required for very accurate excited-state calculations or post-HF and post-KS treatments as these require
to fit the orbital products of the two-electron integrals. [485,493,494]

8.2.2 Comparison to Other Relativistic All-Alectron Basis Sets

The NMR-tailored x2c-type basis sets are compared to other frequently used relativistic all-electron basis
sets. In detail, the uncontracted ANO-RCC, ANO-R, Dyall’s double, triple, and quadruple-ζ basis sets
and the segmented-contratced Sapporo basis sets of the same quality are chosen for this purpose. Note
that the ANO-RCC bases [178–182] are optimized with the DKH2 Hamiltonian and therefore employed in
an uncontracted fashion as done in other studies. [101,108,109] The recently developed ANO-R [183] bases
are optimized with the X2C Hamiltonian, however, we also employed them in the uncontracted form for
consistency with the ANO-RCC basis. The ANO bases were both taken from the Basis Set Exchange
Library [487,488] and subsequently decontratced. The Dyall-VXZ (X = D, T, Q) basis sets are only available
for the heavy elements beyond krypton. [187–192,495] Contraction schemes are optimized for “fully” relativistic
four-component calculations. Consequently, the Dyall basis sets are used in an uncontracted form in X2C
calculations and Dyall’s suggestions for the uncontracted space are considered, i.e. linear dependencies are
removed by omitting the respective functions of the SCF set. For instance, the second d function is removed
for lanthanum. The Dyall-VDZ and VTZ bases were converted to the TURBOMOLE format by Tobias M.
Pazdera, who carried out exploratory calculations. The Dyall basis sets are combined with the uncontracted
cc bases for the light elements. [161,163–165,167–169,173] The cc-pVXZ basis sets (X = D, T, Q) were taken
from the ccRepo [496] and decontracted. The Sapporo basis set family, Sapporo-XZP (X = D, Z, Q; 2012
version), optimized with the DKH3 Hamiltonian [216–218,497] is further considered. This allows to use the
segmented-contracted Sapporo basis sets in X2C calculations as X2C and DKH3 lead to similar results, X2C
results are often essentially the same as with DKH4 or DKH8. However, X2C features considerably reduced
computational costs and is straightforwardly applicable to analytical derivative theory. All relativistic basis
sets except the Sapporo basis set family are developed with the finite nucleus model. The computational
settings are the same as in the last subsection. The results are evaluated statistically as listed in Tab. 8.4 and
Tab. 8.5.

As shown in Tab. 8.4, the double and triple-ζ NMR-optimized basis sets are on par with the much larger
Dyall basis sets of the same quality for the light elements. For the 1s and the 2s group, the Dyall bases
results in smaller errors whereas the x2c-SVPall-s and x2c-TZVPall-s basis sets perform better for the 2p
group. The Sapporo-DZP basis set shows a large mean absolute error for the 2p group of 38.6 ppm. This is a
nearly doubled error compared to x2c-SVPall-s with 20.6 ppm. The Sapporo-TZP bases do not exhibit such
a behavior, the error is within the range of the Dyall-VTZ basis with 11.0 ppm and the x2c-TZVPall-s basis
with 5.5 ppm. For the heavier elements, the Dyall-VDZ and VTZ basis perform remarkably for the d groups
with very small errors. Here, the Sapporo basis sets are outperformed by all other basis sets. Especially for
the 6p group, the errors are extremely large with 833 ppm for Sapporo-DZP and 649 ppm for Sapporo-TZP.
These errors may be caused by the tight basis functions as the Sapporo basis is not optimized with the finite
nucleus model but the point-charge model. The singularity of the respective Dirac equation does not allow
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Table 8.4: Comparison of the errors in ppm with respect to the large even-tempered (ET) basis set of Ref. 483 for various double and
triple-ζ basis sets as well as the uncontracted ANO-R and ANO-RCC bases. The latter are among the largest relativistic all-
electron basis sets. The individual result are taken from Ref. 482 and 483. The prefix “x2c-” is omitted for the x2c-SVPall-s
and x2c-TZVPall-s basis set. The segmented-contracted Sapporo basis sets for the heavy elements are optimized with the
DKH3 Hamiltonian and the Dyall basis sets are employed in an uncontracted fashion together with the cc basis sets for the
light elements. ng denotes the number of symmetry non-equivalent nuclei of the group. σ indicates the standard deviation
of the weighted overall error (WOE), see Eq. 8.24. NBF denotes the total number of basis functions in the spherical AO
basis. The reference basis set uses 202,340 functions.

Group ng Dyall-VDZ Sapporo-DZP SVPall-s Dyall-VTZ Sapporo-TZP TZVPall-s ANO-RCC ANO-R

1s 93 0.4 0.6 0.4 0.2 0.2 0.3 0.1 0.1

2s 19 5.4 9.2 5.0 4.1 9.2 5.2 0.3 0.3

2p 195 25.3 38.6 20.6 11.0 10.7 5.5 4.1 4.1

3s 14 2.5 3.0 3.8 1.3 2.3 0.7 2.3 2.6

3p 76 30.7 40.0 35.2 15.8 11.5 11.4 8.8 8.9

4s 12 41.2 36.8 29.5 33.9 26.5 15.1 18.4 15.3

3d 27 28.0 114 159 21.8 71.3 29.1 9.9 10.0

4p 24 34.7 28.9 52.5 9.2 11.5 18.5 3.0 3.0

5s 8 13.0 185 40 10.2 53.8 13.0 6.7 6.8

4d 2 43.9 171 151 11.7 138.5 45.4 3.9 4.1

5p 18 163 174 192 45.4 65.6 35.9 9.5 9.8

6s 8 53.3 307 144 14.9 72.8 22.9 20.5 56.4

5d 21 117 361 483 84.2 310.3 123.9 73.8 74.2

6p 19 489 833 327 113.2 649 83.9 31.0 47.5

WOE 0.02 0.04 0.03 0.011 0.02 0.010 0.005 0.005

σ 0.04 0.07 0.04 0.016 0.03 0.02 0.009 0.010

NBF 46,013 23,396 23,946 68,163 44,896 37,599 120,867 106,966

to optimize the tighter functions. Instead, the exponents rise to infinity and optimize the singularity but
not the description of the density in the core region. Due to the poor behavior for the heavy elements, the
Sapporo basis sets show the largest weighted overall errors and standard deviations. The x2c-SVPall-s basis
set performs slightly worse than the Dyall-VDZ basis set, however, only half of the functions are employed
throughout the test set. The x2c-TZVPall-s basis set shows a slightly smaller weighted overall error of 0.010
compared to 0.011 for the Dyall-VTZ. Yet, the standard deviation of the Dyall-VTZ basis is smaller by
0.004. The very large ANO basis sets show the smallest errors for all groups except for the 3s, 4s, and the
6s elements. Consequently, the weighted overall error of the ANO basis sets is the smallest with 0.005 for
both. The standard deviation is smaller with the somewhat larger ANO-RCC bases. However, the difference
in the results between these two basis sets is insignificant and the ANO-R bases employ about 10% less
functions throughout the test set.

The quadruple-ζ basis sets are compared in Tab. 8.5 and show considerably smaller errors than the double
and triple-ζ basis sets. Note that the decontracted cc-pVQZ bases cause large errors for the Dyall-VQZ
basis set and the 3d group. Even tough, the results for Cu2, Cu2O, Cu2S, CuCl, CuF, CuH, and ZnF are not
considered as the orbital energies are positive or a negative gap of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) is obtained. The poor results likely originate
from linear dependencies in the cc-pVQZ basis set and lead to a large weighted overall error of 0.03 and a
standard deviation of 0.06. Therefore, a subgroup of the test set is also considered for the Dyall-VQZ bases.
This subgroup does not contain molecules with 3d elements and leads to reasonable errors. For the first three
rows of the periodic table of elements, the results of the Dyall-VQZ, Sapporo-QZP, and the x2c-QZVPall-s
basis sets are similar and only minor deviations are obvious. The x2c-QZVPall-s basis shows considerably
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8.2 Optimized Basis Sets for NMR Shieldings and Shifts

Table 8.5: Comparison of the errors in ppm with respect to the ET basis of Ref. 483 for the uncontracted ANO-R and ANO-RCC bases
and various quadruple-ζ basis sets. The Cu2, Cu2O, Cu2S, CuCl, CuF, CuH, and ZnF were neglected for the Dyall-VQZ
basis as they showed positive orbital energies or negative HOMO-LUMO gaps. The large errors of the uncontracted
Dyall-VQZ basis set are caused by the 3d elements, for which the decontracted cc-pVQZ basis set was used as the Dyall
bases are only available for the heavier elements. So, the test set was also statistically evaluated without considering these
molecules, Dyall-VQZ (no 3d). ng denotes the number of symmetry non-equivalent nuclei of the group. σ indicates the
standard deviation of the weighted overall error (WOE), see Eq. 8.24. NBF denotes the total number of basis functions in
the spherical AO representation used for the test set. The reference basis set uses 202,340 functions.

Group ng ANO-RCC ANO-R Dyall-VQZ Dyall-VQZ (no 3d) Sapporo-QZP x2c-QZVPall-s

1s 93 0.1 0.1 0.5 0.1 0.1 0.1

2s 19 0.3 0.3 0.2 0.2 1.6 0.1

2p 195 4.1 4.1 18.1 5.6 3.3 5.1

3s 14 2.3 2.6 1.1 1.1 0.5 0.3

3p 76 8.8 8.9 47.7 8.4 7.0 2.9

4s 12 18.4 15.3 13.0 13.0 21.6 2.0

3d 27 9.9 10.0 1333 – 34.0 20.3

4p 24 3.0 3.0 3.0 3.0 4.2 3.8

5s 8 6.7 6.8 4.2 4.2 40.6 3.7

4d 2 3.9 4.1 4.4 4.4 95.5 6.2

5p 18 9.5 9.8 29.3 29.3 29.6 8.1

6s 8 20.5 56.4 4.9 4.9 125 3.4

5d 21 73.8 74.2 73.4 73.4 253 12.1

6p 19 31.0 47.5 38.6 38.6 598 31.8

WOE 0.005 0.005 0.03 0.004 0.016 0.002

σ 0.009 0.010 0.06 0.010 0.018 0.007

NBF 120,867 106,966 100,965 100,965 72,704 71,628

smaller errors for the 4s and the 3d groups. The Sapporo-QZP bases deteriorate rapidly for the 5s to 6p
blocks, whereas the Dyall-QZP bases are still on par with x2c-QZVPall-s for the 4p, 5s, 4d, 6s, and the 6p
group. For the 5p and the 5d elements, the x2c-QZVPall-s basis outperforms the other two quadruple-ζ
basis sets. Overall, the x2c-QZVPall-s also outperforms the larger ANO basis sets as shown by the smaller
weighted overall error and its standard deviations. The x2c-QZVPall-s basis set features the smallest errors
of all studied bases and employs nearly the same number of functions as the uncontracted Dyall-VTZ basis
sets. In contrast, the x2c-type basis sets are available for all elements from hydrogen to radon and difficulties
like finding suitable basis sets for the light elements do not exist.

To illustrate the impact of size of the basis set on the computational demands, the computation times are
compared for W(CO)6. The times for the triple-ζ basis sets and the uncontracted ANO bases are listed in
Tab. 8.6. In terms of basis functions, W(CO)6 is one of the largest molecules in the test set. The x2c-type
basis sets lead to very similar computation times: about 1 minute for a single SCF iteration, 7 to 9 minutes
for the X2C NMR calculations, and about 4 minutes for the DLU-X2C NMR calculations. Note that the
x2c-TZVPall-s is the largest basis set for this molecule as no two-component extensions are available for
carbon and oxygen. Consequently, the x2c-TZVPall and x2c-TZVPall-2c basis set are identical for these
elements and the x2c-TZVPall-s features additional tight p functions. The Sapporo-TZP or the Dyall-VTZ
bases lead to an increase of the computation time by a factor of 2.3 and 1.8, respectively. Here, 40% of the
total CPU time amount to the solution of the X2C response equations in the primitive space and therefore
the uncontratced Dyall-VTZ results in shorter computation times for the full X2C approach. Matters are
different with the DLU scheme. Here, the two-electron integrals and the solution of the CPKS equations are
more demanding and consequently the Sapporo-TZP basis set results in a decreased CPU time compared to
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Table 8.6: Comparison of computation time for various relativistic all-electron basis sets and W(CO)6. Calculations were performed
on a single thread of a CPU of type Intel® Xeon® Gold 6212U CPU @ 2.40GHz. NBF refers to the number of basis
functions in the spherical AO basis. X2C-SCF denotes the computation time for the one-electron Hamiltonian in an energy
calculation whereas X2C-NMR refers to the analytical derivatives in an NMR calculations. SCF refers to the computation
time of a single SCF iteration and NMR to the total computation time of a NMR shielding calculation for all nuclei. For the
latter, the X2C and DLU-X2C Hamiltonian are considered. Times are given in minutes.

Basis Set NBF X2C-SCF SCF X2C-NMR DLU-NMR

x2c-TZVPall 453 0.04 0.7 7.6 3.6

x2c-TZVPall-2c 480 0.04 0.9 8.9 4.4

x2c-TZVPall-s 500 0.04 0.8 9.0 4.3

Sapporo-TZP 514 0.08 2.4 20.9 10.6

Dyall-VTZ 760 0.05 1.6 16.2 10.7

x2c-QZVPall 819 0.2 7.8 58.7 34.4

x2c-QZVPall-2c 859 0.1 6.9 42.2 26.0

x2c-QZVPall-s 895 0.1 7.8 44.9 27.3

Sapporo-QZP 850 0.2 11.9 57.4 33.3

Dyall-VQZ 1148 0.1 6.5 44.6 32.5

ANO-R(unc) 1139 0.1 10.1 66.2 54.2

ANO-RCC(unc) 1497 0.2 49.0 240.2 211.6

the Dyall-VTZ basis. The quadruple-ζ basis sets are more costly and a SCF iteration takes between 6 and
12 minutes. The X2C NMR calculations requires about 45 minutes with the x2c-type and the Dyall-VQZ
basis. The Sapporo-QZP are even more demanding and the calculation amounts to nearly 1 hour. The
DLU scheme reduces these computation times to about 30 minutes. The uncontracted ANO-RCC basis set
employs nearly twice the number of functions than the Dyall-VTZ bases and a single SCF iterations takes
49 minutes. The NMR shielding calculations amount to 4 hours for the full X2C ansatz and more than 3.5
hours when applying the DLU scheme. Here, the two-electron integrals are the most time-consuming step
and the total computation time of the X2C and the DLU-X2C calculations differ by only 30 minutes or 12%.

To sum up, the NMR-tailored basis sets employ at most four additional functions and thus do not significantly
increase the total computation time but significantly improve the accuracy for triple and quadruple-ζ basis
sets. The performance of the x2c-TZVPall-s basis is on par with the notably larger uncontracted Dyall-VTZ
bases.

8.2.3 Comparison to Non-Relativistic NMR-Optimized Basis Sets

TheNMR-tailored relativistic all-electron basis sets are further compared to the pcSseg bases of Jensen [219,220]

for light elements from hydrogen to krypton. These basis sets were optimizedwith the non-relativistic Hamil-
tonian. A subset of the test set is constructed with light elements only. This subset contains 160 molecules
with 359 shielding constants and relativistic effects are of minor importance so the pcSseg basis set family
can be used with the X2C Hamiltonian. Note that the Dyall basis sets are also combined with these basis sets
or the correlation-consistent bases for NMR shifts in four-component calculations. [54,55,58] The results are
presented in Tab. 8.7. Here, the x2c-type basis sets result in a very consistent improvement of the accuracy
with the cardinal number. The weighted overall error decreases from 0.017 for the x2c-SVPall-s to 0.002
for the x2c-QZVPall-s basis. The results of x2c-TZVPall-s bases fall within this range as the weighted
overall error is 0.007. A similar behavior is evident for the standard deviation. The pcSseg basis sets feature
some notable inconsistencies for pcSseg-2 and pcSseg-3. Here, the error is doubled for pcSseg-3 (3.2 ppm)
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Table 8.7: Comparison of the error in ppm with respect to the even-tempered basis of Ref. 483 for the pcSseg basis sets and the
Karlsruhe basis sets for molecules consisting of elements H-Kr. The prefix “x2c-” is omitted for the x2c-SVPall-s, x2c-
TZVPall-s, and the x2c-QZVPall-s bases. ng denotes the number of symmetry non-equivalent nuclei of the group. σ
indicates the standard deviation of the weighted overall error (WOE), see Eq. 8.24. NBF denotes the total number of
basis functions in the spherical AO representation used for the test set. The reference basis set employs 116,396 functions
throughout the test set.

Group ng pcSseg-0 pcSseg-1 pcSseg-2 pcSseg-3 pcSseg-4 SVPall-s TZVPall-s QZVPall-s

1s 76 1.5 0.2 0.1 0.0 0.0 0.4 0.2 0.1

2s 20 1.5 1.3 0.3 0.1 0.1 1.7 1.9 0.1

2p 127 46.7 14.2 3.2 6.1 0.4 16.4 4.3 2.0

3s 14 6.9 3.7 1.6 2.6 2.2 3.7 1.3 0.2

3p 63 92.6 29.2 10.9 5.7 4.1 33.9 9.2 2.7

4s 11 34.6 13.5 12.1 12.5 12.4 30.0 16.0 2.0

3d 27 934 108 30.7 21.1 17.9 159 29.1 20.2

4p 22 100 52.9 46.2 43.7 36.4 43.6 16.7 3.7

WOE 0.05 0.012 0.005 0.0047 0.0035 0.017 0.007 0.002

σ 0.08 0.014 0.004 0.0010 0.0010 0.016 0.007 0.003

NBF 6,810 12,274 23,410 43,730 70,179 12,377 20,595 39,906

compared to pcSseg-2 (6.1 ppm) for the 2p group. Note that the pcSseg-3 bases employs nearly twice the
number of basis functions. The weighted overall error and the standard deviation of pcSseg-3 is smaller
than for pcSseg-2.

pcSseg-0 is the smallest basis and expectedly shows large errors—especially for the 3d group with 934 ppm.
The x2c-SVPall-s bases perform similar to pcSseg-1 and the two basis sets are of similar size. The x2c-
TZVPall-s and the pcSseg-2 basis sets show comparable overall errors. x2c-TZVPall-s yields smaller errors
for the heavy elements whereas pcSseg-2 is superior for the light elements. The latter features more basis
functions by about 10%. The x2c-QZVPall-s basis set features the smallest errors and outperforms all other
bases while using less functions than pcSseg-3 and only 57% of the functions of pcSseg-4. Especially for
the 4s and the 4p groups, the x2c-QZVPall-s basis set shows smaller errors and illustrates that additional
functions in the outer-core and the valence region are needed for heavier elements. For molecules consisting
of light elements only, the additional tight functions proposed by Jensen are sufficient and result in an
accurate description of the density in the vicinity of the nuclei.

The errors of the pcSseg bases significantly increase for the 4s, 3d, and 4p elements. Compared to the
x2c-QZVPall-s basis, the pcSseg-4 basis set features sufficiently tight functions and also accurately covers
the additional extensions. Therefore, the increased error is likely caused by the non-relativistic optimization
of the contraction coeffcients. To analyze the deficits of the pcSseg basis sets for the fourth row in detail, the
pcSseg-4 basis set of As in As4 is systematically decontracted as shown in Tab. 8.8. The decontraction of the
p shell only changes the shielding constant by about 4 ppm and the decontraction of the d shell does not affect
the shieldings. In contrast, the s shells are of major importance. Already decontracting the first or inner-most
s shell results in a notable agreement with the reference basis set. The fully decontracted pcSseg-4 basis
set excellently reproduces the reference results. Therefore, the s and p shells have to be recontracted at the
X2C level as outlined in Sec. 8.2.1. The recontracted segments are listed in Sec. A.4. Recontracting the s
and p segments yields a NMR shielding constant of 2248.2 ppm compared to 2248.6 ppm. Similar findings
are observed for the SCF energy. The main change is caused by the inner-most s segment. Consequently,
the pcSseg basis set family may be recontracted for X2C calculations or the bases may be decontracted in
relativistic calculations. This is further suggested by the respective calculations for Se8 in Tab. 8.9.
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Table 8.8: Decontracted and recontracted pcSseg-4 basis sets of As in As4. The NMR shielding constant is given in ppm whereas the
energy is given in Eh. The recontracted segments are listed in Sec. A.4.

Basis NMR Shielding Constant SCF Energy

pcSseg-4 2210.2 −9024.146 499 40

decontracted p 2205.8 −9024.211 515 39

decontracted d 2210.8 −9024.151 924 67

decontracted p and d 2206.4 −9024.216 937 42

decontracted first s 2252.2 −9042.270 346 98

decontracted all s 2252.3 −9042.274 082 44

fully decontracted 2248.5 −9042.341 427 49

recontracted first s 2247.1 −9041.880 697 58

recontracted all s 2252.9 −9042.258 605 23

recontracted all s and p 2248.2 −9042.323 269 51

Reference 2248.5 −9042.342 063 18

Table 8.9: Decontracted pcSseg-4 basis sets of Se in Se8. The NMR shielding constant is given in ppm whereas the energy is given in
Eh.

Basis NMR Shielding Constant SCF Energy

pcSseg-4 790.3 −19 395.365 003 64

decontracted p 773.8 −19 395.516 621 63

decontracted d 791.1 −19 395.373 658 27

decontracted s 840.7 −19 437.188 669 25

fully decontracted 824.9 −19 437.346 444 44

Reference 823.1 −19 437.347 821 97
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9 Assessment of the Accuracy of Relativistic
Hamiltonians

9.1 NMR Shieldings and Shifts

The error introduced by the DLU scheme is assessed for various main-group and transition-metal com-
pounds. The error is further compared to the impact of relativistic effects, the different density functional
approximations, and the basis set. The calculations were originally performed in the course of Ref. 379
with the CPHF and CPKS solver of Refs. 398 and 413. Here, the convergence is checked by calculating
the NMR isotropic shielding constants. In 2019, Kevin Reiter implemented a solver based on Ref. 416 for
TURBOMOLE V7.5 (2020) and the convergence is checked by computing the norm of the residuum to
ensure that the perturbed density matrix itself is converged. The latter leads to more accurate results and is
more efficient. This solver is also used in the following chapters. Thus, all calculations in this section were
redone with TURBOMOLE V7.5 (2020) and TURBOMOLE V7.5.1 (2021). Efficiency is demonstrated for
large silver clusters with more than 17,000 basis functions in the primitive space and iridium complexes with
more than 4,500 primitive basis functions. The finite nucleus model is employed throughout all relativistic
calculations and the computational methods are described in detail in all subsections.

9.1.1 Demonstration of Gauge-Origin and Translation Invariance

All working equations for the NMR shielding constants in chapter 4 show no reference to the gauge-origin
and are therefore formally gauge-origin invariant. In contrast, the integrals show a reference to the origin of
the chosen coordinate system. Hence, the unperturbed and the perturbed density contribution of the NMR
shielding tensor are not invariant with respect to a translation in space. The isotropic shielding constant is
required to be invariant under a translation to be a physically meaningful quantity. Therefore, gauge-origin
and translational invariance of the X2C and the DLU-X2C approach are demonstrated at the HF level for a
small set of eight molecules: HF, HI, WO, NH3, BiH3, XeF2, XeF4, and XeF6. The structures of the first
five molecules are taken from Ref. 485 and the other structures from Ref. 101. To check the gauge-origin
and translation invariance, the molecules are moved along the z axis by 120 bohr. The xenon compounds
are further rotated by 60◦. Dyall’s VTZ basis set with additional 5s5p correlating functions [187–190,495] are
employed in an uncontracted form for the heavy elements and combined with the uncontracted cc-pVTZ
basis set for the light elements. [161] To avoid linear dependencies, the most diffuse primitive d functions of
the SCF set are replaced with the 2d correlating functions as suggested by Dyall for I and Xe. [187] Tight SCF
convergence thresholds of 10−8 Eh ensure well converged orbitals and a threshold of 10−7 a.u. is selected
for the norm of the residuum in the CPHF equations. The isotropic shielding constants are listed in Tab. 9.1.
Overall, the changes upon translation and rotation are minuscule. The maximum change is found for BiH3

with 0.02 ppm for the DLU-X2C Hamiltonian and HI with 0.006 ppm for the X2C Hamiltonian. Note that
the shielding constants are in the order of 1,000 ppm. The change affects the sixth and seventh significant
digit. Note that this is in line with the chosen thresholds. Thus, both Hamiltonians satisfy gauge-origin and
translation invariance.
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Table 9.1: Isotropic NMR shielding constants in ppm for various molecules using the X2C/HF and the DLU-X2C/HF method with
the Dyall-VTZ/cc-pVTZ(unc) basis. The finite nucleus model is employed throughout. Structures are taken from Refs. 101
and 485. LA refers to the lighter atom and HA to the heavier atom, respectively. ∆ Isotropic denotes the difference of the
isotropic shielding constant when translating the molecule by 120 bohr along the z axis. Additionally, the xenon compounds
were rotated about the z axis by 60◦.

X2C DLU-X2C

LA Isotropic ∆ LA Isotropic HA Isotropic ∆ HA Isotropic LA Isotropic ∆ LA Isotropic HA Isotropic ∆ HA Isotropic

HF 27.8 2 × 10−5 409.9 −2 × 10−4 27.8 9 × 10−5 409.9 −8 × 10−4

HI 30.4 −4 × 10−6 4488.1 8 × 10−4 30.4 −3 × 10−5 4487.9 6 × 10−3

WO −372.7 −1.4× 10−4 36 277.3 −6 × 10−3 −372.7 3 × 10−4 36 277.8 2 × 10−3

NH3 31.3 9 × 10−6 261.9 2 × 10−4 31.3 1.2× 10−6 261.9 5 × 10−4

BiH3 27.4 −2 × 10−5 7127.7 −5 × 10−2 27.4 1.1× 10−5 7127.4 −4 × 10−3

XeF2 455.2 2 × 10−6 1981.6 1.3× 10−4 455.2 −4 × 10−6 1981.6 2 × 10−5

XeF4 272.3 8 × 10−4 484.3 6 × 10−4 272.3 −8 × 10−4 484.5 2 × 10−3

XeF6 1158.5 −6 × 10−4 1008.8 −2 × 10−3 58.4 −4 × 10−7 1008.5 −1.2× 10−3

9.1.2 Ogranometallic Main-Group Alkynyls

The previous results showed that the DLU-X2C Hamiltonian still meets the physical constraints. In the
following, the error of the introduced local approximation in actual calculations is assessed. For this
purpose, a small test set [383] of organometallic alkynl compounds of the fourth main group is considered.
This set consists of Tt(CCMe)4 (Tt = Si, Ge, Sn, Pb), Me2Tt(CCMe)2, and Me3Tt(CCH) to calculate the
13C, 29Si, 73Ge, 119Sn, and 207Pb NMR shifts. It was shown that for these systems a scalar-relativistic ansatz
is sufficient as the main relativistic effect is the contraction of the density. The structures are taken from
Ref. 383, however, the optimized geometries of the reference compounds SiMe4 (Me = CH3, 13C, 29Si),
GeMe4 (73Ge), SnMe4 (119Sn), and PbMe4 (207Pb) are not included in this reference. These structures
were optimized with the spin–orbit DLU-X2C Hamiltonian [105,107] as well as the x2c-TZVPPall-2c orbital
and auxilairy basis set [203] for the RI-J approximation. The PBE0 functional [341,355] with a large grid [482]

(grid 4a) is selected in line with the sample compounds. The dispersion correction D3 [498] and tight SCF
thresholds of 10−8 Eh are utilized. The NMR shieldings and shifts are then calculated with the same settings
except for the basis sets. Here, the uncontracted Dyall-CVTZ basis set [187,188,190,495] is used for the heavy
elements (Ge, Sn, Pb) and the uncontracted cc-p(C)VTZ basis for the light elements (H, C, Si). [161,164,167]

Note that there are no core correlation functions for hydrogen and consequently cc-pCVTZ is identical to
cc-pVTZ. Moreover, the two most diffuse SCF d functions of the Dyall-CVTZ bases are omitted to avoid
linear dependencies. The RI-J approximation is not applied as no auxiliary basis sets are available for the
Dyall basis sets. A criterion of 10−7 a.u. is chosen for the residuum in the CPKS equations.

The statistical evaluation of the DLU error is shown in Tab. 9.2 and the individual results are reported in Sec.
A.5. The mean absolute error (MAE) is listed for each nucleus and increases with the atom number. The
smallest MAE is found for C with 0.01 ppm and the largest for Pb with 0.17 ppm. The maximum errors are
in the same order of magnitude and therefore clearly show the absence of outliers. The range of the NMR
shifts typically increases in the same way with the atom number. Here, the range slightly decreases from
carbon to silicon but then rises from 86 ppm to 601 ppm for lead. Compared to the range and the required
accuracy for a comparison with experimental findings, the error introduced by DLU is negligible. In this
study, the same structures are used for the X2C and the DLU-X2C NMR shieldings. Fully optimizing the
molecular geometry at each level will result in a second-order error. Based on the previous implementation
of geometry gradients, this error is expected to be almost vanishing as the error in the bond lengths and
angles is negligible. [107]
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Table 9.2:Mean absolute error (MAE) of the DLU-X2C Hamiltonian in 13C, 29Si, 73Ge, 119Sn, and 207Pb NMR shifts for a small
test set of organometallic alkynyl compounds. Max. Error refers to the maximal absolute error whereas range denotes the
span of the calculated shifts. Errors and range of the NMR spectra are given in ppm. The individual results are listed in the
appendix, Sec. A.5. The Dyall-CVTZ/cc-pCVTZ(unc) basis set is used and the PBE0 functional (grid 4a) is selected.

MAE Max. Error Range
13C 0.01 0.02 109
29Si 0.06 0.13 86
73Ge 0.07 0.09 156
119Sn 0.13 0.19 301
207Pb 0.17 0.2 601

9.1.3 Xenon Fluorides

Xenon fluorides are studied for a comparison with the wavefunction-based methods of Cheng and co-
workers. [101] The impact of spin–orbit coupling is small for these molecules and the scalar-relativistic CC
results can be used as benchmark values for DFT methods. Note that all electrons were correlated in the
CC calculations. Furthermore, experimental results are available for all three molecules. [499] In quantum
chemistry, the xenon atom is chosen as referencewhereas neatXeOF4 is the experimental reference compound
for the 129Xe shifts. The two shift scales can be converted to each other by using the shifts of xenon gas
at infinite dilution (−5460 ppm) at the neat XeFO4 scale. [500] Note that the shift at infinite dilution was
obtained by extrapolation from the shift in solution. To allow for a strict comparison to the CC results,
the same structures are employed and the uncontracted ANO-RCC basis sets [179] are used. Note that the
octahedral structure of XeF6 is assumed. Very tight SCF thresholds of 10−9 Eh and CPKS thresholds of
10−7 a.u. are applied. The BP86, [128,340] PBE, [341] KT3, [342,501] TPSS, [346] B3LYP, [128–130] PBE0, [355] and
TPSSh [356] functionals are chosen to cover the most common functionals for NMR shifts. τ is generalized
with the external magnetic field. [407,461] Large grids (grid 4a) are employed for the XC part. [482] The shifts
are reported in Tab. 9.3 and the shielding constants are listed in Tab. A.5.

First, the impact of scalar relativity is significant. The shifts increase by 300 ppm (XeF2), 550 ppm (XeF4),
and 700 ppm (XeF6). The scalar-relativistic Hamiltonian reproduces the trend of the experimental NMR
shifts: The shifts increase by about 2300 ppm from XeF2 to XeF4 and by 2000 ppm from XeF2 to XeF6.
The non-relativistic Hamiltonian tends to underestimate the NMR shifts of XeF4 and XeF6. Therefore, the
experimental trend is not accurately matched. Despite the pronounced relativistic effects, the MAE of DLU
amounts to only 0.16 ppm and is absolutely negligible.
Second, the “pure” and hybrid density functional approximations are in reasonable agreement with the
CC results and the experimental findings. All functionals overestimate the chemical shifts compared to
CCSD(T), yet a considerable improvement upon HF is found. Generally, the perturbative treatment of
triples in the CC methods improves the agreement with the experimental findings. However, the trend of the
shifts is not accurately reproduced: the shifts increase by 2000 ppm from XeF2 to XeF4 and by 1700 ppm
from XeF2 to XeF6. The change of the shifts with the molecules is excellently described by the TPSSh
functional. Overall, DFT performs well for these molecules. However, the computational settings are not
very common or practical. Usually, the structure is optimized at the same or a lower level of theory and
triple-ζ basis sets are commonly used for DFT calculations to restore the balance of the basis set and chosen
method. This may allow for favorable error cancellation and consequently improve the agreement with the
experimental results.
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Table 9.3:
129Xe NMR chemical shifts of xenon fluorides obtained at various levels of theory. Chemical shifts are given in ppm
with respect to the isotropic shielding of the Xe atom. Method 1 uses structures from Ref. 101, which were optimized at
the scalar-relativistic X2C/CCSD(T)/ANO-RCC(unc) level. The ANO-RCC(unc) basis set was used in the NMR shielding
calculations of that method. Here, the mean absolute error (MAE) of the DLU scheme is 0.16 ppm. Method 2 indicates
NMR calculations based on the geometry optimized at the corresponding level with the x2c-TZVPall-2c bases employed in
the relativistic calculations and the def2-TZVP/TZVPall basis in the non-relativistic ones (NR). The octahedral symmetry
is used for XeF6. The MAE of the DLU scheme with this method is 0.45 ppm. Exp. refers to the experimental value in the
gas phase taken from Ref. 499. The CCSD and CCSD(T) results were taken from Ref. 101. The shielding constants of the
xenon atom as reference for the NMR shifts and the xenon fluorides are listed in the appendix, Tab. A.5.

XeF2 XeF4 XeF6

Level Method NR X2C DLU NR X2C DLU NR X2C DLU

HF 1 3551 4018 4018 4901 5504 5504 4289 4858 4858

BP86 1 3406 3713 3713 5616 6185 6185 5227 5903 5903

PBE 1 3383 3693 3693 5577 6147 6147 5183 5856 5856

KT3 1 3282 3594 3594 5385 5950 5950 5032 5699 5699

TPSS 1 3284 3594 3594 5412 5979 5979 5090 5762 5762

B3LYP 1 3546 3897 3897 5563 6147 6146 5145 5819 5819

PBE0 1 3412 3759 3759 5360 5931 5931 4991 5646 5645

TPSSh 1 3307 3632 3632 5344 5911 5911 5028 5694 5693

CCSD 1 3337 3698 – 4971 5507 – 4540 5130 –
CCSD(T) 1 3238 3564 – 4982 5509 – 4641 5258 –

HF 2 3165 3797 3797 4429 5299 5299 4127 4670 4670

BP86 2 3148 3654 3654 5533 6380 6380 5713 6351 6352

PBE 2 3113 3622 3622 5488 6328 6328 5661 6290 6291

KT3 2 2986 3502 3502 5161 5997 5998 5293 5918 5919

TPSS 2 3040 3538 3538 5298 6126 6127 5536 6153 6154

B3LYP 2 3288 3840 3840 5338 6223 6223 5461 6102 6103

PBE0 2 3135 3677 3677 5064 5919 5919 5148 5751 5752

TPSSh 2 3060 3574 3574 5144 5982 5982 5346 5954 5955

MP2 2 2986 3503 3503 4759 5620 5621 4992 5607 5608

Exp. 3386 5623 5425

NMR shielding constants and shifts are further calculated with the x2c-TZVPall-2c basis sets. [203] For
consistency, the non-relativstic all-electron TZVPall basis set is used for xenon [502] and the def2-TZVP basis
set for fluorine [198] in the non-relativistic calculations. Moreover, MP2 calculations [491,492] are performed.
The same point group symmetries as above are chosen: D∞h for XeF2, D4h for XeF4, and Oh for XeF6.
Geometries were considered to be convergedwhen the energy change falls below 10−6 Eh and the norm of the
gradient is smaller than 10−3 Eh/bohr. Optimized structures are listed in the supporting information of Ref.
379. Note that the potential energy surface of XeF6 is shallow and there is sufficient evidence that both Oh

and the distortedC3v structure areminima. [112] TheC3v structure is very likely the global minimum in the gas
phase. However, the energies of the structures are sensitive regarding the basis sets, method to treat electron
correlation, and special relativity. [111,503–506] Herein, the DFT-optimized and MP2-optimized Oh structures
are (local) minima as confirmed by numerical frequency calculations. In contrast, the octahedral structure
is a saddle point at the HF level in line with Ref. 506. This also holds for functionals incorporating a larger
amount of HF exchange. For instance, theOh structure is a transition state at the BH&HLYP level, [128,129,350]

which uses 50% HF exchange. [365] Based on the normal modes, a C2v symmetric transition state is found
with HF. The energy of this state is lower than for the Oh structure. Due to the small energy difference,
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structure conversion is likely to occur fast and also confirmed by the experimental NMR spectra, which only
show one type of fluorine atoms. [499] Therefore, the Oh symmetry is used in the NMR calculations, those
results are reported in the second half of Tab. 9.3. Overall, no consistent improvement is found compared to
the previous results. All functionals except for KT3, PBE0, and TPSSh severely overestimate the shifts of
XeF4 and XeF6. The PBE0 functional performs best by overestimating all shifts by 300 ppm. This finding
agrees with previous benchmark calculations for light elements. [407] MP2 performs well for XeF2 and XeF4

but does not reproduce the trend from XeF4 to XeF6. MP2 essentially yields no decrease whereas the
experimental shifts decrease by about 200 ppm. The most important result is, however, the negligible MAE
of DLU. The error amounts to about 0.5 ppm and therefore rises compared to the computational settings
above due to the structure optimization at the DLU-X2C and X2C level. Still, the DLU scheme is very
accurate for heavy nuclei such as xenon.

9.1.4 Transition-Metal Oxo Compounds

The 17O NMR shifts of the transition-metal oxo compounds MOx−4 (x = 2 and M = Cr, Mo, W; x = 1 and
M = Mn, Tc, Re; x = 0 and M = Fe, Ru, Os) are considerably affected by scalar-relativistic effects. [380,381]

As the NMR shifts are not measured at the heavy atom itself but at the neighboring atoms, ECPs are also a
reasonable choice for these systems. Here, all-electron relativistic methods are compared to ECP-based and
non-relativistic ansätze. The non-relativistic calculations are performed with the def2-TZVP basis for oxygen
and the 3d metals, [198] whereas the TZVPalls2 basis is used for the 4d and 5d transition metals. [203,204,379,502]

Two different choices of ECPs are considered. The Wood–Boring (WB) ECPs [507] are used with the def2-
TZVP basis set and the Dirac–Fock (DF) ECPs [177] are used with the dhf-TZVP basis set. [202] The X2C
and DLU-X2C calculations employ the x2c-TZVPall-2c basis set. [203] Based on the results of the previous
subsection, the PBE0 functional [355] and the BP86 functional [128,340] are selected. Large grids (grid 4a) are
employed for the numerical integration of the DFT parts. Structures were optimized at each level of theory
with a SCF convergence criterion of 10−9 Eh and were considered to be converged based on an energy
threshold of 10−6 Eh and a threshold of 10−3 Eh/bohr for the norm of the gradient. COSMO [453,454] was
applied to compensate the negative charge of the anionic systems. This avoids positive orbital energies
of occupied states. All structures were confirmed to be local minima on the potential energy surface by
numerical frequency calculations and are listed in the supporting information of Ref. 379. The optimized
structures are in good agreement with the experimental findings given in Ref. 380 as the deviation of all bond
lengths is below 2.5 pm. Note that the tetrahedral structure of FeO4 is used with Fe in the oxidation state
+VIII as this structure is lower in energy than the C2v structure with Fe in the oxidation state +VI. [508,509]

The NMR shieldings were calculated with a criterion of 10−7 a.u. for the CPKS equations and the NMR
shifts are obtained with respect to H2O in the gas phase. To allow for a comparison with the experimental
data, [510] the experimentally determined vapor–liquid shift of 36 ppm [380,381] is used. The NMR shifts are
reported in Tab. 9.4.

Again, the DLU error is negligible as reflected by a MAE of 0.12 ppm and a range of about 800 ppm. For the
3d compounds, the non-relativistic and the relativistic Hamiltonians are in good agreement as expected. Due
to the minor importance of relativistic effects, no ECPs are available with the standard basis sets. Already
for the 4d compounds, matters are different. Here, relativistic effects need to be considered and amount to
about 60 to 70 ppm. The impact of scalar relativity rises to ca. 100 ppm for the 5d molecules. The deviation
between the results of the WB-ECPs and the DF-ECPs is notable for OsO4. Here, the results differ by
70 ppm (BP86) and 35 ppm (PBE0). The DF-ECPs yield NMR shifts close to the ones of X2C and the
DLU-X2C Hamiltonian. Both methods are based on the four-component Dirac equations. The DF-ECPs
are parameterized to match the properties of the 4c Hamiltonian and the X2C Hamiltonian decouples the
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Table 9.4: Comparison of 17O NMR shifts of transition-metal compounds calculated at various levels of theory and experimental
findings. The experimental values are taken from Ref. 510 and converted to a more suitable scale as outlined in Ref. 381.
To the best of the author’s knowledge, no experimental shifts were reported in the literature for FeO4. NR denotes the non-
relativistic results, while WB-ECP and DF-ECP refer to the calculations employing Wood–Boring and Dirac–Fock ECPs
for the metal atoms. All structures are optimized at the corresponding level of theory. COSMO is applied to compensate
the negative charge. The MAE of the DLU scheme is 0.12 ppm and the shielding constants are listed in Tab. A.6.

BP86 PBE0

NR WB-ECP DF-ECP X2C DLU NR WB-ECP DF-ECP X2C DLU Exp.

CrO2−
4 782 – – 764 765 845 – – 824 824 871

MoO2−
4 625 554 587 565 565 637 561 594 570 570 576

WO2−
4 567 452 458 451 451 572 453 458 450 450 456

MnO−4 1077 – – 1050 1050 1250 – – 1210 1210 1255

TcO−4 860 736 764 769 769 919 784 800 803 803 786

ReO−4 761 608 595 604 604 795 620 605 615 615 605

FeO4 1513 – – 1465 1465 2059 – – 1955 1956 –
RuO4 1198 1034 1046 1054 1054 1412 1162 1178 1185 1185 1142

OsO4 1033 868 798 806 806 1157 877 842 855 855 787

negative and positive energy subspace of the Dirac equation. Generally, the BP86 functional underestimates
the shifts whereas the PBE0 results in an excellent agreement for all molecules except for CrO4 and OsO4.
Here, the deviations amount to ca. 50 ppm and 70 ppm. Note that the methods used herein result in a notably
better agreement than the previous results [380,381] which show a deviation of more than 200 ppm for MnO4.
The results confirm that an ECP-based implementation [407,511] of NMR shifts is sufficiently accurate for
neighboring atom effects—at least with DF-ECPs.

9.1.5 Tungsten Compounds

183W shifts are studied as an application to the sixth row of the periodic table. Here, ECPs cannot be
used and an all-electron ansatz is required. The PBE0 functional [355] and the BP86 functional [128,340] (grid
4a) are selected again as especially PBE0 showed a robust performance in the previous studies. For the
non-relativistic calculations, the def2-TZVP basis set [198] is combined with the TZVPalls2 basis set for
tungsten. [203,204,379] The relativistic calculations use the x2c-TZVPall-2c basis set. [203] COSMO [453,454] is
employed to compensate the charges. Tight SCF and CPKS thresholds of 10−9 Eh and 10−7 a.u. are applied
and the structures were optimized as previously described. Numerical frequency calculations confirmed the
stationary points to be local minima. Cartesian coordinates are listed in the supporting information of Ref.
379. NMR shifts are measured with respect to WO2−

4 ) and are compared to the experimental findings in
Tab. 9.5. Here, the MAE of the DLU scheme amounts to 1.0 ppm and the range of the NMR shifts to more
than 7750 ppm. Therefore, the DLU error is again negligible.

Overall, the non-relativistic Hamiltonian is insufficient for tungsten compounds as especially WS2−
4 ,

W(CO)6, and WF6 show considerable relativistic effects between 100 and 300 ppm. The X2C Hamil-
tonian and the ZORA approach [382] result in similar results for most molecules with the BP86 functional,
however, larger deviations are found for WCl6 and W(CO)6. At first glance, ZORA results are closer to the
experimental findings but this is more likely due to error cancellation regarding the BP86 functional. In gen-
eral, BP86 does not performwell for these systems as reflected by the poor results forWF6. In contrast, PBE0
predicts all shifts except for W(CO)6 within less than 200 ppm compared to the experimental data. PBE0
tends to underestimate the shifts. Note that the shifts are overestimated for WS2−

4 and W(CO)6. Despite the
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Table 9.5: Comparison of non-relativistic and relativistic calculated 183W shifts with experimental data taken from Refs. 513–516.
The non-relativistic calculations use the def2-TZVP/TZVPalls2 basis set and the X2C/DLU-X2C calculations are performed
with the x2c-TZVPall-2c bases. COSMO is employed to simulate the counter ions. The MAE introduced by the local
approximation is 1.0 ppm. The shielding constants are shown in Tab. A.7. ZORA results are taken from Ref. 382.

BP86 PBE0

NR X2C DLU ZORA NR X2C DLU Exp.

WO3S2− 723 736 736 797 781 775 775 841

WO2S2−
2 1563 1609 1608 1612 1734 1728 1727 1787

WOS2−
3 2454 2558 2558 2541 2769 2788 2788 2760

WS2−
4 3389 3576 3575 3537 3875 3937 3936 3769

W(CO)6 −3802 −3828 −3832 −3679 −3681 −3816 −3820 −3446

WF6 −454 −584 −583 −561 −830 −926 −925 −1121

WCl6 2544 2226 2226 2011 2522 2086 2086 2181

improvement upon BP86, the shift of W(CO)6 is still not in a good agreement with the experimental findings
and the deviation amounts to ca. 400 ppm. The structure is in a typically agreement for DFT. The bond
lengths differ by 2 pm from the experimental findings. [512] MP2 yields a shift of −4032 ppm. Therefore,
a higher level of theory needs to be considered, including a better description of electron correlation and
environment effects.

9.1.6 Demonstration of Efficiency

The computational costs of the X2C and the DLU-X2CHamiltonian are compared for the silver clusters Ag−13

and Ag−55, which are depicted in Fig. 9.1. For these metal clusters, the “pure” GGA functional BP86 [128,340]

(grid 5a [482]) is selected. Therefore, only the Coulomb integral derivatives within the RI-J approximation
and the derivative of the XC energy for the RHS are calculated and no CPKS iterations are necessary. The
x2c-SVPall orbital and auxiliary basis sets are applied and result in more than 6,000 primitive functions
for the larger cluster. The computation times and the number of basis functions are listed in Tab. 9.6. The
second-order response for the unperturbed density clearly dominates the CPU times in the full X2C approach
already for the smaller cluster. Here, 81 % of the total computation time are needed for the second-derivative
of the Hamiltonian. The calculations of the larger cluster take more than one week. Introduction of the DLU
scheme reduces the computation time to 4 minutes for Ag−13 and to about 5 hours for Ag−55. For the small
cluster, the two-electron integrals are as demanding as all derivatives of the one-electron Hamiltonian. This
changes for the larger silver cluster. Then, the DLU-X2C part amounts to 84% of the total CPU time. This
shows the efficiency of the RI-J approximation. In contrast to the full X2C ansatz, the DLU-X2C is still
applicable to larger clusters like Ag−147 with more than 17,000 primitive basis functions. The DLU scheme
allows to also calculate all NMR shieldings of this large cluster in 5 days.

Figure 9.1: Structures of the octahedral silver clusters Ag−13 (left) and Ag−55 (right) taken from Ref. 105.

107



9 Assessment of the Accuracy of Relativistic Hamiltonians

Table 9.6: CPU times (single thread of a CPU of type Intel® Xeon® Gold 6212 @ 2.40GHz and TURBOMOLE V7.5 [2020]) for
the important steps in an X2C and DLU-X2C NMR shielding calculation of silver cluster anions at the BP86/x2c-SVPall
level of theory (grid 5a) and organometallic iridum complexes, Ir-1 and Ir-2, at the PBE0/x2c-TZVPPall-2c level (grid 4a).
The RI-J approximation is used in the Coulomb integrals and SCF thresholds of 10−7 Eh (Ag clusters) and 10−8 Eh (Ir
complexes) were applied. NBF denotes the number of basis functions and the parentheses refer to the corresponding space:
primitive (prim), contracted (cont), and auxiliary (aux). The octahedral symmetry of the clusters is not exploited. Note that
9 iterations were needed to solve the CPKS equations with a criterion of of 10−7 a.u. for the norm of the residuum. The
time for the CPKS solver includes the first-order response with respect to the magnetic moments. Differences between the
total computation time and the sum of the steps given below are due to rounding and initialization steps. Times are given in
minutes and all shielding constants are calculated.

Ag−13 Ag−55 Ag−147 Ir-1 Ir-2

Operation X2C DLU X2C DLU DLU X2C DLU X2C DLU

1st Order Response B 0.6 0.1 38.9 3.8 37.3 2.1 0.9 14.1 4.9

2nd Order Response 33.0 1.7 8615.3 240.1 6132.0 464.5 61.4 7639.0 719.3

RI-J and DFT grid 2.0 2.1 51.0 51.9 415.0 10.7 10.7 42.4 41.1

Exchange RHS – – – – – 102.9 105.5 469.8 465.0

CPKS 5.1 0.3 1795.4 25.9 686.4 446.8 391.1 2830.5 1975.7

1st Order Responsem 5.1 0.3 1795.1 25.6 679.5 67.8 7.1 1161.3 80.0

Total 40.7 4.3 10 501.0 322.0 7273.3 1027.0 569.8 10 996.1 3208.5

NBF (prim) 1,521 1,521 6,435 6,435 17,199 2,319 2,319 4,557 4,557
NBF (cont) 689 689 2,915 2,915 7,791 1,576 1,576 3,229 3,229
NBF (aux) 1,703 1,703 7,205 7,205 19,257 2,924 2,924 5,729 5,729

Figure 9.2: Molecular structure of the organometallic iridium complexes, denoted as Ir-1 (left) and Ir-2 (right). Ir-1 consists of 63
atoms while the larger complex consists of 139 atoms. Color scheme: hydrogen white, carbon black, nitrogen blue, and
iridium brown. Structures are taken from Ref. 107.

The inclusion of HF exchange significantly changes the ratio of the one and two-electron terms as shown
for the iridum complexes in Fig. 9.2. Here, the PBE0 functional [341,355] is employed with large grids [482]

(grid 4a). The x2c-TZVPPall-2c orbital and auxiliary basis sets are chosen. The DLU-X2C calculations
take about 9.5 hours and 53.5 hours. For both molecules, the evaluation of the HF exchange in the response
equations is the most time-consuming step with about 69% and 62% of the total computation time. The
second-order derivative of the Hamiltonian only amounts to 11% and 22%. Consequently, the exchange
integrals for the RHS are more demanding for Ir-1. Matters are different for the full X2C Hamiltonian.
Here, the second-order response and the CPKS integrals are balanced for Ir-1 whereas the derivative of the
Hamiltonian dominates the CPU time for Ir-2 with 69% of the total time. Therefore, the DLU scheme
results in balanced computational demands for large molecules without significant loss of accuracy.
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9.2 NMR Indirect Spin–Spin Coupling Constants

Similar to the previous section, the accuracy of the DLU-X2C Hamiltonian for the NMR indirect spin–spin
coupling constants is assessed for main-group and transition-metal elements. Furthermore, the DLU-X2C
ansatz is compared to ZORA and 4c Hamiltonians. The impact of the basis set and the density functional
approximations are also considered. Computational methods are described in detail in every subsection.
Unless explicitly stated differently, the finite nucleus model is employed. The kinetic energy density is
generalized with the paramagnetic current density. [365]

9.2.1 Tetrel Molecules and Hydrogen Halides

The developed quasirelativistic methodology is compared to the 4c-RKB Dirac–Hartree–Fock ansatz for the
tetrel hydrides and hydrogen halides. [50,51] We adopt the same computational methods as in the 4c reference
calculations. The even-tempered basis sets and structures of Ref. 50 are used for TtH4 (Tt = C, Si, Ge, Sn,
Pb). For HX (X = F, Cl, Br, I), we use the structure of Sundholm et al. for HF [517] and the experimental
structures for the other molecules. [518] The basis sets are taken from Ref. 519. A modified uncontracted
aug-cc-pVTZ basis set is used for HF and HCl, [161,162,496,520] with a single tight p function added for F. The
other molecules use the uncontracted Sadlej-pVTZ basis [487,488,521] with additional p and d functions for
H and an even-tempered basis sets for Br and I. Hartree–Fock calculations were performed with an SCF
threshold of 10−8 Eh for the energy and 10−8 a.u for the root mean square of the densities. A criterion of
10−7 a.u. for the norm of the residuum indicates the convergence of the CPHF equations. No approximations
are employed for the two-electron integrals. The reduced coupling constants are reported in Tab. 9.7.

The light compounds of CH4, SiH4, HF, and HCl show essentially no relativistic effects and the finite nuclear
size is not important for the results. For the heavier molecules, the impact of special relativity increases from

Table 9.7: Comparison of non-relativistic, two-component, and four-component HF results. Reduced coupling constants (1KTtH,
2KHH, 1KHX) are given in 1019 T J−2. 4c results of the TtH4 molecules are taken from Ref. 50 and 4c results of the HX
molecules from Ref. 51. NR denotes the non-relativistic Hamiltonian. Even-tempered (ET) basis sets are used for the TtH4

molecules. [50] Decontracted aug-cc-pVTZ basis sets with additional tight functions are employed for HF and HCl whereas
Sadlej-pVTZ bases (for H) and ET bases (for Br, I) are used for HBr and HI. [519] Note that the 4c calculations use the finite
nucleus model for the scalar potential but not the vector potential.

Finite Nucleus Point Charge

NR X2C DLU mSNSO-X2C mSNSO-DLU X2C DLU mSNSO-X2C mSNSO-DLU 4c-RKB
1KTtH

CH4 53.06 53.28 53.24 53.29 53.25 53.29 53.25 53.30 53.26 52.6

SiH4 102.42 104.29 104.30 104.33 104.34 104.41 104.42 104.45 104.46 104.4

GeH4 263.54 293.73 293.79 294.00 294.06 296.10 296.15 296.37 296.42 294.8

SnH4 430.73 580.45 580.53 581.11 581.19 594.21 594.14 594.87 594.80 588.3

PbH4 711.45 1764.62 1764.81 1766.56 1766.75 2010.97 2010.89 2012.66 2012.66 1819.0

2KHH

CH4 −2.28 −2.29 −2.29 −2.29 −2.29 −2.29 −2.29 −2.29 −2.29 −2.27

SiH4 −0.08 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05 −0.05

GeH4 −0.05 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.64

SnH4 0.11 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 0.80

PbH4 0.27 3.70 3.71 3.70 3.70 3.73 3.74 3.73 3.73 3.62

1KHX

HF 54.06 53.98 53.97 53.96 53.96 53.98 53.97 53.97 53.96 53.99

HCl 27.47 25.96 25.98 25.95 25.97 25.96 25.98 25.96 25.98 26.27

HBr 6.10 −16.25 −16.15 −16.30 −16.24 −16.33 −16.24 −16.37 −16.29 −15.82

HI −9.28 −108.94 −108.93 −109.09 −109.09 −110.95 −110.97 −111.12 −111.12 −113.20
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9 Assessment of the Accuracy of Relativistic Hamiltonians

30 ·1019 T J−2 for GeH4 to 1100 ·1019 T J−2 for PbH4. The same holds for the impact of the nuclear charge
distribution. The finite nucleus model decreases the coupling constants. The maximum change is found
with 240 · 1019 T J−2, equaling 10%, for PbH4. Overall, both the X2C and the DLU-X2C Hamiltonian
result in an excellent agreement with the 4c results. The deviations rise from 0.4% for GeH4 to 1% for
SnH4 and 3% for PbH4. Most of the deviation for plumbane can be attributed to the missing finite nucleus
effects on the vector potential in the 4c studies. The deviations for HBr and HI are in the same order of
magnitude: 3% for HBr and 4% for HI. In an RKB basis set, the impact of the mSNSO approach is small
and amounts to at most 2 · 1019 T J−2. This can be easily rationalized by the missing integral derivatives
of the relativstically modified potential, W . Thus, the mSNSO ansatz only affects the derivative of the
Hamiltonian via the response equations for the decoupling matrix. Moreover, the mSNSO approximation
affects the density matrix and the spinor energies in self-consistent calculations. It should be noted that even
the very small impact of the mSNSO ansatz is one order of magnitude larger than the maximum DLU error
of 0.19 ·1019 T J−2 only. Therefore, the error of the DLU scheme is negligible. Similar findings hold for the
2KHH constants of the tetrel molecules. For hydrogen, the finite nucleus model does not affect the results,
however, the impact of relativity is still significant and needed to predict the correct sign for GeH4. Again,
the quasirelativistic Hamiltonians are a good approximation of the 4c Dirac–Fock approach.

The X2C Hamiltonian agrees very well with the parent 4c approach for HF calculations. Yet, HF does not
consider electron correlation and therefore a comparisonwith experimental data is not physicallymeaningful.
To treat electron correlation, DFT methods are applied. Here, common conventional functionals and
local hybrid functionals are considered. The BP86, [128,340] PBE, [341] TPSS, [346] B3LYP, [128–130] PBE0, [355]

TPSSh, [356] CAM-B3LYP, [133,529,530] LH07t-SVWN, [138] LH12ct-SsirPW92, [139] LHJ14, [141] and the PSTS
functional in conventional gauge [134] combined with large integration grids [482] (grid 4a) were selected. The
DLU-X2C Hamiltonian with the finite nucleus model and the mSNSO approximation is applied. All other
computational settings are unchanged and the results are presented in Tab. 9.8. As expected, all functionals
improve upon HF and already the GGA functionals BP86 and PBE result in a good agreement for the tetrel

Table 9.8: Comparison of various density functional approximations. Reduced coupling constants (1KTtH, 2KHH, 1KHX) are given in
1019 T J−2 and compared to the same experimental findings of the TtH4 molecules [522–527] as in Ref. 50. The experimental
result of HF is taken from Ref. 528. The DLU-X2C Hamiltonian including the finite nucleus model and the mSNSO ansatz
is employed. The same basis sets and structures as in Tab. 9.7 are chosen. LH07t and LH12ct denote the LH07t-SVWN
and the LH12ct-SsirPW92 functional. Large grids (grid 4a) are used for the numerical integration of the DFT part.

BP86 PBE TPSS B3LYP PBE0 TPSSh CAM-B3LYP LH07t LH12ct LHJ14 PSTS Exp.
1KTtH

CH4 40.50 40.23 46.65 44.69 41.50 46.96 43.64 37.41 33.69 42.49 46.63a 40.0

SiH4 82.64 79.85 82.94 90.00 82.96 84.52 87.61 78.27 74.09 85.93 82.56 84.3

GeH4 214.67 208.59 226.53 240.20 222.01 231.81 236.67 217.70 210.80 232.23 228.45 232

SnH4 384.09 375.39 402.29 439.37 409.18 415.96 435.78 403.80 397.95 422.38 410.90 429

PbH4 975.79 964.74 1053.48 1172.30 1098.03 1106.58 1187.82 1091.26 1097.10 1124.47 1092.28 –
2KHH

CH4 −1.09 −1.00 −0.86 −1.12 −1.17 −0.95 −1.12 −1.04 −0.87 −1.05 −1.21a −1.03

SiH4 0.01 0.06 0.82 0.40 0.06 0.79 0.47 0.21 0.16 0.45 0.75 0.22

GeH4 0.65 0.68 1.18 1.03 0.56 1.11 1.05 0.68 0.66 1.07 1.06 0.64

SnH4 1.22 1.23 1.67 1.75 1.12 1.62 1.73 1.26 1.23 1.75 1.48 1.27

PbH4 3.18 3.12 3.79 4.01 3.08 3.78 3.95 3.21 3.06 4.01 3.77 –
1KHX

HF 29.39 31.03 30.27 36.44 35.29 32.18 37.15 33.63 34.36 35.66 30.81 44.2

HCl 13.28 13.90 19.22 18.49 16.61 19.94 16.66 18.20 17.35 18.55 19.12 –
HBr −29.18 −27.57 −27.43 −20.93 −23.01 −25.34 −29.60 −17.71 −13.71 −23.20 −29.78b –
HI −82.10 −78.21 −83.03 −72.65 −79.28 −82.81 −97.62 −75.75 −69.03 −83.74 −87.81b –
aNorm of the residuum could only be converged below 10−3 a.u.
bNorm of the residuum could only be converged below 10−4 a.u.
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9.2 NMR Indirect Spin–Spin Coupling Constants

molecules with deviations below 10% and 15% for 1KTtH. The coupling constants increase with TPSS and
consequently the deviation from the experimental results increases for 2KHH. Hybrid density functionals
increase the coupling constants of the parent “pure” functionals. B3LYP and CAM-B3LYP overestimate
the couplings and PBE0 results in a good agreement with the experimental data. Note that B3LYP and
CAM-B3LYP perform similarly with the exception of HI. For HI, CAM-B3LYP significantly increases
the coupling constant by 20%. The t-LMF based LHFs, LH07t-SVWN and LH12ct-SsirPW92, tend to
underestimate the coupling constants and do not improve upon the global hybrid functionals. LHJ14 is a
better choice for the molecules herein and outperforms these two LHFs for the light elements. LHJ14 yields
results close to the ones of B3LYP, which is rationalized by the Becke 1988 exchange [128] and correlation
terms [371] of LHJ14. PSTS shows very similar results as the parent TPSS and TPSSh functionals.

So far, even-tempered basis sets are employed for most atoms. The impact of the basis set is further studied
by selecting the larger even-tempered basis sets of Ref. 483 as reference and considering the segmented-
contracted x2c-type basis sets. [203,483] In line with chapter 8, the basis set studies are performed with the
X2C Hamiltonian in the finite nucleus model. The basis sets used in the previous Hamiltonian and DFT
studies are termed 4c-Bases and the reference basis set is denoted X2C-ET. Results are shown in Tab. 9.9.
Note that the 4c-Basis are no sufficient approximation of the complete basis set limit. Large deviations
from the X2C-ET basis are found for HX and PbH4. The unfavorable performance of the 4c-Basis for the
halides is caused by the modified aug-cc-pVTZ basis sets for HF and HCl and the small Saldej-pVTZ basis
for hydrogen in HBr and HCl. Note that using the modified aug-cc-pVTZ for hydrogen throughout does not
improve the performance. The coupling constants of HBr and HI are−16.30 ·1019 T J−2 and−109.45 ·1019

T J−2, respectively. The main error for Pb is caused by the missing d and polarization functions as the
exponents of the tight functions are similar for X2C-ET.

Table 9.9: Comparison of various basis sets. Reduced coupling constants (1KTtH, 2KHH, 1KHX) are given in 1019 T J−2. 4c-Bases
denotes the basis sets of Refs. 50 and 519, see also Tab. 9.7, whereas X2C-ET refers to the even-tempered bases of Ref.
483. The X2C-ET bases are larger than the 4c-Bases. For brevity, the prefix “x2c-” for x2c-SVPall-2c etc. is omitted.
The RI-J approximation is used for the SCF procedure with the x2c-type basis sets. The X2C Hamiltonian in the finite
nucleus model at the HF level is chosen. NBF denotes the total number of basis functions in the spherical atomic orbital
representation used for all molecules.

SVPall-2c TZVPall-2c QZVPall-2c QZVPall-2c-s QZVPall-2c-j 4c-Bases X2C-ET
1KTtH

CH4 68.83 50.21 51.51 52.07 53.17 53.28 53.29

SiH4 85.74 81.95 98.74 98.73 102.38 104.29 103.94

GeH4 307.14 261.11 280.42 280.42 288.13 293.73 293.20

SnH4 510.80 521.34 557.21 557.18 576.18 580.45 581.00

PbH4 1542.69 1579.66 1723.55 1723.48 1770.25 1764.62 1796.69

2KHH

CH4 −2.05 −2.05 −2.17 −2.18 −2.21 −2.29 −2.27

SiH4 −0.36 −0.13 −0.03 −0.03 −0.05 −0.05 −0.04

GeH4 −0.27 −0.06 0.09 0.09 0.07 0.18 0.21

SnH4 0.39 0.60 0.79 0.79 0.83 0.84 0.90

PbH4 2.38 2.76 3.30 3.30 3.47 3.70 3.59

1KHX

HF 74.42 49.75 54.74 57.10 57.95 53.98 59.57

HCl 34.23 34.59 25.91 25.91 27.37 27.21 27.62

HBr 22.62 −24.97 −23.73 −23.72 −22.59 −16.25 −19.80

HI −25.64 −96.46 −122.39 −122.39 −118.40 −108.94 −124.62

NBF 455 652 1608 1686 1719 1736 4383
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9 Assessment of the Accuracy of Relativistic Hamiltonians

A double-ζ basis set is not sufficient and shows a large deviation to the reference basis set. Even the sign of
1K for HBr is not predicted correctly. The x2c-TZVPall-2c basis set shows errors in the same range as X2C
compared to 4c and the density functional results to the experimental findings. Therefore, a triple-ζ basis set
may be considered sufficient for routine calculations, even tough the errors are larger than for the 4c-Bases.
However, the number of functions is also decreased by a factor of 3 compared to the 4c-Bases and therefore
the computational costs are considerably lowered. The x2c-QZVPall-2c basis set significantly improves
upon the x2c-TZVPall-2c basis. Jensen showed that tight p functions are required for the PSO term and
the FC term necessitates tight s functions. [531] Adding tight p functions by choosing the x2c-QZVPall-2c-s
basis sets does not improve the results. Therefore, tight s functions are added in the same way as the tight
p functions were added for the x2c-QZVPall-2c-s basis sets in Sec. 8.2.1. Thus, a single tight s function is
added to the first segment by scaling the inner-most primitive with a factor of 6.5 and removing the outer-most
primitive from the segment. The contraction coefficients are optimized in atomic ROHF calculations and
the resulting basis set is termed x2c-QZVPall-2c-j. The bases are available in the supporting information of
Ref. 431. This significantly improves upon the x2c-QZVPall-2c bases and results in a reduced deviation for
all molecules except HI. The improvement for the other molecules is mainly caused by the basis set for the
hydrogen atom. So, the coupling constant for HI can be improved by combining the x2c-QZVPall-2c basis
set for I with x2c-QZVPall-2c-j for H. This yields −120.13 · 1019 T J−2.

After demonstrating that the quasirelativistic Hamiltonian results in a good agreement with the 4c-RKB
approach and considering the significant impact of the density functional approximation and the basis sets
on the coupling constants, the “error” by neglecting the generalized momentum in the balance condition is
assessed. Here, the DLU-X2C Hamiltonian in a finite nucleus model with the mSNSO approximation is
compared to 4c-RMB results at the BP86 level from Ref. 60. For comparison, the uncontracted pcJ-2 basis
set [531] is employed for the light elements (C, Si) and the uncontracted Dyall-VTZ basis set [190,495] for the
heavy elements. (l + 1) and (l + 2) valence correlation and (l + 1) core correlation functions were added
to the Dyall basis sets. The same functionals as previously are chosen and all other computational settings
are unchanged. However, the t-LMF based LHFs are not considered due to the unfavorable performance
observed previously. The results in Tab. 9.10 confirm that using the RKB instead of the more involved RMB
condition is sufficient for NMR coupling constants as the relative deviation for the 1JTtH coupling constants
is below 2% for CH4, SiH4, GeH4, and SnH4. The large deviation of 6.5% for PbH4 is explained by the
missing finite nuclear size effects for the vector potential in the 4c calculations. Considering the impact of
all other computational parameters, the RKB condition is clearly sufficient.

Table 9.10: Comparison of various density functional approximations in 4c and 2c approaches. 4c results are taken from Ref. 60
Coupling constants (1JTtH, 2JHH) are given in Hz and compared to the same experimental findings as in Ref. 60. The
DLU-X2C Hamiltonian including the finite nucleus model and the mSNSO ansatz is employed. Large grids (grid 4a) are
used for the numerical integration of the DFT part. The uncontracted Dyall-VTZ/pcJ-2 basis sets are employed.

4c-RMB BP86 BP86 PBE TPSS B3LYP PBE0 TPSSh CAM-B3LYP LHJ14 PSTS Exp.
1JTtH

CH4 122.0 121.9 120.9 140.8 134.4 124.8 141.7 131.2 127.9 140.3 120.1

SiH4 −201.6 −198.4 −192.4 −197.6 −215.3 −199.4 −201.6 −209.3 −204.6 −198.5 −201.1

GeH4 −90.4 −90.1 −87.7 −94.9 −100.7 −93.2 −97.1 −99.1 −97.1 −96.1 −97.6

SnH4 −1742.2 −1728.0 −1690.7 −1809.9 −1975.1 −1841.6 −1871.3 −1958.5 −1896.9 −1856.7 −1933.3

PbH4 2345.3 2498.1 2472.5 2708.2 3007.6 2814.6 2843.9 3047.5 2879.6 2839.2 –
2JHH

CH4 −13.50 −13.15 −12.05 −10.33 −13.49 −14.05 −11.44 −13.51 −12.66 −13.24 −12.40

SiH4 −0.56 −0.44 0.11 9.34 4.30 0.12 8.90 5.18 4.93 7.45 2.75

GeH4 7.79 7.81 8.12 13.97 12.37 6.78 13.27 12.57 12.86 11.68 7.69

SnH4 14.30 14.56 14.73 19.80 20.83 13.41 19.25 20.61 20.80 16.83 15.30

PbH4 30.87 36.67 35.77 44.44 46.59 35.36 44.23 45.85 46.21 40.84 –
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9.2.2 Organometallic Main-Group Alkynyls

We study the same test set as in Sec. 9.1.2 to further compare the X2C and DLU-X2C Hamiltonian to
ZORA and 4c-RMB results of Ref. 383. Therefore, structures are taken from this reference and the same
basis sets as in the reference are used. The PBE [341] and the PBE0 [355] density functional approximations
are applied with large grids [482] (grid 4a) for the numerical integration. SCF energies and densities were
converged up to 10−8 Eh and 10−8 a.u.; a criterion of 10−6 a.u. was used to indicate the convergence of the
CPKS equations. Results are presented in Tab. 9.11 and Tab. A.8. Note that the ZORA results are obtained
with STOs [532] and that the vector potential in the point-charge model is used in the 4c calculations.

As expected, relativistic effects are important for the Sn and Pb compounds. Here, the relativistic effects to
the coupling constant of Pb–C≡C may amount to almost 800Hz. The MAE of the DLU ansatz is 0.42Hz
with the finite nucleus model and is therefore negligible. The mean signed deviation (MSD) is 0.03Hz and
the respective standard deviation is 0.88Hz. Note that there are no outliers as the maximum error is 2.16Hz
for Me2Sn(CCMe)2. The respective errors with the point-charge model are 0.44Hz (MAE) and 0.02Hz
(MSD), while the standard deviation amounts to 0.92Hz. Similar errors are found for the PBE functional
and confirm that the error of the DLU scheme is independent of the functional. The finite nucleus model
only affects the tin and lead compounds. For the latter, the finite nuclear size tends to decrease the couplings.

Table 9.11: Comparison of non-relativistic, two-component, and four-component results for alkynyl molecules at the PBE0 level.
Dyall’s uncontracted CVTZ basis set is used for the heavy elements (Ge, Sn, Pb), whereas uncontracted cc-p(C)VTZ basis
sets are employed for the light elements in the X2C and 4c-RMB calculations. The ZORA calculations use Slater-type
basis functions. Structures, ZORA, and 4c results are taken from Ref. 383, whereas the experimental values are taken
from Ref. 533. 1JTtC (Tt = 29Si, 73Ge, 119Sn, 207Pb) coupling constants are listed in Hz. NR and Me denote the
non-relativistic limit and methyl groups. All X2C and DLU-X2C calculations employ the mSNSO approach.

Finite Nucleus Point Charge

NR X2C DLU X2C DLU ZORA 4c-RMB Exp.
1JTtC for Tt(CCMe)4

Si–C≡C −125.56 −127.48 −127.46 −127.49 −127.47 −116.20 −132.32 –
Ge–C≡C −54.09 −58.65 −58.63 −58.97 −58.94 −49.48 −60.52 –
Sn–C≡C −904.51 −1177.51 −1175.64 −1196.64 −1194.75 −1073.64 −1223.66 −1168.0

Pb–C≡C 849.03 1674.70 1672.90 1809.68 1807.73 1505.25 1764.67 1624.5

1JTtC for Me2Tt(CCMe)2

Si–CH3 −54.00 −54.64 −54.63 −54.64 −54.63 −46.08 −56.53 –
Si–C≡C −95.88 −96.82 −96.80 −96.83 −96.81 −87.23 −100.56 –
Ge–CH3 −16.25 −21.13 −21.13 −21.32 −21.32 −16.94 −22.29 –
Ge–C≡C −30.33 −35.17 −35.13 −35.30 −35.27 −30.13 −36.27 –
Sn–CH3 −320.52 −425.79 −425.66 −433.11 −432.99 −363.14 −440.39 −496.2

Sn–C≡C −547.09 −590.03 −587.88 −599.35 −597.17 −550.44 −613.09 −654.6

Pb–CH3 276.74 469.56 469.47 508.50 508.40 373.73 491.32 574.3

Pb–C≡C 445.58 −7.38 −9.18 −5.28 −5.28 55.89 −3.40 208.0

1JTtC for Me3TtCCH

Si–CH3 −48.12 −48.75 −48.74 −48.75 −48.74 −42.04 −51.15 −55.1

Si–C≡C −74.51 −75.13 −75.12 −75.14 −75.12 −68.09 −77.91 −79.4

Ge–CH3 −16.46 −17.07 −17.07 −17.23 −17.22 −13.86 −17.66 –
Ge–C≡C −23.08 −22.59 −22.59 −22.66 −22.66 −19.61 −23.25 –
Sn–CH3 −261.74 −328.72 −328.69 −319.43 −319.18 −279.85 −339.18 −303.5

Sn–C≡C −351.81 −314.03 −313.78 −319.43 −319.18 −298.59 −326.78 −415.5

Pb–CH3 218.39 254.51 254.50 275.31 275.30 199.93 264.83 –
Pb–C≡C 259.34 −418.86 −419.05 −446.23 −446.43 −321.52 −440.91 –
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Table 9.12: Comparison of non-relativistic and two-component results for alkynyl molecules at the PBE0 level. Dyall’s uncontracted
CVTZ basis set is used for the heavy elements (Ge, Sn, Pb), whereas uncontracted cc-p(C)VTZ basis sets are employed
for the light elements. The experimental values are taken from Ref. 533. 1JTtC (Tt = 29Si, 73Ge, 119Sn, 207Pb) coupling
constants are listed in Hz. NR and Me denote the non-relativistic limit and methyl groups. All X2C and DLU-X2C
calculations employ the mSNSO approach. The mean absolute error of the DLU scheme is 0.48Hz for the finite nucleus
model and 0.50Hz for the point charge model.

Finite Nucleus Point Charge

Molecule NR X2C DLU X2C DLU Exp.
1JTtC for Tt(CCMe)4

Si–C≡C −123.51 −125.88 −125.86 −125.90 −125.88 –
Ge–C≡C −53.31 −57.85 −57.83 −58.17 −58.14 –
Sn–C≡C −889.99 −1158.58 −1156.57 −1177.39 −1175.36 −1168.0

Pb–C≡C 849.03 1660.61 1658.68 1794.94 1792.33 1624.5

1JTtC for Me2Tt(CCMe)2

Si–CH3 −53.94 −54.80 −54.79 −54.81 −54.80 –
Si–C≡C −95.20 −96.46 −96.46 −96.50 −96.47 –
Ge–CH3 −20.64 −21.79 −21.78 −21.97 −21.96 –
Ge–C≡C −34.90 −36.14 −36.10 −36.29 −36.25 –
Sn–CH3 −331.02 −437.70 −437.56 −444.75 −444.61 −496.2

Sn–C≡C −582.71 −649.27 −646.91 −659.99 −657.61 −654.6

Pb–CH3 301.36 524.94 524.82 566.88 566.75 574.3

Pb–C≡C 514.89 262.79 260.83 287.00 284.88 208.0

1JTtC for Me3TtCCH

Si–CH3 −48.45 −49.10 −49.09 −49.11 −49.10 −55.1

Si–C≡C −76.58 −77.31 −77.29 −77.32 −77.30 −79.4

Ge–CH3 −17.11 −17.80 −17.80 −17.95 −17.95 –
Ge–C≡C −25.49 −25.46 −25.46 −25.55 −25.55 –
Sn–CH3 −275.38 −345.54 −345.40 −351.03 −350.98 −303.5

Sn–C≡C −410.55 −402.22 −401.98 −409.00 −408.76 −415.5

Pb–CH3 244.30 309.04 308.98 334.99 334.92 –
Pb–C≡C 343.95 −169.59 −169.78 −179.17 −179.37 –

The quasirelativistic X2C Hamiltonian results in a good agreement with the 4c-RMB Dirac–Kohn–Sham
ansatz. The coupling constants show the same trends and the deviation is typically smaller than the impact
of the finite charge distribution. In contrast, ZORA does not result in such a good agreement as especially
for the light elements large relative deviations are present. Also, ZORA does not accurately reproduce the
coupling constants of Pb as reflected for the Pb–C≡C coupling constant of 55.89Hz compared to−3.40Hz.
Compared to the experimental findings, the results for Me2Sn(CCMe)2, Me2Pb(CCMe)2, and Me3SnCCH
are not very convincing as the deviation is very large compared to the previous results obtained with the
PBE0 functional. All magnetic properties are generally sensitive towards the molecular structure. The
structures for Tab. 9.11 are optimized at the ZORA level. Considering the better agreement of the X2C and
4c Hamiltonian, the structures were reoptimized at the DLU-X2C/x2c-TZVPall-2c/PBE0 level including the
dispersion correction D3. [498] The results with these structures are given in Tab. 9.12 and the structures are
provided in Ref. 431. Notably, the agreement with the experimental findings is significantly improved for all
molecules—especially for the three mentioned compounds. The sign of the Pb–C≡C coupling constant is
not predicted correctly with the ZORA-optimized structure and the deviation amounts to more than 200Hz.
Using the X2C-optimized geometry reduces this deviation to less than 60Hz. As observed previously for
NMR shifts, [84] ZORA benefits from error cancellation in Tab. 9.11. Still, consistently using ZORA is
inferior to X2C as indicated by the ZORA results in Tab. 9.11 and the X2C results in Tab. 9.12. This shows
that a more sophisticated Hamiltonian than ZORA is needed for the structures of these molecules.
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9.2.3 Tin Compounds

To further compare the X2C and the ZORA Hamiltonian, a set of 19 tin molecules compiled in Ref. 384
is selected. The ZORA calculations in this reference were performed with the STO TZ2P basis set [532]

and the BP86 functional. [128,340] mSNSO DLU-X2C calculations are performed at the same structures with
the x2c-TZVPPall-2c basis set [203] and the BP86 functional (grid 4a [482]). Moreover, the structures were
reoptimized with the DLU-X2C Hamiltonian and are available in Ref. 431. DLU-X2C calculations are also
carried out with the B3LYP functional [128–130] and the x2c-QZVPall-2c basis set. [483] COSMO [453,454] is
applied to compensate the positive or negative charge. SCF thresholds of 10−9 Eh and 10−8 a.u. for the
root mean square of the density ensure well converged spinors. The CPKS equations are converged with a
threshold of 10−6 a.u. for the residuum. To compare with, non-relativistic calculations are performed with
the def2-TZVP basis set [198] and the TZVPall bases. [502] The results are listed in Tab. 9.13.

Generally, ZORA and DLU-X2C result in a qualitative agreement. However, some discrepancies for
couplings involving hydrogen are revealed. For instance, the 2JSnH coupling constant of SnMe4 is 6.74Hz at
the ZORA level and 23.45Hz at the DLU-X2C level. ZORA severely underestimates many 2JSnH couplings
compared to the experimental measurements. [534–538] Furthermore, the deviation between the ZORA and
the DLU-X2C results increases for the molecules containing bromine and iodine. Here, the Sn–Br coupling
constants of Me3SnBr differ by nearly 300 ppm and the deviation increases with the number of bromine
atoms to 450Hz for MeSnBr3. A less pronounced trend is exhibited for Me3SnI, Me2SnI2, and MeSnI3.
There, the deviation rises from 270Hz to only 300Hz.

Both ZORA and DLU-X2C do not accurately reproduce the experimental coupling constants for most
molecules. Reoptimizing the structure with the more sophisticated DLU-X2C Hamiltonian is of minor
importance for the agreement with the experimental data. Instead employing a larger basis set like the
x2c-QZVPall-2c bases or using a hybrid functional like B3LYP has a large impact on the results. Especially
the incorporation of HF exchange considerably improves the agreement with the experimental findings. The
Sn–Sn coupling constant of (Me3Sn)2 seems to be very sensitive towards the amount of HF exchange as
the result increases by 1600Hz. Therefore, the deviation of 2000Hz could possibly be reduced by another
density functional approximation with a larger amount of HF exchange. Indeed, Becke’s half and half
functional, BH&HLYP, with 50% of exchange [128,129,350] yields 5001Hz and the range-separated functionals
LC-ωPBE [359] and ωB97X-D [360] result in a Sn–Sn coupling constant of 4901Hz and 3658Hz, respectively.

The coupling constants with hydrogen atoms are notably underestimated with the chosen basis sets and the
BP86 or B3LYP functional. The calculated 2JSnH coupling constant of SnMe4 is 31.1Hz with B3LYP and
deviates by more than 20Hz from the experimental result of 54.0Hz. Based on Sec. 9.2.1, adding tight s
functions to the basis set might improve the situation. Therefore, the x2c-QZVPall-2c-j basis set is used for
SnMe4. However, this results in a coupling constant of 33.3Hz with the B3LYP functional. Increasing the
amount of HF exchange with the BH&HLYP functional yields 58.3Hz. Therefore, the coupling constants of
these tin molecules are highly sensitive towards the admixture of HF exchange. Additionally, solvent effects
may further need to be considered for a better agreement with the experimental findings.
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Table 9.13: Calculated coupling constants for various Sn molecules of Ref. 384. J coupling constants are listed in Hz. ZORA results
and structures are taken from Ref. 384. PC denotes the usage of the point charge model. The BP86 functional was used,
and the DLU-X2C calculations use the x2c-TZVPPall-2c [203] and the x2c-QZVPPall-2c [483] basis sets unless explicitly
noted otherwise. The prefix “x2c-” and the suffix ‘2c” are omitted for brevity. Experimental results are taken from the
collections of Refs. 534 and 535 (in CCl4) except for SnH4 (Ref. 536), (Me3Sn)2 (Ref. 537), SnH+

3 , and SnH−3 (both
Ref. 538). Signs were adjusted according to the theoretical studies.

ZORA-optimized structures DLU-X2C-optimized structures

Molecule Coupling NR 1c ZORA 2c ZORA DLU DLU PC DLU DLU QZVPPall DLU B3LYP Exp.

SnMe4 1JSnC −156.1 −115.93 −104.83 −133.23 −133.7 −135.7 −136.8 −255.2 −337.2
2JSnH 27.3 8.45 6.74 23.45 23.5 24.6 23.1 31.1 54.0

(Me3Sn)2 1JSnSn 1534.1 838.30 601.66 677.50 681.3 741.8 356.1 2370.3 4460
1JSnC −100.6 −31.16 −19.92 −41.92 −42.0 −45.3 −43.9 −156.9 −240
2JSnH 23.8 2.97 1.07 16.55 16.6 17.5 16.3 23.6 49.5
2JSnC −30.8 −42.99 −41.46 −43.54 −43.7 −43.3 −43.7 −61.9 −56
3JSnH −10.3 −15.90 −15.63 −16.60 −16.7 −16.6 −17.6 −16.3 −17.3

SnH4
1JSnH −1211.3 −1599.63 −1549.47 −1484.28 −1489.8 −1483.9 −1662.8 −1705.5 −1930

SnH+
3

1JSnH −1738.2 −2188.67 −2112.89 −2001.81 −2009.3 −1999.0 −2228.9 −2315.1 −2916

SnH−3
1JSnH −60.1 26.63 81.19 221.58 222.4 205.2 183.4 105.6 109.4

Me3SnCl 1JSnCl 239.5 290.53 276.64 287.35 288.3 291.3 341.4 277.3
1JSnC −166.0 −124.02 −112.85 −139.65 −140.2 −142.4 −148.7 −282.4 −379.7
2JSnH 28.4 6.29 4.54 22.66 22.7 23.7 23.0 30.5 58.1

Me2SnCl2 1JSnCl 313.4 381.18 364.28 375.29 376.5 377.5 441.8 362.0
1JSnC −209.8 −172.88 −162.39 −194.71 −195.5 −197.6 −212.8 −371.5 −468.4
2JSnH 66.6 6.94 5.28 27.11 27.2 28.1 28.5 35.7 68.2

MeSnCl3 1JSnCl 381.6 479.10 456.70 461.08 462.5 462.9 550.2 445.4
1JSnC −324.4 −310.38 −300.50 −361.08 −362.5 −362.8 −394.5 −600.9 −693.2
2JSnH 47.9 17.26 15.86 44.95 45.1 45.7 47.8 56.0 98.7

SnCl4 1JSnCl 422.7 568.29 535.50 515.43 517.0 517.5 641.0 496.3

Me3SnBr 1JSnBr 1632.2 1255.87 1079.18 1372.30 1378.0 1387.1 1408.0 1411.0
1JSnC −184.6 −113.20 −102.88 −126.57 −127.1 −129.9 −136.0 −267.6 −368.9
2JSnH 31.2 5.65 3.88 21.80 21.9 22.8 22.2 29.6 57.8

Me2SnBr2 1JSnBr 1632.2 1666.69 1403.43 1756.66 1763.3 1778.2 1803.9 1823.8
1JSnC −184.6 −145.56 −135.35 −158.86 −159.5 −161.8 −176.1 −327.5 −442.7
2JSnH 31.2 4.56 2.65 23.53 23.6 24.7 25.2 31.9 66.7

MeSnBr3 1JSnBr 2040.3 2085.68 1642.26 2093.04 2100.8 2118.4 2147.3 2212.7
1JSnC −268.3 −248.27 −236.35 −275.04 −276.1 −274.9 −302.7 −487.3 −602.5
2JSnH 42.4 11.22 8.98 35.11 35.2 36.4 38.7 45.2 88.5

SnBr4 1JSnBr 2411.3 2442.95 1633.34 2235.30 2243.6 2265.0 2293.1 2456.0

Me3SnI 1JSnI 1656.8 1480.67 1093.32 1361.66 1373.4 1378.9 1487.6 1467.6
1JSnC −160.9 −98.68 −88.40 −113.56 −114.0 −115.0 −120.5 −249.2
2JSnH 29.8 4.88 3.17 21.15 21.4 21.9 21.2 28.7 57.2

Me2SnI2 1JSnI 1655.8 1900.57 1262.27 1561.30 1573.9 1566.6 1710.1 1722.2
1JSnC −160.9 −103.85 −89.42 −115.62 −116.1 −114.1 −125.7 −266.1
2JSnH 29.8 2.10 −0.15 20.47 20.5 20.4 20.7 27.4 62.4

MeSnI3 1JSnI 1339.5 2261.31 1128.78 1438.36 1451.1 1401.2 1593.8 1681.7
1JSnC −210.1 −150.76 −116.49 −154.48 −155.1 −152.6 −171.7 −325.1
2JSnH 36.7 2.84 −1.47 22.35 22.5 21.5 23.3 28.8 73.4

SnI4 1JSnI 2278.8 2497.64 505.84 790.97 802.0 657.9 907.6 1149.9

SnCl3I 1JSnCl 408.5 530.35 482.23 470.51 471.9 472.2 580.7 462.9
1JSnI 2887.8 3536.61 1572.76 2287.96 2311.3 2244.0 2653.9 2712.0

SnI3Cl 1JSnCl 375.5 455.62 386.14 386.46 387.6 388.5 472.7 394.8
1JSnI 2469.2 2808.93 805.89 1207.27 1221.9 1097.5 1391.1 1057.4
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9.2.4 Application to Palladium and Platinum Complexes

To assess the accuracy of theDLU-X2CHamiltonian for transition-metal complexes, additional investigations
are performed. Here, the palladium complex [Pd(PCy2H)3Cl]+ (Cy = cyclohexl C6H11), which is depicted
in Fig. 9.3, and the platinum complex [Pt(PCy2H)3Cl]+ are studied to compare with the ZORA and 4c-RMB
results of Ref. 383. Note that the optimized structure is only provided for the palladium complex in this
reference. Therefore, a close comparison is only possible for this complex. Here, the same functionals
and similar basis sets are employed. Therefore, the uncontracted Dyall-VDZ basis set [189,190,495] is selected
for Pd and the uncontracted cc-pVDZ basis set is used for H, C, P, and Cl. [161,162,167,496] Furthermore,
non-relativistic calculations are performed with the def2-TZVP basis sets for these elements [198] and the
TZVPalls2 bases for Pd. [502] Moreover, calculations are performed with the x2c-TZVPall-2c basis sets [203]

and the RI-J approximation. The PBE [341] and PBE0 [355] functionals are employed with a large grid (grid
4a [482]) for the numerical integration. Positive net charges are compensated with COSMO. [453,454] Tight SCF
thresholds of 10−8 Eh and 10−8 a.u. for the root mean square of the density as well as a criterion of 10−6 a.u.
for the CPKS equations ensure well converged results, which are reported in Tab. 9.14. Relativistic effects
are pronounced for this complex and the Dyall-VDZ basis set is not suited for non-relativistic calculations as
reflected by the large differences to the def2-TZVP/TZVPalls2 basis. The DLU-X2C Hamiltonian accurately
reproduces the coupling constants of the 4c-RMB approach since the deviation for the Pd coupling constants
amounts to only 15 to 20Hz. The maximum difference is found for the 1JPP coupling constants of the
trans-phosphorous atoms with about 30Hz or 10%. Here, the ZORA Hamiltonian shows a difference of
about 70Hz. All quasirelativistic results still differ by 70 to 80Hz from the experimental measurements. [539]

Figure 9.3:Molecular structure of [Pd(PCy2H)3Cl]+, which consists of 110 atoms. Color scheme: H white, C grey, P orange, Cl
green, and Pd cyan.

Table 9.14: Coupling constants (in Hz) of [Pd(PCy2H)3Cl]+. ZORA and 4c-RMB results are taken from Ref. 383. The basis sets
Dyall-VDZ/cc-pVDZ in uncontracted form, def2-TZVP/TZVPall, and x2c-TZVPall-2c are shortened to Dyall, TZVP, and
TZVP-2c, respectively. Experimental results are taken from Ref. 539.

NR ZORA DLU-X2C 4c-RMB

PBE0 Dyall PBE0 TZVP PBE0 PBE TZVP-2c PBE Dyall PBE0 TZVP-2c PBE0 Dyall PBE PBE0 Exp.
1JPdP

a −130.70 −119.76 −147.28 −151.37 −141.74 −167.05 −154.41 −155.65 −172.52 –
1JPdP

b −191.28 −178.35 −207.32 −221.12 −219.77 −244.60 −228.80 −229.76 −243.63 –
1JPH

a −18.80 264.65 268.25 222.20 247.69 263.06 270.33 251.20 280.83 355
1JPH

b 273.43 280.78 277.17 237.92 266.41 280.52 288.15 263.97 292.18 365
1JPP

a 376.13 341.95 304.48 308.68 300.46 361.77 338.39 314.18 371.15 –
1JPP

b 256.78 −16.01 −16.30 −14.89 −11.42 −24.79 −20.86 −13.26 −24.83 –
aCoupling with P trans P
bCoupling with P trans Cl
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Table 9.15: Coupling constants (in Hz) of [Pd(PCy2H)3Cl]+ with various functionals and the x2c-TZVPall-2c basis set. Experimental
results are taken from Ref. 539.

BP86 PBE TPSS B3LYP PBE0 TPSSh CAM-B3LYP Exp.
1JPdP

a −145.57 −141.56 −149.36 −155.41 −152.05 −153.04 −157.94 –
1JPdP

b −217.41 −212.73 −221.72 −227.95 −217.33 −223.23 −225.13 –
1JPH

a 257.91 248.93 295.25 282.10 275.13 303.62 282.44 355
1JPH

b 275.91 266.81 313.73 302.02 291.27 327.82 300.37 365
1JPP

a 309.16 301.07 315.61 345.05 331.87 321.41 364.70 –
1JPP

b −12.87 −12.12 −12.40 −13.98 −22.40 −16.40 −21.13 –
aCoupling with P trans P
bCoupling with P trans Cl

To reduce the gap to the experimental findings, the BP86, [128,340] PBE, [341] TPSS, [346] B3LYP, [128–130]

PBE0, [355] TPSSh, [356] and the CAM-B3LYP [133] functionals are considered and all structures are optimized
at the x2c-TZVPall-2c/DLU-X2C level of theory. The calculations apply the RI-J approximation throughout
and the seminumerical exchange approximation in the CPKS equations. [311] The results in Tab. 9.15 show
that the density functional approximation significantly affects the coupling constants. BP86 and PBE
underestimate coupling constants by about 100Hz, whereas a significant improvement is found for TPSS
with a deviation of 60Hz. B3LYP, CAM-B3LYP, and PBE0 perform similarly and show no notable further
improvement. The best agreement is reached with the TPSSh functional, which reduces the deviation to
40–50Hz.

The coupling constants of [Pt(PCy2H)3Cl]+ are calculated with the same computational protocol and
presented in Tab. 9.16 together with the ZORA and 4c-RMB results of Ref. 383. Considering the PBE and
PBE0 functional, the DLU-X2C Hamiltonian performs similar to the 4c-RMB Hamiltonian and shows a
significantly smaller deviation to the experimental measurements than the ZORA approach. Note that both
the ZORAandDLU-X2C results are obtainedwith the structure optimized at the same level of theory. Among
the “pure” density functionals, TPSS performs best and shows notably larger coupling constants than BP86
and PBE. Overall, CAM-B3LYP performs best for the Pt–P couplings and the TPSSh functional performs
best for the P–H couplings. The experimental trends and findings are reasonably accurate reproduced with
the TPSSh and CAM-B3LYP functional.

Table 9.16: Coupling constants (in Hz) of [Pt(PCy2H)3Cl]+ with various functionals and the x2c-TZVPall-2c basis set for the DLU-
X2C calculations. ZORA and 4c-RMB results (Dyall-VDZ) are taken from Ref. 383. Experimental results are taken from
Ref. 539.

DLU-X2C ZORA 4c-RMB

BP86 PBE TPSS B3LYP PBE0 TPSSh CAM-B3LYP PBE0 PBE PBE0 Exp.
1JPtP

a 1589.15 1552.31 1693.37 1837.18 1809.70 1789.56 1921.08 1649.31 1665.56 2024.08 2215
1JPtP

b 2630.40 2571.01 2764.58 2908.47 2779.67 2831.83 2932.29 2543.61 2749.93 3088.32 3162
1JPH

a 274.92 265.65 312.59 299.01 290.81 320.95 297.27 285.34 269.34 298.55 357
1JPH

b 293.93 313.73 331.57 319.51 304.64 336.58 315.93 294.19 282.38 309.61 391
1JPP

a 274.17 267.87 284.54 295.33 281.63 289.37 296.89 266.48 282.89 319.43 –
1JPP

b −7.91 −6.80 −9.39 −11.44 −16.77 −13.00 −17.00 −11.41 −7.44 −17.73 –
aCoupling with P trans P
bCoupling with P trans Cl
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9.2.5 Demonstration of Efficiency

The low-valent tin complex [({SIDipp}P)2Sn] (SIDipp = 1,3-bis(2,6-di-isopropylphenyl)-imidazolidin-2-
ylidene) is chosen to illustrate the efficiency of the quasirelativistic DLU-X2C approach. The chemical
properties of this complex will be studied in detail in chapter 11. This compound is depicted in Fig. 9.4 and
consists of 137 atoms. The x2c-TZVPall-2c basis set [203] and auxiliary basis [203] for the RI-J approximation
are selected, consisting of 2,408 contracted basis functions and 3,616 primitive basis functions. More-
over, the BP86, [128,340] PBE, [341] TPSS, [346] B3LYP, [128–130] PBE0, [355] TPSSh, [356] CAM-B3LYP, [133,529,530]

LH07t-SVWN, [138] LH12ct-SsirPW92, [139] LHJ14, [141] and the PSTS functional in conventional gauge [134]

combined with large integration grids [482] (grid 4a for the conventional functionals and grid 3a for the LHFs)
were selected to consider the impact of the density functional approximations on the computational demands.
The structures of the first six functionals are taken from Ref. 540 and the structure of the CAM-B3LYP
functional is also optimized at the corresponding level of theory. For the PSTS functional, the structure of
TPSSh is utilized and the other LHF calculations are carried out with the B3LYP-optimized structure. Tight
SCF thresholds of 10−9 Eh and 10−8 a.u. for the root mean square of the density are applied and the CPKS
equations are converged up to 10−6 a.u. for the norm of the residuum. The coupling constants are shown in
Tab. 9.17 and the wall times are listed in Tab. 9.18.

Already, the “pure” density functional results are in good agreement with the experimental findings. The
results range from 1342Hz to 1410Hz and the experimental measurements in benzene yield a coupling
constant of 1334Hz. [540] COSMO [453,454] is applied to treat the solvent effects with a relative permittivity
of ε = 2.3. At the BP86 level, this yields 1405Hz and thus only changes the coupling constant of 1387Hz
without COSMO by 18Hz. Calculations were further carried out with the x2c-TZVPall-s and the x2c-
QZVPall-2c-s basis set. This results in a coupling constant of 1362Hz and 1470Hz. Note that the DLU
error is insignificant again as the full X2C Hamiltonian yields 1387Hz at the BP86/x2c-TZVPall-2c level of
theory. Hybrid functionals increase the coupling constants of the parent GGA and meta-GGA functionals.
Incorporating HF exchange increases the Sn–P coupling by 60Hz for the PBE and PBE0 functional. For
TPSS and TPSSh, only a minor increase is present. This is rationalized by the small amount of HF exchange
for the TPSSh functional. Range-separation further increases the coupling constant and leads to a serious
overestimate for CAM-B3LYP. The t-LMF based LHFs perform solid for this molecule as reflected by
couplings of 1439–1442Hz for LH07t-SVWN and 1348–1351Hz for LH12ct-SsirPW92. Similar to B3LYP
and CAM-B3LYP, the LHJ14 functional considerably overestimates the coupling constant by about 200Hz.
Only a minor improvement is found for PSTS compared to the parent TPSS and TPSSh functionals. Both the
mSNSO approximation and the finite nucleus model only result in minor changes of the coupling constants.

Figure 9.4:Molecular structure of [({SIDipp}P)2Sn] (SIDipp = 1,3-bis(2,6-di-isopropylphenyl)-imidazolidin-2-ylidene).
The molecule consists of 137 atoms. Color scheme: H white, C grey, N blue, P orange, and Sn red.
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Table 9.17: Results for 1JSnP (119Sn, 31P) coupling constants in Hz of the low-valent Sn phosphinidenide complex, [({SIDipp}P)2Sn]
(SIDipp = 1,3-bis(2,6-di-isopropylphenyl)-imidazolidin-2-ylidene). The experimental result is 1334Hz. [540] Structures are
mainly taken from Ref. 540. Except for the LHFs, the structures are optimized with the corresponding density functional
approximation. For LH07t-SVWN, LH12ct-SsirPW92, LHJ14, and PSTS, we use the structure optimized with the B3LYP
and the TPSSh functional. Large grids (grid 4a) are employed for the numerical integration of the exchange-correlation
terms except for the LHFs which utilize medium-sized grids (grid 3a). The x2c-TZVPall-2c basis set is chosen and the
RI-J approximation is used in the SCF procedure with the corresponding auxiliary basis sets. Analytical HF exchange
integrals are employed. The two calculated 1JSnP constants are averaged to compare with the experimental results.

Finite Nucleus Point Charge

Functional DLU mSNSO-DLU DLU mSNSO-DLU

BP86 1387 1388 1390 1391

PBE 1342 1343 1345 1346

TPSS 1406 1407 1410 1407

B3LYP 1496 1498 1500 1498

PBE0 1401 1403 1405 1406

TPSSh 1422 1423 1426 1426

CAM-B3LYP 1540 1542 1543 1546

LH07t-SVWN 1439 1440 1440 1442

LH12ct-SsirPW92 1348 1349 1351 1351

LHJ14 1535 1536 1538 1539

PSTS 1399 1400 1402 1403

The results in this section show that the DLU-X2C Hamiltonian accurately treats relativistic effects. In
contrast to the parent 4c approaches, the DLU-X2CHamiltonian is applicable to extended molecular systems
at reasonable computational costs as revealed by the wall times in Tab. 9.18. Here, timings are measured
on 12 OpenMP threads of a CPU of type Intel® Xeon® Gold 6212U CPU @ 2.40GHz. The wall time
of the DLU-X2C Hamiltonian is only 4 minutes. The second-order derivative of the energy, i.e. the DSO
term, takes 3 minutes whereas the derivatives for the RHS amount to 1 minute only. So, the wall time is
always dominated by the two-electron integrals. The calculation with the BP86 functional takes 48 minutes
in total and the XC kernel is the most time-consuming step with 40 minutes or 84% of the computation time.
This does not hold for the full X2C Hamiltonian. Here, the BP86 calculations requires more than 4 hours.
The derivatives of the X2C Hamiltonian take 24% and 72% of the wall time. Therefore, the DLU-X2C
Hamiltonian is of crucial importance for the efficiency of the quasirelativistic DFT approach.

Furthermore, it should be noted that the number of CPKS equations is small compared to the number of SCF
iterations. BP86 requires 88 SCF iterations but only 6 CPKS iterations. Consequently, the SCF procedure
can be more demanding than the calculation of the SSCCs for the efficient GGA and meta-GGA functionals.
Matters are different for hybrid density functionals as the exchange integrals of the CPKS iterations are
dominating the computation times. The SCF calculation of the B3LYP functional takes less than 10 hours
(115 SCF iterations), whereas the SSCC calculation amounts to 1 day 21 hours and 9 minutes (8 CPKS
iterations). The exchange integrals take 98% of the total wall time. Similar timings are obtained for the other
hybrid density functionals like PBE0 and TPSSh. The range-separated CAM-B3LYP functional requires
11 CPKS iterations and the calculation is the most time-consuming taking nearly 3 days. These wall times
can be significantly reduced by the application of the seminumerical exchange approximation to the CPKS
equations. Limiting the approximation to the CPKS equations allows to use a very small integration grid
(grid−1) without loss of accuracy. This reduces the wall times to a range of 5.5 to 10 hours without altering
the couplings by more than 1Hz. The exchange integrals still dominate the wall times by requiring more
than 70% of the total time.
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Table 9.18:Wall times and iterations for the ground-state density and the two Sn–P coupling constants with the DLU-X2CHamiltonian
in the finite nucleus model on a CPU of type Intel® Xeon® Gold 6212U CPU@ 2.40GHz using 12 OpenMP threads. The
code was compiled with Intel® Fortran Compiler 19.0.1.144. Timings are listed in minutes. Initial orbitals are generated
with the extended Hückel method. The RI-J approximation is employed for the SCF procedure. LHFs evaluate the XC
and the HF exchange contribution simultaneously. Therefore, no separate timings are listed for the HF exchange part. The
difference of the three steps to the total wall time of the SSCCs can be attributed to the transformation of the integrals and
the density response into the spinor basis as part of the generalized (block) conjugate gradient or Davidson solver. Note that
LHFs use a medium-sized grid (3a) whereas all other functionals employ large grids (4a). This significantly improves the
SCF convergence of the LHFs. Upon application of the seminumerical exchange approximation for the CPKS equations,
the computation times for the SSCCs of the hybrid functionals are reduced to 323 minutes (B3LYP), 339 minutes (PBE0),
596 minutes (TPSSh), and 454 minutes (CAM-B3LYP).

SCF SSCCs

Functional Iter. Total Time Iter. 1e Part Exchange XC Kernel Total Time

BP86 88 88 6 4 – 43 50

PBE 97 96 6 4 – 38 44

TPSS 94 100 7 4 – 190 199

B3LYP 115 591 8 4 2650 49 2709

PBE0 132 744 9 4 3227 59 3297

TPSSh 128 627 8 4 2842 220 3072

CAM-B3LYP 110 777 11 4 4237 69 4318

LH07t-SVWN 75 2591 8 4 – 2140 2150

LH12ct-SsirPW92 65 2256 8 4 – 2237 2247

LHJ14 71 2478 9 4 – 2634 2645

PSTS 81 2888 8 4 – 2288 2298

The described multigrid approach for the XC kernel and the seminumerical approximation is only applicable
to the global and range-separated hybrid density functionals in a straightforward manner. Therefore,
the LHF are more demanding as shown by wall times of 35.8 and 44.1 hours. The SCF calculations
are more demanding than the SSCC calculations due to the required integration bounds for numerical
stability. Compared to the previous implementation in TURBOMOLE V7.5, [294,305,311,315,363] the bounds
and numerical thresholds were tightened by two orders of magnitude to ensure a smooth convergence. The
previous settings required more than 5 days for the SCF iterations to converge and the total number of
SCF calculations was 223 for LH07t-SVWN. This shows that LHFs are numerically cumbersome and the
efficiency is notably decreased compared to the parent global hybrid functionals, which allow for a more
efficient application of the seminumerical exchange approximation. Furthermore, the timings clearly show
that the calculations of the two Sn–P coupling constants is less demanding than the SCF calculations for the
“pure” density functionals. For hybrid functionals, the SSCC calculations are not significantly more costly
than the SCF calculations. Therefore, SSCC calculations are possible for large molecules and the most
time-consuming step of a standard quantum chemical protocol is the optimization of the structure, which
requires multiple SCF and gradient calculations.
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10 Assessment of the Accuracy of Density
Functional Approximations

The impact of the density functional approximation is assessed for NMR coupling constants and shifts in
comparison to high-level coupled-cluster theory and experimental findings. The “pure” density functionals
BP86, [128,340] PBE, [341] KT3, [342,501] and TPSS [346] are included. Hybrid density functional approxima-
tions considered in the benchmark calculations are BH&HLYP, [128,129,350] B3LYP, [128–130] PBE0, [355] and
TPSSh. [356] The range-separated hybrid density funtionals LC-ωPBE, [359,529,530] ωB97X-D, [360,529,530] CAM-
B3LYP, [133,529,530] CAM-QTP-00, [361,529,530] and CAM-QTP-02 [362,529,530] are further included. LHFs are
represented by LH07t-SVWN, [138] LH12ct-SsirPW92, [139] LH14t-calPBE, [140] LH20t, [370] LHJ14, [141] and
the PSTS functional in conventional gauge. [134] The LHJ14 and the PSTS functionals are applied to NMR
properties for the first time. Note that the a1-only variant of PSTS is used as only closed-shell systems are
studied. The large number of functionals allows for a broad and comprehensive overview. All calculations
employ a large grid [294,315,482] (grid 4 in non-relativistic approaches and grid 4a in X2C calculations) for the
numerical integration of the exchange-correlation contributions. Coupling constants are calculated with and
without the paramagnetic current density to generalize the kinetic energy density, τ , for meta-GGA-based
functionals and LHFs. For NMR shieldings and shifts, both generalizations described in chapter 7 are ap-
plied; the generalizationwith the externalmagnetic field [461] and the paramagnetic current density. [458–460,462]

The latter is denoted by a “c” at the beginning of the functional name throughout this chapter. The NMR
shifts of LH14t-calPBE and LH20t are obtained by neglecting the derivatives with respect to the magnetic
field of the calibration function. Cartesian coordinates of the optimized structures and all individual results
are listed in the supporting information of Ref. 365.

The existing LHF implementations of theNMRproperties [415,432,467] were reworked to increase the efficiency.
The guidelines for the memory handling described in Ref. 223 were considered to reduce the memory
demands for large molecules. Furthermore, the gradient routines implemented in Ref. 364 were reworked
to support a shared memory parallelization with OpenMP and Fork-SMP. [541] This allows for structure
optimizations of midsize or large molecules. Moreover, the integral screening methods discussed in Ref.
311 were implemented together with Christof Holzer for all LHF routines. This replaces the previous
screening based on junctions [304] with a more robust screening based on the Schwarz inequality combined
with a suitable aliasing and dealiasing scheme. This scheme leads to a smooth SCF convergence for diffuse
basis sets and also reduces the overall scaling of local hybrid functional calculations fromO

(
N3
)
toO

(
N2
)

or even lower, where N measures the size of the system.

123



10 Assessment of the Accuracy of Density Functional Approximations

10.1 NMR Indirect Spin–Spin Coupling Constants

NMRcoupling constants are calculated for a small test set of 13molecules consisting of CO, H2O,OHF, OF2,
HCN, FCN, HCCH, FCCH, FCCF, FNO, H2CO, HFCO, and F2CO with 45 spin–spin coupling constants.
The DFT results are compared to the CC3 calculations of Ref. 116. Based on the large impact of the basis
set in the previous chapter, CC benchmark values are essential for a meaningful assessment of the density
functional itself. However, no such benchmark values are available for a heavy element test set and tailored
basis sets are only available for the light elements. [531,542] Consequently, the NMR coupling studies in this
chapter are restricted to light elements. Here, the same computational protocol as for the CC3 results is
applied. Structures were optimized with the aug-cc-pVQZ basis set [161,164,496,520] at each level of theory.
The optimized structures are available in Ref. 365. NMR coupling constants are then obtained with the
aug-ccJ-pVTZ basis set, which is constructed by augmenting the ccJ-pVTZ [542] bases from the Basis Set
Exchange library [487,488] with the functions of Ref. 520. Tight SCF thresholds of 10−9 Eh and 10−9 a.u. for
the root mean square of the density matrix as well as a CPKS threshold of 10−6 a.u. ensure that all results
are well converged. The statistical evaluation of the results is presented in Tab. 10.1. A mean absolute
percent-wise error (MAPE) is used for the analysis as the coupling constants are within a range of 1500Hz.

The “pure” density functional approximations result in large errors for the coupling constants. The errors
amount to about 40% for the 1J couplings and to 40–50% for the 2J and 3J coupling constants. TPSS
does not significantly improve the agreement compared to the GGA functionals. The corresponding hybrid
functional TPSSh also does not considerable change the errors. For the 1J couplings, the error is reduced
from 38.20% to 29.30% and the respective error of the 2J or 3J coupling is reduced to 29.40%. The
GGA hybrid functionals result in a much better agreement with the CC3 results. Here, the errors are about
20% (1J) and 25% (2/3J). Note that the unfavorable performance of TPSSh can be mainly attributed
to the couplings involving fluorine and oxygen. The impact of the current density is small as it only
affects the PSO term of meta-GGAs and the corresponding hybrid functionals. The respective one-electron
integrals are purely imaginary and antisymmetric. Therefore, the magnetic XC kernel requires an iterative
procedure for the PSO term. For the studied molecules, 2 CPKS equations are needed. The FC and the SD
terms are symmetric and the contribution of the antisymmetric magnetic XC kernel vanishes like for electric
polarizabilities. The FC term is the dominant term for the studied molecules and the PSO term is comparably
small. [116] Nevertheless, the current-dependent generalization of τ restores the iso-orbital constraint in DFT.

Range-separated hybrid functionals like ωB97X-D and CAM-QTP-02 outperform the global hybrid func-
tionals for the 1J coupling constants. In contrast to the latter, ωB97X-D is also able to deliver very accurate
2J and 3J coupling constants with a significantly decreased standard deviation indicating that no outliers
are present. A position-dependent admixture of Hartree–Fock exchange in LHFs does not result in a consis-
tent improvement. The t-LMF based functionals LH07t-SVWN, LH14t-calPBE, and LH20t yield smaller
errors than PBE0 and LH20t slightly improves upon ωB97X-D for the 1J coupling constants. However,
these functionals show larger deviations for the 2J and 3J couplings than ωB97X-D. Other local hybrid
functionals such as LH12ct-SsirPW92 and LHJ14 show no remarkable improvement as the deviations are
larger than for B3LYP. Furthermore, PSTS does not improve upon the parent TPSS and TPSSh functionals
and leads to errors of more than 100% for F2CO and OHF. In contrast, the errors rise for 1J couplings
and only a minor decrease is exhibited for the other couplings. Also, the current-dependent generalization
of τ does not notably change the results for the t-LMF-based functionals, which control the amount of HF
exchange with the iso-orbital indicator. Instead, the maximum change is found for PSTS (1J) and LHJ14
(2/3J). The generalization of the kinetic energy density does not increase the computational costs for the
local hybrid funcctionals as the calculation of HF exchange contribution is more demanding. Therefore,
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10.1 NMR Indirect Spin–Spin Coupling Constants

Table 10.1:Mean absolute percent-wise error (MAPE) and respective standard deviation (STD) for a the spin-spin coupling constants
of CO, H2O, OHF, OF2, HCN, FCN, HCCH, FCCH, FCCF, FNO, H2CO, HFCO, and F2CO. CC3 results serve as
reference herein. [116] Coupling constants with an absolute value below 7Hz are neglected in the statistical evaluation. A
“c” at the beginning of the functional name indicates that the current-dependent correction for the kinetic energy density
is used. The aug-ccJ-pVTZ basis set is employed. Individual coupling constants are given in Ref. 365.

1J 2/3J

MAPE STD MAPE STD

KT3 43.38 49.35 48.25 49.81

BP86 44.44 47.52 45.69 55.44

PBE 40.60 44.17 43.89 47.11

TPSS 38.20 36.75 39.11 39.62

cTPSS 39.01 36.75 39.11 40.12

BH&HLYP 23.92 22.51 25.56 24.90

B3LYP 23.76 17.58 26.23 25.47

PBE0 19.48 17.40 23.98 23.83

TPSSh 29.30 26.54 29.40 30.89

cTPSSh 30.10 26.43 31.22 31.25

LC-ωPBE 19.97 19.20 27.77 22.85

ωB97X-D 14.81 12.35 18.50 15.31

CAM-B3LYP 18.58 11.50 26.35 19.03

CAM-QTP-00 27.07 31.13 38.01 41.16

CAM-QTP-02 15.20 15.93 24.64 19.86

LH07t-SVWN 18.94 20.79 19.44 22.90

cLH07t-SVWN 19.04 20.85 19.86 22.94

LH12ct-SsirPW92 25.16 24.06 29.64 27.98

cLH12ct-SsirPW92 25.16 24.09 29.68 27.93

LH14t-calPBE 17.34 16.00 19.57 19.33

cLH14t-calPBE 17.39 16.00 19.73 19.28

LH20t 13.43 12.46 22.48 18.38

cLH20t 13.32 12.31 21.83 18.00

PSTS 31.07 29.80 30.41 33.64

cPSTS 34.51 33.78 31.31 36.06

LHJ14 24.47 23.27 31.67 30.27

cLHJ14 23.16 22.96 29.54 29.23

the current-dependent generalization of the kinetic energy density is the default choice and ensures a gauge
invariant formalism.

To conclude, most local hybrid functionals based on the t-LMF sufficiently reproduce the coupling constants
of the high-level CC3 model. The recently developed LH20t functional performs best for the 1J coupling
constants whereas LH07t-SVWN and LH14t-calPBE yield smaller errors for the 2/3J couplings. On the
contrary, the LH12ct-SsirPW92 functional is outperformed by all global GGA hybrid functionals. TPSS,
TPSSh, and PSTS are not suited for the coupling constants in this test set and PSTS even leads to a
deterioration compared to the parent TPSSh functional. For the studied molecules, the range-separated
functionals tend to perform best. Overall, ωB97X-D shows the smallest deviation to the approximate
coupled-cluster CC3 results.
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10 Assessment of the Accuracy of Density Functional Approximations

10.2 NMR Shieldings and Shifts

The NMR shieldings and shifts are studied for both light and heavy elements. For the light elements, the
DFT results are assessed with CCSD(T) results. [310,543] The first test set of Stoychev and co-workers [310]

considers the NMR shielding constants of H, C, N, O, F, and P, whereas the test set of Flaig et al.
[543]

considers the 1H and 13C NMR shifts. Here, the same geometries and basis sets as in the coupled-cluster
calculations are used making the results strictly comparable and ensure that only the impact of the density
functional approximations for NMR shieldings and shifts without any other effects is assessed.

Furthermore, the 17O NMR shifts of the transition-metal oxo compounds, [380,381] the 129Xe shifts of the
xenon fluorides, [499] and the 183W shifts of the tungsten compounds [382] of Sec. 9.1 are studied with the
functionals described in the previous subsection. Here, the experimental findings serve as reference and
the NMR-tailored x2c-TZVPall-s basis sets are used throughout to allow for a meaningful comparison.
Moreover, the structures are optimized at each level of theory for this purpose. The optimized structures
are provided in the supporting information of Ref. 365. All results are statistically evaluated with the mean
absolute error, mean signed error, and the respective standard deviation.

10.2.1 NMR Shielding Constants of Organic Compounds

The NMR shieldings of CH4, (CH3)2CO, furan, CO, CF4, HF, H2O, OF2, F2, NH3, N2, N2O, PN, PH3,
and PF3 are calculated with the original pcSseg-4 basis set and compared to the CCSD(T) results. [310] SCF
thresholds of 10−9 Eh and 10−9 a.u. for the root mean square of the density matrix ensure well converged
MOs. The norm of the residuum in the CPKS equations [416] is required to be less than 10−7 a.u. to ensure
converged NMR shielding constants. Due to the range of the shieldings, the results are separately evaluated
for H, C, and the group of N, O, F, and P shielding constants.

The results for the H shieldings are presented in Fig. 10.1. Here, HF and the “pure” density functional
approximations lead to comparably large errors of more than 0.3 ppm. The GGA global hybrid functionals
reduce these errors to about 0.1–0.2 ppm and the standard deviation is reduced in a similar way. Again, some
range-separated functionals worsen the results and the errors are in the same range as those of the GGA
functionals while CAM-B3LYP and CAM-QTP-00 perform remarkably well. Most LHFs do not result in
a notable improvement for the shielding constants of hydrogen. LH07t-SVWN, LH12ct-SsirPW92, PSTS,
and LHJ14 show rather large errors. Yet, the smallest MAE is found for LH14t-calPBE with 0.11 ppm.

The C shieldings in Fig. 10.2 reveal a different picture. The KT3 functional performs best (MAE = 6.27 ppm)
and the global hybrid functionals are no significant improvement compared to the parent GGA and meta-
GGA functionals. Instead, range-separated hybrids consistently reduce the errors compared to the global
hybrids. Among the LHFs, the LH12ct-SsirPW92 functional performs best with a mean absolute error of
7.36 ppm.

The errors for N, O, F, and P are presented in Fig. 10.3. BP86, PBE, and TPSS show errors in the range
of 30 to 50 ppm whereas the NMR-optimized KT3 functional again yields a very small mean absolute
error of 23.80 ppm. Conventional hybrid functionals only result in minor changes for the parent PBE and
TPSS functional. Range-separated functionals yield errors in the same range as KT3, however, the standard
deviation rises. ωB97X-D shows a MAE of 20.45 ppm only while the MSD amounts to −44.50 ppm. The
t-LMF functionals perform similarly. LH12ct-SsirPW92 features the smallest MAE of 20-45 ppm and a
MSD of −12.11 ppm. PSTS slightly reduces the errors of TPSS and TPSSh, whereas LHJ14 does not yield
accurate shielding constants and shows the largest mean absolute error of all functionals with 59.24 ppm.
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10.2 NMR Shieldings and Shifts

Figure 10.1: Comparison of various functionals for 1H NMR shieldings in ppm. Errors are measured with respect to pcSseg-
4/CCSD(T). [310] LH07t, LH12ct, and LH14t refer to the functionals LH07t-SVWN, LH12ct-SsirPW92, and LH14t-
calPBE, respectively. The inclusion of the current density to restore gauge-origin invariance instead of the external vector
potential in the generalized kinetic energy density is denoted by a “c” at the beginning of the functional name. MAE,
MSD, and STD denote the mean absolute error, mean signed error, and the standard deviation regarding the latter.

Figure 10.2: Comparison of various functionals for 13C NMR shieldings in ppm.

Figure 10.3: Comparison of various functionals for 15N, 17O, 19F, and 31P NMR shieldings.
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10 Assessment of the Accuracy of Density Functional Approximations

The current-density formalism for the generalized kinetic energy density, τ , results in a notable improvement
for the shieldings of almost all τ -dependent functionals. The comparably large error of LH12ct-SsirPW92
for H shieldings is halved to 0.22 ppm. This confirms the previous findings for LH12ct-SsirPW92 and this
test set [415,467] compared to a broader selection of functionals. For LH14t-calPBE and LH20t, the good
performance for H shieldings is preserved. Also, the errors of the meta-GGA based global and local hybrid
functionals are consistently reduced. The current-density formalism does not sufficiently improve the NMR
shieldings of LHJ14. Considering the cost–balance ratio, the semi-empirical GGA functional KT3 is a solid
choice for the shielding constants of these molecules as it yields similar errors as the current-dependent
LH12ct-SsirPW92 functional at a fraction of the computational costs.

10.2.2 1H and 13C NMR Shifts of Organic Compounds

The 1H and 13C NMR shifts are calculated for a larger set of 29 organic compounds with respect to
tetramethylsilane (TMS, SiMe4). Here, the def2-TZVP basis set is selected and all other computational
parameters are unchanged compared to the previous subsection. The results are depicted in Fig. 10.4 and
Fig. 10.5. Here, the non-empirical GGA functionals show large errors for the 1H shifts. BP86 (MAE =
0.20 ppm) and PBE (MAE = 0.22 ppm) show larger deviations than HF (MAE = 0.17 ppm). The errors are
significantly reduced with the TPSS functional. For instance, the MAE is 0.15 ppm and the performance
is on par with KT3. The latter yields a reduced MSD but a larger standard deviation. Global hybrid and
range-separated functionals improve upon the underlying GGA functionals with MAEs between 0.14 ppm
and 0.18 ppm. Range-separation does not notably affect the NMR shifts and the BH&HLYP functionals
yields the smallest errors with an MAE of 0.14 ppm and a MSD of 0.13 ppm. The small amount of HF
exchange in the TPSSh functional results in similar errors like TPSS. TPSS, TPSSh, and BH&HLYP perform
best among the conventional functionals. Most t-LMF functionals tend to reduce the error with LH12ct-
SsirPW92 being an exception as it increases the errors compared to BH&HLYP. The highly parameterized
LH20t functional shows the smallest errors and performs best for 1H shifts. PSTS shows the same MAE of
0.11 ppm but a significantly larger standard deviation. Again, LHJ14 yields relatively large absolute errors
and a large standard deviation. The maximum error is found for H2CO with 0.85 ppm. Still, the MAE of all
hybrid functionals is below 0.20 ppm.

Figure 10.4: Comparison of various functionals for 1H NMR shifts (in ppm) with respect to the def2-TZVP/CCSD(T) level. [543] TMS
was chosen as reference for the chemical shifts. The inclusion of the current density to restore gauge-origin invariance
instead of the external vector potential in the generalized kinetic energy density is denoted by a “c” at the beginning of
the functional name. The suffix of the t-LMF based functionals is omitted for brevity.
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10.2 NMR Shieldings and Shifts

Figure 10.5: Comparison of various functionals for 13CNMR shifts (in ppm) with respect to the def2-TZVP/CCSD(T) level. [543] TMS
was chosen as reference for the chemical shifts.

For the 13C NMR shifts, the GGA functionals perform remarkably well with an error of about 5 ppm.
Here, the corresponding hybrid functionals lead to a deterioration with MAEs of 6 to 7 ppm. Range-
separated hybrids such as LC-ωPBE and CAM-B3LYP further increase the error to 9 ppm. In contrast,
the incorporation of τ by TPSS and TPSSh improves upon the GGA density functional approximations.
The errors are about 2 ppm for TPSS. The t-LMF functionals lead to similar results like the global hybrid
functionals with errors above 6 ppm. LHJ14 performs on par with these functionals. Due to the underlying
TPSS form, the PSTS functional features the best agreement with the coupled-cluster data among the LHFs.
Note that all functionals except for KT3 show a positive mean signed deviation. KT3 features a negative
MSD just like the preceding KT2 functional in Ref. 543. Based on the excellent agreement of TPSS with the
CCSD(T) reference, the Laplacian or the kinetic energy density is of major importance for accurate 1H and
13C NMR shifts. This is also confirmed by the impact of the choice for the generalization of τ . Overall, the
current-density dependent form results in smaller errors for the t-LMF and z-LMF based LHFs. Matters are
different for TPSS, TPSSh, and PSTS, for which the error is increased when using the paramagnetic current
density instead of the external magnetic field to restore the gauge-origin invariance of τ . The improvement
for the t-LMFs is rationalized by the preserved iso-orbital constraint of the current-dependent generalization.

10.2.3 NMR Shifts of Transition-Metal Oxo Compounds

As a transition to the NMR shifts of heavy nuclei, the 17O NMR shifts of CrO2−
4 , MoO2−

4 , WO2−
4 ,

MnO−4 , TcO
−
4 , ReO

−
4 , FeO4, RuO4, and OsO4 are studied at the DLU-X2C/x2c-TZVPall-s level of theory.

Structures are optimized at each level of theory and COSMO [453,454] is applied to all charged molecules. A
SCF threshold of 10−9 Eh is chosen and the norm of the residuum is converged to 10−7 a.u. in the NMR
calculations. The NMR shifts are obtained with H2O as reference. For a comparison, the experimental
shifts [510] are converted to a more suitable scale [380,381] with the vapor–liquid shift of H2O. According to
these references, solvent effects may amount to roughly 20–30 ppm. The results are depicted in Fig. 10.6.
HF is omitted as the errors are larger than 200 ppm and electron correlation clearly needs to be treated.

First, the “pure” density functional approximations show mean absolute errors between 50 ppm and 80 ppm
and mean signed errors in the same order of magnitude. In contrast to the organic compounds, TPSS does
not result in an improvement compared to BP86 or PBE. Instead, these perform better than TPSS for the
transition-metal compounds investigated herein. As expected, KT3 looses some ground compared to the
previous studies as KT3 was designed for the NMR shifts of light main-group compounds.
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10 Assessment of the Accuracy of Density Functional Approximations

Figure 10.6: Comparison of various functionals for 17O NMR shifts (in ppm) of transition-metal oxo compounds. Calculated with
the DLU-X2C Hamiltonian and the x2c-TZVPall-s basis sets. Net charges are compensated with COSMO. Experimental
references are taken from Ref. 381, which converted the original measurements [510] with respect to H2O using the
experimental vapor–liquid shift.

Second, a static amount of exchange results in an improvement and the errors are reduced to 40–50 ppm.
However, a very large amount of HF exchange as for BH&HLYP shows poor results—just like HF itself. A
more sophisticated incorporation of exchange as in ωB97X-D or CAM-B3LYP reduces the errors to about
30 ppm. ωB97X-D yields a mean signed error of 0 ppm. Yet, range-separation is not an a priori improvement
as indicated by the unfavorable performance of CAM-QTP-00.
Third, the t-LMF based LHFs show similar errors as the range-separated functionals but the standard
deviation is often decreased. Note that all t-LMF functionals lead to essentially the same MAE and standard
deviation. Also, the impact of the different generalizations for τ is insignificant for these indicators. Only
the MSD is affected and the paramagnetic current density increases the absolute value of the MSD for LHFs
except for LH20t. On the contrary, the current-dependent choice leads to a minor yet steady improvement
for TPSS, TPSSh, and PSTS, which perform similar. Overall, the LHJ14 functional shows the best results
among the local hybrid functionals. The MAE is 27 ppm and the MSD amounts to 1 ppm. Therefore, the
findings for LHJ14 significantly differ from the previous subsections. In contrast to PSTS, the results with
LHJ14 differ notably from B3LYP, which also consists of Becke’s 1988 exchange term. [128]

10.2.4 NMR Shifts of Xenon Fluorides

The xenon fluorides of Sec. 9.1.3 are studied with the set of functionals. Here, the same settings as in the
previous subsection are adopted. Only the root mean square of the density is required to be smaller than
10−8 a.u. to ensure well converged orbitals for heavy elements. All structures are optimized at the respective
level of theory. Symmetry constraints are applied for all molecules: D∞h for XeF2, D4h for XeF4, and
Oh for XeF6. Note that the optimized structure of XeF6 is a saddle point with BH&HLYP, CAM-QTP-00,
CAM-QTP-02, and HF. The shifts are measured with respect to the xenon atom. Spin–orbit coupling is of
minor importance for the NMR shifts. Based on the CCSD(T) results [101] and the spin-orbit treatment in Ref.
544, the experimental shifts should be underestimated by 200 ppm for XeF2 and overestimated by 100 ppm
for XeF4, and 100 ppm for XeF6. The 129Xe NMR shifts are listed in Tab. 10.2 and the shielding constants
are available in Ref. 365. Most LHFs result in a reasonable agreement with the reference for XeF2. TPSS,
TPSSh, and PSTS even lead to an excellent agreement with the desired scalar-relativistic result for XeF2. Yet,
they do not perform remarkably well for XeF4 and XeF6. CAM-QTP-00 performs best for these molecules,
while CAM-QTP-02 yields a sufficiently accurate shift for XeF6. Most functionals fail to accurately predict
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the trend from XeF4 to XeF6 (−250 ppm). “Pure” density functional approximations tend to significantly
underestimate this trend whereas the opposite holds for the range-separated hybrid functionals. The t-LMF
functionals and LHJ14 show a rather accurate decrease. The current-dependent τ notably affects the shifts
of LH07t-SVWN and LH12ct-SsirPW92 decreasing them by about 100–200 ppm whereas the other shifts
are not significantly altered. Overall, B3LYP and LH20t rather systematically overestimate all shifts by
200–300 ppm. The latter correctly describes the trend of the shifts.

Table 10.2: Comparison of 129Xe NMR shifts (in ppm) with various density functionals at the DLU-X2C/x2c-TZVPall-s level.
CCSD(T) results are taken from Ref. 101. The uncontracted ANO-RCC basis set [179] is used therein and all electrons are
correlated. Differences between the CCSD(T) results and the experimental findings can mainly be addressed to spin–orbit
coupling as shown by the correction ∆ SO obtained in Ref. 544. The experimental shifts are measured with respect to
neat XeOF4 [499] and converted with the shift for the xenon atom. [500]

XeF2 XeF4 XeF6

HF 3814 5312 4669

KT3 3523 5998 5900

BP86 3671 6378 6326

PBE 3644 6328 6264

TPSS 3553 6122 6129

cTPSS 3516 6071 6089

BH&HLYP 3885 6231 6083

B3LYP 3864 5830 5443

PBE0 3695 5924 5733

TPSSh 3588 5981 5933

cTPSSh 3556 5935 5896

LC-ωPBE 3888 5987 5527

ωB97X-D 3882 6072 5733

CAM-B3LYP 3969 6171 5793

CAM-QTP-00 3911 5733 5189

CAM-QTP-02 3990 5981 5434

LH07t-SVWN 3854 6164 5989

cLH07t-SVWN 3761 6041 5857

LH12ct-SsirPW92 3849 6057 5838

cLH12ct-SsirPW92 3749 5918 5693

LH14t-calPBE 3763 6026 5843

cLH14t-calPBE 3743 5995 5808

LH20t 3751 5862 5600

cLH20t 3771 5883 5610

PSTS 3565 5924 5897

cPSTS 3535 5882 5863

LHJ14 3730 6135 5952

cLHJ14 3820 6255 6055

CCSD(T) 3564 5509 5258

∆ SO −222 108 –
Exp. 3386 5623 5425
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10 Assessment of the Accuracy of Density Functional Approximations

10.2.5 NMR Shifts of Tungsten Compounds

The tungsten compounds of Sec. 9.1.5 serve as an illustrative application to transition-metal shifts. The
shifts are calculated at the optimized structure of each functional with the DLU-X2C Hamiltonian and the
x2c-TZVPall-s basis set. COSMO [453,454] is applied to WO2−

4 , WO3S2−, WO2S2−
2 , WOS2−

3 , and WS2−
4

to compensate the negative charge. The same thresholds as in Sec. 10.2.3 are applied, i.e. the root mean
square of the density is converged up to the default setting of 10−6 a.u., and the point-group symmetry of the
molecules is exploited. As spin–orbit coupling is of minor importance for the shifts, [382] the experimental
findings [513–516] serve as reference. The 183W NMR shifts are calculated with respect to WO2−

4 and the
evaluation is presented in Fig. 10.7.

BP86 performs best among the “pure” density functionals with a MAE of 228 ppm and a MSD of−34 ppm.
KT3 yields the largest errors. As reflected by the poor results for BH&HLYP, a balanced admixture of HF
exchange is of crucial importance for an improvement upon the GGA and meta-GGA functionals. Here,
PBE0 and TPSSh result in a good agreement with the experimental findings with MAEs of 119 ppm and
150 ppm. The respective MSDs are 40 ppm and −35 ppm. Range-separated hybrid functionals lead to
increased errors. The mean absolute errors for the more robust representatives LC-ωPBE, ωB97X-D, and
CAM-B3LYP functional range from 211 ppm to 252 ppm. LHFs based on the t-LMF also do not reduce the
errors compared to PBE0 and TPSSh. The MAEs range from 192 ppm for LH14t-calPBE to 231 ppm for
LH12ct-SsirPW92. So, the performance is similar to the range-separated hybrid functionals. In contrast,
PSTS and LHJ14 improve upon TPSSh with a MAE of 148 ppm and 137 ppm. The MSDs amount to only
−20 ppm and 0 ppm. Moreover, the standard deviation is slightly reduced. Notably, the current-dependent
generalization of the kinetic energy density very consistently reduces the errors with the exception of
LHJ14. The MAE of TPSSh and PSTS is reduced to about 100 ppm and the MSD is reduced to −34 ppm
and −18 ppm, respectively.

To consider the cost–balance ratio of a density functional approximation, the wall times are reported for the
SCF procedure and the NMR shielding calculations in Tab. 10.3 and Tab. 10.4. The wall times are measured
on a single thread of a Intel® Xeon® Gold 6212U CPU @ 2.40GHz. Note that only the timings of selected
functionals are presented, i.e. BP86, KT3, BH&HLYP, CAM-QTP-00, and CAM-QTP-02 are omitted. Still,
every functional class considered herein is represented by at least one functional. The SCF timings reveal
the following picture.

Figure 10.7: Comparison of various functionals for 183WNMR shifts (in ppm) of eight compounds with respect toWO2−
4 . Calculated

are performed at the DLU-X2C/x2c-TZVPall-s level of theory and using COSMO for the charged systems. Experimental
results are taken from Refs. 513–516. CAM-QTP-00 is omitted due to a large standard deviation of 456 ppm. Likewise,
HF results in a MAE of 646 ppm.
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10.2 NMR Shieldings and Shifts

Table 10.3:Wall times of the full SCF procedure in seconds on a CPU of type Intel® Xeon® Gold 6212U CPU @ 2.40GHz using
one thread. The code was compiled with Intel® Fortran Compiler 19.0.1.144. Point-group symmetry is exploited. A core
Hamiltonian guess is used for the initial orbitals to start the SCF procedure.

PBE TPSS B3LYP PBE0 TPSSh LC-ωPBE ωB97X-D CAM-B3LYP LH07t LH12ct LH14t LH20t PSTS LHJ14

WO2−
4 58 62 83 81 78 105 97 103 153 146 131 127 123 138

WO3S2− 393 398 398 314 403 598 682 645 1559 1457 1529 1427 1335 1499

WO2S2−2 474 439 446 424 501 935 837 753 1720 1764 1406 2087 1854 1650

WOS2−3 388 499 457 502 570 844 837 796 1704 1855 1780 1722 1861 2201

WS2−4 435 486 471 542 570 169 156 165 162 2175 1932 1891 1883 2291

WF6 54 46 67 72 68 99 100 102 124 112 109 110 111 118

WCl6 58 69 84 70 70 153 137 127 123 154 159 138 157 175

W(CO)6 185 207 202 189 179 306 286 314 302 350 361 380 404 339

TOTAL 2044 2206 2207 2194 2438 3209 3132 3005 5846 8014 7407 7881 7726 8411

Table 10.4:Wall times of the NMR shielding calculations in seconds on a CPU of type Intel® Xeon® Gold 6212U CPU @ 2.40GHz
using one thread. The code was compiled with Intel® Fortran Compiler 19.0.1.144. Point-group symmetry is exploited.

PBE TPSS B3LYP PBE0 TPSSh LC-ωPBE ωB97X-D CAM-B3LYP LH07t LH12ct LH14t LH20t PSTS LHJ14

WO2−
4 10 9 36 35 32 40 42 38 48 45 46 49 36 48

WO3S2− 50 62 163 148 140 227 201 198 581 576 518 543 485 499

WO2S2−2 44 58 153 157 144 280 231 214 530 569 537 675 578 526

WOS2−3 46 60 159 164 182 282 251 256 550 605 583 624 616 654

WS2−4 52 61 179 194 183 56 56 49 58 757 675 730 619 704

WF6 13 11 36 40 36 45 47 43 47 47 47 50 46 48

WCl6 13 17 50 41 18 61 62 58 61 59 65 58 57 58

W(CO)6 39 45 95 40 81 136 138 142 121 141 135 138 127 131

Total 267 323 871 818 816 1127 1027 998 1996 2798 2606 2867 2563 2668

Global hybrid functionals lead to similar total computation times as the “pure” density functionals as they
lead to a more rapid SCF convergence behavior. The time amounts to about 2000–2500 seconds. The
range-separated hybrid functionals increase the timings by about 50% as the integral evaluation with the
damping scheme is more involved. Most LHFs result in a significantly increased computation time. The
timings are increased by about a factor of 4 compared to PBE. The only exception is LH07t-SVWN due to
the very rapid convergence in the case of WS2−

4 .

Similar findings hold for the NMR shielding calculations. PBE and TPSS result in very short computation
times and the calculation of all shielding constants amounts to less than 6minutes. The timings are prolonged
to about 12minutes with global hybrid functionals and to more than 16minutes with range-separated hybrid
functionals. The computation times of the latter are more than doubled for LHFs. Here, the wall times range
from 33 to 48minutes. This considerable increase of the computational costs is caused by the comparably
large grids for the seminumerical exchange approximation. The DFT exchange and correlation terms require
larger grids for the numerical integration than the HF exchange. [310] Therefore, a multigrid approach with
a small grid for HF exchange and a larger grid for the DFT exchange and correlation terms can be highly
efficient as shown by the timings in Tab. 10.5. Here, the RI-J approximation and smaller grids (grid 2a) are
applied together with the seminumerical exchange approximation for left-hand side of the CPKS equations
only. Application of the seminumerical approximation to these integrals only allows to use a very small grid
(grid −1) without loss of accuracy. Such a multigrid approach is not straightforwardly applicable to LHFs.
Therefore, LHFs are still more demanding than the conventional hybrid functionals. The overall timings are
notably reduced due to the smaller grid for the XC energy. The timings for LHFs are still increased by a
factor of 7 to 8 compared to PBE and by a factor of 2 compared to the global hybrids. This demonstrates
that the additional flexibility with a position-dependent admixture of HF exchange comes at the prize of
increased computational costs for NMR properties as the density in the vicinity of the nucleus requires a
sufficient grid for the DFT exchange and correlation contribution.
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10 Assessment of the Accuracy of Density Functional Approximations

Table 10.5: Wall times of the NMR shielding calculations in seconds (grid 2a RI-J , and seminumerical exchange with grid−1 for the
left-hand side of the CPKS equations in the global and range-separated hybrid calculations). Calculations are carried out
with a CPU of type Intel® Xeon® Gold 6212U CPU @ 2.40GHz using one thread. The code was compiled with Intel®
Fortran Compiler 19.0.1.144.

PBE TPSS B3LYP PBE0 TPSSh LC-ωPBE ωB97X-D CAM-B3LYP LH07t LH12ct LH14t LH20t mPSTS LHJ14

WO2−
4 7 7 13 14 14 15 17 14 22 20 21 21 20 23

WO3S2− 17 20 55 60 57 83 71 72 189 181 188 202 182 179

WO2S2−2 17 20 58 60 59 85 77 74 206 265 203 212 182 190

WOS2−3 16 21 73 64 66 91 83 90 203 218 213 231 196 203

WS2−4 8 8 16 15 16 19 19 18 26 26 25 26 22 29

WF6 10 11 17 18 17 21 19 19 23 22 22 23 24 24

WCl6 12 10 20 23 19 25 23 24 27 28 29 30 28 33

W(CO)6 24 32 51 30 47 57 58 57 63 63 61 64 63 60

Total 112 129 302 284 295 394 367 367 758 824 762 810 717 740

10.2.6 Summary

In many cases, global and range-separated functionals result in improved NMR shieldings and shifts. The
NMR-tailored GGA KT3 performs well for the light elements and is able to reach or surpass the accuracy
of global hybrid functionals. The additional flexibility of the fully local admixture of HF exchange should
provide an improved description of the electronic structure and lead to better results for NMR properties.
However, this is not consistently reflected in the obtained results and the studied LHFs only lead to minor
improvements compared to popular global or range-separated hybrids such as B3LYP, PBE0, TPSSh, or
CAM-B3LYP. Often, LHFs even lead to a deterioration. The most robust LHF for NMR shieldings and
shifts is PSTS, which provides a very consistent improvement upon the parent TPSS and TPSSh functionals.
The other LHFs and LMF show no clear trend and the situation is less clear cut. Here, the results are
highly dependent on the test set and molecular class. For light elements, most t-LMF based functionals and
PSTS are superior to many global hybrids and the LHJ14 functional. For heavy elements, the t-LMF based
functionals loose some ground and the LHJ14 functional performs remarkably. Therefore, the t-LMF and
the z-LMF do not results in a consistent improvement compared to global hybrid functionals incorporating a
static amount of exchange. Note that all LHFs lead to increased computational costs compared to the global
and range-separated functionals with the seminumerical exchange approximation. To conclude, all classes
of LHFs and LMFs require more work to reach the robustness of the conventional hybrid functionals PBE0
and TPSSh.
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11 Application to Phosphinidenide Complexes

The first “parent” phosphinidenide complex was synthesized in 2010. [545] Here, the PH group is stabilized
with a N-heterocyclic carbene (NHC) but the stabilization is also possible with cyclic (alkyl)(amino)carbenes
(cAACs). [546] This allows to prepare low-valent group 14 compounds with the oxidation state +II. [547] The
synthesis of Ge, Sn, and Pb complexes with sterically demanding ligands is shown in Fig. 11.1. The
compounds 3–7 were prepared by Markus Balmer in the group of Carsten von Hänisch and their properties
will be analyzed with quantum chemical methods to study the bonding situation. Compound 3 with a
V-shaped structure of the GeP2 group and compound 6 are depicted in Fig. 11.2. The molecular structure of
the compounds 4 and 5 is similar to that of 3 and the same holds for 6 and 7. First, the compounds 3–5 are
discussed. Second, the properties of 6 and 7 are described. Selected bond lengths and angles are listed in
Tab. 11.1. Experimentally, the structures were determined with X-ray spectroscopy in the solid state. These
findings are compared to the optimized structure at the DFT level.

Figure 11.1: Synthesis of the phosphinidenide complexes. Dipp = 1,3-bis(2,6-diisopropylphenyl)imidauolin-2-ylidene and Bz =
benzyl. The ligand to prepare the compounds 3–7 is SIMes, SIMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolidine-2-
ylidene. Details on the conditions, solvents, etc. can be found in Ref. 540.

Figure 11.2:Molecular structure of compound 3 (left) and 6 (right). Hydrogen atoms are omitted for clarity. Thermal ellipsoids
represent a 50% probability level, carbon atoms are shown as wire frame for better visibility.
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11 Application to Phosphinidenide Complexes

Table 11.1: Structural data on compounds 3–5. Experimental structures (Exp.) are determined with X-ray spectroscopy and the
theoretically optimized structures are obtained at the DLU-X2C/x2c-TZVPall level of theory with grid 4a for the numerical
integration of the XC parts. The Cartesian coordinates are available in the supporting information of Ref. 540.

3 4 5

d(C–P) in pm

Exp. 177.0–177.3 176.5–176.8 174.3–175.4
BP86 178.03–178.04 177.43–177.45 176.98–177.03
PBE 177.93–177.95 177.32–177.34 176.84–176.87
TPSS 178.00–178.03 177.35–177.39 176.80–176.84
B3LYP 177.92–177.95 177.37–177.41 176.89–177.08
PBE0 176.84–176.89 176.16–176.16 175.56–175.57
TPSSh 177.66–177.68 176.88–176.95 176.30–176.35

d(C–M) in pm

Exp. 229.6–230.2 249.2–249.9 258.0–258.2
BP86 233.59–233.62 253.95–253.97 262.70–262.72
PBE 233.00–233.00 253.27–253.34 262.04–262.08
TPSS 232.23–232.30 252.82–252.87 262.00-262.09
B3LYP 233.32–233.39 253.72–253.79 262.94–263.35
PBE0 230.56–230.61 250.57–250.59 259.19–259.20
TPSSh 231.74–232.04 251.64–251.70 260.64–260.89

∠ (C–P–M) in ◦

Exp. 104.8–105.7 104.1–105.8 103.3–105.6
BP86 107.46–107.51 108.52–108.53 108.90–109.01
PBE 106.33–106.46 107.10–107.17 107.51–107.67
TPSS 107.06–107.16 107.57–107.62 107.76–107.86
B3LYP 107.88–107.94 107.95–108.00 107.56–108.01
PBE0 105.79–105.83 106.55–106.63 107.30–107.45
TPSSh 106.44–106.53 106.91–107.15 107.04–107.28

∠ (P–M–P) in ◦

Exp. 87.4 85.8 84.6
BP86 86.61 85.11 84.96
PBE 86.59 85.49 85.15
TPSS 86.37 85.39 84.98
B3LYP 88.47 88.47 90.03
PBE0 87.85 86.74 85.91
TPSSh 87.65 86.11 85.91

The structures are optimized with the scalar-relativistic DLU- X2C Hamiltonian [105,107] in the finite nucleus
model employing the x2c-TZVPall orbital and auxiliary basis set [203] for the multipole-accelerated resolu-
tion to the identity (MARI-J) approximation. [120] The BP86, [128,340] PBE, [341] TPSS, [346] B3LYP, [128–130]

PBE0, [355] and TPSSh [356] functionals are employed with large grids [482] (grid 4a). SCF iterations are con-
verged up to 10−9 Eh and 10−9 a.u. for the root mean square of the density matrix. Based on the structural
data, the TPSSh functional performs best and all bond lengths are overestimated by 1–2 pm. The trend of
the bond lengths and the angles is well described. The impact of dispersion interaction on the structure is
small as the optimization using the D4 dispersion correction [548] and the BP86 functional shortens the C–P
and M–P bonds by 1–2 pm. The C–P–M angle of the compounds 3, 4, and 5 is reduced by 3.2◦, 5.3◦, and
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11 Application to Phosphinidenide Complexes

Table 11.2: Spectroscopic data on compounds 3–5. NMR shifts are calculated with the scalar-relativistic DLU-X2C Hamiltonian
and the x2c-TZVPall-s bases whereas the SSCCs are obtained with the quasirelativistic DLU-X2C Hamiltonian and the
x2c-TZVPall-2c basis set. Based on the data, the large deviation of the calculated and the measured 31P shifts is caused by
spin–orbit interactions. The signs of the coupling constants are corrected by the quantum chemical calculations. Excitation
energies are calculated with the semiK approximation for the time-dependent DFT studies. The first maxima correspond
to singlet excitations.

3 4 5

δ 31P in ppm

Exp. 145 121 117

BP86 217 220 242

PBE 207 204 222

TPSS 171 166 181

B3LYP 214 220 250

PBE0 166 156 169

TPSSh 160 149 161

J(M–P) in Hz

Exp. – 1334 −1673

BP86 – 1387 −1527

PBE – 1342 −1457

TPSS – 1406 −1692

B3LYP – 1496 −1644

PBE0 – 1401 −1766

TPSSh – 1422 −1799

δ 13CNHC in ppm

Exp. 191 192 186

BP86 197 200 160

PBE 198 199 199

TPSS 195 197 198

B3LYP 210 212 213

PBE0 204 206 202

TPSSh 199 201 201

First absorption maxima UV/Vis in nm

Exp. 543 554 569

PBE0 482 499 508

TPSSh 507 528 539

6.6◦, whereas the P–M–P angle rises by 0.2◦, 1.5◦, and 4.7◦. Therefore, neglecting dispersion corrections
in the other calculations is a reasonable approximation. A comparison with known bond lengths of other
germanium and tin phosphinidenide complexes [549,550] suggests that pπ–pπ interactions are present. pπ–pπ
interactions are further indicated by the low-field shifted 31P NMR signals in Tab. 11.2. Other germa-
nium substituted phosphinidenides show signals at −11.4 ppm for K[(SIMesP)3Ge] [549] or −114.7 ppm for
(SIDipp)PGePh3. [550] So, electron density is transferred from the phosphorous atoms to the metal atom. A
similar downfield shift is present for 4 with 121.4 ppm and 5 with 116.8 ppm. In contrast to 4 and 5, no
splitting of the NMR signal is observed for compound 3. The phosphorous shifts are a demanding case
for DFT as the results are very functional-dependent. Note that the calculated shifts use PH3 as reference
instead of aqueous H3PO4. The shifts are converted to the experimental scale with the absolute shielding
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constants of 328.35 ppm and 594.45 ppm. [551] Furthermore, the x2c-TZVPall-s orbital [482] and x2c-TZVPall
auxiliary basis set [203] are applied in the NMR shift calculations. The robust hybrid density functional
approximations PBE0 and TPSSh yield a sufficient agreement for 3 and 4. Larger deviations occur for 5 and
the trend from 4 to 5 is not correctly reproduced. The experimentally determined shifts decrease, whereas the
calculated shifts increase. This discrepancy is likely caused by the missing treatment of spin–orbit interac-
tion. The calculated 1J coupling constants with the spin–orbit DLU-X2C Hamiltonian, the x2c-TZVPall-2c
basis set, [203] and the semiK approximation for the CPKS equations [311] results in a good agreement with
the experimental findings. The coupling constants of the lead compound are typically predicted within a
range of 100Hz, which is a remarkable agreement with the experimental findings and shows that indeed
the spin–orbit interaction needs to be considered for accurate NMR parameters of these complexes. GGA
functionals underestimate the coupling constants whereas the TPSS and the hybrid functionals overestimate
the coupling constants. The position of the first maxima in the UV/Vis spectra is also in good agreement
with the TPSSh calculations.

This agreement of the theoretically and the experimentally obtained analytical data allows for an analysis
of the bonding situation. Wiberg bond indices [552] (WBI) in Tab. 11.3 indeed confirm the presumption
of a pπ–pπ bonding interaction. The WBI of P–M is larger than 1 for all methods and molecules. The
impact of spin–orbit coupling on the WBI was found to be small. Therefore, the multibond character is
clearly indicated. The WBI for the C–P bond increases with the mass of M and the WBI of the P–M bond
decreases. This shows that the two π-bonds are contrary effects and the π-system is delocalized over the
complete C–P–M–P–C bonds as shown by the frontier molecular orbitals of compound 4 in Fig. 11.3. The
HOMO–2 shows the pπ–pπ interaction of the M–P bond while the HOMO–1 describes the C–P π bond.
Thus, these orbitals explain the WBIs. The HOMO contains a significant contribution from the lone pairs of
the tetrel atom. Notably, the energy difference between the HOMO–1 and the HOMO is small and amounts
to 0.1 eV (3), 0.1 eV (4), and 0.05 eV (5). The antibonding M–P π-orbital is the LUMO, which is 1.8 eV
higher in energy than the HOMO. Incorporating HF exchange by the TPSSh functional, increases the gap
to 2.4 eV. The frontier orbitals of the germanium and the lead compound describe the same orbitals and are
very similar. Therefore, compound 5 features a notable pπ–pπ Pb–P interaction and a multibond character.

Table 11.3: WBI of the compounds 3–5 at the scalar-relativistic DLU-X2C/x2c-TZVPall level of theory. The impact of spin–orbit
coupling on the WBI was found to be small at the TPSS level and typically changes the WBI by 0.01.

3 4 5

WBI (C–P)

BP86 1.39 1.42 1.45

PBE 1.38 1.42 1.45

TPSS 1.29 1.33 1.37

B3LYP 1.43 1.46 1.48

PBE0 1.39 1.43 1.46

TPSSh 1.33 1.34 1.38

WBI (P–M)

BP86 1.22 1.15 1.11

PBE 1.21 1.14 1.11

TPSS 1.20 1.13 1.08

B3LYP 1.23 1.15 1.11

PBE0 1.22 1.14 1.10

TPSSh 1.20 1.13 1.08

138
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Figure 11.3: Frontier orbitals o compound 4. Calculated at the DLU-X2C/x2c-TZVPall/TPSS level of theory. Orbital shapes are drawn
with an isovalue of 0.04 a.u.; the HOMO–2 at the top left shows the pπ–pπ Sn–P interaction, whereas the HOMO–1 at the
top right shows the C–P π interaction. The HOMO (bottom left) consists of the lone pairs at Pb and the LUMO (bottom
right) describes the π-orbital of the Sn–P bond. Hydrogen atoms are omitted for clarity.

The compounds 6 and 7 featuring two tetrel atoms contain a central P2M2 cycle with a butterfly conformation.
The theoretically optimized and the experimentally determined structures result in a similar agreement like
for the monomer compounds 3–5. For 6, the P–Sn bond lengths range from 259.6 to 266.3 pm in the solid
state and the four calculated bond lengths at the TPSSh level are 263.77 pm, 265.42 pm, 268.64 pm, and
269.85 pm. So, the deviation is larger than for the previously studied molecules but still in a very reasonable
agreement and the bond lengths are similar to known P–SnII molecules. [553] Likewise, the experimental P–Pb
bond lengths of 7 are within 269.2–276.9 pm, which is in accordance with the TPSSh optimized structure.
Here, the bond lengths cover a range from 271.50 to 279.43 pm. Tab. 11.4 shows that the spectroscopic data
are also well described by PBE0 and TPSSh. The tin compound shows a 31P NMR signal at −66 ppm and
a 1JSnP coupling constant of 998Hz. The hybrid density functionals PBE0 and TPSSh yield a NMR shift
of −50 ppm and −45 ppm and a NMR coupling constant of 1067Hz and 1028Hz. All functionals are in
very good agreement with the experimental findings of the coupling constant. The deviation amounts to
less than 80Hz. This suggests that compound 6 is still dimeric in solution for the NMR experiments. The
31P NMR spectrum of compound 7 shows a signal at −48 ppm with a 1JPbP coupling constant of 1205Hz.
GGA functionals underestimate the coupling constant by 500Hz whereas the PBE0 functional results in
a remarkable agreement. This shows that a sophisticated treatment of relativistic effects and electron
correlation is important for the NMR properties of the phosphinidenide complexes with heavy elements.
The scalar-relativistic NMR shifts are in reasonable agreement for all compounds except for 5. However, the
NMR coupling constants necessitate a quasirelativistic or two-component framework as the Fermi-contact
and the spin-dipole interaction are spin–orbit effects according to the Dirac equation. Therefore, NMR shifts
can be calculated within a scalar-relativistic treatment while NMR coupling constants are only meaningful
considering also spin–orbit interaction. Overall, the PBE0 and TPSSh functionals perform well and confirm
the results of the previous chapter.
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Table 11.4: Spectroscopic data on compounds 6 and 7. NMR shifts are calculated with the scalar-relativistic DLU-X2C Hamiltonian
and the x2c-TZVPall-s bases whereas the SSCCs are obtained with the quasirelativistic DLU-X2C Hamiltonian and the
x2c-TZVPall-2c basis set. The signs of the coupling constants are corrected by the quantum chemical calculations.
Excitation energies are calculated with the semiK approximation for the time-dependent DFT studies.

BP86 PBE TPSS B3LYP PBE0 TPSSh Exp.

δ 31P in ppm

6 5 7 −34 −6 −50 −45 −66

7 14 9 −24 4 −35 −40 −48

J(M–P) in Hz

6 923 902 971 1057 1067 1028 998

7 −755 −726 −912 −932 −1277 −1091 −1205

The shifts and the bond lengths of 6 and 7 suggest that no multibond character is present and no electron
density is transferred to the metal atom. This is confirmed by theWBI reported in Tab. 11.5. The compounds
6 and 7 show no pπ–pπ interactions as the WBI for the P–M bonds are 0.70–0.77 for 6 and 0.66-0.75 for 7.

Table 11.5: WBI of the compounds 6 and 7 at the scalar-relativistic DLU-X2C/x2c-TZVPall level of theory. The number of the atoms
is described in Fig. 11.2.

BP86 PBE TPSS B3LYP PBE0 TPSSh

6

C1–P1 1.25 1.21 1.14 1.26 1.21 1.12

C28–P2 1.25 1.21 1.14 1.25 1.20 1.14

P1–Sn1 0.73 0.73 0.71 0.70 0.72 0.70

P2–Sn1 0.73 0.74 0.71 0.74 0.74 0.73

P1–Sn2 0.79 0.79 0.76 0.79 0.79 0.77

P2–Sn2 0.79 0.78 0.76 0.77 0.76 0.75

7

C1–P1 1.26 1.24 1.15 1.27 1.21 1.15

C28–P2 1.28 1.25 1.17 1.30 1.22 1.16

P1–Pb1 0.78 0.78 0.75 0.76 0.78 0.75

P2–Pb1 0.77 0.76 0.74 0.76 0.77 0.75

P1–Pb2 0.68 0.69 0.66 0.69 0.70 0.67

P2–Pb2 0.68 0.68 0.67 0.67 0.67 0.66
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12.1 Aromaticity and IUPAC Criteria

Originally, aromatic compounds were defined as unsaturated, cyclic planar organic molecules which show
a highly symmetric ring structure and a tendency to retain the ring structure in reactions. [554] In organic
chemistry, aromatic compounds generally show an electrophilic substitution in Friedel–Crafts reactions. [555]

The parent compound is benzene, whose structure was discussed byKekulé. [556,557] The six electron aromatic
structure was later postulated by Crocker in 1922 [558] and by Armit and Robinson in 1925. [559] Note that
Armstrong already suggested a sextet-like structure by the six aromatic “affinities” in his work on themeta and
ortho-para directing substituents. [560] Quantum chemical methods were applied to the “benzene problem”
by Hückel [285–287] and lead to the (4n+2) rule for aromaticity and the (4n) rule for antiaromaticity. Hückel’s
theory describes a cyclic and delocalized system of π-electrons in unsaturated, cyclic planar molecules and
allows to understand the structure and chemical properties of benzene. Here, all bonding MOs are doubly
occupied and all antibonding MOs are unoccupied. The resonance energy of the delocalized π-system may
be calculated with Hückel MO theory or modern quantum chemical methods. The resonance energy of
the π-electrons can also be graphically calculated with the Frost–Musulin circle. [561] Later, the concept of
aromaticity was extended to account for heteroaromatic systems like pyridine or porphine as well as spiro-
aromatic and Möbius-aromatic compounds. Aromaticity has proven to be an extremely valuable concept
in chemistry, however, it is not possible to simple “measure” aromaticity. Therefore, the following criteria
of aromaticiy for cyclic molecular systems are introduced by the International Union of Pure and Applied
Chemistry (IUPAC): [562]

1. Energetic criterion: The thermodynamic stability of aromatic compounds is enhanced compared to the
acyclic analogues. Therefore, a tendency to retain the structural type is found in chemical reactions.

2. Structural criterion: “The lesser the alternation of bond lengths in the rings, the greater is the
aromaticity of the molecule.” [562]

3. Magnetic criterion: A diamagnetic or diatropic ring current is induced by an external magnetic field.

The magnetic criterion is based on Ampère’s circuital law. Here, the external magnetic field induces a ring
current due to the delocalized electrons. [16–19] Consider a planar, cyclic molecule with a delocalized π-system
and amagnetic field perpendicular to the molecular plane. According to Lenz’s law, the diatropic ring current
flows in a clockwise direction and a paratropic ring current in the counterclockwise direction. For aromatic
systems, the diatropic ring current dominates whereas antiaromatic systems possess a net paratropic ring
current. This is evident from the anisotropy of the magnetic susceptibility [563] or the characteristic shifts in
NMR spectra. The diatropic ring current deshields the hydrogen atoms outside the benzene ring and the 1H
NMR signal is found at about 7 ppm. [3] The ring current is also accessible in quantum chemical studies and
can be calculated directly with the gauge-including magnetically induced current (GIMIC) method [423,424,427]

or indirectly with the nucleus-independent chemical shifts (NICS). [18,564] The GIMIC method calculates the
magnetically induced current density numerically on a grid and provides a current or delocalization pathway.
To quantify the ring current, an integration plane is placed through a bond or atom to numerically integrate
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the current through that plane. This allows to calculate the current strength. Note that the GIMIC method
is generally applicable to molecules as long as an integration plane can be constructed. Therefore, more
complicated multiring structures can be studied straightforwardly. [565] On the contrary, the NICS method
places a ghost atom at the ring center and calculates the isotropic NMR shielding constant at this atom.
The sign is reverted to comply with the common NMR scale. A negative NICS value indicates aromaticity
whereas a positive NICS value is found for antiaromatic systems like cyclobutadiene. NICS values may
also be calculated on a grid to obtain a so-called NICS profile. [18] Current strengths and NICS of selected
hydrocarbon and heteroaromatic compounds calculated in this work are shown in Fig. 12.1 (a and b).
Here, we focus on monocyclic compounds. According to the (4n + 2) rule, the cyclobutadiene dianion
is aromatic with 6 π-electrons and a rare example of such a four-membered cycle is Li2[(Me3SiC)4]. [566]

The largest NICS value of the hydrocarbons is found for the cyclopropenyl cation with −21.7 ppm, whereas
the maximum ring current is obtained for [18]annulene with 28.0 nA/T. Overall, the ring current tends to
increase with the number of π-electrons. The large NICS value of the cyclopropenyl cation with just 2
π-electrons is rationalized by the small distance of the delocalized π-system to the ring center, where the
ghost atom is placed. The distance of the carbon atoms to the ring center amounts to 78.82 pm. Very similar
trends are observed for the heteroaromatic molecules (Fig. 12.1 b). K[(BtBu)2CCH(SiMe3)2] serves as a
rare example of a three-membered cycle [567] and features the largest NICS value with −15.8 ppm and a
ring current strength of 10.2 nA/T. Porphine shows the strongest current with 25.3 nA/T and all π-electrons
participate as the current splits at the pyrrole ring into an inner route via the nitrogen atom and an outer route
via the C–C backbone. [423,565]

The discussed criteria are not restricted to organic compounds. Thus, also inorganic, non-metal aromatic
molecules (Fig. 12.1 c) exist. Compared to the large number and variety of hydrocarbon and heteroaromatic
compounds, only a few purely inorganic aromatic molecules with up to 10 atoms are known. [568] Borane
derivatives with a B3 and B4 group are examples for 2π-electron systems. [569–572] Mostmolecules of this class
feature 6 π-electrons like the (RSi)2−4 moiety in [{η4-(RSi)4}Ru(CO)3] (R = SiMetBu), [573] S2N2, [574] or the
Ch2+

4 (Ch = S, Se, Te) molecules [575,576] and the Pn2−
4 (Pn = P, As) systems. [577,578] Note that S2N2, Se2+

4 ,
and Te2+

4 are σ-antiaromatic and π-aromatic as shown by NICS calculations above the molecular plane. [579]

Here, the NICS values are calculated at the ring center with a varying distance above the molecular plane and
cutting out the σ-contributions in the GIMIC calculations by proper construction of the integration plane.
Other notable known aromatic compounds are P2N−3 , [580] Pn

−
5 (Pn = P, As), [581] and Pn6 (Pn = P, As). [581]

Larger S–N rings with 10 and 14 π-electrons are also experimentally secured. [568] The ring currents and
NICS values are in the same order of magnitude as for the hydrocarbon and heteraromatic molecules.

Furthermore, metals allow for a great degree of delocalization and therefore considerable ring currents
and aromatic properties based on the magnetic criterion may be expected. However, only small aromatic
compounds consisting of metal atoms only are experimentally described in the literature (Fig. 12.1 d). First,
the group of Robinson discussed the aromatic character of [(RGa)3]2− (R = C6H3-2,6-(C6H2-2,4,6-Me3)2)
with 2 π-electrons [582,583] and subsequently the Al compound was synthesized. [584] The ring current of the
first amounts to 2.9 nA/T and the compound is considered to be weakly aromatic based on the magnetic
criterion. Its NICS value is much larger due to the short distance of the ghost atom to the Ga–Ga bonds
amounting to 68.50 pm. In 2001, the class of all-metal aromatic compounds was brought to the spotlight
by the Tr2−4 cycles in [MTr4]− with M/Tr = Li/Al, Na/Al, Cu/Al, Na/Ga, and Na/In. [585,586] These anions
were prepared in gas-phase experiments. The Tr2−4 cycles feature a square planar structure and show
significant current strengths and NICS values of 27.6 nA/T and −31.8 ppm. Today, three-membered, four-
membered, and five-membered cycles are known. The Sb3−

3 moiety in [(Sb3)2Au3]3−, the “[Ga4]4−” group
in [(Ar∗Ga)2Ga2]2− with Ar∗ = C6H3-2,6-(C6H2-2,4,6-iPr3)2, [587] and Hg6−

4 in Ref. 588 sustain notable
ring currents. Together with Tt6−5 (Tt = Sn, Pb) [589] and Pn−5 (Pn = Sb, Bi) [590] these compounds form the
class of all-metal aromatic molecules. [591]
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Figure 12.1: Survey of different classes of experimentally secured molecules exhibiting (4n+ 2) π-aromaticity. NICS values in ppm
(grey) and ring currents in nA/T (black) were calculated at the RI-J /def(2)-TZVP/PBE/grid 3 [198,294,312,315,341,592,593]

level of theory. COSMO [453,454] is applied to the charged systems. Simplifications of the molecules for the calculations
are shown. All structures are optimized at the corresponding level of theory. SCF energies were converged up to 10−8 Eh
and a threshold of 10−7 a.u. was used for the response of the orbitals (norm of the residuum) in the NMR calculations.
From left to right: molecules with three to eight atoms and examples with more than eight atoms (rightmost) contributing
to the (4n+ 2) π-aromatic system. Missing entries indicate that no example has been reported for the respective class.
a: Representatives of hydrocarbon aromatic molecules with the well-known aromatic systems like the cyclopentadienyl
anion and benzene. Li2[(Me3SiC)4] is included as a rare example of a four-membered cycle. [566] [18]annulene is shown
as an example of a large homoaromatic compound. [594]
b: Representatives of heteroaromatic molecules with K[(Bt)2CCH(SiMe3)2] as a rare example of a three-membered
cycle [567] and [(Ar∗Ga)2(CH2)(CPh)2]2− as a representative of metallaaromatic molecules; Ar∗ = C6H3-2,6-(C6H3-
2,6- iPr2)2. [595] Porphin is shown as an example of a large heteroaromatic compound.
c: Examples of purely inorganic, non-metal aromatic molecules with the gas-phase species [B3(CO)3]+ as a rare example
of a three-membered cycle. [569] Note that S2N2, Se2+4 , and Te2+4 are σ-antiaromatic and π-aromatic as already observed
previously based on NICS profiles. [579] Here, NICS(0) and NICS(1) are calculated. NICS(1) denotes that the ghost atom
is placed in the ring center but 1Å above the molecular plane. The NICS(0) describes the aromaticity of all contributions
and NICS(1) excludes the contribution of the σ-electrons. Therefore, the integration plane for GIMIC similarly excludes
the σ-contributions. Larger S–N rings with 10 or 14π electrons are known. [574]
d: Survey of all known types of molecules exhibiting all-metal π-aromaticity, with their stabilizing atoms or groups: Tr
= Al, Ga and R = C6H3-2,6-(C6H2-2,4,6-Me3)2 in [(RTr)3]2−; [582–584] Tr2−4 of M/Tr = Li/Al, Na/Al, Cu/Al, Na/In,
Na/Ga in the gas-phase species [MTr4]−; [585,586] [(Ar∗Ga)2Ga2]2− with Ar∗ = C6H3-2,6-(C6H2-2,4,6-iPr3)2; [587]
Tt6−5 with Tt = Sn, Pb; [589] Pn = Sb, Bi in the gas-phase species Pn−5 . [590] NICS values and ring currents are given for
one homologue only, as results within the homologous series are similar. Note that the values refer to total ring currents
unless explicitly noted otherwise. This may include additional contributions of σ-aromaticity. The weakly π-antiaromatic
compounds Pn2−4 (Pn = Sb, Bi) [596,597] are not listed here. The all-metal aromatic compounds are further studied in
Tab. 12.1 with both ECP-based and all-electron relativistic approaches. [Th@Bi12]4− is discussed in detail in the next
section.

143



12 Application to All-Metal Aromaticity

Table 12.1: Current strengths andNICS of known all-metal aromatic compounds at the RI-J /def2-TZVP/PBE/grid 3 level with the non-
relativistic (NR) or ECP-based Hamiltonian and at the RI-J /x2c-TZVPall-s/PBE/grid 3a level with the scalar-relativistic
DLU-X2C Hamiltonian in the finite nucleus model. COSMO is applied to model the counter ions of the charged systems.
Note that ECPs are used for heavier atoms than Kr. DLU-X2C calculations are only performed for molecules with heavier
atoms than Kr to compare with the ECP-based ansatz. All structures are optimized at the corresponding level of theory.
SCF energies were converged up to 10−8 Eh and a threshold of 10−7 a.u. was used for the response of the orbitals (norm
of the residuum) in the NMR calculations. Current strengths are given in nA/T and NICS values in ppm. Like in Ref.
583, large substituents are omitted to focus on the aromatic moiety and to allow for a straightforward placement of the
integration plane for the current strengths. Note that Sb2−4 and Bi2−4 are antiaromatic based on the magnetic criterion.
This also holds at the more sophisticated def2-TZVPD/PBE0/grid 3 level of theory. [200,355]

NR/ECP: def(2)-TZVP DLU-X2C: x2c-TZVPall-s

GIMIC NICS GIMIC NICS

Sb3−
3 16.1 −41.5 13.4 −41.1

(AlH)
2−
3 3.6 −18.6 – –

(GaH)
2−
3 2.9 −17.0 – –

Al2−4 27.6 −31.8 – –
Ga2−

4 29.3 −34.0 – –
In2−

4 29.7 −31.5 30.0 −30.8

(Ga(CH3))2Ga2−
2 19.4 −21.4 – –

Sb2−
4 −4.9 5.4 −4.5 3.7

Bi2−4 −5.5 5.5 −5.6 4.2

Hg6−
4 31.8 −25.0 33.1 −27.9

Ge6−
5 37.7 −27.7 – –

Sn6−
5 34.8 −22.8 32.7 −19.3

Pb6−
5 37.0 −24.3 36.1 −23.4

Sb−5 16.5 −12.5 15.6 −11.2

Bi−5 14.2 −9.4 13.9 −9.8

Pb2−
5 45.8 −49.0 46.4 −50.2

Fig. 12.1 provides a comprehensive overview of known inorganic and all-metal aromatic molecules with the
same computational methods. Here, ECPs are used for NMR and GIMIC calculations of heavy elements.
The derivation of the GIMIC methods assumes that the Biot-Savart-like expression for the NMR shielding
tensor and the expression based on analytical energy derivatives in quantum chemistry lead to the same
result at all points in space. However, the NMR shielding tensor of an atom with an ECP is not strictly
meaningful as the core electrons are missing. Therefore, the calculations are repeated with the all-electron
scalar-relativistic DLU-X2C Hamiltonian in Tab. 12.1. The good agreement of the two approaches indicates
that the core electrons are of minor importance for the ring currents. Therefore, both approaches can be used.
Besides Pb2−

5 , the largest NICS values are obtained for Sb3−
3 whereas the largest ring currents are found

for Ge6−
5 . This shows that NICS is less suited for small membered cycles as the ghost atom is extremely

shielded by the nearby ring current. For the larger cycles, both methods result in a qualitative agreement.
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12.2 Pushing the Limits of Aromaticity with [Th@Bi12]4−

The previously discussed all-metal aromatic systems are rather small and most species are stabilized by
sterically demanding ligands, metal ions, transition-metal complex moieties, or by incorporation into a
intermetallic solid. This allows for a significant ring current, however, these approaches are not applicable to
larger systems. In contrast, endohedral clusters may stabilize an aromatic ring system from the inside. This
idea forms the basis for the synthesis of the anionic cluster [Th@Bi12]4−. This compound was prepared
by Armin Eulenstein, Niels Lichtenberger, Robert Wilson, and Lars Deubner in the groups of Stefanie
Dehnen and Florian Kraus. [598] The molecular structure is depicted in Fig. 12.2. The molecule consists of
a torus-shaped Bi8−12 unit and a central Th4+ ion. The magnetic measurements by Rudolphe Clérac confirm
the assignment of the formal charges and the closed-shell configuration. According to Fig. 12.2, the Bi8−12

torus consists of four Bi4 rings. So, two different Bi–Bi bonds are present. The bonds between the Bi4 rings
(dA) are only slightly shorter than the bonds within the Bi4 cycle (dB). Thus, the cluster is highly symmetric
with nearly equal bond lengths. The bond lengths of about 304 pm are significantly shorter than common
Bi–Bi single bonds. This indicates that a multibond character due to π-interactions is present. Therefore,
the structural criterion is fulfilled. The energetic criterion is more involved as non-cyclic analogues are
not known. Still, the cluster anion is stable in the solid state and in solution as well as in the gas phase.
Consequently, there are sufficient experimental findings to further investigate the aromaticity with quantum
chemical calculations.

Quantum chemical studies of the molecular and electronic structure are carried out with ECPs methods. We
use anECP-78 for Th [592] and the respective def-TZVPbasis set and anECP-60 forBi [593] in combinationwith
the def2-TZVP basis set. [198] The RI-J approximation is employed with the corresponding auxiliary basis
sets. [312] The negative charge is compensated by COSMO. The structure was optimized at the def(2)-TZVP
basis set level and using the PBE functional [341] with modified grids [294,315] (grid m3) by Florian Weigend.
The molecular structure is excellently reproduced by these computational settings and the deviations amount
to about 1 pm. The HOMO in Fig. 12.3 confirms the presumption of a delocalized π-system. This is
further indicated by an incomplete Boys local procedure. [599] Here, 33 localized orbitals describing the
two-center Bi–Bi bonds (Fig. 12.3 c and d) and the Th–Bi bonds (Fig. 12.3 e) are formed but one delocalized

Figure 12.2:Molecular structure of [Th@Bi12]4− in [K(crypt-222)]4[Th@Bi12]·2en, with crypt = 4,7,13,16,21,24-hexaoxa-1,10-
diazabicyclo[8.8.8]hexacosane and en = ethane-1,2-diamine. The molecule is shown in two different orientations with
displacement ellipsoids drawn at the 50% probability level at 100(2)K. The structure was determined with a single-
crystal X-ray structure analysis by the experimentally working groups. Ranges of selected distances in pm: BiA–Bi′A = dA
304.020(14)–307.85(13) pm, BiA–BiB = dB 304.40(11)–313.2(1) pm, Th–BiA = dC 321.04(11)–325.71(9) pm, Th–BiB
= dD 352.51(13)–359.08(9) pm.
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a

b c

d e

f g

Figure 12.3: HOMO of the cluster anion [Th@Bi12]4− and localized molecular orbitals (LMOs) from a Boys localization proce-
dure [599] at the def(2)-TZVP/PBE/grid m3 level of theory in top and side views. a: The HOMO (character a′′2 in D3h
symmetry). b: The LMO with the highest energy expectation value shows contributions from all 12 Bi atoms and has
almost the same shape as the HOMO, which indicates intrinsic electron delocalization. c: Two-center LMO representing
a Bi–Bi bond within a Bi4 ring. d: Two-center LMO representing a Bi–Bi bond between two Bi4 rings. e: Two-center
LMO representing a Bi–Th bond. f: One-center LMO representing a lone pair at a Bi atom above/below the equatorial
plane of the molecule. g: One-center LMO representing a lone pair at a Bi atom within the equatorial plane of the
molecule. Contours are drawn at isovalues of ±0.02 a.u. in blue and red, for approximately the same orientation of the
molecule as shown in Fig. 12.2. Orbitals were visualized by Florian Weigend.

orbital remains. The HOMO–LUMO gap amounts to 0.425 eV and a TD-DFT calculation at the def(2)-
TZVP/PBE/gridm3 level reveals the lowest triplet excitation energy to be located at 0.351 eV, being accessible
with infrared light (2831 cm−1 and 3532 nm). To sum up, the experimental and quantum chemical findings
suggest that two of the three criteria of aromaticity are fulfilled and form the starting point for an analysis of
the magnetically induced current density.
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Figure 12.4: Calculated ring currents in [Th@Bi12]4− a: Plot of the magnetically induced current density (in atomic units), 2 bohr
above the plane of BiA atoms and the central Th atom. The magnetic field is perpendicular to the molecular plane.
b: Profile of the magnetically induced current density to determine the boundaries for the numerical integration. The
origin is at the zero point of the magnetically induced current density between the BiA–Bi′A bond and the Th atom. The
integration plane is shown in Fig. 12.5.

Figure 12.5: Integration plane for the magnetically induced current density calculations of [Th@Bi12]4−.

The magnetic criterion of aromaticity is studied with the ECP-based ansatz described above and scalar-
relativistic all-electron DLU-X2C calculations [105,107,379] employing the finite nucleus model throughout.
The DLU-X2C calculations use two different basis sets, namely the Jorge-DKH-TZP [213,487,488,600] and the
Dyall-VTZ basis. [187,188,190,495,601] Note that we have deleted the inner-most g function from the 6d/7s

correlating set of Th to remove linear dependencies of the Dyall-VTZ basis set and the RI-J approximation
is not applied as no auxiliary basis sets are available. The theoretical studies of the magnetic criterion
are performed with the BP86, [128,340] PBE, [341] TPSS, [346] B3LYP, [128–130] PBE0, [355] TPSSh, [356] LC-
ωPBE, [359,529,530] ωB97X-D, [360,529,530] and the CAM-B3LYP [133,529,530] functional, as well as the LH07t-
SVWN, [138] LH12ct-SsirPW92, [139] LH14t-calPBE, [140] LH20t, [370] LHJ14, [141] and the PSTS functional
in conventional gauge. [134] The numerical integration of the DFT parts is performed with medium sized
grids; grid 3 in ECP calculations [294,315] and grid 3a in DLU-X2C calculations. [482] Based on the pronounced
dependence on the considered nuclei for NMR calculations, this large number of functionals is considered.
We note in passing that these are the first magnetically induced current density calculations with local hybrid
functionals. SCF convergence thresholds of 10−8 Eh ensure well converged orbitals and a threshold 10−7 a.u.
is used for the norm of the residuum in the CPKS equations to ensure a sufficiently converged response of
the density matrix. The magnetically induced current density is studied with the GIMIC code. [423,424,427]
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12 Application to All-Metal Aromaticity

A plot of the magnetically induced current density is shown in Fig. 12.4. The left-hand side of this figure
shows themagnetically induced current density calculated 2 bohr above themolecular plane of [Th@Bi12]4−.
This molecular plane consists of the BiA atoms and the central Th atom. The right-hand side shows the
profile of the magnetically induced current density through the BiA–Bi′A bond, which is used to determine
the boundaries for the numerical integration of the current density to obtain the current strengths. The
respective integration plane perpendicular to the molecular plane is depicted in Fig. 12.5. For the current
profile calculation, this plane is partitioned into small slices with a length of 0.02 bohr and a height of 8 bohr
above and below themolecular plane. The torus-shaped current density is structurally similar to that in planar
rings. Therefore, the π-systemmay be described as a belt and simplified to a cycle. Net ring current strengths
are listed in Tab. 12.2. The ECP-based approaches result in a diatropic net ring current of 22.4–26.5 nA/T
and the DLU-X2C Hamiltonian tends to increase that ring current to 23.2–26.2 nA/T with the Dyall-VTZ
basis and 24.7–27.5 nA/T with the Jorge-DKH-TZP basis set. Remarkably, this is about twice the ring
current of benzene with 11.4 nA/T (TPSSh) and roughly the same ring current of porphine with 25.3 nA/T
(TPSSh). Note that both benzene and porphine feature a significantly larger number of π-electrons. Benzene
is a 6π and porphine a 26π-aromatic molecule, whereas the ring current of [Th@Bi12]4− is mainly caused
by 2 π-electrons. The increased ring current may be rationalized by the greater tendency for delocalization
of metals. Therefore, [Th@Bi12]4− is clearly aromatic based on the magnetic criterion.

Table 12.2: Current strengths in nA/T of [Th@Bi12]4− with various computational methods. The inclusion of the current density to
restore gauge-origin invariance instead of the external vector potential in the generalized kinetic energy density is denoted
by a “c” at the beginning of the functional name. ECP calculations are carried out with the def2-TZVP basis set for Bi and
def-TZVP for Th. The RI-J approximation is only applied in the ECP calculations.

def(2)-TZVP/ECP Dyall-VTZ/DLU-X2C Jorge-DKH-TZP/DLU-X2C

BP86 22.4 23.2 24.7

PBE 22.7 23.4 24.8

TPSS 22.9 23.3 24.8

cTPSS 23.1 23.3 24.9

B3LYP 24.1 24.6 25.9

PBE0 25.1 25.4 25.5

TPSSh 24.0 24.2 25.5

cTPSSh 24.1 24.4 25.6

LC-ωPBE 26.5 25.9 27.5

ωB97X-D 25.8 25.9 27.4

CAM-B3LYP 25.3 25.3 26.8

LH07t-SVWN 23.9 26.2 24.7

cLH07t-SVWN 24.0 24.7 25.8

LH12ct-SsirPW92 24.5 25.3 26.2

cLH12ct-SsirPW92 24.6 25.4 26.2

LH14t-calPBE 24.0 24.9 26.0

cLH14t-calPBE 24.1 24.9 26.0

LH20t 25.1 25.4 26.4

cLH20t 24.9 25.4 26.3

PSTS 24.0 24.4 25.6

cPSTS 24.2 24.6 25.6

LHJ14 24.2 24.7 26.5

cLHJ14 23.4 23.8 26.0
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The impact of the central Th4+ ion on the aromaticity is further studied. Therefore, the ring current of
the bare and hypothetical Bi8−12 ring is calculated. Moreover, this allows for an application of the NICS
method, where a ghost atom is placed at the center of the cluster. Due to the absence of the Th atom, the
NMR-tailored x2c-type basis sets [203,482,483] are also used to calculated the NICS and ring current. Results
are presented in Tab. 12.3. The ring current amounts to about 23 nA/T at the ECP level and ranges from
about 21 nA/T to 23 nA/T when considering all electrons. This shows that Th4+ ion is mainly needed to
stabilize the cycle and to allow for a synthetic access. The NICS values also clearly indicate the aromaticiy
with −17 ppm (ECP) and −15 to −19 ppm (DLU-X2C). To compare with, the ring currents and NICS
values of Al2−4 are 27.6 nA/T and −31.8 ppm at the def2-TZVP/PBE level of theory. The ring currents are
rather similar. Notably, Al2−4 features 2 π-electrons delocalized over a small four-membered ring and for
[Th@Bi12]4− or Bi8−12 the same number of electrons is delocalized over 12 atoms. The greater difference
for the NICS values is explained by the distance of the ghost atom to the delocalized π-system. For Al2−4 ,
the distance of the ghost atom to the Al atoms is 126.47 pm, whereas the distance amounts to 236.28 pm for
Bi8−12 .

Furthermore, the number of π-electrons in the Bi12 torus is increased to study whether a (4n + 2) rule
applies. The hypothetical 4 π-electrons system Bi10−

12 features a triplet ground state like the square planar
cyclobutadiene. At the ECP/def2-TZVP level of theory, the triplet state is lower in energy by 9.76 kJ/mol
with BP86, 8.54 kJ/mol with PBE, 8.01 kJ/mol with TPSS, and 9.74 kJ/mol with TPSSh. Using the fractional
occupation number (FON) approach [602] with a proper damping level of 9 a.u. smoothly converges to the
triplet state. On the contrary, the hypothetical 6 π-electrons system Bi12−

12 sustains a large net diatropic ring
current of more than 40 nA/T and NICS values of about −33 ppm with triple-ζ basis sets as listed in Tab.
12.4. Therefore, Bi12−

12 is aromatic based on the magnetic criterion and may even show a record ring current.
However, a synthetic access to such a highly negative charged polybismuthide is not very likely.

To conclude, [Th@Bi12]4− is aromatic based on the formulated criteria and sustains a large ring current
despite featuring 2 π-electrons only. Therefore, the limits and boundaries of all-metal aromaticity are pushed
by [Th@Bi12]4−.
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12.2 Pushing the Limits of Aromaticity with [Th@Bi12]4−
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12 Application to All-Metal Aromaticity

12.3 Ring Currents and NICS of [K2Zn20Bi16]6−

Zinc does not show a tendency to form clusters in the condensed phase and Zn usually adapts the +II
oxidation state due to the stability of the closed d shell. Molecular Zn clusters can still be prepared via
heterometallic cluster synthesis. The cluster anion [K2Zn20Bi16]6− with a homoatomic {Zn12} subunit
featuring Zn–Zn bonds was synthesized by Armin Eulenstein. [603] The structure is shown in Fig. 12.6. The
{Zn12} subunit is formed with the Zn3–Zn6 and the symmetry equivalent bonds in the cluster center. This
unit is enclosed by a macrocycle consisting of eight Zn atoms (Zn1, Zn2, and symmetry equivalent atoms)
and the 16 Bi atoms. A Boys localization procedure [599] reveals multicenter bonds and thus inherent electron
delocalization. Therefore, the cluster may sustain a ring current due to the cyclic shape and the embedded
{Zn12} subunit. This forms the starting point for an analysis of the magnetically induced current density
with the GIMICmethod and nucleus-independent chemical shifts. The NICSmethod is applicable as a ghost
atom can be placed at the center of the molecule. The distance of the ghost atom to the neighboring zinc
atoms is 188.88 pm and thus larger than for Al2−4 with 126.47 pm towards the aluminum atoms. Accordingly,
the distance of the ghost atom to the Zn5–Zn6 bond amounts to 139.62 pm. Hence, the distance is sufficiently
large to allow for a reasonable NICS value.

Figure 12.6: a: View of the oblate molecule [K2Zn20Bi16]6− in [K(crypt-222)]6[K2Zn20Bi16] possessing idealizedD2h symmetry,
which is reduced to crystllographic C2v symmetry. b: Side view, upon an additional rotation about the C2 axis running
through K1 and K2 (by about 45◦ with regard to the orientation above). Displacement ellipsoids are drawn at 30%
probability. c: View of packing of [K2Zn20Bi16]6− anions and K+ cations along the crystallographic c axis. d: View of
packing anions and cations along the crystallographic b axis. C, N, and H atoms are not shown for clarity. The structure
was examined by Werner Massa.
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12.3 Ring Currents and NICS of [K2Zn20Bi16]6−

Figure 12.7: Left: Plot of the magnetically induced current density of [Zn20Bi16]8− in atomic units calculated 1 bohr above the plane
of the Zn5 and Zn6 atoms at the dhf-TZVP/TPSS (grid 3) level of theory. The corresponding plot 1 bohr below the plane
is identical apart from a rotation by 90◦ along an axis perpendicular to the molecular plane. Right: Integration plane to
obtain the current strength based on a numerical integration of the magnetically induced current density. The integration
plane, which starts at the center of the cluster, is shown in red. This integration plane is perpendicular to the molecular
plane and parallel to the applied external magnetic field.

The magnetically induced current density is studied with an ECP-based approach as the placement of an
integration plane is more involved for this cluster. Here, the integration plane is placed through a heavy
atom like Bi and the additional core electrons described with the DLU-X2C ansatz would require very tight
integration thresholds to avoid a significant loss of accuracy. Exemplary calculations did not finish within
a month as the GIMIC code is not as efficient as the NMR shielding implementation. Consequently, the
magnetically induced current density is obtained with the dhf-TZVP orbital and auxiliary basis set for the
RI-J approximation [202] combined with a small-core ECP for Bi. [593] Based on the previous studies in
Sec. 12.2, the TPSS functional is chosen and the kinetic energy density is generalized with the external
magnetic field. [407,461] Medium-sized grids (grid 3) are employed for the numerical integration of the XC
parts. [294,315] COSMO [453,454] is applied to model the counter ions, however, the radius for the cavity of zinc
was set to 222.3 pm. The SCF procedure is converged up to 10−7 Eh and the CPKS equations for the NMR
shieldings are considered to be converged with a threshold of 10−7 a.u. for the norm of the residuum. The
magnetically induced current density is then obtained with the GIMIC code, [423,424,427] which requires the
perturbed density of a NMR shielding calculation. For a better placement of the integration plane, the K+

ions are neglected in these calculations. The impact of the K+ ions on the induced current density is studied
below with the NICS ansatz, for which the ECP-based treatment described above and the scalar-relativistic
all-electron DLU-X2C Hamiltonian [105,107,379] in the finite nucleus model are considered. The latter employs
the NMR-tailored x2c-TZVPall-s basis sets [482] and the x2c-TZVPall auxiliary basis set [203] together with
suitable grids (grid 3a) for the DFT part. [482]

A plot of the magnetically induced current density of [Zn20Bi16]8− is depicted in the left-hand side of
Fig. 12.7. The right-hand side shows the integration plane for the current strength calculation. The plot
shows a ring current and the current strength amounts to 0.43–7.0 nA/T. Here, only a range is given as the
integration plane is placed through a heavy metal atom and these atoms show a strong current density in
the plot (marked in green). To compare with, the aromatic molecules porphine and zinc porphyrine sustain
a diatropic net ring current of 25.4 nA/T and 25.1 nA/T. Benzene possesses a ring current of 11.5 nA/T at
the same level of theory. The current strength depends on the number of electrons, the surface, and the
topology. [19] Therefore, a direct comparison of the degree of aromaticity of [Zn20Bi16]8− and benzene or
porphine is not possible. Still, a qualitative assignment of the aromaticity based on the magnetic criterion is
valid.
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12 Application to All-Metal Aromaticity

TheNICSvalues reveal a similar picturewith−4.2 ppm for [Zn20Bi16]8− and−4.4 ppm for [K2Zn20Bi16]6−.
DLU-X2C calculations yield NICS values of −4.2 ppm and −3.6 ppm, respectively. Therefore, the K+

ions are of minor importance for the ring current and are mainly needed for the stabilization and the
synthetic access. For comparison, the NICS values of porphine and benzene are −14.6 ppm and −8.0 ppm,
respectively. Thus, the cluster [K2Zn20Bi16]6− may be classified as weakly aromatic based on the magnetic
criterion.

Non-aromatic compounds show significantly decreased NICS values and current strengths. The heterometal-
lic compound [Hg8Te16]8− with a porphine-like structure only shows a ring current of 0.24 nA/T. [604] The
NICS value is 1.2 ppm with the DLU-X2C Hamiltonian. As expected, the ECP-based Hamiltonian with
the def2-TZVP basis [198] and auxiliary basis set [312] results in essentially the same NICS value of 1.3 ppm.
Here, the NICS values are positive and essentially vanish.
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13 Summary and Conclusions

In this work, the relativistic (one-electron) exact two-component (X2C) theory is applied to nuclear magnetic
resonance (NMR) shielding tensors and NMR indirect spin–spin coupling constants. For NMR shieldings, a
scalar-relativistic framework is considered whereas the coupling constants use a quasirelativistic framework.
The latter describes scalar-relativistic effects as well as spin–orbit interactions. Compared to the non-
relativistic approach, X2C results in a considerable increase of the computational costs. Therefore, the
diagonal local approximation to the unitary decoupling transformation (DLU) is derived and implemented for
NMR properties. The highly efficient DLU ansatz drastically reduces the computational demands, making
routine calculations of large molecules with more than 100 atoms and several thousand basis functions
possible. With this implementation, all shielding constants of the very large Ag−147 cluster employing more
than 17,000 uncontracted and nearly 8,000 contracted basis functions are calculated in just 5 days with a
single thread and a “pure” density functional approximation. Further speed-ups are obtained by using the
available shared-memory parallelization. The error introduced by DLU is assessed for main-group and
transition-metal compounds. It is found to be negligible as it typically amounts to less than 1 ppm even for
heavy elements. To compare with, the impact of relativistic effects typically amounts to a few hundred ppm
and the range of the respective NMR spectra covers a few thousand ppm. The error is further assessed in
comparison with the impact of the density functional approximation and the basis set. Similarly, the NMR
indirect spin–spin coupling constants of organometallic complexes with more than 130 atoms and about
2,500 contracted basis functions are obtained in about 5 hours using 12 threads with a triple-ζ basis set and
hybrid density functionals without loss of accuracy. Here, the DLU scheme results in a speed-up by a factor
of 60 compared to the full X2C approach and the well established resolution of the identity approximation
as well as the seminumerical exchange approximation are applied to the two-electron integrals. For the
first time in X2C theory, the finite nucleus model is used for both the scalar and vector potential. The
quasirelativistic Hamiltonian accurately reproduces the results of the “fully” relativistic four-component
ansatz for both main-group and transition-metal compounds such as palladium and platinum complexes
requiring only a fraction of the computational resources. The DLU error is assessed for small main-group
molecules and organometallic alkynyl compounds and amounts to less than 0.5Hz for the organometallic
alkynyl compounds of Si, Ge, Sn, and Pb. In contrast, the finite nuclear size effects significantly change
the coupling constants of Sn and Pb molecules as the Fermi-contact interaction is very sensitive towards the
density in the vicinity of the nuclei.

Electron correlation is treated within density functional theory (DFT) up to the fourth rung of Jacob’s ladder
consisting of global, range-separated, and local hybrid functionals. This results in the first implementation of
NMR coupling constants at the quasirelativistic X2C level within a density functional framework. Previous
approaches were restricted to HF theory and their applicability is therefore limited. In the presented DFT
framework, the kinetic energy density is generalized using the paramagnetic current density to ensure gauge
invariance and to restore the iso-orbital constraint. For the first time, this generalization is applied to NMR
coupling constants in non-relativistic and relativistic quantum chemistry. Furthermore, the modern class
of local hybrid functionals (LHFs), which allow for a position-dependent admixture of HF exchange, is
applied to relativistic NMR coupling constants for the first time. Additionally, the first application of LHFs,
which are not based on the simple iso-orbital indicator, to NMR shifts is presented. The impact of different
density functional approximations is assessed throughout the periodic table of elements. In these benchmark
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studies, the local hybrid functionals show some potential in their application to NMR properties, however,
the currently available LHFs are not as robust as the popular PBE0 and TPSSh functionals. Therefore,
more work is needed for the class of LHFs to reach the performance of the well established global and
range-separated hybrid functionals.

The NMR properties are sensitive towards the basis set. Therefore, tailored basis sets for NMR shifts are
developed with double, triple, and quadruple-ζ quality. For this purpose, analytical basis set gradients are
derived and implemented at the scalar-relativistic X2C level. Tight p functions are added to describe the
density in the vicinity of the nuclei. Additionally, p and d functions are employed for the outer-core and
the valence region of heavier elements. The accuracy of the tailored basis sets is assessed for a large test
set of 255 closed-shell molecules and compared to other frequently used basis sets. Here, the developed
basis sets perform similar to the much larger basis sets of Dyall, which are probably the most commonly
used relativistic all-electron basis sets to date. The NMR-tailored x2c-TZVPall-s and x2c-QZVPall-s basis
sets result in the same accuracy as the Dyall-VTZ or Dyall-VQZ bases at notably reduced the computational
costs. First steps towards optimized basis sets for NMR coupling constants were presented. Yet, further
work is needed to ensure balanced errors for all elements up to radon.

The three main parameters of a quantum chemical calculation are the Hamiltonian, the method used
for treating electron correlation, and the basis set. The thorough consideration and assessment of these
three parameters for main-group and transition-metal systems allows for a robust and efficient computational
methodology ofNMRshifts and coupling constants throughout the periodic table of elements. The developed
implementation is applied to phosphinidenide complexes of the fourth main group as well as all-metal Th–Bi
and Zn–Bi clusters. The DLU-X2C Hamiltonian results in a remarkable agreement with the experimental
NMR and UV/Vis spectra of the phosphinidendide complexes of Ge, Sn, and Pb. Using the introduced tools,
the pπ–pπ bonding character between phosphorus and lead could be confirmed for the first ever synthesized
compound exhibiting this bonding interaction. Furthermore, the magnetic properties of the anionic cluster
[Th@Bi12]4− are analyzed and the magnetically induced current density is calculated based on the NMR
shielding implementation. Magnetically induced current density studies reveal a considerable ring current
in the {Bi12} moiety of the cluster and therefore confirm the all-metal aromaticity based on the magnetic
criterion. The aromaticity is further illustrated by the highly symmetric structure and the (nearly) identical
Bi–Bi bond lengths. To compare with, the larger cluster [K2Zn20Bi16]6− sustains a notably decreased
ring current. Therefore, [Th@Bi12]4− is the largest known substantially all-metal aromatic compound,
which is experimentally secured. This demonstrates that the DLU-X2C Hamiltonian is an efficient, robust,
and versatile tool for chemical applications. In future developments, the methodology can be extended to
the electron paramagnetic resonance (EPR) hyperfine coupling constants and g tensors straightforwardly
as the one-electron terms are available from the implementation of NMR shifts and coupling constants of
closed-shell systems.
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A Appendix

A.1 Integral Evaluation in the Finite Nucleus Model

The integral evaluation is demonstrated for the potential integral in a finite nucleus model. The integral
evaluation herein differs from the previously presented scheme, [106] which used the recurrence relations for
the Gauss–Rys method. [157–159,605] Herein, the Gauss–Rys integration will be used for the integration of
the variable stemming from the Laplace transformation of the potential operator. The integration over the
electronic coordinate, ~r, will be carried out with Gauss–Hermite quadrature. Therefore, all integrals for
NMR properties are evaluated with the same methods. [606] The integral derivatives of the potential and the
relativistically modified potential are obtained by linear combinations as discussed in Sec. 4.3.1.

First, the combination of Gauss–Rys and Gauss–Hermite integration will be illustrated for the point-charge
model as an introduction. Consider the potential integral of a nucleus C in the CAO basis

V CAB = NANB

∫
V

e−ar2Ae−br2B (x−Ax)
ix (y −Ay)

iy (z −Az)iz (x−Bx)
jx (y −By)

jy (z −Bz)jz

|~r − ~RC |
d~r,

(A.1)
where the basis functions are denoted by A and B, which also denote the atom center. The exponents are
a and b, respectively. A short-hand notation r = |~r| is employed. The angular momentum numbers are i
and j.

∫
V
indicates that the integration is carried out over the complete three-dimensional space. Using the

Gaussian product theorem of Eq. 3.5 yields

V CAB = κAB

∫
V

e−pr2P (x−Ax)
ix (y −Ay)

iy (z −Az)iz (x−Bx)
jx (y −By)

jy (z −Bz)jz

rC
d~r (A.2)

with the prefactor and the new variables

κAB = NANB exp
(
−µR2

AB

)
, (A.3)

µ =
ab

a+ b
, (A.4)

p = a+ b, (A.5)

Pv =
aAv + bBv
a+ b

with v ∈ {x, y, z}. (A.6)

The denominator in the integral is simplified by using a Laplace transformation [151]

1

rC
=

1√
π

∫ ∞
−∞

e−t
2r2C dt. (A.7)

Therefore, the integral becomes

V CAB =
κAB√
π

∫ ∞
−∞

∫
V

r̃iA r̃
j
B e−pr

2
pe−t

2r2C d~r dt (A.8)
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with

r̃iA = (x−Ax)
ix (y −Ay)

iy (z −Az)iz , (A.9)
r̃jB = (x−Bx)

jx (y −By)
jy (z −Bz)jz . (A.10)

The two exponential functions in the integral are again simplified with the Gaussian product theorem

V CAB =
κAB√
π

∫ ∞
−∞

∫
V

r̃iA r̃
j
B e−(p+t2)r2S e−

pt2

p+tR
2
PC d~r dt (A.11)

with the center S given by

Sv =
pPv + t2Cv
p+ t2

with v ∈ {x, y, z}. (A.12)

The substitution t2 = pu2 with dt =
√
p du leads to

V CAB =
2κAB

√
p

√
π

∫ ∞
0

{∫
V

r̃iA r̃
j
B e−p(1+u2)rN d~r

}
e−p

u2

1+u2
R2
PC du (A.13)

with
Nv =

pPv + pu2Cv
p+ pu2

with v ∈ {x, y, z}. (A.14)

The integral boundaries regarding u are shifted by exploiting the symmetry and adding a factor of two.
The three-dimensional integral in curly brackets, {}, is separable into the individual Cartesian components.
Thus, it is separated into three one-dimensional integrals. A further substitution is made

q2 =
u2

1 + u2
⇔ u2 =

q2

1− q2
−→ du = (1− q2)3/2dq (A.15)

with q ∈ [0, 1]. Therefore, the integral becomes

V CAB =
2κAB

√
p

√
π

∫ 1

0

{∫
V

r̃iA r̃
j
B e−p

(
1+ q2

1−q2

)
r2N d~r

}
e−pq2R2

PC

(1− q2)3/2
dq. (A.16)

As the Cartesian components of the integral in curly brackets are separable, wemay consider thex component
now ∫ ∞

−∞
xixA x

jx
B exp

[(
1 +

q2

1− q2

)x− pPx + p q2

1−q2Cx

p+ pq2

1−q2

] dx. (A.17)

We now aim at rearranging this integral for an application of the Gauss–Hermite quadrature. To do so, the
substitution

x̃ =

[(
1 +

q2

1− q2

)x− pPx + p q2

1−q2Cx

p+ pq2

1−q2

] −→ dx = dx̃
1√

p (1 + q2/ (1− q2))
(A.18)

is applied and the x integral finally results in

1√
p (1 + q2/ (1− q2))

∫ ∞
−∞

e−x̃
2

[
x̃√

p
(

1 + pq2

1−q2

) +
pPx + q2

1−q2Cx

p+ pq2

1−q2︸ ︷︷ ︸
=m(x̃,q)

−XA

]ix[
m−XB

]jx
dx̃.

(A.19)

158



A.1 Integral Evaluation in the Finite Nucleus Model

The Gauss–Hermite quadrature evaluates a Gaussian integral according to∫ ∞
−∞

e−x
2

f(x) dx =

n∑
k=1

wkf(xk), (A.20)

where xk are the roots of the Hermite polynomial Hn and the weights are calculated by [607,608]

wk =
2n−1n!

√
π

n2 (Hn−1 (xk))
2 . (A.21)

By applying Gauss–Hermite integration, this integral is evaluated as

1√
p (1 + q2/ (1− q2))

nH∑
k=1

wk (mk(x̃, q)−XA)
i
(mk(x̃, q)−XB)

j

︸ ︷︷ ︸
=[x-GH(x̃,q)]

, (A.22)

where the sum runs from 1 to nH = ix+jx
2 + 1 and wk is the corresponding weight function. mk is

calculated with the roots of the Hermite polynomial of order k, x̃k. Note that in TURBOMOLE the weights
are multiplied by

√
π. Inserting the expression for x in Eq. A.16 and interchanging the Cartesian components

for y and z yields

V CAB =
2κAB
p
√
π

∫ 1

0

e−pq
2R2

PC [x-GH(x̃, q)] [y-GH(ỹ, q)] [z-GH(z̃, q)] dq. (A.23)

Now the Gauss–Rys integration method is applied to the integration with respect to q. Therefore, this
integration is carried out as a weighted sum with the roots of the Rys polynomials [155,156]

∫ 1

0

PL(q2)e−Oq
2

dq =

N∑
l=1

PL(q2
l )wl, (A.24)

where PL(q2) is a polynomial of order L and N is larger or equal than L/2. wl is the integration weight
and ql is a root of the Rys polynomial, RN (q,O). So, the roots depend on the exponent O = pR2

PC .
Consequently, the potential integral follows as

V CAB =
2κAB
p
√
π

nR∑
l=1

wl [x-GH(x̃, q)] [y-GH(ỹ, q)] [z-GH(z̃, q)] (A.25)

with nR = i+j
2 + 1. Note that m in [x-GH] etc. depends on the Gauss–Hermite and the Gauss-Rys roots.

Resubstituting u and q as well as x results in

V CAB =
2κAB
p
√
π

nR∑
l=1

wl

nH∑
k=1

wk

(
xk√
p+ pu2

l

+
pPx + pu2

lCx
p+ pu2

l︸ ︷︷ ︸
=g(x,u)

−XA

)ix(
g(x, u)−BA

)jx
. . . (A.26)

The Rys roots and weights are obtained based on Ref. 609. The integral evaluation is carried out with two
nested loops. The outer loop performs the Gauss–Rys integration and the inner loop the Gauss–Hermite
quadrature.
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Second, the finite nucleus model is considered. Here, the potential integral is given as

VAB = NANBNC

∫
V

∫
V

r̃iA r̃
j
B e−ar2Ae−br2B e−ζ(R−RC)2

|~r − ~R|
d~r d~R, (A.27)

whereNC is the normalization of the Gaussian charge distribution,NC = (ζ/π)
3/2. Similar to the previous

integral, we make use of the Gaussian product theorem for the Gaussian A and B as well as the Laplace
transformation to arrive at

VAB = NANBNC
e−µR2

AB

√
π

∫ ∞
−∞

∫
V

∫
V

r̃iA r̃
j
B e−pr

2
P e−ζ(~R−~RC)

2

e−t
2(~r−~R)

2

d~r d~R dt. (A.28)

Further using the Gaussian product theorem for the charge density and the Laplace-transformation term

e−ζ(R−RC)2 e−t
2(r−R)2 = exp

(
−
(
ζ + t2

)(
~R− ζ ~RC + t2~r

ζ + t2

)2)
exp

(
− r2

C

ζt2

ζ + t2

)
(A.29)

allows separate ~R and to carry out the integration over ~R in spherical coordinates. Defining

~̃R = ~R− ζ ~RC + t2~r

ζ + t2
(A.30)

results in the integration over ~R according to

4π

∫ ∞
0

R̃2e−(ζ+t2)R̃2

dR̃ =
4π

4

√
π

(ζ + t2)
3/2

=

(
π

ζ + t2

)3/2

. (A.31)

Hence, the integral is simplified to

VAB = πκABNC

∫ ∞
−∞

∫
V

r̃iA r̃
j
B exp

(
−pr2

P

) 1

(ζ + t2)
3/2

exp

(
−r2

C

ζt2

ζ + t2

)
d~r dt. (A.32)

The Gaussian product theorem is applied again to shift the dependence on the electronic coordinate to one
Gaussian

VAB = πκABNC

∫ ∞
−∞

∫
V

r̃iA r̃
j
B

exp

(
−
(
p+ ζt2

ζ+t2

)
r2
S

)
(ζ + t2)

3/2
exp

(
−R2

PC

pζt2/
(
ζ + t2

)
p+ ζt2/ (ζ + t2)

)
d~r dt.

(A.33)
The center of the Gaussian with the electronic coordinate is given by

Sv =
pPv + ζt2Cv/

(
ζ + t2

)
p+ ζt2/ (ζ + t2)

with v ∈ {x, y, z}. (A.34)

For the application of the Gauss–Rys quadrature, the substitution

u2 =
t2

ζ + t2
⇔ t2 =

ζu2

1− u2
−→ dt =

√
ζ
(
1− u2

)−3/2
du (A.35)

is introduced to change the integration boundaries as u ∈ [0, 1]. Therefore, the boundaries are now in the
proper range for the Gauss–Rys method. The substitution further yields

(
ζ + t2

)3/2
=
(
1− u2

)−3/2
ζ3/2

and Sv =
(
pPv + ζu2Cv

)
/
(
p+ ζu2

)
.
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Hence, the potential integral follows as

VAB = 2πκABÑC
√
ζ

∫ 1

0

∫
V

r̃iA r̃
j
B exp

(
−
(
p+ ζu2

)
r2
S

)
exp

(
−R2

PC

pζu2

p+ ζu2

)
d~r du (A.36)

with ÑC = π−3/2. Now, the integral over the electronic coordinates can be separated into the Cartesian
components to use the Gauss–Hermite quadrature. We aim at rewriting the second term for an easier
application of the Gauss–Rys scheme. Therefore, the substitution

χ2 =
p+ ζ

ζu2 + p
u2 ⇔ u2 =

pχ2

p+ ζ − ζχ2
−→ dχ =

p+ ζ

(p+ ζ − ζχ2)
3/2

√
p du (A.37)

is introduced. Note that χ ∈ [0, 1]. Inserting this into the integral equation results in

VAB = 2πκABÑC
√
ζp (p+ ζ)

∫ 1

0

{∫
V

r̃iA r̃
j
B exp

[
−
(
p+ ζu2

)
r2
S

]
d~r

}
exp

(
−ρR2

PCχ
2
)

(p+ ζ − ζχ2)
3/2

dχ,

(A.38)
where we defined ρ = pζ/ (p+ ζ). The integration in curly brackets is now done with Gauss–Hermite
integration by separating the three Cartesian components. Consider the Cartesian component x for the
integral in curly brackets ∫ ∞

−∞
xixA x

jx
B exp

[
−
(
p+ ζu2

)
x2
S

]
dx. (A.39)

Application of the substitution

x̃2 =
(
p+ ζu2

)
x2
S ⇔ x =

x̃√
p+ ζu2

+ Sx −→ dx =
1√

p+ ζu2
dx̃ (A.40)

simplifies the x integral to

∫ ∞
−∞

(
x̃√

p+ ζu2
+XSA

)ix(
x̃√

p+ ζu2
+XSB

)jx
1√

p+ ζu2
e−x̃

2

dx̃. (A.41)

Note that x̃ depends on the variable of the Laplace integration, u or χ. This integral is computed with
Gauss–Hermite quadrature according to

nH∑
k=1

wk

(
x̃k√
p+ ζu2

+XSA

)ix(
x̃k√
p+ ζu2

+XSB

)jx
︸ ︷︷ ︸

x-GH(x̃,u)

1√
p+ ζu2

,
(A.42)

where x̃k are the roots of the Hermite polynomials. The integrals over y and z are obtained in the same
manner. Therefore, the potential integral reads

VAB = 2πκABÑC

√
ζ

p+ ζ

∫ 1

0

{[
x-GH (x̃, u)

][
y-GH (ỹ, u)

][
z-GH (z̃, u)

]}
exp

(
−ρR2

PCχ
2
)
dχ

(A.43)
and the application of the Gauss–Rys quadrature is straightforward.
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The roots χl and weights wl are obtained with ρR2
PC . The integral evaluation reads

VAB = 2πκABÑC

√
ζ

p+ ζ

nR∑
l=1

wl

[
x-GH (x̃, ul)

][
y-GH (ỹ, ul)

][
z-GH (z̃, ul)

]
, (A.44)

where ul is obtained after the resubstitution as

u2
l =

pχ2
l

p+ ζ − ζχ2
l

. (A.45)

The center Sv for the Gauss–Hermite scheme follows as

Sv,l =
pPv + ζu2

lCv
p+ ζu2

l

. (A.46)

So, x̃ and the roots for the Gauss–Hermite scheme can be computed for a given Rys root. Therefore, the
Gauss–Hermite integration is performed inside a loop for the Gauss–Rys method. The integral evaluation
was verified by comparison to the previous implementation using Gauss–Rys integration throughout [106] and
an implementation with the Obara–Saika scheme [152–154] for the three-center RI-J integrals [197,297,298] as
discussed in Ref. 204. Furthermore, the point-charge limit was verified by using a finite nucleus exponent
in the order of 109.
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A.2 Expectation Values in X2C and DLU-X2C

The calculation of expectation values in X2C and related decoupling approaches such as Douglas–Kroll–
Hess theory requires additional care. [31,242] Similar to the two-electron interactions in Sec. 2.6, neglecting
the unitary transformation for the expectation values results in a picture-change error. The electronic 4c
spinors and the 2c spinors are related by the unitary decoupling transformation

Ψ+
i = U

(
ϕ+
i

0

)
. (A.47)

Consider the expectation value of a property operator P̂ in the four-component space and its transformation
to the two-component space

〈
Ψ+
i

∣∣P̂ ∣∣Ψ+
i

〉
=
〈
Uϕ+

i

∣∣P̂ ∣∣Uϕ+
i

〉
=
〈
ϕ+
i

∣∣(U†P̂U)+∣∣ϕ+
i

〉
6=
〈
ϕ+
i

∣∣P̂NR
∣∣ϕ+
i

〉
, (A.48)

where (U†P̂U)+ indicates the electronic block of the transformed property operator and P̂NR denotes the
non-relativistic operator. Thus, the unitary decoupling transformation has to be applied to the respective
property operator of the expectation value. In X2C, this is carried out with the matrix representation of the
property operator. Therefore, the picture-change correction is performed in three steps:

1. Set up the four-component operator.

2. Form the matrix representation of this operator by the basis set expansion considering the proper
balance condition.

3. Perform the unitary transformation of the operator in its matrix representation.

The picture-change correction was implemented for the electric dipole and quadrupole moments, the mag-
netic dipole moment of the electron, and the nuclear electric field integrals. The picture-change correction
is then performed according to

µ+
lg,u =

(
ULL,† USL,†

)
Dop

(
ULL

USL

)
, (A.49)

whereDop denotes the matrix representation of the operator in the four-component space. Generally, electric
operators are even, i.e. only the large-large and the small-large block contain non-vanishing elements. Mag-
netic operators are odd and only the large-small and the small-large block possess non-trivial contributions.
This follows from the principle of minimal coupling

~̂p −→ ~̂p+
1

c
~A, (A.50)

~F −→ ~F − qφ, (A.51)

where ~F denotes the electric field, q the particle charge, and φ the electrostatic potential with V̂ = −φnuc
for the interaction of the nuclei and the electrons. Owing to the structure of the Dirac–Hamilton operator in
Eq. 2.7, the momentum operator and its generalization form the large-small and the small-large block of the
Dirac matrix.
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A.2.1 Electronic Moments: Dipole and Quadrupole Moment

The dipole moment operator, ~̂µ = −~r, in length gauge is a potential or electric operator. Thus, it is an even
operator and only the large-large and the small-small block of the Dirac matrix contain non-zero elements

Dlg,u =

(
µu 02

02
1

4c2 µ̃u

)
(A.52)

with u ∈ {x, y, z}. Here, µu is block-diagonal in the two-component space

µu =

(
μu 0

0 μu

)
with μκν,u = 〈λκ|µ̂u|λν〉 (A.53)

and the elements µ̃ denotes the relativistically modified dipole moment, which arises due to the restricted
kinetic balance condition. After applying the Dirac identity, µ̃ is written with real matrices only

µ̃ =

(
μ̃

0 + iμ̃z μ̃
y + iμ̃x

−μ̃y + iμ̃x μ̃
0 − iμ̃z

)
, (A.54)

where the individual matrices are defined as(
μ̃

0
)
κν,u

= 〈λκ|p̂xµ̂up̂x + p̂yµ̂up̂y + p̂zµ̂up̂z|λν〉 , (A.55)
(μ̃x)κν,u = 〈λκ|p̂yµ̂up̂z − p̂zµ̂up̂y|λν〉 , (A.56)
(μ̃y)κν,u = 〈λκ|p̂zµ̂up̂x − p̂xµ̂up̂z|λν〉 , (A.57)
(μ̃z)κν,u = 〈λκ|p̂xµ̂up̂y − p̂yµ̂up̂x|λν〉 . (A.58)

These integrals are evaluated based on Gauss–Hermite integration. The picture-change corrected dipole
moments follow as

µ+
lg,u =

(
ULL,† USL,†

)(µu 02

02
1

4c2 µ̃u

)(
ULL

USL

)
. (A.59)

The electric quadrupole moments are obtained in the same way by replacing x, y, and z in the dipole operator
with x2, xy, xz, y2, yz, and z2.

In excited-state calculations, the dipole operator is also calculated in velocity gauge. In the limit of a complete
basis set, the transition dipole moments are identical in length and velocity gauge. So, the difference of the
two gauge choices serves as an estimate of the basis set completeness. [610] In the following, we will discuss
the scalar-relativistic ansatz as only this was implemented herein. The dipole operator in velocity gauge is
introduced into the one-electron Dirac Hamiltonian, ĥD, by the principle of minimal coupling and a gauge
transformation [387,388] leading to

ĥD = (β − I4) c2 + c~α ·
(
~̂p+

1

c
~A

)
, (A.60)

where the vector potential, ~A, is defined via the electric field, ~F , as

~A(t) = −c
∫ t

0

~F (t′) dt′. (A.61)
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Thus, the dipole operator is an odd operator in velocity gauge. As discussed in Sec. 4.2, the vector potential
has to be formally included in the balance condition to result in the exact non-relativistic limit. Considering
the scalar-relativistic effects only yields the spin-free Dirac matrix of the dipole operator in velocity gauge

Dvg,u = − 1

iΩ

(
0 pu

pu 0

)
. (A.62)

Here, Ω refers to the excitation energy of a transition and the expectation value has to be formed with
the respective transition density. The picture-change corrected dipole moments in velocity gauge to be
contracted with the transition density matrix are

μ
+
vg,u = − 1

iΩ

(
U
LL,†

U
SL,†

)(
0 pu

pu 0

)(
U
LL

U
SL

)
. (A.63)

As the momentum integrals are already available in standard quantum chemistry codes, the picture-change
correction of the dipole moments in velocity gauge requires no new integrals to be implemented.

A.2.2 Magnetic Dipole Moment of the Electron

The magnetic dipole moment of the electron is given in the 4c space as [611]

~̂m = − (~r× ~α) (A.64)

in units of Bohr’s magneton. In the non-relativistic limit, this yields the common expression

~̂m = −
(
~̂l + 2~̂s

)
(A.65)

with the orbital angular momentum, ~̂l, and the electron spin, ~̂s. The orbital angular momentum describes the
diamagnetic contribution whereas the electron spin refers to the paramagnetic contribution. The magnetic
dipole moment in the 4c Dirac picture features non-zero elements only for the large-small and the small-large
part. In a basis set expansion with the restricted kinetic balance condition, the matrix elements read(

mLS)
κν,u

= 〈λκ|[~r× ~σ]u

(
~σ · ~̂p

)
|λν〉 , (A.66)(

mSL)
κν,u

= 〈λκ|
(
~σ · ~̂p

)
[~r× ~σ]u|λν〉 . (A.67)

Note that the large-small and the small-large block are not Hermitian, but the Dirac matrix is still Hermitian
as the magnetic moment is an observable and the relation mLS

u = mSL,†
u holds. Separating these matrix

elements into spin-free and spin-dependent terms results in(
mLS)

κν,u
= −σ0 〈λκ|l̂u|λν〉 +

∑
i

σi 〈λκ|δui~̂r · ~∇− r̂i∂u|λν〉 , (A.68)

where the scalar-relativistic contribution is simply the orbital angular momentum. Therefore, only the
spin-dependent contributions have to implemented based on Gauss–Hermite integration.

165



A Appendix

A.2.3 Nuclear Electric Field Integrals

The nuclear electric field is given as
~Fnuc = −~∇φnuc = ~∇V̂ . (A.69)

In the point-charge model the nuclear electric field is directly obtained as

~Fnuc =
∑
I

ZI
~r − ~RI

|~r − ~RI |3
. (A.70)

The Dirac matrix posses non-vanishing integrals for the large-large and the small-small block like the dipole
moments in length gauge. Therefore, the matrix elements in a restricted kinetically balanced basis set of the
large-large block read

(Fnuc)u =

(
(Fnuc)u 0

0 (Fnuc)u

)
(A.71)

and the elements of the small-small block are given as

(
F̃nuc

)
u

=

 (
F̃

0

nuc

)
u

+ i
(
F̃
z

nuc

)
u

(
F̃
y

nuc

)
u

+ i
(
F̃
x

nuc

)
u

−
(
F̃
y

nuc

)
u

+ i
(
F̃
x

nuc

)
u

(
F̃

0

nuc

)
u
− i
(
F̃
z

nuc

)
u

 , (A.72)

where the individual matrices are defined as

(Fnuc)κν,u = 〈λκ|
(
∇uV̂

)
|λν〉 , (A.73)(

F̃
0

nuc

)
κν,u

= 〈λκ|p̂x
(
∇uV̂

)
p̂x + p̂y

(
∇uV̂

)
p̂y + p̂z

(
∇uV̂

)
p̂z|λν〉 , (A.74)(

F̃
x

nuc

)
κν,u

= 〈λκ|p̂y
(
∇uV̂

)
p̂z − p̂z

(
∇uV̂

)
p̂y|λν〉 , (A.75)(

F̃
y

nuc

)
κν,u

= 〈λκ|p̂z
(
∇uV̂

)
p̂x − p̂x

(
∇uV̂

)
p̂z|λν〉 , (A.76)(

F̃
z

nuc

)
κν,u

= 〈λκ|p̂x
(
∇uV̂

)
p̂y − p̂y

(
∇uV̂

)
p̂x|λν〉 . (A.77)

The integral derivatives in the point-chargemodel are evaluated using a combination ofGauss–Rys integration
and Gauss–Hermite quadrature. The picture-change correction is performed like in Sec. A.2.1. The finite
nucleus integrals may be evaluated using translational invariance. The derivative of the electric field or the
second derivative of the electrostatic potential is the electric field gradient, which is sensitive to picture-
change correction effects. [612]
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A.3 Static Polarizabilities in X2C and DLU-X2C

The electrostatic field is included in the potential by the principle of minimal coupling. [387,388] For a static
homogeneous electric field, ~F , the potential becomes

V̂ = V̂ (0) + ~F · ~r with V̂ (0) = V̂
(
~F = 0

)
. (A.78)

Similar to Sec. 4.1, the total energy may be expressed with a Taylor expansion

E
(
~F
)

= E(0) +
∑
u

∂E(~F )

∂Fu

∣∣∣∣
~F=0

Fu +
∑
u,v

1

2

∂2E(~F )

∂Fu∂Fv

∣∣∣∣
~F=0

FuFv + . . . (A.79)

where the first and second order term define the permanent electric dipole moment vector, ~µ, and the static
polarizability tensor, α, as

µu = −
∂E
(
~F
)

∂Fu

∣∣∣∣
~F=0

, (A.80)

αuv = −
∂2E

(
~F
)

∂Fu∂Fv

∣∣∣∣
~F=0

. (A.81)

The norm of the dipole vector defines the (scalar) dipole moment and the mean trace of the polarizability
tensor forms the (isotropic) polarizability. Including the potential of Eq. A.78 in the one-electron Dirac
matrix in Eq. 2.31 leads to the explicit energy expression to calculate the dipolemoment and the polarizability.
For electric properties, the derivative of the unitary transformtion matrix to form the derivative in X2C is
negligible. [263,613] Thus, the components of the dipole vector in an X2C framework read

µu = − tr
(
Dµ+

u

)
(A.82)

and the polarizability tensor follows as

αuv = − tr

(
∂D

∂Fu

∣∣∣∣
0

µ+
v

)
, (A.83)

with the picture-change corrected dipole integrals, µ+
u , described in Sec. A.2.1. Eq. A.83 requires to solve

the CPHF or CPKS equations. The occupied-occupied block vanishes as the overlap integrals do not depend
on the external electric field. The occupied-virtual block is obtained by solving the response equation(

A B

B∗ A∗

)(
X

Y

)
=

(
Pν

Pν∗

)
(A.84)

with the RHS vectors P and Pν∗ containing the picture-change corrected dipole integrals as outlined in
chapter 6.

Static polarizabilities are calculated for ferrocene, ruthenocene, and osmocene. The structures of the eclipsed
and the staggered conformer were optimized with the scalar-relativistic DLU-X2C Hamiltonian in the finite
nucleus model. [105,107] Spin–orbit effects are negligible for the molecular structures of the metallocenes.
The x2c-TZVPPall basis set [203] and the respective auxiliary basis set [203] for the RI-J approximation are
selected. Tight SCF thresholds of 10−8 Eh for the energy and 10−8 a.u. for the root mean square of the
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Table A.1: Static polarizabilities (in atomic units) of the cyclopentadienyl (Cp) complexes of Fe, Ru, and Os. [443] The scalar-relativistic
DLU-X2C calculations are denoted as sc-DLU-X2C while DLU-X2C refers to self-consistent treatment of spin–orbit
coupling in a two-component formalism. Note that the DLU-X2C-BHLYP calculation did not converge for the eclipsed
conformer. The experimental results are taken from Ref. 614.

Fe(Cp)2 Ru(Cp)2 Os(Cp)2

Eclipsed
Functional sc-DLU-X2C DLU-X2C sc-DLU-X2C DLU-X2C sc-DLU-X2C DLU-X2C

TPSS 124.3 124.3 133.4 133.4 132.6 132.9

TPSSh 121.4 121.4 130.9 130.9 130.5 130.5

BH&HLYP 114.2 – 125.4 125.4 125.3 125.4

PBE0 118.7 118.7 128.6 128.6 128.4 128.4

CAM-B3LYP 118.2 118.2 128.1 128.1 127.8 127.8

LH12ct-SsirPW92 119.2 119.6 128.6 129.1 128.3 128.8

Staggered
Functional sc-DLU-X2C DLU-X2C sc-DLU-X2C DLU-X2C sc-DLU-X2C DLU-X2C

TPSS 124.2 124.2 133.5 133.5 133.0 133.0

TPSSh 121.2 121.2 130.9 130.9 130.6 130.7

BH&HLYP 114.0 114.1 125.4 125.4 125.4 125.4

PBE0 118.5 118.5 128.6 128.6 128.5 128.5

CAM-B3LYP 118.0 118.0 128.1 128.1 127.9 127.9

LH12ct-SsirPW92 119.0 119.4 128.6 129.1 128.4 128.9

EXP 126.1 133.1 138.5

density matrix are applied. The TPSS, [346] TPSSh [356] BH&HLYP, [128,129,350] PBE0, [355] and the CAM-
B3LYP, [133] functional were selected with a large grid for the numerical integration of the XC part (grid
4a). [482] No symmetry constraints were imposed as the initial structure ensures that the eclipsed or the
staggered conformer is optimized. Structures are optimized up to an energy threshold of 10−6 Eh and a
gradient vector residual norm of 10−3 Eh/bohr. The eclipsed conformation is preferred at the level of theory.

The static polarizabilites were calculated with the above functionals and the LH12ct-SsirPW92 func-
tional, [139] which utilizes the PBE0-optimized geometry. The two-component DFT calculations employ
the x2c-TZVPPall-2c basis set [203] and the modified SNSO approach [255,260] to account for spin–orbit effects
on the two-electron integrals. The results are listed in Tab. A.1. Notably, the two conformers yield nearly
identical polariazabilities and the impact of spin–orbit coupling on the results is minuscule for all functionals
except for LH12ct-SsirPW92 (0.5 a.u.). The polarizability at the TPSS level is in a good agreement with the
experimental results for ferrocene and ruthenocene. The polarizability tends to increase with the amount
of HF exchange in the hybrid functionals. Therefore, all hybrid functionals considerably underestimate the
polarizability. All methods fail to describe the trend from ruthenocene to osmocene. Experimentally, the
polarzability rises from ferrocene to osmocene whereas the calculations show a decrease from ruthenocene
to osmocene. The regression is predicted correctly at the GW-BSE@PBE0 level of theory [443] indicating
that a more sophisticated treatment of electron correlation might be necessary for osmocene. Another po-
tential source of “error” is the employed basis set. The polarizability is sensitive towards very diffuse basis
functions, [200] which are not included in the x2c-TZVPPall-2c basis set.
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A.4 Recontracted pcSseg-4 Basis Set for As

The recontacted pcSseg-4 basis set for As as discussed in Sec. 8.2.3 is given below. Only the recontracted
segments are listed. The original pcSseg-4 basis set is available in Ref. 220 or via the Basis Set Exchange
library. [487,488]

15 s

46921900.000 0.36768751771E-04

6822920.0000 0.12679484265E-03

1535100.0000 0.30953575089E-03

433853.00000 0.72563030852E-03

141855.00000 0.16434578029E-02

51542.900000 0.37059539422E-02

20317.600000 0.83553392102E-02

8519.7100000 0.18813188294E-01

3758.8400000 0.41527662155E-01

1731.5300000 0.86835472998E-01

836.30900000 0.16049897132

419.47800000 0.25684874274

212.18900000 0.31221157854

107.92600000 0.21455060767

54.267200000 0.55457968489E-01

7 s

2497.6700000 -0.17660579091E-02

774.91900000 -0.12302980453E-01

300.49600000 -0.57797936826E-01

133.46600000 -0.92054450139E-01

32.475000000 0.41621518517

17.141100000 0.47102665019

9.4086900000 0.26772841881

5 s

129.51300000 0.28238537923E-02

32.687600000 -0.52615193307E-01

17.006400000 -0.19672561513

9.0042800000 -0.12321667089

5.2731800000 0.32834843290

7 p

484852.00000 0.10313113613E-04

74592.700000 0.48151385284E-04

18102.000000 0.19249356340E-03

6028.6500000 0.67925032092E-03

2371.7300000 0.23039233324E-02

1040.7100000 0.73051436325E-02

483.85200000 0.22232616300E-01
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A.5 NMR Shielding Constants and Shifts of the Organometallic
Main-Group Molecules

The NMR shielding constants of the reference compounds are listed in Tab. A.2. The shieldings and shifts
of the sample compounds are reported in Tabs. A.3 and A.4. Molecular structures of the sample compounds
are taken from Ref. 383. These were optimized with the ZORA Hamiltonian. Note that the structures
of the reference compounds are not listed in this reference. So, the structures of the reference compounds
are optimized at the spin–orbit DLU-X2C level with the x2c-TZVPPall-2c/PBE0/D3 method [203,355,498]

and included in the supporting information of Ref. 379. All NMR calculations are performed with the
Dyall-CVTZ/cc-pCVTZ(unc) basis [161,164,167,187,188,190,495] and the PBE0 functional (grid 4a [482]).

Table A.2: NMR isotropic shielding constants (in ppm) of the reference compounds used to calculate the NMR chemical shifts. All
structures were optimized at the spin–orbit DLU-X2C/x2c-TZVPPall-2c/PBE0 level of theory. The dispersion correction
D3 is applied and large grids (grid 4a) are used for the numerical integration of the XC terms. Structures were confirmed
to be local (minima) on the potential energy surface by numerical frequency calculations. The NMR shielding constants
are calculated with the Dyall-CVTZ/cc-pCVTZ(unc) basis sets.

Nucleus X2C DLU
13C 187 187
29Si 344 344
73Ge 1329 1329
119Sn 2529 2528
207Pb 5432 5431

Table A.3:
13C NMR isotropic shielding constants σ and shifts δ in ppm. Tt denotes the heavy atom. Me is used as an abbreviation
for the methyl group, CH3. Structures are taken from Ref. 383. The PBE0 functional (grid 4a) and the Dyall-CVTZ/cc-
pCVTZ(unc) basis sets are applied.

X2C DLU

σ Tt-Me δ Tt-Me σ Tt-CC δ Tt-CC σ Tt-Me δ Tt-Me σ Tt-CC δ Tt-CC

Si(CCMe)4 – – 100 87 – – 100 87

Ge(CCMe)4 – – 101 86 – – 101 86

Sn(CCMe)4 – – 103 84 – – 103 84

Pb(CCMe)4 – – 101 86 – – 101 86

Me2Si(CCMe)2 183 4 97 90 183 4 97 90

Me2Ge(CCMe)2 181 6 95 92 181 6 95 92

Me2Sn(CCMe)2 190 −3 98 89 190 −3 98 89

Me2Pb(CCMe)2 177 10 92 95 177 10 92 95

Me3Si(CCH) 185 2 89 98 185 2 89 98

Me3Ge(CCH) 182 5 87 100 182 5 87 99

Me3Sn(CCH) 188 −1 87 100 188 −1 87 100

Me3Pb(CCH) 178 9 81 106 178 9 81 106
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Table A.4:
29Si, 73Ge, 119Sn, and 207Pb NMR isotropic shielding constants σ and shifts δ in ppm. The PBE0 functional (grid 4a)
and the Dyall-CVTZ/cc-pCVTZ(unc) basis sets are applied.

X2C DLU

σ δ σ δ

Si(CCMe)4 449 −105 449 −105

Me2Si(CCMe)2 390 −46 390 −46

Me3Si(CCH) 363 −19 363 −19

Ge(CCMe)4 1531 −201 1531 −201

Me2Ge(CCMe)2 1429 −100 1429 −100

Me3Ge(CCH) 1375 −46 1375 −46

Sn(CCMe)4 2951 −422 2951 −423

Me2Sn(CCMe)2 2727 −198 2727 −199

Me3Sn(CCH) 2650 −121 2650 −121

Pb(CCMe)4 6258 −826 6257 −826

Me2Pb(CCMe)2 5878 −447 5878 −447

Me3PbCCH) 5657 −226 5657 −226
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A.6 NMR Shielding Constants of Xenon and the Xenon
Fluorides

The shielding constants of the xenon atom and the xenon fluorides are reported in Tab. A.5. The calculations
utilize the uncontracted ANO-RCC basis set [179] for comparison with the coupled-cluster results of Cheng
and co-workers. [101] Moreover, a consistent computational protocol is used, where the structure is optimized
at the same level of theory as the NMR calculations. Here, the non-relativistic calculations are performed
with a proper basis sets [198,502] and the relativistic calculations employ the x2c-TZVPall-2c basis set. [203]

Table A.5:
129Xe NMR isotropic shielding constants of xenon and xenon fluorides obtained at various levels of theory. Method 1
uses structures from Ref. 101, which were optimized at the scalar-relativistic X2C/CCSD(T)/ANO-RCC(unc) level. The
ANO-RCC(unc) basis set was used in the NMR shielding calculations of that method. Method 2 indicates NMR calculations
based on the geometry optimized at the corresponding level with the x2c-TZVPall-2c bases employed in the relativistic
calculations and the def2-TZVP/TZVPall basis in the non-relativistic ones (NR). The octahedral symmetry is used for
XeF6.

Xe XeF2 XeF4 XeF6

Level Method NR X2C DLU NR X2C DLU NR X2C DLU NR X2C DLU

HF 1 5642 5865 5865 2091 1847 1847 741 362 362 1353 1007 1007

BP86 1 5643 5867 5867 2237 2154 2154 27 −318 −318 416 −36 −36

PBE 1 5643 5867 5867 2259 2174 2174 66 −281 −281 459 10 11

KT3 1 5651 5875 5875 2370 2282 2282 267 −75 −74 619 176 176

TPSS 1 5686 5910 5910 2402 2316 2316 274 −69 −68 595 149 149

B3LYP 1 5643 5867 5867 2096 1970 1970 80 −280 −280 498 47 47

PBE0 1 5643 5866 5866 2231 2107 2107 282 −65 −64 652 221 221

TPSSh 1 5682 5907 5907 2376 2275 2275 338 −4 −4 654 213 214

HF 2 5642 5863 5863 2477 2066 2066 1213 565 565 1516 1193 1193

BP86 2 5642 5865 5865 2494 2211 2211 109 −514 −515 −71 −486 −487

PBE 2 5642 5865 5865 2529 2243 2243 154 −463 −464 −19 −425 −426

KT3 2 5648 5871 5871 2663 2369 2369 488 −126 −126 355 −47 −48

TPSS 2 5680 5908 5908 2640 2370 2370 382 −218 −219 144 −245 −246

B3LYP 2 5642 5865 5865 2355 2025 2025 304 −358 −358 181 −237 −238

PBE0 2 5642 5865 5865 2507 2187 2187 578 −55 −55 494 114 113

TPSSh 2 5677 5904 5904 2617 2330 2330 533 −78 −78 331 −50 −51

MP2 2 5666 5863 5863 2680 2361 2360 907 242 242 674 255 254
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A.7 NMR Shielding Constants of Transition-Metal Oxo
Compounds

The isotropic shielding constants of the nine transition-metal oxo compounds are shown in Tab. A.6. The
shielding constant of the reference compound H2O to calculate the chemical shifts is 334 ppm at all levels
of theory. Note that ECPs are not available for the 3d group and consequently the results are the same as
with the non-relativistic Hamiltonian.

Table A.6: Comparison of 17ONMR isotropic shielding constants of transition metal compounds calculated at various levels of theory.
The shielding constant of H2O is 334 ppm at all levels of theory. NR denotes the non-relativistic calculations, while WB-
ECP and DF-ECP refer to the calculations employing Wood–Boring [507] and Dirac–Fock ECPs [177] for the metal atoms.
All structures are optimized at the corresponding level of theory. COSMO [453,454] is applied to compensate the negative
charge.

BP86 PBE0

NR WB-ECP DF-ECP X2C DLU NR WB-ECP DF-ECP X2C DLU

CrO2−
4 −457 – – −439 −439 −511 – – −490 −490

MoO2−
4 −300 −229 −261 −240 −240 −303 −227 −260 −236 −236

WO2−
4 −241 127 −132 −126 −126 −238 −119 −124 −116 −117

MnO−4 −751 – – −724 −724 −916 – – 876 −876

TcO−4 −535 −410 −439 −444 −443 −585 −450 −466 −469 −469

ReO−4 −436 −283 −270 −279 −279 −461 −286 −271 −281 −281

FeO4 −1187 – – −1140 −1140 −1725 – – −1621 −1622

RuO4 −872 −708 −720 −729 −729 −1078 −828 −844 −851 −851

OsO4 −707 −543 −472 −481 −481 −823 −543 −508 −521 −521
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A.8 NMR Shielding Constants of Tungsten Compounds

The shielding constants of the eight tungsten molecules are presented in Tab. A.7. In line with the previous
sections, the non-relativistic calculations are carried out with a non-relativistic basis set and the all-electron
relativistic calculations use a corresponding basis set. The NMR shifts are obtained with respect to WO2−

4 .

Table A.7: Comparison of non-relativistic and relativistic calculated 183W isotropic shielding constants. The non-relativistic cal-
culations use the def2-TZVP/TZVPalls2 basis set [198,203,204,379] and the relativistic calculations are performed with the
x2c-TZVPall-2c bases. [203] COSMO [453,454] is employed to simulate the counter ions of the charged systems.

BP86 PBE0

NR X2C DLU NR X2C DLU

WO4S2− 252 927 926 501 1193 1192

WO3S2− −470 191 191 −280 417 417

WO2S2−
2 −1310 −682 −682 −1233 −535 −535

WOS2−
3 −2201 −1632 −1631 −2268 −1595 −1596

WS2−
4 −3136 −2650 −2649 −3374 −2744 −2743

W(CO)6 4055 4755 4759 4182 5008 5012

WF6 707 1510 1509 1331 2119 2118

WCl6 −2291 −1300 −1300 −2021 −893 −893

174



A.9 PBE Results for the NMR Coupling Constants of Alkynyl Compounds

A.9 PBE Results for the NMR Coupling Constants of Alkynyl
Compounds

The coupling constants of the alkynyl compounds with the structures of Ref. 383 are given in Tab. A.8.

Table A.8: Comparison of non-relativistic, two-component, and four-component results for alkynyl molecules at the PBE level. Dyall’s
uncontracted CVTZ basis sets [187,188,190,495] are used for the heavy elements (Ge, Sn, Pb), whereas uncontracted cc-
p(C)VTZ basis sets [161,162,164,167,496] are employed for the light elements. Structures and 4c results are taken from Ref.
383, whereas the experimental values are taken from Ref. 533. 1JTtC (Tt = 29Si, 73Ge, 119Sn, 207Pb) coupling constants
are listed in Hz. Note that the structures are optimized with the PBE0 [355] functional. [383] NR and Me denote the
non-relativistic limit and methyl groups. All X2C and DLU-X2C calculations employ the mSNSO approach.

Finite Nucleus Point Charge

NR X2C DLU X2C DLU 4c-RMB EXP
1JTtC for Tt(CCMe)4

Si–C≡C −114.09 −116.63 −116.60 −116.64 −116.62 −121.05 –
Ge–C≡C −46.33 −50.54 −50.51 −50.81 −50.78 −52.10 –
Sn–C≡C −786.86 −994.76 −992.78 −1010.99 −1008.99 −1033.64 −1168.0

Pb–C≡C 757.95 1265.31 1263.49 1371.41 1369.44 1340.32 1624.5

1JTtC for Me2Tt(CCMe)2

Si–CH3 −44.76 −45.35 −45.33 −45.35 −45.34 −46.96 –
Si–C≡C −86.18 −87.07 −87.04 −87.08 −87.05 −90.31 –
Ge–CH3 −14.17 −14.95 −14.94 −15.03 −15.02 −15.36 –
Ge–C≡C −27.53 −27.89 −27.85 −28.04 −28.00 −28.77 –
Sn–CH3 −232.22 −283.59 −283.44 −288.23 −288.08 −293.47 −496.2

Sn–C≡C −452.94 −440.63 −438.28 −448.09 −445.72 −456.94 −654.6

Pb–CH3 193.04 207.67 207.55 224.06 223.93 219.48 574.3

Pb–C≡C 350.37 −169.60 −171.51 −177.01 −179.08 −172.64 208.0

1JTtC for Me3TtCCH

Si–CH3 −39.03 −39.67 −39.65 −39.67 −39.66 −41.17 −55.1

Si–C≡C −64.87 −65.86 −65.84 −65.86 −65.84 −68.12 −79.4

Ge–CH3 −10.35 −11.15 −11.15 −11.21 −11.21 −11.51 –
Ge–C≡C −16.76 −15.88 −15.88 −15.97 −15.97 −16.30 –
Sn–CH3 −124.46 −194.55 −194.51 −197.42 −197.38 −201.25 −303.5

Sn–C≡C −148.78 −182.41 −182.16 −184.64 −184.40 −188.91 −415.5

Pb–CH3 123.45 35.51 35.47 38.69 38.65 39.03 –
Pb–C≡C 177.08 −530.90 −531.07 −566.13 −566.31 −554.57 –
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A Appendix

A.10 PBE Results for the NMR Coupling Constants of Alkynyl
Compounds with X2C-Optimized Structures

The coupling constants of the alkynyl compounds with the structure optimized at the DLU-X2C/x2c-
TZVPall-2c/PBE level are shown in Tab. A.9.

Table A.9: Comparison of non-relativistic and two-component results for alkynyl molecules at the PBE level. Dyall’s uncontracted
CVTZ basis sets [187,188,190,495] are used for the heavy elements (Ge, Sn, Pb), whereas uncontracted cc-p(C)VTZ basis
sets [161,162,164,167,496] are employed for the light elements. The experimental values are taken from Ref. 533. 1JTtC (Tt =
29Si, 73Ge, 119Sn, 207Pb) coupling constants are listed in Hz. NR and Me denote the non-relativistic limit and methyl
groups. All X2C and DLU-X2C calculations employ the mSNSO approach. The mean absolute error of the DLU scheme
is 0.49Hz for the finite nucleus model and 0.51Hz for the point charge model.

Finite Nucleus Point Charge

Molecule NR X2C DLU X2C DLU EXP
1JTtC for Tt(CCMe)4

Si–C≡C −113.23 −115.22 −115.20 −115.24 −115.21 –
Ge–C≡C −47.50 −50.09 −50.06 −50.36 −50.33 –
Sn–C≡C −783.71 −984.82 −982.68 −1000.88 −998.72 −1168.0

Pb–C≡C 757.93 1273.84 1271.86 1380.24 1378.10 1624.5

1JTtC for Me2Tt(CCMe)2

Si–CH3 −45.15 −45.77 −45.76 −45.78 −45.76 –
Si–C≡C −86.08 −87.04 −87.01 −87.05 −87.02 –
Ge–CH3 −14.33 −15.84 −15.83 −15.93 −15.92 –
Ge–C≡C −28.77 −29.22 −29.18 −29.38 −29.34 –
Sn–CH3 −241.74 −301.80 −301.64 −306.73 −306.56 −496.2

Sn–C≡C −486.78 −501.93 −499.34 −510.34 −507.73 −654.6

Pb–CH3 224.33 267.71 267.57 289.47 289.31 574.3

Pb–C≡C 424.15 56.93 54.81 66.01 63.72 208.0

1JTtC for Me3TtCCH

Si–CH3 −39.83 −40.41 −40.40 −40.41 −40.40 −55.1

Si–C≡C −67.91 −68.35 −68.33 −68.35 −68.33 −79.4

Ge–CH3 −13.40 −12.15 −12.14 −12.21 −12.21 –
Ge–C≡C −18.88 −18.96 −18.96 −19.07 −19.07 –
Sn–CH3 −172.03 −216.99 −216.92 −220.38 −220.31 −303.5

Sn–C≡C −297.90 −269.01 −268.77 −272.65 −272.41 −415.5

Pb–CH3 182.69 88.28 88.21 95.90 95.82 –
Pb–C≡C 249.83 −325.75 −325.92 −345.72 −345.90 –

176



List of Figures

2.1 Workflow of the X2C transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Workflow of the DLU-X2C transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Comparison of the original and the modified PSTS functional . . . . . . . . . . . . . . . . . 32

4.1 Algorithm for the unperturbed density contribution of the NMR shielding tensor . . . . . . . 56

5.1 Algorithm for the first derivatives of the DLU-X2C Hamiltonian . . . . . . . . . . . . . . . . 71

8.1 Analysis of deficits for the exisiting triple-ζ bases . . . . . . . . . . . . . . . . . . . . . . . . 91

9.1 Structure of the octahedral silver clusters Ag−13 and Ag−55 . . . . . . . . . . . . . . . . . . . . 107
9.2 Molecular structure of the organometallic iridium complexes . . . . . . . . . . . . . . . . . . 108
9.3 Molecular structure of [Pd(PCy2H)3Cl]+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.4 Molecular structure of [({SIDipp}P)2Sn] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10.1 Comparison of various functionals for 1H NMR shieldings in ppm . . . . . . . . . . . . . . . 127
10.2 Comparison of various functionals for 13C NMR shieldings in ppm . . . . . . . . . . . . . . 127
10.3 Comparison of various functionals for 15N, 17O, 19F, and 31P NMR shieldings . . . . . . . . 127
10.4 Comparison of various functionals for 1H NMR shifts . . . . . . . . . . . . . . . . . . . . . 128
10.5 Comparison of various functionals for 13C NMR shifts . . . . . . . . . . . . . . . . . . . . . 129
10.6 Comparison of various functionals for 17O NMR shifts . . . . . . . . . . . . . . . . . . . . . 130
10.7 Comparison of various functionals for 183W NMR shifts . . . . . . . . . . . . . . . . . . . . 132

11.1 Synthesis of the phosphinidenide complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2 Structures of the phosphinidenide complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.3 Frontier orbitals of compound 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

12.1 Survey of different classes of molecules exhibiting (4n+ 2) π-aromaticity . . . . . . . . . . . 143
12.2 Molecular structure of [Th@Bi12]4− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.3 HOMO and LMOs of [Th@Bi12]4− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.4 Calculated ring currents in [Th@Bi12]4− . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.5 Integration plane for [Th@Bi12]4− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
12.6 Molecular structure of [K2Zn20Bi16]6− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.7 Magnetically induced current density of [Zn20Bi16]8− . . . . . . . . . . . . . . . . . . . . . 153

177





List of Tables

8.1 Exponents of the first segment for carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2 x2c-SVPall-s, x2c-TZVPall-s, and x2c-TZVPall-s basis sets . . . . . . . . . . . . . . . . . . 93
8.3 Evaluation of the NMR-tailored basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4 Comparison to other frequently used double and triple-ζ all-electron relativistic basis sets . . . 96
8.5 Comparison to other frequently used quadruple-ζ all-electron relativistic basis sets . . . . . . 97
8.6 Computation time for various relativistic basis sets . . . . . . . . . . . . . . . . . . . . . . . 98
8.7 Comparison to the pcSseg basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.8 Shieldings with recontracted pcSseg-4 basis sets of As for X2C . . . . . . . . . . . . . . . . . 100
8.9 Shieldings with decontracted pcSseg-4 basis sets of Se for X2C . . . . . . . . . . . . . . . . 100

9.1 Demonstration of gauge and translational invariance . . . . . . . . . . . . . . . . . . . . . . 102
9.2 Statistical evaluation of the DLU error for organometallic compounds . . . . . . . . . . . . . 103
9.3 129Xe NMR chemical shifts of xenon fluorides at various levels of theory . . . . . . . . . . . 104
9.4 Comparison of 17O NMR shifts of transition-metal compounds . . . . . . . . . . . . . . . . 106
9.5 Comparison of non-relativistic and relativistic calculated 183W shifts . . . . . . . . . . . . . . 107
9.6 Computation times of Ag clusters and iridium complexes . . . . . . . . . . . . . . . . . . . . 108
9.7 Comparison of non-relativistic, two-component, and four-component HF results . . . . . . . . 109
9.8 Comparison of various density functional approximations for TtH4 and HX . . . . . . . . . . 110
9.9 Comparison of various basis sets for TtH4 and HX . . . . . . . . . . . . . . . . . . . . . . . 111
9.10 Comparison to 4c-RMB results for TtH4 and HX . . . . . . . . . . . . . . . . . . . . . . . . 112
9.11 Comparison of non-relativistic, two-component, and four-component results for alkynyl

molecules at the PBE0 level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.12 Comparison of non-relativistic and two-component results for alkynyl molecules at the

PBE0 level with optimized structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.13 Calculated coupling constants for various Sn molecules . . . . . . . . . . . . . . . . . . . . . 116
9.14 Coupling constants of [Pd(PCy2H)3Cl]+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.15 DFT results for the coupling constants of [Pd(PCy2H)3Cl]+ . . . . . . . . . . . . . . . . . . 118
9.16 Coupling constants of [Pt(PCy2H)3Cl]+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.17 Coupling constants of [({SIDipp}P)2Sn] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.18 Wall times for the SCF procedure and the SSCC calculation of [({SIDipp}P)2Sn] . . . . . . . 121

10.1 Assessment of density functional approximations for NMR couplings . . . . . . . . . . . . . 125
10.2 Comparison of 129Xe NMR shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.3 Wall times of the full SCF procedure for tungsten compounds . . . . . . . . . . . . . . . . . 133
10.4 Wall times of the NMR shielding calculations of tungsten compounds . . . . . . . . . . . . . 133
10.5 Wall times of the NMR shielding calculations with the RI-J and semiK approximation . . . . 134

11.1 Structural data on compounds 3–5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.2 Spectroscopic data on compounds 3–5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.3 WBI of the compounds 3–5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.4 Spectroscopic data on compounds 6 and 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
11.5 WBI of the compounds 6 and 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

12.1 Current strengths and NICS of known all-metal aromatic compounds . . . . . . . . . . . . . 144

179



List of Tables

12.2 Current strengths and NICS of [Th@Bi12]4− . . . . . . . . . . . . . . . . . . . . . . . . . . 148
12.3 Current strengths and NICS of Bi8−12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
12.4 Current strengths and NICS of Bi12−

12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.1 Static polarizabilities of metallocenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.2 NMR shieldings of the reference compounds for the alkynyl compounds . . . . . . . . . . . . 170
A.3 13C NMR isotropic shielding constants and shifts of the alkynyl compounds . . . . . . . . . . 170
A.4 29Si, 73Ge, 119Sn and 207Pb NMR shieldings and shifts of the alkynyl compounds . . . . . . . 171
A.5 129Xe NMR isotropic shielding constants of xenon and xenon fluorides . . . . . . . . . . . . 172
A.6 Comparison of 17O NMR shieldings of transition metal compounds . . . . . . . . . . . . . . 173
A.7 Comparison of non-relativistic and relativistic calculated 183W shieldings . . . . . . . . . . . 174
A.8 Comparison of non-relativistic and two-component results for alkynyl molecules with PBE . . 175
A.9 Comparison of non-relativistic and two-component results for alkynyl molecules at the

PBE level with optimized structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

180



Acronyms and Symbols

Acronyms and Abbreviations

1c one-component

2c two-component

4c four-component

AO (spherical) atomic orbital

BLAS basic linear algebra subroutines

Bz benzyl

cAAC cyclic (alkyl)(amino)carbenes

CAM Coulomb attenuating method

CAO Cartesian atomic orbital

CC coupled cluster

CCSD(T) coupled-cluster singles and doubles

CCSD(T) coupled-cluster singles, doubles, and perturbative triples

COSMO conductor-like screening model

CPHF coupled-perturbed Hartree–Fock

CPKS coupled-perturbed Kohn–Sham

CPU central processing unit

crypt-222 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane

Cy cyclohexyl

DF Dirac–Fock

DFT density functional theory

Dipp 1,3-bis(2,6-diisopropylphenyl)imidauolin-2-ylidene

DKH Douglas–Kroll–Hess

DLU diagonal local approximation to the unitary decoupling transformation

DSO diamagnetic spin–orbit

ECP effective-core potential

181



Acronyms and Symbols

en ethane-1,2-diamine

EPR electron paramagnetic resonance

ET even-tempered

FC Fermi-contact

FON fractional occupation number

GGA generalized gradient approximation

GHF generalized Hartree–Fock

GIAO gauge-including atomic orbitals

GIMIC gauge-including magnetically induced current

GKS generalized Kohn–Sham

GPU graphics processing unit

GTO Gaussian-type orbital

GW-BSE Bethe–Salpeter equation in the Green’s function GW approximation

HF Hartree–Fock

HOMO highest occupied molecular orbital

IAO linear-independent AO basis

IUPAC International Union of Pure and Applied Chemistry

KIT Karlsruhe Institute of Technology

LCAO linear combination of atomic orbitals

LHF local hybrid functional

LHS left-hand side

LMF local mixing function

lr long range

LSDA local spin density approximation

MAE mean absolute error

MAPE mean absolute percent-wise error

MARI-J multipole-accelerated resolution of the identify

MSD mean signed deviation

meta-GGA meta-generalized gradient approximation

Me methyl

MO molecular orbital

MP2 second-order Møller–Plesset perturbation theory

182



Acronyms and Symbols

NHC N-heterocyclic carbene

NICS nucleus-independent chemical shift

NMR nuclear magnetic resonance

NR non-relativistic

OMP open multi-processing (OpenMP)

PSO paramagnetic spin–orbit

RI-J resolution of the identity approximation to the Coulomb integrals

RHF restricted Hartee–Fock

RHS right-hand side

RKB restricted kinetic balance

RKS restricted Kohn–Sham

RMB restricted magnetic balance

RMS root mean square

ROHF restricted open-shell Hartree–Fock

RPA random phase approximation

RSH range-separated hybrid

SAO symmetry-adapted atomic orbital

SCF self-consistent field

SD spin-dependent in the context of the relativistic integrals

SD spin-dipole term in the context of NMR couplings

semiK seminumerical exchange

SF spin-free

SIDipp 1,3-bis(2,6-di-isopropylphenyl)-imidazolidin-2-ylidene

SIMes 1,3-bis(2,4,6-trimethylphenyl)imidazolidine-2-ylidene

SNSO screened nuclear spin-orbit

mSNSO modified screened nuclear spin–orbit

SO spin–orbit

sr short range

SSCC spin–spin coupling constant

STD standard deviation

STO Slater-type orbital

tBu tert-butyl

183



Acronyms and Symbols

TD-DFT time-dependent density functional theory

TMS tetramethylsilane, SiMe4

UKS unrestricted Kohn–Sham

WB Wood–Boring

WBI Wiberg bond index

WOE weighted overall error

X2C exact two-component

XC exchange correlation

ZORA zeroth-order regular approximation

Constants

c speed of light, c = 137.0359990840 a.u.

π pi: 3.1415926 . . .

184



Acronyms and Symbols

Latin Symbols and Variables

~A vector potential

~B external magnetic field

E energy

~F electric field

fH Hartree kernel

fXC exchange-correlation kernel

Gµνκω two-electron integrals

G nuclear integral for the vector potential of the magnetic moments

i imaginary unit,
√
−1

J NMR coupling constant in Herz

~j current density

K reduced NMR coupling constant

l angular momentum quantum number

M isotope or atomic mass number

~m electron magnetic dipole moment

~mI nuclear magnetic moments

ml magnetic quantum number

Q (m)SNSO screening parameter

~r position vector of the electron

~R position vector of he nucleus

t time or integration variable

wI weight function for the finite nucleus model

Z charge of the nucleus

185



Acronyms and Symbols

Greek Symbols and Variables

α β spin functions

λµ spin-free one-component basis function

λµ

(
~B,~r
)

GIAO

ε orbital or spinor energy, or energy density in DFT equations

Λ gauge function

φµ spin-dependent two-component basis functions

ϕ two-component spinor

Ψ wave function

ψ molecular orbital

ρ density

σ Pauli matrices

τ kinetic energy density

Ω excitation energy

ζ exponent of a basis function or the finite charge distribution

186



Acronyms and Symbols

Matrices

Γ two-electron density matrix

Π generalized momentum matrix

A,B electronic Hessian matrices

D Dirac matrix

C coefficient matrix for the LCAO ansatz

CL, CS coefficient matrix for the X2C or Dirac Hamiltonian

J Coulomb matrix

K exchange matrix

LNESC, L NESC matrix

M metric

Oλ orbital rotation matrix for CPHF and CPKS

r eigenvalues of the renormalization matrix

R renormalization matrix

P RHS vector

Qλ RHS matrix of the Sylvester equation

S overlap matrix

S̃ normalization matrix of the large component

T kinetic energy

X decoupling matrix

U unitary transformation matrix

Uλ unitary orbital rotation matrix for X2C response equations

V external or electron-nuclei potential

VR eigenvectors of the renormalization matrix

V 1
R generalized inverse of VR

W relativistically modified potential

Z energy-weighted density matrix

187



Acronyms and Symbols

Operators and Math symbols

!! double factorial

⇔ equivalence, rearranging

〈Ψ| bra

|Ψ〉 ket

Γ(a) gamma function

~̂µ electronic dipole moment operator

[A,B] commutator of A and B, [A,B] = AB −BA

0 matrix consisting of zeros only

1 identity matrix

I4 (4× 4) identity matrix (operator) for the Dirac equation

~α ~β trace-less quantities of the Dirac equation

∆ Laplace operator, Hessian

εuwt Levi–Civita tensor

exp exponential function

Im imaginary part

~∇ nabla operator, gradient

~̂π generalized momentum operator

F̂ Fock operator
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