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Kurzfassung  

Mit dem Ziel, den Stromsektor zu dekarbonisieren und dem Klimawandel zu begegnen, 

steigt der Anteil erneuerbarer Energieressourcen in den Energiesystemen rund um den 

Globus kontinuierlich an. Aufgrund des intermittierenden Charakters dieser Ressourcen 

kann die Aufrechterhaltung des momentanen Gleichgewichts zwischen Erzeugung und 

Verbrauch und damit der Netzfrequenz ohne angemessene Maßnahmen jedoch eine 

Herausforderung darstellen. Da erneuerbare Energiequellen mit Umrichterschnittstellen 

dem System selbst keine Trägheit verleihen, nimmt gleichzeitig die kumulative 

Systemträgheit ab, was zu schnelleren Änderungen der Netzfrequenz und Bedenken 

hinsichtlich der Netzstabilität führt.  

Ein Schwungrad-Energiespeichersystem (Flywheel Energy Storage System, FESS) kann 

schnell große Leistungsmengen einspeisen oder aufnehmen, um das Netz nach einer 

abrupten Änderung der Erzeugung oder des Verbrauchs zu unterstützen. Neben der 

schnellen Reaktionszeit hat ein FESS den Vorteil einer hohen Leistungsdichte und einer 

großen Anzahl von Lade- und Entladezyklen ohne Kapazitätsverlust während seiner 

gesamten Lebensdauer. Diese Eigenschaften machen das FESS zu einem gut geeigneten 

Kandidaten für die Frequenzstabilisierung des Netzes oder die Glättung kurzfristiger 

Leistungsschwankungen auf lokaler Ebene.  

In dieser Dissertation wird die Netzintegration eines Hochgeschwindigkeits-FESS auf der 

Niederspannungsebene aus mehreren Perspektiven untersucht. Zunächst wird das 

Problem der Platzierung und Dimensionierung eines FESS in 

Niederspannungsverteilnetzen für Leistungsglättungsanwendungen behandelt. Um den 

am besten geeigneten Standort für ein FESS zu finden, wird eine datengetriebene 

Methode zur Abschätzung der relativen Spannungsempfindlichkeit vorgestellt, die auf 

dem Konzept der Transinformation basiert. Der Hauptvorteil der vorgeschlagenen 

Methode besteht darin, dass sie kein Netzmodell erfordert und nur Messwerte an den 

interessierenden Punkten verwendet. Messergebnisse aus einem realen Netz in 

Süddeutschland zeigen, dass mit dem vorgeschlagenen Ansatz die Netzanschlusspunkte 

mit einer höheren Spannungsempfindlichkeit gegenüber Wirkleistungsänderungen, 

welche am meisten von einem durch FESS ermöglichten, glatteren Leistungsprofil 

profitieren können, erfolgreich zugeordnet werden können. Darüber hinaus wird eine 

neue Methode zur Dimensionierung von Energiespeichersystemen unter Verwendung 

von Messdaten eingeführt. Der vorgeschlagene Ansatz erkennt wiederkehrende 

Verbrauchsmuster in aufgezeichneten Leistungsprofilen mit Hilfe des "Motif Discovery"-

Algorithmus, die dann zur Dimensionierung verschiedener Speichertechnologien, 
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einschließlich eines FESS, verwendet werden. Anhand von gesammelten Messdaten aus 

mehreren Niederspannungsnetzen in Deutschland wird gezeigt, dass die Speichersysteme 

mit den aus den detektierten Mustern abgeleiteten Charakteristika während der gesamten 

Messperiode effektiv für ihre Anwendungen genutzt werden können.  

Als nächstes wurde ein dynamisches Modell eines Hochgeschwindigkeits-FESS 

entwickelt und mit experimentellen Ergebnissen in mehreren Szenarien, unter 

Berücksichtigung der Verluste und des Hilfsenergiebedarfs des Systems, validiert. In den 

untersuchten Szenarien wurde eine maximale Differenz von nur 0,8 % zwischen dem 

Ladezustand des Modells und dem realen FESS beobachtet, was die Genauigkeit des 

entwickelten Modells beschreibt.  

Nach Festlegung des erforderlichen Aufbaus wurde die Leistungsfähigkeit eines 60 kW 

Hochgeschwindigkeits-FESS während mehrerer Frequenzabweichungsszenarien mit 

Hilfe von Power Hardware-in-the-Loop-Tests beurteilt. Die Ergebnisse der PHIL-Tests 

zeigen, dass das Hochgeschwindigkeits-FESS sehr schnell nach einer plötzlichen 

Frequenzabweichung reagiert und in knapp 60 ms die erforderliche Leistung erreicht, 

wobei die neuesten Anforderungen der Anwendungsregeln für die Frequenzunterstützung 

auf der Niederspannungsebene erfüllt werden.  

Um schließlich die Vorteile des schnellen Verhaltens des FESS für Energiesysteme mit 

geringer Trägheit zu demonstrieren, wurde ein neuartiger adaptiver Trägheits-

Emulationsregler für das Hochgeschwindigkeits-FESS eingeführt und seine Leistung in 

einem Microgrid mit geringer Trägheit durch Simulationen und Experimente validiert. 

Die Simulationsergebnisse zeigen, dass die Verwendung des FESS mit dem 

vorgeschlagenen Trägheits-Emulationsregler die maximale Änderungsrate der Frequenz 

um 28 % und die maximale Frequenzabweichung um 44 % während der Inselbildung des 

untersuchten Microgrid reduzieren kann und mehrere zuvor vorgestellte adaptive 

Regelungskonzepte übertrifft. Der vorgeschlagene Regler wurde auch auf einem realen 

60 kW FESS mit dem Konzept des Rapid Control Prototyping implementiert, und die 

Leistungsfähigkeit des FESS mit dem neuen Regelungsentwurf wurde mit Hilfe von 

PHIL-Tests des FESS validiert. Die PHIL-Ergebnisse, die die allererste experimentelle 

Validierung der Trägheitsemulation mit einem FESS darstellen, bestätigen die 

Simulationsergebnisse und zeigen die Vorteile des vorgeschlagenen Reglers.  
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Abstract  

With the aim of decarbonizing the electricity sector and addressing climate change, the 

share of renewable energy sources in power systems around the globe is consistently 

increasing. However, due to the intermittent nature of these sources, maintaining the 

instantaneous balance between the generation and the demand, and therefore, the grid 

frequency, can be challenging without adequate measures. In addition, since converter-

interfaced renewables do not inherently provide inertia to the system, the cumulative 

system inertia is simultaneously decreasing, resulting in faster changes in the grid 

frequency and concerns over the grid stability.  

A Flywheel Energy Storage System (FESS) can rapidly inject or absorb high amounts of 

power in order support the grid, following an abrupt change in the generation or in the 

demand. In addition to the quick response time, a FESS has the advantage of a high 

power density and a large number of charging and discharging cycles, with no capacity 

loss throughout its lifetime. These characteristics make the FESS a well-suited candidate 

for providing frequency support to the grid or smoothing out short-term power variations 

at a local level.  

The work presented in this thesis studies the grid integration of a high-speed FESS in low 

voltage distribution grids from several perspectives. First, the problem of allocation and 

sizing of a FESS in low voltage distribution grids for power smoothing applications is 

addressed. In order to find the most suitable location for a FESS, a data-driven method 

for estimating the relative voltage sensitivity is introduced based on the concept of 

mutual information. The main advantage of the proposed method is that it does not 

require a grid model, and uses only the measurement values at points of interest. 

Measurement results from several real distribution grids in southern Germany show that 

the proposed approach can successfully allocated the grid connection points with a higher 

voltage sensitivity to active power changes, which can benefit the most from a smoother 

power profile, using a FESS. Moreover, a new method for sizing energy storage systems 

using historical measurement data is introduced. The proposed approach detects 

reoccurring consumption patterns in the measured power profiles using the motif 

discovery algorithm, which are then used for sizing different energy storage technologies, 

including a FESS. Using collected measurement data from several low voltage 

distribution grids in southern Germany, it is demonstrated that the storage systems with 

the characteristics derived from the detected patterns only can be effectively used for 

their intended applications during the whole measurement period.  
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Next, a dynamic model of a high-speed FESS has been developed, which incorporates the 

losses and auxiliary power requirements of the system. The model is validated with 

experimental results from a real FESS in several scenarios. A maximum difference of 

only 0.8 % has been observed between the state of charge of the real FESS and its model 

during the investigated scenarios, reflecting the accuracy of the developed model.  

After establishing the required setup, the performance of a 60 kW high-speed FESS 

during several frequency deviation scenarios has been evaluated by means of Power 

Hardware-in-the-Loop (PHIL) testing. The PHIL testing results show that the high-speed 

FESS responds very quickly and reaches the required power in just under 60 ms 

following a frequency deviation, while complying with the latest grid code requirements 

for frequency support at the low voltage level in Germany.  

Lastly, in order to demonstrate the advantages of the rapid response of the FESS in low-

inertia power systems, a novel adaptive inertia emulation controller for the high-speed 

FESS has been introduced and its performance has been validated in a low-inertia 

microgrid using simulations and experiments. Simulation results show that the use of the 

FESS with the proposed inertia emulation controller can reduce the maximum rate of 

change of frequency by 28 %, and the maximum frequency deviation by 44 % during the 

islanding of the studied microgrid. In addition, the proposed controller outperforms 

several previously reported adaptive control designs in terms of limiting the frequency 

deviations. The proposed controller has also been implemented on a real 60 kW FESS 

using the concept of rapid control prototyping, and the performance of the FESS with the 

new control design has been validated by means of PHIL testing. The PHIL results, 

which are the very first experimental validation of inertia emulation using a FESS, 

confirm the simulation results, demonstrating the benefits of the proposed controller in 

low-inertia power systems. 
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1 Introduction, Motivation, and 
Scope of Work 

In order to comply with the global efforts to address climate change, more and more 

renewable energy sources are being integrated into power systems around the world. The 

global installed capacity of renewables has been steadily increasing over the last decades, 

reaching approximately 200 GW by the end of 2020 [1]. Renewables are projected to 

become the largest source of energy for electricity generation worldwide by 2025, 

surpassing coal, and supplying one-third of the global electricity demand. By 2050, over 

80 % of the world’s electricity could be supplied by renewables [2]. However, 

maintaining the stability and reliability of the power systems and the power quality can 

be challenging with such a high share of renewables. 

In Germany, the share of renewables in the electricity supply reached approximately 

42 % in 2019, exceeding the target of 35 %, initially planned for 2020 according to the 

renewable energy act [3]. Solar and wind generation units make up the largest share of 

renewable generation in Germany, with a current total installed capacity of 45 GW and 

59 GW, respectively. By 2034, the net installed capacity of wind and solar generation is 

expected to reach 173 GW, which is approximately twice the current electricity 

consumption peak in the country. However, due to the intermittent nature of these 

resources, the instantaneous mismatch between the generation from renewables and 

demand is expected to grow as high as 74.3 GW [4]. Therefore, balancing the volatile 

generation and the demand in each and every moment can be challenging without 

adequate measures. This balance is reflected in the grid frequency, which increases from 

the nominal value in case of generation exceeding demand, and decreases in case of 

insufficient generation. For large deviations of frequency above a certain limit, 

renewables are required to be curtailed, losing useful energy, while for large under-

frequency incidents, large consumers are required to be disconnected by the under-

frequency load shedding schemes, leading to significant financial losses. 

Furthermore, contrary to conventional power plants, converter-interfaced generation 

units, such as wind and solar, do not inherently provide inertia to the power system. 

Therefore, with the increasing share of converter-interfaced renewables, the total system 

inertia is steadily decreasing in power systems around the globe, including in Europe [5]. 

This leads to a higher rate of change of frequency, which can potentially lead to an 

increase in the number of frequency violations and activation of protection systems based 

on a high rate of change of frequency. This issue is expected to become more critical by 
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the decommissioning of nuclear and coal power plants in countries such as Germany in 

the near future. With the reduced system inertia in the interconnected European power 

system, a system split, similar to the one occurred on November 4, 2006, can have 

serious consequences for the European power system [5], [6]. In smaller power systems 

with less interconnections, such as the power system of the UK and Ireland, the increase 

in the rate of change of frequency has already caused great concerns, and precautionary 

measures are being adopted [7].  

One of the major solutions is the use of Energy Storage Systems (ESS), which can help 

balancing the intermittent power of renewables and the demand in a wide range of time 

scales, depending on the technology. Storage systems can play a fundamental role in 

integrating renewable energy resources and regulating the grid frequency. The 

International Energy Agency (IEA) has estimated that in order to support the electricity 

sector decarburization plans, at least 310 GW of additional energy storage systems are 

required only in the four major regions of Europe, United States, China, and India [8]. 

High investment costs and regulatory and market constraints are considered as the main 

barriers towards a more widespread use of ESS in power systems [9]. For balancing the 

generation and the demand, ESS are complimented by other technical solutions, 

including flexible demand and generation, sector coupling (e.g., heat, gas), and increasing 

the power transfer capabilities with additional power corridors (e.g., HVDC). 

In order to support the grid frequency in power systems with a reduced system inertia, an 

ESS should be able to respond promptly to frequency deviations caused by a sudden 

change in the renewable generation or in the demand. Therefore, a fast-reacting ESS with 

a high power density is required, which can rapidly provide or absorb high amounts of 

power in order to support the grid during disturbances [7], [10]–[12]. While a handful of 

storage technologies can provide fast frequency support services to the grid, several 

studies have shown that Flywheel Energy Storage Systems (FESS) are the most cost-

effective solution for high-power short-term ancillary services such as primary frequency 

support, due to their low operational and maintenance costs and long lifetime [13], [14]. 

Supercapacitors [11] and lithium-ion batteries [15] are the main competitors of the FESS 

for this application. However, contrary to the FESS, they can degrade with time and 

temperature [16], [17], and often particular charging strategies may be required to be 

adopted to preserve their lifetime [15]. However, a FESS can quickly provide or absorb 

high amounts of power with no concern over its lifetime or capacity, and support the grid 

during sudden variations in generation or in demand. With a high number of cycles in its 

lifetime, a FESS can also be used for smoothing out short-term power fluctuations of 

renewables or loads at their connection point to the grid, and avoid fast voltage changes 

caused by active power changes, and the spread of fast power fluctuations to the rest of 

system.  
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The focus of this work is to study the integration of a FESS in low voltage distribution 

grids, where a significant share of distributed and renewable energy resources is 

connected. Grid integration of new power system components are commonly investigated 

using either numerical simulations or experimental tests. With the increasing capabilities 

and wide-spread availability of real-time simulators, Hardware-in-the-Loop (HIL) and 

Power Hardware-in-the-loop (PHIL) testing are becoming one of the major tools for grid 

integration studies of new power system components and validating their performance. 

By enabling the possibility of verifying the performance of a real hardware in a simulated 

grid, PHIL testing combines the advantages of experimental validations with the 

flexibility and of simulations. This allows to test new system components in various grid 

conditions, including abnormal situations such as extreme frequency deviations, which 

are not possible or safe to carry out in a field test, due to the safe operational limits of real 

power systems. Moreover, since the real hardware is tested in PHIL testing, it can reveal 

existing issues, which are difficult to detect using only numerical simulations [18].  

Recently, the PHIL testing of lithium-ion battery energy storage systems [19]–[21], 

supercapacitors [22], and hybrid battery-supercapacitor storage systems [23] have been 

reported in literature for different applications, including frequency support. However, to 

our knowledge, the PHIL testing of a FESS in AC grids, in particular for the application 

of frequency support has not yet been conducted. There are only limited experiments 

carried out using a FESS in shipboard DC power systems, where the FESS is supporting 

pulsed power loads [24], [25]. 

This work aims to conduct a comprehensive study on the integration of a FESS in low 

voltage distribution grids and validating its performance by means of PHIL testing. In 

particular, the following objectives has been defined: 

▪ Finding the most suitable location for the installation of a FESS in a local grid 

in southern Germany in collaboration with a distribution system operator 

▪ Deriving the required characteristics (e.g., rated power and capacity) of a FESS 

from collected measurements data at several low voltage distribution grids 

▪ Dynamic modeling, real-time simulation, and model validation of a FESS 

▪ Establishing a laboratory setup for PHIL testing of a FESS, and developing 

benchmark grids and test cases in a real-time simulation environment for testing 

the FESS in different scenarios  

▪ Conducting PHIL testing of a high-speed FESS in several scenarios, evaluating 

its transient performance, and ensuring its compliance with the latest grid code 

requirements in Germany 

▪ Investigating new control designs for the FESS for enhanced frequency services 

in low-inertia power systems, and experimental validation of the new 

controllers on a real FESS using rapid control prototyping and PHIL testing  
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With the aim of addressing the aforementioned objectives, the content of this thesis is 

organized as follows. In Chapter 2, the FESS is introduced and its main characteristics in 

comparison to other storage technologies are discussed. The structure of the FESS, its 

main components, and its major applications in power systems are presented. Here, the 

latest developments in using a FESS for different applications are reported, including 

novel control designs and advancements in system components.  

Chapter 3 gives a short introduction to the applications of real-time simulations in power 

systems, including the PHIL testing of distributed energy resources and energy storage 

systems. The challenges in real-time simulation of low voltage distribution grids, which 

is an important prerequisite for the PHIL testing of any component in a low voltage grid, 

are discussed, followed by a summary of the available solutions and techniques to tackle 

these challenges. Next, a step-by-step guideline for conducting PHIL testing of new 

components is provided. Here, the recent efforts in PHIL testing of energy storage 

systems are also presented. Lastly, the 1 MVA PHIL testing facility at KIT’s 

EnergyLab 2.0 and its main components are briefly described. 

The problem of allocation and sizing of a FESS in low voltage distribution grids is 

addressed in Chapter 4. Firstly, the optimal placement of a FESS is investigated by 

locating the grid connection points with the highest voltage sensitivity to active power 

changes. After discussing the limitations of the classical voltage sensitivity calculations, a 

data-driven approach based on the concept of mutual information [26] is introduced. The 

allocations of a FESS in a real grid in southern Germany is presented as a use case of the 

proposed approach. The second part of this chapter deals with the problem of sizing of 

storage systems using historical measurement data. It introduces a new sizing 

methodology, which uses reoccurring daily consumption patterns detected by the motif 

discovery algorithm [27], rather than using an arbitrary day, as commonly found in 

literature. The proposed method is applied for deriving the characteristics of two types of 

energy storage systems, including a FESS. 

Prior to conducting the PHIL tests of any component, having a model of the hardware 

under test can be significantly beneficial for designing safe and successful experiments. 

Therefore, a dynamic model of a high-speed FESS is developed in Chapter 5, which 

consists of the model of each individual component of the FESS, including the permanent 

magnet synchronous machine, the voltage source converters, and their controllers. The 

model is simulated in real-time, which allows testing the FESS model in the same grid 

models that are later used for the PHIL testing of a real FESS. 

In Chapter 6, the performance of a 60 kW/3.6 kWh high-speed FESS with a maximum 

rotational speed of 45,000 rpm is evaluated by means of PHIL testing in several 

frequency deviations scenarios. The response of the FESS to frequency disturbances, 
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including the major frequency incident of August 9, 2019 in the power system of the UK, 

and its compliance with the latest grid code requirements in Germany are investigated. 

The description of the PHIL setup assembled and used for the testing the FESS is also 

provided. The results of the PHIL tests in all investigated scenarios are also used to 

validate the model of the FESS developed in Chapter 5. 

As discussed, the prompt response of a FESS can help maintaining the grid frequency, in 

particular in low-inertia systems, where any imbalance in the generation and the demand 

can lead to rapid changes in the grid frequency. Therefore, Chapter 7 proposes the use of 

a FESS for inertia emulation, and a new adaptive controller for this purpose is introduced. 

The performance of the proposed design is first evaluated by means of simulations in a 

low-inertia microgrid, and compared with several previously reported adaptive 

controllers for inertia support. Next, the controller is implemented on the 60 kW high-

speed FESS using the concept of rapid control prototyping, and the performance of the 

FESS with the proposed controller is verified using PHIL testing of the FESS in a low 

voltage microgrid in different scenarios.  

Finally, Chapter 8 summarizes all the findings, and illustrates the potential applications of 

the proposed methods, and the future possible research in these areas. 
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2 The Role of Flywheel Energy 
Storage Systems in Power Systems 

In this chapter, the FESS, its characteristics, and its main applications in power systems 

are described. For each application, including frequency regulation and power smoothing, 

the current state-of-the-art together with several real-world implementations are 

presented. Moreover, the structural differences between the main two types of FESS, i.e., 

the low-speed and the high-speed FESS, are provided. Lastly, a comparison between 

various technologies used for the main components of a FESS is given.  

2.1 Introduction to Flywheel Energy Storage 
Systems (FESS) 

A FESS is a mechanical energy storage system, which stores energy in the form of 

kinetic energy by accelerating a large rotating mass with a high inertia, i.e., the flywheel. 

The stored energy can be extracted from the FESS by deaccelerating the high-inertia 

rotor. While the concept of a FESS is considered among the oldest storage technologies, 

recent developments in high tensile strength materials and advanced magnetic bearings 

have made it possible to increase the energy density and efficiency (above 85 % [28]) of 

this technology, significantly. The configuration of a conventional FESS is illustrated in 

Figure 2.1. The term FESS refers to the entire system consisting of a flywheel or a high-

inertia rotor, an electrical machine, back-to-back bi-directional power converters with a 

common DC link, and auxiliary components required for running the system.  

 

 

Figure 2.1: Configuration of a conventional Flywheel Energy Storage System (FESS). 
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The advantages and disadvantages of the FESS in comparison to other storage 

technologies are listed in Table 2.1. A FESS has several important advantages, including 

high power density, fast response time and cycling characteristic, high number of cycles, 

long lifetime, high controllability, insensitivity to ambient temperature, and 

environmentally benignity. Moreover, the capacity of a FESS remains consistent 

throughout its entire lifetime, independent of the way it has been charged or discharged 

and the ambient temperature. In terms of the specific power and energy, the flywheel 

technology bridges the gap between the supercapacitors and lithium-ion batteries, as 

shown in Figure 2.2. While a FESS can have the power capabilities of a supercapacitor, it 

can have a higher specific energy, making longer discharge times possible. Moreover, a 

FESS has significantly longer lifetime and a greater number of cycles in comparison to 

lithium-ion batteries.  

Table 2.1: Advantages and disadvantages of a FESS in comparison to other storage technologies. 

Advantages Disadvantages 

+ High power density (up to 2 kW per liter) 
+ Extremely fast cycling characteristics 

+ Fast response time (in the range of milliseconds) 

+ Long lifetime (in the range of 20 years or 200,000 cycles) 
+ Constant capacity throughout its lifetime 

+ Not sensitive to the ambient temperature 

+ Environmentally friendly 

- High capital costs  
- Low energy density  

- High self-discharge rate 

 

 

Figure 2.2: Comparison of the specific power and energy of the FESS with supercapacitors and lithium-

ion (Li-ion) batteries (adopted from [29]). 
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Limited storage capacity, high self-discharge rate, and high capital costs are considered 

as the main barriers towards a widespread use of FESS [30]. Higher energy densities and 

lower self-discharge rates are achieved by the use of composite fiber materials and 

advanced magnetic bearings to reach higher rotational speeds, but these technologies 

increase the production costs as well [13]. In addition, the capacity of a FESS can only be 

increased to a certain extent, due to the limited tensile strength of commercially available 

rotor materials, which constraints the maximum rotational speed of the rotor (see 

subsection 2.3.1 for more details). At present, the investment costs of a FESS are 

relatively high in comparison to several other storage technologies, which could be due to 

the limited number of flywheel manufacturers worldwide. A list of current manufacturers 

of a FESS with the characteristics of their product is provided in Table 2.2. With growing 

interest in the use of a FESS for different applications, the number of manufacturers can 

increase, which can potentially reduce the capital costs of the FESS. It is estimated that 

the capital costs of this storage technology would fall by 35 % by 2030 according to a 

report by the International Renewable Energy Agency (IRENA) [2]. Safety concerns in 

the case of system failures, are also of crucial importance when using flywheels, but these 

risks are reduced when light composite fiber materials are used for the rotor [31] (see 

subsection 2.3.5). While lithium-ion batteries will remain the dominant storage 

technology for the new storage installations worldwide [32], for applications which 

require short-term storage of high amounts of power with a high number of cycles, other 

technologies such as FESS can be more suitable [33].  

Table 2.2: A comparison of the characteristics of several commercial FESS [34]. 

Company 
Rated 

Power 

Rated 

Capacity 

Maximum 

Speed 
Lifetime 

Main 

Application 
Country 

Beacon 

Power 
100 kW 25 kWh 16,000 rpm 

175,000 

cycles 
Grid services USA 

Piller 1-3 MW 10-17 kWh 3,400 rpm > 20 years UPS Germany 

Stornetic 60 kW 3.6 kWh 45,000 rpm > 20 years Grid services Germany 

Gyrotricity 100 kW 5 kWh 20,000 rpm 25 years 
Electric vehicle 

charging 
UK 

Amber 
kinetics 

8 kW 32 kWh 10,000 rpm 11,000 cycles Grid services USA 

Active Power 225 kW 
up to 

2.6 kWh 
7,700 rpm 20 years UPS USA 

Vycon 450 kW 1.7 kWh 36,750 rpm 20 years 
UPS, grid 

services, mobility 
USA 

Adaptive 

Balancing 

Power 

100-

500 kW 
5-12 kWh N/A 1 M. cycles 

Grid services, 

mobility, industry 
Germany 

Kinetic 
Traction 

Systems 

333 kW 1.5 kWh 36,000 rpm 10 M. cycles 
UPS, railway, 

grid services 
USA 
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2.2 Applications of FESS in Power Systems 

A FESS can be used for a variety of applications in different sectors, depending on its 

ratings and its type (see section 2.3). Table 2.3 lists the applications of this storage 

technology in different sectors and areas. In the field of power systems, a FESS is most 

commonly used for frequency regulation and smoothing out short-term power 

fluctuations of wind generation units. In weakly interconnected power systems, such as in 

microgrids, these two applications can be intertwined, as mitigating the power variability 

of renewables simultaneously leads to a more stable frequency. In addition, a FESS can 

also be used for improving the system transient stability, voltage regulation, spinning 

reserve, black start, reliability enhancement, fault ride-through support, and unbalanced 

load compensation. However, these applications are less common in comparison to the 

other applications and are less specific to the flywheel technology. The use of a FESS can 

be particularly beneficial, where a significant number of high-power short-duration 

cycles ranging from seconds to several minutes are required.  

As seen in Table 2.3, FESS are also used in several other sectors, including in the 

transportation sector [35], for pulsed power applications in industry [36], and in space 

satellites [37]. These applications are out of the scope of this thesis, and therefore, not 

discussed further. In the following, the applications of a FESS in power systems are 

described briefly together with a review of the latest works in each area. 

Table 2.3: Applications of FESS in different sectors and fields. 

Sector Applications 

Power Systems 

Frequency regulation, power smoothing, voltage regulation, improving transient 

stability, spinning reserve, ride through support, unbalanced load compensation, and as 

Uninterruptable Power Supply (UPS) 

Transportation 

and mobility 
Vehicles, trains and subways, lifts, etc. 

Industry Mining, cranes, lasers, linear motors, and other pulsed power applications 

Research Pulsed power for fusion research facilities (e.g., Joint European Torus, ASDEX) 

Space  Satellites attitude control, energy buffer 

2.2.1 Frequency Regulation 

As discussed, a FESS is a well-suited solution for supporting the grid frequency during 

imbalances between generation and demand, due to the high power density, quick 

response time, high reliability, long lifetime, and high number of cycles with no 

degradation.  
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A single flywheel unit can be used in microgrids to support the frequency, or tens to 

hundreds of units can be connected in parallel in a modular configuration to build a 

utility-scale system. For instance, the company Beacon Power has built and successfully 

commissioned two 20 MW plants, each with 200 high-speed flywheels in Stephentown, 

New York, and in Hazel, Pennsylvania. These plants provide fast frequency regulation 

services to the grid. For the state of New York, the flywheels provide approximately 10% 

of the whole state frequency regulation requirement. The field data have confirmed the 

advantages of these systems in terms of costs, emissions, and operational constraints [38].  

The combination of the flywheel technology with a battery for providing frequency 

support has also gained attention over the last few years. Recently, a 9 MW hybrid 

flywheel-battery energy storage system has been commissioned in the Netherlands to be 

used for enhanced frequency control, where the flywheel increases the power capabilities 

of the battery [39]. A smaller flywheel-battery hybrid storage system with the rating of 

480 kW was successfully tested in Ireland, where the flywheel responds faster with a 

higher ramp rate to frequency deviations in comparison to the battery, by design [7]. 

Similarly, in [40], authors proposed the use of a 50 MW flywheel-based plant for the 

northern Chilean interconnected system, which can quickly provide the required power 

for primary frequency control and improving the transient stability of the power system. 

Applications of a FESS in a microgrid, in particular for regulating the frequency, have 

drawn a significant attention over the last 20 years, both in academia and industry. A 

considerable number of projects have been conducted globally in this area. Since a FESS 

can simultaneously supply the microgrid with both active and reactive power with a short 

response time, it can improve the power quality and the dynamic security of the 

microgrid, significantly. For example, a 500 kW/5 kWh FESS was designed and installed 

in the Portuguese island of Flores. It was shown that with the help of the FESS, a stable 

frequency is feasible, even with a high penetration of renewable energy sources [41].  

In literature, several new control structures for a FESS for the application of frequency 

regulation have been proposed. Authors in [42] propose an enhanced frequency control 

for a low-speed FESS with the aim of reducing the frequency and the DC-link voltage 

deviations. In [43], a coordinated control strategy between a FESS and a battery energy 

storage system has been suggested for a more effective droop-based frequency control in 

microgrids. A fuzzy logic controller for controlling multiple storage systems including a 

FESS has been introduced in [44], which maintains the state of charge of each storage 

system in a certain range, while providing enhanced frequency services. Recently, the 

concept of inertia emulation using a FESS has been introduced [45], and a virtual 

synchronous generator based on a FESS has been suggested [46]. More information on 

these works and inertia emulation using a FESS are provided later in Chapter 7. 
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2.2.2 Power Smoothing 

The advantages of using a FESS is often investigated in the presence of wind generation 

units, where the FESS can mitigate the high variability of the power generated by wind 

turbines. This is particularly important for integrating wind generating units into weak or 

isolated microgrids. With a high number of cycles and no capacity loss, a FESS is a 

suitable candidate for power smoothing applications, where a continuous operation of the 

energy storage systems is often required.  

Several real-world projects including the FESS in the Glencore Raglan Mine in Quebec 

has been reported, where the FESS smooths the power produced by a 3 MW wind 

turbine. Similarly in the Saint Paul Island in Alaska, a FESS is used to reduce wind 

power fluctuations and the fuel consumption of two diesel generators [47].  

In literature, numerous novel control methods have been proposed for the use of a FESS 

for smoothing the power generated by wind turbines. Recently, an intelligent controller 

based on the adaptive wavelet fuzzy neural networks has been introduced to mitigate the 

intermittency in wind generation using a FESS, and improve the transient stability of the 

power system [48]. The authors in [49] have suggested an energy function-based optimal 

control approach for reducing the effect of wind power fluctuations on the power system. 

Here, it has also been shown that the FESS can also improve the low voltage ride-through 

capability of the wind turbine by operating as a static compensator (STATCOM) during 

low voltage incidents. In another study, the flux-oriented control and the direct torque 

control have been compared for a low-speed FESS, and it has been argued that the direct 

torque control is a better solution for smoothing wind power generation using a 

FESS [50]. The authors in [51] have presented a control algorithm for a FESS to 

simultaneously achieve mitigation of power fluctuation and dynamic stability 

enhancement for an offshore wind farm. Moreover, a supervisory control unit with short-

time wind speed prediction has been suggested to be implemented on a wind farm 

equipped with a FESS, which has proven to be effective for reducing power fluctuations 

and the size of the required FESS [52].  

By compensating for the short-term volatility of renewable energy resources, a FESS can 

also reduce the variability of the power output of other distributed energy resources and 

storage technologies. For instance, a FESS can reduce the power variability of a diesel 

generator, and therefore, reduce its fuel consumption and emissions, improve its 

efficiency and lifetime, and decrease the number of required startups and shutdowns, 

when the generator is used as a backup system [41], [53]. In Nullagine and Marble Bar in 

western Australia, a 500 kW FESS from ABB in combination with large PV systems 

have managed to reduce the fuel consumption of the installed diesel generators by 

400,000 liters per year and save 1100 tons of greenhouse gas emissions annually [54]. 
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When used together with a battery in a hybrid configuration, a FESS can significantly 

help preserving the lifetime and capacity of the battery [55], [56]. It has been 

demonstrated that a battery-flywheel hybrid system outperforms a battery-supercapacitor 

combination in terms of reducing the peak current drawn from the battery and the overall 

system efficiency [57]. In Australia, a 2 MW FESS is currently being used to relief a 

3 MW battery from wearing faster for mitigating wind power fluctuations [58].  

2.2.3 Voltage Regulation 

 A FESS, like any converter-based system can also provide reactive power for regulating 

the grid voltage at its connection point and operate similar to a static 

compensator (STATCOM). However, in low voltage distribution grids with a low X/R 

ratio, active power provided by the flywheel can be more effective in regulating the grid 

voltage, in comparison to reactive power (see subsection 4.1.1).  

Dynamic voltage compensation on distribution feeders using a FESS has been studied 

in [59], where it has been shown that a series-connected FESS is more effective for 

voltage regulation than a FESS connected in parallel to the grid. A series-connected 

FESS equipped with a matrix converter has been designed and built in [60] for 

compensating voltage sags, and in [61], a predictive optimal controller has been 

suggested for such a system. It is also proposed to use a FESS for unbalanced voltage 

drop compensation and reducing the effect of asymmetric loads on the grid [62].  

2.2.4 Other Applications in Power Systems 

As listed in Table 2.3, a FESS can be used for several other applications in power system 

as well. For instance, it has been suggested to use a FESS for enhancing the fault ride-

through capability of an HVDC connection to a wind farm during AC faults [63]. The use 

of a FESS with a self-organizing fuzzy neural network controller to increase the power 

transfer capability and transient stability of the power system has been suggested by the 

authors in [64]. More recently, it has been suggested to use a FESS to limit the initial 

high power demand of electric vehicle fast chargers from the grid at the moment of 

connection [65].  
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2.3 Components of FESS  

Flywheel energy storage systems can be grouped into two main categories, i.e., the low-

speed (less than 104 rpm) and high-speed (104 – 105 rpm) FESS, which are very different 

in their structure and design, and are often used for different applications. A comparison 

of the structural differences between the two types of the FESS is presented in Table 2.4. 

Low-speed FESS are the cheaper alternative, which are suitable when a discharge time of 

several seconds is adequate and a high self-discharge rate is not a concern. High-speed 

FESS use magnetic bearings, composite fiber rotor, and a vacuum enclosure to reach 

higher rotational speeds and storage capacities and a significantly reduced self-discharge 

rate. However, they are significantly more expensive than the low-speed systems. While 

low-speed FESS are considered a matured technology, high-speed FESS have been only 

recently commercialized. Figure 2.3 shows the structure of a commercial high-speed 

FESS.  

In the following subsections, important components of a FESS and the different 

technologies used for each component are discussed. 

Table 2.4: Comparison of the main two types of FESS [66], [67]. 

Component/Characteristic Low-speed FESS High-Speed FESS 

Flywheel material Steel 
Composite Materials: Glass or carbon 

fiber 

Electrical machines type 

Asynchronous, permanent 

magnet synchronous or 

reluctance machines 

Permanent magnet synchronous or 

reluctance machines 

Integration of 

machine/flywheel 

No integration or partial 

integration 
Full or partial integration 

Confinement atmosphere 
Partial vacuum or light gas 

(Helium) 
Absolute vacuum 

Enclosure weight 2 × Flywheel weight ½ × Flywheel weight 

Bearings 
Mechanical or hybrid 

(mechanical and magnetic) 
Only magnetic 

Relative capital cost 1 5 

Main applications 
Short-term and medium power 

applications 

Power quality improvement, ride-

through support, power service in 

traction and the aerospace industry 

Specific energy  ~ 5Wh/kg ~ 100Wh/kg 

Technology maturity 
Commercialized, mature 

technology 
Early commercialization  
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Figure 2.3: Structure of the container holding the rotor and the electrical machine in a high-speed FESS 

(Picture courtesy: Stornetic GmbH [68], used with permission). 

2.3.1 Rotor 

The energy of a FESS (EFW) depends only on the rotor inertia (Jf) and its rotational 

speed (ωm) according to Eq. (2.1). 

EFW =
1

2
Jf𝜔m

2 . (2.1) 

As seen in Eq. (2.1), while the capacity of a FESS can also be expanded by increasing the 

rotor inertia, reaching higher rotational speeds has a greater impact on the storage 

capacity. The maximum rotational speed is limited by the strength of the rotor material to 

withstand the centrifugal forces affecting the rotor at high rotational speeds [28]. This is 

referred to as the material tensile strength. The maximum stress that the rotor material 

experiences is proportional to the material density and the square of the rotor speed at the 

rotor’s outer surface [69]. The maximum stress has to be below the tensile strengths of 

the used material by a safe margin. If the material tensile strength is represented by 𝜎, the 

energy density (𝑒𝑣), and specific energy (𝑒𝑚) is calculated using [66] 

𝑒𝑣 = K𝜎, (2.2) 

and 
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𝑒𝑚 =
K𝜎

𝜌
. 

(2.3) 

In Eq. (2.2) and (2.3), 𝜌 is the density of the rotor material and K is called the shape 

factor, which depends on the rotor geometry, and it is a measure of effective material 

utilization [31]. Equation (2.3) indicates that in order to achieve a higher capacity per unit 

of mass, a material with a high tensile strength and a low density is required. These are 

the characteristics of composite fiber materials with glass or carbon, as seen in Table 2.5. 

Therefore, high-speed FESS use composite fiber materials, which make it possible to 

reach rotational speeds up to 100,000 rpm. Low-speed FESS commonly use variations of 

steel such as carbon steel [70], which are significantly cheaper than the composite fiber 

materials. In a low-speed FESS, since the rotational speed of the rotor is limited by the 

tensile strengths of steel, the capacity is often increased by using larger bulkier rotors (see 

the two-ton rotor in [71], as an example). 

According to Eq. (2.2) and (2.3), the shape factor K also influences the energy per unit of 

volume and mass. The shape factor depends only on the geometry of the rotor. The rotor 

geometry can also be optimized to reach higher energy densities, as shown in [72]. 

However, in practice, solid and hollow cylinders are commonly used for low-speed and 

high-speed FESS, respectively. 

Table 2.5: Characteristics of several materials used for the rotor in a FESS [28], [66]. 

Material 𝝆 (𝐤𝐠/𝐦𝟑)  𝝈 (𝐌𝐏𝐚)  𝒆𝒎 (𝐌𝐉/𝐤𝐠) 

Aluminum  2700 500 0.093 

Steel 7700 1520 0.19 

Glass E/Epoxy 2000 1000 0.25 

Carbon AS4C 1510 1650 1.1 

Carbon T1000 1520 1950 1.28 

 

While the energy of a FESS depends on the rotor material and geometry, its maximum 

power depends on the ratings of the electrical machine and power converters, which are 

described in the following subsections.  

2.3.2 Electrical Machine 

The high-inertia rotor of a FESS can be coupled to various types of electrical machines, 

including different designs of synchronous machines, asynchronous machines, and 

reluctance machines. Each machine type and design has its own advantages and 
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disadvantages. Table 2.6 presents a comparison between the important characteristics of 

the most commonly used electrical machines in a FESS.  

Asynchronous machines are often used in a low-speed FESS. They have a robust 

construction, high torque, high reliability, and low costs. However, due the presence of 

copper losses in the rotor, they cannot be used in the vacuum enclosure of a high-speed 

FESS, where convection cooling is not available. Therefore, a Permanent Magnet 

Synchronous Machine (PMSM) is often used in a high-speed FESS, which has no field 

winding and consequently, no copper losses on the rotor. Moreover, PMSM have high 

specific power, high efficiency, simple and robust structure, and excellent dynamic 

performance [73]. However, they carry the risk of demagnetization under high 

temperatures [74]. They also have higher costs and lower tensile strength comparing to 

asynchronous machines.  

Other types and designs of electrical machines such as switched reluctance 

machines [75], homopolar machines [76], and axial-flux machines [77] have also been 

used in a FESS. However, they are rarely used in practice in commercial systems.  

Table 2.6: Comparison of different types of electrical machines used in FESS [53], [78]. 

Machine type/ 

Characteristic 
Asynchronous  Reluctance 

Permanent magnet 

synchronous 

Power  High Medium & Low Medium & Low 

Specific power Medium (0.7 kW/kg) Medium (0.7 kW/kg) High (1.2 kW/kg) 

Rotor losses Copper & iron Iron (Slots) None 

Spinning losses 
Removable by annulling 

flux 

Removable by annulling 

flux 

Non-removable, static 

flux 

Efficiency High (93.4 %) High (93 %) Very High (95.2 %) 

Power density 1.8 l/kW 2.6 l/kW 2.3 l/kW 

Tensile strength Medium Medium Low 

Torque ripple Medium (7.3 %) High (24 %) Medium (10 %) 

Max./base speed Medium (>3) High (>4) Low (<2) 

Demagnetization No No Yes 

Cost Low (22 €/kW) Low (24 €/kW) High (38 €/kW) 

2.3.3 Power Converters 

The power converters control the power exchange between the high-inertia rotor and the 

grid. A FESS is most commonly connected to the AC grid via back-to-back converters 
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with a common DC link [79], as shown in Figure 2.1. These converters convert the output 

of the electrical machine with a variable frequency to the fixed frequency required by the 

grid. For some specific applications of flywheels, such as in wind turbines [80], in 

uninterruptable power supplies [81], or in electric cranes [82], the flywheel can also be 

coupled through the DC link of an existing converter using a separate DC-AC converter, 

as depicted in Figure 2.4. In some cases, an extra bi-directional DC-DC converter may be 

required to reach the required voltage level in such configurations [83]. 

 

Figure 2.4: Flywheel connected to the common DC link of a wind generator for power smoothing 

applications. 

Power converters in a FESS are often conventional Voltage Source Converters (VSC), 

which are controlled using Pulse-Width Modulation (PWM). Different types of switches 

(MOSFETs, IGBTs, etc.) can be used, depending on the blocking voltage and current 

requirements and the switching frequency. Recently, the use of silicon carbide-based 

MOSFETs has also been investigated for a FESS [84]. Higher switching frequencies in 

the machine-side converter leads to a reduction in the current and torque ripples of the 

electrical machine. For the grid-side converter, this leads to decreased harmonics injected 

to the grid and a smaller grid filter. But this increases the switching losses as well (except 

when silicon carbide switches are used). Due to the low stator inductance of the electrical 

machines often used in a high-speed FESS, an LC filter is often required to connect the 

machine-side converter to the electrical machine, in order to reduce the current ripples 

and the machine losses [28], [85].  

In terms of the converter topology, two-level converters are most commonly used in 

practice in a FESS. The use of a diode-clamped three-level topology, also referred to as 

the neutral-point clamped converters, is also suggested for a FESS. This configuration 

leads to less harmonic distortion, lower machine losses, additional flexibility of the 

output voltage, higher efficiency, and faster dynamic response, in comparison to a 

conventional two-level converters, under the same switching frequency [86]. A matrix 

converter is another alternative suggested to be used in a FESS [60], which does not have 
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a DC-link capacitor in between, and directly converts AC to AC. This reduces the volume 

and weight of the converters, significantly. However, matrix converters have high 

harmonic distortions and more complex control and protection systems. The authors 

in [87] have presented a FESS with a Z-source converter and claimed that this 

configuration leads to a higher efficiency. Other novel topologies and switching schemes 

have been suggested to improve the converter efficiencies in a FESS, such as in [88], 

[89]. However, such systems are rarely used in industry.  

2.3.4 Bearings  

The flywheel bearings have to support the weight of the rotor, keep it in position, damp 

out mechanical vibrations (referred to as stiffness), and allow the free rotation of the rotor 

with minimum losses. Table 2.7 presents the advantages and disadvantages of various 

bearing technologies used in a FESS. 

Traditionally, a low-speed FESS uses mechanical bearings, which have high friction 

losses and lubrication and maintenance requirements. The friction losses lead to a high 

self-discharge rate and a low lifetime in such systems. Magnetic bearings are used as the 

alternative solution, in which the rotor is suspended using a magnetic field, often in a 

vacuum enclosure, eliminating friction losses and wearing. Therefore, they require much 

less maintenance, and significantly lower self-discharge rates and higher rotational 

speeds can be achieved. Magnetic bearings lack friction losses, but other losses resulting 

from the geometry and variance in a magnetic field, such as eddy current losses, leakage 

fluxes (stray flux paths), and hysteresis losses are present. Auxiliary mechanical bearings 

are still required for the initial rotation of the flywheel, or in a case of a magnetic 

bearings failure or an overload [67]. 

Magnetic bearings are categorized into active and passive bearings. In active magnetic 

bearings, the magnetic field is controlled using a coil and a control system with respect to 

the position and the movement of the rotor. This provides a high stiffness and damping, 

and results in a highly reliable system with a long lifetime and low maintenance [28]. 

However, the extra power and the complex control system required for operating such 

systems are considered as the disadvantages of this type of bearing. They increase the 

system costs as well. 

Passive bearings include the use of permanent magnets. However, permanent magnets 

should be used with another type of bearing, as they are inherently unstable [53]. The use 

of High-temperature Superconductors (HTS) in combination with permanent magnets as 

flywheel bearings leads to less intrinsic losses, compared to any other types of magnetic 

bearings [90]. Figure 2.5 shows the structure of a flywheel with HTS bearings. The HTS 
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also resists the movement of the rotor due to the pinning effect in HTS materials, which 

prevents the motion of flux lines [91]. However, HTS bearings have less levitation force, 

lower stiffness, and lower critical frequencies, and require a cryogenic cooling system. 

Therefore, hybrid configurations, combining different types of magnetic bearing were 

proposed. For instance, HTS bearings can be used to either support the weight of rotor or 

to stabilize the rotor, and active magnetic bearings can be used to improve the stiffness 

and the damping [92]. Several demonstrators of a FESS with HTS bearings have been 

built and successfully tested, including in [90], [93], [94]. However, there is no 

commercial FESS currently available in the market, which uses HTS bearings. 

Table 2.7: Comparison of different bearing technologies used in FESS. 

Bearing 

Technology 
Advantages Disadvantages 

Mechanical 

Low capital costs, matured technology, 

high levitation force, high critical 

frequencies 

High losses, short lifetime, required 

lubrication, high maintenance, most sensitive 

to rotor imbalances 

Permanent 

Magnetic 
No power consumption, low losses 

Inherently unstable, risk of demagnetization, 

low tensile strength, uncontrollable 

Active 

Magnetic 

Controllable magnetic field, high stiffness 

and damping, high reliability 

Complex systems, large consumption of 

power 

HTS 

Magnetic 

Auto-stabilizing behavior, less losses than 

other magnetic bearings, least sensitive to 

rotor imbalances 

Low levitation force, low stiffness, low 

critical frequencies, requires a cryogenic 

cooling system 

 

Figure 2.5: Structure of a FESS with of High-temperature Superconductors (HTS) bearings. 

Bearing losses have to be calculated when designing a FESS. Losses in a FESS also 

include the losses in the electrical machine, power converters, and AC filters. Moreover, 

the power required for supplying the active magnetic bearings, vacuum and cooling 
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pumps, control systems, and other auxiliary system required for running the FESS can 

also be considered as the system losses.  

2.3.5 Enclosure 

The major task of the flywheel enclosure is to contain the fragments of the rotor in case 

of a disastrous system failure at high rotational speeds and to dissipate its energy content. 

Low-speed FESS require thick heavy enclosures, as a steel rotor can be forcefully 

dismantled into only few pieces with translational movements [95]. On the contrary, 

composite rotors used in a high-speed FESS tend to disintegrate into numerous small 

pieces with rotational movements, resulting in energy dissipation caused by friction. As a 

results of these differences, it has been reported that for the same energy content of the 

rotor, the enclosure weight of a high-speed FESS needs to be only half of the rotor 

weight, while for low-speed FESS, it should be the double [53]. Experimental crash tests 

are necessary in order to ensure the system safety in case of failures at high speeds. 

In a high-speed FESS, the enclosure is also used to provide a vacuum surrounding the 

rotor, minimizing the air friction and system losses. In low-speed systems, the vacuum 

can be partial or a low-pressure light gas such as helium is used, since the friction torque 

is proportional to the density and pressure of the gas surrounding the rotor [53]. 

2.4 Summary 

In this chapter the FESS was introduced along with its main characteristics and 

applications. As discussed, a FESS has a high power density, quick response time, and 

high number of cycles with a constant capacity through its lifetime, independent of the 

way it has been used. Considering these characteristics, the FESS is well suited for 

applications such as frequency regulation and smoothing out short-term power variations. 

For each application, the latest developments in academia and industry were reported. 

Furthermore, the structural differences between the low-speed and the high-speed FESS 

were presented, where it was shown that how a high-speed FESS can reach higher energy 

densities and lower losses with the use of light composite fiber materials and advanced 

magnetic bearings. Therefore, the high-speed FESS is a more promising alternative for 

power system applications. Lastly, a detailed overview and comparison of available 

technical solutions together with newly introduced alternatives for each component of the 

FESS were provided. 
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3 Real-time Simulation and Power 
Hardware-in-the-Loop Testing for 
Grid Integration Studies 

In this chapter, real-time simulations and their applications in power systems are 

introduced. The challenges in real-time simulation of low voltage distribution grids are 

discussed, and the solutions and the techniques to reduce the model execution time of low 

voltage grid models are presented. Next, the concept of Power Hardware-in-the-Loop 

(PHIL) testing is described as a powerful tool for grid integration studies of new grid 

components, such as energy storage systems. A step-by-step guideline for conducting 

PHIL testing is presented. The main concerns associated with PHIL testing, including 

instability issues are also discussed. Lastly, the 1 MVA PHIL testing facility at KIT’s 

EnergyLab 2.0 is described. 

3.1 Challenges of Real-time Simulations of Low 
Voltage Distribution Grids 

In real-time simulations, by definition, the status of the simulated model must be updated 

at every small simulation time step in order for the model to accurately resemble the 

behavior of its physical counterpart [96]. In the case of power systems, this requires that 

the complex and large differential equations of the electromagnetic transient model of the 

corresponding power system to be solved within a predetermined simulation time step. 

The simulation time step for power system transient simulations can be as low as tens of 

microseconds, depending on the application and the power system dynamics to be 

simulated [97]. All calculations have to be finished within the given time step at all times. 

This is known as the hard real-time constraint. On the contrary, in non-real-time power 

system simulations, there are no constraints on the time available to solve the model 

equations. Also, variable time-step solvers can also be used, reducing or increasing the 

simulation time step, when necessary. This is not an option for real-time simulations, 

which can only apply fixed-step solvers [96]. If the real-time constraint is violated at any 

time during the simulation, an overrun has occurred, as shown in Figure 3.1. Overruns 

can lead to instability and incorrect results, and therefore, should be avoided [98]. 

Overruns can be resolved by increasing the simulation time step, simplifying the models, 

or distributing the computational effort on several cores, when possible, without losing 

the model accuracy or the real-time granularity. 
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Figure 3.1: The hard real-time constraint and the definition of an overrun. 

Real-time simulations can reduce the simulation time of power systems, in particular for 

large complex grids with a high penetration level of distributed energy resources. It 

enables modifying the model parameters, while the model is running, without the need 

for recompiling and rerunning the model. Since real-time simulation models run at the 

same rate as the actual system, they are also referred to as a Digital Twin of the simulated 

power system [99]. However, the main application of real-time simulations is its 

capability for real-time data exchange with a physical component. This concept, which is 

referred to as Hardware-in-the-Loop (HIL) and Power Hardware-in-the-Loop (PHIL) 

testing is later discussed in detail in this chapter in section 3.2. A comprehensive 

overview of the possible applications of real-time simulation in power systems is 

provided in [100]. 

There are several commercial and non-commercial real-time simulators available, which 

are tailored for power system simulations. A detailed comparison of the available real-

time simulators, in terms of their components, structure, design, and capabilities are given 

in [97]. These real-time simulation platforms were initially designed for the simulation of 

large high voltage transmission grids, with the aim of testing protection systems or new 

components such as static var compensators [100]. Over time, new challenges rose in low 

voltage distribution grids, with the introduction of converter-interfaced components, such 

as photovoltaic systems, energy storage systems, and electric vehicle chargers. These new 

challenges called for innovative solutions, which required new testing methods such as 

Hardware-in-the-Loop (HIL) and Power Hardware-in-the-Loop (PHIL) testing. This led 

to a clear interest from both industry and academia to validate these technologies using 

these methods. For connecting a real hardware to a simulated grid, running the grid 

model in real-time is mandatory. However, this can be challenging in case of some low 

voltage distribution grids. For real-time simulation of transmission grids, the propagation 

delays in long transmission lines are often used for model decoupling and parallelization. 

However, such methods cannot be applied to low voltage grids, where lines and cables 

are much shorter [101]. Moreover, many converter-interfaced distributed energy 

resources are often connected at low voltage grids. These components can increase the 

model computational time significantly, if modelled in detail. These challenges and the 

available solutions for tackling them are discussed in detail in the following subsections. 
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3.1.1  Lack of Decoupling Points for Parallel Computing 

Most computers have a multi-core design nowdays. To be able to use this advantage for 

real-time simulations, the model must have the capability to split its solution matrix and 

solve it on parallel cores, without losing its accuracy. Real-time simulation software can 

take advantage of the natural propagation delays in transmission lines for model 

decoupling, when these delays are greater than the simulation time step. By assuming a 

simulation time step of 50 µs for generic power system simulations [97], and 

300,000 km/s as the wave propagation speed through lines (speed of light), this requires 

an overhead line to be longer than approximately 15 km in order to have the desired delay 

for model decoupling [102]. For underground cables, the minimum line length for model 

decoupling is reduced to 10 km, by assuming a propagation speed of 200,000 km/s for 

cables. If such relatively long lines are present in the model, the two grid areas on either 

side of the line can be solved independently on multiple cores using the Bergeron 

traveling wave line model. However, in low voltage distribution grids, lines and cables 

are usually much shorter [101] and other solutions have to be found. 

Researchers have proposed methods to go around this issue by, for instance, introducing 

artificial delays into the system with the same length of the simulation time step [103]. 

However, such delays compromise the model accuracy, significantly [104], [105]. 

Another solution is to add a spurious shunt capacitor after a transformer [102]. This 

results in a decoupling possibility at the substation. However, since such a capacitor does 

not exist in reality, this method is a deliberate change to the system impedance. 

Therefore, this method also reduces the model accuracy. It can also cause unrealistic high 

transient voltage values at the transformer [106].  

Another important factor to be considered in real-time simulations is the type of 

modelling technique chosen for formulating the power system equations. The main two 

well-known approaches are the nodal and the state-space analysis and each power system 

simulator usually uses one of these techniques [107], [108]. But authors in [109] have 

come up with an innovative solution that combines the state-space and the nodal analysis 

for the simulation of electrical systems, which can solve the model equations faster for 

real-time applications, with the possibility for parallelization. This method is known as 

State-Space Nodal (SSN). The key idea of the state-space nodal approach is to introduce 

major nodes in the system of equations and to use these nodes as virtual decoupling 

points in the circuit. Then each section can be described by local state-space equations, 

which are linked together through the nodal analysis. As these parts are almost 

independent, their iterations can be parallelized on multiple cores without any artificial 

delays [104]. This method does not introduce any impedance change in the model, so the 

results are highly accurate. However, parallelization using the state-space nodal method 

is not as effective as other decoupling method, as parts of the calculations cannot be 
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parallelized, and calculations are not fully independent within a single simulation time 

step [109]. 

3.1.2 Aggregation of Distributed Energy Resources 

Low voltage distribution grids often have a high penetration level of converter-interfaced 

elements. These components have higher levels of complexity, in both structure and 

control, in comparison to the traditional power system elements, such as lines and 

transformers. Therefore, a detailed simulation of these components requires a high 

computation effort, in particular when they have a large number of switches at high 

switching frequencies. The high computation burden can even be beyond the capabilities 

of CPU-based real-time simulators and require running the models on an FPGA. 

While for some studies a detailed converter model for distributed energy resources may 

not be necessary [110], for applications such as hardware-in-the-loop testing of converter 

controllers or assessing high-frequency harmonics, a switching or detailed converter 

model (see subsection 5.2.2) is required. For such simulations, the simulation sampling 

frequency (one over the simulation time step) should be at least 50 to 100 times larger 

than the pulse-width modulation frequency [111]. This means that a detailed converter 

model with a switching frequency of 10 kHz requires time steps of 1 µs or less. In 

addition, fixed-step non-iterative solvers used in real-time simulation software can hardly 

handle the instantaneous switching events in the converters [112]. Thus, lower simulation 

time steps may be required for maintaining the numerical stability. Therefore, CPU-based 

real-time simulators, which have a minimum simulation time step of few microseconds, 

may not be capable of simulating detailed models of such converters, and the use of 

FPGA-based simulators might be mandatory. There are several switching event 

compensation methods [111], [113] that can increase the required simulation time step to 

some extent, however, these methods also have limitations. The simulation time step in 

FPGA-based real-time simulation can be in the nanosecond range. In this case, co-

simulation using CPU and FPGA can also be a good alternative, in which the grid model 

runs on the CPU, while the converter switching or detailed model runs on the FPGA with 

a sub-microsecond simulation time step [114]. In [101], a large distribution grid and a 

microgrid were simulated in real-time using this approach. However, like any multi-rate 

real-time simulation, the interfacing of the simulations on the CPU and the FPGA can be 

challenging and can cause numerical instability. This problem can be solved by adding 

snubber RC circuits or other solutions proposed in [115]. For enhancing the FPGA 

capabilities for real-time simulation of power converters with a high number of switches 

and high switching frequencies, several solutions have been proposed in the literature. 

For instance, authors in [115], have managed to decouple the power electronics circuits 

by using different discretization methods and combining implicit and explicit solvers. 
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Another solution has been proposed in [116], which allows subsets of switches to be 

treated independently to reduce the model computational time. 

However, depending on the intention of the study, the converter models and their 

controllers can be simplified. For applications such as optimization, scheduling, primary 

frequency control, voltage stability analysis, and even DC-link voltage stability, the 

converter average model can be adequate [110]. An example of using average converter 

models for the application of frequency and voltage support using energy storage systems 

is later presented in Chapter 5. 

There are also methods to decouple the converter model on multiple CPU cores to reduce 

the model execution time. This can be done using the following solutions: 

▪ For a large DC-link capacitor, the DC-link voltage can be assumed to be 

constant within one simulation time step. Therefore, the DC-link can be used to 

decouple the converter models on multiple cores. This method is particularly 

effective for complex power electronics-based systems and does not introduce a 

noticeable error in the results [23]. 

▪ Between the converter switches and their corresponding controllers, there are 

communication delays, rate conversion and modulation blocks, which can all be 

approximated by a unit delay [24]. This delay can be used as a decoupling point 

between the converter controller and the rest of the system [25]. 

3.1.3 Presence of Asymmetry and Harmonics 

Another characteristic of the low voltage grids is that the current and the voltage 

asymmetries and harmonics are more dominant at this voltage level, in comparison to 

higher voltage grids. Asymmetric and nonlinear loads and generation units generate 

unbalanced distorted currents in the grids, which can significantly affect the voltage 

waveforms as well, due to the high equivalent grid impedance at this voltage level.  

Considering asymmetries leads to more complex models of lines and cables and the 

necessity of a careful consideration of node grounding, which includes choosing the 

grounding model and how to parameterize it.  

Simulating harmonics can drastically increase the model complexity, while 

simultaneously demanding a relatively small simulation time step. It is recommended to 

have a simulation sampling frequency of at least 20 times the maximum harmonic 

frequency that needs to be accurately represented [111]. At the same time, the simulation 

time step must be large enough to solve the complex differential equations of the model. 

This can result in a limited number of components that can be simulated in real-time. 
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3.1.4 A Summary of the Solutions for Real-time Simulation 

of Low Voltage Distribution Grids 

In the previous subsections, the techniques and solutions that can help to tackle the 

challenges faced for real-time simulations of low voltage grids were discussed. A 

summary of these techniques and other methods proposed in literature is presented in 

Table 3.1. These methods can help to use optimally the computational capability of the 

real-time simulator, while preserving the model accuracy. For real-time simulation of 

medium- to large-scale low voltage distribution grids with a high penetration level of 

distributed resources, several of these techniques have to be combined in order to avoid 

overruns and achieve an acceptable model accuracy. Reducing the simulation time step of 

the grid model, can also help with the stability of a PHIL setup, as shown later in 

subsection 3.2.2.  

Table 3.1: Possible techniques and solutions for real-time simulations of low voltage distribution grids with a 

high share of distributed energy resources. 

Solution type Solution Conditions for applying 

Low voltage 

grids model 
decoupling 

techniques 

Reducing simulations time step to match the 

longest line 
Long line (≥2 km) available 

Adding an artificial delay [103] 
Accurate transient results not 
required 

Adding spurious shunt capacitance after the 

transformer [102] 

Accurate transient results not 

required 

Using partition-based solvers such as SSN [109] The solver is available 

Low voltage 

grids model 
simplifications 

techniques 

Neglecting lines’ capacitances [117] 
Short, lightly loaded lines and 

symmetric grid 

Neglecting lines’ coupling inductances [106] Symmetric grid 

Using single-phase models [118] Symmetric grid 

Using phasor-based [119] or quasi-dynamic 

simulators [120] 
Focus on slow grid transients 

Converters 

real-time 
simulation 

techniques  

Using average or phasor models [110] Focus on slow grid transients 

Separating the controllers on separate core [121] 
Relatively small simulation time 
step 

Decoupling the models at the DC-Link [122] Large DC-link capacitor 

Using switching event compensation 

methods [111] 
Switching frequency up to 10 kHz 

Co-simulation with the FPGA and the CPU [114] Switching frequency ≥10 kHz 

 

Due to the aforementioned challenges, low voltage grid models are often simplified to 

reduce the model execution time. In [118], authors have simulated the CIGRE low 

voltage benchmark [123] in real-time, only as a single-phase grid, assuming a fully 

symmetric operation of the grid. In addition, the distributed energy resources have been 

represented only by simple PQ sources. A 174-node distribution grid model was reduced 
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to an equivalent 7-bus model in [20], in order to simulate the model in real-time with a 

simulation step of 50 µs. Another example is presented in [106], where the unbalanced 

coupled PI-lines are replaced with simple RL branches with shunt capacitors for model 

simplification of the IEEE 123 node feeder. In [101], a large distribution grid with 615 

nodes has been simulated in real-time together with a microgrid using the state-space 

nodal solver, without any major simplifications. Among the available solutions, the use 

of state-space nodal solver can significantly extend the possibilities of real-time 

simulation of large low voltage grids, without model simplifications or compromising the 

model accuracy. Therefore, this method is applied later in Chapters 6 and 7 to simulate 

the studied low voltage grids and microgrids in real-time. 

In addition to real-time simulations of power systems, real-time simulations of power 

system components, such as the energy storage systems can accelerate their design, 

analysis and validation [96], [100]. This is discussed later in Chapter 5, where a real-time 

simulation of a FESS for grid integration studies is provided. 

3.2 Power Hardware-in-the-Loop (PHIL) Testing 
of Distributed Energy Resources 

Real-time simulations enable a hardware to interact with the simulation models via I/O 

modules, which is considered a milestone in model-based design, and testing of new 

components and controllers [96]. In the 20th century, this was only possible with highly 

costly analog test benches to mimic the real system. Today, digital real-time simulators 

do the same task at much lower prices and with a higher accuracy and flexibility [107]. 

Depending on which part of a system is represented by the real hardware and which part 

by its real-time model, there are different concepts of using real-time simulations, as 

shown in Table 3.2. 

Table 3.2: Different testing concepts using real-time simulations. 

 Environment 

Real-time Model Actual Hardware 

Controller or 

Component 

Real-time 

Model 
Software-in-the-Loop (SIL) testing 

Rapid control 

prototyping 

Actual 

Hardware 

Controller Hardware-in-the-Loop (CHIL) testing 

Power Hardware-in-the-Loop (PHIL) testing 
Field testing 

 

In Controller Hardware-in-the-Loop (CHIL) testing, only low-power signals are 

exchanged between the real-time simulator and the hardware under test, which is suitable 
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for testing controllers and protection relays. Some examples include CHIL testing of 

energy management systems [124] and distributed voltage controllers [125]. In CHIL 

testing, the hardware under test receives signals as it would receive in the field and reacts 

accordingly. Power Hardware-in-the-Loop (PHIL) testing is an extension to the CHIL 

testing, in which significant electrical power is exchanged with the hardware in real time 

using power amplifiers. This is an approximate replication of field testing of power 

system components, at much lower expenses and risks and with a much higher flexibility 

and repeatability. Moreover, it allows to test the hardware in extreme conditions such as 

faults or frequency deviations, which is often not allowed or possible in field tests. PHIL 

testing can be a powerful tool to investigate the behavior of distributed energy resources 

and energy storage systems in various grid conditions. It has been shown that PHIL 

testing of distributed energy resources can show existing issues, that it is difficult to see 

using pure simulations [18]. This can be due to the difficulty in representing system 

nonlinearities in the model, such as delays, and component parameter variation. A 

schematic diagram of PHIL testing for a converter-interfaced distributed generation or an 

energy storage system is shown in Figure 3.2.  

 

Figure 3.2: Schematic diagram of a typical PHIL setup for distributed energy resources. 

There are several important steps that must be taken prior to any PHIL testing. These are 

listed in Table 3.3 and explained in the following subsections, which can serve as a 

guideline for carrying out PHIL tests. To summarize, firstly, the hardware under test and 

the grid under study should be modelled and simulated in real-time, and the models 

should be validated, when possible. The next step is the evaluation of the stability and 

accuracy of the PHIL setup, in order to avoid physical damage to the PHIL setup and the 

hardware under test. Finally, PHIL tests can be executed with adequate safety measures. 
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Table 3.3: A step-by-step guideline for PHIL testing for grid integration studies [118]. 

Steps Tasks 

Step 1: Test Case Development 1.1) Modelling and real-time simulation of the hardware under test. 

1.2) Modelling and real-time simulation of the grid under study. 

1.3) Verifying the real-time simulation models, when possible. 

1.4) Defining and real-time simulation of the test scenarios with the 
simulated model of the hardware under test. 

Step 2: Stability and Accuracy 

Evaluation 

2.1) Deriving open-loop and closed-loop transfer function of the 

power hardware-in-the-loop setup. 

2.2) Accuracy and stability evaluation of the power hardware-in-the-

loop setup and choosing the interfacing method. 

2.3) Providing protection in case of hardware failure or instability. 

Step 3: Power hardware-in-the-
loop Testing Execution 

3.1) Connecting the hardware under test using the chosen interfacing 
method for closing the loop. 

3.2) Running the real-time models and closing the loop at low power 

transfer. 

3.3) Simulate the selected scenarios and conduct power hardware-in-
the-loop testing. 

3.2.1 Test Case Development 

Firstly, the hardware under test should be modelled and simulated to understand its 

behavior prior to testing the physical system. This helps to avoid unexpected behavior of 

the hardware during the tests and to design suitable and safe test scenarios. The level of 

the details required for this modelling depends on the intended type of study. Although 

offline simulation is also beneficial, real-time simulation of the hardware under test has 

the advantage that it can be directly inserted in the real-time simulation model of the grid, 

in which the actual hardware is later tested. The developed models can be validated with 

measurements from the real hardware, when possible.  

Next, the grid, in which the hardware is planned to be tested, should be implemented in a 

real-time simulation environment. The details of the grid model, and the simulation step 

time should be suitable to represent a real power system for the intended study. As 

mentioned, it is recommended that the simulation sampling frequency should be at least 

20 times greater than the maximum frequency of transients that needs to be represented 

with an acceptable accuracy, which is also known as model bandwidth [111]. Figure 3.3 

shows the minimum simulation time step according to the model bandwidth. As seen, the 

model bandwidth also determines the minimum amplifier bandwidth, which helps 

selecting the appropriate power amplifier for the PHIL setup. Moreover, the maximum 

open loop delay for a stable setup is shown according to the model bandwidth. The 

stability of the PHIL setup is discussed in the following subsection. 
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Figure 3.3: Real-time simulation and PHIL testing requirements according to the model bandwidth, 

defined as the maximum frequency of the harmonics or system dynamics to be represented 

accurately [126].  

Lastly, the scenarios for the PHIL testing should be defined. These scenarios should be 

first simulated with the developed models of the hardware and the grid, preferably, in a 

real-time simulation environment. By doing so, one can have a good estimate of the 

behavior of the hardware under test in each test scenario. The delays and latencies 

associated with the PHIL setup can also be added to the simulation models to increase the 

simulation accuracy of the PHIL tests. The role of these delays and latencies on the 

stability and accuracy of the PHIL setup are discussed next. 

3.2.2 Stability and Accuracy Evaluation  

In order to replicate the direct connection of the grid and the hardware under test, an 

interfacing algorithm is required to exchange signals, as demonstrated in Figure 3.4. In 

one common approach, known as the ideal transformer method, the voltage values from 

the real-time simulation are amplified and fed to the hardware under test. The consequent 

current flowing through the hardware are measured and fed back to the simulation to 

close the loop. In Figure 3.4, 𝑍eq is the equivalent grid impedance in the real-time 

simulation environment, and 𝑍HuT is the impedance of the hardware under test. 

The errors, time delays, and nonlinearities in different components of the PHIL setup can 

lead to system instability and inaccurate results [98]. For instance, the use of a power 

amplifier introduces additional control loops, errors, time delays, and dynamics in the 

system and limits the loop bandwidth [127]. Measurement systems can also cause delays 

due to filtering, A/D and D/A conversions, and signal transmission. A major factor 
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contributing to the stability and accuracy of the setup is the simulation time step of the 

real-time simulator, where the methods introduced in Table 3.1 can be used to reduce 

simulation time step and increase the stability of the setup. 

 

Figure 3.4: (a) Field test setup (ideal case). (b) PHIL setup using the ideal transformer method. 

Therefore, the stability and accuracy of the PHIL setup with the hardware under test 

should be evaluated prior to conducting the experiments. Commonly, the stability of the 

system is analyzed using stability criteria from linear control theory, such as the Nyquist 

or Bode stability criterion, or using a transient simulation model of the setup. The 

accuracy of the system can also be evaluated based on the methods proposed in [128]. 

Researchers have proposed numerous interfacing algorithms for PHIL testing, which also 

includes methods that are too complex for implementation, with limited applicability. It is 

common practice to choose a simple interface algorithm that can guarantee stability with 

a reasonable accuracy. An ideal interfacing algorithm should be accurate with a low 

settling time and delay, stable in all testing conditions, with a high bandwidth and a 

simple implementation. In practice, the ideal transformer method and the damping 

impedance method are most commonly used [118], [129]. These two widely used 

methods are explained briefly in the following subsections. 
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3.2.2.1 The Ideal Transformer Method (ITM) 

The Ideal Transformer Method (ITM) is the most commonly used interfacing algorithm 

for PHIL testing of linear and nonlinear components [18]. This is due to its simple 

implementation, high accuracy, and the fact that it requires only current measurements as 

feedback. In this method, the simulated voltage is amplified and fed to the hardware 

under test and the current flowing through it is measured and fed back to the simulation. 

A schematic diagram of the ideal transformer method is illustrated in Figure 3.4 (b). 

From Figure 3.4 (b), the block diagram of a PHIL setup when using the ideal transformer 

method can be obtained, which is shown in Figure 3.5. 

 

Figure 3.5: Block diagram of a PHIL setup when using the ideal transformer method. 

In Figure 3.5, GF(s) and GB(s) are the feedforward and feedback transfer functions, 

respectively. These transfer functions can be easily calculated from the transfer function 

of each individual component of the PHIL setup. The feedforward transfer function GF(s) 

consists of the delay associated with real-time simulator, i.e., the simulation time step Ts, 

delays in signal transmission and D/A conversion, and the transfer function of the power 

amplifier GPA(s). The sum of all delays in the feedforward transfer function is 

represented by Td1. Therefore, the feedforward transfer function GF(s), is calculated as 

GF(s) = GPA(s)𝑒
−Td1𝑠. (3.1) 

The feedback transfer function GB(s) on the other hand, also includes the ratio of the 

impedance of the equivalent grid impedance 𝑍eq to the impedance of the hardware under 

test 𝑍HuT. The delays of the current sensor and measurement, signal transmission, and 

D/A conversion should also be considered, which are all represented by Td2. The 

feedback measurements can also include a first-order low-pass filter with a cut-off 

frequency of 𝜔𝑓. Therefore, the transfer function of the feedback loop is calculated using  
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GB(s) =
𝜔f

𝑠+𝜔f

𝑍eq

𝑍HuT
𝑒−Td2𝑠. (3.2) 

For analyzing the stability of the PHIL setup using the ideal transformer method, the 

open-loop transfer function GOL(s) can easily be calculated by multiplying GF(s) and 

GB(s), as shown in Eq. (3.3). The total loop delay Td is defined as the summation of the 

feedforward and feedback delays, Td1 and Td2. For simplification purposes, the power 

amplifier transfer function GPA(s) is also represented by a delay function, which its value 

is integrated into Td. Therefore,  

GOL(s) = GF(s)GB(s) =
𝜔f

𝑠+𝜔f

𝑍eq

𝑍HuT
GPA(s)𝑒

−Td1𝑠𝑒−Td2𝑠 =
𝜔f

𝑠+𝜔f

𝑍eq

𝑍HuT
𝑒−Td𝑠. (3.3) 

A system with the open-loop transfer function of Eq. (3.3) is a conditionally stable 

system, meaning it is stable only for specific gain values. This can be shown by the 

Nyquist diagram of the open-loop transfer function GOL(s), as illustrated in Figure 3.6. 

Using the Nyquist stability criteria has the advantage that the approximation of the time 

delay, using the Padé approximation [18], is not required. According to the Nyquist 

stability criteria, a system is unstable, if it encircles the point [-1,0], while the frequency 

increases on the Nyquist diagram [130]. As seen in Figure 3.6, with impedance ratio 

below one, the system becomes unstable. Therefore, the ideal transformer method can 

become unstable, when the ratio of impedance of the hardware under test to the 

equivalent grid impedance is less than one, i.e., 𝑍HuT 𝑍eq⁄ < 1.  

The parameters used for the stability analysis in this chapter are listed in Table 3.4. 

 

Figure 3.6: The influence of the system impedance ratio on the PHIL setup stability using the ideal 

transformer method. 
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Table 3.4: The parameters used for the PHIL stability analysis. 

Parameter Value 

Simulation time step 10 µs 

D/A and A/D conversion delay 3 µs 

Power amplifier delay (for a linear amplifier) 3.1 µs 

Sensors and measurement delay 2.8 µs 

Equivalent grid resistance 4.5 mΩ 

Equivalent grid inductance 14.4 µH 

Hardware under test resistance 0.45 mΩ 

Hardware under test inductance 1.44 µH 

 

For low values of 𝑍HuT 𝑍eq⁄  the system can become stable by having a low-pass filter 

with an adequately low cut-off frequency of the filter [131], [132]. An example is 

illustrated in Figure 3.7 for a 𝑍HuT 𝑍eq⁄  of 0.1. As shown, a filter cut-off frequency lower 

than 2.5 kHz ensures system stability. However, being close to the point [-1, 0] indicates 

an oscillatory response [130], therefore further reduction of the cut-off frequency may be 

necessary. This can also be shown by calculating the gain and phase margin of the 

transfer function using the Bode stability criteria. As shown in Figure 3.8, a positive gain 

and phase margin is only achieved for a cut-off frequency of below 2.5 kHz. Similarly, 

since small phase and gain margins indicate an oscillatory closed-loop response, the cut-

off frequency should be lower than 2.5 kHz. 

 

Figure 3.7: The influence of the filter cut-off frequency on the PHIL setup stability using the ideal 

transformer method for a 𝑍HuT 𝑍eq⁄  ratio of 0.1 using the Nyquist criteria. 
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Figure 3.8: The influence of filter cut-off frequency on the power hardware-in-the-loop setup stability 

using the ideal transformer method for a 𝑍HuT 𝑍eq⁄  ratio of 0.1 using the Bode criteria. 

However, using filters can lead to phase shifts and magnitude attenuations, which reduce 

the accuracy of the PHIL tests, and can lead to an unacceptable reactive power 

transfer [18]. Other methods to improve the stability of the ideal transformer method 

include adding additional components such as inductors [133], using the current-type 

ideal transformer method [129], interface compensation methods [113], and multi-rate 

interfacing [134]. Adding inductive components can improve the system stability but 

increases the hardware impedance, which obviously leads to a reduced accuracy and 

increased power losses, which is not preferred, in particular for in high-power 

applications. 

The total loop delay Td also has a significant effect on the system stability. The most 

dominant component of the loop delay is the simulation time step of the real-time 

simulation [135]. As discussed in section 3.1, the simulation time step is constrained by 

the model complexity and the required model bandwidth that needs to be simulated in 

real time. Consider the same impedance ratio of 𝑍HuT 𝑍eq⁄  ratio of 0.1 and a cut-off 

frequency of 1 kHz, which was shown to be a stable system for a simulation time step of 

10 µs. Figure 3.9 depicts the phase and gain margins of the closed-loop transfer function 

as a function of the simulation time step, ranging from 0 to 100 µs. As seen, the system 

becomes unstable for simulation time steps of more than approximately 42 µs. Smaller 

simulation time steps lead to higher stability margins. Since using filters can reduce the 

model accuracy as previously discussed, reducing the simulation time step should be a 

priority for improving overall system stability. 
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Figure 3.9: The influence of simulation time step on the power hardware-in-the-loop setup stability using 

the ideal transformer method for a 𝑍HuT 𝑍eq⁄  ratio of 0.1 using the Bode criteria. 

3.2.2.2 Damping Impedance Method (DIM) 

When the ideal transformer method cannot provide the adequate stability, other 

interfacing algorithms should be used. The Damping Impedance method (DIM) is another 

commonly used interfacing algorithm for PHIL testing, which can provide a higher 

stability margin in comparison to the ideal transformer method [129], [136]. A schematic 

of a PHIL setup using the damping impedance method is shown in Figure 3.10.  

 

Figure 3.10: Schematic diagram of the Damping Impedance Method (DIM). 

As shown in Figure 3.10, a linking impedance 𝑍12 is added to both software and 

hardware side of the PHIL setup, while a damping impedance 𝑍∗ is added only to the 

real-time simulation. Figure 3.11 shows the block diagram of a PHIL setup using the 

damping impedance method. In Figure 3.10 and Figure 3.11, 𝐺FF is the voltage 

feedforward transfer function, which includes the delay associated with signal 
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transmission Td1 and the power amplifier GPA(s), while 𝐺FB1 and 𝐺FB2 are the transfer 

function of the current and voltage feedbacks, respectively.  

 

Figure 3.11: Block diagram of PHIL setup when using the damping impedance method. 

The overall feedforward transfer function GF(s) using the damping impedance method 

can be easily calculated by considering the voltage divider shown on the right-hand side 

of the Figure 3.10. Therefore,  

GF(s) =
𝑉2

𝑉1
=

𝑍HuT

𝑍12+𝑍HuT
GFF(s) =

𝑍HuT

𝑍12+𝑍HuT
GPA(s)𝑒

−Td1𝑠. (3.4) 

Calculating the overall feedback transfer function GB(s) is a bit more complex, as both 

the voltage and current measurements must be considered. As shown in [129], the overall 

feedback transfer function GB(s) is calculated using 

GB(s) =
𝜔𝑓

𝑠+𝜔𝑓

(𝐺FB1
𝑍∗𝑍eq

𝑍HuT
−𝐺FB2𝑍eq)

(𝑍eq+𝑍12+𝑍
∗)

. 
(3.5) 

By aggregating all system delays into one variable Td and assuming that both voltage and 

current feedback filters are identical with the same low-pass filter, the open-loop transfer 

function GOL using the damping impedance method is calculated by 

GOL(s) = GF(s)GB(s) =
𝜔𝑓

𝑠+𝜔𝑓

𝑍eq(𝑍
∗−𝑍HuT)

(𝑍12+𝑍HuT)(𝑍eq+𝑍12+𝑍
∗)
GPA(s)𝑒

−Td𝑠. (3.6) 

From Eq. (3.6), it is clear that when 𝑍∗ =  𝑍HuT, the magnitude of the open-loop transfer 

function becomes zero, which indicates a stable system, regardless of all the other 
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variables such as the impedance ratio. However, this improved stability is achieved only 

when the damping impedance 𝑍∗ is equal to the equivalent impedance of the hardware 

under test 𝑍HuT. Therefore, the damping impedance method requires a good estimate of 

the impedance of hardware under test. This can be challenging in practice, in particular 

for active nonlinear components as hardware under test. In [129], [137], authors propose 

the use of online impedance identification techniques to match the simulated damping 

impedance with the impedance of the hardware under test. However, these methods are 

only applied to complex loads as the hardware under test and their application of power 

electronic-based devices is not yet investigated. They also add additional hardware and 

software complications to the PHIL setup. The damping impedance method is difficult to 

implement in comparison to the ideal transformer method and requires feedback from 

voltage measurements, which can introduce noise into the real-time simulation. 

Moreover, adding the linking impedance on the hardware side leads to power losses, 

which can be problematic for high-power applications. Therefore, this method should be 

used only if the ideal transformer method cannot provide a stable setup. 

3.2.2.3 A Comparison of the Common Interfacing Algorithms 

As discussed previously, there are several interfacing algorithms for PHIL testing 

proposed in literature, many of which are not discussed in the chapter. Each method can 

demonstrate improvements in terms of stability and accuracy in particular conditions, 

while often adding more complications to the setup. Table 3.5 provides a short 

comparison of the most commonly used interfacing algorithms.  

Table 3.5: A comparison of the most commonly used interfacing algorithms for PHIL testing [98], [129], 

[138]. 

Interfacing algorithm Advantages Disadvantages 

Ideal transformer method Very easy implantation 

No extra hardware required 
High accuracy 

Instable when 𝑍HuT 𝑍eq⁄ < 1 

High settling time when 𝑍HuT ≈ 𝑍eq 

Partial circuit duplication High stability or accuracy Either highly stable or highly accurate 

Accuracy depends on the linking 

impedance  
Power loss in the circuit 

Additional hardware parts needed 

Damping impedance 

method 
High stability when 𝑍HuT ≈ 𝑍eq 

High accuracy 

Low settling time 

Impedance of the hardware is 

required 
Power loss in the circuit 

Additional hardware parts needed 

Damping impedance 

method with impedance 

matching 

High stability 

High accuracy 

Low settling time 

Hardware impedance not required 

Increased complexity of the setup 

Increased model computation time 

Power loss in the circuit 

Additional hardware parts needed 
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3.2.3 Execution of the PHIL Testing 

After developing the real-time simulation models and the test scenarios and a careful 

evaluation of the stability and accuracy of the PHIL setup, the hardware under test can be 

connected to the PHIL setup, using the chosen interfacing algorithm.  

Even though a theoretical stability analysis can provide a valuable insight on the stability 

margin of a PHIL setup, care must be taken to avoid damage to the PHIL facility or the 

hardware under test, when unexpected instabilities occur [98], [113]. Errors in modelling 

and parameterization of the PHIL components can lead to an inaccurate stability analysis. 

For instance, it has been shown in [139] that the total loop delay can vary in time in a 

PHIL setup, as a result of the interaction between the discrete components of the setup. 

Therefore, hardware and software protective measures that can shut down the entire 

system, in case of instabilities or unacceptable high voltages and currents are mandatory. 

For executing the PHIL tests, first the grid model should be running in real time. It is then 

recommended to close the loop with the measurement feedback when there is no or 

negligible power transfer between the hardware under test and power amplifiers. This can 

avoid hardware damages in case of incorrect settings or instability. When the loop is 

closed and the system shows a stable condition, the previously defined scenarios can be 

executed.  

3.2.4 State-of-the-art in PHIL Testing of Energy Storage 

Systems 

PHIL testing has been used to investigate the behavior of the different types of distributed 

energy resources under realistic conditions, including PV systems [98], [140]–[142], 

wind turbines [143], and energy storage systems. A summary of the literature review on 

the PHIL testing of energy storage systems is provided in Table 3.6. 

In [20], PHIL testing of an inverter for a battery energy storage systems has been 

conducted in order to investigate the storage functionalities such as peak shaving and 

volt-watt control in a distribution grid. An adjustable DC source has been used in this 

work to emulate the battery. The applications of primary frequency control using a 

battery energy storage system has been tested in [19] using PHIL testing. It has been 

shown that the battery has a short response time of around 80 ms. A supercapacitor 

energy storage system has also been tested in a PHIL environment for frequency support 

in isolated areas [22]. Batteries and supercapacitors are combined to form a hybrid 

storage system and tested using PHIL testing in [23], where the supercapacitor is used to 

smoothen the high power gradients, whereas the battery provides power in the long term. 
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In case of PHIL testing of a FESS, limited experiments have been done with the focus on 

shipboard power systems for supporting pulsed loads in DC grids in [24], [25]. To our 

knowledge, PHIL testing of a FESS in low voltage distribution grids and testing grid 

functionality such as frequency support using PHIL testing has not yet been conducted.  

Table 3.6: Literature review on PHIL testing of energy storage systems. 

Type of ESS Test Scenarios/Applications Literature 

Battery Energy Storage 

System 

Peak shaving and volt-watt control. [20] 

Primary frequency control [19] 

Frequency regulation [21] 

Interaction between an energy management system and the 

battery for active/reactive power compensation 
[144] 

Supporting pulsed load in shipboard power systems [145] 

Active and reactive control and operation monitoring  [146] 

Supercapacitor Energy 

Storage System 
Frequency support in a large, isolated power system [22] 

Hybrid Energy Storage 

System 
Provision of primary frequency support and virtual inertia [23], [147] 

Flywheel Energy 

Storage System 
Supporting pulsed load in DC shipboard power systems [24], [25] 

3.3 Description of the 1-MVA PHIL Infrastructure 
at KIT 

As of December 2019, a 1-MVA PHIL testing facility has made operational by KIT-

ITEP, as part of the KIT’s EnergyLab 2.0.  

An overview of this PHIL setup is illustrated in Figure 3.12. The core of this setup is an 

Opal-RT 5700 real-time digital simulator with 8 Intel Xeon processing cores and a Xilinx 

Virtex-7 FPGA on a VC707 board. In addition to the multiple analog and digital I/O 

boards on the simulator, the system also has 16 high-speed fiber-optic Small Form-factor 

Pluggable (SFP) sockets (up to 5GBps), which are used for connection to the amplifiers 

and to multiple OP4520 Kintex7 FPGA & I/O expansion units using Opal-RT’s Multi-

System Expansion (MUSE) link.  

The software RT-LAB is used to compile the models in C programming language and 

load and execute the models on the real-time target. RT-LAB is also used for monitoring 

the real-time execution of the models, checking for overruns, assigning I/Os to model 

inputs and outputs, and changing model parameters, while the model is running on the 

target. 
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Figure 3.12: Overview of the 1 MVA PHIL setup at KIT’s EnergyLab 2.0. 

The voltage set points from the simulated grid are sent digitally to five 200 kVA switched 

mode amplifiers using the Xilinx’s Aurora protocol. The use of this fast digital 

communication reduces the loop delay caused by signal transmission, by eliminating the 

D/A conversion unit and their corresponding anti-aliasing filters, and also the problems 

associated with noise and the signal grounding. The amplifiers are five 200 kVA 

COMPISO System Unit (CSU) GAMP6 from Egston Power. The nominal characteristics 

of each amplifier of the PHIL setup is presented in Table 3.7, and the inside view of each 

amplifier cabinet is shown in Figure 3.13. Each amplifier consists of 6 COMPISO Digital 

Amplifier (CDA), which can be connected and controlled in various configurations. To 

simulate a 4-wire three-phase power system, such as the low voltage grids in Europe, 

they are operated in 3-phase plus neutral mode, in which each phase composes of one 

CDA, and the neural has 3 CDAs for a high-power neutral connection. 

The five Egston amplifier (CSUs), shown in Figure 3.14, can be operated in parallel or in 

series with each other to reach higher voltage and current ratings with a maximum power 

rating of 1 MVA. In this case, the set points are first sent an Egston control unit and from 

there to each individual amplifier.  
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Table 3.7: The characteristics of each Egston amplifier at KIT-ITEP. 

Characteristics Value  

Nominal apparent power  200 kVA 

Maximum AC voltage (phase-to-phase) 450 VRMS  

Amplifier bandwidth 5 kHz  

Maximum AC current 252 ARMS 

Maximum DC voltage 725 V 

Maximum DC current (unipolar operation) 900 A 

Controller time step 4 µs 

 

Figure 3.13: Inside of a 200 kVA COMPISO System Unit (CSU) power amplifier from Egston 

Power [126]. Cabinet 1 shows the grid connection and the isolation transformer, while the 

grid-side converter and its filter is in cabinet 2. The 6 COMPISO Digital Amplifier (CDA) are 

in cabinet 3, along with the Egston controller. Cabinet 4 shows the output contactors for the 

hardware under test. 

 

Figure 3.14: Five 200 kVA GAMP6 Egston switched-mode power amplifiers (1 MVA in total). 
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For closing the loop for PHIL testing, the current and voltage measurements of the 

hardware under test are sent to two OP4520 Kintex7 I/O expansion units, which are 

equipped with an analog input card with 16 channels, 16 bits each, with 2.5 µs 

conversion time. The measurement values are also sent using high-speed fiber optics 

communication to the real-time simulator. Currents are measured using three categories 

of current transformers from the company Danisense, which can measure currents up to 

640 A, 2 kA and 5 kA, respectively.  

An emergency shutdown system has also been incorporated in the 1 MVA PHIL setup, 

which opens the amplifiers output breakers and de-energize the system, when necessary. 

In addition to the hardware protection schemes, software protection algorithms are also 

implemented on the real-time simulation to open the loop, send trip signals to the 

amplifier and hardware under test and force the set points to zero, when instable 

conditions or extremely high currents or voltages are observed. 

3.4 Summary 

This chapter introduced real-time simulations and its applications in power systems, 

including PHIL testing. For conducting PHIL tests, a real-time simulation of the grid 

under study is required. Therefore, a comprehensive overview of the challenges of real-

time simulation of low voltage distribution grids, and the available techniques and 

solutions for tackling these challenges was provided. As discussed, methods that do not 

comprise the model accuracy such as using faster system solvers should be preferred, and 

often several methods should be combined to make the real-time simulation of complex 

grid models feasible.  

Moreover, a guideline for conducing PHIL testing was presented. As discussed, having a 

model of the hardware under test and selecting an appropriate interfacing algorithm are 

necessary steps for designing safe and fruitful experiments. Among the available 

interfacing algorithms, the ideal transformer method should be preferred, whenever it can 

provide a stable setup. This is due to its simple implementation, high accuracy, and the 

fact that it does not require extra hardware components to be added, which can be a 

decisive factor for high-power PHIL setups. Moreover, it was shown that a reduction in 

the simulation step time of simulated grid can reduce the overall loop delay of the setup, 

and increase the stability margin. 

Lastly, a literature review on PHIL testing of energy storage systems revealed that while 

such tests have been carried out for several storage technologies, a PHIL testing of a 

FESS in AC grids for applications such as frequency support has not yet been conducted.  
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4 Data-driven Allocation and Sizing 
of Energy Storage Systems 

Among the major questions concerning the use of an ESS in distribution grids is how to 

determine its optimal location and characteristics, such as its capacity. It is desired to 

have the ESS in a location of the grid, where it can be the most beneficial to its 

stakeholders. After the location of the ESS is determined, it is also necessary to ensure 

that the installed ESS has the required characteristics to fulfil its main purpose of 

installation at that particular location. The main characteristics of an ESS include its rated 

capacity, rated power, and maximum ramp rate. Extensive literature has been published 

on the topic of optimal allocation and sizing of an ESS [148]–[150]. However, the 

proposed solutions can vary significantly depending on the storage technology, the 

intended application of the ESS, and the available grid and measurement data. Therefore, 

they are not always applicable to other use cases and applications. With the increasing 

amount of measurement data from low voltage distribution grids, data-driven techniques 

can provide new insights and solutions to the problem of allocation and sizing of an ESS. 

In this chapter, two novel data-driven methods are introduced for the allocation and 

sizing of storage systems in low voltage distribution grids. Firstly, a new method for 

estimating the relative voltage sensitivity is introduced based on the concept of Mutual 

Information (MI) [26] from information theory. The method has been applied to find the 

most suitable location for a FESS for power smoothing applications in a large 

interconnected grid in southern Germany, with more than 1200 possible installation 

candidates. Next, a new method for sizing ESS based on historical measurement data is 

introduced, that uses reoccurring daily consumption patterns for the sizing, which are 

detected using the motif discovery algorithm [27]. The detected consumption patterns 

have been used for finding the characteristics of two types of storage technologies to 

form a hybrid ESS: A FESS for the application of power smoothing, and a high energy 

density ESS such as a Li-ion battery, for the application of peak shaving and load 

balancing. The sizing methodology has been applied for sizing these two types of storage 

technologies at four different low voltage distribution grids with different levels of PV 

penetration, and using data with different resolutions. 
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4.1 A Data-driven Method for Allocation of Flywheel 

Energy Storage Systems1  

The optimal location for an ESS in a grid depends strongly on the main objective for its 

installation and the characteristics of the storage technology. An ESS can have various 

applications and functionalities in power systems. Therefore, there are numerous 

techniques proposed in literature for finding the optimal location of different types of 

ESS in power systems for different applications, including in [151]–[154]. Many of such 

methods are summarized and compared in [148]–[150]. However, the proposed solutions 

often focus on optimal allocation of battery energy storage systems for applications such 

as peak shaving, energy arbitrage, and voltage regulation, and they cannot necessarily be 

applied for other applications and storage technologies. The work focuses on allocating a 

high-speed FESS for the application of power smoothing in distribution grids.  

A FESS has the ability to quickly and continuously smooth out short-term power 

fluctuations, as demonstrated in [155], [156], and [157], with no concern over its lifetime 

or capacity. Short-term power fluctuations in power systems can be caused by variation 

in loads, for example, industrial loads, or by intermittent generation from renewables, for 

instance by PV generation units. Power fluctuations at a relatively low amplitude are 

generally not a concern for the grid operator, but large power fluctuations could lead to 

significant voltage fluctuations in weak parts of the grid [158]. Fast voltage changes can 

be a power quality problem according to the European grid code DIN EN 50160 [159]. 

This is particularly the case in low voltage distribution grids with a low X/R ratio. As 

shown later in subsection 4.1.1, in such grids, the active power has as much as or even 

greater impact on the voltage, as the reactive power. In grids with a low X/R ratio, 

reactive power compensation can be inadequate for voltage regulation, unless an over-

sized inverter is used [160], while active power compensation can significantly help to 

mitigate voltage deviations [161], [162]. A FESS can help smoothen the active power 

variations, which can potentially reduce the voltage fluctuations caused by the active 

power changes [163].  

A FESS can be most useful at the grid connection points, where the voltage is more 

sensitive to active power changes. This can be quantified using the voltage sensitivity 

formulation, which is described in detail in the next subsection. The higher is the voltage 

sensitivity to active power variations, the higher is the impact of active power smoothing 

using a FESS on regulating voltage. The use of voltage sensitivity has been previously 

 
1 This section presents a revised version of the following publication: S. Karrari, M. Vollmer, G. De Carne, 

Klemens Böhm, Jörn Geisbüsch, “A Data-driven Approach for Estimating Relative Voltage Sensitivity,” in 

the 2020 IEEE Power & Energy Society General Meeting, Montreal, 2020. 
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proposed for the optimal allocation of distributed energy resources to improve the system 

reliability indices [164], to increase the voltage stability margins [165], and to avoid 

over- and under-voltage incidents [166]. For the purpose of post-fault voltage recovery, a 

battery placement method based on voltage sensitivity has shown to be the most effective 

method in comparison to several other allocation strategies [167], [168]. Voltage 

sensitivity coefficients have also been used for designing advanced controllers for PV 

systems in order to improve the PV hosting capacity [169]. However, estimating voltage 

sensitivity in the aforementioned works requires a validated grid model, which is not 

always available, in particular for low voltage distribution grids. 

This work proposes a new data-driven method for estimating the relative voltage 

sensitivity to active power changes, which is applied for finding the most suitable 

location for a high-speed FESS for power smoothing applications. The proposed method 

requires only measurement values at the points of interest, and does not require a grid 

model, which is a significant advantage. The suggested approach can also be used for 

other storage technologies and investigations, that require identification of the locations 

in a grid with a high voltage sensitivity to active or reactive power changes. 

In the following subsections, after a short introduction to voltage sensitivity, the 

shortcomings of the classical method to calculate analytically the voltage sensitivity 

coefficients based on steady-state power flow equations are highlighted. Then, a novel 

data-driven approach has been proposed for estimating the relative voltage sensitivity. 

The proposed approach has been applied for finding the optimal location for a FESS 

among more than 1200 10/0.4 kV substations in a region in southern Germany, using the 

measurement data collected at the top candidates for the installation of the FESS. 

4.1.1 Introduction to Voltage Sensitivity 

Figure 4.1 shows a simplified power system with an equivalent impedance, consisting of 

an equivalent resistance (Req) and an equivalent reactance (Xeq) between the point of 

common coupling (Bus r) and the main supply (Bus s). All values are assumed to be in 

per unit. 

 

Figure 4.1: The single-line diagram of a simplified power system for calculating the voltage sensitivity. 
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The apparent power drawn from Bus r can be calculated as  

𝑆r = 𝑃r + 𝑗𝑄r = 𝑉r𝐼𝑟
∗ = 𝑉r (

𝑉s𝑒
𝑗𝛿−𝑉r

Req+𝑗Xeq
)
∗

. 
(4.1) 

By multiplying both the nominator and the denominator of the fraction on the right hand 

side of Eq. (4.1) by (Req − 𝑗Xeq), and separating the real and imaginary components, 

Eq. (4.1) can be divided into [170] 

𝑃r = 𝑉r (
Req(𝑉s cos(𝛿) − 𝑉r) + Xeq𝑉s sin(𝛿)

Req
2 + Xeq

2
) 

(4.2) 

and  

𝑄r = 𝑉r (
Xeq(𝑉s cos(𝛿) − 𝑉r) − Req𝑉s sin(𝛿)

Req
2 + Xeq

2
). 

(4.3) 

It can be seen from Eq. (4.2) and (4.3) that the relationship between the voltage and the 

active and reactive power is nonlinear. Therefore, linearization around a single operating 

point is required to calculate the voltage sensitivity to active and reactive power changes. 

To calculate the voltage sensitivity to a small disturbance of 𝛥𝑃r and 𝛥𝑄r around the 

operating point (𝑃r0 , 𝑄r0, 𝑉r0), Eq. (4.2) and (4.3) are linearized around this point. For 

doing so, 𝑃r is replaced by 𝑃r0 +  𝛥𝑃𝑟 , 𝑄r by 𝑄r0 +  𝛥𝑄𝑟 , and 𝑉r by 𝑉r0 +  𝛥𝑉𝑟, and 𝛿 is 

eliminated, with the trigonometric method described in [170]. The second-order terms 

such as  𝛥𝑃r
2 and  𝛥𝑉r

2 are neglected. Therefore, for instance,  𝑃r
2 is replaced by  𝑃r0

2 +

2𝑃r0𝛥𝑃𝑟 . After these mathematical manipulations, 
𝛥𝑉r

𝛥𝑃r
 and 

𝛥𝑉r

𝛥𝑄r
 can be easily calculated, 

which are assumed to be the approximations of 
𝜕𝑉r

𝜕𝑃r
 and 

𝜕𝑉r

𝜕𝑄r
 for small changes in the 

power around this operating point. Hence,  

𝜕𝑉r
𝜕𝑃r

≈
𝛥𝑉r
𝛥𝑃r

=
(Req

2 + Xeq
2 )𝑃r0 + Req𝑉r0

2

𝑉r0 (𝑉s
2 − 2𝑉r0

2 − 2(Req𝑃r0 + Xeq𝑄r0))
 

 

(4.4) 

and  

𝜕𝑉r
𝜕𝑄r

≈
𝛥𝑉r
𝛥𝑄r

=
(Req

2 + Xeq
2 )𝑃r0 + Xeq𝑉r0

2

𝑉r0 (𝑉s
2 − 2𝑉r0

2 − 2(Req𝑃r0 + Xeq𝑄r0))
. 

(4.5) 

The outputs of Eq. (4.4) and (4.5) are referred to as voltage sensitivity coefficients to 

active and reactive power changes, respectively, around the operating point 

(𝑃r0, 𝑄r0, 𝑉r0). By assuming 𝑉s and 𝑉r0 in these equations to be approximately 1 per unit, 

it results in 
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𝜕𝑉r
𝜕𝑃r

≈ −
(Xeq

2 + Req
2 )𝑃r0 + Req

1 + 2(Req𝑃r0 + Xeq𝑄r0)
 

(4.6) 

and  

𝜕𝑉r
𝜕𝑄r

≈ −
(Xeq

2 + Req
2 )𝑃r0 + Xeq

1 + 2(Req𝑃r0 + Xeq𝑄r0)
. 

(4.7) 

It can be seen from Eq. (4.6) and (4.7), that in case of 
Xeq

Req
≫ 1, as in high voltage 

transmission grids, the voltage sensitivity to reactive power is much higher than the 

voltage sensitivity to active power, and therefore, the voltage variations depends mainly 

on the changes in the reactive power. However, for a low 
Xeq

Req
 ratio, as common in low 

voltage distribution grids, the active power variations have also a significant impact on 

the voltage, since the voltage sensitivity to active power is also high. In fact, for the case 

of 
Xeq

Req
≈ 1, the active power has as much influence on the voltage as does the reactive 

power, since Eq. (4.6) and (4.7) become identical. The difference in voltage sensitivity at 

different voltage levels is shown more intuitively in Figure 4.2, where the line gradients 

in Figure 4.2(a) and (b) determine the voltage sensitivity coefficients in high voltage 

transmission grids and low voltage distribution grids, respectively.  

  

Figure 4.2: Different voltage sensitivity coefficients in (a) high voltage transmission grids, and (b) low 

voltage distribution grids (figures adopted from [170]).  

For a large interconnected power system with numerous buses and lines, the voltage 

sensitivity coefficients are derived using one of the main three classical approaches 

described in [171], which all use the load flow calculations. The most common method, 

which uses the Newton-Raphson load flow formulation is described briefly in the 

following.  
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Assuming a balanced grid, by linearizing the load flow equations around one operating 

point we have 

[
𝐽𝑃𝛿 𝐽𝑃𝑉
𝐽𝑄𝛿 𝐽𝑄𝑉

]
⏟      

𝐽

[
Δ𝛿
Δ𝑉
] = [

Δ𝑃
Δ𝑄
], 

(4.8) 

in which Δ𝑃 and Δ𝑄 are small variations in the active and reactive power around the 

operating point, Δ𝛿 and Δ𝑉 are the resulted changes in the voltage phase and magnitude, 

respectively, and 𝐽 is the Jacobian matrix of the grid. By multiplying both sides of 

Eq. (4.8) by the inverse of the Jacobian matrix, we have 

[
Δ𝛿
Δ𝑉
] = [

𝐽𝑃𝛿 𝐽𝑃𝑉
𝐽𝑄𝛿 𝐽𝑄𝑉

]
−1

⏟        
𝑆

[
Δ𝑃
Δ𝑄
]. 

(4.9) 

We define the inverse of the Jacobian matrix, 𝑆 in Eq. (4.9), as the voltage sensitivity 

matrix of the grid. The elements of the voltage sensitivity matrix can be grouped into four 

submatrices as shown in Eq. (4.10). 

𝑆 = [
𝑆𝛿𝑃 𝑆𝑉𝑃
𝑆𝛿𝑄 𝑆𝑉𝑄

] =

[
 
 
 
𝜕𝛿

𝜕𝑃

𝜕𝑉

𝜕𝑃
𝜕𝛿

𝜕𝑄

𝜕𝑉

𝜕𝑄]
 
 
 

≈

[
 
 
 
Δ𝛿

Δ𝑃

Δ𝑉

Δ𝑃
Δ𝛿

Δ𝑄

Δ𝑉

Δ𝑄]
 
 
 

. 

(4.10) 

In Eq. (4.10), 𝑆𝑉𝑃 corresponds to the submatrix of 
𝜕𝑉𝑖

𝜕𝑃𝑖
, which is the partial derivative of 

the voltage amplitude at bus 𝑖 with respect to the active power changes at the same bus, 

i.e., the voltage sensitivity to active power changes at the bus 𝑖, and 

𝑆𝑉𝑃 =

[
 
 
 
 
𝜕𝑉2
𝜕𝑃2

⋯
𝜕𝑉2
𝜕𝑃𝑛

⋮ ⋱ ⋮
𝜕𝑉𝑛
𝜕𝑃2

⋯
𝜕𝑉𝑛
𝜕𝑃𝑛]

 
 
 
 

. 

(4.11) 

Similarly, 𝑆𝑉𝑄 corresponds to the elements of 
𝜕𝑉𝑖

𝜕𝑄𝑖
 or the voltage sensitivity to the reactive 

power variations. The voltage phase angles and their sensitivities are generally not a 

concern at the low voltage level.  

Up to this point, a balanced operation of the grid was assumed for the voltage sensitivity 

calculations. However, low voltage distribution grids often have asymmetric currents and 

voltages caused by single-phase loads and generation units. For an unbalanced three-

phase system, the voltage sensitivity coefficients must be calculated for each phase 

individually with respect to the power flow of all three phases. Therefore, for bus 𝑖, 
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𝜕𝑉i
𝜕𝑃i

=

[
 
 
 
 
 
 
𝜕𝑉ia
𝜕𝑃ia

𝜕𝑉i1
𝜕𝑃i2

𝜕𝑉ia
𝜕𝑃ic

𝜕𝑉ib
𝜕𝑃ia

𝜕𝑉ib
𝜕𝑃ib

𝜕𝑉ib
𝜕𝑃ic

𝜕𝑉ic
𝜕𝑃ia

𝜕𝑉ic
𝜕𝑃ib

𝜕𝑉ic
𝜕𝑃ic]

 
 
 
 
 
 

. 

(4.12) 

A more detailed analysis of voltage sensitivity calculations in unbalanced grids can be 

found in [171] and [172].  

4.1.2 Limitations of the Classical Method for Calculating the 

Voltage Sensitivity 

As shown, the classical methods for estimating the voltage sensitivity coefficients use the 

linearized load flow equations around a single operating point. This approach can provide 

accurate results only at the particular operating point, in which the calculations are 

conducted, and neglects the system nonlinearities. However, the grid’s operating point 

varies significantly with time. It has been shown recently that the variations in the voltage 

sensitivity coefficients can be significant with the changes in the system operating point 

during a single day [172], [173]. Therefore, accurate estimation of the voltage sensitivity 

coefficients in every operating point is necessary, in particular when these values are used 

actively in controller actions, as in [169].  

But most importantly, the classical method requires a validated and accurate grid 

model, or at least its Jacobian matrix, which is not always available. Grid models at the 

low voltage level are less common, in comparison to higher voltage levels. This can be 

due to the larger number of these grids in a single region, and the fact that they were 

considered traditionally the passive parts of the grid. Even if such models are available, 

they are often not validated nor continuously updated, and are often designed for the 

planning studies conducted by the grid operator for the expected load in the future. In 

addition, inverter-based distributed energy resources such as PV systems and their 

controllers have an impact on the aggregated load/voltage sensitivity [110], but are often 

not represented accurately in these load flow models. 

Due to the aforementioned limitations of the classical approaches, data-driven methods 

for estimating the voltage sensitivity coefficients and without any knowledge of the grid 

model can be very advantageous, in particular for low voltage grids. There have been 

only two attempts for such solutions previously published in literature. Authors in [174], 

propose an algorithm for estimating the voltage sensitivity coefficients based on the smart 

meter data. Nonetheless, this method requires simultaneous measurements at different 



4 Data-driven Allocation and Sizing of Energy Storage Systems 

54 

locations in the grid, and historical measurement data and load profiles to train the 

proposed algorithm. Another work proposes a near real-time estimation method to 

calculate these coefficients [172]. This work also uses a linear approximation during the 

measurement period for the estimation procedure. It should be noted that neither of the 

proposed approaches has been used for allocation studies. 

In this thesis, a new data-driven approach has been proposed based on the concept of 

mutual information. Mutual information has the capability to capture and quantify the 

nonlinear dependencies between two variables, and it can also generate an output in real 

time [175]. It is suggested in this thesis that the mutual information can reflect the 

relative voltage sensitivity coefficients among different locations in a grid, and it only 

requires measurements at the points of interest. This can be used for applications such as 

allocation of distributed energy resources such as the allocations of the FESS for power 

smoothing applications, as demonstrated later in this chapter. Mutual information is 

described in the following subsection. 

4.1.3 Introduction to Mutual Information (MI) 

Mutual Information (MI), originated from the information theory [26], can capture and 

quantify the dependencies between two variables. It attempts to quantify “Given the 

values of one variable, how much does it help to guess the values of the other variable?”. 

It reflects the expected amount of information that one variable can reveal about the value 

of another variable. In our use case, this means how much information about the 

variations of the active power drawn from a certain point in the grid, can be exposed by 

just looking at the voltage measurements. Mutual information is much more general than 

the Pearson correlation coefficient, since it can capture both linear and nonlinear 

dependencies [176]. Mutual information is zero, if and only if the variables are 

statistically independent. This is not true for the correlation coefficients. 

Because of this ability to capture such complex dependencies, mutual information has 

been applied in different disciplines, such as machine learning [177] and medical imaging 

[178]. Mutual information has a great potential to be used in power systems, as highly 

nonlinear systems. However, to our knowledge, no application of mutual information in 

power systems has been reported, and this work is the first one to propose it.  

Since mutual information is defined originally for probabilities, it requires some 

estimation to be used on measurement data, which are always limited in the number of 

data points. A well-known estimate, referred to as the KSG estimate after its creators, 

Kraskov, Stögbauer, and Grassberger [179], overcomes this challenge by using the 

distances between similar measurements, rather than estimating the distribution densities. 
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The KSG estimate is fast to compute and yields good results even for small and noisy 

measurement data [180]. 

Figure 4.3 presents an example of measurement points for defining the notations required 

for the KSG estimate of MI. Let 𝑀 = {m1, … ,mn}, in which m𝑖 = (𝑣a𝑖 , 𝑝a𝑖) be a 

collection of measurements of two variables, which are the voltage and the power in 

phase a in this use case. In Figure 4.3, 𝑀 consists of 13 measurement points. For any 𝑘 ∈

ℕ+, the 𝑘th nearest neighbor of a measurement point m𝑖 is represented by 𝑘𝑁𝑁(m𝑖), 

using the matrix distance of 𝑑𝑖𝑠𝑡(m𝑖 , m𝑗) = max(|𝑣a𝑖 − 𝑣a𝑗|, |𝑝a𝑖 − 𝑝a𝑗|). For instance, 

in Figure 4.3, the measurement point m3 is the fourth nearest neighbor of m5, in other 

words, m3 = 4𝑁𝑁(m5). Furthermore, 𝑐𝑉a(m𝑖) and 𝑐𝑃a(m𝑖), referred to as the marginal 

counts, are the number of measurement points of voltage and power, respectively, that are 

not further from m𝑖 than the 𝑘𝑁𝑁(m𝑖). For example, in Figure 4.3, 𝑐𝑃a(m5) = 3, i.e., 

there are three measurement point of 𝑃a that their distance is not larger than the distance 

of 4𝑁𝑁(m5) or m3. In a similar way, it can be seen that 𝑐𝑉a(m5) = 7. 

 

Figure 4.3: Examples of notations used for estimating the mutual information using the KSG estimate. 

With these definitions, the mutual information using the KSG estimate for these set of 

measurements is calculated as [179] 

𝑀𝐼(𝑉a, 𝑃a) = 𝜆(𝑛) + 𝜆(𝑘) −
1

𝑘
−
1

𝑘
∑(𝜆 (𝑐𝑉a(𝑚𝑖)) + 𝜆 (𝑐𝑃a(𝑚𝑖)))

𝑛

𝑖=1

, 

 

(4.13) 

in which, 

𝜆(𝑥) = (∑
1

𝑚

𝑥−1

𝑚=1

) − 𝛾. 
(4.14) 
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In Eq. (4.13) and (4.14), 𝑘 is chosen to be 4, as recommended in literature [180], and 𝛾 

equals to -0.577, which is the Euler-Mascheroni constant. 

The value calculated using Eq. (4.13) is referred to as the mutual information score. It is 

proposed in this work that the mutual information score between voltage and active 

power measurements can reflect the relative voltage sensitivity to active power changes 

at different locations in a grid. Similarly, the mutual information score between the 

voltage and the reactive power can show the relative voltage sensitivity to reactive power 

variations. This is demonstrated in the next subsections, using real measurement data and 

the use case of allocation of a FESS in a low voltage distribution grid. 

4.1.4 The Proposed Allocation Method for a FESS 

In this section, a real case of allocation of a FESS for power smoothing applications in a 

grid in the southern Germany is presented, as a use case of the proposed method for 

estimating the relative voltage sensitivity using the mutual information scores.  

The distribution system operator intends to install a high-speed FESS in its grid for 

improving the power quality. The system operator has limited the installation locations to 

the low voltage side of all the 10/0.4 kV substations, where there is sufficient utility-

owned land and electrical and communication infrastructure for the FESS. This results in 

a total search space of over 1200 substations, as possible candidates for the installation of 

the FESS. The main application of the FESS is considered to be smoothing out the power 

drawn from the medium voltage grid in order to reduce the voltage deviations. Therefore, 

a location with a high voltage sensitivity to active power changes is desired.  

To find the substation with the highest voltage sensitivity, a new allocation algorithm 

based on the concept of mutual information for estimating the relative voltage sensitivity 

is proposed. The proposed allocation algorithm consists of two main steps, which are 

described in detail in the following, along with the data collection procedure. The flow 

chart of the proposed allocation algorithm is shown in Figure 4.4. 

4.1.4.1 Step 1: Selecting the Top Candidates for Measurements 

Medium voltage grids are often monitored only at their interconnection with the high 

voltage grids, while low voltage grids are usually not monitored at all [181]. This is 

commonly justified by high expenses or being unnecessary, since they are large 

infrastructures, and were assumed to be the passive parts of the grid. Many distribution 

grid operators, collect measurement data only, if power quality issues or interruptions are 

reported. Despite the ongoing effort to improve the observability at these voltage levels in 

order to deal with the increasing share of distributed energy resources, the number of 
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fixed measurement devices at these voltage levels is still low. This has been also the case 

for the medium voltage and low voltage grids investigated in this work. Therefore, first, 

measurement data have to be collected. 

 

Figure 4.4: The flow chart of the proposed allocation algorithm for the FESS based on mutual 

information. 

Since collecting measurement data from all 10/0.4 kV substations is not feasible nor 

practical, the substations with the highest potential for the FESS installation are selected 

for conducting measurements. As measurement data are not available at this point, the 

voltage sensitivity coefficients are calculated using the classical method based on the 

Newton-Raphson load flow calculations at the nominal operating point, as described in 

subsection 4.1.1. A static load flow model of the medium voltage grid in DIgSILENT 

PowerFactory is provided by the system operator, which is used for these calculations. It 

should be noted that this model is used only for planning studies of the grid operator.  

This first step of the allocation algorithm is programmed using the DIgSILENT 

Programming Language (DPL) in DIgSILENT PowerFactory. Firstly, all the 10/0.4 kV 

substations are selected and the voltage sensitivity coefficients are calculated at the 

nominal operation point at all buses, using the method explained in subsection 4.1.1. The 

top nine buses with the highest voltage sensitivity to active power according to the model 
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have been chosen as the most attractive candidates for conducting measurements and 

possibly the installation of the FESS. Next, the FESS is installed at each of these buses in 

the model, and the load flow calculations are repeated to check the following technical 

constraints (C1-C4): 

▪ C1: After the installation of the FESS, the FESS should not exceed the grid’s 

operational limits (ratings of transformers, lines, etc.) at its rated power, during 

both charging and discharging. This means, that the grid should be able to take 

up or provide the full power of the FESS. 

▪ C2: The voltage limit of ±3 % of the nominal value should not be exceeded at 

any point of the grid after the FESS installation, for both charging and 

discharging of the FESS at its rated power. 

▪ C3: Assuming 1.2 p.u. for the short-circuit current of the FESS, no interference 

with the latest protection settings of the grid should be observed after the 

installation of the FESS. 

▪ C4: Reverse power flow should be avoided, when the FESS is discharging at its 

rated power. 

In order to carry out the load flow analysis after the FESS installation, the bus at which 

the FESS is connected, is modelled as a PQ bus, in which the reactive power follows the 

Q(U) characteristics given in the latest German grid code for the low voltage grids, i.e., 

the VDE-AR-N 4105:2018-11 [182]. The Q(U) characteristic for the ESS connected to 

the low voltage grids is illustrated in Figure 4.5(b), together with the P(f) characteristic. 

In this figure, 𝑢g and 𝑓g are the voltage and frequency of the grid, respectively, 𝑄max is 

the maximum reactive power of the ESS, and 𝑃Emax is its maximum active power. 

Different load flow models for an ESS can be found in [183].  

 

Figure 4.5: Active and reactive power control characteristics according to the German grid code VDE-

AR-N 4105:2018-11. (a) The P(f) characteristic for frequency deviations, and (b) the Q(U) 

characteristic for voltage deviations.  
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If one or more of these constraints are violated after the installation of the FESS at a 

particular bus, the bus is replaced with the next bus with the highest voltage sensitivity to 

active power changes, and the constraints are checked again. There are also some non-

technical constraints, such as having adequate space and infrastructure for installing the 

FESS. If the selected location does not have any of these conditions, the location is also 

replaced with the next most sensitive bus. The top nine candidates which fulfil both the 

technical and non-technical requirements are chosen for field measurements. 

4.1.4.2 Measurement Setup at the Low Voltage Distribution Networks 

In this subsection, the measurement setup used at the most attractive candidates for the 

FESS installation in a grid in southern Germany are described.  

The measurements were conducted in a close cooperation with the distribution system 

operator of the region. An exemplary schematic of the measurement setup is illustrated in 

Figure 4.6. For each measurement, the measurement device was installed at the 

secondary side of the 10/0.4 kV transformer, in order to measure the power profile of the 

whole low voltage distribution grid, including all its feeders. Voltages were measured 

directly, while currents were measured using 800/5 A current transducers. The neutral 

current was measured separately.  

 

Figure 4.6: Schematic example of a measurement setup at the low voltage distribution networks. 

The measurements were conducted using A. Eberle’s power quality and disturbance 

recorder, “PQI-DA smart” [184]. This device samples the data at the high resolution of 
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41 kHz, but records the data on longer intervals, starting from every second. The high-

resolution data is only recorded, if one of the predefined thresholds, determined by the 

power quality indices of the European standard DIN EN 50160 [159], are violated. When 

a continuous recording at a high resolution was required, the in-house built Electrical 

Data Recorder (EDR) [185] was used, which is capable of measuring and recording 

continuously at 25 kHz of sampling rate. 

The measurement data were collected at the nine substations, which were chosen 

according to the step one of the allocation algorithm. A total of 223 days and 124 GB of 

data has been recorded. The measurements were conducted on low-voltage grids with 

different types of loads, including residential, commercial, industrial, and a combination 

of these types. Therefore, different patterns of load profiles were observed. Also, the low 

voltage grids have shown different penetration levels of PV generation, from no PV 

installations at all, to the case with enough PV generation to surpass the local demand at 

peak of generation. A minimum of two weeks of measurements have been conducted at 

the most attractive locations for the FESS installation.  

From the perspective of power quality, no major violations of the European standard 

DIN EN 50160 [159] has been observed during the whole measurements. However, a 

series of interesting events have been recorded, which are presented in Appendix A.  

4.1.4.3 Step 2: Estimating the Mutual Information Scores 

For each bus, the mutual information scores between the voltage and active and reactive 

power measurements are calculated according to Eq. (4.13) using a window length of two 

weeks. The average of the mutual information scores of the three phases at the top nine 

candidates is shown in Figure 4.7.  

As seen in Figure 4.7, bus 4, followed by bus 3 and 1, shows the highest mutual 

information scores between the voltage and the active and reactive powers, indicating a 

higher dependency of the voltage and the power at these points of the grid. This shows a 

higher voltage sensitivity to active and reactive power changes, in comparison to the 

other buses. Therefore, they can be more suitable for the installation of the FESS. 

Bus 5 and 2 have the lowest mutual information scores, indicating a low voltage 

sensitivity to the active and reactive power changes. This can imply a strong grid 

connection, where active and reactive power variations have less impact on the voltage, 

when compared to other candidates. In addition, the results for bus 5, 7, and 8 show a 

higher mutual information score between voltage and active power, in comparison to the 

voltage and reactive power. This reflects a higher voltage sensitivity to active power in 

comparison to the reactive power, which is the characteristic of a low X/R ratio. 
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Figure 4.7: Comparison of the mutual information (MI) scores of the top nine candidates for the FESS 

installation. 

4.1.5 Evaluation of the Proposed Allocation Method 

In order to evaluate that the mutual information scores can reflect the relative voltage 

sensitivity at the different locations in a grid, the voltage and active power measurements, 

collected at bus 4 and 5, i.e., the buses with the highest and lowest mutual information 

scores between voltage and active power, are illustrated in Figure 4.8. Measurement data 

are shown for a period of two days with a 1-minute data resolution. The measurements 

are shown for bus 4 and 5 specifically, as their differences can be seen more clearly, 

compared to two buses with similar mutual information scores. 

By observing Figures 4.8(a) and (b), it can be seen that the active power changes have a 

clear and significant impact on the voltage at bus 4, and these two variables greatly 

depend on each other. It can be observed, that the voltage variations follow the changes 

in the active power in the opposite direction, and their general pattern seems very similar. 

This indicates a weak connection point of the grid. For bus 5 with the lowest mutual 

information score, it can be observed from Figures 4.8(c) and (d), that the effect of the 

active power variations on the voltage is not easily recognizable. The dependency 

between the voltage and active power seems to be much lower, when compared to bus 4, 

and the patterns in the active power changes cannot be easily observed in the voltage. 

This is the characteristic of a stronger connection point of the grid, in comparison to 

bus 4. Similar results can be observed by comparing other buses to each other and by 

comparing the sensitivity coefficients of reactive power. Therefore, it can be concluded 

the proposed data-driven method based on the concept of mutual information can reflect 
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the relative voltage sensitivity to active and reactive power changes at different locations 

in the grid.  

 

Figure 4.8: Measurement data at bus 4 and 5 illustrated for a period of two days with a 1-minute data 

resolution. (a) Bus 4 voltage, (b) bus 4 active power, (c) bus 5 voltage, and (d) bus 5 active 

power. Bus 4 has the highest mutual information score between voltage and active power, 

while bus 5 has the lowest score. 

The proposed approach can be used for a variety of applications such as the allocation of 

distributed energy resources and ESS, in particular for improving the voltage quality. For 

the presented use case of allocation of a FESS in a grid in southern Germany, the 

proposed allocation algorithm has shown that the bus 4, followed by bus 3 and 1, has the 

highest potential for installing the FESS, as a higher relative voltage sensitivity to active 

power variations is observed (see Figure 4.8). However, just having a high voltage 

sensitivity to active power changes is not adequate in order to effectively benefit from a 

FESS. It is also important to have short-term active power fluctuations with high peaks, 

such as the ones caused by pulsed power loads, at the selected location in the grid. Such 

peaks in locations with a high voltage sensitivity to active changes can lead to significant 

fast voltage changes, which is a power quality violation. Where there is a high voltage 

sensitivity to active power variations, but no sharp active power fluctuations are present, 

significant fast voltage changes caused by active power changes will not be observed.  

Therefore, the measurement results at the top three candidates with the highest mutual 

information scores, bus 4, 3 and 1, have been compared in terms of having short-term 
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active power variations. Measurements result show, that the active power at bus 1 shows 

the highest number of short-term active power peaks. Due to the high voltage sensitivity 

at this location, the highest number of voltage deviations above 3 % is also observed at 

this location during the whole measurement period. A total number of 76 incidents of 

voltage deviations above ±3% of the nominal value were recorded during the 

measurement period of two weeks, which were caused by sharp active power changes. 

There are fewer voltage deviations recorded at bus 3 and 4, and none of them were 

caused by active power changes. An example of variations of the voltages and currents 

during several hours of measurements at bus 1 is shown in Figure 4.9. It is clear from 

Figure 4.9 that a pulsed power load is connected at this point in the grid. Since the 

voltage sensitivity to active power changes is also relatively high at this bus, these pulsed 

power loads cause significant fast voltage changes, as seen in Figure 4.9.  

In conclusion, bus 1 is chosen as the most attractive location for the FESS installation 

among more than 1200 substations in the studied German grid. The grid can benefit the 

most from this storage technology at this particular location, as it is a weak point in the 

grid, and a large pulsed power load is also connected to it. The FESS can smoothen the 

power at this substation, by providing the short-term power requirements. Subsequently, 

the voltage deviations caused by the power pulsed load can be avoided. 

 

 

Figure 4.9: An example of the variations in the voltages and currents at bus 1, the most attractive 

candidate for the FESS installation during a period of 6 hours.  
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4.2 A Data-driven Method for Sizing ESS using 
Standard Patterns2 

A high penetration level of PV generation in low voltage distribution grids can cause 

several challenges for the distribution system operator. The peak in PV generation 

appears around noon, when the demand is often low in residential areas with a high full-

time employment rate [186]. This can lead to a reverse power flow from the PV 

installations towards the medium voltage grid during noon, which can potentially lead to 

over-voltage issues in the low voltage grids, due to the low X/R ratios [187], [188]. This 

can limit the PV hosting capacity of the low voltage grid for new PV installations [169], 

[187]. An example of a daily power profile of a low voltage distribution grid with a high 

share of PV generation is shown in Figure 4.10. This data is collected at a 10/0.4 kV 

substation in southern Germany during a summer day in 2018, using the setup described 

in subsection 4.1.4.2. It can be seen, that the active power drawn from the substation 

becomes negative after around 11:00 until approximately 15:00. The problem of reverse 

power flow and non-coinciding demand and generation can be solved by installing an 

ESS with high energy density, such as a lithium-ion battery energy storage system, if 

sized properly.  

 

Figure 4.10: Example of a daily power profile of a low voltage distribution grid with a high share of PV 

generation during a summer day of 2018 in southern Germany. 

In addition, as discussed in the previous section, the variations in the active power can 

significantly impact the voltage in grids with a low X/R ratio. Therefore, the fast 

variations in the solar irradiance, e.g., caused by passing clouds, which cause the power 

 
2 This section presents an extended verion of the following publication: S. Karrari, N. Ludwig, M. Noe, V. 

Hagenmeyer, “Sizing Centralized Energy Storage Systems in Distribution Networks Using Standard 

Patterns,” in IEEE PowerTech 2019, Milan, 2019. 
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output of the PV systems to fluctuate, or variable industrial loads, can cause rapid voltage 

deviations in such grids. These rapid voltage fluctuations might violate the power quality 

threshold for the maximum permissible fast voltage changes [189], such as the 0.05 p.u. 

limit, given in the European grid code DIN EN 50160 [159]. Examples of large active 

power fluctuations can be observed in the measured power profile of Figure 4.10, 

between 13:00 and 15:00. This fast active power changes can be compensated using a 

high power density ESS with a large number of cycles such as a FESS, if it has the 

sufficient rated power and capacity. 

The objective of this section is to derive the energy storage characteristics from the 

recorded data. As seen in the related work, the first step for sizing an ESS based on 

historical measurement data is to select a suitable data set as the input for the sizing 

methodology. The data resolution and the chosen period of the recorded data can both 

impact the sizing outcome. While 15-minute [190] or even hourly data [191] are 

frequently used in storage sizing studies, it is recommended to use higher resolution data, 

such as a data resolution of 1 second, in order to study the use of an ESS in the presence 

of intermittent PV generation in low voltage grids [158]. Similarly, another study 

concluded that the use of the full frequency spectrum for storage sizing studies is highly 

recommended [192]. However, using high-resolution data, or even low-resolution data on 

a long horizon (several years) leads to large data sets. This can drastically increase the 

computation time required for solving the sizing problem, in particular for complex 

nonlinear optimization frameworks, which can make the problem intractable [193]–[195]. 

In order to avoid dealing with such large data sets, it is common practice to choose some 

specific short period, e.g., one day, as a representative of the measurement data for the 

sizing study, or to reduce the data resolution by aggregating the data. However, the 

choice of a representative day is often not clearly explained, nor properly justified. 

Frequently, an arbitrary day or some worst-case scenario, e.g., a day with high PV 

generation and low demand, or a day with low PV generation and high load, is selected. 

These approaches can potentially lead to over- or under-sized ESS. For instance, in [196], 

a random day is chosen as the load profile for the sizing study, which can lead to very 

specific storage requirements that are not suitable for other days. Due to the lack of high-

resolution data, 1-minute data are artificially generated from hourly data in [197], but 

again, the data of a typical day is used, and it is not clear how this typical day is selected. 

A similar approach has been reported in [198], where the logic behind choosing the 

typical day is not provided by the authors. In [192], a random selection of days is used to 

calculate the storage ratings. The alternative solution, which is reducing the data 

resolution is also not recommended, as discussed earlier. As an example, authors in [199] 

formulate the sizing problem as a convex optimization problem, but convert the 10-

second load data to 15-minute data to ease computation over a year, which eliminates the 

high-frequency components of the power measurements.  
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To properly address this issue in sizing studies, clustering techniques such as K-means 

clustering [194], [200], [201] and fuzzy C-means clustering [202] were used to group 

similar daily power profiles and generate representative ones, that can be used for the 

sizing problem, instead of the whole data set. This is a significant improvement to the 

arbitrary choice of a typical day. However, when using clustering techniques, it is 

required to specify beforehand, how many clusters are needed to be found. Depending on 

the number of clusters and selected features, this can result in power profiles being 

grouped into one cluster, while not being necessarily similar, since often simple features 

such as the peak or mean value is used for the clustering (see [202] as an example). These 

approaches can also generate clusters of power profiles that occur very seldom, which 

cannot represent the data set properly. It should also be noted that the related works 

which use clustering techniques all use hourly data for long term scheduling problems 

and high-resolution data is not used. Table 4.1 provides a summary of the methods used 

in literature for reducing the data size for sizing studies and their drawbacks. 

Table 4.1: Summary of the previously used methods for reducing data size for sizing studies and their 

drawbacks and limitations. 

Method Drawbacks or limitations Literature 

Arbitrary or unclear choice 

of the typical day or period 

Can lead to very specific sizing for the ESS, which 

may be an over- or underestimation for other days. 
[192], [196]–
[198], [203] 

Aggregation of high-
resolution data into low-

resolution data 

Loss of high-frequency components, which can impact 

the sizing outcome. 
[199] 

Use of clustering techniques • Requirement to specify beforehand the number of 

clusters. 
[194], [200]–

[202] 
• Power profiles in one cluster are not necessarily 
similar. 

• Clusters with power profiles that are not frequent. 

 

In this thesis, a novel alternative is proposed, where reoccurring daily consumptions 

patterns are detected using the motif discovery algorithm [27], which are then used for 

the sizing of the ESS, rather than using an arbitrary day, clustering techniques or reducing 

the data resolution. Motif discovery uses the Symbolic Aggregated 

Approximation (SAX) of the data set, instead of the raw data, which helps to find similar, 

but yet, not the same patterns that are being repeated during the whole data set. It also 

uses the random projection algorithm [204], which makes the process of finding similar 

patterns faster than the clustering approaches [205]. Moreover, motif discovery only 

groups power profiles when they are very similar. There is also no need to specify the 

number of patterns that needs to be found, and patterns or motifs are generated only if 

they are being repeated often. The pattern with a high number of reoccurrences and high 
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probability are then used for deriving the characteristics of the ESS, rather than using 

some random day or the worst-case scenario. Since the length of pattern used for the 

sizing data is only one day, high-resolution data can be easily employed with no concern 

on the computational burden of the sizing algorithm. 

In this work, the motif discovery algorithm has been applied for sizing two different 

types of ESS at 10/0.4 kV substations for solving different challenges in the low voltage 

distribution grids: 

▪ A high energy density ESS, such as a lithium-ion battery energy storage system, 

referred to as type 1 ESS, to be used for the purpose of peak shaving and load 

balancing. The type 1 ESS can increase the local consumption of the PV 

generated power, avoid the reverse power flow around noon, reduce the evening 

peak, and therefore, increase the PV hosting capacity of the low voltage grid. 

▪ A high power density ESS, such as a FESS, referred to as type 2 ESS, to be used 

for the purpose power smoothing, which can limit the number and severity of 

rapid voltage changes at the connection point. 

For deriving the characteristics of each ESS, firstly, reoccurring daily consumption 

patterns are detected using the motif discovery algorithm from the measurement data 

collected at several low voltage grids in southern Germany. Then, a low-pass filter is 

applied to decouple the discovered patterns into high- and low-frequency components for 

sizing different storage technologies. The cut-off frequency of the low-pass filter is 

determined through a simple optimization framework. The nominal capacity, nominal 

power, maximum ramp rate, and the number of times per day where each ESS changes 

from charging to discharging mode are calculated based on the power profiles allocated 

to each type of storage technology. The proposed sizing methodology is evaluated by 

assessing the performance of both ESS types, with the characteristics derived from the 

standard patterns, during the time horizon of the whole data set. In addition, the effects of 

data resolution, the cut-off frequency of the low-pass filter, and choosing patterns other 

than the most reoccurring one on the sizing outcome are also investigated. Although the 

proposed method is used for sizing a centralized ESS at the 10/0.4 kV substations, this 

method can be applied for sizing all types of ESS for any other application using 

historical measurement data. Examples include behind-the-meter applications of an ESS, 

such as increasing the self-consumption of the PV generated power or energy arbitrage.  

The rest of this section is organized as follows. The collected measurement data used for 

deriving the storage characteristics in this work are presented in the next subsection, 

followed by a description of the motif discovery algorithm. The discovered standard 

patterns and their characteristics are presented in the following subsection. Next, the most 

important storage characteristics are formulated using the power profile that each ESS 
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has to cover. The procedure to determine the optimum cut-off frequency for applying a 

low-pass filter on each pattern is described next with the aim optimizing the 

characteristics of the two major types of ESS. The sizing outcome and the effects of data 

resolution, cut-off frequency of the filter, and selecting other daily patterns on the storage 

characteristics are discussed in the following subsection. Lastly, the evaluation of the 

proposed sizing methodology is presented using the original full data set. 

4.2.1 The Input Data for the Sizing 

This work aims for installing a centralized ESS at a 10/0.4 kV substation. Therefore, the 

input data for the sizing study are collected at several 10/0.4 kV substations in southern 

Germany in the summer and fall of 2018, using the setup described in subsection 4.1.4.2. 

In comparison to the distributed ESS, a centralized ESS at the substation has the 

advantage of a single grid interface, a simpler control design, access to the electrical and 

monitoring systems of the substation, and availability of utility-owned land [206].  

Among the substations from which data have been collected, four substations were 

selected for the sizing study, which represent different levels of PV penetration, and 

different types of loads. Moreover, the measured data has been recorded using three 

different resolutions of 1 second, 1 minute, and 10 minutes. Therefore, the effects of data 

resolution on the sizing of different storage technologies can also be investigated. A 

minimum of two weeks of measurement data was recorded at each substation. 

As an example, the collected data with 1-minute resolution during a period of 8 days, 

starting from a Monday, has been illustrated in Figure 4.11 for the four selected buses. 

Clearly, there are patterns that are repeating themselves on a daily basis at each bus. 

While these patterns seem quite similar, they are also not exactly the same. For bus 1 

and 2, which their power profiles are shown in Figures 4.11(a) and (b), there are different 

patterns occurring during the weekends (the 6th and 7th day). This is due the fact that these 

low voltage grids have mostly industrial and commercial loads. However, starting from 

the day 8, the pattern for a working day starts to reappear. In bus 1, the share of PV 

generation in comparison to the power consumption is so low that it can hardly be 

observed in the power profile during the working days, and it can only be seen during the 

weekends. In the power profile of bus 2, a slightly higher share of PV generation is 

observed, in which the increase in the consumption around noon during working days is 

more or less covered by the PV generation at its peak. In both cases of bus 1 and 2, 

negative power flow is observed only at weekends, when the load is at its minimum. 

Bus 3 and 4, which their power profiles are shown in Figures 4.11(c) and (d), represent 

two residential low voltage distribution grids with a relatively high level of PV 

penetration. In these cases, the consumption patterns are relatively similar for both 
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workdays and weekends. The power profile measured at bus 3 shows a high peak only 

during the evening, while in the power profile of bus 4, the morning peak is as large as 

the evening peak. Moving from bus 1 towards bus 4, the ratio of PV generation to the 

peak consumption power increases, up to a point that in case of bus 3 and 4, the PV 

generation is dominant and leads to reverse power flows during noon in several days. 

Large power fluctuations around noon are also more present in buses with a higher share 

of PV generation, such as in bus 3, which could have been caused by passing clouds over 

the PV panels. It is important to note that these measurements were not conducted 

simultaneously, as a single measurement device was used.  

 

Figure 4.11: Active power measurements at (a) bus 1, (b) bus 2, (c) bus 3, and (d) bus 4. The data is shown 

with the resolution of 1 minute for a period of 8 days, starting from Monday, which makes the 

6th and 7th days, weekends.  

The power profiles at different buses also differ in terms of their frequency components. 

This can be illustrated using the Discrete Fourier Transform (DFT) applied to the 1-

seccond measurement data. The one-sided frequency spectrum using the DFT is shown in 

Figure 4.12 for each bus. Each frequency component represents in this figure a periodic 

cycling of power. As seen, each power profile has a different amplitude at each 

frequency. For instance, the frequency component of 0.0116 mHz, which corresponds to 

every 24 hours, can be an indication of daily reoccurrence of a consumption pattern, 

which is highest for bus 4, followed by bus 3. This is due to having similar power profiles 

during the whole week, including weekends. The power profile at bus 4 shows a higher 
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magnitude at 0.0231 mHz in comparison to other buses, which corresponds to 12 hours. 

This can clearly be seen from Figure 4.11(d) as well, where each day can be divided into 

two similar patterns. High frequency components above 2 mHz are observed mostly at 

bus 1, as it consists of mostly industrial loads with a high power variability.  

 

Figure 4.12: One-sided frequency spectrum of the power profiles at all buses using the 1-second data for a 

period of one week.  

4.2.2 Introduction to Motif Discovery 

As previously discussed, the first step towards sizing an ESS using historical 

measurement data is to select the power profile, which can accurately represent the whole 

data set. Instead of using an arbitrary day or the worst-case scenario, which can lead to 

very specific sizing outcomes, we detect and use a reoccurring daily consumption pattern 

at each substation using the motif discovery algorithm. The approximation of the whole 

time series with a standard reoccurring pattern helps us to focus on regular reoccurring 

patterns in the consumption, rather than on single occurrences. 

Finding reoccurring patterns in time series is a common unsupervised learning problem. 

In this work, we propose the use of motif discovery, introduced in [27], and its improved 

version in [207], tailored for energy-related time series. A major advantage of using motif 

discovery is the use of the Symbolic Aggregated Approximation (SAX) of the time series 

rather than the time series itself for finding similar patterns. This allows to find patterns 

that are similar and yet, not the same. In contrast to the established clustering 

approaches [194], [200]–[202], there is also no need to specify beforehand the number of 

groups or clusters, and power profiles are only grouped together, when they are found to 

be similar. Power profiles that are rarely reappearing are automatically left outside.  
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Motif discovery has been applied in various disciplines for a variety of applications, 

including identifying seismic activity patterns in active volcanos [208] and classifying 

heartbeat sounds [209]. In the realm of energy, motif discovery has been applied for 

finding flexibility potentials in industrial processes [210] and non-intrusive load 

monitoring [211]. Prior to this work, there are no reports on using motif discovery for 

storage sizing studies or other applications in power systems. 

The algorithm consists of five main steps, as shown in Figure 4.13, which are described 

in the following according to [207]. The term motif refers to a pattern or a series of 

sequences in the time series that are repeated often.  

 

Figure 4.13: The process of the motif discovery using SAX and random projection (adopted from [207]). 

Sequencing algorithms: In the first step, the whole time series data, which consists of 𝑛 

data points, is divided into sequences with equal length of 𝜛. As we are looking for daily 

patterns in this work, the length of the sequence is set to correspond to 24 hours, 

depending on the data resolution. For instance, for the 1-second data, 𝜛 is 86400. 

Symbolic Aggregated Approximation (SAX): Next, the sequences are converted into a 

series of letters out of the alphabet, similar to the DNA sequences, from which this 

method was inspired. To do so, the sequence time series Y is divided into equal pieces 

with a predefined length of 𝑝. All data points within each piece are aggregated by their 

mean value, 𝑦i
PAA. This is known as Piecewise Aggregated Approximation (PAA) of the 

data, which helps to reduce the effect of noise and minor variations in finding patterns. 

In the following step, a letter out of the alphabet is assigned to each piece, according the 

value of 𝑦i
PAA. First, a section of the alphabet with the predefined length of 𝑎 together 

with a list of breaking points 𝛽 are defined, in which 𝛽 = 𝛽1, 𝛽2, … , 𝛽a−1, and 𝛽i−1 < 𝛽i. 

The breaking points 𝛽 are chosen to be the quantiles of the empirical cumulative 

distribution function of the sequence, which divides the area underneath into 𝑎 equal 

areas. We assign 𝑎 = 10, so that each letter corresponds to a meaningful quantile of the 

distribution function. If the mean value of each peace (𝑦i
PAA) is in the range of [𝛽j−1, 𝛽j), 

then its SAX representation (𝑦i
SAX) is the corresponding letter of 𝛼j, or 

𝑦i
SAX = 𝛼j         if, 𝑦i

PAA ∈ [𝛽j−1, 𝛽j). (4.15) 
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For observations 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), the empirical cumulative distribution function 

𝐹𝑛(𝑝) is the fraction of observations which are less than or equal to 𝑝, i.e., 

𝐹𝑛(𝑝) =
1

𝑛
∑ 𝐼(𝑥𝑖 ≤ 𝑝)
𝑛
𝑖=1 . (4.16) 

At the end of this step, we have strings of letters or words representing each sequence, 

which in our use case are the daily power profiles. The PAA and SAX of a time series are 

illustrated more intuitively in Figure 4.14. In this figure, the original time series is shown 

in grey, the black line shows the PAA of the data, and the blue letters show its SAX 

representation. 

 

Figure 4.14: An example of PAA of a time series (black line) and its SAX representation (the blue letters). 

The time series itself is shown with the grey line (adopted from [207]).  

Random projection: To find the potential motifs, one can simply compare each 

sequence to all other sequences to look for similarities, but this can be time consuming 

for large data sets. Instead, motif discovery uses random projection [204], which 

converges much faster. The SAX representations of the data are saved in a similarity 

matrix 𝑆 ∈ (𝑛 −𝑚 + 1) × 𝜛 as rows, using a sliding window. Here, 𝑛 is the number of 

observations, and 𝑚 is the number of sequences. In each iteration of the random 

projection algorithm, 𝑘 columns of the similarity matrix 𝑆 are selected randomly, where 

𝑘 ≤ 𝜛, and 𝑘 is a user-defined parameter. The words that are built with the selected 𝑘 

letters are compared with all rows of 𝑆. When the words are similar, the corresponding 

entry in the so-called collision matrix is incremented. The entries with the highest values 

in the collision matrix are considered potential motifs. The motifs are then transformed 

back to their original data form, which are the daily power profiles in this use case. 

Candidate evaluation: The aim of this final step to find how often the candidate motifs 

occur during the whole time series. The potential motifs are iterated over the original 

time series to find the instances where the motifs occur, which are the days that follow 
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the same pattern. Therefore, while finding motifs is based on their SAX representation, 

their evaluation is carried out using the original time series. 

Since the length of the sequences are equal in this use case, a simple Euclidean distance 

measure is used to find the occurrences of each possible motifs. For two sequences of 𝑦i 

and 𝑦j, 𝑑(𝑦i, 𝑦𝑗) is the Euclidean distance between them, and is calculated according to 

𝑑(𝑦i , 𝑦𝑗) = √∑ (𝑦i(𝑡) − 𝑦j(𝑡))
2

𝑛
𝑡=1 . 

(4.17) 

Each sequence similar to a motif is considered an occurrence of the motif. Each motif can 

have several occurrences within the whole time series. We define the standard pattern as 

the 80 %-quantile of all the occurrences of the motif with the highest number of 

occurrences. This quantile is chosen, as the loads are also supported by the grid in this 

use case. Choosing a higher percentage quantile is also possible, which will lead to larger 

storage units. 

4.2.3 Standard Patterns for Sizing ESS 

Using the described motif discovery algorithm, the standard consumption patterns at the 

four low voltage distribution grids are obtained. A minimum of two weeks of 

measurement data have been used to derive these patterns. However, larger data sets can 

also be easily used, considering the fast convergence of the random projection algorithm. 

The standard patterns are derived separately for the 1-second, 1-minute, and 10-minute 

data for each low voltage distribution grid, in order to study the effect of data aggregation 

on the sizing outcome.  

The standard patterns using the 1-minute data for all buses are shown in Figure 4.15. 

Similar patterns are derived using the data with other resolutions. As seen in 

Figure 4.15(a), the standard pattern of bus 1 represents a low voltage grid with small-

scale industrial facility, which is active only within working hours, and has a low share of 

PV generation. The share of PV generation at bus 2 is slightly higher, and just enough to 

reduce the midday peak to the base load value, while for the buses 3 and 4 the PV 

generation can almost cover the load for short periods at its peak. The standard pattern at 

bus 4 shows a slight reverse power flow between 13:00 and 14:00. 
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Figure 4.15: The standard consumption patterns at the four buses: (a) Bus 1: No PV generation with 

industrial loads. (b) Bus 2: Limited PV generation to cover only the increase in consumption 

at peak generation. (c) Bus 3: Significant share of PV generation in a residential grid, resulting 

in a typical duck curve. (d) Bus 4: High share of PV production in a residential grid, leading to 

slight negative power flow at peak generation. 

In order to see the effect of PV generation on the frequency components of the power 

profiles, a time-frequency analysis on the standard patterns is carried out. Figure 4.16 

shows the spectrogram of the standard patterns using the 1-second data of the four buses, 

which is calculated using the short-time Fourier transform and a Hamming window with 

the length of 1-minute with no overlaps. The spectrum ends at half of the sampling 

frequency, since according to the Nyquist principle, the spectrum is symmetrical around 

this value. As seen in Figures 4.16(c) and (d), at bus 3 and 4 with a high share of PV 

generation, the frequency content varies significantly with the increase in the PV 

generation around noon at both high and low frequencies. The constant power lines on 

the spectrum become vertical from being horizontal, which indicates that the PV 

generation alters a vast range of frequencies at the same time. With the decrease in PV 

generation at the evening, the frequency spectrum is restored, and shows more or less the 

same frequency components until the end of the day. 

Another interesting observation is that at bus 1, which supports an industrial facility, both 

high- and low-frequency components show high values within the activity period of the 

industrial facility, with the exception of the lunch break at approximately 12:00, as seen 

in Figure 4.16(a).  
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Figure 4.16: The spectrogram of the standard patterns using the 1-second data and hamming window of 1-

minute length with no overlaps for (a) bus 1, (b) bus 2, (3) bus 3, and (d) bus 4. 

The standard patterns of Figure 4.15 are the motifs with the highest number of 

reoccurrences. However, it is possible that motif discovery algorithm detects several 

other patterns as well, with lower number of occurrences. This can be the case, for 

instance, where workdays and weekends follow different consumption patterns, or large 

data sets such as yearly time series are used, where seasonal power profiles can be quite 

different. In our data sets, several patterns were detected at bus 2 when using the 1-

minute and 10-minute data. When using the 1-minute data, three motifs have been 

detected at bus 2, which are shown in Figure 4.17. In this figure, pattern 1 represents a 

normal weekday pattern, which has the highest number of occurrences, and it is the main 

pattern used for the storage sizing later within this chapter. Patterns 2 shows the 

consumption pattern during the weekends and public holidays, while patterns 3 represents 

the power profile of the first working day after a weekend or a holiday. The difference 

between pattern 1 and 3 can be associated with the loads that stay connected during the 

workdays but are disconnected for weekends. The effect of using the other patterns with 

lower number of reoccurrences on the sizing is investigated later in subsection 4.2.6.3, 

which can also show how an arbitrary choice of days for a sizing study can lead to 

different sizing outcomes. 
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Figure 4.17: The three different patterns detected at bus 2 using motif discovery. Pattern 1 is the 

consumption pattern during a typical workday with the highest number of reoccurrences, 

while pattern 2 shows the consumption pattern over the weekdays and public holidays. 

Pattern 3 represents the power profile of the first day after a weekend or a holiday. 

4.2.4 Deriving Energy Storage Characteristics 

The standard power profile at each bus is used to calculate the required ESS 

characteristics. Here, it is assumed that the daily average of the standard patterns is 

covered by the grid and the ESS provides the variations from the daily average. Using 

this approach, the evening peak, the reverse power flow, the high ramp rate requirement 

during the evening hours, and the high-frequency power fluctuations are reduced using 

the ESS, and the distribution system operator sees a roughly constant demand from the 

low voltage grid throughout the day. 

But different storage technologies operate at different time scales. They also differ 

substantially in terms of their lifetime and the maximum number of useful cycles. As 

discussed in Chapter 2, while a FESS can provide a significant number of short-term 

power cycles with no degradation over its lifetime, a high energy density ESS, such as a 

lithium-ion battery, are more limited in this regard. Therefore, in our use case, it is 

suggested to use a high energy density ESS for peak shaving and load balancing, while a 

high power density ESS such as a FESS is used to cover the short-term power 

fluctuations. This helps smoothing the charging and discharging profile of the lithium-ion 

battery, and therefore, preserving its lifetime and capacity [55]. Both flywheels and 

supercapacitors can be used for smoothing the charging profile of a battery, but it has 

been recently demonstrated that a hybrid battery-flywheel system outperforms a battery-

supercapacitor combination in terms of reducing the peak current drawn from the battery, 

and the overall system efficiency [57]. Reducing the maximum current drawn from the 

lithium-ion cells can limit the degradation of the anode active material and lithium 

plating, as shown in [17]. 
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Therefore, the low-frequency components of the variations in power from its average are 

allocated to a high energy density ESS with limited number of cycles, referred to as 

type 1 ESS. The high-frequency components are allocated to a high-power density ESS, 

referred to as type 2 ESS, for smoothing out the short-term power variations. Each storage 

technology can also be used individually, if required. The type 2 ESS, such as a FESS, 

can be used alone to smoothen the sharp active variations drawn from the grid in order to 

avoid fast voltage changes in weak parts of the grid, similar to the use case of section 4.1. 

It can also be used in combination with a type 1 ESS in order to extend its lifetime. The 

type 1 ESS can also be installed alone to reduce the evening peak, avoid reserved power, 

and reduce the required ramp rate during evenings. However, in this case, it also has to 

cover the short-term power fluctuations, which can reduce its effective lifetime. 

Combining these technologies in a hybrid ESS can provide all these advantages at once. 

The following describes how the nominal capacity, the nominal power, the maximum 

ramp rate, and the number of mode changes from charging to discharging and vice versa, 

are derived from the allocated power profile to each ESS. These calculations are repeated 

for each type of ESS, each data resolution, and each standard pattern. Practical aspects 

such as the energy conversion losses and the requirements to preserve the lifetime of the 

type 1 ESS are also considered in the sizing calculations. 

4.2.4.1 Nominal Capacity 

The nominal capacity of an ESS determines the characteristics of the storage medium, 

such as the number of cells in a lithium-ion battery, or the inertia and maximum 

rotational speed in a FESS, as discussed in Chapter 2. 

The nominal capacity (En) can be calculated by integrating over the daily power profile 

allocated to each ESS, and then computing the difference between the highest and lowest 

peaks of the output signal. The efficiency of the ESS (𝜂), which includes the efficiency 

the power electronics interface and the storage medium, should also be considered, as the 

ESS should provide higher power than the allocated power while discharging, and lower 

power is stored in the ESS while charging, considering the conversion losses. The sign 

function (𝑠𝑔𝑛) is used to determine from the power profile that whether the ESS is being 

charged or discharged for applying the efficiency of the ESS.  

In addition, when using storage technologies such as lithium-ion batteries, it can be 

beneficial to the system’s lifetime to avoid very low and high values of state of charge. It 

has been shown for lithium-ion batteries that avoiding high values of state of charge 

(above 80%) can significantly help reduce the cathode degradation and calendar aging of 

the battery [17]. Similarly, deep discharging should also be avoided, as it can 

significantly increase the internal resistance in the lithium-ion cells. Therefore, it is 

recommended to reserve a certain non-usable capacity to prevent deep discharging and 
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over-discharging the system [17]. Hence, in this work, the state of charge is kept within 

the certain range of [SOCmin, SOCmax] in order to preserve the system lifetime. 

Considering all these factors, the nominal capacity of the ESS is calculated using 

En =
𝑚𝑎𝑥(𝜂−𝑠𝑔𝑛(𝑃(𝜏)) ∫ 𝑃(𝜏)𝑑𝜏

𝑡
0 )−𝑚𝑖𝑛(𝜂−𝑠𝑔𝑛(𝑃(𝜏)) ∫ 𝑃(𝜏)𝑑𝜏

𝑡
0 )

SOCmax−SOCmin
. 

(4.18) 

In Eq. (4.18), 𝑃(𝜏) is the allocated power profile to the ESS, and 𝑡 corresponds to 24 

hours, depending on the data resolution.  

For the type 1 ESS, the parameters for a lithium-ion battery are assumed. The minimum 

state of charge is assumed to be 10 %, while the maximum state of charge is chosen to be 

80 %, as recommended in [17]. The roundtrip efficiency is assumed to be 90 %, which is 

the efficiency of a Tesla PowerWall 2 home battery system [212]. The same efficiency is 

used for the type 2 ESS, with the minimum and maximum values for the state of charge 

to be 25 % and 100 %, respectively. This is due to the fact that a FESS have no 

constraints on being fully charged, but the machine’s torque constraint limits the 

maximum deliverable power at low values of state of charge (see subsection 6.3.1). 

4.2.4.2 Nominal Power 

The nominal power (Pn) of an ESS is often limited by its power electronics interface. It is 

simply the maximum value of the power profile allocated to the ESS, considering both 

charging and discharging modes, and the efficiency of the ESS. Therefore,  

Pn = max(|𝜂
−𝑠𝑔𝑛(𝑃(𝜏))𝑃(𝜏)|). (4.19) 

4.2.4.3 Maximum Ramp Rate 

In this work, the maximum ramp rate (Rn) is considered to be the maximum change in 

the storage power between two consecutive measurement points in time. Considering the 

sampling frequency (𝑓s) of the measured power signal, the maximum ramp rate is 

calculated as  

Rn = 𝑚𝑎𝑥 (𝜂
−𝑠𝑔𝑛(𝑃(𝜏))𝑃(𝜏) − 𝜂

−𝑠𝑔𝑛(𝑃(𝜏−
1

𝑓𝑠
))
𝑃 (𝜏 −

1

𝑓s
)). 

(4.20) 

4.2.4.4 Number of Mode Changes and Lifetime 

Since an ESS is not fully charged and discharged with every cycle, the number of times 

that each ESS changes from charging to discharging mode in each day is calculated in 
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this work, rather than calculating the number of full cycles. The number of mode changes 

is simply the number of zero crossings of allocated power profile the ESS (𝑃(𝜏)). 

Since the lifetime and the number of cycles is limited for lithium-ion batteries, several 

contributing factors to the aging this type of ESS are considered, including [17], [199]: 

1. Operating and maintaining the system at very low and very high values of state 

of charge: This is avoided by simply selecting a larger storage capacity, 

according to Eq. (4.19), and staying within the given range of state of charge. 

2. Frequent variations of rate of charge or discharge: This is avoided by using a 

low-pass filter and allocating the high-frequency components to another type of 

ESS, such as a FESS. 

3. Avoiding high rates of charge and discharge current: The power required from 

the lithium-ion battery is reduced by using a second type of ESS such as a FESS 

for providing the short-term peaks. 

4. Charging or discharging more than once per day, which reduces the calendar life 

of the system: This is avoided by ensuring that the ESS is only charged and 

discharged fully only once a day. 

4.2.5 Allocating Power Profiles 

The use of a low-pass filter to separate high- and low-frequency components of the 

variations in the active power has become a standard approach for a simultaneous sizing 

of several storage technologies. This is particularly the case for sizing a battery-

supercapacitor hybrid ESS, where the supercapacitor can increase the power capability of 

the battery, and preserve its lifetime [213], [214]. The choice of the cut-off frequency of 

the filter can significantly impact the sizing outcome [197], [214], which can be any 

value in the range of (0, 𝑓s 2⁄ ), in which 𝑓s is the sampling frequency of the measured 

data. Typical discharge times of each storage technology [215], market intervals [216], 

and optimization frameworks [192] have been used for selecting the filter’s cut-off 

frequency. However, there is no generalized approach for selecting the cut-off frequency, 

which can be applied to all applications. In our use case, a relatively low cut-off 

frequency allocates most high-frequency components to the type 2 ESS, but also 

increases its nominal capacity, which can be quite costly considering the low energy 

density of these technologies. With a relatively high cut-off frequency, the type 1 ESS 

has to cover many fast variations in the power profile, which limits the advantages gained 

by using the second ESS. In this work, a simple optimization framework is introduced for 

selecting the cut-off frequency, which aims to simultaneously minimize the capacity of 

the high power density ESS, while reducing the maximum ramp rate and power of the 

high energy density ESS. This optimization is based on the following assumptions: 
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1. Increasing the capacity of type 2 ESS, e.g., flywheels or supercapacitors, has 

higher costs than increasing the capacity of type 1 ESS, e.g., batteries. 

2. Due to the higher power density of the type 2 ESS, it has a smaller footprint for 

providing high powers than the type 1 ESS, and therefore, a higher rated power 

for the type 2 ESS is preferred. 

3. It is desired to have a low ramp rate for the type 1 ESS for a prolonged lifetime, 

while type 2 ESS has no limitations in this regard. 

With the above-mentioned assumptions, a simple objective function is defined as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑂𝑏𝑗 = k1

𝐸n2
𝐸n1

max(
𝐸n2
𝐸n1

)
+ k2

𝑃n1
𝑃n2

max(
𝑃n1
𝑃n2

)
+ k3

𝑅n1
𝑅n2

max(
𝑅n1
𝑅n2

)
. 

(4.21) 

In Eq. (4.21), the nominal capacity, the nominal power, and the maximum ramp rate are 

calculated according to Eq. (4.18)-(4.20) for each type of ESS, which are denoted with 1 

and 2 for the type 1 and type 2 ESS, respectively. Also, k1, k2, and k3 are weighting 

coefficients, which are assumed to be equal to one in this work, but can be adjusted when 

required. The objective function of Eq. (4.21) aims to minimize simultaneously the ratio 

of capacity of the type 2 the ESS to the capacity of the type 1 ESS, the ratio of the power 

of the type 1 ESS to the power of the type 2 ESS, and the ratio of the maximum ramp rate 

of the type 1 ESS to the one of the type 2 ESS. All these three factors are normalized 

using their maximum value within the range (0, 𝑓s 2⁄ ). To find the optimum cut-off 

frequency, a simple gradient search method is used, similar to [197], in which the cut-off 

frequency is increased from its minimum value up to the point that is no longer 

decreasing. The frequency, at which the objective function is at its minimum is used as 

the cut-off frequency of the filter for decoupling the standard patterns. These values are 

listed in Table 4.2 for the standard pattern of each bus using the 1-second and 1-minute 

data resolutions. As the discharge time of the type 2 ESS is often much shorter than 

10 minutes, their characteristics is not calculated using the 10-minute data.  

The optimum cut-off frequencies shown in Table 4.2 are used to decompose the standard 

patterns into high- and low-frequency components and to allocate these power profiles to 

each ESS type. Using this approach, the nominal capacity of type 2 ESS is minimized, 

while simultaneously reducing the power and the maximum ramp rate of type 1 ESS for a 

prolonged lifetime. Figure 4.18 depicts the change in the objection function of Eq. (4.21) 

for each bus with the increase in the cut-off frequency of the filter.  

As discussed, using the low-pass filter, the high-frequency components of the active 

power variations are covered by a type 2 ESS. As an example, Figure 4.19 shows the 

decomposed power profile used for sizing each type of ESS at bus 1. As seen, the short-
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term power peaks, for instance, the 40-kW short pulsed power after 8 a.m., are covered 

by the type 2 ESS, while the type 1 ESS covers only the slower variations in power. 

Table 4.2: The optimum cut-off frequency of the low-pass filter for each bus using different data resolutions. 

 Data resolution 

Bus  1 second  1 minute  

Bus 1 59 mHz 3.4 mHz 

Bus 2 56 mHz 3.2 mHz 

Bus 3 50 mHz 3.5 mHz 

Bus 4 46 mHz 3.2 mHz 

 

Figure 4.18: Changes in the objective function with the increase of the cut-off frequency of the filter at 

each bus using the data with 1-second resolution. 

 

Figure 4.19: The allocated power to each type of ESS at bus 1 by applying a low-pass filter with the 

optimum cut-off frequency. 
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4.2.6 Sizing Outcome 

Using the standard patterns of each bus and the allocated power profile to each ESS by 

applying the low-pass filter with the optimum cut-off frequency, the ESS characteristics 

has been calculated for each bus and each data resolution from Eq. (4.18)-(4.20). The 

results are shown in detail in Table 4.3. 

Table 4.3: Sizing results according to the standard patterns at each bus for the three different data resolutions. 

Bus 
ESS 

Type 

Data 

Resolution 

Capacity 

(kWh) 

Nominal 

power (kW) 

Max. ramp 

rate (kW/s) 

Mode changes 

per day 

1 

 

Type 1 

1 s 615.32 94.87 4.84 34 

1 min 632.09 84 0.31 8 

10 min 629.59 79.42 0.07 2 

Type 2 
1 s 1.99 38.94 34.92 28500 

1 min 2.47 20.75 0.46 813 

2 

Type 1 

1 s 268.94 63.82 4.29 584 

1 min 219.23 70.09 0.26 46 

10 min 394.79 46.22 0.04 10 

Type 2 
1 s 0.94 24.64 23.50 30352 

1 min 0.67 8.13 0.21 848 

3 

Type 1 

1 s 268.53 56.96 1.46 226 

1 min 212.64 46.35 0.13 22 

10 min 257.69 50.94 0.03 6 

Type 2 
1 s 0.28 9.35 9.69 24780 

1 min 0.70 7.59 0.17 895 

4 

Type 1 

1 s 450.5 87.34 1.99 106 

1 min 421.20 76.32 0.12 12 

10 min 434.10 73.05 0.04 6 

Type 2 
1 s 0.38 11.41 14.01 22415 

1 min 0.90 8.96 0.25 588 

 

Considering the sizing outcome for bus 1 using the 1-second data as an example, the 

rated capacity and power for the type 1 ESS is calculated to be 615.12 kWh and 

94.87 kW, respectively. For the type 2 ESS with a high power density (e.g., a FESS), the 

nominal capacity and power are estimated to be 2 kWh and 39 kW. More importantly, 

using the type 2 ESS, the maximum ramp rate of type 1 ESS is calculated to by only 4.84 

kW/s, while the type 2 ESS has to provide a ramp rate of around 35 kW/s. Without the 

type 2 ESS, this high ramp rate has to be covered by the type 1 ESS. Moreover, the 

number of mode changes, where the ESS changes from charging to discharging mode is 
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significantly reduced for the type 1 ESS, as most of the small variations in power are 

covered by the type 2 ESS. Similar results are obtained for other buses, as seen in Table 

4.3. The maximum ramp rate and the number of mode changes for the four buses using 

the 1-second data are also plotted in Figure 4.20 for an easier comparison.  

 

Figure 4.20: (a) The maximum ramp rate, and (b) the number of mode changes per day for both types of 

ESS using the 1-second data. 

For buses 2-4, a type 2 ESS with capacity of less than 1 kWh is required for smoothing 

out the power profile of type 1 ESS. When comparing the results of the four buses, it can 

be noted that in buses 3 and 4, which are residential areas with a high share of PV 

generation, the type 2 ESS requires less ramping rate and a smaller number of mode 

changes in comparison to bus 1, where industrial loads are connected. Therefore, it can 

be seen that the variability of industrial loads such as the ones connected at bus 1 can be 

more demanding for an ESS, in comparison to the variability of PV generated power.  

In the following the effect of data resolution, the cut-off frequency of the low-pass filter, 

and selecting patterns other than the most reoccurring one on the sizing outcome is 

investigated. 

4.2.6.1 The Effect of Data Resolution on the Sizing 

As shown in Table 4.3, the ESS characteristics has been calculated using the data with 1-

second, 1-minute, and 10-minute resolutions. It can be observed that the nominal power 

and capacity of a type 1 ESS are more or less in the same range in most cases, when 

lower data resolutions are used. The exception is using the 10-minute data for bus 2, 

since the pattern detected using the 10-minute data is quite different from the pattern 

detected using other data resolutions. Therefore, it can be concluded that low resolution 

data up to 10-minutes does not necessarily lead to large errors in estimating the capacity 
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and power of type 1 ESS such as a lithium-ion battery, for the application of peak 

shaving and balancing the load and PV generation. However, the maximum ramp rate 

and the number of times the ESS changes from charging to discharging mode and vice 

versa, cannot be accurately estimated when low data resolutions are used. Hence, using 

high resolution data, such as 1-second data, should be preferred, when available.  

For sizing the type 2 ESS for power smoothing applications, it is necessary to use data 

with the highest resolution. Even using 1-minute data can lead to extreme over-sizing of 

the ESS, as in the case of buses 3 and 4, where the estimated capacity using the 1-minute 

data is twice the estimated value using the 1-second data. Similar to type 1 ESS, using 

low resolution data leads to a large underestimation of the required ramp rate and number 

of mode changes per day for the type 2 ESS.  

4.2.6.2 The Effect of Filter’s Cut-off Frequency 

The sizing result of Table 4.3 were based on the optimum cut-off frequency calculated 

from the objective function of Eq. (4.21), and given in Table 4.2. Figure 4.21 shows how 

the characteristics of the type 1 and 2 ESS alters for bus 2, as an example, if other values 

are used for the cut-off frequency of the low-pass filter.  

 

Figure 4.21: The variations in the characteristics of the type 1 and type 2 ESS with respect to the change in 

the cut-off frequency of the low-pass filter for bus 2. The optimum frequency is the red dot.  
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As seen from Figure 4.21, with an increase in the filter’s cut-off frequency, the power and 

the maximum ramp rate of the type 1 ESS increases, while its capacity remains relatively 

unchanged. On the contrary, the capacity and power of type 2 ESS decreases drastically 

with the raising cut-off frequency, as less power is allocated to this storage technology, 

up to reaching the Nyquist frequency, where all frequency components are allocated to 

the type 1 ESS. The optimum cut-off frequency, shown with the red marker in 

Figure 4.21, is the point where the capacity of the type 2 ESS is relatively low (below 

1 kWh), while simultaneously having a relatively low ramp rate and power demanded 

from the type 1 ESS. 

4.2.6.3 The Effect of Selecting Different Patterns 

As shown in Figure 4.17, the motif discovery algorithm can possibly generate several 

different patterns, which are also reoccurring, but with lower number of reoccurrences. 

Table 4.4 shows the sizing outcome for bus 2 using the 1-minute data, if other patterns 

are selected. As discussed before and shown in Figure 4.17, pattern 2 is the pattern of a 

weekend, while pattern 3 corresponds to the first day after a weekend or holiday. 

Table 4.4: Sizing results using three different standard at bus 2 using the 1-minute data. 

Bus 
ESS 

Type 

Pattern Capacity 

(kWh) 

Nominal 

power (kW) 

Max. ramp 

rate (kW/s) 

Mode changes 

per day 

2 

 

Type 1 

Pattern 1 219.23 70.09 0.26 46 

Pattern 2 207.44 41.92 0.13 18 

Pattern 3 408.87 74.33 0.17 28 

Type 2 

Pattern 1 0.67 8.13 0.21 858 

Pattern 2 0.60 9.61 0.30 826 

Pattern 3 0.72 10.80 0.27 883 

 

It can be perceived from Table 4.4 that selecting different patterns can lead to different 

sizing outcomes for the type 1 ESS. When using pattern 2, which is reoccurring pattern 

during the weekends or holidays, the nominal power of the type 1 ESS is largely 

underestimated. When pattern 3 is used, which is the pattern of the first working day of 

the week, the calculated nominal capacity is significantly higher, due to the different 

power requirement during the first 6 hours of the day (see Figure 4.17). This shows how a 

random and arbitrary choice of the day for the sizing study, which indeed could be a 

weekend or a first day of the week, can lead to very different results, in particular for 

sizing the type 1 ESS. Therefore, such an approach should be avoided.  
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For the type 2 ESS, the sizing outcomes are not considerably different, when other 

patterns are used. This is due the fact that the high-frequency components above the 

filter’s cut-off frequency have been more or less consistent in all patterns in our use case. 

4.2.7 Evaluation of the Proposed Sizing Method 

In order to evaluate the proposed sizing approach using standard patterns, the ESS with 

the characteristics derived from the standard patterns are tested throughout the whole data 

set. Since not all days follow exactly the same pattern, and the 80%-quantile of the most 

reoccurring pattern is selected for the storage sizing, it is evident that the ESS with the 

characteristics based on the standard pattern will not be able to fulfil its purposes at all 

times and during all days. However, since the ESS is sized based on the daily pattern that 

has been repeated the most, it should be capable to fulfil its purposes for most of the days 

within the data set. The performance of the ESS is evaluated based on how well the peak 

shaving and power smoothing goals can be fulfilled using the two types of ESS 

throughout the whole measurement period.  

In order to see the effect of using type 2 ESS, such as a FESS, for power smoothing 

applications, the results are shown for the 1-second data only. Also, bus 3 is selected for 

demonstrating the performance of the storage systems, as it represents a typical duck 

curve with a high share of PV generation. Similar results can be shown for the other 

buses and using other data resolutions. Figure 4.22 shows the active power drawn from 

the medium voltage grid at bus 3 during the period of two weeks, which is the length of 

the original data set used for detecting patterns.  

The results are shown for three different cases: 

▪ Case 1: No ESS is installed. 

▪ Case 2: Only a type 1 ESS, for example, a lithium-ion BESS, is installed for the 

application of peak shaving and balancing the load and PV generation. 

▪ Case 3: The type 1 ESS is complemented by a type 2 ESS such as a flywheel in 

a hybrid structure for power smoothing applications. 

Within the two weeks of measurement data, the capacity, nominal power, and the 

maximum ramp rate calculated from the standard patterns are used as the constraints for 

charging and discharging of both types of ESS. Also, the state of charge of both types of 

storage systems are maintained within the range of the state of charge discussed in 

subsection 4.2.4, which is also illustrated in Figure 4.23. A simple on/off controller is 

used for the peak shaving application using the type 1 ESS, which stores the PV 

generation starting from 10:00 until the ESS is fully charged, and discharges it from 

18:00, until the storage is empty. These times are also selected based on the detected 
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standard pattern at this bus. For the type 2 ESS, a continuous operation is considered in 

order to continuously filter out short-term power variations. 

 

Figure 4.22: The active power drawn from the medium voltage grid at bus 3, with and without the type 1 

ESS, and in combination with a type 2 ESS, such as a FESS, (a) during the whole two weeks, 

(b) during the 5th day, and (c) between 22:00 and 23:00 of the 5th day. 

 

Figure 4.23: The state of charge variations during the two weeks for both ESS types, with the 

characteristics derived from the standard patterns. 
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From Figure 4.22, it is evident that: 

1. In almost all the days, the evening peak is either eliminated (in 8 out of 14 days) 

or at least reduced by using a type 1 ESS. The exception is the 6th day, in which 

the PV generation was not high enough to charge the type 1 ESS and cover the 

demand in the evening (see Figure 4.23). Similar to any peak shaving 

application using an ESS, this has the potential to defer grid expansions or relief 

congestions. 

2. The use of the type ESS 1 flattens the daily load profile at this low voltage grid. 

Therefore, it no longer shows a typical duck curve. This means that it is not 

necessary for the grid during most of the days to support the evening demand 

with a relatively high ramp rate. However, when the PV generation is not high 

enough, the type 1 ESS is fully discharged while the demand is still high. In this 

case, the grid has to cover the instantaneous increase in the demand. 

3. The reverse power flow during noon is either fully avoided (for 8 out of 14 

days) or its duration and amplitude is notably reduced. This can potentially 

increase the hosting capacity of the low voltage grid for new PV installations or 

avoid power curtailments of the PV generation due to over-voltage incidents. 

However, this assumption is only valid if the PV systems are installed near the 

ESS installation location. For PV systems that are further away from the ESS, 

local measures may be still necessary to avoid over-voltages. 

4. With the use of the type 2 ESS, short-term power fluctuations, which can lead to 

fast voltage changes, are avoided. 

5. By applying the low-pass filter and using the type 2 ESS, the charging and 

discharging profile of the type 1 ESS is smoothened, and its required ramp rate 

is significantly reduced, which can potentially extend its lifetime. Without the 

type 2 ESS, the fast active power changes should be either covered by the type 1 

ESS, which can affect its lifetime, or by the grid, which can lead to fast voltage 

changes. 

It can be concluded, that each ESS with the characteristics derived from the standard 

patterns can fulfil its purposes for most of the days within the data set, showing the 

effectiveness of the proposed method. 

4.3 Summary 

In this chapter, two novel data-driven solutions were introduced for the problem of 

allocation and sizing of an ESS. 
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The first section presented an allocation algorithm for a FESS for power smoothing 

applications using the concept of mutual information. A data-driven method based on the 

concept of mutual information was proposed for estimating the relative voltage 

sensitivity to active and reactive power changes. Unlike the classical linearized approach, 

the proposed approach does not require a grid model, and can capture system 

nonlinearities and the changes in the system operation point. The suggested method was 

applied for the allocation of a FESS in a real grid in southern Germany. By collecting and 

using measured data at the most attractive candidates, it has been shown that the 

proposed approach can successfully find the locations with a high voltage sensitivity to 

active changes. These locations can be suitable for the installation of a FESS, if sharp 

active power variations, for example, caused by pulsed power loads, are also present. 

In the second section, a new data-driven method is introduced for sizing different types of 

ESS, including a high power density ESS, such as a FESS, for power smoothing 

applications and a high energy density ESS, such as a lithium-ion battery, for reducing 

the evening peak and avoiding reverse power flow. The main contribution of the 

proposed method is finding reoccurring daily consumption patterns using the motif 

discovery algorithm, and using it for the sizing calculations, rather than using an arbitrary 

day, or reducing the data resolution for the sizing study, as commonly found in literature. 

Motif discovery can find similar, and yet, not the same patterns using the SAX 

representation of the data, and generate a representative day for the time series, which can 

be used for the storage sizing. The detected patterns using motif discovery were used for 

deriving the characteristic of two types of ESS. Using a simple optimization framework, 

an optimum cut-off frequency is selected for applying a low-pass filter on the patterns in 

order to decompose them into low- and high-frequency components, and allocating them 

to different types of ESS. The nominal capacity, nominal power, and the maximum ramp 

rate is calculated for each type of ESS using the standard patterns, detected from the 

measurement data collected at four different low voltage distribution grids in southern 

Germany with three different data resolutions. It has been shown that the ESS with 

characteristic derived from only the standard patterns can effectively reduce the evening 

peak, the reverse power flow, and short-term active power fluctuations for most of the 

days throughout the whole data set. Moreover, it has been shown, that high-resolution 

data should be preferred to accurately calculate all the characteristics of an ESS, in 

particular for power smoothing applications. 

In summary, this chapter presented two examples on how techniques and solutions from 

computer science and information theory can be applied for solving practical problems in 

power systems. With the increasing number of measurement devices in particular at the 

low voltage distribution grids, data-driven techniques can become a major tool for 

providing novel solutions to the challenges in design and operation of low voltage grids. 
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5 Modelling of High-Speed Flywheel 
Energy Storage Systems (FESS) for 
Real-time Simulations 

In this chapter, the model of a high-speed Flywheel Energy Storage System (FESS) is 

presented and simulated in real-time, which considers the losses and auxiliary power 

requirements of the FESS. The focus of the modelling is on the behavior of the FESS for 

frequency and voltage support at the low voltage level. The model of the FESS is 

simulated in real-time with a simulation step of 10 µs, and the results are compared with 

offline simulation results. The developed real-time simulation model can be used for 

controller hardware-in-the-loop testing of new controllers, or for the preliminary studies 

required for Power Hardware-in-the-Loop (PHIL) testing of the FESS, as discussed in 

Chapter 3. The model of the FESS in this work is based on the structure and design of a 

specific commercial 60 kW high-speed FESS. However, the model can be easily adjusted 

for any other systems. 

5.1 Potential Applications of Real-time Simulation 
of a FESS 

As discussed in Chapter 3, real-time simulations of new power systems components can 

accelerate their design, development, and performance verification [96], [100]. A 

component model, running in real-time, can serve as a Digital Twin [99] of that 

component, which can be used to study its interaction with other hardware. Therefore, 

engineers have developed models of power systems components including wind 

turbines [111], [217], photovoltaic systems [218], and superconducting fault current 

limiters [219], [220] for real-time simulations. 

Moreover, a real-time simulation of a power system component together with a power 

amplifier can be used to build a full-scale emulator of the component. These emulators 

are often the safer and the cheaper alternatives to the real hardware, for instance, in the 

case of hazardous lithium-ion batteries or the costly high-speed FESS. Lithium-ion 

batteries have been emulated at the cell level [221], as small battery energy storage 

system for household applications [222], and as grid-scale systems for grid-wide 

applications [223]. Today, commercial and non-commercial emulators are available for 

many power system components such as wind turbines [143], [224], PV systems [225], 
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[226], and electrical machines [227], which are used for various applications, including 

control and converter testing [173], [228], [229]. 

In addition, as discussed in Chapter 3, real-time simulation of the hardware under test is a 

recommended step, prior to a PHIL testing. Although offline simulations can also provide 

useful insights [118], there are advantages of having the model of the hardware under test 

running in real-time. This includes simulating the hardware model in the same grid 

model, in which the behavior of the real hardware is later evaluated using PHIL testing.  

To our knowledge, the real-time implementation of a FESS model has not yet been 

carried out before. In this chapter, a model of a high-speed FESS is developed and 

simulated in real-time, and the results are compared against offline simulation results. In 

the following chapter, this model is validated using the experimental results obtained 

from the PHIL testing of a commercial FESS.  

5.2 Modeling of a High-speed Flywheel Energy 
Storage System (FESS)1 

The model of a FESS comprises the model of each of its individual components. Figure 

5.1 illustrates the structure of a high-speed FESS at a component level. The structure of 

the high-speed FESS presented in Figure 5.1 is based on the design of a 60 kW/3.6 kWh 

commercial high-speed FESS. The inside view of the container holding the 60 kW FESS 

and its required auxiliary components is shown in Figure 5.2.  

As seen in Figures 5.1 and 5.2 and discussed in Chapter 2, a high-speed FESS consists of 

a Permanent Magnet Synchronous Machine (PMSM) coupled to a high-inertia rotor, two 

Voltage Source Converters (VSC) as the Machine-side Converter (MSC) and Grid-side 

Converter (GSC) with their corresponding controllers, and filters on the AC side of each 

converter. Due to the extremely low inductance values of the PMSM used in this high-

speed FESS, it is necessary to have an LC filter between the PMSM and the machine-side 

converter to reduce current and torque ripples [230].  

 
1 Parts of this chapter have been presented in the following publications:  

1) S. Karrari, M. Noe, and J. Geisbuesch, “High-speed Flywheel Energy Storage System (FESS) for Voltage 

and Frequency Support in Low Voltage Distribution Networks,” in 3rd IEEE International Conference on 

Intelligent Energy and Power Systems (IEPS 2018), Kharkov, 2018, pp. 176–182.  

2) S. Karrari, M. Noe, and J. Geisbuesch, “Real-time simulation of high-speed Flywheel Energy Storage System 

(FESS) for distribution networks,” in the 9th ACM International Conference on Future Energy Systems (ACM 

e-Energy 2018), Karlsruhe, 2018. 
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Figure 5.1: Structure of a high-speed Flywheel Energy Storage System (FESS). 

 

Figure 5.2: The inside view of the container of the 60 kW high-speed FESS. 

In principle, the model of a FESS is similar to the model of a variable-speed wind turbine 

equipped with a PMSM [107]. However, the FESS has faster dynamics, no mechanical 

input torque, and the ability to absorb energy. In the following section, the model of each 

individual component of the FESS is discussed in detail. 



5 Modelling of High-Speed Flywheel Energy Storage Systems (FESS) for Real-time Simulations 

94 

5.2.1 Modeling of a Permanent Magnet Synchronous 

Machine 

As mentioned in Chapter 2, Permanent Magnet Synchronous Machines (PMSM) are the 

most common choice for a high-speed FESS, while a low-speed FESS often uses an 

asynchronous machine. Due to the absence of the field windings, PMSM are more 

suitable to be used in the vacuum enclosure of high-speed FESS, where convection 

cooling of the rotor is not possible. They are also simple and robust in their structure, 

which leads to a higher reliability. Moreover, these machines have high power-to-weight 

and torque-to-mass ratios and an easier control design, when compared to several other 

types of electrical machines [73]. 

Depending on the arrangement of the permanent magnets in the rotor, there are several 

types of PMSM, with rather diverse characteristics. Four major types of PMSM are 

shown in Figure 5.3. In a high-speed FESS, a surface mounted PMSM, which is shown in 

Figure 5.3(a), is often used, in which the permanent magnets are mounted on the rotor 

surface in a symmetrical arrangement. This leads to a relatively small stator inductance 

and a negligible reluctance torque. The other common type is the interior PMSM, shown 

in Figure 5.3(c) and (d), in which the rotor salience results in a non-uniform air gap flux 

distribution and a high reluctance torque. A comparison between a surface mounted and 

an interior PMSM is given in Table 5.1. The interior PMSM and the surface mounted 

PMSM have different characteristics, however, the mathematical description is the same 

in both cases [231]. 

Table 5.1: A comparison between the surface mounted and interior PMSM [231]. 

Type Advantages  Drawbacks 

Surface mounted 

PMSM 

+ Easy construction 

+ Simple design 
+ Uniform air gap 

+ Higher air gap flux density 

+ Lower harmonic content 
+ Simpler control 

- Lower mechanical robustness (risk of 

magnets being detached from the rotor) 
- More complex speed or position estimation  

Interior PMSM 

+ Higher mechanical robustness 

+ Higher torque (or acceleration) 
+ Higher overloading capability 

- Complex construction  

- Requires flux barriers 

 

For modeling and description of the notations of a PMSM, a simplified schematic of a 

two-pole surface mounted PMSM is shown in Figure 5.4. Clearly, the modeling and the 

equations are also valid for a PMSM with more than two poles. 
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Figure 5.3: Arrangement of the permanent magnets in (a) surface mounted PMSM, (b) surface inset 

PMSM, (c) interior (I-shaped) PMSM, and (d) interior circumferential PMSM. 

 

Figure 5.4: (a) The equivalent circuit of a PMSM in the three-phase stationary reference frame. 

(b) Schematic of a two-pole surface mounted PMSM in the dq-rotating reference frame. 

The model of a PMSM has been frequently described in the literature, including in [73], 

[231]–[233]. In this work, a very detailed model is not necessary, as the goal is to 
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represent the behavior of the FESS at the system level for grid applications. Therefore, 

the following simplifying assumptions have been made for modeling the PMSM [73]: 

▪ Resistances are constant, i.e., the effect of temperature on the resistances is 

neglected. 

▪ Capacitances are negligible. 

▪ Hysteresis losses are neglected. 

▪ Eddy current losses are neglected. 

▪ Flux harmonics are neglected. 

▪ The stator windings are identical and positioned in a sinusoidal manner along 

the air gap. Also, they are connected in a star configuration with an open neutral 

connection (not grounded), which is common for an inverter connected PMSM. 

▪ As the flux generated by the permanent magnets in the stator is sinusoidal, the 

magnetic motive force is also sinusoidal. 

▪ The inductance versus rotor position is sinusoidal. 

Moreover, the iron saturation is also neglected in this study due to unavailability of the 

relevant data from the manufacturer. However, for machines with a high power density 

that are often used, it is recommended to consider the iron saturation [234]. The losses 

are neglected in the modeling of the PMSM. However, all losses in the FESS including 

the copper and iron losses in the PMSM are aggregated and considered, as later described 

in subsection 5.2.5. The permanent magnets are assumed to be a flux linkage source 

concentrating all their flux along only one axis [231]. Since a surface mounted PMSM is 

considered, a uniform air gap with no rotor saliency is assumed.  

With the aforementioned assumptions, the PMSM can be represented by the equivalent 

circuit shown in Figure 5.4(a). The relationship between the voltages and currents of each 

phase for a balanced system in the three-phase stationary reference frame is governed 

by [73] 

[

𝑢a
𝑢b
𝑢c
] = Rs [

𝑖a
𝑖b
𝑖c

] +
𝑑

𝑑𝑡
[

𝜓a
𝜓b
𝜓c

], 
(5.1) 

in which, 

[

𝜓a
𝜓b
𝜓c

] = [

Laa Lab Lac
Lba Lbb Lbc
Lca Lcb Lcc

] [

𝑖a
𝑖b
𝑖c

] + 𝜓PM

[
 
 
 
 

sin 𝜃m

sin(𝜃m −
2𝜋

3
)

sin(𝜃m +
2𝜋

3
)]
 
 
 
 

. 

(5.2) 

In Eq. (5.1) and (5.2), 𝑢k is the stator phase voltage (k ∈ {a, b, c}), 𝑖k is the stator phase 

current, 𝜓k is the stator flux linkage, 𝜓PM is the permanent magnet flux linkage, Lkk are 
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the self- and mutual inductances of each stator phase, Rs is the stator phase resistance, 

and 𝜃m is the mechanical angle of the rotor. According to Eq. (5.1), the voltage of the 

three-phase windings in a PMSM equals to the sum of the resistive voltage drops and the 

time derivative of the flux linkages. However, the fluxes and inductances in Eq. (5.2) 

change nonlinearly with rotation of the rotor. To avoid this, it is common practice to 

replace the three-phase stationary windings of the stator with two imaginary 

perpendicular windings, which are rotating with the electrical speed of the rotor. This 

frame is known as the dq-rotating reference frame and is depicted in Figure 5.4(b). The 

well-known Park transformation matrix (𝑇dq), as shown in Eq. (5.3), is used for mapping 

the values from the three-phase stationary frame to the dq-rotating reference frame. In 

Eq. (5.3), 𝑖d and 𝑖q are the d- and q-axis equivalent stator currents, and 𝑖0, which is the 

zero component current, is assumed to be zero, as a balanced system is considered. As 

shown in Figure 5.4(b), it is assumed that the d-axis is aligned with the rotating flux 

produced by the permanent magnets and the current of the first phase (phase a). The q-

axis leads the d-axis by 90 degrees in the counterclockwise direction. 

[

𝑖d
𝑖q
𝑖0

] =
2

3

[
 
 
 
 
 cos (𝜔e𝑡) cos (𝜔e𝑡 −

2𝜋

3
) cos (𝜔e𝑡 +

2𝜋

3
))

−sin (𝜔e𝑡) −sin (𝜔e𝑡) −sin (𝜔e𝑡 +
2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 
 

⏟                                
𝑇dq

[

𝑖a
𝑖b
𝑖c

]. 

(5.3) 

Since the reference frame rotates with the same frequency as the supplied voltage in 

steady-state conditions, this frame is also referred to as the synchronous reference frame 

in the literature [235]. Using the dq-rotating reference frame, sinusoidal variables become 

DC, which are much easier to analyze and control. In the dq-rotating reference, the 

PMSM is modeled as [236] 

[
𝑢d
𝑢q
] = Rs [

𝑖d
𝑖q
] +

𝑑

𝑑𝑡
[
𝜓d
𝜓q
] + 𝜔e [

−𝜓q
𝜓d

], 
(5.4) 

in which, 

[
𝜓d
𝜓q
] = [

Ld𝑖d + 𝜓PM
Lq𝑖q

], 
(5.5) 

and 𝑢d and 𝑢q are the d- and q-axis stator voltage, Ld and Lq are d- and q-axis stator 

inductance, 𝜓d and 𝜓q are the stator flux in the d- and q-axis directions, and 𝜔e is the 

rotor electrical speed. As seen from Eq. (5.5), using this approach, the flux values are no 

longer a function of the rotor position. As saturation is neglected, a linear relationship is 

assumed between the d- and q-axis flux linkages and the stator currents, as shown in 
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Eq. (5.5). A detailed modeling of the PMSM considering saturation, nonlinear cross 

coupling, and angular dependencies can be found in [227].  

Equations (5.4) and (5.5) can be schematically illustrated by two equivalent circuits, one 

for each of the d- and q-axis directions, as shown in Figure 5.5. In this figure, the voltage 

sources represent the induced voltages caused by the rotation of the machine. 

 

Figure 5.5: Equivalent circuits of a PMSM in the (a) d-axis and the (b) q-axis. 

For calculating the speed variations of the rotor, the mechanical part of the PMSM is 

modeled using the Eq. (5.6)-(5.10), considering the fact that in a FESS no mechanical 

torque input is applied to the rotor. 

𝜔e = 𝑛p𝜔m, (5.6) 

𝜔m =
𝑑𝜃m
𝑑𝑡
, 

(5.7) 

𝜏e =
3

2
𝑛p(𝜓d𝑖q −𝜓q𝑖d) =

3

2
𝑛p𝑖d𝑖q(Ld − Lq)
⏞          
Reluctance torque

+
3

2
𝑛p𝜓PM𝑖q
⏞      

Synchronous torque

, 

(5.8) 

Jf
𝑑𝜔m
𝑑𝑡

= 𝜏e − Df𝜔m, 
(5.9) 

𝐸FW =
1

2
Jf𝜔m

2 . 
(5.10) 

In these equations, 𝜔m is the mechanical angular velocity of the rotor, 𝜏e is the electrical 

torque, 𝑛p is the number of pole pairs, Df is the friction coefficient, 𝐸FW is the energy 

stored in the rotor, and Jf is the combined moment inertia of the PMSM and the flywheel. 

Equation (5.9) determines the variations in the speed of the rotor or flywheel, from which 

the changes in its energy content can be calculated according to Eq. (5.10). The 

term Df𝜔m in Eq. (5.9) is referred to as the drag toque, which is minimized in a high-
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speed FESS with the use of a vacuum enclosure and magnetic bearings. Equation (5.10) 

resembles the swing equation of conventional synchronous generators. This similarity is 

used later in Chapter 7 to introduce an inertia emulation controller for a FESS in low-

inertia grids.  

The electrical torque in Eq. (5.8), consists of two parts; the reluctance torque and the 

synchronous torque. In a surface mounted PMSM, the d- and q-axis stator inductances 

(Ld and Lq) are almost equal, making the reluctance torque nearly zero. Therefore, 

Eq. (5.11) can be further simplified to 

𝜏e =
3

2
np𝜓PM𝑖q. 

(5.11) 

Since the permanent magnet flux is assumed to be constant2, it can be seen from 

Eq. (5.11) that the electromagnetic torque can be controlled through the q-axis 

component of the stator current. This simplicity cannot be achieved when using other 

reference frames such as the stationary αβ-frame.  

The active (𝑃e) and reactive power (𝑄) of a PMSM in the dq-rotating reference frame is 

calculated using Eq. (5.12) and (5.13), which is also known as the instantaneous power 

theory [237]. 

𝑃e =
3

2
(𝑢d𝑖d + 𝑢𝑞𝑖𝑞), 

(5.12) 

𝑄 =
3

2
(−𝑢𝑑𝑖𝑞 + 𝑢𝑞𝑖𝑑). 

(5.13) 

The model of the PMSM in the dq-rotating reference frame can also be rewritten as a 

nonlinear state-space model by defining 𝑖̇d, 𝑖̇q, and 𝜔e as the state variables, and 𝑢𝑑 and 

𝑢𝑑 as the system input, which result 
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⏞              
Nonlinear part

. 

(5.14) 

Knowing the exact values of the machine parameters is mandatory for an accurate 

simulation of its dynamic and steady-state behavior. The permanent magnet flux (𝜓PM) 

 
2 Minor variations due to temperature changes may be present in practice, which are neglected in this work. 
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can be easily calculated using an open-circuit test with a reasonable accuracy. However, 

determining the precise values for d- and q-axis stator inductances (Ld and Lq) can be 

more complex, as saturation and cross coupling effects are also affecting the results. 

Various analytical, finite element, and experimental methods can be used to estimate 

these values, as described fully in [238], [239]. In this work, these values are provided by 

the manufacturer and are given in Table 5.2. 

Table 5.2: Parameters of the PMSM of the high-speed FESS according to the manufacturer. 

Parameter Symbol Value 

Stator resistance Rs 9 mΩ 

d- and q-axis stator inductance Ld, Lq 415.8 μH 

Permanent magnet flux linkage 𝜓PM 0.1178 Vs 

Number of pole pairs 𝑛p 1 

Rotor (flywheel) inertia  Jf 1.26 kgm2 

Friction coefficient Df 4.0898 × 10−5 Nms 

Nominal electrical power Pn 60 kW 

Maximum electrical power (short-term) Pmax 91.5 kW 

Maximum stator current ismax 141 A 

Maximum electrical torque 𝜏emax 21 Nm 

Maximum mechanical angular velocity 𝜔max 4712.4 rad/s 

5.2.2 Modeling of Voltage Source Converters 

As shown in Figure 5.1, a FESS is controlled via two voltage source converters in a back-

to-back configuration. As discussed in Chapter 2, several converter topologies can be 

used in a FESS, but the two-level and three-level converters are the most common 

topologies found in commercial systems. In the high-speed FESS in this work, both 

converters have a two-level topology. 

Depending on the intended study, there are various well-known converters models that 

can be selected, which differ mainly on how detailed the switches and semiconductors are 

represented. Comparative studies of different converter models for various applications 

can be found in [110], [240], [241]. Clearly, more detailed models have a higher 

accuracy, but at the cost of a higher computational effort. A small computation time is of 

crucial importance for real-time simulations, in which all calculations are required to be 

completed within a short simulation time step. Therefore, choosing the appropriate level 

of details is necessary to limit the model computation time, while simultaneously having 

an acceptable model accuracy. Average model, switching model, and detailed models are 

among the most commonly used converter models. These well-known models are 
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explained briefly in this section, followed by a discussion on choosing the right model for 

the real-time simulations in this work. It should be noted that there are several other less-

known converter modeling techniques, such as the sub-cycle average models [242], 

which are not discussed here.  

5.2.2.1 Average Model 

The average model is based on the assumption that the switching frequency of the 

converter is much greater than the fundamental frequency of the grid. In this model, the 

switching transitions, harmonics, and ripples are removed from the voltages and currents 

by averaging over one switching period. Nevertheless, lower frequency components of 

voltages and currents are preserved.  

In the average model, all switches are assumed to be operated in the continuous 

conduction mode [235]. The semiconductors like IGBTs and diodes are not explicitly 

modeled, and the converter on the AC side is simply modeled as a three-phase controlled 

AC voltage source with a small internal resistance using [243] 

𝑢cj = 𝑚j
𝑈DC

2
− 𝑟on𝑖cj. (5.15) 

In Eq. (5.15), 𝑚j is the modulation index of each phase (j ∈ {a, b, c}), which is 

determined by the converter controller, 𝑈DC is the voltage of the DC side, 𝑢cj and 𝑖cj are 

the phase voltage and current of the AC side, respectively, and 𝑟on represents the on-state 

resistance of the switches [243]. It is important to ensure that |𝑚j| ≤ 1 at all times in 

order to guarantee a linear Pulsed Width Modulation (PWM). Equation (5.15) can be 

rewritten in the dq-rotating reference frame, rotating at the fundamental frequency of the 

AC side voltage using [243] 

[
𝑢cd
𝑢cq
] =

𝑈DC

2
[
𝑚d

𝑚q
] − 𝑟on [

𝑖cd
𝑖cq
]. 

(5.16) 

In Eq. (5.16), 𝑢cd and 𝑢cq are the d- and q-axis voltage of the AC side of the converter, 

𝑖cd and 𝑖cq are the d- and q-axis current, and 𝑚d and 𝑚q are the d- and q-axis component 

of the modulation index, respectively.  

For modeling the DC side, a lossless converter is assumed (losses are later aggregated in 

subsection 5.2.5). Therefore, the current of the DC side of the converter is calculated 

using 

𝐼DC =
𝑃AC
𝑈DC

=

3
2
(𝑢cd𝑖cd + 𝑢cq𝑖cq)

𝑈DC
. 

(5.17) 
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According to Eq. (5.17), the DC side of the converter is modeled as a controlled DC 

current source, in which the current is a function of the active power flowing through the 

AC side (𝑃AC). An equivalent circuit of the average model of a voltage source converter 

is shown in Figure 5.6.  

 

Figure 5.6: The equivalent circuit of the average model of a voltage source converter. 

Since all switching transitions, harmonics, and ripples are neglected, the average model 

requires a very low computational effort. It is the most common model used for designing 

converter controllers, as it provides a simple physical insight. Controllers can be included 

in full detail, considering the inner, e.g., current, and outer, e.g., power or DC-link 

voltage, control loops. From the grid perspective, since the high-frequency harmonics are 

mostly attenuated by filters, the average model can be suitable for integration studies of 

distributed energy resources into power systems. It can be used for transient stability 

studies of fast phenomena in the order of tens to hundreds of milliseconds [110]. 

However, this model is not suitable for the investigation of harmonics or internal 

converter analyses.  

5.2.2.2 Switching Model 

In the simplest form of switching model, the switches are modeled as ideal on/off 

switches. The switching transitions such as dead times are ignored based on the 

assumption that they take only a small fraction of the switching period. Each switch is 

controlled by a switching function, which has the value of one, when the switch is on, 

and zero, when the switch is off. On-state losses can be added as a resistor in series with 

the ideal switches. Therefore, the voltage of each converter phase using the switched 

model is calculated using [243] 

𝑢 cj = (𝑆mj − 𝑆nj)
𝑈DC
2
− 𝑟on𝑖 cj, 

(5.18) 
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where 𝑆mj and 𝑆nj are the switching function of two complementary switches for each 

converter leg, and 

𝑆mj + 𝑆nj = 1 (5.19) 

at all times, in order to avoid short-circuiting of the DC-link. The switching functions are 

the gate signals from the pulsed width modulation controller. Modeling of the DC side is 

similar to the one from the average model by calculating the active power from the three 

phases voltages and current. The equivalent circuit for a voltage source converter using 

the switching model is shown in Figure 5.7 

 

Figure 5.7: The equivalent circuit of the switching model of a voltage source converter. 

In a more detailed approach, switches can be modeled as two-value resistors, having a 

high resistance when they are in the off-state (in the range MΩ) and a low resistance, 

when they are in the on-state (in the order of mΩ). The snubber circuit and the anti-

parallel diodes are also modeled in the same manner. The choice between high and low 

resistance values for the switches is made on the basis of the gate signals received from 

the modulation controller, but this choice for the anti-parallel diodes are made based on 

the instantaneous voltage and current values. 

Switching models can represent voltage and current harmonics, which is a significant 

advantage compared to the average model. However, small simulation time steps are 

required usually for simulating such models to avoid numerical instability, in particular 

for high switching frequencies. 

5.2.2.3 Detailed Model 

There are different types of detailed converter models in literature, as described in [240]. 

In one approach, switches are represented by variable resistors, which can either follow a 

simplified linear function or a nonlinear one according to the voltage-current 
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characteristics of the semiconductors, given in the manufacturer’s datasheets [107]. The 

detailed modeling of converters can be even more complex, in which all the parasitic 

capacitors of the switches, stray inductances, and the packaging effects are considered. 

Simulating such models usually requires extremely small simulation time steps to 

accurately represent fast switching events and solve the stiff differential equations of the 

system with high order solvers. The combination of small simulation time steps and high 

model complexity leads to a long run time for these models. Therefore, such models are 

often used for a specific part of the system and for a short time period of a few switching 

cycles. They are mostly used for specific applications, such as simulating internal 

converter faults, studying switching transitions, switching losses and electromagnetic 

interference (EMI). This level of details is not required for power system integration 

studies or designing and testing control systems [110], [240], [244], which is the intention 

in this work. 

5.2.2.4 Selecting the Right Converter Model for Real-time Simulations 

As discussed in Chapter 3, in real-time simulations, equations should be solved within a 

fixed simulation time step. The average model can easily be simulated in real-time, 

independent of the switching frequency, as variations within each switching period are 

neglected. Real-time simulation of a switching model for converters can be challenging 

for high switching frequencies. As discussed in subsection 3.1.2, in practice, the 

simulation sampling frequency is usually chosen in the range of 50 to 100 times of the 

switching frequency for an accurate simulation of converter switching models [111], 

[245]. Furthermore, in the switching model using two-value resistors, there is a sudden 

change between a high-value resistance and a low-value one. Hence, an even smaller 

time step may be required to avoid numerical instabilities, when using the fixed-step non-

iterative solvers of the real-time simulators [107]. Therefore, real-time simulation of 

converters with a high PWM carrier frequency using the switching models may require 

simulation time steps of less than few microseconds, which is not possible using CPU-

based real-time simulators. In this case, the model has to be simulated on an FPGA with a 

submicrosecond simulation time step.  

In this work, two voltage source converters with a PWM carrier frequency of 8 kHz have 

to be simulated in real-time. This requires a simulation step of 1.25-2.5 µs for accurate 

real-time simulation of the switching models according to [111], [245], which is not 

possible using CPU-based real-time simulators. However, as suggested in [110], for 

applications such as frequency and voltage control in power systems, which are the 

applications intended in this work, the use of average converter models can be adequate. 

Therefore, average converter models using Eq. (5.15)-(5.18) are used for the modeling of 

the FESS. This also allows using larger simulation time steps, which means more 
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components can be simulated in real-time in a single model. It should be noted that 

simulating the switching model of these converters on the FPGA or with the help of 

switching event compensation algorithms [246] is also possible, but deemed unnecessary 

for this application. 

5.2.3 Grid-side Converter Controller 

Figure 5.8 depicts the block diagrams of the grid-side converter and machine-side 

converter controllers of the high-speed FESS, which are designed for the applications of 

voltage and frequency support in low voltage grids. Description of the notations and 

values of parameters for the grid-side and machine-side converter controllers are 

provided in Table 5.3 and Table 5.4, respectively. 

 The grid-side converter controller has two major tasks: 

▪ Supporting the grid voltage according to the latest German grid code for the low 

voltage grids [182], by controlling the reactive power exchange between the 

FESS and the grid. 

▪ Maintaining the DC-link voltage on the reference value, by controlling the 

active power exchanged between the DC-link capacitor and the grid. 

Grid voltage support: Since the FESS in this work is connected to the low voltage 

distribution grid, it has to comply with the latest grid connection codes for this voltage 

level. Since November 2018, the new version of the grid code VDE-AR-N 4105 [182] is 

applicable for the German grids, which indicates that any ESS larger than 4.6 kVA, 

should follow the Q(U) characteristics, depicted in Figure 4.5(b). The Q(U) 

characteristics requires the ESS to start absorbing or injecting reactive power when the 

voltage passes the ±3 % of the nominal value and reaches its maximum reactive power 

capability when the voltage reaches ±7 %. The gradient of the Q(U) characteristics 

determines the voltage droop coefficient Dq, which indicates how much reactive power 

should be injected or absorbed with respect to the voltage changes. The voltage deadband 

udb is set to ±3 %, which helps avoiding continuous operation of the FESS during minor 

voltage variations. The Q(U) characteristic replaces the grid code requirement from 2011, 

which indicated that reactive power support is only required if the ESS injects power 

larger than 50 % of its rated value to the grid. 

In this work, the instantaneous grid voltage (𝑢g) is calculated in the dq-rotating reference 

frame and is used for the calculation of the reactive power reference, which enables an 

immediate detection of any changes in the voltage. This is calculated using  
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𝑢g = √𝑢dg
2 + 𝑢qg

2 . 
(5.20) 

The reactive power reference for grid voltage support is generated according to the value 

of 𝑢g, the voltage deadband udb, and the voltage droop coefficient Dq. The reference 

value for the reactive power can also sent by an operator using 𝑄cref (see Figure 5.8). 

DC-link voltage control: A conventional PI controller with saturation is used for 

controlling the DC-link voltage. The output of the PI controller determines the active 

power reference for the grid-side converter controller (𝑃gref), which is limited to the 

maximum power of the FESS (𝑃max).  

Determining the current reference values: The upper level controllers or commands by 

the operator determine the active and reactive power reference values (𝑃gref and 𝑄gref). 

The instantaneous power theory [237] is used for calculating the d- and q-axis current 

reference values (𝑖qgref and 𝑖dgref) from the active and reactive power set points. Similar 

to the PMSM, the active and reactive power of the grid-side converter can be calculated 

from the voltages and currents in the dq-rotating reference frame using 

𝑃g =
3

2
(𝑢dg𝑖dg + 𝑢qg𝑖qg), (5.21) 

and 

𝑄g =
3

2
(−𝑢dg𝑖qg + 𝑢qg𝑖dg). 

(5.22) 

The dq-rotating reference frame of the grid-side converter controller is synchronized by 

the phase angle of the grid voltage (𝜃PLL), which is measured by a conventional 

Synchronous Reference Frame Phase-locked Loop (SFR-PLL). It is assumed that the dq-

rotating reference frame is chosen in a way, that the grid voltage is fully aligned with the 

d-axis, resulting in a q-axis component of zero for the voltage, i.e., 𝑢qg = 0. The phase-

locked loop controls the rotating reference frame angle, in order to maintain this 

condition with the changes in the system operating points (see subsection 5.2.5). By 

doing so, according to Eq. (5.21) and (5.22), the active and reactive power can then be 

independently controlled by controlling the values of 𝑖dg and 𝑖qg, respectively. Therefore, 

the d- and q-axis reference currents are calculated using 

𝑖dgref =
2𝑃gref

3𝑢dg
, 

(5.23) 

and 
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𝑖qgref =
−2𝑄gref

3𝑢dg
. 

(5.24) 

The reference values for the d- and q-axis currents are sent to the inner current controller. 

The inner current controllers are conventional PI controllers. As seen in Figure 5.8, the 

outputs of the PI current controllers are added with decoupling terms in order to enable 

an independent control of the d- and q-axis currents. A feedforward term has also been 

added to reduce the high transient currents during the converter start-up, which also 

decouples dynamics of the converter system from those of the grid, and improves its 

disturbance rejection capability, as suggested in [243]. At the end, the grid-side converter 

controller generates the modulation index 𝑚dg and 𝑚qg in the dq-rotating reference 

frame, which are transformed back to the stationary frame using the inverse Park 

transform and the grid phase angle measured by the phased-locked loop. 

Table 5.3: Variables definition and parameters of the grid-side converter (GSC) controller. 

Parameter Symbol Value 

Instantaneous grid voltage 𝑢g - 

Grid voltage reference 𝑢ref 325.27 V 

Voltage deadband udb 9.76 V (3%) 

Voltage droop coefficient Dq 6.52 kVar/V 

External reactive power command Qcrefg - 

Total reactive power reference of the GSC Qgref - 

Maximum reactive power of the GSC Qmax 34 kVar 

d-axis and q-axis component of the grid voltage 𝑢dg, 𝑢qg - 

d-axis and q-axis current reference of the GSC 𝑖dgref, 𝑖qgref - 

d-axis and a-axis grid current of the GSC 𝑖qg, 𝑖dg - 

Three-phase grid current 𝑖ag, 𝑖bg, 𝑖cg - 

Active power reference of the GSC 𝑃gref - 

DC-link capacitor voltage 𝑈DC - 

DC-link capacitor voltage reference 𝑈DCref 720 V 

q-axis current controller of the GSC- proportional term KP1g 5 

q-axis current controller of the GSC- integral term KI1g 100 

DC-link voltage controller - proportional term KP2g 20 

DC-link voltage controller - integral term KI2g 1000 

d-axis current controller of the GSC- proportional term KP3g 5 

d-axis current controller of the GSC- integral term KI3g 100 

Estimated phase angle from the phase-locked loop 𝜃PLL - 

d-axis and q-axis modulation index of the GSC 𝑚dg,𝑚qg - 

Three-phase modulation index of the GSC 𝑚ag,𝑚bg, 𝑚cg - 
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5.2.4 Machine-side Converter Controller 

The machine-side converter controller controls the active power flow between the PMSM 

and the DC-link capacitor through controlling the currents of the machine. The active 

power reference can either be set by the grid frequency support block or by the operator 

through 𝑃cref. The losses and auxiliary power required for running the entire system, 

represented by 𝑃L&A in Figure 5.8(b), should also be considered for providing a certain 

power at the grid connection point. This is due to the fact, that this particular FESS has 

no additional auxiliary power connection, and all auxiliary components are also powered 

from its main terminal.  

The active power of the flywheel is transferred to the grid by the grid-side converter 

controller, as it attempts to maintain the DC-link voltage. A description of the notations 

and values of parameters of the machine-side converter is provided in Table 5.4. 

Grid frequency support: Similar to the voltage support requirements, the FESS has to 

follow the frequency support requirement of the latest German grid code for low voltage 

grids, the VDE-AR-N 4105:2018-11 [182]. This grid code indicates that the FESS has to 

stay connected to the grid in the frequency range of 47.5 Hz to 51.5 Hz, which is also 

known as the frequency ride-through. In this range, the FESS has to follow the P(f) 

characteristic shown in Figure 4.5(a). According to the P(f) characteristic the frequency 

deadband (fdb) for systems connected to the low voltage grids is 200 mHz. Also, the grid 

code requires different frequency droop coefficients for over- and under-frequency events 

larger than the deadband. Hence, the droop for the over-frequency (Dup) and under-

frequency events (Ddn) are separated in Figure 5.8. In case of an over-frequency 

disturbance in the range of 50.2 to 51.5 Hz, the FESS has to participate in the frequency 

regulation by absorbing power with the rate of 40 % per Hz, after deducting the 

frequency deadband. In case of under-frequency events, the FESS has to inject power to 

the grid with the rate of 100 % per Hz until reaching its maximum power. Therefore, in 

Figure 5.8(b), 

𝑃mref = {
20Pn

50.2 − 𝑓g

50 Hz
  for  50.2  Hz ≤ 𝑓g ≤ 51.5 Hz

50Pn
49.8 − 𝑓g

50 Hz
  for  47.5  Hz ≤ 𝑓g ≤ 49.8 Hz

, 

(5.25) 

where Pn is the nominal power of the FESS and 𝑓g is the grid frequency. 

Speed-dependent ramp-rate limiter: In practice, a FESS can only deliver the nominal 

power above a particular minimum rotational speed. This is due to the fact, that at low 

rotational speeds, providing the nominal power requires high amounts of torque, which 
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can be above the maximum permissible torque of the PMSM. Therefore, it is important to 

consider the torque limiter in modeling a FESS, as shown in Figure 5.8(b). For this 

particular FESS, the torque limiter limits the power ramp rate to approximately 410 W/s, 

until reaching the speed of 23,200 rpm. 

Determining the current reference values: There are several methods for controlling a 

PMSM [231], [235], [244], [247]. A categorization of some of the most well-known 

methods is shown in Figure 5.9. Selecting the most appropriate control method depends 

on the structure and type of the PMSM, and its main application. Conventional Field-

Oriented Control (FOC) methods are generally more preferred due to a simpler design. 

 

Figure 5.9: Different control strategies for controlling a PMSM (figure adopted from [247]). 

For the surface mounted PMSM used in the high-speed FESS, the Maximum Toque per 

Ampere (MTPA) control has been used. This method is suitable for applications in which 

fast reaction times are required. With the use of the maximum torque per ampere control, 

the copper losses of the machine is also minimized [248]. As shown in Eq. (5.8), in a 

surface mounted PMSM, the electrical torque is a function of the q-axis component of the 

stator current only. Therefore, for a given stator current, the maximum torque is achieved, 

when the current is fully aligned with the q-axis. Therefore, to implement the maximum 

torque per ampere control, the d-axis component of the current should be forced to zero, 

i.e., 𝑖dmref = 0. Figure 5.10(a) shows the vector diagram of the stator current without the 

maximum torque per ampere control, while Figure 5.10(b) depicts the case when the 

maximum torque per ampere is applied. This method is also known as the constant torque 

angle control, since the torque angle, 𝛿 in Figure 5.10, is always kept at 90 degrees with 

respect to the flux linkage of the permanent magnets (𝜓PM). The reference value for the 

q-axis current (𝑖qmref) is calculated from Eq. (5.8) from the reference value for the 

electrical torque (𝜏eref) using 

PMSM control 
strategies

Vector control

Field oriented 
control

Maximum torque 
per Ampere 

control

Unity power 
factor control

Constant mutual 
flux linkage 

control

Field weakening 
control 

Direct torque 
control

Voltage vector 
control

Scalar control 
(Volt/Hertz 

control)
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𝑖qmref =
2𝜏eref
3𝑛p𝜓PM

. 
(5.26) 

The torque reference itself is calculated from the active power reference of the machine-

side converter controller (𝑃mref) and the instantaneous speed of the FESS (𝜔m). 

Conventional PI controllers with decoupling terms have been used for the inner current 

controllers, similar to the grid-side converter.  

 

Figure 5.10: Vector diagram of the current and the voltage of the PMSM (a) without the maximum torque 

per ampere control, and (b) with the maximum torque per ampere control. 

Table 5.4: Variables definition and parameters of the machine-side converter (MSC) controller. 

Parameter Symbol Value 

Grid frequency 𝑓g - 

Grid frequency reference fref 50 Hz 

Frequency deadband fdb 200 mHz 

Over-frequency frequency droop coefficient Dup 24 kW/Hz 

Under-frequency frequency droop coefficient Ddn 60 kW/Hz 

External active power command 𝑃crefm - 

Total active power reference of the machine-side converter 𝑃mref - 

Losses and auxiliary power 𝑃L&A - 

Electrical torque reference 𝜏eref - 

q-axis current controller of the MSC- proportional term KP1m 1 

q-axis current controller of the MSC- integral term KI1m 3000 

d-axis current controller of the MSC- proportional term KP2m 1 

d-axis current controller of the MSC - integral term KI2m 3000 

d-axis and q-axis current reference values of the MSC 𝑖dmref, 𝑖qmref - 

d-axis and q-axis currents of the MSC 𝑖dm, 𝑖qm - 

Three-phase currents of the MSC 𝑖am, 𝑖bm, 𝑖cm - 

d-axis and q-axis modulation index 𝑚dm, 𝑚qm - 

Three-phase modulation index 𝑚am,𝑚bm,𝑚cm - 
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It is important to note that in high-speed machines, such as the PMSM in a high-speed 

FESS, the speed and position of the rotor are often not directly measured, and are 

estimated from the voltage and current values, with the methods described in [249], 

[250]. However, since these estimation methods often show a good accuracy at high 

speeds [249], in which the FESS is often operated, the estimation procedure is neglected 

in this work, and rotor speed is directly calculated from the machine model. This is also 

necessary to limit the model computation time for real-time simulations. 

5.2.5 Modeling of Synchronous Reference Frame Phase-

Locked Loop 

For some applications, including frequency support in low voltage and low inertia 

grids (see Chapter 7), the dynamics of the phased-locked loop should also be 

modelled [110]. In this chapter, a Synchronous Reference Frame Phase-locked 

Loop (SRF-PLL) with a low-pass filter, as shown in Figure 5.11, is used for tracking the 

frequency and phase of the grid voltage. The estimated phase angle by the phase-locked 

loop (𝜃PLL) is used in the grid-side converter controller to synchronize the dq-rotating 

reference frame with the grid voltage. This is also necessary for connecting the FESS to 

the grid with minimum transient currents. 

As seen in Figure 5.11, the grid voltage, after being converted to its per unit value, is 

multiplied by the cosine of the phase estimated by the phased-locked loop. By assuming 

that the grid voltage in per unit is sin(𝜔𝑡 + 𝜑), this results in  

sin(𝜔𝑡 + 𝜑) cos(𝜃PLL) =
1

2
( sin(𝜔𝑡 + 𝜑 + 𝜃PLL)⏟            
Periodic component at 2𝜔

+ sin(𝜔𝑡 + 𝜑 − 𝜃PLL)⏟            
DC component

). 
(5.27) 

If the phase estimated by the phase-locked loop is approximately close to the phase of the 

input signal, i.e., 𝜃PLL ≈ 𝜔𝑡 + 𝜑, then Eq. (5.27) consists of a term with double the 

fundamental frequency and a DC component close to zero. This is due to the fact, that 

sin(𝜔𝑡 + 𝜑 − 𝜃PLL) in case of small phase angles is approximated by 𝜔𝑡 + 𝜑 − 𝜃PLL. 

The moving average block in Figure 5.11 eliminates the periodic component by 

averaging at the fundamental frequency. Therefore, only the DC component remains, 

which reflects the error in estimating the phase of the input signal by the phase-locked 

loop. A PI controller forces the steady-state error to zero. The output of the PI controller 

is the electrical angular velocity. A simple numerical integration generates the phase 

output of the phase-locked loop. The angular velocity is then converted to Hertz and 

passed through a low-pass filter and rate limiter to reduce the effect of harmonics and 

asymmetries of the input voltage on the estimated frequency [251]. The PI controller 
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parameters used for the phase-locked loop in this work are tuned to have a quick response 

to step changes in the frequency, and are given in Table 5.5. 

 

Figure 5.11: Block diagram of a synchronous reference frame phase-locked loop with a low-pass filter. 

Table 5.5: Variables definition and parameters of the synchronous reference frame phase-locked loop (SRF-

PLL). 

Parameter Symbol Value 

SRF-PLL PI controller- proportional term KP−PLL 90 

SRF-PLL PI controller - integral term KI−PLL 10 

5.2.6 Modeling of System Losses and Auxiliary Power 

Requirements 

For obtaining an accurate model of a FESS, it is also necessary to model the losses within 

the system. The losses in a FESS can be categorized in three main groups, which are: 

▪ Speed-dependent losses: These are the losses that scale with the angular 

velocity of the flywheel (𝜔𝑚). Despite the fact that the high-speed FESS 

operates in a vacuum enclosure, the vacuum is not an absolute vacuum, with a 

pressure of just below 0.03 mbar during normal operation. Therefore, the air 

drag still exists, although being significantly small. The losses associated with 

air drag is proportional to the square of the rotational speed [252]. In addition, 

the eddy current and hysteresis losses in the PMSM also scale with the angular 

velocity of the rotor [66], [253], which can be added to the drag losses.  

▪ Current-dependent losses: These are additional losses which appear only 

during the time when the FESS is being charged or discharged, and scale with 

the square of the current drawn from or injected to the FESS (𝑖s). This includes 
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the copper losses in the PMSM, the two voltage source converters, filters, and 

other conductors within the FESS. 

▪ Constant losses: This includes any losses within the system components that 

are constant throughout the whole operation range of the FESS. 

As discussed, the high-speed FESS in this work has only one grid connection point. 

Therefore, the power required for all the axillary components including the cooling water 

and vacuum pumps, active magnetic bearings, control and measurement systems, fans 

and container ventilation system, fire and safety systems, and all other components are 

also provided by the flywheel. The auxiliary power is constant for some components, 

such as the power supply for the controllers, while for others, such as for the cooling 

systems, can vary depending on the system operating conditions, including the speed and 

the current of the FESS. 

Due to the complex structure of the high-speed FESS with numerous components, the 

losses and auxiliary power are aggregated all together and estimated directly from 

measurement, rather than using an analytical approach to calculate each part individually. 

The three types of losses in the FESS and the axillary power required for running the 

system are aggregated and modeled in one variable, 𝑃L&A, which is calculated using 

𝑃L&A = 𝑐1 + 𝑐2𝑖s
2 + 𝑐3𝜔m

2 . (5.28) 

In Eq. (5.28), 𝑐1 is the constant component for constant losses and auxiliary power 

requirements, 𝑐2 is the coefficient for current-dependent losses, while 𝑖s is the current at 

the FESS terminals, and 𝑐3 is the coefficient for speed-dependent losses. The parameters 

𝑐1, 𝑐2, and 𝑐3 are estimated using real measurements from the FESS. The experimental 

setup and measurements are described later in Chapter 6. A simple curve fitting approach 

based on least-square error method is used to estimate the parameters of Eq. (5.28), and 

their values are given in Table 5.6. These values are estimated based on the difference 

between the power that the flywheel delivers and the power at the FESS terminals. It can 

be seen from Table 5.6 that the constant component of Eq. (5.28), which mainly consists 

of the auxiliary power required to run the system, is significant, considering a 60 kW 

FESS. However, it should be mentioned that some of the auxiliary components are meant 

for multiple flywheels, and the required auxiliary power for running multiple flywheels 

does not significantly increase with the number of flywheels. 
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Table 5.6: Parameters of the total system losses and auxiliary power requirements. 

Parameter Symbol Value 

Constant component c1 4.06 kW 

Current-dependent component c2 0.112 kW/A2 

Speed-dependent component c3 1.306 × 10−4 kWs2 

5.3 Real-time Simulation of the High-speed FESS 

In this section, the model of the high-speed FESS, described in section 5.2 using the 

model of each of its component, is simulated in real-time, and the results are compared 

with offline simulation results. For the real-time simulations, the model has been 

implemented in Opal-RT’s RT-LAB real-time simulation environment. The real-time 

simulations are carried out on the Opal-RT’s 5600 digital real-time simulator. RT-LAB 

generates a precompiled C code from the model on a host PC and loads this code on the 

real-time target. For offline non-real-time simulations, the ordinary differential equations 

of each component of the FESS, given in section 5.2, are discretized and solved using 

numerical methods in a script written in MATLAB programming language. The same 

simulation time step of 10 µs has been used in both cases. The simplified power system 

shown in Figure 5.12 is used to demonstrate the performance of the FESS. The equivalent 

grid and the transformer impedance are based on the values from the CIGRE European 

low voltage benchmark grid, in which a short-circuit capacity of 100 MVA and an X/R 

ratio of 1 has been considered for the medium voltage grid [123]. The load is a simple RL 

load. The model comparison is made using steps in the grid frequency and voltage. 

 

Figure 5.12: The single-line diagram of the simulated system. 
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5.3.1 Frequency Step Response 

To show the fast dynamic behavior and full response of the FESS, a step of 1.2 Hz in the 

grid frequency is simulated, from 50 Hz to 48.8 Hz to fully observe the flywheel 

dynamics. Since the FESS is connected to a stiff grid, it cannot influence the frequency. 

However, it should provide active power to the grid according to its droop characteristic. 

In this case, the FESS should inject 100 % of its nominal power to the grid, according to 

the latest German grid code [182]. The high-speed FESS is initially charged to reach 

36,000 rpm, with no power being exchanged with the grid prior to the simulated event. 

The active power of the FESS model in real-time and offline simulation is shown in 

Figure 5.13, while other variables of the FESS are shown in Figure 5.14. The step in the 

frequency reference is applied at 0.04 s after the start of the simulation. As seen, the 

FESS quickly reaches its nominal power of 60 kW, and its rotational speed, shown in 

Figure 5.14(b), and therefore, its energy content begins to fall. Since only a short time 

span of 0.16 s is shown here to show the fast system dynamics, the drop in the flywheel 

speed is not significant. The DC-link voltage, shown in Figure 5.14(c), is quickly restored 

to 720 V by transferring the power injected from the PMSM to the grid by the grid-side 

converter. The electrical torque of the machine and the q-axis current required for 

providing this torque are depicted in Figure 5.14(d) and (f), respectively. As seen, a good 

match between the real-time simulation results obtained from the RT-LAB simulation 

software and the offline non-real-time results of the MATLAB script can be observed in 

all FESS variables. Two other steps in the grid frequency with amplitudes of 49.3 Hz and 

49.75 Hz have also been applied for testing the response of the FESS model. The active 

power of the FESS from the real-time and non-real-time simulations for these steps in the 

frequency are also shown in Figure 5.13. It can be seen that in all cases the real-time 

simulation results in RT-LAB match the offline results for the MATLAB script. 

 

Figure 5.13: The active power injected by the FESS during different steps in the grid frequency 
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Figure 5.14: Real-time and non-real-time simulation results during a step in the grid frequency by 1.2 Hz. 

5.3.2 Voltage Sag Response  

In this scenario, a voltage sag on the medium voltage grid is simulated. Such voltage 

drops are common and could be caused by faults in the high voltage grids or parallel 

feeders [254]. The depth of the voltage sag is assumed be 7 % of the nominal values. 

During such a disturbance, the FESS should inject its maximum reactive power to the 

grid. The real-time and offline simulation results for this scenario are shown in Figure 

5.15. The grid-side converter of the FESS injects approximately 50 kVar of reactive 

power, which the converter’s maximum reactive power, to support the load during the 

voltage disturbance, as seen in Figure 5.15(a). This is done by injecting current in the q-

axis direction, which is shown in Figure 5.15(e), as the reactive power is controlled by q-

axis current of the grid-side converter. Since only reactive power is provided by the 

FESS, there is almost no change in the FESS speed, shown in Figure 5.15(b), the DC-link 
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voltage, shown in Figure 5.15(c), and other variables of the machine and machine-side 

converter. Some minor transients are observed only at the beginning of the voltage sag. 

The speed of the FESS is slightly decreasing due to the losses within the FESS and the 

auxiliary power requirement. More importantly, the real-time simulation results match 

the non-real-time offline simulation in both steady-state and transient conditions for all 

variables of the FESS. 

 

Figure 5.15: Real-time and non-real-time simulation results during a 7% voltage sag.  
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6 PHIL Testing and Model Validation 
of a High-Speed FESS for 
Frequency Support 

This chapter presents the Power Hardware-in-the-Loop (PHIL) testing results of a 60 kW 

high-speed FESS for the application of frequency support. Firstly, the characteristics of 

the FESS, as the hardware under test, are given, followed by a description of the PHIL 

testing facility built and used for verifying the performance of the FESS. Next, several 

frequency deviation scenarios are simulated in real-time in order to evaluate the response 

of the FESS during such disturbances. The PHIL testing results are also used to validate 

the model of the high-speed FESS, described in Chapter 5. The same inputs which have 

been sent to the real FESS during the PHIL tests, are also given to the model of the FESS, 

running in real-time, and its response is compared with the response of the real FESS.  

As discussed in Chapter 3, no PHIL testing of a FESS has been reported previously for 

verifying its response during frequency disturbances. There are only some limited 

experiments carried out for the application of supporting pulsed power loads in DC grids 

of shipboard power systems [24], [25]. Regarding the model validation of a FESS, an 

experimental validation of a FESS model has been reported in [255]. However, the tested 

system is a laboratory-scale 5.5 kW low-speed FESS with a maximum rotational speed of 

3000 rpm, which is not a practical system with adequate capacity and power that can be 

used for ancillary services in the grid. In addition, no frequency control loop was 

implemented and tested. Therefore, this chapter presents the first PHIL testing of a high-

speed FESS for frequency support, and the first model validation of a high-speed FESS. 

6.1 Description of the Hardware under Test 

The hardware under test is the 60 kW high-speed FESS, which has been modeled in 

Chapter 5. The inside view of the container of the FESS with all the main and auxiliary 

components is shown in Figure 5.2. This FESS has a maximum rotational speed of 

45,000 rpm, which corresponds to a maximum capacity of 3.6 kWh, taking into account 

the flywheel’s inertia. Therefore, this FESS can provide a discharge time of several 

minutes, depending on the discharge power. The high rotational speed of the FESS is 

achieved with the use of a carbon fiber reinforced plastic rotor, which is rotated using 

active magnetic bearings in a vacuum enclosure. The vacuum pressure of the flywheel 
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containment is below 0.03 mbar during normal operation of the system. The flywheel 

steel containment is mechanically locked to a large underground cement foundation for 

safety purposes. 

6.2 Description of the PHIL Setup 

The PHIL testing of the FESS is conducted at the KIT’s 1 MVA PHIL testing facility, as 

part of the EnergyLab 2.0, which is described in section 3.3. A schematic diagram of the 

setup tailored for the PHIL testing of the FESS is shown in Figure 6.1. 

 

Figure 6.1: The schematic diagram of the setup used for the PHIL testing of the 60 kW high-speed FESS. 

An Opal-RT 5700 real-time simulator is used for simulating the grid models and 

scenarios in real-time, controlling the power amplifier, collecting and recording 

measurement data, and monitoring and controlling the FESS operation during the 

experiments. The grid simulations, data collection, and the data conversion required for 

the Small Form-factor Pluggable (SFP) connection to the amplifier (see subsection 3.3) is 

carried out on one CPU core. A separate core of the simulator is dedicated for an Ethernet 

connection between the Programmable Logic Controller (PLC) of the FESS and the real-
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time simulator using the Modbus TCP/IP protocol. This is used to read the internal 

variables from the FESS controller and to send control commands to it. A list of the most 

important commands and measurement values communicated through the Ethernet 

connection with the FESS controller is given in Table 6.1. 

Table 6.1: List of the most important commands and measurement values communicated through the 

Ethernet connection using the Modbus TCP/IP protocol between the FESS controller and the real-

time simulator. 

Signal Name Unit Data Type Signal Name Unit Data Type 

Commands Measurements 

Operation mode command - U16 Active power measurement W U16 

Active power reference W S32 Reactive power measurement Var S32 

Reactive power reference Var S32 System state of charge % S32 

Frequency reference Hz U32 Grid frequency Hz U32 

Voltage reference V U32 Grid voltage Hz U32 

Primary frequency control 
droop coefficient 

W U32 Kinetic Energy Wh U32 

 

A single 200 kVA GAMP6 switched-mode power amplifier from Egston Power company 

is used for energizing the FESS using a four-wire three-phase cable. The power amplifier 

receives the voltage set points from the real-time simulator using a dedicated SFP 

connection. The voltages and currents of the FESS are measured at the FESS terminals 

using voltage and current transducers, and are sent to two separate Opal-RT OP4520 

Kintex7 FPGA & I/O expansion units, due to the long physical distance between the 

hardware under test and the real-time simulator. Current and voltage measurements have 

been recalibrated before the experiments using a precise power supply. 

Before and after the experiments, the vacuum, cooling water pumps, and several other 

auxiliary components of the FESS have to run continuously. Therefore, a manual switch 

was installed at the FESS terminals, which can switch the supply of the FESS from the 

power amplifiers to a conventional power supply, when no experiments are conducted.  

The voltage-type ideal transformer method [256], which has been described in detail in 

subsection 3.2.2.1, is used for interfacing the hardware under test and the real-time 
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simulator. For the current feedbacks a first-order low-pass filter with a cut-off frequency 

of 100 kHz is applied. A stable PHIL setup was observed using the ideal transformer 

method during all experiments and scenarios. Therefore, there has been no need to apply 

more complex PHIL interfacing algorithms or reduce the cut-off frequency of the filter.  

6.3 PHIL Testing Scenarios and Model 
Validation of the FESS 

The high-speed FESS is tested in the following scenarios: 

▪ Scenario A: Charging the FESS at its rated power from standstill. 

▪ Scenario B: Grid code compliance verification test for frequency support, 

according to the latest German grid code for low voltage grids. 

▪ Scenario C: Response to the UK’s frequency incident of 9 August, 2019. 

▪ Scenario D: Increasing the frequency support contribution of a real low voltage 

grid in southern Germany. 

The voltages, commands, and other input signals sent to the real FESS during the PHIL 

tests in each scenario are also given to the FESS model, running in real-time, for model 

validation. In the following, the PHIL testing results together with the response of the 

model of the FESS are provided for each scenario, and the response of the FESS and its 

model are compared with each other.  

It should be noted that in all cases the FESS is tested in a closed loop with the current 

feedbacks being injected into the real-time simulation. 

6.3.1 Scenario A: Charging at the Rated Power 

This scenario includes charging the FESS from being completely discharged at a 

standstill condition to reaching its maximum rotational speed and the nominal capacity. 

The aim of this test is to derive the charging profile of the FESS, in particular at low 

rotational speeds, where the torque limitations of the machine prohibit the FESS from 

absorbing the nominal active power.  

A simplified power system consisting of a voltage source and equivalent impedance with 

the values from the CIGRE European low voltage grid benchmark [123] is simulated in 

real-time on the Opal-RT’s OP5700 real-time simulator. The voltages after the equivalent 

impedance are sent to the power amplifier, which feeds the FESS. Next, a step in the 

active power reference of the FESS from 0 to -60 kW is applied from the OP5700 real-
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time simulator using the Ethernet connection with the FESS controller and the Modbus 

protocol. The FESS should begin charging itself. When the FESS is fully charged and 

reached a state of charge of 100 %, which corresponds to a rotational speed of 

45,000 rpm for this particular FESS, it should automatically stop absorbing power.  

The results obtained from the PHIL testing of the FESS and the real-time simulation of 

its model in this scenario are depicted in Figures 6.2 and 6.3. The active power reference 

of -60 kW is applied at 5.7 s after the start of the test. As expected, the FESS can only 

absorb the nominal power above a certain rotational speed, due to the machine’s torque 

limitations. This can clearly be seen in Figure 6.2, in which the ramp rate of the active 

power is limited, until reaching a state of charge of 24.6 %, which corresponds to a 

rotational speed of approximately 23,200 rpm. After exceeding this point, the FESS can 

absorb the rated active power until being fully charged. At the end, when the FESS is 

fully charged, the active power of the FESS drops to the minimum power required to 

cover the auxiliary power and losses in the whole system, as seen in Figure 6.2. This 

minimum power is required to maintain the state of charge at the maximum value.  

It can be seen from Figures 6.2 and 6.3 that the real-time simulation model can reflect the 

charging profile of the real FESS with an acceptable accuracy. The time required to fully 

charge the FESS is approximately the same in both simulation and experimental results 

and the variations in the state of charge of the FESS during the charging are very close, 

with a maximum difference of just below 0.8 %. This small error could be due to the 

variations in the auxiliary power of the FESS during the experiment. 

 

Figure 6.2: The measured and simulated active power of the FESS during the PHIL testing of scenario A, 

charging the FESS at the rated power. 
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Figure 6.3: The measured and simulated state of charge of the FESS during the PHIL testing of 

scenario A, charging the FESS at the rated power. 

6.3.2 Scenario B: Grid Code Compliance Verification Test 

for Frequency Support 

The aim of this test is to verify that the high-speed FESS follows the P(f) characteristics 

during frequency deviations, according to the latest German grid code for connections to 

the low voltage distribution grids, the VDE-AR-N 4105:2018-11 [182]. The P(f) 

characteristic, shown in Figure 4.5(a), indicates the frequency deadband and different 

droop coefficients for over- and under-frequency incidents. According to this grid code, 

for frequency deviations above 200 mHz, the FESS should react within 2 s and reach the 

active power set point given by the P(f) characteristic with a rise time of under 2 s and a 

settling time of under 20 s. The acceptance tolerance for the difference between the active 

power set point and the measured active power is ±10 % [257]. 

In order to verify the grid code compliance of the FESS, a simplified power system 

similar to the previous scenario is simulated in real-time on the OP5700 real-time 

simulator. After charging the FESS, the frequency of the simulated grid is altered 

according to Figure 6.4. This test is adopted from the VDE V 0124-100:2020-06 [257], 

which describes the testing protocols for the generation units and storage systems that are 

planned to be connected to low voltage distribution grids. Conducting these tests is now a 

mandatory requirement for any ESS or generation unit, prior to a grid connection [257]. 

In comparison to the official testing requirements of the grid code, the tests have been 

shortened, taking into account the limited energy content of the FESS. It can be seen 
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from Figure 6.4, that this test includes steps of different amplitudes in the emulated grid 

frequency. Each step in the frequency is kept for the period of 30 s, after which the 

frequency is set back to the nominal value. Each over-frequency step is followed by a 

subsequent under-frequency step with the same amplitude. 

 

Figure 6.4: The variations in the grid frequency for grid code compliance validation of the high-speed 

FESS, adopted from the grid code VDE V 0124-100:2020-06 [257]. 

The tests are conducted with the FESS operating at the power factor of unity, as 

requested by the testing protocol [257]. The test is carried out after charging the FESS to 

reach a state of charge of 75 %, which corresponds to approximately 39,000 rpm for this 

FESS. At this state of charge, there are no speed-dependent ramp rate limitations due to 

the machine’s maximum torque, and the FESS will provide the highest possible ramp 

rate, taking into account other constraints of the system, such as the measurement and 

communication delays.  

The PHIL testing results of the 60 kW FESS and the real-time simulation results for this 

scenario are shown in Figures 6.5-6.7. The measurements from the FESS are obtained 

from the FESS internal controller, which shows some discontinuity in the results, due to 

the use of the Modbus protocol. It is clear from Figure 6.5 that the FESS controller can 

easily track the changes in the grid frequency with a high accuracy during frequency 

deviations. More importantly, it is shown in Figure 6.6, that the FESS quickly reacts to 

frequency changes larger than the frequency deadband, while ignoring smaller changes in 
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the frequency. In the case of over-frequency steps, the FESS absorbs power from the grid 

with the rate of 40 % per Hz, after deducting the frequency deadband. For instance, it can 

be seen that the FESS absorbs 24 kW of power, when the emulated grid frequency is set 

to 51.2 Hz. During an under-frequency event, the FESS injects power to the grid with the 

rate of 100 % per Hz, after deducting the frequency deadband. As an example, it can be 

seen that when the simulated grid frequency is set to 49.3 Hz, the FESS injects 30 kW to 

the grid, which is 50 % of its nominal power. Therefore, it can be concluded the FESS 

accurately follows the P(f) characteristic required by the German grid code for an ESS 

connected at the low voltage level. 

The simulation model of the FESS also follows the P(f) characteristics of the grid code, 

and a good match between the simulated power and the measured power of the FESS is 

observed in Figure 6.6. Therefore, the model of the FESS can accurately generate the 

same output of the real hardware. This is also shown in Figure 6.7, where the state of 

charge of the FESS is depicted. Between the state of charge of the real system and the 

simulation model, a maximum mismatch of only 0.35 % is observed in this scenario.  

Furthermore, the fact that the FESS remains connected throughout these extreme 

frequency deviations and is not automatically disconnected from the grid by its protection 

systems demonstrates the frequency ride-through capability of the FESS according to the 

requirements of VDE-AR-N 4105:2018-11 [182]. 

 

Figure 6.5: The measured and simulated grid frequency during the PHIL testing of scenario B, grid code 

compliance verification test. 
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Figure 6.6: The measured and simulated active power of the FESS during the PHIL testing of scenario B, 

grid code compliance verification test. 

 

Figure 6.7: The measured and simulated state of charge of the FESS during the PHIL testing of scenario 

B, grid code compliance verification test. 

In order to see how fast the real FESS responds to the grid frequency changes, one of the 

emulated steps in the grid frequency is shown more closely in Figure 6.8. Here, the active 

power is calculated directly from the voltage and current measurements at the FESS 

terminals, since the measurements from the FESS inertial controller have a high latency. 

It can be seen from Figure 6.8 that the FESS reaches the required active power in 
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58.5 ms, and settles in 88.6 ms. This is a very fast response time from the FESS. It is 

important to note that this time includes the time required for the phase-locked loop of 

the FESS to measure the grid frequency, the delay in signal transmission, and more 

importantly, the delay caused by the filter applied on the active power measurement. 

Therefore, the actual response time of the FESS can be even faster. This is by far faster 

than the requirements of the grid code in Germany, which requires an ESS to react to the 

frequency incident in below 2 s, to reach the set point in another 1 s, and to settle in 

below 20 s [257]. This delay is an important parameter, which is commonly neglected in 

studies regarding fast frequency support of converter-interfaced systems in power 

systems [12].  

 

Figure 6.8: The response time of the high-speed FESS to a step in the grid frequency during the PHIL 

testing. 

6.3.3 Scenario C: Response to the UK’s Frequency incident 

of August 9, 2019  

In this scenario, the recorded frequency variations during the major grid disturbance of 

August 9, 2019, in the power grid of the UK is simulated in real-time in order to evaluate 

the response of the high-speed FESS during such frequency deviations. 

On this day, the UK’s power system experienced a severe frequency drop, which led to 

the loss of power for approximately 1.1 million customers, including hospitals, airports, 

and railways [258]. The sequence of events, which is shown in Figure 6.9, was triggered 

by a lightning strike on a transmission line. The fault caused by the lightning strike 
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resulted in a generation loss of approximately 1131 MW, which included 150 MW of 

distributed energy resources connected to the low voltage distribution grids, and 

reduction in the power generated by a wind farm by 737 MW. This significant loss in 

generation led to a severe drop in the grid frequency, reaching 49.1 Hz. As the frequency 

began to recover, another 210 MW gas turbine tripped, followed by an additional 

350 MW power loss due to the activation of the Rate of Change of Frequency (ROCOF) 

protection system of several synchronous generators. The frequency dropped again, 

reaching a frequency nadir of 48.8 Hz. At this point, an under-frequency load shedding 

was enabled, disconnecting approximately 5 % of the total load, which included roughly 

1000 MW of the loads at the low voltage distribution grids. With the activation of the 

under-frequency load shedding scheme, the frequency was regulated back to 50 Hz. The 

changes in the grid frequency in the power system of the UK during the time span of 

these incidents, which lasted approximately around 5 minutes, are shown with the blue 

dotted line in Figure 6.10. 

 

Figure 6.9: Sequence of event involved in UK’s major frequency incident of 9 August, 2019 [258]. 

The original measured frequency data from the National Grid of UK has been used for 

testing the response of the FESS [259]. A simplified power system similar to the previous 

systems is simulated in real-time, where the frequency can follow the recorded frequency 

of the incident, when required. The FESS droop and deadband settings of the FESS are 

kept according to the P(f) characteristics of the German grid code VDE-AR-N 

4105:2018-11 [182]. Prior to activating the frequency disturbance, the FESS is charged to 
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•150 MW at the low voltage grids

•737 MW reduced power of a wind 
park
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reach a state of charge of approximately 95 %, which corresponds to the rotational speed 

of approximately 43,860 rpm.  

The PHIL testing results of the 60 kW high-speed FESS and the real-time simulation 

results of its model during this scenario are shown in Figures 6.10-6.12. It can be 

observed from Figure 6.10, that similar to the previous scenario, the controller of the 

high-speed FESS easily tracks the changes in the grid frequency. Also, the FESS injects 

power to the grid, as soon as the frequency violates the frequency deadband of 200 mHz, 

and according to its droop setting, as seen in Figure 6.11. Since the maximum frequency 

deviation is approximately 1 Hz after the frequency deadband, the FESS will reach its 

maximum power of 60 kW at the minimum point of the frequency.  

In addition, an excellent match between the active power of the real FESS and its model 

is observed in Figure 6.11, which indicates that both the real hardware and its model can 

successfully track the active power reference generated from the P(f) characteristics of 

the grid code. More importantly, the state of charge of the real hardware and its model 

during the time period of the disturbance are compared with each other in Figure 6.12. It 

can be seen, that there is a good match between the state of charge of the real FESS and 

the model in this scenario as well. There is a slight difference between the state of charge 

values of maximum 0.7 %, which could have been caused by the variability of the 

auxiliary power of the real FESS, such the power required for running the pumps and the 

cooling systems. It is also interesting to observe that the high-speed FESS has enough 

capacity to provide the required support throughout the whole frequency incident. 

 

Figure 6.10: The measured and simulated grid frequency during the PHIL testing of scenario C, response to 

the frequency incident of August 9, 2019 in the UK. 
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Figure 6.11: The measured and simulated active power of the FESS during the PHIL testing of scenario C, 

response to the frequency incident of August 9, 2019 in the UK. 

 

 

Figure 6.12: The measured and simulated state of charge of the FESS during the PHIL testing of scenario 

C, response to the frequency incident of August 9, 2019 in the UK. 
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6.3.4 Scenario D: Increasing the Frequency Support of a 

Low-voltage Distribution Grid 

The goal of this scenario is to show the increase in the contribution of a low voltage 

distribution grid for supporting the grid frequency by using a FESS during frequency 

incidents.  

A real low voltage distribution network in southern Germany is modeled and simulated in 

real-time in a collaboration with the distribution system operator. The single-line diagram 

of the modeled grid is depicted in Figure 6.13. This low voltage grid includes 78 short 

underground cables, 35 load connection points, and 3 PV systems. One of the PV systems 

is a medium-scale 100 kW PV system, while others are small residential ones with 

ratings below 10 kW. The medium voltage grid has an equivalent short-circuit capacity of 

42.2 MVA with an X/R ratio of 1.61. These values are calculated based on the model of 

the medium voltage grid provided by the system operator, using the network reduction 

tool and extended Ward method [260] in DIgSILENT PowerFactory. The transformer 

and line data are also provided by the system operator.  

 

 

Figure 6.13: The single-line diagram of the real low voltage distribution network in southern Germany, 

used for PHIL testing of the FESS in scenario D. 
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The PV systems are modeled based on the generic two-stage PV model described 

in [261]. Conventional control loops including frequency control, active and reactive 

power control, DC-link voltage control, and maximum power point tracking using the 

incremental conductance method are also included in the PV models. For the PV cells, 

the parameters from of a commercial PV cell type, the Solarwatt Vision 60M style [262] 

are used.  

Using conventional power system solvers such as state-space solvers, this network cannot 

be simulated in real-time with a simulation time step of below 200 µs, even without 

considering the PV systems. Therefore, it is not feasible to simulate accurately this grid 

model in real-time. This is due to the large number of short three-phase underground 

cables. Since the longest cable in this model is only about 300 m long, the conventional 

model decoupling method at long lines cannot be applied here, and one or several of the 

techniques listed in Table 3.1 have to be applied to be able to run this model in real-time. 

Table 6.2 shows the required execution time for this grid model using different 

techniques listed in Table 3.1 to reduce the model execution time, which were calculated 

using the RT-LAB software. Firstly, the State-space Nodal (SSN) solver [109] is used to 

decouple the system equations into 12 subgroups, referred to as the nodal groups. This 

technique adds no artificial delays or impedance changes to the model, so it does not 

compromise the model accuracy. As shown in Figure 6.13, the secondary side of the 

transformer is selected as the main decoupling point (SSN node), as it generates a high 

number of groups from a single point. Using the state-space nodal solver, this grid model 

without the PV systems can be simulated in real-time with a simulation time step of 

40 µs. Another method to reduce the model execution time is to neglect the line 

capacitances. This can be done for this particular grid as lines are mostly below 100 m 

long, are operated at the low voltage level, and the grid is assumed to be 

symmetrical [117]. This reduces the model execution time of the grid model without the 

PV systems to 20 µs, as it reduces the number of state variables by 8 for each line, and 

the grid under study has a relatively large number of lines. When compared to the model 

with the line capacitances, the grid model without the line capacitances shows on average 

a 0.06 % error in the steady-state currents and 0.14 % error in the steady-state voltages. 

By combining the use of state-space nodal solver and neglecting the line capacitances, the 

required model execution time for the grid without the PV systems decreases to only 

8.72 µs. To add the PV models, the average converter models are used, as the study 

focuses on the frequency control [110]. By adding the PV models, the model execution 

time increases to 17.6 µs. Considering the added components to the model required for 

the communication to the power amplifier and with the two I/O expansion units, and also 

software safety features to shut down the system when extreme values are observed 

during PHIL testing, the simulation time step is set to 24 µs, in order to avoid any 
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unexpected overruns. This relatively low simulation time step leads to a small loop delay. 

This improves the stability of the PHIL setup, as discussed in subsection 3.2.2.  

The real-time simulation results of the grid model using state-space nodal solver are 

validated against offline results in MATLAB/Simulink, and no noticeable difference is 

observed. Moreover, the steady-state results are validated with the load flow results 

provided by the distribution system operator in PowerFactory, and the average difference 

between the two models was only 0.23 % in the steady-state voltages, and 0.3 % in the 

steady-state currents.  

Table 6.2: Comparison of the model execution times of the German low voltage distribution grid using 

different techniques used for reducing the model execution time. 

Model Neglecting capacitances Using SSN PV included Model execution time (µs) 

Model 1 No No No > 200 

Model 2 No Yes No 40 

Model 3 Yes No No 20 

Model 4 Yes Yes No 8.72 

Model 5 Yes Yes Yes 17.6 

 

The real high-speed FESS has been integrated into the grid model at the secondary side 

of the main transformer, as depicted in Figure 6.13. A separate nodal group is dedicated 

for the connection of the FESS using the current values measured at the real FESS 

terminals. 

A slow frequency ramp is simulated in the medium voltage grid with the frequency 

slowly increasing from 50 Hz to 51.2 Hz with a rate of 0.25 Hz/min. The real FESS 

together with the simulated PV systems react to the frequency ramp according to the 

German grid code for low voltage grids. The grid code indicates that both PV generation 

and storage units have to participate in the over-frequency incidents and reduce their 

output with the rate of 40 % per Hz, when the frequency passes the 200 mHz threshold. 

The FESS is charged to approximately 71 % before conducting this experiment. The 

results of the PHIL testing of the FESS together with the results of the real-time 

simulation of the grid in this scenario are shown in Figures 6.14 and 6.15. At 10 s after 

the beginning of the test, the PV systems are switched on with an enabled maximum 

power point tracking at the irradiance density of 1 kW/m2 and an ambient temperature of 

25 ֯C. Therefore, they quickly reach their maximum power output, as seen in 

Figure 6.14(a). This reduces the total power that low voltage grid draws from the medium 
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voltage grid from 140 kW to approximately only 25 kW. Such low powers are common 

around noon in low voltage grids with a high share of PV generation, as previously seen 

in Chapter 4. The frequency ramp is enabled at 27.4 s. As soon as the frequency passes 

the frequency deadband, the simulated PV systems starts to curtail their generation during 

the over-frequency event, as seen in Figure 6.14(a), and contribute to decreasing the total 

generation in the system. At the same time, the real FESS starts to draw active power 

from the grid according to its droop coefficient and begins to charge itself, as shown in 

Figure 6.14(d). This increases the consumption in the low voltage grid. When the 

frequency reaches 51.2 Hz, the total active power of the low voltage grid has increased 

from 25 kW to approximately 94 kW (seen Figure 6.14(c)). Approximately one third of 

the increase in power is the share of the real FESS, while the rest is due to the curtailment 

of the generation in the simulated PV systems. Therefore, the active components of the 

low voltage grid contributed to the regulation of the frequency of the whole system.  

 

Figure 6.14: The PHIL testing results of scenario D, increasing the frequency support of low-voltage grids. 

(a) Power of the PV systems, (b) the measured and simulated grid frequency, (c) The total 

power drawn by the low voltage (LV) grid, and (d) the measured and simulated power of the 

FESS.  
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Figure 6.15: The measured and simulated state of charge of the FESS during the PHIL testing of 

scenario D, increasing the frequency support of low-voltage grids. 

In addition, similar to the previous scenarios, a good match between the active power of 

the real FESS and the simulated one, running in real-time, is observed, as seen in see 

Figure 6.14(d). Also, it is clear from Figure 6.15, that the model can reflect the variations 

in the state of charge of the FESS with a high accuracy in this scenario as well. 

6.4 Summary 

This chapter presented the PHIL testing results of a 60 kW/3.6 kWh high-speed FESS in 

several frequency deviations scenarios. It was demonstrated the high-speed FESS can 

accurately follow the P(f) characteristics required by German grid code for low voltage 

grids during under- and over-frequency disturbances. Furthermore, it was shown that the 

FESS can reach the required power in under 60 ms during frequency disturbances and 

support the grid by quickly charging and discharging itself. Moreover, the nonlinear 

charging profile of the FESS from a standstill condition until reaching the maximum 

rotational speed was demonstrated, showing the limitations of a FESS at low rotational 

speeds.  

In addition, it was shown that the model of the FESS, presented in Chapter 5, can 

approximately generate the same power and state of charge of the real FESS in real-time, 

during all the investigated scenarios.  
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7 Adaptive Inertia Emulation using 
High-speed Flywheel Energy 
Storage Systems 

As discussed in Chapter 1, the continuous growth in the share of converter-interfaced 

renewable generation has led to a steady decrease in the total inertia in power systems. 

The reduction in the system inertia can lead to an increase in the Rate of Change of 

Frequency (ROCOF) and the severity of the frequency deviations during imbalances in 

generation and demand. Inertia emulation techniques using converter-interfaced systems 

can help to decrease the effects of low physical inertia in the system by providing 

synthetic inertia support during frequency disturbances.  

In this chapter, a new adaptive inertia emulation controller for high-speed FESS is 

introduced. The proposed controller aims to reduce simultaneously the ROCOF and the 

frequency nadir by adaptively changing the inertia and damping coefficients of the 

controller. It uses a combination of the bang-bang control approaches and self-adaptive 

ones to benefit from the advantages of both control designs. The performance of the 

proposed adaptive controller is validated initially using offline numerical simulations in a 

low voltage microgrid. Next, the proposed controller is implemented on the 60 kW high-

speed FESS, described in chapter 5 and 6, using the concept of rapid control prototyping. 

The performance of the FESS using the proposed inertia emulation controller is validated 

using PHIL testing of the FESS in the low voltage microgrid in two different scenarios. 

The simulation and PHIL testing results confirm that the use of the FESS with the 

proposed inertia emulation controller can effectively reduce the ROCOF and the 

frequency deviation, and the suggested adaptive control design outperforms several 

adaptive methods previously reported in literature. 

7.1 Introduction 

In this section, the need for inertia emulation using converter-interfaced systems is 

discussed briefly. The impact of the cumulative system inertia on the frequency dynamics 

of a power system during a power imbalance is demonstrated using a simplified single-

machine power system. A comparison among the possible active power sources required 

for emulating the inertia response using converter-interfaced systems is also presented, 

aiming to justify the advantages of using a FESS for this application. Lastly, a literature 

review on different adaptive control methods for providing inertia support is provided. 
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7.1.1 The Need for Inertia Support from Converter-

interfaced Systems 

Inertia of a power system resists fast variations of its frequency during disturbances. 

Analyzing the previous major frequency disturbances in Europe reveals that a stable 

system operation can be guaranteed only up to a ROCOF of 1 Hz/s, which corresponds to 

a system imbalance ratio of 20 %. However, imbalance ratios of more than 40 % are 

expected for the near future in Europe, which leads to a ROCOF of more than 2 Hz/s [5]. 

In poorly interconnected grids, such as in Australia, a ROCOF as high as 6 Hz/s has 

already been experienced in 2016, which led to a widespread system blackout, due to the 

activation of under-frequency and ROCOF protection relays of the synchronous 

generators of conventional power plants [263]. 

Figure 7.1 illustrates a typical frequency behavior of a power system during a major loss 

in generation. The initial slope of the drop in the frequency, or the ROCOF, is limited 

only by the cumulative system inertia. The system inertia plays an important role in 

maintaining the grid stability [264]. The inertia also has an impact on the minimum 

frequency reached during the under-frequency event, which is called the frequency 

nadir [265]. A low-inertia power system can experience a high ROCOF and an extreme 

frequency nadir during disturbances. 

 

Figure 7.1: Typical behavior of the frequency in a power system after a major large loss in generation 

(adopted from [266]). 

The impact of the system inertia on the frequency and the ROCOF can be seen more 

clearly if we simplify the frequency control loops of a power system to the block diagram 

shown in Figure 7.2, as proposed in [267]. In Figure 7.2, a multi-machine system is 

represented by an equivalent single machine, where the inertia constant Hg is the 
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equivalent inertia constant of all generating units, and the damping coefficient D is the 

equivalent damping of all the generators and loads in the system. Moreover, it is assumed 

that all frequency-related control loops of the turbine-generators have the same structures 

and parameters. In this figure, Δ𝑃L is the changes in the loads, Δ𝑃m is the variations in the 

generator mechanical input, Δ𝑃c is the control power demanded by the secondary 

frequency control, Δ𝑓 is the variation in the grid frequency, R is the droop coefficient, T1, 

T2, T3 and T4 are the turbine and governor time constants. The inertia emulation using an 

inverter-based system is added to this block diagram with the emulated inertia constant 

of H, and the converter represented by a simple time constant of Tc [110]. This time 

constant represents the delay and the bandwidth of the inverter. The parameters used for 

simulating this simplified model are given in Table 7.1. 

 

Figure 7.2: Simplified block diagram of frequency control loops in a simplified power system with the 

addition of emulated inertia (model according to [267]). 

Table 7.1: The parameters used for the simplified single-machine power system. 

Parameter Symbol Value 

Generator inertia constant Hg 3 s 

Damping coefficient D 1 p.u. 

Governor droop R 0.05 p.u. (5 %) 

Inverter time constant Tc 0.1 s 

Governor lead time constant T1 0.2 s 

Governor lag time constant T2 1 s 

Valve time constant T3 0.5 s 

Turbine time constant T4 5 s 

 

The response of the simplified power system model of Figure 7.2 to a small step increase 

in the load (Δ𝑃L) is shown in Figure 7.3 for different values of the emulated inertia 
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constant (H). As seen, the increase in the emulated inertia reduces the maximum ROCOF 

and limits the frequency nadir, at the price of a slower recovery of the grid frequency. 

The increase in the frequency settling time, after recovering from the frequency nadir, is 

considered the main drawback of increasing the system inertia using inertia emulation 

techniques. 

 

Figure 7.3: The effect of increasing the emulated inertia constant using converter-interfaced systems on 

(a) the frequency, and (b) the ROCOF during an under-frequency event.  

 

Figure 7.4: The pole-zero map of the simplified power system with the increasing value of the emulated 

inertia constant (H).  
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This can also be observed from the pole-zero map of the same system for different values 

of inertia, shown in Figure 7.4. With the increase in inertia, the dominant system poles 

move towards the origin, which indicate a slower decaying response and a higher settling 

time. The pole-zero map has been drawn by neglecting the inverter time constant (Tc), as 

it is much smaller than the time constants of the turbine and governor. However, unlike 

the physical inertia of synchronous generators, emulated inertia is a control parameter 

which can be altered in real-time according to the system requirements. Therefore, to 

solve the problem of slow frequency recovery, adaptive inertia controllers have been 

proposed [265], [268]–[271], where the emulated inertia is reduced to near zero after the 

frequency nadir is reached for a faster recovery of the frequency . These adaptive inertia 

emulation techniques are later discussed in detail in section 7.2.2.  

It can be seen in Figure 7.3, that the inertia has no influence on the steady-state frequency 

value. The steady-state frequency depends on the system damping (D) and the droop (R). 

A similar analysis on the effect of increasing the damping, rather than the inertia 

constant, shows that increasing the damping improves the frequency nadir and reduces 

the steady-state frequency error. The frequency nadir is determined by both, the system 

inertia and the damping, with the damping having a greater impact [265]. It can be 

concluded, that increasing the inertia and the damping can reduce the ROCOF and 

frequency deviation during imbalances of generation and demand. However, the inertia 

constant should be reduced when the frequency is recovering.  

7.1.2 Flywheels as the Active Power Source for Inertia 

Emulation 

Initially proposed for wind turbines [272], the topic of providing inertia support using 

converter-interfaced systems has gained a great attention over the past decade. Significant 

contributions have been made by researchers working in this field, for instance in [273]–

[281], where a variety of techniques and controllers has been proposed to emulate the 

inertia response of the synchronous generator using converter-interfaced systems during 

frequency deviations. Comprehensive reviews of many of these techniques can be found 

in [282] and [283]. 

Unlike the synchronous generators, where the kinetic energy stored in their large rotating 

rotors is used for providing the inertia response, converters do not inherently have a 

source of energy. Therefore, an active power source is required for providing the power 

demanded by the inertia emulation controller. In many of the proposed control designs 

for inertia emulation, for instance in [273]–[276], the active power source behind the 

inverter are simplified, assuming an ideal DC-link with an unlimited energy content. 
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However, in practice, the dynamics and limitations of the active power source can also 

influence the inertia response of such systems. When the active power source is included, 

wind turbines [278], [279], PV systems [280], [281], DC-link capacitors [229], [284], and 

batteries [285], [286] are suggested to be the source of energy for inertia emulation. 

However, as summarized in Table 7.2, each of these solutions have their own limitations 

in providing the power required for emulating the inertia response. These limitations can 

change the response of the system from an ideal inertia response. In wind turbines, the 

speed recovery required after the first seconds of providing the inertia response, alters the 

response of the wind turbine from an ideal inertia response [272], [287]. A poorly 

conducted speed recovery can even cause a second frequency drop. Furthermore, inertia 

emulation may cause rotor stall or even trigger instabilities if the aerodynamics of wind 

turbines are not fully studied. Photovoltaic systems cannot participate in under-frequency 

events when being operated at their maximum power point. Therefore, additional storage 

systems or operating the system below the maximum power point is required, which is 

not ideal from an economical aspect. In an attempt to solve this, authors have also 

suggested to use the DC-link capacitors of the inverters as the active power source for 

inertia support [229], [284]. However, considering the low capacity of these capacitors 

and the voltage constrains for maintaining a linear pulse width modulation, the amount of 

energy that it can be provided for inertia emulation using these capacitors is very limited. 

Battery energy storage systems can be a good alternative for inertia emulation [285], 

[286]. However, concerns over the lifetime of the battery may force the operator to limit 

its power ramp rate, which can impair the inertia response. Most adaptive inertia 

emulation techniques, like the methods proposed in [264], [265], [268]–[271], require a 

sudden burst of power for several seconds, which is not the ideal use of a battery, 

concerning its lifetime and capacity. Therefore, it has been suggested to combine the 

battery with a supercapacitor in a hybrid structure, where the supercapacitor is mainly 

responsible for the inertia support [288]. However, this design leads to a higher degree of 

complexity in both control and hardware requirements. Moreover, the emulated inertia is 

limited by the size of the supercapacitor.  

As discussed in Chapter 2, a FESS can rapidly provide high amounts of power with a 

high ramp rate and no concern over its lifetime or capacity. The FESS does not have any 

of the aforementioned limitations and can provide an ideal inertia response. In a high-

speed FESS, the high-inertia rotor can store a significant amount of kinetic energy. 

However, the high-inertia rotor is electrically decoupled from the grid by a back-to-back 

converter. Nonetheless, by implementing an inertia emulation controller on the converter, 

the inertia can be transferred artificially to the grid side, providing an inertia response, 

similar to the response of the synchronous generators. The inertia emulation controller for 

a FESS is described in detail in section 7.2. 



7.1 Introduction 

143 

Table 7.2: Technical limitations of different active power sources for inertia emulation. 

Active Power Source Literature Technical Drawbacks/Limitations 

Wind turbines 
[272], 

[279] 

The mandatory speed recovery greatly changes its response from an 

ideal inertia response [272], [287]. 

Can cause rotor stall and system instability [272], [287]. 

PV systems [280], 

[281] 

Requires operating the system below maximum power point or 

additional storage systems for under-frequency events. 

DC-link capacitors 
[229], 

[284] 

Very limited energy content for a single inverter and therefore, limited 

inertia. 

Constrained voltage deviation to guarantee linear pulse width modula-

tion and avoiding overstressing of the semiconductors. 

Battery energy storage 

system  

[285], 

[286] 
Concerns over battery lifetime can force to limit the power ramp rate. 

Hybrid storage: 

Battery and superca-

pacitor 

[288] 

Complex design of the controllers and hardware requirements. 

The emulated inertia is limited by the size of the supercapacitor. 

Flywheel Energy 

Storage System 

(FESS) 

[45], [46] None. 

 

7.1.3 Inertia Emulation versus Virtual Synchronous 

Machines 

There are two common control structures for providing inertia support using converter-

interfaced systems. In one category, the virtual synchronous machines [289]–[291], a 

low- or high-order model of a synchronous generator is used to generate the reference 

values for the voltage amplitude and phase angle of a grid-connected converter. In this 

design, the active power is controlled by changing the voltage phase angle, while the 

reactive power is controlled by varying the voltage amplitude, similar to synchronous 

generators. The main advantage of this approach is that, in some designs, it can eliminate 

the need for a frequency measurement system such as a phase-locked loop [291]. It uses 

the phase angle from the generator equation for synchronization of the converter. 

However, implementing virtual synchronous machines requires a drastic change and 

redesign of the converter controllers. Therefore, it is not logical or practical to implement 

such controllers on existing converters with already built-in controllers [279]. Also, such 

controllers do not inherently have current controllers. Therefore, an additional protection 

system to limit the currents may be required [292]. Moreover, for providing the inertia 

support using virtual synchronous machines, the active power controller including the 
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inertia controller should be implemented on the grid-side inverter. However, in most 

commercial FESS, similar to many wind turbines, the active power controller is 

implemented on the machine-side converter. This design choice allows to directly control 

the machine torque, and facilitates parallel connection of several flywheels to reach 

higher ratings. 

In the second category, which is referred to as inertia emulation techniques, only the 

swing equation of the synchronous generator is used to generate the active power 

reference for the converter. Therefore, the inertia emulation controller can be easily 

added as an outer control layer to the conventional current-controlled voltage source 

converters, including existing systems [292]. Due to this major advantage, this control 

design has been used by the European VSYNC project [293], as well as in [273], [279], 

[294], [295]. This method is also applied in this work, as it aims to implement the inertia 

emulation control as an external control loop to a commercial high-speed FESS, with pre-

existing converter controllers.  

The drawback of this approach is the need for estimating the frequency and its derivative. 

In this work, the challenges associated with the use of a conventional phase-locked loop 

and the differential operator for estimating the frequency derivative are avoided by using 

a Dual Second-order Generalized Integrator Frequency-locked Loop (DSOGI-FLL). This 

is explained later in subsection 7.2.4. 

7.1.4 State-of-the-Art in using a FESS for Inertia Emulation 

The use of a FESS for inertia emulation has been previously reported in [45] only, while 

the work in [46] presents a virtual synchronous generator using a FESS. However, in both 

cases, the parameters of the proposed controllers for inertia support are constant and 

adaptive controllers are not applied. The controller in [46], as a virtual synchronous 

machine controller, has no current control and authors report problems in forming pure 

sinusoidal waveforms. In both studies, realistic grid scenarios are not provided, and the 

performance of the proposed controllers has been demonstrated using numerical 

simulations only. To our knowledge, no experimental validation of using a FESS for 

inertia emulation has been reported. Furthermore, using PHIL testing for the validation of 

inertia emulation techniques has been reported only in [273], but the tests include only 

testing the inverter with a simple control design, and an ideal DC voltage source has been 

used as the active power source. Therefore, PHIL testing of a full system, including the 

active power source for inertia emulation, has not been conducted before.  

This work attempts to improve the current state-of-the-art on using a FESS for inertia 

emulation by introducing a new adaptive inertia emulation controller, implementing it on 
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a real FESS, and validating it using PHIL testing. The proposed controller combines the 

advantages of bang-bang controllers with self-adaptive ones for an improved response to 

frequency disturbances. Moreover, it considers the state of charge of the FESS in 

providing the inertia response and considers the practical limitations of using a FESS for 

frequency support. The proposed controller is described in the following section. 

7.2 Adaptive Inertia Emulation Control for a High-
speed FESS 

In this section, the proposed adaptive inertia emulation controller for high-speed FESS is 

described in detail. Firstly, the controller structure for inertia emulation using FESS is 

explained, followed by the description of the suggested adaptive control method to alter 

the inertia constant and damping coefficient for an improved frequency regulation. Next, 

the choice of the parameters for the proposed controller is explained, considering the 

practical limitations of a FESS. Lastly, the method used to estimate the frequency and its 

derivative, as the inputs of the proposed inertia emulation controller, is described briefly. 

7.2.1 Controller Design of Inertia Emulation using High-

speed FESS 

From the mechanical model of a PMSM in a high-speed FESS, described in Chapter 5, 

the electrical power of the PMSM (𝑃e) is calculated as 

𝑃e = Jf𝜔m
𝑑𝜔m

𝑑𝑡
+ Df𝜔m. (7.1) 

Equation (7.1) can be rewritten in per unit values using the definition of the inertia 

constant for a PMSM as [231] 

H =

1
2
Jfωmax

2

Sn
. 

(7.2) 

In Eq. (7.2), 𝜔max is the maximum speed of the FESS, and Sn is its nominal apparent 

power. The inertia constant H given in seconds determines the time the flywheel can 

provide the nominal power using the stored kinetic energy only. By indicating the per 

unit value with an upper bar, Eq. (7.1) becomes 

𝑃e̅ = 2H
𝑑�̅�m
𝑑𝑡

+ D�̅�m, 
(7.3) 
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where D is the damping coefficient in per unit. Assuming the number of pole pairs of the 

PMSM to be one, the mechanical and electrical angular velocity become identical, 

therefore, 

𝑃e̅ = 2H
𝑑�̅�e
𝑑𝑡

+ D�̅�e. 
(7.4) 

It is evident from Eq. (7.4) that the PMSM in a FESS is governed by the same swing 

equation of the conventional synchronous generators, with the difference of having no 

mechanical power input in a FESS. With any changes in the angular velocity of the 

supplied voltage to the PMSM, the PMSM provides an inertia response according to 

Eq. (7.4). However, in a FESS, the PMSM is decoupled from the grid by a back-to-back 

converter. To go around this problem, we replace the electrical angular velocity of the 

PMSM �̅�e with the error in the grid’s angular velocity in per unit Δ�̅�g. The resulting 

equation is then used to generate the active power reference (�̅�ref) for the FESS. That is, 

�̅�ref = 2H
𝑑Δ�̅�g

𝑑𝑡
+ DΔ�̅�g. 

(7.5) 

Equation (7.5) is the basis for the proposed inertia emulation controller. Using this 

approach, the inertia response of the PMSM is artificially transferred to the grid side, and 

the FESS reacts to the grid frequency deviations, similar to a synchronous generator.  

The block diagram of the proposed inertia emulation controller is shown in Figure 7.5. As 

mentioned before, due to the structural design of commercial FESS, the active power 

control is often implemented on the MSC controller. The active power reference 

generated by Eq. (7.5) is first transformed to the electrical torque reference 𝜏eref using the 

instantaneous speed of the flywheel 𝜔m, which is then converted to the reference value 

for the q-axis current of the MSC using  

𝑖qref =
2𝜏eref
3𝑛p𝜓PM

=
2�̅�refPn

3𝑛p𝜓PM𝜔m
. 

(7.6) 

The reference value for the d-axis current, the inner current controllers, and the GSC 

controller are identical to the ones presented in Chapter 5. The GSC controls the voltage 

of the DC-link according to the power injected or drawn from the MSC. Therefore, the 

power of the PMSM is transferred immediately to the grid. The GSC also regulates the 

voltage on the grid side, by controlling the reactive power according to the Q(U) 

characteristic of the German grid code, as shown in Figure 4.5(b). 



7.2 Adaptive Inertia Emulation Control for a High-speed FESS 

147 

 

Figure 7.5: The block diagram of the proposed inertia emulation controller, and the State of 

Charge (SOC) controller. This controller is to be added the MSC controller of the FESS in 

Chapter 5.  

It can be observed from Figure 7.5, that the inertia constant H determines the amount of 

active power injection with respect to the ROCOF (
𝑑Δ�̅�g

𝑑𝑡
), while the damping coefficient 

D determines the active power reference according to the error in frequency itself (Δ�̅�g). 

As mentioned before, a major advantage of inertia emulation in comparison to the 

physical inertia is that the emulated inertia and damping are control parameters, which 

can be altered in real-time, for an improved response to frequency disturbances. As 

shown in subsection 7.1.1, the increase in the inertia constant can help to reduce the 

ROCOF and to improve the frequency nadir in low-inertia power systems. The effect of 

the damping coefficient resembles the role of the active power droop in a conventional 

frequency control system. The increase in the damping coefficient can improve the 

frequency nadir. In this work, a new adaptive control method is proposed for altering 

these two parameters in Eq. (7.5), with the aim of reducing the ROCOF and improving 

the frequency nadir in low-inertia power systems. Details of the proposed adaptive inertia 

and damping method are discussed in subsection 7.2.2. 

It is also important to ensure that the FESS is always capable of providing and absorbing 

active power when a frequency disturbance occurs. Therefore, the FESS is also equipped 

with a State of Charge (SOC) controller, which attempts to maintain the state of charge of 

75 %, after the frequency deviation has passed. The choice of 75% is based on the fact 

that flywheels are not able to provide the nominal power at low speeds, as previously 

discussed. It was demonstrated in subsection 6.3.1 that the nominal power can be 

delivered only above the SOC of charge of approximately 25 %. Therefore, 75 % is the 
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center of the range, in which the FESS can provide its full power. The state of charge of 

75 % corresponds to 86.6 % of the maximum speed of the FESS. Therefore, 𝜔ref is set to 

0.866𝜔max in Figure 7.5. The state of charge controller uses a conventional PI controller 

in combination with a ramp limiter, to limit the effect of charging or discharging of the 

FESS on the grid, and it is activated only when the frequency has recovered fully to the 

nominal value.  

In the block diagram of Figure 7.5, a frequency deadband (±𝜔db) and a secondary 

frequency control block are included to provide a comprehensive frequency control 

framework. However, they are disabled in this work to show more clearly the effect of 

the inertia constant and the damping coefficient on the frequency response.  

7.2.2 Adaptive Inertia and Damping for an Improved 

Response 

As mentioned before, an adaptive strategy can be used for the inertia constant and the 

damping coefficient to improve the response of the FESS to frequency deviations. In 

recent years, numerous techniques and solutions have been proposed in literature on how 

these parameters should be altered during a frequency disturbance. The proposed 

methods in literature can be categorized into two main groups: methods based on online 

optimization algorithms [265], [296]–[300], and interval-based controllers [268]–[271]. 

In this thesis, a new interval-based controller is proposed, and its performance is 

compared with several previously reported methods in this category. It is important to 

note that none of the previously reported adaptive methods are suggested specifically for 

a FESS. However, they can be applied to any converter-interfaced system. Therefore, 

they are used as reference points in this work for a comparison with the proposed method. 

In interval-based controllers, the time period of the frequency deviation is divided into 

several fragments, according to the sign of Δ�̅�g
𝑑Δ�̅�g

𝑑𝑡
, as shown in Figure 7.6. When 

𝑑Δ�̅�g

𝑑𝑡
 

and Δ�̅�g have the same signs, i.e., Δ�̅�g
𝑑Δ�̅�g

𝑑𝑡
> 0, the period is called the accelerating 

phase. This includes the first interval after a disturbance occurs until reaching the 

frequency nadir. When they have opposite signs or Δ�̅�g
𝑑Δ�̅�g

𝑑𝑡
≤ 0, the interval is named 

the decelerating phase. In Figure 7.6, the accelerating phase is marked in red while the 

decelerating is colored in yellow. The naming of these periods resembles the behavior of 

a synchronous generators on its power-angle curve following a disturbance [268].  
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Figure 7.6: Segmentation of the frequency deviation period into the accelerating phase (red) and the 

decelerating phase (yellow), according to the sign of Δ�̅�g
𝑑Δ�̅�g

𝑑𝑡
.  

As shown in subsection 7.1.1, having a large value for the inertia constant leads to a 

reduction of the maximum ROCOF observed during a frequency disturbance. However, 

maintaining the high inertia value leads to a slow recovery of the frequency, and an 

increased setting time for the frequency [268]. To solve the problem of the slow 

frequency recovery, a bang-bang control strategy for the inertia value is proposed 

in [268], where the inertia changes between two discrete values, depending on being in 

the accelerating or decelerating phases. Using this approach, when the frequency is 

moving away from the nominal value (accelerating phase), a high inertia is applied to 

resist its changes. As soon as the frequency begins to recover towards a new steady-state 

value (decelerating phase), the emulated inertia is set to zero to speed up the frequency 

recovery. However, the second degree of freedom, the damping coefficient is neglected 

in [268]. Therefore, in [269], a similar approach using the bang-bang control has been 

applied on both the damping and the inertia. The use of the damping in this design 

improves the frequency nadir and the frequency settling time. In both control designs 

using the bang-bang approach, the inertia constant and the damping coefficient can 

change only between two predetermined discrete values, which are independent from the 

severity of the frequency disturbance. In the adaptive inertia controller in [271], however, 

an adaptive component is added to the inertia, that scales with the amplitude of Δ�̅�g
𝑑Δ�̅�g

𝑑𝑡
. 

But this work, again, neglects the use of the damping coefficient. A self-adaptive 

controller is proposed in [270], which considers both the damping and the inertia 

constant. However, the damping is increased only after the frequency nadir (decelerating 
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phase) to damp out the subsequent frequency oscillations. Therefore, it cannot influence 

the frequency nadir at all. The main issue with the proposed adaptive controllers in [271] 

and [270] is that the changes in the inertia and damping are not as fast as the bang-bang 

controllers, where the changes are almost immediate. In low-inertia power systems, 

where a high ROCOF is observed within the first instances of the frequency disturbance, 

it is important to reach a high inertia constant as fast as possible to effectively limit the 

maximum ROCOF. Enabling a high inertia value later than necessary can have little to no 

impact on the maximum ROCOF observed during the disturbance. A summary and a 

comparison of the interval-based adaptive controllers studied in this work is presented in 

Table 7.3. 

Table 7.3: A comparison of the proposed inertia emulation control with several interval-based methods in 

literature. 

Literature 
Bang-bang 

control 

Self-adaptive 

control 

Considering 

damping 

Considering limits of 

the active power 

source 

[268] Yes No No No 

[269] Yes No Yes No 

[271] No Yes No No 

[270] No Yes Yes* No 

Proposed Yes Yes Yes Yes 

* The higher damping is applied only after the frequency nadir. 

 

In this work, we combine the advantages of bang-bang control approaches, which 

guarantee a rapid change of the control parameters, with self-adaptive controllers, that 

ensure a more proportional response to the frequency disturbance. Moreover, we take 

advantage of the damping coefficient to help reducing the frequency nadir. The proposed 

adaptive control for the inertia constant and damping coefficient is described by Eq. (7.7) 

and (7.8), respectively. 

𝐻 =

{
 
 

 
 

 

𝐻1 + 𝐾𝐻 |
𝑑Δ�̅�g

𝑑𝑡
| , if  (Δ�̅�g

𝑑Δ�̅�g

𝑑𝑡
> 0)  ∩ (|

𝑑Δ�̅�g

𝑑𝑡
| > εH) 

𝐻2 , if  (Δ�̅�g
𝑑Δ�̅�g

𝑑𝑡
≤ 0)  ∪ (|

𝑑Δ�̅�g

𝑑𝑡
| ≤ εH) 

. 

(7.7) 

𝐷 =

{
 
 

 
 

 

𝐷1 +𝐾𝐷|Δ�̅�g| , if  (Δ�̅�g
𝑑Δ�̅�g

𝑑𝑡
> 0)  ∩ (|

𝑑Δ�̅�g

𝑑𝑡
| > εD) 

𝐷2 +𝐾𝐷|Δ�̅�g| , if  (Δ�̅�g
𝑑Δ�̅�g

𝑑𝑡
≤ 0)  ∪ (|

𝑑Δ�̅�g

𝑑𝑡
| ≤ εD) 

. 

(7.8) 
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As seen from Eq. (7.7), as soon the frequency disturbance occurs (accelerating phase), 

the inertia constant is instantaneously increased from a lower value (𝐻2) to a higher 

value (𝐻1), which is further increased by a proportional term (𝐾𝐻 |
𝑑Δ�̅�g

𝑑𝑡
|), that scales 

linearly with the absolute value of the ROCOF. Therefore, using the proposed approach, 

the inertia constant increases rapidly using the bang-bang approach, and according to the 

severity of the frequency disturbance, an even higher inertia constant is applied. When 

the frequency begins to recover (decelerating phase), the inertia constant is reduced 

immediately to a value near zero (𝐻2) to avoid the increase in frequency settling time. 

The condition to apply the higher inertia is being in the accelerating phase and not being 

in steady-state conditions, which is determined by |
𝑑Δ�̅�g

𝑑𝑡
| > 𝜀𝐻. The addition of the 

second condition, avoids unnecessary switching between the two states, which are 

observed in [268], where 𝜀𝐻 is set to zero. A low inertia value is also applied when the 

frequency has reached a steady-state condition, i.e., |
𝑑Δ�̅�g

𝑑𝑡
| ≤ εH. 

A similar controller design is suggested for the damping coefficient. However, the 

adaptive component of the damping coefficient (𝐾𝐷Δ�̅�g) scales with the frequency error, 

rather than the ROCOF. Also, the adaptive term is maintained when the frequency is 

recovering, while the constant term is reduced from 𝐷1 to 𝐷2. This helps improving the 

damping of the subsequent frequency oscillations after the nadir, while the reduction of 

the constant term helps to limit the energy drawn from the FESS. 

The differences between the proposed controller and the reviewed adaptive methods in 

literature is summarized in Table 7.3. As seen in Table 7.3, the proposed controller also 

considers the limitations of the active power source used for inertia emulation, which is 

discussed in the next subsection. 

7.2.3 Parameters for the Inertia Emulation Control using a 

FESS 

Many related works on adaptive inertia emulation techniques do not consider the 

limitations of the active power source behind the converter, and assume an ideal DC-link 

with unlimited energy resources, as in [273]–[276]. This section proposes a simple 

methodology to include the state of charge and the practical limitations of the FESS at 

low rotational speeds into the control design by adjusting the parameters of the proposed 

inertia emulation controller according to the state of charge of the FESS. 

In the proposed control design for the inertia constant, shown in Eq. (7.7), 𝐻1 and 𝐾𝐻 are 

the control parameters that determine the emulated inertia, which are used to calculate the 
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active power injection according to the ROCOF. When the FESS is fully charged at its 

maximum speed of 𝜔max, these two parameters should be at their maximum level to 

provide the maximum inertia. However, it is proposed in this work that these parameters 

are scaled down with the reduction of the state of charge of the FESS. Using this 

approach, the FESS will provide inertia support proportional to its state of charge.  

Therefore, the inertia constant 𝐻1 is equal to its maximum value for a fully charged 

FESS, H1max, and for lower values of state of charge,  

𝐻1 =
1

2
Jf𝜔m

2

1

2
Jfωmax

2
H1max = (

𝜔m

𝜔max
)2H1max = SOC ∙ H1max.  

(7.9) 

Figure 7.7(a) shows the inertia constant 𝐻1 as a function of the speed of the FESS 

according to Eq. (7.9), and for a maximum inertia constant of 5.9 s. A similar function to 

Eq. (7.9) is used for 𝐾𝐻 with the maximum value of 𝐾Hmax, i.e., 𝐾𝐻 = SOC ∙ 𝐾Hmax. The 

parameter H2 is constant and close to zero to speed up the frequency recovery. 

Furthermore, we integrate the power limitations of the FESS at low rotational speed into 

the controller. This limitation is integrated into the damping coefficient 𝐷2, as it 

determines the FESS contribution in steady-state conditions. The damping coefficient 𝐷2 

is reduced from its maximum value 𝐷2max when the FESS reaches the low speed 

threshold, according to the speed of the FESS, as shown in Figure 7.7(b). A similar 

function is used for 𝐷1 and 𝐾𝐷, with the maximum values of 𝐷1max and 𝐾Dmax, 

respectively, as shown in Figure 7.7.  

Using the proposed approach, the FESS contribution to frequency deviations is reduced 

automatically, when the FESS reaches lower speeds and reaches zero, when the FESS is 

emptied. This is a mandatory requirement, when using a real FESS, where the physical 

system constrains must be considered.  

As the damping coefficient 𝐷2 determines the steady-state contribution of the FESS, it 

has the same effect as the droop coefficient. Therefore, we chose the maximum value of 

𝐷2 to be 40 p.u., which corresponds to a droop value of 2.5 %. The value for 𝐷1 is chosen 

to be slightly higher to help to improve the frequency nadir, as discussed earlier. The 

choice of 𝐾Hmax and 𝐾Dmax determines the effect of the instantaneous ROCOF and 

frequency on the inertia constant and the damping coefficient, respectively. These are 

design parameters, which can be selected according the maximum ROCOF and frequency 

deviation expected in a system. The value of εH and εD, which determine the transition 

condition in the proposed controller, should be higher than the noise level expected on 

the ROCOF and frequency estimation, in order to avoid unwanted triggering between the 

two control states. In this respect, using a differential operator to calculate the ROCOF 
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can lead to noise amplification and inaccurate triggering of the controller. Therefore, in 

the next section, a method is described to calculate the ROCOF without using this 

operator. The parameters used for the proposed inertia emulation control in this work are 

given in Table 7.4. 

 

Figure 7.7: The variations of the inertia emulation control parameters with respect to the speed of the 

FESS. (a) The inertia constants, 𝐻1 and 𝐻2, (b) the damping coefficients 𝐷1 and 𝐷2, and 

(c) the adaptive coefficients 𝐾H and 𝐾D. 

Table 7.4: The parameters used for the proposed inertia emulation controller. 

Parameter Value Parameter Value 

H1max 5.9 s D1max 55 p.u. 

H2 0.01 s D2max 40 p.u. 

KHmax 400 p.u. KDmax 400 p.u. 

εH 0.005 p.u. εD 0.005 p.u. 

7.2.4 Estimation of the Frequency and its Derivative 

Inertia emulation techniques require estimated values of the frequency and the frequency 

derivative (ROCOF). The Synchronous Reference Frame Phase-locked Loop (SRF-PLL) 

has been used often in inertia emulation controllers in literature [290], [294], [295], 

[300], as the conventional method for estimating the frequency. However, it has been 

reported that the use of the SRF-PLL in inertia emulation applications can lead to 

instabilities and noise amplification associated with the differential operation, used for 

calculating the ROCOF [301]–[303]. Furthermore, the SRF-PLL performs poorly under 

unbalanced and distorted voltage conditions, often observed in weak grids, such as 

microgrids [304]. Although the performance of the SRF-PLL in such conditions can be 
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improved by additional filters or moving window functions, these methods introduce 

more delays into the frequency estimation. For the application of inertia emulation in 

low-inertia power systems, a fast detection of frequency changes is required, and such 

delays can impair the benefits of inertia emulation. 

Therefore, in this work, it is suggested to use the Dual Second-Order Generalized 

Integrator Frequency-Locked Loop (DSOGI-FLL), introduced in [304]. Using the 

DSOGI-FLL has the significant advantage that it can estimate the frequency derivative 

without using the differential operator, avoiding the problems of noise amplification and 

unrealistic outputs. The DSOGI-FLL only uses integrators and multiplication of filtered 

signals to estimate the ROCOF. The superior performance of the DSOGI-FLL over the 

SRF-PLL for the estimation of the ROCOF has been demonstrated by simulations and 

experiments in [302]. The same work shows that the common stability issues of the SRF-

PLL are not observed in the DSOGI-FLL. In addition, the DSOGI-FLL is based on 

adaptive filters. Therefore, it performs well under distorted, faulty, and unbalanced 

voltage conditions [304]. The block diagram of the DSOGI-FLL is depicted in Figure 7.8. 

 

Figure 7.8: The block diagram of the Dual Second-Order Generalized Integrator Frequency-Locked Loop 

(DSOGI-FLL) (adopted from [304]).  

As seen in Figure 7.8, the DSOGI-FLL consists of two Second-order Generalized 

Integrator Quadrature Signal Generators (SOGI-QSG) and a Frequency-locked 

Loop (FLL), with a gain normalization block. The two SOGI-QSG receive the measured 

voltage in the stationary reference frame (𝑣𝛼 and 𝑣𝛽), and generate filtered in-phase (𝑣′𝛼  

and 𝑣′𝛽) and in-quadrature (𝑞𝑣′𝛼  and 𝑞𝑣′𝛽) signals of the input voltages with the same 
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amplitude. The transfer function of these conversions for the in-phase (𝐺𝛼𝛽
𝑑 (𝑠)) and for 

the in-quadrature (𝐺𝛼𝛽
𝑞
(𝑠)) components are shown in Eq. (7.10) and (7.11), respectively, 

which are identical for both 𝛼 and 𝛽 components.  

𝐺𝛼𝛽
𝑑 (𝑠) =  

𝑣′𝛼𝛽

𝑣𝛼𝛽
=

k𝜔g𝑠

𝑠2+k𝜔g𝑠+𝜔g
2
.  

(7.10) 

𝐺𝛼𝛽
𝑞
(𝑠) =

𝑞𝑣′𝛼𝛽

𝑣𝛼𝛽
=

k𝜔g
2

𝑠2+k𝜔g𝑠+𝜔g
2
.  

(7.11) 

In these equations, 𝜔g is the estimated frequency by the FLL and k is the SOGI-QSG 

gain, which is a design parameter. By looking at Eq. (7.10) and (7.11), it can be seen that 

the SOGI-QSG control loops are basically a band-pass filter for the in-phase components 

and a low-pass filter for the in-quadrature signals. To have the optimum damping 

ratio (𝜉) of 0.707, the SOGI-QSG gain k is set to √2, as recommended in [304]. This 

choice leads to an optimum balance between a fast dynamic response and the filtering 

capability of the SOGI-QSG. The FLL uses the error in calculating the in-phase 

components and the filtered in-quadrature components to calculate the frequency 

derivative as  

𝑑�̅�g

𝑑𝑡
= −

Γ

2
((𝑣′𝛼 − 𝑣𝛼)𝑞𝑣

′
𝛼
+ (𝑣′𝛽 − 𝑣𝛽)𝑞𝑣

′
𝛽
).  (7.12) 

In Eq. (7.12), Γ is the FLL gain, which is assumed to be equal to 100, as recommended 

in [251]. This choice of Γ leads to a relatively fast frequency setting time of the frequency 

measurement. It is clear from Eq. (7.12) that no differential operation is involved in 

estimating the ROCOF, when using the DSOGI-FLL. The gain normalization block 

ensures that FLL receive signals with unity magnitude, avoiding errora in frequency 

estimation [251]. The frequency itself is estimated by integrating over the calculated 

frequency derivative. 

7.3 Simulation Results of the Adaptive Inertia 
Emulation using a high-speed FESS 

The performance of the proposed adaptive inertia emulation controller for the high-speed 

FESS is initially evaluated using offline simulations in MATLAB/Simulink environment. 

Two difference scenarios in a low voltage microgrid are presented to show the 

effectiveness of the proposed method in improving the frequency dynamics during power 

imbalances. For a comparison with the current state-of-the-art, three of the interval-based 

adaptive inertia controllers, previously reported in the literature, are also simulated in 

each scenario.  



7 Adaptive Inertia Emulation using High-speed Flywheel Energy Storage Systems 

156 

The simulation scenarios are carried out in a low voltage microgrid, based on the CIGRE 

European low voltage network benchmark [123], and its variation in [305]. Among the 

available benchmark grids with openly available data, this network benchmark has the 

closest characteristics to a typical German low voltage distribution grid. The high-speed 

FESS together with two PV systems and a diesel-based Combined Heat and 

Power (CHP) system are added to the CIGRE benchmark to form a microgrid and allow 

an autonomous operation of the system. The single-line diagram of the microgrid is 

shown in Figure 7.9. The FESS is installed near the transformer to provide frequency and 

voltage support during islanding, while the PV systems and the CHP are located near the 

loads. The microgrid is capable of being disconnected from the main supply and operate 

in the autonomous mode, when necessary. By a power imbalance in the autonomous 

operation of the microgrid, the frequency can deviate greatly, as the synchronous 

generation of the CHP is the only source of traditional inertia in the system. During an 

imbalance of generation and demand, the CHP slowly covers the demand, while the 

FESS has the task of providing a faster response and additional inertia support during the 

first seconds of the frequency disturbance. The PV systems are modelled according to the 

generic two-stage model presented in [261] and are being operated at their maximum 

power point. Therefore, they are not able to take part in regulating the frequency during 

under-frequency events. The parameters of the diesel-based CHP and the PV systems are 

given in the Appendix B. The FESS parameters are the same as the ones use in Chapter 5 

and 6, and the inertia emulation parameters are given in Table 7.4.  

 

Figure 7.9: The single-line diagram of the test microgrid based on the CIGRE European low voltage 

network benchmark. 
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Two different scenarios are simulated, which are the microgrid islanding and the 

intermittent generation of the PV systems in the autonomous mode of operation. In each 

scenario, six difference cases are simulated: 

▪ Case 1: No FESS. 

▪ Case 2: FESS with a conventional droop control and no inertia emulation. 

▪ Case 3: FESS with inertia emulation control and the bang-bang control for both 

the inertia and the damping, as in [269]. 

▪ Case 4: FESS with inertia emulation control and adaptive inertia control, as 

in [271]. 

▪ Case 5: FESS with inertia emulation control and adaptive inertia and damping 

control, as in [270]. 

▪ Case 6: FESS with inertia emulation control and the proposed adaptive inertia 

and damping method, as described in section 7.2.2. 

A summary of the characteristics of the controllers in all cases is presented in Table 7.5. 

For a fair comparison, the same maximum inertia constant and damping of Table 7.4 is 

used for the bang-bang control in case 3. For the controllers in case 4 and 5, where a 

single value of inertia constant is used, the average of inertia and damping values of 

Table 7.4 is used. The simulation results in the two scenarios and for all the six cases are 

provided next. 

Table 7.5: A summary of the controller characteristics in all cases. 

Case FESS Controller type Adaptive control method 

Case 1 No N/A N/A 

Case 2 Yes Droop N/A 

Case 3 Yes Inertia Emulation [269] 

Case 4 Yes Inertia Emulation [271] 

Case 5 Yes Inertia Emulation [270] 

Case 6 Yes Inertia Emulation Proposed. 

7.3.1 Scenario A: Microgrid Islanding 

In this scenario, the microgrid is initially drawing 80 kW of power from the medium 

voltage grid, while the PV systems and the CHP system are only partially supporting the 

loads. The FESS is charged to reach the state of charge of 75 % using the state of charge 

controller, prior to the disturbance. The microgrid is decoupled instantaneously from the 

main supply by opening the circuit breaker S1, and it undergoes into the islanded mode of 

operation. The power deficiency in the microgrid leads to a sudden drop in the microgrid 
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frequency. The FESS attempts to limit the ROCOF and frequency nadir, while the CHP 

system slowly increases its output to compensate for the power deficiency. 

The simulation results for all the six cases in this scenario are presented in Figures 7.10 

and 7.11. It can be seen from Figures 7.10(a) and (b), that the use of the FESS with the 

proposed adaptive inertia emulation controller, presented as case 6, leads to the highest 

reduction in the maximum ROCOF and the most improved frequency nadir. As shown in 

Figure 7.10(b), the FESS with the proposed controller reduces the maximum ROCOF by 

28 %, from 1.72 Hz/s in case 1, to 1.24 Hz/s in case 6. Furthermore, it performs better 

than the previously proposed adaptive inertia controllers, presented as case 3 to 5, which 

reduce the maximum ROCOF to 1.34 Hz/s at best. The superior performance of the 

proposed design in reducing the ROCOF is due to quickly reaching a higher inertia 

constant, as shown in Figure 7.10(c), using a combination of the bang-bang control 

approaches and the self-adaptive ones. In case 3, where only the bang-bang control is 

used, the inertia constant also changes very rapidly. However, it only reaches a 

predetermined constant value (𝐻1max), independent from the ROCOF, and remains 

constant until the frequency nadir is reached, which limits its effectiveness. The adaptive 

inertia controller implemented in case 4 changes the inertia constant slowly, and 

therefore, it performs worse than the proposed controller. In the self-adaptive controller 

of case 5, the inertia constant is only increased by the instantaneous value of the ROCOF. 

Therefore, the increase is not as high and as fast as in the proposed design. As a result of 

combing the bang-bang control and the self-adaptive approach in the proposed design, 

the inertia constant immediately reaches the high value of 4.42 s (𝐻1 at SOC of 75%), 

which is increased even further by the instantaneous value of the ROCOF, reaching an 

inertia constant of 7.8 s quickly after islanding. Among the previously reported control 

designs, case 3 and 5 show a similar behavior in reducing the maximum ROCOF. The 

controller in case 5 reduces the ROCOF slightly better than the one in case 3, due the fact 

that the initial ROCOF in this scenario is high enough to reach a higher inertia constant 

than the pre-given value in case 3. Although a higher inertia constant is reached in case 4, 

in comparison to case 3, the increase is not fast enough to effectively limit the maximum 

ROCOF. Thus, the worst performance is observed in case 4 among the cases 3 to 5. The 

maximum ROCOF and frequency nadir in all cases are summarized in Table 7.6. 

The proposed controller also results in the largest improvements in the frequency nadir, 

by taking advantage of the second degree of the freedom, the damping coefficient. As 

seen in Figure 7.10(a), the use of the FESS with a conventional droop control, presented 

as case 2, improves the frequency nadir from 48.84 Hz, to 49.2 Hz. However, with a 

proper use of the damping coefficient in the proposed design, the frequency nadir can be 

improved even further, to reach 49.35 Hz. This is a 44 % reduction in the maximum 

frequency deviation in comparison to case 1, and 18.7 % in comparison to case 2. This is 
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achieved by increasing the damping coefficient immediately after the islanding, and 

further increasing it according to the instantaneous changes in the frequency, as shown in 

Figure 7.10(d). Between the studied cases, the controller in case 4 does not use the 

damping coefficient, leading do the worst frequency nadir. Following case 6, the most 

improved frequency nadir can be observed in case 3, as unlike the controller in case 5, a 

higher damping coefficient is applied before reaching the frequency nadir. It should also 

be noted, that the improved frequency nadir is also a side effect of the reduction in the 

ROCOF in the proposed design using the inertia constant. Using the FESS with the 

proposed control design also shows a better damping of frequency oscillations after the 

frequency nadir, as seen in Figure 7.10(a). This is due to maintaining the adaptive 

component of the damping coefficient, after reaching the frequency nadir. 

 

Figure 7.10: Simulation results for scenario A: microgrid islanding. (a) Frequency, (b) ROCOF, (c) Inertia 

constant (H), and (d) Damping coefficient (D). 

Figure 7.11 shows the active power of the FESS and its state of charge variations during 

the first five seconds of the islanding scenario. As seen in Figure 7.11(a), the use of the 

proposed controller leads to a more prompt and faster response of the FESS, which leads 

to the improved grid frequency dynamics during the islanding. The controller design in 

case 3 results in a slightly higher peak in power than the proposed design; however, a 
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better performance in terms of the frequency is not observed, as the increase in power is 

slower than in the proposed control design. In case 3 and 6, where the bang-bang control 

and a higher damping coefficient from the beginning of the frequency incident are 

applied, a higher peak in the FESS power is observed. However, the power is reduced 

significantly using the bang-bang approach, after reaching the frequency nadir. 

Therefore, the total energy drawn from the FESS in all cases do not differ significantly, 

as seen in Figure 7.11(b). The proposed control design increases the energy drawn from 

the FESS by only 0.15 %, in comparison to case 2, and by 0.07 %, in comparison to case 

3 and 5. It can be concluded, that the proposed adaptive inertia emulation controller leads 

to an improved frequency dynamic of the microgrid, in terms of reducing the maximum 

ROCOF and improving the frequency nadir, while not using significantly more energy 

from the FESS. This is an advantage in a long-term autonomous operation of the 

microgrid with continuous variations in load and generation.  

 

Figure 7.11: Simulation results for scenario A: microgrid islanding. (a) FESS Power, and (b) FESS State of 

Charge (SOC). 

Table 7.6: The maximum ROCOF and frequency nadir for all the simulated scenarios and cases. 

 Frequency Nadir (Hz) Maximum ROCOF (Hz/s) 

Case Scenario A Scenario B Scenario A Scenario B 

Case 1 48.84 49.04 1.72 1.15 

Case 2 49.20 49.22 1.57 1.06 

Case 3 49.31 49.29 1.37 0.89 

Case 4 49.25 49.26 1.45 0.98 

Case 5 49.28 49.27 1.34 0.95 

Case 6 49.35 49.33 1.24 0.82 
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7.3.2 Scenario B: Drop in the PV Generation 

In scenario B, the microgrid is disconnected from the main supply, after an islanding 

scenario, similar to the one in scenario A. The CHP system and the two PV systems are 

supporting the loads, while the FESS is injecting a small amount of power according to 

the value of 𝐷2 and the steady-state frequency error. A sudden sharp drop in the solar 

irradiance density is simulated, reducing it from 1000 W/m2 to 150 W/m2, which could be 

caused by passing clouds. This results in a drastic drop of the PV generation in the 

microgrid, from 70 kW to 10.5 kW. The power deficit leads to a drop in the frequency of 

the microgrid. The FESS increases rapidly its output to limit the ROCOF and frequency 

nadir, while the CHP system slowly covers the lack of generation by the PV systems. 

The simulation results for the six cases in this scenario are shown in Figures 7.12 

and 7.13. Similar to scenario A, the use of the FESS with the proposed controller leads to 

the highest reduction in the maximum ROCOF and frequency nadir during this frequency 

disturbance. It reduces the maximum ROCOF from 1.15 Hz/s in case 1, to 0.82 Hz/s in 

case 6. It can be seen from Figure 7.12(c) that this is achieved by quickly reaching a 

higher inertia constant in the proposed controller in comparison to the other cases. In 

contrast to the scenario A, the controller in case 3 performs better than case 5 in this 

scenario. This is due to the fact, that the inertia constant in case 5 increases only with the 

ROCOF, and since the ROCOF in this scenario is lower than the one in scenario A, case 

3 with a predetermined increase in the inertia constant shows a better performance. 

Despite eventually reaching a higher inertia constant in case 5, the increase is not fast 

enough to limit the maximum ROCOF. 

Similarly, the highest improvement in the frequency nadir is seen using the proposed 

control design, where the frequency nadir reaches only 49.34 Hz, in comparison to 

49.04 Hz in case 1, and 49.22 Hz in case 2. Following case 6, case 3 shows the best 

performance in terms of the frequency nadir, by reaching 49.29 Hz. This is due to the fact 

that it also uses a higher damping coefficient before reaching the frequency nadir.  

Figures 7.13(a) and (b) show the active power and the state of charge of the FESS, 

respectively. As seen in Figure 7.13(a), the FESS is injecting about 12 kW of power, 

prior to the disturbance. Similar to the previous scenario, with the proposed controller, 

the FESS increases its power output faster than in the other cases. It also reaches a higher 

peak in power in this scenario, but due to the reduction of the power after reaching the 

frequency nadir, there is only a slight increase in the energy required from the FESS, 

when using the proposed controller. This can be seen by comparing the state of charge 

before the disturbance with the one after the five seconds into the disturbance. It is 

important to note that the state of charge values in different cases are different prior to the 
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disturbance, as the drop in the PV generation is simulated following an islanding scenario 

using different controllers. 

 

Figure 7.12: Simulation results for scenario B: drop in PV generation. (a) Frequency, (b) ROCOF, (c) 

Inertia constant (H), and (d) Damping coefficient (D). 

 

Figure 7.13: Simulation results for scenario B: drop in PV generation. (a) FESS Power, and (b) FESS State 

of Charge (SOC). 
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7.4 PHIL Testing of a High-speed FESS for Inertia 
Emulation 

To experimentally validate the proposed inertia emulation control for the FESS, the 

controller has been implemented on the 60 kW high-speed FESS, using the concept of 

rapid control prototyping. The performance of the FESS using the proposed adaptive 

inertia emulation controller has been evaluated using PHIL testing. The two simulated 

scenarios, i.e., the microgrid islanding and the drop in PV generation, have been repeated 

in real-time for conducting the PHIL testing of the FESS. In each scenario, all six cases 

have been investigated, leading to 12 experiments in total.  

7.4.1 Real-time Simulation of the Microgrid 

For conducting the PHIL testing, a real-time simulation of the grid under study is 

mandatory. The CIGRE-based low voltage microgrid shown in Figure 7.9 is simulated in 

real-time on the Opal-RT’s OP5700 real-time simulator with simulation time steps of 

only 24 µs. This is achieved by using the State-space Nodal (SSN) solver [109] to 

decouple the model at bus R4, creating three groups of equations that can be solved 

almost independently (see subsection 3.1 for more information), and neglecting the line 

capacitances due to their short lengths [117]. The relatively low simulation time step 

leads to a low total loop delay, which is a main contributor to the PHIL stability, as 

discussed in subsection 3.2.2. 

7.4.2 Implementing the Inertia Emulation Controller on the 

real FESS 

The same PHIL setup and commercial high-speed FESS, which were described in 

Chapter 6, are also used for the experiments in this chapter.  

To implement the proposed inertia emulation controller on the commercial FESS, the 

controller is also simulated in real-time on the OP5700 real-time simulator, as an external 

controller. It measures the frequency and frequency derivative from the grid voltage at 

bus R11, and generates the active power reference for the high-speed FESS. This 

concept, where the controller is simulated in real-time, while it is being tested on a real 

hardware is known as rapid control prototyping. The active power reference generated 

from the simulated controller is sent in real-time to the FESS internal controller through a 

4-20 mA analog channel. In this work, the analog connection has been preferred to the 

standard Modbus communication, as the Modbus communication in known to be slow 
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and nondeterministic in signal transmission, which is not suitable for this application. A 

schematic of the described signal connections and the PHIL testing setup is shown in 

Figure 7.14. 

 

Figure 7.14: The signal connections and PHIL setup for implementing the inertia emulation controller on 

the FESS using the concept of rapid control prototyping. 

In Figure 7.14, 𝑉R11 is the three-phase grid voltage at bus R11, where the FESS is 

virtually connected. This voltage is sent via a dedicated SFP connection to the Egston 

200 kVA power amplifier, which is feeding the FESS. It is also sent within the simulator 

to the DSOGI-FLL and the inertia emulation controller. The DOSGI-FLL receives this 

voltage and estimates the frequency and frequency derivative, as described in 

subsection 7.2.4. The estimated frequency and ROCOF are sent to the simulated inertia 

emulation controller, where the active power reference (𝑃ref) is calculated. The inertia 

emulation controller also receives the state of charge of the FESS form the FESS 

controller via the Ethernet connection and the Modbus protocol. The active power 

reference is sent from the real-time simulator to the FESS controller via an analog 

connection. The FESS controller sends the active power reference to the MSC controller, 

where it generates the torque reference from the active power reference. The FESS injects 
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or absorbs power, accordingly to the received set point. The FESS currents (𝐼FESS) are 

measured at the FESS terminals, sent to the real-time simulator via another SFP 

connection, and inserted into the simulated grid at bus R11. Similar to the PHIL tests in 

Chapter 6, the voltage-type ideal transformer method [256] is used for interfacing the 

FESS and the real-time simulation, and a first-order low-pass filter with a cut-off 

frequency of 100 kHz is applied on the current measurements fed back to the real-time 

simulation.  

To illustrate the functionally of the setup, steps in the active power reference are sent 

from the real-time simulator to the FESS and the response of the FESS to the received set 

point is measured. The results are shown in Figure 7.15. First, a 60 kW step in the active 

power reference is sent to the FESS, while initially the FESS is injecting no power. It can 

be observed from Figure 7.15(a) that the FESS reaches the active power set point of 60 

kW in just over 25 ms, which indicates a very quick response from FESS. Next, while the 

FESS is being charged at its nominal power, the active power set point is changed 

stepwise from -60 kW to +60 kW, resulting in a 120 kW step change in the active power. 

As shown in Figure 7.15(b), it takes less than 32 ms for the FESS to go from charging at 

full power to discharging at the same rate.  

 

Figure 7.15: Response of the FESS to steps in the active power reference, sent from the OP5700 real-time 

simulator. (a) A 60 kW step, from steady-state operation and no power injection. (b) A 

120 kW step, from charging at the nominal power to discharging at the same rate.  
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The same scenarios and cases, described in the simulations of section 7.3, are repeated 

using the real-time simulation of the microgrid and the real FESS. The obtained PHIL 

testing results are presented in the next subsections. 

7.4.3 Scenario A: Microgrid Islanding 

In this scenario, the simulated microgrid, running in real-time on the OP5700 real-time 

target, is decoupled from the main supply. The medium voltage grid is providing 80 kW 

of power to the microgrid, prior to the islanding. For all the six cases, before the 

islanding, the FESS is charged using the state of charge controller to reach the state of 

charge of 75 %, which corresponds to a rotational speed of approximately 39,000 rpm. 

The results of the PHIL testing of the FESS for this scenario are shown in Figures 7.16 

and 7.17. The frequency and the ROCOF of the microgrid during the islanding are 

depicted in Figure 7.16(a) and (b), respectively. It can be observed, that similar to the 

simulation results, the best performance in terms of reducing the maximum ROCOF and 

improving the frequency nadir is achieved using the proposed adaptive inertia emulation 

controller. The use of the high-speed FESS with the proposed inertia emulation 

controller, reduces the maximum ROCOF during the islanding scenario by 25 %, from 

1.72 Hz/s in case 1, to 1.3 Hz/s in case 6. The superior performance of the proposed 

control design is achieved by rapidly reaching a higher inertia constant, as shown in 

Figure 7.16(c), by a combination of the bang-bang control methods and self-adaptive 

ones. The inclusion of the adaptive component in the inertia constant of the proposed 

controller leads to a better performance in comparison to the simple bang-bang control of 

case 3, where the inertia values in each interval are constant. Similarly, exploiting the 

bang-bang control approach in the proposed design results in a faster change of 

parameters in comparison to the self-adaptive controller of case 4. 

Among the previously reported adaptive inertia controllers, case 3 and 5 show similar 

results, reducing the maximum ROCOF to only 1.4 Hz/s. Despite reaching a higher 

inertia constant in case 4, in comparison to case 3, a further improvement of the ROCOF 

is not observed, due to the gradual change of inertia constant in self-adaptive controllers 

in comparison to the bang-bang control methods.  

Furthermore, as shown Figure 7.16(a), the FESS with the proposed controller improves 

the frequency nadir from 48.84 Hz in case 1, to 49.27 Hz in case 6. This is achieved by 

exploiting the damping coefficient immediately after the disturbance occurs, as opposed 

to case 5, and in combination with quickly reaching a higher inertia constant. As 

discussed in section 7.1.1, the frequency nadir is determined by both the damping and the 

inertia, with the damping having a greater influence. After the proposed controller, the 
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controller implemented as case 3 shows the best performance in terms of the frequency 

nadir, as it is the only method which employs a higher damping coefficient, before 

reaching the frequency nadir. The highest ROCOF and the worst frequency nadir are 

observed in case 4, since it does not use the damping coefficient, and the inertia constant 

is increased slowly.  

Moreover, it can be seen in Figure 7.16(a), that using the proposed approach, a better 

damping of the subsequent frequency oscillations is observed, having almost no 

overshoot in the frequency, while recovering. 

Figure 7.17(a) shows the measured active power of the FESS. To calculate the active 

power, the FESS voltage and current measurements are collected at its terminal using 

voltage and current transformers. The instantaneous active power is calculated from the 

voltage and current measurements in the real-time simulator.  

 

Figure 7.16: PHIL testing results for scenario A: microgrid islanding. (a) Frequency, (b) ROCOF, (c) 

Inertia constant (H), and (d) Damping coefficient (D). 

As seen in Figure 7.17(a), similar to the simulation results, the proposed controller results 

in a more rapid and prompt response from the FESS to the frequency disturbance, which 
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leads to the improvements observed in the frequency dynamics. The fast response of the 

FESS is due to the quick change of the inertia constant and damping coefficients using 

the bang-bang control approach. The active power in case 3 and 6, where the bang-bang 

approach on both the inertia and the damping are used, reaches a higher peak value. 

However, as soon as the frequency nadir is reached, the active power is reduced by more 

than 10 kW and reaches values lower than the power of the FESS in other cases, 

including the droop controller of case 2. Therefore, the energy drawn from the FESS is 

not increased significantly. The reduction in the state of charge of the FESS during the 

five seconds of the islanding scenario is depicted in Figure 7.17(b). In comparison to the 

conventional droop control, presented as case 2, the proposed inertia controller draws 

only 0.12 % more energy from the FESS, and only 0.05 %, in comparison to case 3. 

Therefore, it can be concluded that the improved frequency control using the proposed 

controller is achieved by only a negligible increase in the energy required from the FESS. 

In addition, the PHIL testing results confirm the simulation results in this scenario, 

regarding the performance of the proposed controller with minor differences in the 

results. Slightly higher ROCOF values and lower frequency nadirs are observed in the 

PHIL testing in comparison to the pure simulation studies (see subsection 7.4.5).  

 

Figure 7.17: PHIL testing results for scenario A: microgrid islanding. (a) Measured FESS power, (b) FESS 

State of Charge (SOC). 

7.4.4 Scenario B: Drop in the PV Generation 

In this scenario, a sudden drop in the solar irradiance density is simulated, from 1000 

W/m2 to 150 W/m2, while the microgrid is disconnected from the mains. The drop in the 



7.4 PHIL Testing of a High-speed FESS for Inertia Emulation 

169 

solar irradiance density, as the main input of the two PV systems, leads to a drastic 

decrease in the generated power of these systems. With the drop in PV generation, the 

frequency falls, while the CHP system slowly increases its power to compensate for the 

power deficit. The FESS attempts to respond as fast as possible to reduce the maximum 

ROFOC during the disturbance and limit the frequency nadir. 

The results of the PHIL testing of the FESS for the six cases in this scenario are shown in 

Figues 7.18 and 7.19. Similar results in comparison to the simulations are obtained. It can 

be seen from Figure 7.18(b) that the use of the FESS with an inertia emulation controller, 

independent of the adaptive inertia and damping method, is able to reduce the ROCOF to 

below 1 Hz/s. However, the highest reduction in the maximum ROCOF is achieved using 

the proposed adaptive controller, from 1.16 Hz/s in case 1, to 0.83 Hz/s in case 6. 

Between the previously reported methods, the controller in case 3 performs better than 

the others, reducing the ROCOF to 0.9 Hz/s. Unlike scenario A, the controller in case 5 

performs worse than the controller in case 3, due to the fact that the severity of the 

frequency disturbance is smaller in this scenario, and the control parameters in case 5 

scale only with the amplitude of the ROCOF and the frequency error. 

The frequency variations of the microgrid during this scenario are shown in 

Figure 7.18(a). It can be observed that the proposed controller improves the frequency 

nadir from 49.04 Hz in case 1, to 49.31 Hz in case 6, achieving the best results in terms 

of the frequency nadir. Moreover, a better damping of the frequency oscillations is 

observed, when the frequency is recovering to its pre-disturbance value. 

The measured active power of FESS and its state of charge are shown in Figure 7.19. In 

comparison to scenario A, the FESS is injecting 12 kW of power, prior to the disturbance, 

according to damping coefficient 𝐷2. The initial state of charge of the FESS is different 

in each case, as this scenario has been simulated after an islanding scenario using 

different controllers in each case. Again, using the proposed adaptive inertia emulation 

controller, the FESS increases its power more quickly, as seen in Figure 7.19(a), which 

leads to the improved frequency dynamics of the microgrid. However, the increase in the 

energy required from the FESS by using the proposed controller is not significant.  

It can be concluded that the PHIL testing results of the 60 kW high-speed FESS with the 

suggested adaptive inertia emulation control confirm the offline simulation results. The 

proposed controller for the FESS can effectively limit the ROCOF and frequency nadir 

during an imbalance between generation and demand. Moreover, it outperforms several 

previously reported methods in literature, while not requiring noticeably more energy 

from the FESS. The use of the suggested control design requires a higher ramp rate of the 

active power drawn from the FESS when a disturbance occurs, which is not a problem for 

a FESS as a storage technology, as it has no effect on its lifetime or capacity. 
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Figure 7.18: PHIL testing results for scenario B: drop in PV generation. (a) Frequency, (b) ROCOF, (c) 

Inertia constant (H), and (d) Damping coefficient (D). 

 

Figure 7.19: PHIL testing results for scenario B: drop in PV generation. (a) Measured FESS power, (b) 

FESS State of Charge (SOC). 
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7.4.5 Comparison of the PHIL Testing and the Simulation 

Results 

By comparing the simulation results presented in section 7.3 and the results of the PHIL 

testing of the real FESS in section 7.4, a good match between the two can be observed. 

However, slight differences can be seen, which could have been caused by the delays and 

limitations in the real hardware, which are not considered in the simulated model. Some 

examples include the nonlinear torque ramp limiter of the permanent magnet 

synchronous machine and the delays in signal transmission, which exist only in the real 

hardware, and are difficult to implement in the simulations. These delays and limitations 

result in slightly higher ROCOF values, lower frequency nadir, and higher power drawn 

from the FESS. This is a clear advantage of the PHIL testing as a validation tool, where 

the behavior of a real hardware including all its limitations can be directly reflected on 

the grid variables, such as the frequency.  

In order to see the exact differences between the response of the real hardware and the 

simulated model of the FESS, the same active power reference, sent to the real FESS 

during the PHIL testing, is sent simultaneously to the real-time simulation model of the 

FESS, developed in Chapter 5. The model is evaluated by comparing the measured active 

power of the real FESS and the simulated one. As an example, the results for the 

scenario B using the proposed controller (case 6) are shown in Figure 7.20. As seen, there 

is a good match between the response of the real-time model and the real FESS with a 

slight difference at the peak power. The difference between the peak power of the model 

and the real FESS is only 0.93 kW, which corresponds to only 1.8 % of error. 

 

Figure 7.20: A comparison of the real FESS behavior and its simulated model, given the same active power 

reference from the PHIL testing. 
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7.5 Summary 

Low-inertia power systems can experience a high ROCOF and large frequency deviations 

during imbalances in generation and demand. In this chapter, a new adaptive inertia 

emulation controller for a high-speed FESS is introduced, aiming to simultaneously 

reduce the ROCOF and improve the frequency nadir in low-inertia systems during 

disturbances. The proposed adaptive method combines the advantages of a bang-bang 

controller and a self-adaptive one, in order to have a fast and yet proportional response to 

the frequency disturbances. The proposed control design also has the advantage that it 

can be easily added as an external control to a commercial FESS with no change required 

in the existing control systems. Furthermore, the proposed design integrates the state of 

charge and limitations of the FESS at low rotational speeds into the control architecture. 

The performance of the proposed controller has been initially evaluated using numerical 

simulations in a low voltage microgrid. The controller is also implemented on a real 

60 kW high-speed FESS using the concept of rapid control prototyping. The performance 

of the FESS with the proposed adaptive inertia emulation controller, along with several 

previously suggested controllers, is investigated using PHIL testing of the FESS and the 

real-time simulation of the studied microgrid. Both simulation and PHIL results confirm 

that the proposed adaptive inertia emulation controller can significantly reduce the 

maximum ROCOF and improve the frequency nadir during large frequency disturbances. 

Moreover, it outperforms several previously reported interval-based controllers in the 

investigated scenarios, while not requiring significantly more energy from the FESS.  
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8 Conclusions and Outlook 

8.1 Conclusions 

This work investigated the use of a FESS for the application of power smoothing and 

frequency support in low voltage distribution grids from various perspectives, including 

its allocation, sizing, modeling and model validation, real-time simulation, and PHIL 

testing in several scenarios. 

Firstly, in order to identify the most suitable location for installing a FESS for power 

smoothing applications, a new data-driven method for estimating the relative voltage 

sensitivity to active power changes was introduced. The proposed method uses the 

mutual information score between the voltage and active power measurements to reflect 

the relative voltage sensitivity to active power changes at different locations of the grid, 

without the need of having a grid model. This method has been applied for allocating a 

FESS in a local grid in southern Germany with more than 1200 installation candidates. It 

was shown that the proposed method can successfully identify the locations, where the 

voltage is more sensitive to active power changes, and therefore, can benefit the most 

from a smoother power profile by using a FESS.  

Next, a novel methodology for sizing energy storage systems based on historical 

measurement data was developed. The main contribution of the proposed method is the 

use of the motif discovery algorithm for detecting reoccurring consumption patterns in 

power profiles. The detected patterns are then used as the representative of the whole data 

set for deriving the energy storage characteristics. The method has been employed for 

sizing two different types of energy storage system, including a FESS for power 

smoothing applications. It has been demonstrated that the storage systems with the 

characteristics derived from only the detected patterns can fulfil their installation 

purposes such as power smoothing and peak shaving for most of the days throughout the 

whole the measurement period.  

In the following chapters, a dynamic model for a high-speed FESS has been presented 

and validated with experimental results. The advantage of the presented model is that it 

incorporates the losses and the auxiliary power requirements of the FESS, which leads to 

an accurate estimation of the state of charge of the FESS during idle, charging, and 

discharging operational modes of the FESS, in all the investigated scenarios. The 

maximum difference between the state of charge of the developed model and the real 

FESS, among all investigated scenarios, has been approximately 0.8 % only. 
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For verifying the performance of the FESS, a laboratory setup for PHIL testing of a 

60 kW high-speed FESS has been built and successfully tested. The setup allows testing 

the FESS in various scenarios and grid configurations for different applications, and also 

controlling and monitoring the FESS during the experiments. In order to evaluate the 

response of the FESS for the application frequency support using this setup, several 

frequency deviation scenarios including a grid code compliance verification test and the 

major frequency disturbance of August 9, 2019, in the power system of the UK have been 

simulated in real-time. It has been demonstrated that the FESS can respond very quickly 

to frequency deviations, and reaches the required power indicated by the grid code in just 

under 60 ms. 

In order to demonstrate the advantages of the rapid response of the FESS for low-inertia 

power systems, the use of a FESS for providing emulated inertia in a low voltage 

microgrid has been investigated. A novel adaptive controller for inertia emulation using a 

FESS has been introduced, and its performance has been verified using simulations and 

experiments in two different scenarios in a low-inertia microgrid. The proposed controller 

combines the advantages of the fast reaction time of bang-bang controllers with the 

flexibility of self-adaptive ones in order to improve the inertia support provided by the 

FESS. It also considers the state of charge of the FESS and its power limitations at low 

rotational speeds into the control structure. Simulation results indicate that during the 

islanding of the studied microgrid, the use of the FESS with the proposed adaptive inertia 

emulation controller reduces the maximum ROCOF by 28 %, and the maximum 

frequency deviation by 44 %, in comparison to the case without the FESS. Also, the 

proposed controller has demonstrated a better performance in terms of reducing the 

maximum ROCOF and improving the frequency nadir in comparison to several 

previously reported adaptive controllers. The suggested controller has also been 

implemented on the 60 kW high-speed FESS using the concept of rapid control 

prototyping, and the performance of the FESS equipped with the proposed inertia 

emulation controller has been verified by means PHIL testing. A good match between the 

simulation and PHIL testing results has been observed, indicating the effectiveness of the 

proposed controller and the accuracy of the FESS model. However, slightly higher 

ROCOF values are observed during the PHIL testing, due to the minor delays present in 

the real FESS, which demonstrates the advantage of PHIL testing, where real component 

behaviours are reflected in the grid variables. It is important to note that the results 

presented in this work are the very first experimental validation of inertia emulation using 

a FESS. 

In summary, this thesis provided a comprehensive study on the grid integration of a high-

speed FESS, showing its advantages, such as a quick response time to power imbalances, 

and how new tools such as PHIL testing and data-driven methods can be used effectively 

for conducting grid integration studies.  
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8.2 Outlook 

There are several areas where the presented work in this thesis can be extended in the 

future. With the increasing number of measurement devices in power systems (e.g., smart 

meters, phasor measurement units), the data-driven approaches introduced for the 

allocation and sizing of FESS have a great potential to be applied to other use cases and 

applications. When measurement devices are available at different locations of the grid, 

the proposed allocation procedure based on the mutual information score can be fully 

automated, and applied for the allocation of other distributed energy resources. 

Furthermore, a new method has been recently introduced to estimate the mutual 

information score in real-time using a sliding window, by updating only a fixed number 

of nearest-neighbor relationships [175]. Therefore, the use of mutual information, as a 

measure of linear and nonlinear dependency between two variables, can be investigated 

for several other applications, such as real-time topology change detection (see [306]), 

improving load modelling, and adaptive controllers, such as the controller proposed 

in [169].  

The use of the motif discovery algorithm for extracting reoccurring patterns in active 

power measurements can drastically reduce the input data size, and therefore, the 

computation time required for solving complex nonlinear optimization problems, which 

are commonly used for component sizing and system planning. This can be significantly 

beneficial, in particular when the optimization problem requires data over longer 

horizons, such as several years. As a future work, it would be interesting to quantify the 

impact of using motif discovery on the computation time of such optimization 

frameworks and on their outcome, and compare it to commonly used methods, such as 

clustering techniques.  

The validated model of the FESS, which can accurately reflect its self-discharge rate, can 

be used by other researchers for simulating and investigating the advantages of a FESS in 

other applications, or designing and validation new controller. Since the model can be 

easily simulated in real-time using commercial real-time simulators, it can also be used 

for Controller Hardware-in-the-Loop (CHIL) testing of new controllers and energy 

management systems. Moreover, this model together with a power amplifier, that is 

capable to operate as a current source, can be used to build a FESS emulator, which is a 

cheaper and safer alternative of having the real FESS. The modeling can be improved in 

the future by disaggregating different losses and the power of each auxiliary component. 

This can help to build a more efficient FESS or operating it with less power requirements. 

Also, the small delays found within the real FESS can be added to the model to improve 

its accuracy in the millisecond range.  
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But more importantly, the laboratory setup established within this work for the PHIL 

testing of the FESS, can be used for evaluating the performance of a real FESS for other 

applications, including power smoothing and ramp rate control of renewables, voltage 

regulation, and supporting pulsed power loads in various low voltage grids and 

microgrids. In addition, the combination of the FESS with other storage technologies 

with a higher energy density, such as lithium-ion batteries, or with distributed energy 

resources which operate more efficiently under a constant operating point (e.g., fuel cells, 

micro gas turbines), can be investigated with the real FESS using this setup. As shown, 

this setup also enables to test new control strategies or energy management systems on 

the real FESS for each application, using the concept of rapid control prototyping. By 

combining rapid control prototyping and PHIL testing, this setup allows to verify the 

performance of these new controllers under the practical limitations and constraints of a 

real FESS, which are very often neglected in numerical simulation studies found in 

literature. These include auxiliary power requirements and losses of the FESS, its power 

limitations at low rotational speeds, delays and other system nonlinearities. 

While the FESS has proven to be a viable solution for short-term high-power 

applications, further improvements in its efficiency (for instance, by using more efficient 

power converters, electrical machines, and bearings), reduction in its auxiliary power 

requirements, and a more competitive capital costs can potentially lead to an increased 

presence of this technology in power systems, in particular in low-inertia systems.  
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Appendix A. A Summary of Power 
Quality Measurements 

As described in subsection 4.1.4.2, in this work, measurement data have been collected 

from several low voltage distribution grids in southern Germany, which were used for the 

purpose of allocation and sizing of the FESS using data-driven methods. These data were 

recorded using A. Eberle’s “PQI-DA smart” device, which is a power quality and 

disturbance recorder. In this appendix, after giving a short summary of the power quality 

requirements for the low voltage distribution grid in Germany, the status of the power 

quality at the measured low voltage grids are summarized.  

In short, at none of the measured locations, a major power quality violation was 

observed, and a high power quality is being delivered by the distribution network 

operator at the investigated locations. However, several interesting incidents and 

observations were recorded, which are presented in this appendix.  

A.1 Power Quality Requirements for Low Voltage 
Grids in Germany 

This section summarizes the minimum power quality requirements that the system 

operator should provide for the private and industrial customers, connected to the low 

voltage networks. These requirements include the maximum variation in the voltage 

amplitude, frequency, harmonics, flicker, and control signal level. These requirements are 

provided in the grid codes DIN EN 50160 and DIN EN 61000-2-2 for public grids (or 

DIN EN 61000-2-4 for industrial grids). 

The objective of the system operator is to provide a balanced three-phase sinusoidal 

voltage with 50 Hz frequency. However, the variations in load, generation, switching of 

devices and lines, nonlinear loads, transformers during energizing, and faults may lead to 

deviation of these properties from their ideal values. Nevertheless, grid codes obligate the 

network operators to keep the electrical characteristics of the provided electricity supply 

within some predefined limits. Table A.1 summarizes the grid code requirements of the 

electricity supply in the low voltage networks in Germany. More details about each 

specific requirement can be found in DIN EN 50160. 
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Table A.1: Summary of the power quality requirements at the low voltage level in Germany [159], [307]. 

Electricity Supply 

Characteristic 

Acceptable 

Range/Values 
Evaluation Criteria 

Evaluation 

Period 

Voltage RMS ±10 % 
95 % of the 10-minute averages of 

voltage RMS values 
1 week 

Voltage Asymmetry 2 % 
95 % of the 10-minute averages of 
RMS values of negative sequence 

voltages 

1 week 

Frequency 

(Grid-connected) 
49.5 to 50.5 Hz 

99.5 % of the 10-second average of 
the fundamental voltage component 

frequency 

1 year 

Frequency 

(Islanded grid) 
47 to 52 Hz 

100 % of the 10-second average of 

the fundamental voltage component 
frequency 

1 year 

Individual Harmonics 
According to Figure 

A.1 

95 % of the 10-minute averages 

values of each individual harmonic 
1 week 

Total Harmonics 

Distortion (THD) 
8 % 

95 % of the 10-minute averages 

values of THD 
1 week 

Flicker 1 95 % of the long-term flicker 1 week 

Ripple Control 

Signals 

Different limits for 

each frequency band 

99 % of the 3-socond average of 

signal voltages 
1 day 

 

Figure A.1: Permissible relative voltage amplitudes of individual harmonics according the grid code 

DIN N 50160 [159].  

Among the nine different low voltage distribution grids, at which measurements were 

conducted, no major power quality problem according to the criteria given in Table A.1 

has been observed. As an example, the power quality indices measured at one of the low 

voltage distribution grids are presented in Table A.2. 
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Table A.2: Measured power quality indices at one of the low voltage distribution grids. 

Electricity Supply 

Characteristic 

Acceptable 

Range/Values 

Measured Values 

Phase 95 % Value Max.Value 

Voltage RMS ±10 % 

L1 1.67 % 2.73 % 

L2 1.87 % 2.95 % 

L3 1.91 % 2.98 % 

Voltage Asymmetry 2 % All 0.17 % 0.21% 

Total Harmonics 

Distortion (THD) 
8 % 

L1 1.99 % 2.21% 

L2 2.08 % 2.30 % 

L3 2.04 % 2.26 % 

Flicker 1 

L1 0.29 0.57 

L2 0.27 0.45 

L3 0.28 0.67 

Frequency 49.5 to 50.5 Hz 
99.5% Value 100% Value Max. Value 

50.05 Hz 50.049 Hz 50.11 Hz 

A.2 Summary of Interesting Recorded Incidents  

In this section, some interesting observations from the recorded measurement data are 

presented, regarding voltage deviations, asymmetries, and voltage and current harmonics.  

In terms of the voltage magnitude, a voltage deviation larger than ±10 % of the nominal 

value has been barely witnessed during the measurement period. A rare example of a 

voltage drop of more than 13 % is shown in Figure A.2. However, such voltage drops 

were far from being a power quality issue, as they were very rare and lasted for a very 

short period. 

 

Figure A.2: An example of voltage drop above ±10% of the nominal value. Such voltage drops were 

extremely rare in the measurement and often for a noticeably short time.  
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However, voltage deviations above the ±3 % limit, from which the distributed energy 

resources and energy storage systems should support the grid according to the grid code 

VDE-AR-N 4105:2018-11 (see Figure 4.5(b)), has been recorded quite often. This has 

been especially the case in low voltage distribution grid with a high share PV generation 

system, where overvoltage incidents has been mostly observed. Therefore, it can be 

concluded that the reactive power support by the distributed energy resources is currently 

required often within each day at the measured locations. With the increasing share of PV 

in these areas, more voltage deviations in these areas are expected. An example of a 

recorded over-voltage incident above 3 % at one of the low voltage distribution grids is 

shown in Figure A.3.  

 

Figure A.3: An example of voltage deviations above ±3%, from which the distributed energy resources 

and energy storage system should support the grid with reactive power, according the German 

grid code VDE-ARN 4105:2018-11.  

In terms of voltage and current asymmetry, voltage asymmetries were far below the 

power quality violation limit of 2 %, as discussed, reaching 0.67 % in the worst case at 

the measured locations. However, extremely high current asymmetries were recorded in 

almost all the measured low voltage grids, which has led to a high neutral current and 

negative sequence component. In some cases, the neutral current has been much greater 

than each individual phase currents, as illustrated in Figure A.4, as an example. Here, the 

negative sequence current has been multiple times more than the positive sequence 

current with the increase in the PV generation power around noon. This could be caused 

by old single-phase PV generation units, which increase the asymmetry in the grid around 
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noon. It should be noted that grid connection of new single-phase PV system is no longer 

permitted in Germany since several years.  

 

Figure A.4: An example of high current asymmetry during one day in one of the measured low voltage 

distribution grids. (a) Relative negative sequence current, (b) Phases and neutral currents. 

Regarding the voltage and current harmonics, an interesting and yet expected observation 

is the increase in the THD of the measured voltages with the increase in the PV 

generation power around noon, at the low voltage grid with a high share of PV 

generation. This can be clearly seen in the example illustrated in Figure A.5. Here, the 

increase in demand during the day coincides with the increase the PV generation, leading 

to a reduced current drawn from the medium voltage grid and the local consumption of 

the PV generation around noon. Therefore, the current drawn from the medium voltage 

grid is reduced at this time. However, the voltage THD continuous to increase with the 

increase in the PV generation. While the this is still far away from the 8 % threshold to be 

a power quality concern, with the increase in the PV installations at these low voltage 

grids, harmonics can become an issue in the future. An example of currents drawn at such 

locations is shown in Figure A.6. 
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Figure A.5: An example of the increase in the THD of the voltage at noon with increase in the PV 

generation.  

 

Figure A.6: An example of current and voltage waveforms at a low voltage distribution grid with a high 

THD.  
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Appendix B. Parameters of the 
Microgrid Components 

The parameters of the distributed energy resources added to the CIGRE European low 

voltage distribution grid benchmark in Chapter 7 are presented in Tables B.1 and B.2. 

Table B.1: Parameters of the diesel-based Combined Heat and Power (CHP) system. 

Parameter Value 

Synchronous generator - 6th-order model 

Nominal apparent power 170 kVA  

d-axis synchronous reactance (Xd) 1.305 pu 

d-axis transient reactance (X′d) 0.296 pu 

d-axis subtransient reactance (X"d) 0.252 pu 

q-axis synchronous reactance (Xq) 0.474 pu 

q-axis subtransient reactance (X"q) 0.243 pu 

Stator leakage reactance (Xl) 0.18 pu 

d-axis transient open-circuit time constant (T′d0) 4.49 s 

d-axis subtransient open-circuit time constant (T"d0) 0.0681 s 

q-axis subtransient time constant (T"q) 0.0513 s 

Stator resistance (Rs) 0.003 pu 

Inertia constant (H) 3.3 s 

Governor 

Regulator gain (K) 29 

Regulator time constant 1 (Tr1) 0.01 s 

Regulator time constant 2 (Tr2) 0.02 s 

Regulator time constant 3 (Tr3) 0.2 s 

Actuator time constant 1 (Ta1) 0.25 s 

Actuator time constant 2 (Ta2) 0.009 s 

Actuator time constant 3 (Ta3) 0.0384 s 

Engine time delay (Tdl) 0.024 s 

Automatic Voltage Regulator (AVR) – IEEE Type AC1A 

Voltage regulator Gain (Ka) 400 

Voltage regulator time constant (Ta) 0.4 s 

Damping filter gain (Kf) 0.03 

Damping filter time constant (Tf) 1 s 

Measurement low-pass filter time constant (Tr) 0.01 s 

Transient gain reduction lag time constant (Tb) 0 s 

Transient gain reduction lead time constant (Tc) 0 s 
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Table B.2: Parameters of the photovoltaic systems. 

Parameter Value 

Photovoltaic system 1 (PV1) 

Nominal apparent power 50 kVA  

DC-link voltage control - Proportional term 80 

DC-link voltage control - Integral term 5000 

d-axis current controller - Proportional term 5 

d-axis current controller - Integral term 100 

q-axis current controller - Proportional term 1 

q-axis current controller - Integral term 10 

DC-link capacitance 3 mF 

PV voltage controller- Proportional term 1 

PV voltage controller- Integral term 150 

PV current controller- Proportional term 0.004 

PV current controller- Integral term 1 

Maximum power point tracking - Increment value 3 mV 

Photovoltaic system 2 (PV2) 

Nominal apparent power 20 kVA  

DC-link voltage control - Proportional term 80 

DC-link voltage control - Integral term 1000 

d-axis current controller - Proportional term 5 

d-axis current controller - Integral term 100 

q-axis current controller - Proportional term 5 

q-axis current controller - Integral term 100 

DC-link capacitance 3 mF 

PV voltage controller- Proportional term 1 

PV voltage controller- Integral term 150 

PV current controller- Proportional term 0.004 

PV current controller- Integral term 1 

Maximum power point tracking - Increment value 3 mV 
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BESS Battery Energy Storage System 

CHP Combined Head and Power 

DER Distributed Energy Resources 
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ESS Energy Storage System 
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FLL Frequency-locked Loop 

GSC Grid-side Converter 
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MSC  Machine-side Converter 
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With the aim of decarbonizing the electricity sector, the share of renewable energy 
sources in power systems around the globe is consistently increasing. However, due 
to the intermittent nature of these sources, maintaining the instantaneous balance 
between the generation and the demand, and therefore, the grid frequency, can be 
challenging. In addition, since the converter-interfaced renewables do not inherently 
provide inertia to the system, the cumulative system inertia is simultaneously de-
creasing, resulting in faster changes in the grid frequency. A Flywheel Energy Storage 
System (FESS) can rapidly inject or absorb high amounts of active power in order to 
support the grid, following an abrupt change in the generation or in the demand. 
In addition to the quick response time, a FESS has the advantage of a high power 
density and a large number of cycles, with no capacity loss throughout its lifetime. 
These characteristics make the FESS a well-suited candidate for providing frequency 
support to the grid or smoothing out short-term power variations at a local level.
 
The work presented in this book studies the grid integration of a high-speed FESS 
in low voltage distribution grids from several perspectives, including optimal alloca-
tion, sizing, modeling, real-time simulation, and Power Hardware-in-the-Loop (PHIL) 
testing. Moreover, this work presents the very first experimental validation of inertia 
emulation using a FESS.

Gedruckt auf FSC-zertifiziertem Papier

IN
TE

G
RA

TI
O

N
 O

F 
FL

Y
W

H
EE

L 
EN

ER
G

Y
 S

TO
RA

G
E 

SY
ST

EM
S 

IN
 L

O
W

 V
O

LT
A

G
E 

D
IS

TR
IB

U
TI

O
N

 G
RI

D
S

Sh
ah

ab
 K

ar
ra

ri


	Acknowledgements
	Kurzfassung
	Abstract
	Table of Content
	1 Introduction, Motivation, and Scope of Work
	2 The Role of Flywheel Energy Storage Systems in Power Systems
	2.1 Introduction to Flywheel Energy Storage Systems (FESS)
	2.2 Applications of FESS in Power Systems
	2.2.1 Frequency Regulation
	2.2.2 Power Smoothing
	2.2.3 Voltage Regulation
	2.2.4 Other Applications in Power Systems

	2.3 Components of FESS
	2.3.1 Rotor
	2.3.2 Electrical Machine
	2.3.3 Power Converters
	2.3.4 Bearings
	2.3.5 Enclosure

	2.4 Summary

	3 Real-time Simulation and Power Hardware-in-the-Loop Testing for Grid Integration Studies
	3.1 Challenges of Real-time Simulations of Low Voltage Distribution Grids
	3.1.1  Lack of Decoupling Points for Parallel Computing
	3.1.2 Aggregation of Distributed Energy Resources
	3.1.3 Presence of Asymmetry and Harmonics
	3.1.4 A Summary of the Solutions for Real-time Simulation of Low Voltage Distribution Grids

	3.2 Power Hardware-in-the-Loop (PHIL) Testing of Distributed Energy Resources
	3.2.1 Test Case Development
	3.2.2 Stability and Accuracy Evaluation
	3.2.2.1 The Ideal Transformer Method (ITM)
	3.2.2.2 Damping Impedance Method (DIM)
	3.2.2.3 A Comparison of the Common Interfacing Algorithms

	3.2.3 Execution of the PHIL Testing
	3.2.4 State-of-the-art in PHIL Testing of Energy Storage Systems

	3.3 Description of the 1-MVA PHIL Infrastructure at KIT
	3.4 Summary

	4 Data-driven Allocation and Sizing of Energy Storage Systems
	4.1 A Data-driven Method for Allocation of Flywheel Energy Storage Systems
	4.1.1 Introduction to Voltage Sensitivity
	4.1.2 Limitations of the Classical Method for Calculating the Voltage Sensitivity
	4.1.3 Introduction to Mutual Information (MI)
	4.1.4 The Proposed Allocation Method for a FESS
	4.1.4.1 Step 1: Selecting the Top Candidates for Measurements
	4.1.4.2 Measurement Setup at the Low Voltage Distribution Networks
	4.1.4.3 Step 2: Estimating the Mutual Information Scores

	4.1.5 Evaluation of the Proposed Allocation Method

	4.2 A Data-driven Method for Sizing ESS using Standard Patterns
	4.2.1 The Input Data for the Sizing
	4.2.2 Introduction to Motif Discovery
	4.2.3 Standard Patterns for Sizing ESS
	4.2.4 Deriving Energy Storage Characteristics
	4.2.4.1 Nominal Capacity
	4.2.4.2 Nominal Power
	4.2.4.3 Maximum Ramp Rate
	4.2.4.4 Number of Mode Changes and Lifetime

	4.2.5 Allocating Power Profiles
	4.2.6 Sizing Outcome
	4.2.6.1 The Effect of Data Resolution on the Sizing
	4.2.6.2 The Effect of Filter’s Cut-off Frequency
	4.2.6.3 The Effect of Selecting Different Patterns

	4.2.7 Evaluation of the Proposed Sizing Method

	4.3 Summary

	5 Modelling of High-Speed Flywheel Energy Storage Systems (FESS) for Real-time Simulations
	5.1 Potential Applications of Real-time Simulation of a FESS
	5.2 Modeling of a High-speed Flywheel Energy Storage System (FESS)
	5.2.1 Modeling of a Permanent Magnet Synchronous Machine
	5.2.2 Modeling of Voltage Source Converters
	5.2.2.1 Average Model
	5.2.2.2 Switching Model
	5.2.2.3 Detailed Model
	5.2.2.4 Selecting the Right Converter Model for Real-time Simulations

	5.2.3 Grid-side Converter Controller
	5.2.4 Machine-side Converter Controller
	5.2.5 Modeling of Synchronous Reference Frame Phase-Locked Loop
	5.2.6 Modeling of System Losses and Auxiliary Power Requirements

	5.3 Real-time Simulation of the High-speed FESS
	5.3.1 Frequency Step Response
	5.3.2 Voltage Sag Response


	6 PHIL Testing and Model Validation of a High-Speed FESS for Frequency Support
	6.1 Description of the Hardware under Test
	6.2 Description of the PHIL Setup
	6.3 PHIL Testing Scenarios and Model Validation of the FESS
	6.3.1 Scenario A: Charging at the Rated Power
	6.3.2 Scenario B: Grid Code Compliance Verification Test for Frequency Support
	6.3.3 Scenario C: Response to the UK’s Frequency incident of August 9, 2019
	6.3.4 Scenario D: Increasing the Frequency Support of a Low-voltage Distribution Grid

	6.4 Summary

	7 Adaptive Inertia Emulation using High-speed Flywheel Energy Storage Systems
	7.1 Introduction
	7.1.1 The Need for Inertia Support from Converter-interfaced Systems
	7.1.2 Flywheels as the Active Power Source for Inertia Emulation
	7.1.3 Inertia Emulation versus Virtual Synchronous Machines
	7.1.4 State-of-the-Art in using a FESS for Inertia Emulation

	7.2 Adaptive Inertia Emulation Control for a High-speed FESS
	7.2.1 Controller Design of Inertia Emulation using High-speed FESS
	7.2.2 Adaptive Inertia and Damping for an Improved Response
	7.2.3 Parameters for the Inertia Emulation Control using a FESS
	7.2.4 Estimation of the Frequency and its Derivative

	7.3 Simulation Results of the Adaptive Inertia Emulation using a high-speed FESS
	7.3.1 Scenario A: Microgrid Islanding
	7.3.2 Scenario B: Drop in the PV Generation

	7.4 PHIL Testing of a High-speed FESS for Inertia Emulation
	7.4.1 Real-time Simulation of the Microgrid
	7.4.2 Implementing the Inertia Emulation Controller on the real FESS
	7.4.3 Scenario A: Microgrid Islanding
	7.4.4 Scenario B: Drop in the PV Generation
	7.4.5 Comparison of the PHIL Testing and the Simulation Results

	7.5 Summary

	8 Conclusions and Outlook
	8.1 Conclusions
	8.2 Outlook

	Bibliography
	Publications
	Appendix A. A Summary of Power Quality Measurements
	A.1 Power Quality Requirements for Low Voltage Grids in Germany
	A.2 Summary of Interesting Recorded Incidents

	Appendix B. Parameters of the Microgrid Components
	Table of Figures
	Table of Tables
	Abbreviations



