KIT | KIT-Bibliothek | Impressum | Datenschutz

Understanding Class Representations : An Intrinsic Evaluation of Zero-Shot Text Classification

Hoppe, Fabian ORCID iD icon; Dessı̀, Danilo; Sack, Harald

Abstract:

Frequently, Text Classification is limited by insufficient training data. This problem is addressed by Zero-Shot Classification through the inclusion of external class definitions and then exploiting the relations between classes seen during training and unseen classes (Zero-shot). However, it requires a class embedding space capable of accurately representing the semantic relatedness between classes. This work defines an intrinsic evaluation based on greater-than constraints to provide a better understanding of this relatedness. The results imply that textual embeddings are able to capture more semantics than Knowledge Graph embeddings, but combining both modalities yields the best performance.

Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000139525
Erschienen in Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG2020) co-located with the 17th Extended Semantic Web Conference 2020 (ESWC 2020), Heraklion, GR, June 2, 2020. Ed.: M. Alam
Veranstaltung Workshop on Deep Learning for Knowledge Graphs - 17th Extended Semantic Web Conference (DL4KG2020 - ESWC 2020), Online, 02.06.2020
Verlag RWTH Aachen
Serie CEUR Workshop Proceedings ; 2635

Verlagsausgabe §
DOI: 10.5445/IR/1000139525
Veröffentlicht am 29.10.2021
Seitenaufrufe: 92
seit 29.10.2021
Downloads: 39
seit 03.11.2021
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page