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Time-dependent road networks are represented as weighted graphs, where the weight of an edge depends
on the time one passes through that edge. This way, we can model periodic congestions during rush hour
and similar effects. In this work we deal with the special case where edge weights are time-dependent travel
times. Namely, we consider two problems in this setting: Earliest arrival queries ask for a minimum travel
time route for a start and a destination depending on a given departure time. Travel time profile queries
ask for the travel time profile for a start, a destination, and an interval of possible departure times. For an
instance representing the German road network, for example, we can answer earliest arrival queries in less
than 1.5ms. For travel time profile queries, which are much harder to answer, we need less than 40ms if
the interval of possible departure times has a width of 24 hours. For inexact travel time profiles with an
allowed error of about 1% this even reduces to 3.2ms. The underlying hierarchical representations of the
road network, which are variants of a time-dependent contraction hierarchy (TCH), need less than 1GiB of
space and can be generated in about 30 minutes. As far as we know, TCHs are currently the only method
being able to answer travel time profile queries efficiently. Altogether, with TCHs, web servers with massive
request traffic are able to provide fast time-dependent earliest arrival route planning and computation of
travel time profiles.
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1. INTRODUCTION

In recent years, there has been considerable work on routing in road networks (see
Delling et al. [2009] for an overview). For the special case of constant edge weights
(usually highly correlated with travel time), current methods can compute optimal
paths orders of magnitude faster than Dijkstra’s well-known algorithm. Such tech-
niques are now in widespread use in server-based route-planning systems. It is im-
portant to know that Dijkstra’s algorithm [Dijkstra 1959] needs several seconds to
compute an optimal path in a continental size road network. In practice, this is much



to slow. Therefore, server-based route planning would not be possible without today’s
more advanced algorithms.

Recently, the more realistic time-dependent scenario, which can model periodic con-
gestions during rush hour and similar effects, has gained considerable interest: The
edge weights are no longer constant but depend on time. Note that time-dependent edge
weights can model different kinds of costs. Here, we only deal with the special case
where edge weights are time-dependent travel times. More general time-dependent
costs are much harder to handle. Even the seemingly trivial generalization that edges
have an additional constant nonnegative cost makes the problem NP-hard [Batz and
Sanders 2012]. In this article, we deal with two kinds of time-dependent route planning
queries: For a given pair of start and destination as well as a given departure time,
we want to compute the earliest possible arrival time and a corresponding optimal
route—a so-called earliest arrival (EA) query. Also, we may not only be interested in
the best route for a fixed departure time but also in a travel time profile over a long
interval of potential departure times (e.g., in order to choose a good departure time).
Computing a travel time profile for a given pair of start and destination with a given
departure time interval is called a travel time profile query.

In this article, we describe methods to answer both kinds of queries efficiently: For
a German road network, we can answer EA queries in less than 1.5ms where the
underlying representation of the road network needs less than 1GiB. In the same
setting, we need less than 40ms for profile queries if the interval of possible departure
times spans 24 hours. For inexact profile queries with an allowed error of about 1%
even 3.2ms suffice. To achieve this performance, we use variants of a time-dependent
contraction hierarchy (TCH), which is a special hierarchical representation of the road
network. Such TCHs are generated offline in a computationally intensive preprocessing
step. However, the running time of the preprocessing is tolerable and can be parallelized
well. For our German road network, the preprocessing requires about 30min sequential
running time and about 5min with eight parallel threads. Altogether, with TCHs, Web
servers with massive request traffic are able to answer both EA and profile queries
virtually at once. Other than these TCHs, we are not aware of any other method
to answer profile queries efficiently. For EA queries, there are some other efficient
techniques [Delling and Nannicini 2008; Delling 2011; Brunel et al. 2010].

Important parts of this work have been published as preliminary versions [Batz et al.
2009; Batz et al. 2010], and there is also an early technical report [Batz et al. 2008].
However, here, we present several relatively detailed proofs of correctness, which have
not been published yet. Also, we describe in detail how the preprocessing works, which
we have not done before. To parallelize the preprocessing, we use independent node
sets. Although this idea has originally been developed and implemented for the work
we describe here, it has also been used in the context of a distributed memory version
of TCHs and has thus been mentioned in the corresponding publication [Kieritz et al.
2010].

1.1. Static Contraction Hierarchies and Shortcuts

Originally, contraction hierarchies (CHs) have been invented to speed up time-
independent routing (static CHs [Geisberger et al. 2008, 2012]). There, a road network
is transformed into a hierarchical representation by contracting all its nodes one
after another according to increasing importance for routing. Contracting a node
x means that x is conceptually removed from the road network. In doing so, we
insert several shortcut edges between the neighbors of x. This way, the shortest
distances in the remaining graph are preserved. Having contracted all nodes we get
a hierarchical representation (the actual CH structure). It has the following very
useful property: For every pair of nodes s and t (where t is reachable from s), there



exists a shortest up-down-path from s to t in the CH. Such an up-down-path is a
path 〈s → · · · → y → · · · → t〉 in the CH where 〈s → · · · → y〉 only goes upward and
〈y → · · · → t〉 only goes downward in the hierarchy. This enables the following very
efficient routing procedure: Simply perform a bidirectional Dijkstra search starting
from s and t in the CH where edges are only relaxed if they lead upward in the
hierarchy. This runs very fast as well-constructed CHs are flat and sparse, so upward
searches reach the top of the CH quite soon while the branching factor is not too large.
Note that this method would not work correctly without the shortcuts edges inserted
during contraction. They guarantee the existence of the shortest up-down-paths.

1.2. Our Contributions in More Detail

TCHs generalize CHs by allowing time-dependent travel times as edge weights. A
reader who is unfamiliar with the details of time-dependent route planning might
think that this is just a straightforward extension. This, however, is not the case, as
time-dependency makes the whole problem much more complicated. In fact, we use
several nontrivial algorithmic ingredients to make TCHs run efficiently. The most
important idea in this work is to use approximate computation to find small subgraphs
and then to perform the exact computation only on these subgraphs. This also enables
exact computations in the presence of space-saving approximated data. Moreover, we
can speed up exact profile queries very much this way.

Preprocessing. For TCHs, the preprocessing is much more complicated than for CHs
and making it run in reasonable time requires several ideas. This includes cheap ap-
proximate shortest path searches to build up small corridors in which the far more
expensive exact computations are done. Note that this yields an exact hierarchy, even
though approximation and a heuristic are used for intermediate steps. Also, the pre-
processing parallelizes quite well for shared memory (Section 4).

EA Queries with TCHs. The guaranteed existence of EA up-down-paths in TCHs en-
sures that bidirectional search can be used to find exact solutions quickly (Section 5.1).
For EA queries on TCHs, however, we have the following problem: We cannot just per-
form a bidirectional time-dependent Dijkstra search as this would require us to know
the earliest arrival time—but this is just the thing we want to compute. To overcome
this, we perform an approximate shortest path search as a backward search. Having
done that, we perform a time-dependent Dijkstra search that uses only edges touched
by the backward search. This yields the sought-after earliest arrival time. Again, the
result of this computation is exact (Section 5.2).

Profile Queries with TCHs. TCHs can also be used to answer profile queries in
a straightforward and feasible way by simply applying bidirectional profile search
(Section 5.3). But we can be much faster: To reduce the search space, we perform a
bidirectional approximate search first. This brings a considerable speed-up, while the
result of this computation is exact (Section 5.5).

Saving Memory and Speeding Up Profile Queries. TCHs—just like static CHs—make
intense use of shortcut edges. But for TCHs this requires much more memory than for
static CHs. The reason is that the time-dependent travel time information associated
with the shortcuts contains a lot of redundancy. This is what we focus on: Shortcuts
store approximated time-dependent edge weights and only original edges store exact
ones. Unidirectional and bidirectional searches on such an approximated TCH (ATCH)
yield small subgraphs that contain shortcuts (Section 6.1). As exact travel time infor-
mation is available for nonshortcuts, we can apply exact time-dependent searches after
unpacking the shortcuts. This way we reduce memory usage greatly while accepting



only a moderate slowdown for exact EA queries (Section 6.3). For exact profile queries,
we even get a further speed-up by contracting whole corridors (Section 6.4).

Inexact Querying. Our techniques provide an accuracy that may be unnecessary in
practice. Using solely approximated edge weights yields only a small error but again
saves a lot of memory without any slowdown for the EA problem (Section 7.2). Moreover,
accepting a small error when computing travel time profiles, we get a great speed-up
compared to the exact computation (Section 7.1).

Experimental Evaluation. We have implemented the aforementioned techniques and
performed several experiments to support our claims. As inputs, we use road networks
of Europe and Germany with time-dependent travel times (Section 8).

1.3. Related Work

Time-dependent route planning started with classical results like a generalization of
Dijkstra’s algorithm [Dreyfus 1969] and an expensive means of profile search [Orda
and Rom 1990]. Dean [1999] provided a basic introduction to the topic. Some TomTom
car navigation systems allow a kind of time-dependent routing. However, the method
used is unpublished and probably not able to guarantee optimal routes. A successful ap-
proach to fast EA routing is to combine a simpler form of contraction with goal-directed
techniques [Delling and Nannicini 2008; Delling 2011; Brunel et al. 2010]. In particu-
lar, with arc-flags (TD-SHARC [Delling 2011]) this yields good speed-ups. However, it
has problems when time-dependency is strong, in which case either preprocessing be-
comes prohibitive or query times get fairly high. This can be compensated by combining
with landmark A* (ALT [Goldberg and Harrelson 2005]), which yields TD-L-SHARC.
For inexact EA queries, TD-SHARC runs very fast (though preprocessing takes a fairly
long time) [Delling 2011; Brunel et al. 2010]. Simple contraction combined with ALT
without arc-flags also works surprisingly well (TD-CALT [Delling and Nannicini 2008]).
We take this as an indication that a combination of TCHs and ALT could further im-
prove the performance. As stated before, TCH generation is computationally intensive
but parallelizes well. This also works on distributed memory [Kieritz et al. 2010].
Several concepts discussed here have been applied to time-dependent many-to-many
queries [Geisberger and Sanders 2010]. Recently, we described a heuristic version of
TCHs that deals with the NP-hard set-up that time-dependent edge weights are travel
times with additional constant nonnegative costs [Batz and Sanders 2012]. It shows
good running times, and the computed routes are quite near to the optimum.

2. PRELIMINARIES

A road network is usually represented by a directed graph G = (V, E), where nodes
represent junctions and edges represent road segments for example.1 Each edge u →
v ∈ E has a travel time function (TTF) f : R → R≥0 assigned as edge weight—we
write u → f v. The TTF f specifies the travel time f (τ ) needed to reach v from u via
edge u → v when starting at departure time τ . In road networks, we do not arrive
earlier when we start later. This is reflected by the fact that all TTFs f fulfill the FIFO
property: ∀τ ′ > τ : τ ′ + f (τ ′) ≥ τ + f (τ ). In this work, all TTFs are continuous piecewise
linear functions with a period of 24 hours.2 With | f |, we denote the complexity (i.e., the
number of segments) of f .

1This is a common interpretation, but it is not the only interpretation. Alternatively, nodes could represent
road segments and edges could represent transitions between road segments. Turn costs can be modeled
this way.
2Using nonperiodic TTFs would make no real difference for the techniques discussed in this work. In context
of real-live applications, an appropriate time window with a sufficient large period should be chosen. This



For TTFs, we need three operations: (i) Evaluation: Given a TTF f and a departure
time τ we want to compute f (τ ). In order to support average-case constant evaluation
time, we store a TTF f in an array of | f |/4 buckets, each of which is responsible for
an equal-sized interval of departure times. Thus, we can efficiently locate the segment
covering time τ by jumping to the right bucket and scanning an expected constant
number of bucket entries. (ii) Linking: Given two adjacent edges u → f v, v →g w,
we want to compute the TTF of the whole path 〈u → f v →g w〉, that is, the TTF
g∗ f : τ 
→ g( f (τ )+τ )+ f (τ ) (meaning g “after” f ). It can be computed in O(|g|+| f |) time
and |g∗ f | ∈ O(|g|+| f |) holds. Note that linking is associative, that is, f ∗(g∗h) = ( f ∗g)∗h
for TTFs f, g, h, but not commutative in general. (iii) Minimum: Given two parallel
edges u →g v, u → f v, we want to merge these edges into one while preserving
all shortest paths. The resulting single edge u → v gets the TTF min(g, f ) defined by
τ 
→ min{g(τ ), f (τ )}. It can be computed in O(|g|+| f |) time and |min(g, f )| ∈ O(|g|+| f |)
holds. Note that the set of piecewise linear TTFs with FIFO property and a period of
24 hours is closed under link and minimum operation.

Consider a path P := 〈v1 → f1 v2 → f2 · · · → fk−1 vk〉 in G. A subpath 〈v1 → · · · → vi〉
of P is called a prefix and a subpath 〈vi → · · · → vk〉 is called a suffix of P. In a time-
dependent road network, the travel time from v1 to vk along path P depends on the
departure time τ0 and amounts to fP(τ0), where fP is defined as fk−1 ∗ · · · ∗ f1. The
corresponding arrival time is fP(τ0) + τ0. Because of the FIFO property, there exists an
earliest arrival time (EA time) for traveling from a node s to a node t with departure
time τ0 in G, namely, the time

EAG(s, t, τ0) := min
{

fQ(τ0) + τ0
∣∣ Q is path from s to t in G

} ∪ {∞} .

If fP(τ0) + τ0 = EAG(v1, vk, τ0) holds, then P is called an earliest arrival (EA) path in G
or, to be more specific, an (v1, vk, τ0)-EA-path in G. If a node t is not reachable from a
node s in G, we have EAG(s, t, τ ) = ∞ for all τ ∈ R.

COROLLARY 2.1. If 〈v1 → · · · → vi → · · · → vk〉 is a (v1, vk, τ0)-EA-path in G, then
every suffix 〈vi → · · · → vk〉 is a (vi, vk, EAG(v1, vi, τ0))-EA-path in G, and we have
EAG(v1, vk, τ0) = EAG(vi, vk, EAG(v1, vi, τ0)).

The analogous condition for prefixes does not hold in general, but a slightly weakened
version of it does.

COROLLARY 2.2. Let s, t ∈ V be two nodes such that t is reachable from s in G
and let τ0 ∈ R be a departure time. Then, there always exists at least one (s, t, τ0)-EA-
path 〈s = v1 → v2 → · · · → vk = t〉 in G such that for every i = 1, . . . , k, the prefix
〈v1 → · · · → vi〉 is an (s, vi, τ0)-EA-path in G.

Such EA paths are called prefix-optimal (s, t, τ0)-EA-paths. The minimum travel times
from s to t for all departure times τ form a TTF, namely

TTPG(s, t) : τ 
→ EAG(s, t, τ ) − τ .

We call this TTF the travel time profile (TTP) from s to t. Obviously, EAG(s, t, τ0) and
TTPG(s, t) are just what an EA query and a profile query computes, respectively.

Each TTF f implicitly defines an arrival time function arr f : τ 
→ f (τ ) + τ , which
yields the arrival time for a given departure time. Note that arr(g ∗ f ) = arr g ◦ arr f
holds. Analogously, the departure time function dep f := (arr f )−1 yields the departure
time for a given arrival time—provided that arr f is a one-to-one mapping. Otherwise,

may change the memory usage of course. Regarding the running time, we expect a change by a constant
factor.



dep f (τ ) is the set of possible departure times. Dual to the EA time is the interval of
latest departure times (LD times)

LDG(s, t, τ1) := dep TTPG(s, t)(τ1) ⊆ R

for traveling from s to t with arrival time τ1. This is what an LD query computes.
What we also need is the k-hop neighborhood of a node v in a graph G defined as

Nk
G(v) := {

u ∈ V \ {v} ∣∣ ∃ path from u to v or v to u of k or less edges in G
}

.

A further important notion is the transpose graph

G� := (V, E�) := (V, {v → f u | u → f v ∈ E})
of a graph G. We further define an upper and a lower bound of the minimum travel
times from s to t, namely

MaxG(s, t) := min
{ ∑k−1

i=1
max fi

∣∣∣ 〈v1 → f1 · · · → fk−1 vk〉 is path from s to t in G
}

and

MinG(s, t) := min
{ ∑k−1

i=1
min fi

∣∣∣ 〈v1 → f1 · · · → fk−1 vk〉 is path from s to t in G
}

.

They fulfill MinG(s, t) ≤ TTPG(s, t)(τ ) ≤ MaxG(s, t) for all τ ∈ R.

3. BUILDING BLOCKS

Earliest Arrival Trees. Dijkstra’s algorithm not only computes shortest distances
from a start node s to all other nodes in a graph but also corresponding shortest
paths. Together, these shortest paths form a shortest path tree (e.g., see Mehlhorn
and Sanders [2008]). Here, we have similar concepts: A minimal subgraph T ⊆ G that
contains exactly one (s, u, τ0)-EA-path for all u ∈ V that are reachable from s is called an
earliest arrival (EA) tree or, to be more precise, an (s, τ0)-EA-tree. Every (s, τ0)-EA-tree
is a directed tree and all (s, u, τ0)-EA-paths in T are prefix-optimal.

Dijkstra-Like Algorithms. In this work, we utilize several modifications of Dijkstra’s
well-known algorithm. All these Dijkstra-like algorithms have very similar structure:
They grow a search space starting from s while repeatedly updating tentative node
labels and tentative predecessor information by relaxing edges. An edge u → v is
relaxed when its source node u is taken out of the priority queue (PQ). The final node
labels and the final predecessor information represent the desired result. Usually, the
label of a node u represents some kind of minimum distance from s to u. The predecessor
information of all nodes implicitly represents a subgraph that contains an optimal path
from s to every reachable node.

In fact, Dijkstra-like algorithms can be distinguished by the following five charac-
teristics: (i) What are the node labels? (ii) What is the structure of the predecessor
information? (iii) What is the key (or the priority) of a node label with respect to the
priority queue (PQ)? (iv) How are the node labels updated on edge relaxation? (v) What
are the initial node labels? Of all Dijkstra-like algorithms used in this work, time-
dependent Dijkstra [Dreyfus 1969] and travel time profile search [Orda and Rom 1990]
are the two most basic ones. Both of them are well known.

In this work, we use pseudocode to describe algorithms as clearly as possible. It
should be noted, however, that we often use nested pseudofunctions to make the struc-
ture of the algorithms more clear (e.g., as in Algorithm 1). On the one hand, we hope to
increase readability this way. On the other hand, we often use pseudofunction calls to in-
voke other algorithms or nested pseudofunctions of other algorithms as subprocedures.
The goal is both to reduce the size of pseudocode and to emphasize the relationships



between the different algorithms. Note that the syntax of parameter lists of pseudo-
functions follows a Pascal-like style. Also, some parameters of the pseudofunctions are
references. Their only purpose is to provide context information of the caller to the
callee. So, “passing” them does not raise any real additional work.

Predecessor Graphs. In the most basic case, the predecessor information p[u] asso-
ciated with a node u just stores the predecessor node of u on a tentative optimal path
from s to u. After termination, all p[u] with u ∈ V have reached their final value. In case
of Dijkstra’s algorithm, for example, the predecessor information implicitly represents
a shortest path tree and

〈s = p[. . . p[u] . . . ] → · · · → p[p[u]] → p[u] → u〉
is a shortest path from s to u for all u ∈ V . For some Dijkstra-like algorithms, p[u] not
only stores a single predecessor node, but it also stores a set predecessor nodes. Given
a set of predecessor nodes p[u] for all nodes u ∈ V , we often write

Graph(p) := ({
u ∈ V

∣∣ p[u] �= ∅ or u ∈ p[v] with v ∈ V
}
,
{
u → v ∈ E

∣∣ u ∈ p[v]
}) ⊆ G

to denote the predecessor graph of the underlying Dijkstra-like computation. The pre-
decessor graph is simply the graph made up by all edges u → v with u ∈ p[v].

Time-Dependent Dijkstra. Given a start node s and a departure time τ0 time-
dependent Dijkstra (see tdDijkstra, Algorithm 1) computes EAG(s, u, τ0) for all u ∈ V
as well as a corresponding (s, τ0)-EA-tree. The initial node label of the start node s is
the departure time τ0, the label τ [u] of a node u is the tentative EA time for traveling
from s to u. The predecessor information p[u] of u is the predecessor node of u on a
corresponding tentative EA path. When we relax an edge u → f v, we update the label
τ [v] of v by τ [v] := min{τ [v], arr f (τ [u])}. If τ [v] gets decreased, we also update the
predecessor information by p[v] := u. As PQ key of a node u, we simply use its current
label τ [u]. On road networks, tdDijkstra works very similar to the original Dijkstra and
has similar running times and memory usage. Also, a node once removed from the PQ
is never inserted again. After termination, we have τ [u] = EAG(s, u, τ0) for every u ∈ V
and Graph(p) is an (s, τ0)-EA-tree in G. Note that p[u] is not a set but an element of
V ∪ {⊥} here. Nevertheless, we apply the earlier definition of Graph(p) by identifying
p[u] ∈ V with the singleton set {p[u]} and p[u] = ⊥ with the empty set ∅.

ALGORITHM 1: The time-dependent version of Dijkstra’s algorithm computes final labels τ [u] =
EAG(s, u, τ0) for all reachable nodes u (and τ [u] = ∞ if u not reachable). The final predecessor
graph Graph(p), which is implicitly represented by the array p, is a (s, τ0)-EA-tree.
1 procedure tdDijkstra(s : V, τ0 : R)
2 τ [u] := ∞ for all u ∈ V , τ [s] := τ0 // initial node labels
3 p[u] := ⊥ for all u ∈ V // initial predecessor information
4 procedure tdRelax(u → f v : Edge, τ, p, Q : Reference)
5 if arr f (τ [u]) ≥ τ [v] then return
6 τ [v] := min{τ [v], arr f (τ [u])} // update node label of v
7 p[v] := u // update predecessor information of v
8 if v �∈ Q then Q.insert(v, τ [v])
9 else Q.decreaseKey(v, τ [v])

10 Q := {(s, τ [s])} : PriorityQueue
11 while Q �= ∅ do
12 u := Q.deleteMin()
13 for u → f v ∈ E do tdRelax(u → f v, τ, p, Q)



Profile Search. Given a start node s, the profile search (see profileSearch, Algorithm 2)
computes TTPG(s, u) for all u ∈ V . Accordingly, the node label f [u] of a node u is a
tentative TTP for traveling from s to u. The tentative predecessor graph Graph(p)
contains the corresponding tentative EA paths for all possible departure times τ ∈ R.
When relaxing an edge u → v with TTF fuv, we update the label f [v] of v by computing
f [v] := min( f [v], fuv ∗ f [u]). The PQ key of a node u is the minimum of its current
label, that is, min f [u]. The reader may have noticed that we check whether f [v]
lies completely under gnew and vice versa (see Lines 5 and 6). Both are essentially
the same as computing min(gnew, f [v]) and hence take O(|gnew| + | f [v]|) time. After
termination, Graph(p) contains an (s, u, τ )-EA-path for all u ∈ V , τ ∈ R (if u is reachable
from s).

Note that profileSearch is very expensive in time and space and not feasible for
larger road networks. This is confirmed by our experiments (Section 8). Also, during
profileSearch, nodes may be reinserted in the PQ after they have been removed. In our
experience, however, this is not what makes profileSearch so slow on road networks as
reinserts happen rarely. Instead, the complexity of profileSearch is raised by the in-
creasing complexity of the node labels, that is, of the tentative TTPs that are generated
during the search.

ALGORITHM 2: The travel time profile search computes final labels f [u] = TTPG(s, u) for all
nodes u. The final predecessor graph Graph(p) contains an (s, u, τ )-EA-path for all reachable
nodes u and all departure times τ ∈ R.
1 procedure profileSearch(s : V )
2 f [u] := ∞ for all u ∈ V , f [s] :≡ 0 // node labels are TTFs
3 p[u] := ∅ for all u ∈ V // predecessor information consists of sets
4 procedure profileRelax(u, v : V, gnew : TTF, f, p, Q : Reference)
5 if gnew(τ ) ≥ f [v](τ ) for all τ ∈ R then return
6 if gnew(τ ) < f [v](τ ) for all τ ∈ R then p[v] := ∅ // remove suboptimal predecessors
7 f [v] := min( f [v], gnew) // update tentative node label of v
8 p[v] := {u} ∪ p[v] // remember a tentative predecessor of v
9 if v �∈ Q then Q.insert(v, min f [v])

10 else Q.decreaseKey(v, min f [v]) // minimum of TTF is PQ key

11 Q := {(s, 0)} : PriorityQueue
12 while Q �= ∅ do
13 u := Q.deleteMin()
14 for u → v ∈ E with TTF fuv do profileRelax(u, v, fuv ∗ f [v], f, p, Q)

Profile Interval Search. As profileSearch is so expensive, we use profile interval
search (see profileIntervalSearch, Algorithm 3) as a relatively loose approximation of
profileSearch. Instead of TTPG(s, u), as in the case of profileSearch, it computes the
intervals [MinG(s, u), MaxG(s, u)] for every u ∈ V . Hence, the label of a node u is a
tentative interval [q[u], r[u]]. When relaxing an edge u → f v, we update the label of v

by [q[v], r[v]] := [
min{q[v], q[u] + min f }, min{r[v], r[u] + max f }]. As PQ key of u, we

use q[u]. According to our experience profileIntervalSearch runs much faster and needs
much less space on road networks than profileSearch. In fact, it has similar running
times and memory usage as the original Dijkstra. Analogously to profileSearch, the
predecessor graph of profileIntervalSearch contains an EA-path from s to all reachable
nodes for all departure times. However, the predecessor graph computed by profileIn-
tervalSearch should contain more edges than the one computed by profileSearch.



ALGORITHM 3: The travel time profile interval search computes final labels [q[u], r[u]] =
[MinG(s, u), MaxG(s, u)] for all nodes u. As in the case of profile search, Graph(p) contains an
(s, u, τ )-EA-path for all reachable nodes u and all departure times τ ∈ R after termination.
1 procedure profileIntervalSearch(s : V )
2

[
q[u], r[u]

]
:= [∞,∞] for all u ∈ V ,

[
q[s], r[s]

]
:= [0, 0] // node labels are intervals

3 p[u] := ∅ for all u ∈ V // predecessor information consists of sets
4 procedure intervalRelax(u, v : V, [qnew, rnew] : Interval, q, r, p, Q : Reference)
5 if qnew > r[v] then return
6 if rnew < q[v] then p[v] := ∅ // remove suboptimal predecessors
7 p[v] := {u} ∪ p[v] // remember a tentative predecessor of v
8 if qnew ≥ q[v] and rnew ≥ r[v] then return
9

[
q[v], r[v]

]
:= [

min{q[v], qnew}, min{r[v], rnew}] // update node label of v

10 if v �∈ Q then Q.insert(v, q[v])
11 else Q.decreaseKey(v, q[v]) // the PQ key is the lower bound of the interval

12 Q := {(s, 0)} : PriorityQueue
13 while Q �= ∅ do
14 u := Q.deleteMin()
15 for u → f v ∈ E do intervalRelax(u, v,

[
q[u] + min f, r[u] + max f

]
, q, r, p, Q)

Monotony of PQ Keys. It is important to know that all the Dijkstra-like algorithms
considered thus far show a certain monotonic behavior.

LEMMA 3.1. Let u1, u2 be two nodes such that u1 is removed from the PQ some time be-
fore u2 during the execution of tdDijkstra (Algorithm 1), profileSearch (Algorithm 2), or
profileIntervalSearch (Algorithm 3) respectively. Let τ1, τ2 and f1, f2 and [q1, r1], [q2, r2]
be the respective node labels at the time when each node is removed. Then, one of the
following three conditions holds, respectively: (i) For tdDijkstra, we have τ1 ≤ τ2; (ii) for
profileSearch, we have min f1 ≤ min f2; and (iii) for profileIntervalSearch, we have
q1 ≤ q2.

PROOF. All three conditions can be verified easily using induction over the number
of removals from the PQ, that is, the number of times deleteMin is invoked.

Time-Dependent One-to-One Search. The Dijkstra-like algorithms described thus far
all solve a one-to-all problem. In route planning, however, we are mainly interested
in one-to-one problems where we only want to route from a node s to a node t. So,
we can save running time by stopping the computation as soon as the node label
of the destination node t is final. For time-dependent Dijkstra (Algorithm 1), this is
the case as soon as Q.deleteMin() yields t. For profileSearch and profileIntervalSearch
(Algorithms 2 and 3), we can stop the execution as soon as Q.min() > max f [t] or
Q.min() > r[t] holds, respectively. This follows directly from Lemma 3.1.

Bidirectional Search. In case of one-to-one search, one can save even more running
time if Dijkstra-like algorithms are performed in a bidirectional manner. This idea is
not new and has been applied to speed up Dijkstra’s algorithm in the past [Dantzig
1962]. Basically, it works as follows: To compute a shortest path from a node s to
a node t in a graph with time-independent edge weights, we perform two Dijkstra
searches “at the same time” until they meet. More precisely, we alternately perform a
forward Dijkstra search starting from s and a backward Dijkstra search starting from
t. The backward search must use the edges in reverse direction, that is, it runs on
the transpose graph. On road networks, the number of processed nodes roughly grows
quadratically with the distance from the start node. So, as we have two searches that



both cover an area with about half the radius, instead of one single search with full
radius, the number of processed nodes should roughly half in total. Hence, bidirectional
search should speed up the one-to-one version of Dijkstra’s algorithm by a factor of
about two [Bauer et al. 2010]. However, in this work, we do not use bidirectional search
to speed up EA or profile queries directly, but rather to enable EA and profile queries
on TCH structures (see Sections 5, 6, and 7). This brings much greater speed-ups than
just a factor of two (see Section 8).

Backward profileSearch and profileIntervalSearch. Bidirectional search includes
backward search. To obtain a backward version of profileSearch that computes
TTPG(u, t) for all u ∈ V , it is not enough just to run it on the transpose road network
G�. We also have to adapt edge relaxation such that the order of the link operation
is swapped. More precisely, the invocation of profileRelax in Line 14 of Algorithm 2
has to be changed to profileRelax(u, v, f [v] ∗ fuv, f, p, Q). This is necessary because
linking of TTFs is not commutative. The final label f [u] of each node u ∈ V fulfills
f [u] = TTPG(u, t). The role of the predecessor graph is reverted in case of backward
search. Let S ⊆ G� be predecessor graph of backward profileSearch. Then, S� contains
a (u, t, τ )-EA-path for all u ∈ V , τ ∈ R (if t is reachable from u).

The behavior of backward profileIntervalSearch is mainly inherited from backward
profileSearch, but there is no need to adapt the edge relaxation. Especially for S ⊆
G� being the corresponding predecessor graph, there is also a (u, t, τ )-EA-path in S�
for all u ∈ V, τ ∈ R (if t reachable from u). The final label [q[u], r[u]] of each node
u ∈ V fulfills [q[u], r[u]] = [MinG(u, t), MaxG(u, t)]. As in the case of forward search,
the predecessor graph of backward profileIntervalSearch contains more edges than of
backward profileSearch.

Corridors and Cones. Consider a start node s and a destination node t. A subgraph
C ⊆ G containing s and t as well as a path from s to t is a corridor from s to t. Now, also
consider the nodes u1, . . . , uk. A subgraph C ′ ⊆ G containing s and u1, . . . , uk is called a
cone from s to u1, . . . , uk if it contains a path from s to each of u1, . . . , uk. If C consists
exactly of all paths from s to u1, . . . , uk in G, we call it the cone induced by start node s
and target set {u1, . . . , uk} in G. We denote C by ConeG(s, {u1, . . . , uk}) in this case. The
induced corridor from s to t in G defined by CorridorG(s, t) := ConeG(s, {t}) is a special
case. Corridors and cones help to reduce running time and memory usage significantly
when expensive algorithms have to be used: First, we use a cheap algorithm to build
up a corridor or cone that contains the relevant parts of the graph and not too many
other nodes and edges. Then, we perform the expensive algorithm only in the corridor
or cone to obtain the desired result. This principle is applied very often in this work.

Shortcut Edges. A shortcut (edge) is an “artificial” edge in the sense that it does not
directly correspond to a single road segment. Instead, shortcuts represent paths in the
road network. Note that shortcuts are quite common in route planning. In this work,
shortcuts are time dependent and represent paths of length two: For intervals I1, . . . , Ik
with R = I1 ∪ · · · ∪ Ik, a shortcut u → v represents a path 〈u → xi → v〉 for all departure
times τ ∈ Ii and each i ∈ {1, . . . , k}. The nodes x1, . . . , xk are called middle nodes. For
some departure intervals Ii, it may happen that u → v must not be interpreted as
a shortcut but as an original edge that corresponds to a real road segment—we set
xi = ⊥ in this case. The shortcut u → v is annotated with the corresponding sequence
〈(I1, x1), . . . , (Ik, xk)〉. Now, we can unpack u → v for a given departure time τ0 to obtain
the path 〈u → f xi →g v〉 with τ0 ∈ Ii—at least if xi �= ⊥. If one or both of the edges
u → f xi and xi →g v are shortcuts themselves, they can be unpacked for the departure
times τ0 and arr f (τ0), respectively. In fact, every shortcut can be unpacked completely
for a given departure time in a recursive manner. The resulting path consists completely



of original edges and is called the original path represented by the shortcut u → v for
departure time τ0.3

4. PREPROCESSING

In this section, we explain what a TCH structure H is exactly and how it is generated
from the original road network G in a preprocessing step. TCHs exploit the inherently
hierarchical structure of road networks: Some junctions are more “important” than
others, which is, for example, reflected by the fact that more EA paths contain these
nodes. The idea is that a node is at a higher level of the hierarchy the more important
the corresponding junction is. We express this by a total order4 ≺ on V . There, u ≺ v
means that u is less important than v.

We construct the hierarchy by contracting the nodes of G in order ≺. In principle,
contracting a node x means to remove x and all its incident edges from the graph
without changing the EA times between the remaining nodes. We achieve this by
replacing each path 〈u → f x →g v〉 by a shortcut edge u →g∗ f v when necessary. A
shortcut is necessary if 〈u → f x →g v〉 is an EA path for some departure time, that is,
if EAG(u, v, τ ) = arr(g ∗ f )(τ ) holds for some τ ∈ R. When a shortcut is necessary, an
edge u →h v may already be present. Then, we do not insert another edge but merge
the edges: We replace u →h v by u →min(g∗ f,h) v, avoiding parallel edges this way.

LEMMA 4.1. Contracting a node x ∈ V as described earlier transforms the graph G =
(V, E) to another graph G′ = (V ′, E′) with V ′ = V \{x} and EAG′(s, t, τ ) = EAG(s, t, τ )
for all s, t ∈ V ′, τ ∈ R. Especially if there is a path 〈u → f x →g v〉 in G, which is an
EA path for some departure time τ0 ∈ R, then G′ contains a shortcut edge u →h v with
arr h(τ0) = arr(g ∗ f )(τ0) = EAG(u, v, τ0).

PROOF. Assume there is an (u, v, τ0)-EA-path 〈u → f x →g v〉 present in G. If there
is no edge u →h′ v in G, an appropriate shortcut is inserted. Otherwise, the shortcut
u →g∗ f v is merged into G′, and we have a shortcut edge u →min(h′,g∗ f ) v in G′. But it is
obvious that arr min(h′, g ∗ f )(τ0) = arr g ∗ f (τ0) = EAG(u, v, τ0) holds as 〈u → f x →g v〉
is an (u, v, τ0)-EA-path in G and there can not be an earlier arrival time, hence.

In other words, G′ has the same nodes as G except for x, and all EA times in G′ are
the same as in G. Such a graph G′ is called an overlay graph of G [Holzer et al. 2008].
A TCH is constructed by successively contracting all nodes of G in the order given by
≺, that is, in the order x1 ≺ · · · ≺ x|V |. So, a TCH is a hierarchy of overlay graphs
G1 = (V1, E1), . . . , G|V | = (V|V |, E|V |) with Vi+1 = Vi \ {xi}. However, the TCH is never
represented this way. This would need too much memory. Instead, we just store the
original graph G together with all inserted and merged shortcuts. Also, we remember
whether an edge leads upward or downward in hierarchy. In fact, this information is all
we need for fast and exact EA and profile queries (see Sections 5 and 6). The resulting
structure is the actual time-dependent contraction hierarchy (TCH) H.

COROLLARY 4.2. Consider a road network G and a corresponding TCH H, that is, H
consists of G and all inserted and merged shortcuts. Then, for all departure times as
well as for all pairs of start and destination nodes, the corresponding EA times are the
same in G and H.

Constructing the hierarchy requires that the importance relation ≺ is already known.
If this is not the case, the node order has to be determined first. So, preprocessing

3This is a little simplified. Actually, TTFs in this work have a period of 24 hours, and this is also the case
for the structure of the middle nodes. More precisely, we have [0, 24h) = I1 ∪ · · · ∪ Ik and the middle node for
every departure time in R is sufficiently specified by the sequence 〈(I1, x1), . . . , (Ik, xk)〉.
4A total order ≺ is an antisymmetric, transitive relation where always one of a ≺ b or b ≺ a holds.



consists of two tasks: node ordering and hierarchy construction. Node ordering as we
do it, however, is basically a construction process with a lot of additional work. As
a consequence, node ordering not only yields the importance relation ≺ but also a
corresponding hierarchy. A further construction step is not necessary. Nevertheless, it
is natural that we first explain how hierarchy construction works when ≺ is already
known (Section 4.1). Then, we explain how the node ordering works, as it is a similar
process but with additional work (Section 4.2). Both node ordering and construction
parallelize quite naturally on shared memory architectures. Once the preprocessing is
finished, we can answer EA and profile queries very fast (see Sections 5, 6, and 7).

4.1. Constructing the Hierarchy

Earlier in the text, we explained that the TCH is never represented explicitly as hi-
erarchy of overlay graphs. This is also the case during preprocessing. Instead, we
successively construct a TCH H starting from G by inserting and merging more and
more shortcuts. Initially, we set H := G. All shortcuts u → v that turn out to be nec-
essary when a node is contracted are added to H (or merged into H if an edge u → v
is already present, respectively). Every time a node x is contracted, it is not really
removed but marked as contracted. By R = (VR, ER), we denote the subgraph of H,
which is induced by all nodes that are not contracted yet.5 Conceptually, a node x and
its incident edges are removed from R as soon as x is contracted. Hence, we call R the
remaining graph. Note that the EA times in G and H are always the same and that R
is an overlay graph of both G and H.

The construction phase is divided in iterations. In every iteration, we contract a
number of nodes. At the beginning of every iteration, we build the set

I := {
x ∈ VR

∣∣ ∀ u ∈ N1
R(x) : x ≺ u

}
(1)

of nodes, which are less important than all their neighbors in R. Note that I is an
independent node set6 in R. Having built the set I, we contract all the nodes in I. This
includes that all necessary shortcuts are added to H (or merged into H, respectively).
The remaining graph has changed now. On the one hand, all nodes in I and their
adjacent edges have been removed from R. On the other hand, some new shortcuts
may be present in R and some edges in R may have a modified TTF now (due to
merging).

The next iteration works exactly like the one before: We build another independent
node set I, which is a subset of the now smaller set of remaining nodes VR. Then,
we contract all the nodes in the new set I while inserting some shortcuts into H (or
merging some shortcuts, respectively). Then, we perform another iteration of this kind
and so on. We repeat this process until R is the empty graph. When this process ends,
all nodes are contracted, and H is completely transformed into a TCH.

Note that the contraction of a node x ∈ I has no influence on the contraction of any
other node in I. So, all nodes in I can be contracted in an arbitrary order or even
in parallel without altering the result of this process. This is the case because the
contraction of a node does not alter the EA times in a graph. Moreover, no two nodes
in I are adjacent in R, which means that no node in I loses or gains any edges when
another node in I is contracted. If some nodes in I have common neighbors, then we
simply merge all parallel inserted shortcuts.

5The subgraph of a graph G = (V, E), which is induced by a subset of nodes X ⊆ V , is defined as the subgraph(
X, {u → v ∈ E | {u, v} ⊆ X}) ⊆ G.

6An independent node set is a set of nodes in a graph such that no two nodes in the set are adjacent.



Avoiding Shortcuts. When we contract a node x, we have to insert or merge a shortcut
u →g∗ f v for each path 〈u → f x →g v〉 in R, which is an (u, v, τ )-EA-path for at least
one τ ∈ R. To find out whether this is the case or not, we perform the one-to-one
version of profileSearch in the remaining graph R with start node u and destination
node v; we call this the witness search. The witness search yields f [v] = TTPR(u, v) =
TTPG(u, v) as final label of v. If ∀τ : (g ∗ f )(τ ) > f [v](τ ) holds, which can be checked
in O(|g ∗ f | + | f [v]|) time, then the shortcut is not necessary. We call f [v] a witness
profile in this case. However, profileSearch is a very expensive algorithm regarding
time and space. Moreover, the complexity of the TTFs present in R increases during
the construction process (see Section 8). As a consequence profileSearch gets more and
more expensive making the construction process infeasible. Alternatively, we could just
insert all possible shortcuts. This is also not good, because the resulting TCH would
probably need far too much space and queries would probably be much slower.

Faster Witness Search Using Corridors. However, the witness search can be acceler-
ated: If we first perform the one-to-one version of profileIntervalSearch with start node
u and destination node v in R, we get the interval [q[v], r[v]] = [MinR(u, v), MaxR(u, v)].
So, if r[v] < min(g∗ f ) holds, we know that no shortcut is needed—without doing profile-
Search. We call [q[v], r[v]] a witness interval in this case. Otherwise, if q[v] > max(g∗ f ),
we know that the shortcut is required, also without profileSearch. But if [q[v], r[v]] and
[min g ∗ f, max g ∗ f ] overlap, we know nothing and perform profileSearch. However,
several edges can be ignored during profileSearch here: Let S be the predecessor graph
(see Section 3) of the profileIntervalSearch. Then, we perform profileSearch only in
the corridor C := CorridorS(u, v). To obtain the corridor C, we only have to perform a
breadth-first search (BFS) in S� starting from v while adding a transposed version of
all touched edges to C.

Thinning out the Corridor Heuristically. We can further decrease the time spent on
profileSearch by using a corridor that is even thinner than C. To do so, we do not
store the whole the predecessor information during profileIntervalSearch. Instead, we
only remember two predecessors of a node w with label [q[w], r[w]] at a time: the one
that lastly improved q[w] and the one that lastly improved r[w] (i.e., |p[w]| ≤ 2). Of
course, the resulting thinner corridor C ′ might not contain all EA paths from u to v
or even no EA path. This may lead to unnecessary shortcuts, as we may fail to prove
that a shortcut is not needed, but it turned out that this happens quite rarely. Instead,
the running time spent on profileSearch is reduced greatly. So, the generation of the
corridor is a heuristic that works very well. Note that this heuristic never prevents any
necessary shortcuts. The result is always correct as the heuristic is conservative.

Sample Search. It is also possible to further reduce the cases where profileSearch
is performed: First, we perform a sample search, a one-to-one tdDijkstra on R from u
to v with departure time �/2. There, � is the period of the TTFs. Even if [q[v], r[v]],
as computed by the profileIntervalSearch, and [min(g ∗ f ), max(g ∗ f )] overlap, sample
search might still yield that EAR(u, v,�/2) = arr(g ∗ f )(�/2). Then, we know that the
shortcut is necessary without profileSearch. However, we perform a sample search only
occasionally: We maintain a value β which we set to zero at the very beginning of the
construction process. Every time a shortcut is inserted, we increase β by some value
λ+. If a potential shortcut is not inserted, we decrease β by another value λ−. If β gets
larger than some threshold ξ , we switch to the sample search mode, meaning that we
always perform a sample search before interval search. If, in contrast, β gets smaller
than −ξ , we switch back to the no sample search mode. In our implementation, we
chose λ+ := 4, λ− := 1, and ξ := 1,000. As an intuition, we perform a sample search



when shortcuts are more probable, and we omit a sample search when shortcuts are
less probable.

Hop Limit. To avoid that sample search, profileIntervalSearch, and profileSearch
take too much time, we limit the search radius to 16 hops (this has been adopted from
the preprocessing of static CHs). The idea is that the edges of a node w are not relaxed
if the EA path from u to w has more than 16 edges. Here, it must be noted that the
predecessor graph of profileIntervalSearch and profileSearch does not contain a unique
path from u to w. So, in these cases, we just use the number of hops that emerge from
the edge w′ → w ∈ ER relaxed last. Of course, the hop limit might sometimes prevent us
from finding witnesses, which means that unnecessary shortcuts are inserted. However,
the resulting TCH structures are sparse enough to allow small running times of EA
and profile queries (Section 8).

4.2. Ordering the Nodes

We already suggested that the node ordering is actually a hierarchy construction plus
a lot of extra work. In every iteration, the node ordering chooses an independent
node set J in the remaining graph R. Then, it contracts all nodes in J while adding
some shortcuts to H or merging them, respectively. Having finished an iteration, we
choose another independent node set J in the new R and so on. This is the same
procedure described in Section 4.1, and all the techniques described there are also
applied.

However, as ≺ is not yet fully established during this process, we need another way
to decide which nodes are contracted next, that is, which nodes are put into J. To do so,
we assign a tentative cost value u.cost to every node u ∈ V . This way, we estimate how
attractive a node is to be contracted. The nodes with smaller costs should be contracted
earlier. Actually, the tentative cost estimates how the remaining graph R would change
when a node were contracted. Accordingly, we perform a simulated contraction of a node
u in R whenever u gains or loses an edge, but this happens exactly when a neighbor
x of u in R is really contracted. After the simulated contraction of u, we update the
tentative cost u.cost of u.

Note that the simulated contraction does not alter H or R. Instead, we just look at
which shortcuts are necessary without actually inserting or merging them and without
marking u as contracted. The only purpose of the simulated contraction is to find out
how a real contraction would change R.

Basic Node-Ordering Procedure. In more detail, the node ordering works as follows:
In an initial step before the first iteration, we determine the initial tentative cost for
all nodes u ∈ V by performing a simulated contraction for every node u ∈ V . Then,
we perform a sequence of iterations similar to the construction process described in
Section 4.1. The independent node set, however, is chosen differently this time. Instead
of a set I, as described in Equation (1), we choose a set J ⊆ VR with the property

x ∈ J =⇒ ∀ u ∈ N2
R(x) :

(
u �∈ J and x.cost ≤ u.cost

)
, (2)

which means that every node in J has minimal cost in its 2-hop neighborhood and none
of its 2-hop neighbors is also added to J. Then, we contract all nodes in J while inserting
or merging the necessary shortcuts. But before we begin with the next iteration by
choosing the next independent node set J in the changed remaining graph R, we
update the tentative costs of the neighbors of the just contracted nodes. To do so, we
have to simulate the contraction of these neighbors of course.

Note that an independent node set J as characterized by Property (2) is different
from an independent node set I, as defined by Equation (1). And this is not only the
case because we use the tentative cost instead of ≺. The gap between the nodes in J is



at least three hops instead of two hops, as in the case of I. The reason for this difference
is explained at the end of this section in the paragraph about parallelization.

Determining the Node Order. During the node ordering, we successively set up the
relation ≺ in the following way: Let J1, . . . , Jk be the sequence of the repeatedly chosen
independent node sets ordered by time of creation. For u ∈ Ji and v ∈ Jj with i < j, we
set u ≺ v. For u, v ∈ Ji, we can choose freely between u ≺ v and v ≺ u.

Maintaining the Tentative Costs. The contraction of a node x changes the edges of its
adjacent nodes in R, and (as said earlier) we have to update the tentative costs of these
adjacent nodes. More precisely, the contraction of x means that every node u ∈ N1

R(x)
loses at least an edge u → x or x → u and possibly gains one or more shortcuts. So, we
have to update the tentative cost u.cost of all nodes u ∈ N1

R(x) because u.cost estimates
how the contraction of u would change R (and this depends on the edges that u has in
R). But updating this estimate includes a simulated contraction of u. Having finished
the simulated contraction of u, we compute the new tentative cost of u as a linear
combination of four cost terms.

Mainly, the four cost terms are chosen in a way that we obtain a hierarchy, which
is flat and sparse. As a consequence, the paths from the bottom of the hierarchy to
its top are not too long and the hierarchy does not contain too many edges. Such
hierarchies hasten our query algorithms, as these algorithms only go upward from start
and destination node. However, to achieve a lower memory usage, a low complexity of
TTFs is also important. The four cost terms edge quotient, hierarchy depth, unpacked
edge quotient, and complexity quotient—here, sorted by importance—try to ensure these
properties and are defined as follows.

The edge quotient helps to keep the hierarchy sparse. When a node u was contracted,
all its incident edges would be removed from R, and then some shortcuts would be
inserted. Accordingly, the edge quotient

Edges(u) := # inserted shortcuts
max{1, # edges removed from R}

expresses how the number of edges would be changed locally by the contraction of u.
Note that the edge quotient works better than the more intuitive term edge difference

# inserted shortcuts − # edges removed from R

would. This is because the values of the difference could get so large that other terms
would not have enough influence any more.

Using only the edge quotient, one can get quite slow queries, as the resulting hi-
erarchy might be sparse but not flat. So, we preferably contract nodes everywhere in
the graph in a uniform way rather than keeping to a small region. To ensure this,
we maintain an attribute u.depth of every node u. At the very beginning of the node
ordering, we set u.depth := 1 for all nodes u. Whenever a node x is really contracted,
we update u.depth of all its neighbors u ∈ NR(x) by setting

u.depth := max{x.depth + 1, u.depth}
before we mark x as contracted. The term hierarchy depth is simply the current value
Depth(u) := u.depth. Obviously, u.depth can be maintained without simulated con-
traction. Note that the way we repeatedly choose the independent set J during node
ordering also helps to uniformly distribute the node contractions.

When a node u is contracted, all the inserted (and maybe some of the removed)
edges are shortcuts. The unpacked edges quotient is the same as the edge quotient, but
all shortcuts count for the number of edges of the original path (see Section 3) they



represent, that is, for the number of edges that we get if we unpack them completely:

Unpack(u) :=
∑

inserted shortcuts # original edges when unpacked
max{1,

∑
edges removed from R # original edges when unpacked} .

The purpose of this term is to balance the length of the shortcuts incident to a node.
Similar to the previous term, this should support a uniform distribution which supports
a flat hierarchy.

The complexity quotient, which is the last of the four terms, helps to keep the com-
plexity of the TTFs low. This saves memory, as the hierarchy needs less space the fewer
segments the present TTFs have. Also, this should speed up the profile searches being
performed during preprocessing, and also the answering of profile queries after pre-
processing. This is because profile search gets slower the more segments the processed
TTFs have. However, the use of this term may slow down EA queries a little. We define

Complex(u) :=
∑

inserted shortcuts # segments of TTF
max{1,

∑
edges removed from R # segments of TTF} .

As said before, we use a linear combination of the four cost terms to compute the
tentative cost of a node. Of course, different configurations are possible for assigning
values to the coefficients. We use the configuration

2Edges(u) + Depth(u) + Unpack(u) + 2Complex(u),

which we found by trial and error. We have not performed a systematic exploration.

Caching Simulated Contractions. Every time we simulate the contraction of a node
u, we cache the results of the simulation: For each path 〈v → f u →g w〉, we remember
whether we found a witness or not, and we remember the complexity of g ∗ f . So, if the
node u is contracted again, we can save a lot of work by looking up every path 〈v →
u → w〉 ⊆ G in the cache—regardless of whether it is a simulated or a real contraction
this time. However, if v or w are contracted before u, we delete the corresponding piece
of information from the cache to save memory. The cached complexity |g ∗ f | is needed
to calculate the complexity quotient.

Parallelization. Like the contraction of the nodes in a set I as defined by Equation (1),
the contraction of the nodes in a set J, as characterized by Property (2), can be per-
formed in parallel quite naturally for shared memory architectures. Also, the simulated
contractions of the adjacent nodes can be performed in parallel. But, if simulations are
performed in parallel, the following question arises: Is it possible that two threads both
simulate the contraction of the same node? This would be redundant work. But this
can never happen because of the 3-hop gap between the nodes in an independent node
set J as characterized by Property (2).

Note that we have not yet explained how such sets J, as characterized by Property (2),
are chosen. However, this can be done quite easily by choosing the nodes x ∈ VR,
that have minimal tentative cost in N2

R(x)—if a tie-braking rule for nodes with equal
tentative cost is available. This also works when the set J is computed in parallel.

Reusing a Node Order. We already said that the node ordering not only yields the
node order relation ≺ but also a complete TCH and that it is not necessary to perform a
separate construction process afterward. However, if we have different sets of TTFs for
the road network G, we can compute a node order for only one of these sets. Then, we
can reuse this order for all the other sets of TTFs and perform the construction process
without further node ordering each. This may increase the running times needed for
construction and also for querying, as the resulting TCH may have a somewhat worse



quality, but it might work well enough, and our experiments confirm this (Section 8).
This, way we can save a considerable amount of time during preprocessing.

5. BASIC QUERYING WITH A TCH

In this section, we explain how TCH structures can be used to perform very fast EA
and profile queries—with exact query results. We achieve this by using bidirectional
upward search, that is, a bidirectional search (see Section 3) where we only relax
edges that lead upward in the hierarchy. As said before, this is fast if the TCH is flat
and sparse. This works because of the guaranteed existence of prefix-optimal EA up-
down-paths in TCHs (see Section 5.1). EA up-down-paths are analogous to shortest
up-down-paths mentioned in the context of static CHs (see Section 1.1).

For EA queries, bidirectional search has a problem, namely, that exact time-
dependent backward search would require us to know the arrival time, which is part of
what we want to compute. To overcome this, we apply approximation. More precisely,
we use tdDijkstra as forward search but profileIntervalSearch as backward search be-
cause it does not require a known arrival time. Even though this does not yield an
EA path, we know that the predecessor graphs of forward and backward search to-
gether contain an EA up-down-path for the given departure time. All that is left to
do is to perform a further tdDijkstra on the edges touched by the backward search
(see Section 5.2). Bidirectional profile queries, in contrast, are simpler. This is because
profileSearch does not require a fixed arrival time when used as backward search. As
a result, profile queries on TCHs are straightforward (see Section 5.3).

Both EA and profile queries can be made faster by applying a pruning technique
called stall-on-demand (see Section 5.4). However, in the case of profile queries, we
can even do better: Before we perform the bidirectional profileSearch, we perform a
bidirectional profileIntervalSearch first. This yields two cones in which we we perform
the bidirectional profileSearch. This needs much less time because much less edges
have to be processed by the profileSearch (see Section 5.5).

5.1. EA Up-Down-Paths and Representing a TCH

All query algorithms presented in this work include bidirectional search that goes only
upward in the TCH. The correctness of these algorithms relies on the aforementioned
existence of prefix-optimal EA up-down-path in TCHs. Given a TCH H, we call a path

〈u1 → · · · → uk → x → v� → · · · → v1〉 ⊆ H

an up-down-path if u1 ≺ · · · ≺ uk ≺ x and v1 ≺ · · · ≺ v� ≺ x hold, that is, 〈u1 → · · · →
uk → x〉 only goes upward and 〈x → v� → · · · → v1〉 only goes downward. We call
x the top node of the up-down-path because x is the highest up with respect to the
hierarchy. Theorem 5.1 guarantees the existence of prefix-optimal EA up-down-paths
in TCHs—for all departure times.

THEOREM 5.1. Let H be a TCH, s, t ∈ V such that t is reachable from s, and τ0 ∈ R.
Then, there is an up-down-path in H, which is also a prefix-optimal (s, t, τ0)-EA-path.

PROOF. According to Corollary 2.2, there exists a prefix-optimal (s, t, τ0)-EA-path
P := 〈v1 → f1 · · · → fk−1 vk〉 in G. According to Corollary 4.2, P is also a prefix-
optimal (s, t, τ0)-EA-path in H. If P is not an up-down-path, we choose a local
minimum of P excluding s and t, that is, we choose j ∈ {2, . . . , k − 1} such that
v j ≺ v j−1, v j+1. By the prefix-optimality of P, we know that 〈v j−1 → f j−1 v j → f j v j+1〉
is an (v j−1, v j+1, EAG(s, v j−1, τ0))-EA-path in H. So, during the preprocessing, when
contracting v j , a shortcut edge v j−1 →h v j+1 with

arr h
(
EAG(s, v j−1, τ0)

) = arr( f j ∗ f j−1)
(
EAG(s, v j−1, τ0)

) = EAG(s, v j+1, τ0) .



is inserted (see Lemma 4.1). As a consequence, Q := 〈v1 → f1 · · · → f j−2 v j−1 →h

v j+1 → f j+1 · · · → fk−1 vk〉 is a prefix-optimal (s, t, τ0)-EA-path in H. By setting P := Q,
the previous argument can be applied again and again until the resulting path P∗
is an up-down-path from s to t. Note that this process terminates because, in every
step, Q has one edge less than P and a single edge surely is an up-down-path. So,
by construction, P∗ is an up-down-path as well as a prefix-optimal (s, t, τ0)-EA-path in
H.

The given proof is similar to the proof of Geisberger et al. [2012], which states that
static CH query is correct.

We already said that we do not store TCHs in form of hierarchies of overlay graphs
but as single graphs containing all original edges and all shortcuts together with
the information whether an edge goes upward or downward in the hierarchy (see
Section 4). A TCH H = (V, EH) can be decomposed into two DAGs H↑ := (V, E↑) :=
(V, {u → v ∈ H | u ≺ v} = and H↓ := (V, E↓) := (V, {u → v ∈ H | v ≺ u}), where
H = H↑ ∪ H↓ and E↑ ∩ E↓ = ∅ hold. The up-down-paths in H are exactly the paths
〈s → · · · → x → · · · → t〉 ⊆ H with the property

〈s → · · · → x〉 ⊆ H↑ and 〈x → · · · → t〉 ⊆ H↓ . (3)

All query algorithms in this work perform bidirectional upward searches to find all
relevant EA up-down-paths, but up-down-paths are fully characterized by Property (3).
So, H↑ and H↓ are enough to perform the bidirectional upward searches: Forward
searches run in the graph H↑ and backward searches in the graph H↓. So, what we
really store are the DAGs H↑ and H↓, but the latter is stored with reverted edges.

5.2. EA Queries

Given a start node s, a destination node t, and a departure time τ0, we want to compute
EAG(s, t, τ0) as well as a corresponding EA path in G. Using TCHs, we can do this very
fast: First, we run a tchEaQuery (Algorithm 4) on H to compute (s, t, τ0)-EA up-down-
path. Second, we unpack this EA up-down-path recursively for departure time τ0 to
obtain an (s, t, τ0)-EA path in G (see Section 3). Both steps take very little time.

The tchEaQuery (Algorithm 4) runs in two phases. The first phase (Lines 16 to 25)
is a time-dependent bidirectional upward search. The forward search is a tdDijkstra
starting from s running in H↑, the backward search is a profileIntervalSearch starting
from t running in H↓. Both searches only relax edges that lead upward in the TCH.
In case of the backward search, all edges are relaxed in reverse direction. Note that
forward and backward search are performed alternately. This is controlled by the
variable d, which determines the current direction. In contrast to the forward search,
the backward search yields only approximate results. This is because we do not know
the EA time, which is just what we want to compute.

The nodes where forward and backward search meet are called candidate nodes. More
precisely, a candidate node u is a node with τ [u] + r[u] < ∞. We store the candidate
nodes in the candidate set X. During the bidirectional search, we maintain an upper
bound B ≥ EAG(s, t, τ0) with initial value ∞. Every time the two searches meet in a
node u, we set B := min{B, τ [u] + r[u]}. The bidirectional search can be stopped as soon
as the minima of forward and backward PQ both exceed B (Line 17). The upper bound B
can be used to rule out candidate nodes that cannot lie on an (s, t, τ0)-EA up-down-path
(Line 20).

The second phase or downwardSearch (Lines 7 to 15) is actually a tdDijkstra on
the transpose predecessor graph of the backward search, that is Graph(pt)� ⊆ H↓.
Note that Graph(pt)� does not need to be build up before we run the downwardSearch.
Instead, the predecessor information pt can be used directly. This is reflected in Line 15.



The downwardSearch has multiple start nodes, namely the candidate nodes, which are
inserted in the PQ Q at Lines 10 and 11. Note that we again use the upper bound B to
rule out candidate nodes there.

With the guaranteed existence of an (s, t, τ0)-EA up-down-path in H (see
Theorem 5.1), we can prove that the tchEaQuery really computes such an up-down-
path.

THEOREM 5.2. Let H be a TCH, s, t ∈ V such that t is reachable from s, and τ0 ∈ R.
Then, the tchEaQuery (Algorithm 4) returns an (s, t, τ0)-EA-path in H.

PROOF. According to Theorem 5.1, there exists an up-down-path with top node x0 in
H, which is also a prefix-optimal (s, t, τ0)-EA-path. Surely, x0 is reached both by forward
and backward search. Thus, we have x0 ∈ X, and there is an (x0, t, EAH(s, x0, τ0))-EA-
path Q0 ⊆ Graph(pt)� ⊆ H↓. Now, consider the graph G0 formed by Graph(pt)�, the
start node s, and by an edge s → fx x with fx :≡ EAH(s, x, τ0)−τ0 for each x ∈ X. Consider
the concatenated path P0 := 〈s → fx0

x0〉Q0. As Q0 is suffix of an (s, t, τ0)-EA-path in H,
we have

arr fP0 (τ0) = arr( fQ0 ∗ fx0 )(τ0) = EAH
(
x0, t, EAH(s, x0, τ0)

) = EAH(s, t, τ0).

Thus, it is EAG0 (s, t, τ0) = EAH(s, t, τ0), as by construction, there are no better EA times
in G0 than in H for departure time τ0. But it is easy to see that downwardSearch is
essentially a tdDijkstra in G0 starting from s. Thus, tchEaQuery yields the desired

ALGORITHM 4: EA query using a TCH structure H = H↑ ∪ H↓. Given the nodes s and t as well
as a departure time τ0, this algorithm computes an (s, t, τ0)-EA up-down-path. As subroutines,
the subprocedures tdRelax and intervalRelax from Algorithms 1 and 3 are invoked, respectively.
1 function tchEaQuery(s, t : V, τ0 : R) : Path
2 τ [u] := ∞ for all u ∈ V , τ [s] := τ0, // initial node labels of forward...
3 [q[u], r[u]] := [∞, ∞] for all u ∈ V , [q[t], r[t]] := [0, 0] // ...and backward search
4 ps[u] := ⊥, pt[u] := ∅ for all u ∈ V // initial predecessor information
5 B := ∞, d := t // upper bound of EA time and current search direction
6 X := ∅ : Set // set of candidate nodes
7 function downwardSearch() : Path
8 τdown[u] := ∞ for all u ∈ V
9 Q := ∅ : PriorityQueue // PQ for downward search

10 foreach u ∈ X do
11 if B < ∞ and τ [u] + q[u] ≤ B then τdown[u] := τ [u], Q.insert(u, τdown[u])

12 while Q �= ∅ do
13 u := Q.deleteMin()
14 if u = t then return 〈s = ps[. . . ps[t] . . . ] → · · · → ps[t] → t〉
15 for v ∈ pt[u] with u → f v in H�

↓ do tdRelax(u → f v, τdown, ps, Q)

16 Qs := {(s, τ0)}, Qt := {(t, 0)} : PriorityQueue // PQs of forw. and backw. search
17 while (Qs �= ∅ or Qt �= ∅) and min{Qs.min(), Qt.min()} ≤ B do
18 if Q¬d �= ∅ then d := ¬d // change of direction: ¬s := t and ¬t := s
19 u := Qd.deleteMin()
20 if B < ∞ and τ [u] + q[u] ≤ B then X := X ∪ {u}
21 B := min{B, τ [u] + r[u]}
22 for u → f v ∈ Ed do // with Es := E↑ and Et := E�

↓
23 if d = s then tdRelax(u → f v, τ, ps, Qs)
24 else intervalRelax

(
u, v,

[
q[u] + min f, r[u] + max f

]
, q, r, pt, Qt

)

25 return downwardSearch()



ALGORITHM 5: A profile query using a TCH structure H = H↑∪H↓. For a given start node s and
a given destination node t, this algorithm computes TTPG(s, t). As, subroutine, the subprocedure
profileRelax from Algorithm 2 is invoked.
1 function tchProfileQuery(s, t : V ) : TTF
2 fs[u] := ∞ for all u ∈ V \ {s}, fs[s] :≡ 0
3 ft[u] := ∞ for all u ∈ V \ {t}, ft[t] :≡ 0
4 X := ∅ : Set // candidate set
5 Qs := {(s, 0)}, Qt := {(t, 0)} : PriorityQueue // forw. and backw. PQ
6 B := ∞, d := t // upper bound of travel time, search direction
7 while (Qs �= ∅ or Qt �= ∅) and min{Qs.min(), Qt.min()} ≤ B do
8 if Q¬d �= ∅ then d := ¬d // with ¬s := t and ¬t := s
9 u := Qd.deleteMin()

10 if B < ∞ and min fs[u] + min ft[u] ≤ B then X := X ∪ {u}
11 B := min{B, max fs[u] + max ft[u]}
12 for u → v ∈ Ed with TTF fuv do // with Es := E↑ and Et := E�

↓
13 if d = s then profileRelax(u, v, fuv ∗ fs[u], fs, ⊥, Qs)
14 else profileRelax(u, v, ft[u] ∗ fuv, ft,⊥, Qt) // ignore predecessor information

15 return min( f1, min( f2, . . . min( fk−1, fk) . . . )) with {x1, . . . , xk} := X and fi := ft[xi] ∗ fs[xi]

result. Note that the stopping condition of the while loop (Line 17) does not affect the
correctness. This follows from Lemma 3.1. Also, the ruling out of candidate nodes in
Lines 11 and 20 only applies to nodes that do not lie on an (s, t, τ0)-EA-path.

5.3. Profile Queries

Given a start node s and a destination node t, we want to know TTPG(s, t). In theory,
such profile queries can be solved with a one-to-one profileSearch. However, for larger
road networks, this is not feasible. Instead, we use tchProfileQuery (Algorithm 5), which
runs much faster as our experiments show (see Section 8). Similar to tchEaQuery, it
performs a bidirectional search on H, which only goes upward in the hierarchy. Both
forward and backward searches are a profileSearch and run in H↑ and H↓, respectively.
By fs[u], we denote the label of a node u with respect to forward search. Analogously, we
use ft[u] for the backward search. Of course, the backward search relaxes all edges in
reverse direction; we will no longer mention this explicitly in the rest of this document.

Note that an additional downward search is not necessary in this case, as profile-
Search does not need a fixed departure time. As linking of TTFs is, in general, not
commutative, the backward version of profileSearch links TTFs the other way round
than the forward version (Line 14, also see Section 3). In contrast, the merging of
TTFs is commutative. We exploit this to speed up Line 15: By using a further PQ, we
control which two TTFs we merge next. First, we insert all fi in the PQ using | fi| as
key. Second, we repeatedly remove two minimal TTFs f, g from the PQ and insert the
result min( f, g) with key |min( f, g)| until only one TTF is left. This is the sought-after
result.

THEOREM 5.3. Let H be a TCH and s, t ∈ V . Then, the tchProfileQuery (Algorithm 5)
returns TTPG(s, t).

PROOF. From Theorem 5.1, we know that, for all departure times τ ∈ R, there
is a prefix-optimal (s, t, τ )-EA up-down-path in H with top node xτ . Surely, xτ is
reached by forward and backward search with the final labels fs[xτ ] and ft[xτ ],
respectively, such that arr fs[xτ ](τ ) = EAG(s, xτ , τ ) and arr ft[xτ ](EAG(s, xτ , τ )) =
EAG(xτ , t, EAG(s, xτ , τ )) holds. Together, we have arr( ft[xτ ] ∗ fs[xτ ])(τ ) = EAG(s, t, τ ),
and of course we have xτ ∈ X =: {x1, . . . , xk}. So, for xτ = xi, we know that



ALGORITHM 6: Stall-on-Demand as used by the forward search during the bidirectional phase
of tchEaQuery. Stalls the forward search at the node u if we manage to prove that the tentative
path to u is not an optimal one. If the stalling of u is successful, then the stalling is propagated
to further nodes in the manner of a BFS in H↑. The return value is true in this case.

1 procedure tdPropagateStalling(x : V )
2 F := {x} : FifoQueue // propagate in manner of a BFS
3 while F �= ∅ do
4 u := F.popFront()
5 for u → f v ∈ E↑ do
6 stallnew := arr f (stalleds[u]) // prune if unreached, already stalled, or stalling fails

if τ [v] = ∞ or stalleds[v] < ∞ or τ [v] ≤ stallnew then continue
7 stalleds[v] := stallnew
8 F.pushBack(v)

9 function tdCanBeStalled(u : V ) : {true, false}
10 if stalleds[u] < τ [u] then return true
11 for w → f u ∈ E↓ do
12 if τ [w] < ∞ and arr f (τ [w]) < τ [u] then
13 stalleds[u] := arr f (τ [w])
14 tdPropagateStalling(u)
15 return true

16 return false

arr fi(τ ) = arr( ft[xτ ] ∗ fs[xτ ])(τ ) = EAG(s, t, τ ). If f is the TTF returned by tchProfile-
Query, we have f (τ ) = min( f1, . . . min( fi, . . . min( fk−1, fk) . . . ) . . . )(τ ) = EAG(s, t, τ ) − τ .
Thus, f = TTPG(s, t) holds.

5.4. Stall-on-Demand

The running time of tchEaQuery and tchProfileQuery can be further improved using a
technique called stall-on-demand. It was originally developed in the context of highway
node routing [Schultes and Sanders 2007] and is also used with static CHs [Geisberger
et al. 2008]. The idea is to stop the forward or backward search at nodes where we
can easily prove that H contains better paths than H↑ or H↓ alone, respectively. If this
happens, we say that a node u is stalled regarding the forward or backward search,
respectively. In case of the forward search in the tchEaQuery, we do this by adding the
following pseudocode right after Line 19 of Algorithm 4.

if d = s and tdCanBeStalled(u) then continue

Also, we have to add the initializer

stalleds[u] := ∞ for all u ∈ V

to Algorithm 4 somewhere between the Lines 2 and 6. The operation tdCanBeStalled
is defined in Algorithm 6.

When invoked, tdCanBeStalled examines the incoming edges of the node u in H↓
trying to find an arrival time which is better than τ [u]. In case of success, the node u
is stalled regarding the forward search and the edges of u in H↑ are not relaxed hence.
The better arrival time found by tdCanBeStalled is stored in stalleds[u] (Line 13). If
a node u is successfully stalled, we can propagate the stalling to further nodes as a
better path to u may be part of a better path to some other node (Lines 1 to 8). The
propagation works in the manner of a BFS in H↑ and stops at nodes we fail to stall or



that are already stalled. Note that stall-on-demand can be applied analogously to the
backward search in tchEaQuery. The only differences in this case are

—that we do not have exact travel times, so we prune in terms of upper and lower
bounds instead, and

—that the role of H↑ and H↓ must be exchanged because we search backward.

Stall-on-demand can also be applied to tchProfileQuery. There, we use upper and
lower bounds both for forward and backward search. Stall-on-demand does not af-
fect the correctness of tchEaQuery, tchProfileQuery, or any other TCH-based query
algorithm in this work. This is because the correctness of our algorithm relies on the
existence of prefix-optimal up-down paths. Such paths are never eliminated by stall-
on-demand.

5.5. Using Profile Interval Search and Cones to Accelerate Profile Queries

According to our experiments, tchProfileQuery is feasible, but it is still not fast enough
(Section 8). Instead, we perform tchConeProfileQuery (Algorithm 7), which is essentially
a tchProfileQuery with a preceding phase. The preceding phase uses bidirectional pro-
fileIntervalSearch and BFS to extract a relatively small subgraph C↑ ∪ C↓ ⊆ H that
contains enough nodes and edges for tchProfileQuery to compute TTPG(s, t) correctly,
but not too many other nodes and edges. During the bidirectional profileIntervalSearch,
we apply stall-on-demand (Lines 8 and 12): stalledd[u] stores the better upper bound
of travel time for a node u with respect to forward or backward search, a function
intervalCanBeStalled(V, {s, t}) performs stalling and propagation in terms of upper
and lower bounds, as hinted in Section 5.4 (details are omitted).

Note that C↑ and C↓ can be obtained quite easily: In case of C↑, we just perform
a BFS on the transpose predecessor graph Graph(ps)� of the forward search starting
from the candidate nodes stored in X. Neither S nor Graph(ps)� need to be built up,
but the predecessor information ps can be used directly. While doing so, we add every
touched edge of Graph(ps) to C↑. For C↓, all this works analogously using Graph(pt).
Note that we do not apply stall-on-demand when we perform the tchProfileQuery on
C↑ ∪ C↓, as we do not expect a significant further speed-up from a stall-on-demand,
which also works in terms of upper and lower bounds.

THEOREM 5.4. Let H be a TCH and s, t ∈ V . Then, the tchConeProfileQuery
(Algorithm 7) returns TTPG(s, t).

PROOF. For every τ ∈ R, there is an up-down-path with top node xτ in H, which is a
prefix-optimal (s, t, τ )-EA-path in H as Theorem 5.1 tells us. Surely, xτ is reached both
by forward and backward search of bidirTchProfileIntervalSearch and thus contained
in X. Correspondingly, we have a prefix-optimal (s, xτ , τ )-EA-path Pτ ⊆ Graph(ps) ⊆ H↑
and a prefix-optimal (xτ , t, EAG(s, xτ , τ ))-EA-path Qτ ⊆ Graph(pt)� ⊆ H↓. As C↑ and C�

↓
are induced cones, we have Pτ ⊆ C↑ and Qτ ⊆ C↓, respectively. As xτ lies on a prefix-
optimal (s, t, τ )-EA up-down-path, Pτ and Qτ together form a prefix-optimal (s, t, τ )-EA
up-down-path Rτ := Pτ Qτ . But because of Rτ ⊆ C↑ ∪ C↓, we apply Theorem 5.3 with
H↑ := C↑ and H↓ := C↓ and are finished.

6. EXACT SPACE-EFFICIENT QUERYING USING APPROXIMATION

With the techniques described in Section 5, TCHs allow very fast answering of EA
queries as well as fast profile queries. Unfortunately, TCHs need a lot of memory com-
pared to the data structure needed to perform tdDijkstra. We overcome this problem
by the careful use of approximation. More precisely, we generate approximate versions
of the hierarchy that need much less space (Section 6.1). For EA queries, we get a



ALGORITHM 7: An improved version of tchProfileQuery. It uses bidirectional profileInter-
valSearch to obtain the cone C↑ ⊆ H↑ and the transpose cone C↓ ⊆ H↓. The expensive tchProfile-
Query is only performed on C↑∪C↓ ⊆ H, which contains only few parts of H not needed to compute
TTPG(s, t). Invokes intervalRelax (see Algorithm 3) and tchProfileQuery (Algorithm 5). The bidi-
rectional profileIntervalSearch applies stall-on-demand based on upper and lower bounds. To do
so, it invokes a subprocedure intervalCanBeStalled, which works as hinted in Section 5.4.
1 function tchConeProfileQuery(s, t : V ) : TTF
2 function bidirTchProfileIntervalSearch() : (Graph, Graph)
3 [qs[u], rs[u]] := [qt[u], rt[u]] := [∞, ∞], ps[u] := pt[u] := ∅ for all u ∈ V
4 [qs[s], rs[s]] := [qt[t], rt[t]] := [0, 0]
5 B := ∞, d := t
6 X := ∅ : Set
7 Qs := {(s, 0)}, Qt := {(t, 0)} : PriorityQueue
8 stalledd[u] := ∞ for all u ∈ V , d ∈ {s, d}
9 while (Qs �= ∅ or Qt �= ∅) and min{Qs.min(), Qt.min()} ≤ B do

10 if Q¬d �= ∅ then d := ¬d // with ¬s := t and ¬t := s
11 u := Qd.deleteMin()
12 if intervalCanBeStalled(u, d) then continue
13 if B < ∞ and qs[u] + qt[u] ≤ B then X := X ∪ {u}
14 B := min{B, rs[u] + rt[u]}
15 for u → f v ∈ Ed do // with Es := E↑ and Et := E�

↓
16 intervalRelax

(
u, v,

[
qd[u] + min f, rd[u] + max f

]
, qd, rd, pd, Qd

)

17 Let S := Graph(ps) ⊆ H↑ and T := Graph(pt) ⊆ H�
↓

18 return
(
ConeS(s, X), ConeT (t, X)�

)

19 (C↑, C↓) := bidirTchProfileIntervalSearch()
20 return tchProfileQuery(s, t) with C↑ as H↑ and C↓ as H↓, do not apply stall-on-demand

moderate slowdown this way, but the results of the computations are still exact (Sec-
tion 6.3). For profile queries, we also get exact results, but we additionally obtain a
further speed-up (Section 6.4).

6.1. Approximated TCHs

To save memory, we use approximated TCHs (ATCHs) and Min-Max-TCHs. Although
these variants of TCHs contain partly approximated data, they can be used to compute
exact results. An ATCH with relative error ε > 0 is generated from a given TCH
H as follows: For all edges u → f v in G ⊆ H, nothing happens. All other edges
u → f v in H\G are shortcut edges and their TTF f is replaced by a TTF f with
∀τ : f (τ ) ≤ f (τ ) ≤ (1 + ε) f (τ ). We call f an upper bound. Implicitly, f also represents
a lower bound f : τ 
→ f (τ )/(1 + ε). For all edges u → f v in G, we set f := f := f .

Usually, | f | is considerably smaller than | f |. Thus, an ATCH needs considerably less
memory than the corresponding TCH (Section 8). To compute f from an exact TTF f ,
we use an implementation [Neubauer 2009] of an efficient geometric algorithm [Imai
and Iri 1987] that yields an f of minimal | f | for a given ε in time O(| f |). The computed
f may violate the FIFO property, but this can be repaired in O(| f |) time. If f fulfills
the FIFO property, then f = (1 + ε)−1 f also does.

A Min-Max-TCH is essentially an extreme case of an ATCH. For edges u → f v in
H\G, we set f :≡ min f and f :≡ max f , which means we only store a pair of numbers
in this case. Min-Max-TCHs need even less memory than ATCHs (Section 8).



Note that we do not apply approximation during preprocessing. In this article, ap-
proximation is only applied after preprocessing. Thus, ATCHs and Min-Max-TCHs are
generated from complete exact TCHs only.

6.2. Three Basic Algorithms

In order to deal with ATCHs and Min-Max-TCHs we need three further Dijkstra-like
algorithms: earliest arrival (EA) interval search, latest departure (LD) interval search,
and approximate profile search.

Earliest Arrival Interval Search. The EA interval search (eaIntervalSearch,
Algorithm 8) is similar to profileIntervalSearch. For all u ∈ V , it computes inter-
vals that contain EAG(s, u, τ0) for given s ∈ V , τ0 ∈ R. Hence, the label of a node
u is a tentative arrival interval [q[u], r[u]] and, when relaxing an edge u → v

with lower bound f and upper bound f , we update the label of v by computing
[q[v], r[v]] := [min{q[v], arr f (q[u])}, min{r[v], arr f (r[u])}]. As PQ key of u, we use q[u].
In fact, eaIntervalSearch is an approximate version of tdDijkstra (Algorithm 1). After
termination, the predecessor graph graph contains a prefix-optimal (s, u, τ0)-EA path
for all reachable nodes u.

Latest Departure Interval Search. The latest departure (LD) interval search is dual
to eaIntervalSearch (Algorithm 8). It runs backward starting from the target node.
So, given a target node t and an arrival interval [τ1, τ

′
1], it computes intervals

[q[u], r[u]] ⊇ LDG(u, t, [τ1, τ
′
1]) for all u ∈ V . Accordingly, the label of a node u is a

tentative departure interval [q[u], r[u]]. The set of predecessors of u is denoted as p[u].
For sake of brevity, we only show the pseudocode of the relaxation procedure (ldIn-
tervalRelax, Algorithm 9). Note that late departure times are better than early ones.
So, we use a maximum PQ Q here. When relaxing an edge u → v with lower bound f
and upper bound f in backward direction, we update the label and the predecessor in-
formation of the node u by invoking ldIntervalRelax(v, u, [qnew, rnew], q, r, p, Q), where
[qnew, rnew] := [

min dep f (q[v]), max dep f (r[v])
]

is the departure interval for traveling
the edge u → v with arrival interval [q[v], r[v]]. The initial label of the node t is [τ1, τ

′
1].

After termination, the predecessor graph contains a (u, t, τ )-EA-path for all u ∈ V and
all τ ∈ LDG(u, t, [τ1, τ

′
1]) (if t is reachable from u).

Approximate Profile Search. The approximate profile search is an approximate ver-
sion of profileSearch (Algorithm 2), which is more accurate than profileIntervalSearch
(Algorithm 3) but also slower. However, it still runs much faster than exact profile-
Search. Again, for sake of brevity, we only show the pseudocode of the relaxation

ALGORITHM 8: An approximate version of tdDijkstra. For a given start node s and a given de-
parture interval [τ0, τ

′
0], this algorithm computes labels [q[u], r[u]] � EAG(s, u, τ ) for all reachable

nodes u ∈ V and all τ ∈ [τ0, τ
′
0]. As a subroutine, intervalRelax from Algorithm 3 is invoked.

1 procedure eaIntervalSearch(s : V , [τ0, τ
′
0] : Interval)

2 [q[u], r[u]] := [∞, ∞], p[u] := ∅ for all u ∈ V
3 [q[s], r[s]] := [τ0, τ

′
0]

4 Q := {(s, τ0)} : PriorityQueue
5 while Q �= ∅ do
6 u := Q.deleteMin()
7 for u → v ∈ E with the lower bound f and upper bound f do
8 intervalRelax

(
u, v,

[
arr f (q[u]), arr f (r[u])

]
, q, r, p, Q

)



ALGORITHM 9: Edge relaxation procedure of latest departure interval search, a Dijkstra-like
algorithm computing intervals containing LDG(u, t, [τ1, τ

′
1]) for a given destination node t ∈ V and

a given arrival interval [τ1, τ
′
1] ⊆ R. After termination, Graph(p)� ⊆ G contains a (u, t, τ )-EA-path

for all τ ∈ LDG(u, t, [τ1, τ
′
1]) and all nodes u such that t can be reached from u in G.

1 procedure ldIntervalRelax(u, v : V , [qnew, rnew] : Interval, q, r, p, Q : Reference)
2 if rnew < q[v] then return
3 if qnew > r[v] then p[v] := ∅
4 p[v] := {u} ∪ p[v]
5 if qnew ≤ q[v] and rnew ≤ r[v] then return
6 [q[v], r[v]] := [

max{q[v], qnew}, max{r[v], rnew}]
7 if v �∈ Q then Q.insert(v, q[v])
8 else Q.increaseKey(v, q[v]) // for maximum PQs keys are increased, not decreased

ALGORITHM 10: Edge relaxation procedure of approximate profile search. Given an s ∈ V ,
this Dijkstra-like algorithm computes pairs of bounding functions

(
f [u], f [u]

)
, i.e., f [u](τ ) ≤

TTPG(s, u)(τ ) ≤ f [u](τ ) holds for all τ ∈ R. After termination, Graph(p) ⊆ G contains an (s, u, τ )-
EA-path for all reachable nodes u and all τ ∈ R.

1 procedure approxProfileRelax(u, v : V , gnew, gnew : TTF, f , f , p, Q : Reference)
2 if gnew(τ ) ≥ f [v](τ ) for all τ ∈ R then return
3 if gnew(τ ) < f [v](τ ) for all τ ∈ R then p[v] := ∅
4

(
f [v], f [v]

)
:=

(
min

(
f [v], gnew

)
, min

(
f [v], gnew

))

5 p[v] := {u} ∪ p[v]
6 if v �∈ Q then Q.insert(v, min f [v])
7 else Q.decreaseKey(v, min f [v])

procedure here (approxProfileRelax, Algorithm 10). For all u ∈ V , the approximate
profile search computes pairs of TTFs ( f [u], f [u]) that fulfill f [u](τ ) ≤ TTPG(s, u)(τ ) ≤
f [u](τ ) for all τ ∈ R. Consider the relaxation of an edge u → v with lower bound
f and upper bound f . Let the pairs of tentative bounding functions ( f [u], f [u]) and
( f [v], f [v]) be the labels of the nodes u and v, respectively. Then, we update the label
of v by invoking approxProfileRelax(u, v, f ∗ f [v], f ∗ f [v]), f , f , p, Q) for Q being the
PQ. The final predecessor graph Graph(p) of the approximate profile search contains a
prefix-optimal (s, u, τ )-EA path for all reachable nodes u and all τ ∈ R after termination.

6.3. Exact EA Queries with ATCHs

Given an ATCH H with relative error ε, we want to compute the exact value
of EAG(s, t, τ0) and a corresponding EA path. To do so, we use the atchEaQuery
(Algorithm 11), which works in three phases. Actually, we have to perform a tdDi-
jkstra on G, as we have exact TTFs only for the edges in G ⊆ H. But this would be slow,
so the idea is to restrict the tdDijkstra to a very small corridor C ⊆ G. For this reason,
we first use the ATCH H to perform several approximate Dijkstra-like searches one
after another to select and successively thin out a corridor in G (Phases 1 and 2). Then,
we perform a tdDijkstra only on this corridor (Phase 3). Note that the pseudocode of
atchEaQuery invokes intervalRelax (see Algorithm 3), ldIntervalRelax (Algorithm 9),
and tdDijkstra (Algorithm 1) as subroutines.



ALGORITHM 11: EA query using an ATCH H with relative error ε > 0. After some preparatory
work, a tdDijkstra on a small corridor C ⊆ G is performed where exact TTFs are available. As C
contains an (s, t, τ0)-EA-path, the result is a sought-after EA path.
1 function atchEaQuery(s, t : V, τ0 : R) : Path
2 [qd[u], rd[u]] := [∞,∞], pd[u] := ∅ for all u ∈ V , d ∈ {s, t, down, up}
3 [qs[s], rs[s]] := [τ0, τ0], [qt[t], rt[t]] := [0, 0]
4 X := Y := ∅ : Set
5 procedure bidirectionalSearch()
6 Qs := {(s, τ0)}, Qt := {(t, 0)} : PriorityQueue
7 B := ∞, d := t
8 while (Qs �= ∅ or Qt �= ∅) and min{Qs.min(), Qt.min()} ≤ B do
9 if Q¬d �= ∅ then d := ¬d // with ¬s := t, ¬t := s

10 u := Qd.deleteMin()
11 if B < ∞ and qs[u] + qt[u] ≤ B then X := X ∪ {u}
12 B := min{B, rs[u] + rt[u]}
13 for u → v ∈ Ed with bounds f and f do // with Es := E↑, Et := E�

↓
14 if d = s then intervalRelax

(
u, v,

[
arr f (qs[u]), arr f (rs[u])

]
, qs, rs, ps, Qs

)
15 else intervalRelax

(
u, v,

[
qt[u] + min f , rt[u] + max f

]
, qt, rt, pt, Qt

)

16 procedure eaIntervalDownwardSearch()
17 Q := ∅ : PriorityQueue
18 foreach u ∈ X do
19 if rs[u] + rt[u] ≤ B then
20 [qdown[u], rdown[u]] := [qs[u], rs[u]], Q.insert(u, qdown[u])

21 while Q �= ∅ do
22 u := Q.deleteMin()
23 if u = t then break
24 for v ∈ pt[u] with f and f being the bounds of u → v in H↓ do
25 intervalRelax

(
u, v,

[
arr f (qdown[u]), arr f (rdown[u])

]
, qdown, rdown, pdown, Qdown

)

26 procedure upwardSearch()
27 [qup[t], rup[t]] := [qdown[t], rdown[t]]
28 Q := {(t, qup[t])} : MaxPriorityQueue
29 while Q �= ∅ do
30 u := Q.deleteMax() // from a maximum PQ we take out a maximal element
31 if rup[u] < ∞ then Y := Y ∪ {u}
32 for v ∈ pdown[u] with f and f being the bounds of u → v in H�

↓ do
33 [qnew, rnew] := [

min dep f (qup[u]), max dep f (rup[u])
]

34 if rnew < qdown[v] or qnew > rdown[v] then continue
35 ldIntervalRelax(u, v, [qnew, rnew], qup, rup, pup, Q)

36 function corridorDijkstra() : Path
37 let S := Graph(ps) ⊆ H↑ and T := Graph(pup) ⊆ H�

↓
38 let C := ConeS(s, Y ) ∪ ConeT (t, Y )� ⊆ H
39 run tdDijkstra(s, t, τ0) on graph C unpacking each edge u → v for departure time τ [u]
40 return 〈s = p[. . . p[t] . . . ] → · · · → p[p[t]] → p[t] → t〉 with p taken from tdDijkstra

41 bidirectionalSearch()
42 eaIntervalDownwardSearch()
43 upwardSearch()
44 return corridorDijkstra()



Phase 1: Bidirectional Search. At first, we perform a bidirectional search, where the
forward search is an eaIntervalSearch, starting from s, and the backward search is a
profileIntervalSearch, starting from t. All candidate nodes (i.e., the meeting points) are
stored in the candidate set X. With S := Graph(ps) ⊆ H↑ (as in Line 37), we know that
ConeS(s, X) ∪ ConeGraph(pt)(t, X)� contains an (s, t, τ0)-EA up-down-path. So, we could
skip Phase 2 and continue directly with Phase 3. However, the backward search is a
relatively rough approximation. So, we expect that Graph(pt) ⊆ H�

↓ and X—and thus
ConeS(s, X)∪ConeGraph(pt)(t, X)�—are larger than necessary, which means that Phase 3
needs more time than necessary. To remedy this, we perform Phase 2.

Phase 2: Thinning. Starting from the candidate nodes in X, we perform the eaInter-
valDownwardSearch, which is an eaIntervalSearch on Graph(pt)� ⊆ H↓. This yields
an arrival interval [qdown[t], rdown[t]] � EAG(s, t, τ0). Having done that, we use this ar-
rival interval to perform the upwardSearch, an LD interval search starting from t that
runs on Graph(pdown)� ⊆ H↓. The upwardSearch reaches nodes that have already been
reached by the forward search during the first phase. These meeting points are again
candidate nodes that we store in the set Y ⊆ X. Note that eaIntervalDownwardSearch
and upwardSearch have much more accurate information at hand than the backward
search had during the first phase. Also, the conditions in Line 34 should rule out sev-
eral nodes. The predecessor graph Graph(pup) should contain less edges than Graph(pt)
and the set Y should be smaller than X. Thus, C = ConeS(s, Y ) ∪ ConeT (t, Y ) should be
significantly thinner than ConeS(s, X) ∪ ConeGraph(pt)(t, X).

Phase 3: Corridor Dijkstra. To construct the corridor C (Line 38), we do the same as
in case of the tchConeProfileQuery (see Algorithm 7): Starting from the nodes in the
candidate set Y , we perform a BFS on Graph(ps)� and Graph(pup)�, respectively, and
copy all touched edges to C ⊆ H. Now, we could recursively unpack all shortcuts in C
to obtain a subgraph C ′ ⊆ G that does not contain any shortcuts. Of course, all TTFs in
C ′ would be exact as all edges edges of C ′ would lie in G and only edges of H \ G have
inexact TTFs. So, we could perform a tdDijkstra in C ′ to compute EAG(s, t, τ0) and a
corresponding EA path. However, although this works fast, we can still be a little faster:
We perform the tdDijkstra directly on C and unpack the shortcuts only on demand.
More precisely, whenever we relax a shortcut edge u → v in H \ G (for which we do
not have exact TTFs), we unpack only this shortcut and only for the departure time
τ [u] (where τ [u] is the label of u with respect to tdDijkstra). The resulting original path
〈u = w1 → f1 · · · → fk−1 wk = v〉 lies completely in G, so all TTFs are exact and we can
update the label of v by computing τ [v] := min{τ [v], arr fk−1(. . . arr f2(arr f1(τu)) . . . )}.

THEOREM 6.1. Let H be an ATCH with relative error ε > 0. Then, with s, t ∈ V ,
τ0 ∈ R, the atchEaQuery (Algorithm 11) returns an (s, t, τ0)-EA-path in G.

PROOF. Theorem 5.1 ensures the existence of a prefix-optimal (s, t, τ0)-EA up-down-
path with top node x0 ∈ X in H. So, there is an (s, x0, τ0)-EA-path P0 in H with
P0 ⊆ S = Graph(ps) ⊆ H↑. We argue similarly as in the case of Theorem 5.2 and
consider the graph G0 consisting of Graph(pt)� ⊆ H↓, the node s, and the edges s → x
with x ∈ X. As TTF of s → x, we define fsx :≡ EAG(s, x, τ0) with fsx :≡ qs[x] − τ0 and
fsx :≡ rs[x] − τ0 as lower and upper bound, respectively. We find that

EAG(s, t, τ0) = EAG0 (s, t, τ0) = EAGraph(pt)�
(
x0, t, EAG(s, x0, τ0)

)

holds. As the eaIntervalDownwardSearch is essentially the same as an eaInter-
valSearch on G0 we have EAG(s, t, τ0) ∈ [qdown[t], rdown[t]]. So, as the upwardSearch
runs on Graph(pdown)�, it also reaches x0, and its transpose predecessor graph
T � = Graph(pup)� contains an (x0, t, τ )-EA-path for all τ ∈ LDG(x0, t, [qdown[t], rdown[t]]).



Especially with

LDG
(
x0, t, EAG(s, t, τ0)

) = LDG
(
x0, t, EAG

(
x0, t, [qdown[t], rdown[t]]

)) � EAG(s, x0, τ0),

we know that there is an (x0, t, EAG(s, x0, τ0))-EA-path Q0 ⊆ T � ⊆ H↓. So, because of
x0 ∈ Y , we have Q0 ⊆ ConeT (t, Y )�. Together with P0 ⊆ ConeS(s, Y ), this shows that
the concatenation P0 Q0 ⊆ H is an (s, t, τ0)-EA-path, which is contained in C. Thus,
corridorDijkstra computes the desired result.

To make atchEaQuery run even a little faster, we apply stall-on-demand to its first
phase analogously to the description in Section 5.4, though we omit all details here.

Note that atchEaQuery also works with Min-Max-TCHs. But in this case, the up-
wardSearch does not have more information than the backward search at hand. So,
the extra work needed to perform eaIntervalDownwardSearch and upwardSearch
does not pay off on this case. For this reason, we omit the second phase and set
C := ConeS(s, X) ∪ ConeGraph(pt)(t, X)� for Min-Max-TCHs.

6.4. Exact Profile Queries with ATCHs

An ATCH H with relative error ε can also be used to compute TTPG(s, t) exactly. This
is done by the atchProfileQuery (Algorithm 12). It applies similar ideas as the atchEa-
Query (Algorithm 11) and also runs in three phases. In the first phase (Line 23), we
perform a bidirectional profileIntervalSearch to obtain a cone C↑ ⊆ H↑ and a transpose
cone C↓ ⊆ H↓. Then, in the second phase (Lines 24 to 32), we thin out these cones
by a bidirectional approximate profile search. This is similar to the second phase of
atchEaQuery. A difference is that we thin out not only the backward cone but also the
forward cone here.

Finally, in the third phase, we unpack all the shortcuts in ConeS(s, X) ∪ ConeT (t, X)�
completely for all departure times (Line 33). This yields the relatively thin corridor
C ⊆ G from s to t. To extract ConeS(s, X) and ConeT (t, X), we perform BFS starting
from X on S and T respectively. This is analogously to the third phase of atchEaQuery
(Section 6.3).

It would be possible to perform a profileSearch on C, as all edges in C have exact TTFs.
However, this would still take its time, even on a very thin corridor. Instead, we contract
the whole corridor C (Line 34), which is much faster. Contracting a corridor means to
contract one node of the corridor after another. More precisely, we remove one node of C
after another while inserting shortcuts. This is very similar to the preprocessing where
we contract the whole road network G (see Section 4). However, the contraction of a
corridor is performed online and not offline as in case of preprocessing. For this reason,
we do not have the time to check whether a shortcut is necessary or not. Instead, we
simply insert all, shortcuts.

During corridor contraction, we control the order of the nodes by a PQ. As PQ key of
a node x, we use

cx :=
∑

〈u→ f x→gv〉 ⊆ C

| f | + |g| .

As we expect that |g| + | f | and |g ∗ f | are quite correlated, we think cx is a good
estimate of the total complexity of the TTFs created by contracting x. In this way,
we try to process TTFs with few segments earlier. This speeds up the computation,
as every segment probably produces more segments during repeated link and merge
operations. But this is exactly why profileSearch is slow: There, nodes are processed in
an order that does not pay attention to the number of newly created segments which
increases the total number of processed segments a lot.



ALGORITHM 12: Profile query using an ATCH with ε > 0. After building up the cones C↑ and C↓
and then thinning them, we obtain a corridor C ⊆ G that contains an (s, t, τ )-EA-path in G for all
τ ∈ R. Contracting C completely yields TTPG(s, t). As subroutines, bidirTchProfileIntervalSearch
(see Algorithm 7) and approxProfileRelax (Algorithm 10) are invoked.
1 function atchProfileQuery(s, t : V, τ0 : R) : TTF
2 function corridorContraction(s, t : V , C : Graph) : TTF
3 Q := ∅ : PriorityQueue
4 foreach node x of C with x �= s, t do
5 cx := ∑

〈u→ f x→gv〉 ⊆ C | f | + |g| // estimate the total complexity of the new TTFs. . .
6 Q.insert(x, cx) // . . . and use the result as PQ key

7 while Q �= ∅ do
8 x := Q.deleteMin() // contract the presumably easiest node next
9 foreach path 〈u → f x →g v〉 ⊆ C do

10 remove u → x and x → v from C
11 if u → v not in C then insert an edge u →g∗ f v in C // insert an edge or. . .
12 else replace u →h v by u →min(h,g∗ f ) v in C // . . . merge with an existing one

13 remove x from C

14 for all former neighbors y of x with y �= s, t do
15 cy := ∑

〈u→ f y→gv〉 ⊆ C | f | + |g| // recompute the PQ key of all neighbors of x
16 Q.updateKey(y, cy)

17 return f for s → f t in C // at this point C consists exactly of one edge from s to t

18 fs[u] := fs[u] := ft[u] := ft[u] := ∞, ps[u] := pt[u] := ∅ for all u ∈ V
19 fs[s] := fs[s] := ft[t] := ft[t] :≡ 0
20 Qs := {(s, 0)}, Qt := {(t, 0)} : PriorityQueue
21 X := ∅ : Set
22 B := ∞, d := t
23 (C↑, C↓) := bidirTchProfileIntervalSearch()
24 while (Qs �= ∅ or Qt �= ∅) and min{Qs.min(), Qt.min()} ≤ B do
25 if Q¬d �= ∅ then d := ¬d // with s := ¬t, t := ¬s
26 u := Qd.deleteMin()
27 if B < ∞ and min fs[u] + min ft[u] ≤ B then X := X ∪ {u}
28 B := min

{
B, max fs[u] + max ft[u]

}
29 for edge u → v in Cd with bounds fuv and fuv do // with Cs := C↑, Ct := C�

↓
30 if d = s then approxProfileRelax(u, v, fuv ∗ fs[u], fuv ∗ fs[u], fs, fs, ps, Qs)
31 else approxProfileRelax(u, v, ft[u] ∗ fuv, ft[u] ∗ fuv, ft, ft, pt, Qt)

32 let S := Graph(ps) ⊆ C↑ ⊆ H↑ and T := Graph(pt) ⊆ C�
↓ ⊆ H�

↓
33 Unpack ConeS(s, X) ∪ ConeT (t, X)� completely for all departure times yielding C ⊆ G.
34 return corridorContraction(s, t, C)

As an example, consider a corridor from s to t that only consists of a single path from
s to t that has � edges. Assume every TTF of this path has k segments. If we perform
a profileSearch starting from s on this path, the number of processed segments is in
O(

∑�
i=1 ik) = O(k�2). If we contract the path using corridorContraction instead, we

rather expect that O(k� log �) segments are processed.

THEOREM 6.2. Let H be an ATCH with relative error ε > 0. Then, for all s, t ∈ V , the
atchProfileQuery (Algorithm 12) returns TTPG(s, t).



PROOF. We argue as in the correctness proof of the tchConeProfileQuery (see
Theorem 5.4) and obtain that C↑ ∪ C↓ contains a prefix-optimal (s, t, τ )-EA up-down-
path Rτ with top node xτ for all τ ∈ R. The upward and the downward part of Rτ ,
respectively, lie completely in C↑ and C↓. So, both forward and backward search of the
bidirectional approximate profile search on C↑∪C↓ reach xτ . This implies xτ ∈ X. Hence,
we find that S∪T � also contains a prefix-optimal (s, t, τ )-EA up-down-path R′

τ . Clearly,
R′

τ is contained in ConeS(s, X) ∪ ConeT (t, X)�. Thus, C contains an (s, t, τ )-EA-path for
all τ ∈ R. So, corridorContraction returns the sought-after TTP.

In case of Min-Max-TCHs, we omit the thinning of C↑ and C↓. Instead, we unpack
C↑ ∪ C↓ and perform corridorContraction directly after bidirTchProfileIntervalSearch.
This is because there is no information present in a Min-Max-TCHs to further reduce
the size of C↑ and C↓.

7. INEXACT QUERYING

In practice, the accuracy of the input data may be arguable, or results with some error
may simply be good enough. In such cases, we can use an inexact TCH with relative
error ε > 0. It is generated from an exact TCH H by replacing all TTFs f by an
inexact TTF f≈ with (1 + ε)−1 f (τ ) ≤ f≈(τ ) ≤ (1 + ε) f for all τ ∈ R. To compute f≈
from f , we use the Imai-Iri algorithm and restore the FIFO property if necessary (as
in Section 6.1). Note that we not only replace the TTFs of the shortcut edges—as we
do in case of ATCHs—but also the TTFs of original edges. Also, we annotate every
edge u → f≈ v in an inexact TCH with the conservative bounds min{min f, min f≈} and
max{max f, max f≈}. Inexact TCHs have similar memory usage as ATCHs.

With inexact TCHs, we can perform both inexact EA and inexact profile queries.
However, inexact profile queries are the kind of inexact queries we are actually in-
terested in, as with atchEaQuery, we already have a space-efficient algorithm that is
fast enough. For profile queries, in contrast, we get an enormous further speed-up with
inexact TCHs. Yet, the benefit of our inexact EA query algorithm is that we can use the
same hierarchical representation of the road network for both EA and profile queries.
Otherwise, we had to keep an ATCH and an inexact TCH in memory at the same time.

Note that the relative error of the computed inexact results is not limited by ε. In
theory, the relative error can even get quite large. As a consequence, our correctness
proofs for inexact querying (Theorems 7.1 and 7.2) only show that the algorithms
return some path (or some TTF, respectively) if the destination is reachable from the
start. However, in our experiments, we observe only small errors (Section 8). Note that
Geisberger and Sanders [2010] give an upper bound for the relative error depending on
the maximum slopes of TTFs. However, we do not exploit this so-called approximation
guaranty here.

7.1. Inexact Profile Queries

With inexact TCHs, we only get an approximation of TTPG(s, t). But compared to
atchProfileQuery (Algorithm 12), which is our fastest algorithm for exact profile queries,
we get an enormous speed-up (see Section 8). To achieve this performance, we simply
apply tchConeProfileQuery (Algorithm 7) to the inexact TCH. The only modification is,
that the stall-on-demand applied by the subprocedure bidirTchProfileIntervalSearch
(Line 19) must be used with the conservative bounds instead of the bounds min f≈
and max f≈. Otherwise, it can happen that stall-on-demand stalls so many nodes that
forward and backward search do not meet—even if t is reachable from s. Then, the
query would return ∞, which means that the algorithm did not find any path from s
to t.



THEOREM 7.1. Let H be an inexact TCH with relative error ε > 0. Given a start node
s and a destination node t, the inexact profile query just described returns a TTF f �= ∞,
if and only if t is reachable from s in G.

PROOF. If t is not reachable from s, then H does not contain a path from s to t.
Otherwise, H contains an up-down-path Pτ from s to t with top node xτ for every τ ∈ R

such that Pτ is a prefix-optimal (s, t, τ )-EA-path in the corresponding exact TCH H.
This and the fact that bidirTchProfileIntervalSearch works in terms of the conservative
bounds implies that C↑ ∪C↓ also contains an up-down-path with top node xτ , which is a
prefix-optimal (s, t, τ )-EA-path in H for all τ ∈ R. But this means that the forward and
the backward search of tchProfileQuery surely meet in one or more candidate nodes
and that the returned TTF is different from ∞.

7.2. Inexact EA Queries

For inexact EA queries, we perform tchConeEaQuery (Algorithm 13) on an inexact
TCH. It is actually a variant of tchEaQuery (Algorithm 4) where not only the backward
search but also the forward search is a profileIntervalSearch (see bidirTchProfileInter-
valSearch, Algorithm 7). However, as the downwardSearch requires arrival times for
the candidate nodes instead of travel time intervals, we have to perform an additional
tdDijkstra on C↑ as an upward search before invoking downwardSearch.

The tchConeEaQuery yields exact EA times when applied to an exact TCH. For
inexact TCHs, it returns an up-down-path from the start s to the destination t if and
only if t is reachable from s. But this requires that the stall-on-demand performed by
the bidirTchProfileIntervalSearch works in terms of conservative bounds—just like in
the case of inexact profile queries (Section 7.1). Otherwise, we may again stall too many
nodes and no path from s to t may be found even if there is one. In fact, the only reason
for using bidirTchProfileIntervalSearch as the first phase is to make stall-on-demand
applicable to EA queries in the presence of inexact data.

Let T := Graph(pt) ⊆ H�
↓ be the predecessor graph of the backward search of

bidirTchProfileIntervalSearch. The tchConeEaQuery does not need the extraction of the
transpose backward cone C↓ := ConeT (t, X)� ⊆ H↓ performed in Line 18 of Algorithm 7.

ALGORITHM 13: A variant of tchEaQuery (Algorithm 4) using similar methods as tchConePro-
fileQuery (Algorithm 7). For exact TCHs, it returns the exact EA time as well as a corresponding
EA up-down-path. For inexact TCHs, it yields an inexact EA time as well as a not necessary op-
timal up-down-path. As subroutines, it invokes bidirTchProfileIntervalSearch (see Algorithm 7),
tdRelax (see Algorithm 1), and downwardSearch (see Algorithm 4).
1 function tchConeEaQuery(s, t : V , τ0 : R) : Path
2 (C↑, ·) := bidirTchProfileIntervalSearch() // bidirectional search
3 Let B be the final value as used in bidirTchProfileIntervalSearch
4 Let qt[u], pt[u] be the final values as used in bidirTchProfileIntervalSearch for all u ∈ V
5 p[u] := ⊥, τ [u] := τdown[u] := ∞ for all u ∈ V , τ [s] := τ0
6 Q := {(s, τ0)} : PriorityQueue // upward search
7 Y := ∅ : Set // candidate set
8 while Q �= ∅ do
9 u := Q.deleteMin()

10 if τ [u] > B+ τ0 then break // B is upper bound of travel time not of arrival time
11 if τ [u] + qt[u] ≤ B+ τ0 then Y := Y ∪ {u}
12 for u → f v in C↑ do tdRelax(u → f v, τ, p, Q)

13 return downwardSearch() with qt as q and Y as candidate set // invoked from
Algorithm 4



Table I. Some Properties of Our Input Graphs and the Available TTF Sets
The percentage of time-dependent (i.e., nonconstant) TTFs, the average relative (avg. rel.) delay of the

TTFs including (incl.) and excluding (excl.) the constant (const.) ones, as well as the space usage in byte
per node (B/n).

Germany Europe
Monday midweek Friday Saturday Sunday medium high

time-dependency 7.0% 7.2% 6.3% 3.8% 2.4% 1.0% 6.2%
avg. rel. delay (incl. const.) 2.5% 2.6% 2.2% 1.2% 0.7% 1.2% 7.7%
avg. rel. delay (excl. const.) 36.1% 36.0% 34.9% 31.7% 29.1% 123.5% 124.0%

space [B/n] 96 95 88 65 55 47 76

This is because downwardSearch uses the predecessor information of the backward
search directly. As a consequence, we can omit the BFS on T when performing bidirTch-
ProfileIntervalSearch.

THEOREM 7.2. Let H be an inexact TCH with relative error ε > 0 and s, t ∈ V . Let
τ0 ∈ R be the departure time. Then, tchConeEaQuery (Algorithm 13) computes a (not
necessary optimal) up-down-path in H, if and only if t is reachable from s in G. For
ε = 0 (i.e., the TCH is exact), it computes an (s, t, τ0)-EA up-down-path.

PROOF. If t is not reachable from s, then there is no path from s to t in H. Otherwise,
we argue as in the proof of Theorem 7.1 and find that C↑ ∪C↓ contains an up-down-path
with top node y0 which is also a prefix-optimal (s, t, τ0)-EA-path in H. So, the candidate
set Y is surely not empty after the upward search, and hence the downwardSearch
reaches t. Thus, an arrival time other than ∞ and an up-down-path from s to t is
returned.

For ε = 0, we argue that y0 is reached by the upward search with final label
EAG(s, y0, τ0), and as in the correctness proof of tchEaQuery (see Theorem 5.2), we
argue that the downwardSearch reaches t with final label EAG(s, t, τ0).

8. EXPERIMENTS

8.1. Input Road Networks

As inputs, we use two road networks, of Germany and Western Europe, both provided
by PTV AG for scientific use. For Germany, which has about 4.7 million nodes and
about 10.8 million edges, we have five sets of time-dependent edge weights collected
from historical data: They reflect the traffic of Monday, midweek (Tuesday through
Thursday), Friday, Saturday, and Sunday each and have different percentage of time-
dependent (i.e., nonconstant) TTFs (Table I). For Saturday and Sunday, for example,
there are fewer nonconstant TTFs. This seems to be natural, as we expect less traffic
at the weekend than during the week. We use the abbreviations Mon, mid, Fri, Sat,
and Sun.

For Western Europe, which has about 18 million nodes and about 42.6 million edges,
we have two sets of edge weights. In both sets, all nonconstant TTFs are synthetically
generated, as described by Nannicini et al. [2008]. The first set reflects a medium (med)
amount of traffic where motorways and national roads can be congested, that is, only
motorways and national roads have non-constant TTFs. Urban streets, local streets,
and rural roads are time-independent, that is, have constant TTFs. The second set
reflects a high amount of traffic. There, not only motorways and national roads but also
urban roads have nonconstant TTFs (see [Delling 2009]).

Table I also reports the average relative delay of all sets of time-dependent edge
weights (i.e., of all sets of TTFs). The relative delay of a TTF f is defined as
(max f − min f )/ min f . Table I reports the average relative delay over all TTFs, both
including and excluding the constant ones. Note that Delling [2011] also reports an



average relative delay, but over EA paths, not over edges. We think the relative delay
is a good indicator of how well pruning techniques work in the context of profileIn-
tervalSearch. Remember that profileIntervalSearch uses travel time intervals as node
labels computed on the basis of min f and max f for TTFs f . So, larger delays re-
sult in wider intervals, which means that intervals are more likely to overlap. As a
consequence, predecessor sets are less often emptied (see Algorithm 3, Line 6). Also,
stall-on-demand (Section 5.4) is more likely to fail for wider intervals. As all our query
algorithms make use of profileIntervalSearch, their running time should increase with
the relative delay of the TTF sets. Our experiments confirm this. This also applies
to the preprocessing, which utilizes profileIntervalSearch as well. Note that the per-
centage of time-dependent TTFs also influences the running times—especially when
profileSearch is involved.

8.2. Experimental Setup

The experimental evaluation is done on a machine with two Core i7 Quad-Cores
(2.67GHz) with 48GiB of RAM running SUSE Linux 11.1. All programs are compiled
by GCC 4.3.2 with optimization level 3. Running times are always measured using
one single thread if not stated otherwise. All figures refer to the scenario that only
the EA times and the TTPs have to be determined, without outputting complete path
descriptions. But when reporting memory consumption, we include the space needed
to allow fast path reporting. Memory usage is always given in terms of the total space
usage in average byte per node. Table I reports the memory usage of all input road
networks as original graphs (i.e., the graphs used for tdDijkstra). For TCHs, ATCHs,
Min-Max-TCHs, and inexact TCHs, we also report the memory overhead compared to
the original graph, as a growth factor and partly in byte per node.

We measure the average running time of the different EA query algorithms by
performing a bulk of 1,000 queries each. Therein, all the triples (s, t, τ0) of start s,
destination t, and departure time τ0 are selected randomly from V × V × [0h, 24h). For
profile queries, a departure time is not necessary of course. Note that we always execute
such a bulk of queries three times and report the median of the three average running
times as a result. We do this to prevent accidental outliers, which we observed in the
past. Occasional activities triggered by the operating system during our experiments
may be a possible source.

To measure the errors, we use many more test cases: 1,000,000 random EA queries
and 10,000 random profile queries, where the error of profile queries is measured for
100 random departure times each. We always report the average and the maximum
relative error. We also measure the machine-independent behavior of our algorithms:
In all cases, we count the number of deleteMin operations and of touched edges. For
tdDijkstra, the number of touched edges is identical to the number of relaxed edges.
For other query algorithms, this also includes the number of edges copied by BFSes,
of unpacked shortcuts, and of edges processed during corridor contraction (as, e.g., in
Algorithm 12). For EA queries, we additionally count how often nonconstant TTFs are
evaluated (including similar operations like, e.g., computing max dep f (rup[u]) as in
Algorithm 11). For profile queries, in contrast, we count the number of segments of the
TTFs processed by link and minimum operations.

8.3. Results

Preprocessing. Table II shows the running times of node ordering and construction
for all input graphs. We not only measure the sequential running times (1 thread),
but also the parallel running times for shared memory (2, 4, and 8 threads). The node
ordering takes considerably longer than the construction. For both node ordering and



Table II. Running Times of Node Ordering and Construction for All Our Input Graphs with 1, 2, 4, and 8
Threads. For 2, 4, and 8 Threads, We also Report the Speed-Ups Achieved by Parallel Execution (PS).

constr.= construct.

# threads
1 2 4 8

order constr. order constr. order constr. order constr.
[h:m:s] [h:m:s] [h:m:s] PS [h:m:s] PS [h:m:s] PS [h:m:s] PS [h:m:s] PS [h:m:s] PS

Germany
Mon 0:28:23 0:07:41 0:14:42 1.9 0:03:54 2.0 0:07:53 3.6 0:02:06 3.7 0:04:50 5.9 0:01:16 6.1
mid 0:29:21 0:07:33 0:14:57 2.0 0:03:57 1.9 0:08:06 3.6 0:02:09 3.5 0:05:04 5.8 0:01:14 6.1
Fri 0:24:37 0:06:19 0:12:21 2.0 0:03:16 1.9 0:06:39 3.7 0:01:47 3.5 0:04:03 6.1 0:01:02 6.1
Sat 0:15:09 0:03:45 0:07:23 2.1 0:02:00 1.9 0:04:01 3.8 0:01:08 3.3 0:02:33 5.9 0:00:41 5.5
Sun 0:12:30 0:03:10 0:06:08 2.0 0:01:41 1.9 0:03:14 3.9 0:00:56 3.4 0:02:06 5.9 0:00:33 5.7
Europe
high 3:52:49 0:51:58 1:56:44 2.0 0:26:33 2.0 1:02:35 3.7 0:14:04 3.7 0:37:42 6.2 0:08:02 6.5
med 1:31:37 0:21:42 0:48:29 1.9 0:11:51 1.8 0:27:42 3.3 0:06:14 3.5 0:17:49 5.1 0:03:40 5.9

Table III. Running Time of Node Ordering for Germany Midweek When the Different Techniques Used
to Speed up the Node Ordering Are Incrementally Deactivated. += activated, -= deactivated, heur.=

heuristic. We Report the Running Times for Both Sequential (1 Thread) and Parallel (8 Threads)
Execution.

order time [h:m:s]
+ sample search - sample search - sample search - sample search

threads caching of + heur. thinning + heur. thinning - heur. thinning - heur. thinning
# witnesses + interval search + interval search + interval search - interval search

Germany midweek

1
+ 0:29:21 0:35:25 4:36:34 ≥ 12h
- 1:37:57 1:52:32 ≥12h ≥ 12h

8
+ 0:05:04 0:05:45 1:16:19 ≥ 12h
- 0:15:53 0:17:17 4:00:17 ≥ 12h

construction, the parallelization scales pretty well. The preprocessing takes longer the
more nonconstants TTFs are present in a graph and the larger their average delay is.

The reader may remember that preprocessing mainly consists of many node contrac-
tions where we try to omit as many shortcuts as possible (Section 4). There, we use
some techniques to speed up the expensive profileSearch or to even prevent its appli-
cation. These techniques are: (i) a preceding sample search, (ii) a preceding profileIn-
tervalSearch, (iii) a heuristic to thin out the corridor, and (iv) the caching of simulated
contractions; (i)–(iii) are described in Section 4.1, (iv) is described in Section 4.2. We
demonstrate the impact of (i)–(iii) on the running time of the node ordering by incre-
mentally deactivating them. We do this both with (iv) activated and deactivated, both
for sequential (1 thread) and parallel (8 threads) execution. Table III shows the result-
ing running times with a timeout of 12h. The impact of (i), that is, sample search, seems
to be rather small, though it can be noticed. The impact of (ii)–(iv), that is, heuristic
thinning, profileIntervalSearch, and caching, is much larger. The results show that all
the techniques except sample search are vital for feasible preprocessing.

We also tested how preprocessing works without the hop limit described in Sec-
tion 4.1. It turned out that the hop limit has little effect on the node ordering for
Germany midweek, but for Europe high traffic, the node ordering gets unfeasible with-
out hop limit. So, a hop limit of 16 is always active. In the past, we also used aggressive
edge reduction [Batz et al. 2009]: During preprocessing, we periodically check for un-
necessary shortcuts u → f v. In principle, we do this by a profileSearch from u to v. Of
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Fig. 1. Behavior during the construction of the TCHs for Germany midweek, Saturday, and Sunday. As the
x-axis shows the number of nodes not yet contracted, time “flows” from right to left in the charts. It is shown
how the average out degree (top left) and the average complexity of the TTFs (bottom left) of the remaining
graph evolve during construction. Also, it is shown how the running time proceeds during construction (top
right). We also show how the running time proceeds during node ordering (bottom right).

course, this can be accelerated in a similar way as node contraction. However, in the
current setting, the edge reduction did not have much impact, so it was omitted.

Figure 1 gives some insight into the TCH construction for the German road network
with different sets of TTFs. It turns out that for graphs with more nonconstant TTFs,
the number of inserted shortcuts does not increase too much. Instead, we have a
significantly higher complexity of the TTFs of these shortcuts. Besides the higher
relative delay, which is likely to raise the number of necessary profile searches, the
increased complexity of TTFs is also a probable source of longer running time. Figure 1
also makes clear that the majority of the preprocessing time is needed for the last
100,000 nodes. But from around the last 1,000 nodes, the construction and the node
ordering get faster again.

Queries. Table IV shows the running times of exact EA and profile queries for selected
query algorithms using TCHs and ATCHs. For ATCHs, we chose ε = 2.5% because it
seems to be a good compromise between space usage and running time. As expected,
the tchEaQuery (Algorithm 4) is faster than atchEaQuery (Algorithm 11) but the neces-
sary TCH needs much more space than the ATCH of course. The running times for EA
queries on Europe, which has much more nodes and edges than Germany, suggest that
these algorithms scale well with the size of the road network. The atchProfileQuery
(Algorithm 12) performs quite well, as it shows running times considerably less than
0.1s on the German road networks. This means profile queries can be answered instan-
taneously there. For Europe, we cannot provide instantaneous profile queries, but the
running times are still not bad. Altogether, it is not surprising that profile queries run
faster the less time-dependency a graph has.



Table IV. Behavior of Different Query Algorithms for All Our Input Graphs
Running time, speed-up, and memory usage of tchEaQuery (TCH/EA, see Algorithm 4), tchEaQuery with BFS as
backward search and separate forward search (TCH/backw. BFS), atchEaQuery (ATCH/EA, see Algorithm 11),
and atchProfileQuery (ATCH/profile, see Algorithm 12), SPD = speed-up over tdDijkstra, GRO = growth factor of
memory usage compared to the original graph.

TCH ATCH, ε = 2.5%
space EA backw. BFS space EA profile

total overhead time time total overhead time time
[B/n] [B/n] GRO [ms] SPD [ms] SPD [B/n] [B/n] GRO [ms] SPD [ms]

Germany
Mon 1,001 906 10.5 0.84 1,269 2.58 411 206 111 2.2 1.39 761 34.24
mid 995 899 10.4 0.76 1,401 2.57 414 208 112 2.2 1.37 775 38.57
Fri 833 745 9.5 0.68 1,560 2.25 470 188 100 2.1 1.27 831 30.30
Sat 401 337 6.2 0.52 1,992 1.88 551 127 62 2.0 0.83 1,242 6.72
Sun 265 210 4.8 0.48 2,149 1.71 599 100 45 1.8 0.74 1,388 4.40
Europe
high 599 523 7.9 1.98 1,916 4.16 913 192 116 2.5 4.04 940 550.21
med 187 140 4.0 1.25 2,947 4.25 865 84 37 1.8 2.61 1,409 290.38

As explained in Section 5, we apply time-dependent bidirectional search to make
hierarchical routing run in the presence of time-dependent edge weights. However,
would it be not good enough to replace the backward search by a BFS? Of course, we
can apply stall-on-demand only to the forward search then. Also, we cannot stop forward
and backward search based on an upper bound B as in Line 17 of Algorithm 4, but then
it is pointless to perform forward and backward search in an alternating manner. So,
we perform forward and backward search separately. The resulting simplified query
algorithm takes at least three times longer than tchEaQuery for Germany (Table IV).
For Europe high traffic, the tchEaQuery is only a little more than two times faster.
Supposedly, this is because of the larger relative delay, which negatively affects the
backward search of atchEaQuery. More precisely, the number of overlapping travel time
intervals during the backward profileIntervalSearch may be so large that comparatively
few predecessors are ruled out (see Lines 5 and 6 of Algorithm 3). Also, stall-on-demand
may fail comparatively often.

Tables V and VI take a closer look at the behavior of EA and profile queries on
TCHs, ATCHs, Min-Max-TCHs, and inexact TCHs. For atchEaQuery, the parameter ε
provides a trade-off between running time and space usage. For atchProfileQuery we
observe a minimum running time for ε near 1 %. Our interpretation is that there is a
tradeoff between the running time of thinning phase and of the rest of atchProfileQuery,
that is, of bidirectional profileIntervalSearch, corridor unpacking, and corridor contrac-
tion. For greater ε, the thinning phase needs less time as the processed approximate
TTFs have lower complexity, but the effect of thinning, pruning, and stall-on-demand
is smaller then. For smaller ε, the thinning phase needs more time, but thinning, prun-
ing,and stall-on-demand have greater effect. The observed numbers of touched edges
and segments confirm this interpretation.

The running times of atchEaQuery and atchProfileQuery on the Min-Max-TCH of
Germany are smaller than for the ATCH with ε = 10%. At first glance, this seems
surprising, but note that Min-Max-TCHs use the upper and lower bounds max f and
min f , respectively, of exact TTFs f . ATCHs, in contrast, use the upper and lower
bounds max f and min f . Also, with the relatively large ε = 10% it is likely that the
impact of thinning and stall-on-demand becomes poor. So, storing the exact bounds
max f and min f in the ATCH may lower the running times of atchEaQuery, especially
for larger values of ε. However, we have not tried this. In contrast to Germany midweek,



Table V. Behavior of EA Queries Using Different Methods
ATCH with ε = ∞ denotes Min-Max-TCHs; struct.= used hierarchical data structure, inex.= inexact, algr.= number
of algorithm with respect to this article, SPD= speed-up compared to tdDijkstra, GRO= growth factor of space
usage compared to the original graph, MAX and AVG are maximum and average relative errors.

ε space time delMin edges evals error [%]
struct. [%] algr. [B/n] GRO [ms] SPD # SPD # SPD # SPD MAX AVG

Germany midweek

TCH
– 4 995 10.4 0.75 1,428 520 4,612 5,820 950 1,271 162 0.00 0.00
– 13 995 10.4 0.74 1,440 639 3,755 7,101 779 76 2,686 0.00 0.00

inex.
TCH

0.1

13

286 3.0 0.70 1,516 642 3,737 7,138 775 78 2,651 0.10 0.02
1.0 214 2.2 0.69 1,553 654 3,669 7,271 761 85 2,432 1.01 0.27
2.5 172 1.8 0.72 1,470 668 3,594 7,429 745 92 2,234 2.44 0.79

10.0 113 1.2 1.06 1,006 898 2,674 10,109 547 223 920 9.75 3.84

ATCH

0.1

11

309 3.2 1.15 930 558 4,299 7,281 760 3,182 65 0.00 0.00
1.0 239 2.5 1.24 857 588 4,080 7,993 692 3,553 58 0.00 0.00
2.5 208 2.2 1.38 769 625 3,841 9,168 603 4,172 49 0.00 0.00

10.0 163 1.7 2.56 416 841 2,854 18,947 292 8,871 23 0.00 0.00
∞ 118 1.2 1.55 685 638 3,761 16,212 341 4,043 51 0.00 0.00

Europe high traffic

TCH
– 4 599 7.9 2.11 1,798 1,021 8,847 13,681 1,563 2,482 276 0.00 0.00
– 13 599 7.9 3.25 1,168 1,715 5,266 24,274 881 1,485 460 0.00 0.00

inex.
TCH

0.1

13

239 3.1 2.70 1,408 1,722 5,245 24,389 877 1,498 456 0.15 0.02
1.0 195 2.6 2.76 1,376 1,782 5,069 25,361 843 1,624 421 1.50 0.20
2.5 175 2.3 2.94 1,292 1,875 4,817 26,948 794 1,836 372 3.37 0.48

10.0 144 1.9 2.92 1,302 1,801 5,016 25,692 832 1,681 407 16.21 2.88

ATCH

0.1

11

258 3.4 2.55 1,489 1,142 7,907 16,693 1,281 6,420 107 0.00 0.00
1.0 208 2.7 2.89 1,312 1,223 7,384 20,336 1,052 7,819 87 0.00 0.00
2.5 192 2.5 4.17 910 1,351 6,684 27,583 775 10,500 65 0.00 0.00

10.0 165 2.2 8.02 473 1,850 4,882 74,315 288 26,911 25 0.00 0.00
∞ 100 1.3 17.04 223 1,690 5,344 207,099 103 51,023 13 0.00 0.00

Min-Max-TCHs do not work quite as well for Europe high traffic: The EA query times
are significantly worse (though still not bad). But for profile queries, this variant was
so slow that we got a timeout and thus had to omit that line.

For inexact profile queries (see tchConeProfileQuery, Algorithm 7) on Germany mid-
week, we observe the smallest running time for ε around 2.5%. A trade-off between
the quality of the conservative bounds min{min f, min f≈}, max{max f, max f≈} and the
complexity of the inexact TTFs is a possible explanation: For smaller ε, the conserva-
tive bounds are nearer to the exact bounds min f and max f than for larger ε. As a
consequence, stall-on-demand and pruning have more effect during the bidirectional
profileIntervalSearch. But for smaller ε, the complexity of the inexact TTFs increases.
The number of edges and segments touched during the computation support this in-
terpretation.

For inexact profile queries on Europe high traffic, we see a clear correspondence
between space and running time. This seems to be natural, as the relative delay is
much larger there than for Germany midweek, and this makes the impact of pruning
based on conservative bounds less effective. As a result, the running time is governed
rather by the complexity of the inexact TTFs than by the quality of the conservative
bounds. This interpretation is again supported by the number of processed edges and
segments.

Obviously, decreased memory usage directly corresponds to decreased accuracy for
inexact profile queries. So, as space and running time are related, we get a trade-off



Table VI. Behavior of Profile Queries Using Different Methods
Note: The nomenclature is as in Table V.

ε space time delMin edges segments error [%]
struct. [%] algr. [B/n] GRO [ms] # # # MAX AVG

Germany midweek

TCH
– 5 995 10.4 1,216.29 570 6,805 16,717,022 0.00 0.00
– 7 995 10.4 95.46 647 7,179 840,551 0.00 0.00

inex.
TCH

0.1

7

286 3.0 6.55 650 7,218 50,812 0.10 0.02
1.0 214 2.2 3.13 662 7,358 20,928 1.03 0.27
2.5 172 1.8 2.11 677 7,524 12,580 2.44 0.79

10.0 113 1.2 2.55 924 10,374 12,759 9.69 3.84

ATCH

0.1

12

309 3.2 38.69 651 27,563 466,251 0.00 0.00
1.0 239 2.5 35.23 675 29,950 449,012 0.00 0.00
2.5 208 2.2 38.74 701 34,008 498,837 0.00 0.00

10.0 163 1.7 118.78 889 86,127 1,434,780 0.00 0.00
∞ 118 1.2 81.81 579 55,214 1,050,447 0.00 0.00

Europe high traffic

TCH
– 5 599 7.9 4,907.39 1,132 18,176 54,617,858 0.00 0.00
– 7 599 7.9 2,339.37 1,866 26,879 17,704,460 0.00 0.00

inex.
TCH

0.1

7

239 3.1 228.48 1,882 27,060 1,918,590 0.15 0.02
1.0 195 2.6 121.69 1,953 28,267 978,794 1.37 0.20
2.5 175 2.3 102.51 2,067 30,276 834,996 3.28 0.48

10.0 144 1.9 41.77 1,970 28,627 426,327 14.69 2.88

ATCH

0.1

12

258 3.4 646.29 1,875 160,496 5,195,293 0.00 0.00
1.0 208 2.7 431.89 1,960 189,115 3,481,885 0.00 0.00
2.5 192 2.5 513.66 2,107 256,981 4,178,386 0.00 0.00

10.0 165 2.2 2,773.90 2,536 1,340,823 24,100,717 0.00 0.00

between accuracy and running time for these types of queries. For inexact EA queries
(Algorithm 13), the running time changes only slightly with the space usage. This
means that we mainly have a trade-off between space and accuracy in this case. Note
that the observed maximum errors are small for small ε, and the average errors are
even smaller. In theory, however, one can easily construct inputs where errors could
get much larger than ε.

In Section 6.3, we claim that atchEaQuery runs faster if we unpack the shortcuts
only on demand instead of unpacking the whole corridor before we perform tdDijk-
stra. Moreover, in Section 6.4, we claim that corridorContraction greatly accelerates
profile queries on ATCHs. Figure 2 shows that both are really the case. It displays
the distribution of running times of EA and profile queries on Germany midweek us-
ing a methodology by Sanders and Schultes [2005]: For i = 5..22, we look at a bulk
of 100 queries with the property that the one-to-one version of Dijkstra’s algorithm
settles the destination node as the 2i-th node (2i is called the Dijkstra rank). In the
case of EA queries, this refers to tdDijkstra, and in the case of profile queries, to a
time-independent Dijkstra. Note that we again execute such a bulk of queries three
times to prevent accidental outliers. Then, for every query in the bulk, we report the
median of the three available measured running times. For profile queries on ATCHs,
we display the results of atchProfileQuery (with corridorContraction) as well as the
results of a modified version of atchProfileQuery where corridorContraction is replaced
by a profileSearch on the unpacked corridor (see Section 6.4). This demonstrates that
we are really faster with corridorContraction. We also display the distribution of run-
ning times for a plain profileSearch. As this runs very slow, we stop after the average
running time exceeds 10 s. Running a plain profileSearch with 1,000 randomly selected
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Fig. 2. Running times of EA (top) and profile queries (bottom) over Dijkstra rank for Germany midweek.
Top: unpack = shortcuts not only unpacked on demand, but corridor completely unpacked first. Bottom:
no-CC = profileSearch in the corridor instead of corridorContraction, inexact TCH = tchConeProfileQuery
on an inexact TCH.

pairs of start and destination node would be a matter of weeks. This is why we do not
report speed-ups of profile queries. Figure 2 also shows the distribution for tchEaQuery
and inexact profile queries using tchConeProfileQuery.

Reusing Node Orders. In Section 4.2, we claim that a node order, once computed,
can be reused to govern the construction of a TCH for the same graph but with a
different set of TTFs. Table VII shows the resulting behavior of TCH construction and
several query algorithms. It turns out, that this “recycling” works surprisingly well for
Germany. For Europe, we have a clear increase of construction time, space usage, and
query times, but it still works. As an extreme case, we perform node ordering only with
constant edge weights. More precisely, we replace all TTFs of Germany midweek and
of Europe high traffic by their minimum and perform node ordering for the resulting
graphs. The ordering took 6min 59sec for Germany and 27min 37sec for Europe. As a
result, we observe further increased memory usage and query times. Again, this effect
seems to be stronger for Europe. In the past [Batz et al. 2009], we even used static
CHs [Geisberger et al. 2008] for node ordering. For a higher percentage of nonconstant
or stronger varying TTFs, recycling of node orders may not work well enough.

So, depending on the underlying road network and the available sets of TTFs, we
could save a considerable amount of time by doing node ordering only for the “easy”
instances. For the hard instances, we would recycle one of the easily obtained orders
to govern the TCH construction. Whether all this works well in a specific application
context must be found out experimentally by the user.



Table VII. Behavior of TCHs, ATCHs, and Inexact TCHs When Node Orders Are Reused to Govern the TCH
Construction for a Different Set of TTFs

We report running times and memory usage of tchEaQuery (TCH/EA, Algorithm 4), atchEaQuery (ATCH/EA,
Algorithm 11), atchProfileQuery (ATCH/profile, Algorithm 12), and inexact profile queries using tchConeProfile-
Query (inexact TCH/profile, Algorithm 7). We also report the time needed to construct the TCHs for the different
orders. constr. = construct, overh. = overhead, err. = relative error, GRO = growth factor of memory usage
compared to the original graph, MAX = maximum relative error, const = node order arising from constant edge
weights.

TCH ATCH, ε = 2.5% inexact TCH, ε = 2.5%
constr. space EA space EA profile space profile

time total overh. time total overh. time time total overh. time err. [%]
graph order [h:m:s] [B/n] GRO [ms] [B/n] GRO [ms] [ms] [B/n] [B/n] [ms] MAX

Germany

mid

Mon 0:07:44 1,004 10.5 0.85 208 2.2 1.47 40.23 173 1.8 2.12 2.43
mid 0:07:33 995 10.4 0.76 208 2.2 1.37 38.57 172 1.8 2.11 2.44
Fri 0:07:51 1,002 10.5 0.82 209 2.2 1.47 38.57 173 1.8 2.12 2.45
Sat 0:08:39 1,041 10.9 0.88 211 2.2 1.52 40.70 175 1.8 2.28 2.45
Sun 0:09:18 1,066 11.2 0.91 213 2.2 1.56 40.88 176 1.8 2.31 2.41
const 0:10:09 1,147 12.0 1.05 219 2.3 1.60 38.24 180 1.9 2.30 2.45

Sat

Mon 0:03:53 422 6.5 0.60 129 2.0 0.90 5.87
mid 0:03:49 422 6.5 0.58 129 2.0 0.90 6.07
Fri 0:03:50 418 6.5 0.61 128 2.0 0.88 6.90
Sat 0:03:45 401 6.2 0.52 127 2.0 0.83 6.72
Sun 0:03:60 416 6.5 0.61 128 2.0 0.93 6.17
const 0:04:22 458 7.1 0.58 133 2.1 0.87 5.82

Sun

Mon 0:03:10 282 5.1 0.52 102 1.9 0.77 4.19
mid 0:03:08 283 5.1 0.54 102 1.9 0.81 4.30
Fri 0:03:08 279 5.1 0.57 102 1.9 0.80 4.38
Sat 0:03:10 273 4.9 0.53 101 1.8 0.81 4.21
Sun 0:03:10 265 4.8 0.48 100 1.8 0.74 4.40
const 0:03:18 299 5.4 0.64 105 1.9 0.78 4.10

Europe

high
high 0:51:58 599 7.9 1.98 192 2.5 4.04 550.21 175 2.3 102.51 3.28
med 1:28:22 723 9.5 2.66 208 2.7 4.53 680.03 189 2.5 143.01 3.19
const 2:06:06 842 11.1 3.33 214 2.8 5.80 781.82 194 2.5 206.84 2.82

med
high 0:32:35 222 4.7 1.92 88 1.9 3.62 324.15
med 0:21:42 187 4.0 1.25 84 1.8 2.61 290.38
const 0:55:10 267 5.7 1.96 91 1.9 3.78 301.43

Comparison with Goal-Directed Techniques. To compare the TCH-based methods
with some goal-directed route planning algorithms, look at Table VIII. For EA queries,
we only compare speed-ups of tdDijkstra—absolute query times would be unreliable
because different machines are used. As plain profileSearch takes too long, we are not
able to report speed-ups for profile queries. Instead, we also compare the running times
of profile queries with tdDijkstra. The resulting “speed-ups” enable us to compare the
running times of different profile query algorithms in a machine-independent way.
Note that larger values of these “speed-ups” mean smaller running times. As our
preprocessing works in two phases (node ordering and construction), we always report
two preprocessing times for TCH-based techniques, for example, 0:29 / 0:08 (29min node
ordering and 8min construction). Remember that the node ordering already yields a
complete TCH structure, so a separate construction phase is not necessary after the
node ordering.



Table VIII. Comparison of Different TCH-Based and Goal-Directed Methods for Exact and Inexact
Time-Dependent EA and Profile Queries.

Memory usage is given as overhead (ovh.), errors are maximal relative errors. prepro. = preprocessing,
SPD = speed-up achieved by EA queries, “SPD” = “speed-up” achieved by profile queries, i.e., speed of pro-
file queries compared to tdDijkstra, err. = relative error, inex = inexact, L = combination with ALT, apprx =
approximate, hr = heuristic, se = space efficient.

Germany midweek Europe high traffic
ε prepro. ovh. EA profile err. [%] prepro. ovh. EA profile err. [%]

method [%] [h:m] [B/n] SPD “SPD” MAX AVG [h:m] [B/n] SPD “SPD” MAX AVG

exact queries
TCH – 0:29 / 0:08 899 1,428 11.16 0.00 0.00 3:53 / 0:52 523 1,798 1.62 0.00 0.00

ATCH 0.1 0:29 / 0:08 213 930 27.53 0.00 0.00 3:53 / 0:52 182 1,489 5.88 0.00 0.00
ATCH 1.0 0:29 / 0:08 144 857 30.23 0.00 0.00 3:53 / 0:52 132 1,312 8.79 0.00 0.00
ATCH 2.5 0:29 / 0:08 112 769 27.49 0.00 0.00 3:53 / 0:52 116 910 7.39 0.00 0.00
ATCH 10.0 0:29 / 0:08 68 416 8.97 0.00 0.00 3:53 / 0:52 89 473 1.37 0.00 0.00
ATCH ∞ 0:29 / 0:08 23 685 13.02 0.00 0.00 3:53 / 0:52 24 223 – 0.00 0.00

TD-CALT – 0:09 50 280 – 0.00 0.00 1:00 61 47 – 0.00 0.00
TD-SHARC – 1:16 155 60 0.02 0.00 0.00 6:44 134 70 – 0.00 0.00

TD-L-SHARC – 1:18 219 238 – 0.00 0.00 6:49 198 150 – 0.00 0.00
inexact queries

inex TCH 0.1 0:29 / 0:08 191 1,516 162.50 0.10 0.02 3:53 / 0:52 163 1,408 16.62 0.15 0.02
inex TCH 1.0 0:29 / 0:08 119 1,553 340.74 1.03 0.27 3:53 / 0:52 119 1,376 31.20 1.50 0.20
inex TCH 2.5 0:29 / 0:08 77 1,470 505.03 2.44 0.79 3:53 / 0:52 98 1,292 37.04 3.37 0.48
inex TCH 10.0 0:29 / 0:08 18 1,006 416.90 9.75 3.84 3:53 / 0:52 68 1,302 90.92 16.21 2.88

apprx TD-CALT – 0:09 50 804 – 13.84 0.05 1:00 61 624 – 8.69 0.28
hr TD-SHARC – 3:26 137 2,164 1.40 0.61 22:12 127 1,958 – 1.60

hr TD-L-SHARC – 3:28 201 3,915 – 0.61 22:17 191 2,703 – 1.60
se TD-SHARC – 3:48 68 1,177 – 0.61 – – – – –
se TD-SHARC – 3:48 14 491 – 0.61 – – – – –

For exact queries, ATCHs dominate TD-SHARC [Delling 2011] in all respects. TD-
CALT [Delling and Nannicini 2008; Delling 2009] is also dominated except for the
preprocessing time where TD-CALT is much better. For Europe, the advantage of
TCH-based techniques over TD-CALT with respect to query time becomes much larger.
This is an indication that TCH combined with ALT will not scale well with the graph
size. For inexact EA queries, approximate TD-CALT has much better speed-ups than
in the exact case. Compared to that, inexact TCHs have even better speed-up but worse
preprocessing time and memory usage. However, the maximum error of approximate
TD-CALT is very large. Regarding that, inexact TCHs are much better, at least if ε is
not too large. But, to be fair, it must be noted that the average error of approximate TD-
CALT is really small. Heuristic TD-SHARC [Delling 2011] has better speed-ups for EA
queries but worse memory usage than inexact TCHs. For heuristic space-efficient TD-
SHARC [Brunel et al. 2010] the memory usage is very good, but the speed-ups are worse
than for inexact TCHs. For all inexact variants of TD-SHARC, the maximum error is
smaller than for inexact TCHs—except for small values of ε where inexact TCHs have
smaller maximum error but higher memory usage. With respect to the preprocessing
time, inexact TCHs are much better than the inexact variants of TD-SHARC.

Regarding profile search, TCH-based techniques are far better than the goal-directed
techniques, as they are three orders of magnitude faster for exact queries, and about
300 times faster for inexact ones—if the goal-directed techniques are able to answer
profile queries in reasonable time at all.



9. CONCLUSIONS AND FUTURE WORK

TCHs are able to answer earliest arrival and travel time profile queries time- and
space-efficiently. Corridors and cones accelerate profile queries and enable exact com-
putations, although we use space-efficient approximate travel time functions on short-
cuts. Additionally, corridor contraction speeds up profile queries even more. For the
midweek scenario on the German road network parallel preprocessing using 8 threads
takes less than 6.5 minutes. With TCH-based representations of the road network,
which need less than 1GiB space, we are able to answer exact EA queries in less than
1.5ms and exact profile queries in less than 40ms. If an error of about 1% is allowed,
we can answer profile queries in even less than 3.2ms. We are not aware of any other
efficient technique for answering profile queries on road networks.

Future work will have to allow even more realistic modeling, in particular, incorpo-
rating traffic jams in real time, and allowing more general time-dependent cost func-
tions beyond travel times. Note that more general cost functions make time-dependent
route planning much more difficult—it gets NP-hard even when restricted to the rel-
atively simple special case that costs are travel times with additional time-invariant
constants. A heuristic version of TCHs for this setup has already been presented [Batz
and Sanders 2012], but exact TCHs are still missing there. Time-dependent profile
queries with generalized costs are also not considered yet. Another interesting problem
is mobile time-dependent route planning. The ideas of this work may help to develop
a suitable algorithm for both mobile time-dependent route planning and generalized
time-dependent profile queries.
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