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In internal combustions engines and in systems for exhaust aftertreatment, sprays interact with 

liquid wall films. Fundamental understanding of this interaction and its proper modelling are 

essential to increase efficiency while reducing emissions. Here, we assess and validate a phase-

field method for the impact of a single droplet on a thin wall film of the same liquid (silicone 

oil) by dedicated experiments exhibiting different dynamics of axisymmetric corona formation. 

In the experiments, a drop (diameter 1.4 mm) accelerates by gravity and impinges onto a 

stagnant horizontal film of defined thickness (0.5 mm). By altering the falling height of the 

drop, the impact speed U is varied between 1 and 3 m/s. To observe the drop impingement, a 

high-speed camera system with a framerate of 20000 fps is utilized. With the help of image 

processing, the temporal evolution of the corona top and base diameter as well as its base angle 

are determined. These parameters serve for comparison with the numerical results. 

For the numerical simulations with the phase-field method, the two-phase flow is described by 

the coupled Cahn-Hilliard-Navier-Stokes equations, which are solved using the open source 

C++ library OpenFOAM (code phaseFieldFoam). Since the impingement and corona formation 

process in the experiment are rotationally symmetric, an axisymmetric set-up in combination 

with adaptive mesh refinement is used. Different mixing energy and mobility (standard and 

degenerate) formulations will be critically assessed with focus on accuracy and boundedness. 

For U = 1 m/s and 2 m/s, simulations with standard mixing energy formulation reproduce the 

experimental corona formation reasonably well. This is not the case for U = 3 m/s where the 

corona base angle in the experiment is about 90° (Fig. 1), while in the computation it is about 

120° (Fig. 2). The application of a (yet empirical) non-equilibrium mixing energy formulation 

demonstrates the potential to correctly reproduce the experimental corona formation also for 

high impact velocities. These results indicate that for multiphase flows with highly dynamic 

fresh interface formation, out-of-equilibrium interfacial mixing energy modelling is required. 

  
Fig. 1: Snapshot of experiment (U = 3 m/s). Fig. 2: Snapshot of simulation (U = 3 m/s). 
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