
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOLẊX, NO. XX, XXXX 2020 1

OpenIPMC: a free and open source Intelligent
Platform Management Controller Software

Luigi Calligaris, André Cascadan, Luis E. Ardila-Perez, Bruno Casu, Alison França da Costa, Ailton
Akira Shinoda, Lucas Arruda Ramalho and Oliver Sander

Abstract—OpenIPMC is a free and open source software
designed to implement the logic of an Intelligent Platform
Management Controller (IPMC). An IPMC is a fundamental
component of electronic boards conformant to the Advanced
Telecommunications Computing Architecture (ATCA) standard,
currently being adopted by a number of high energy physics
experiments. The IPMC is responsible for monitoring the health
parameters of the board, managing its power states, and provid-
ing board control, debug and recovery functions to remote clients.
OpenIPMC is based on the FreeRTOS real-time operating system
and is designed to be architecture-independent, allowing it to be
used in firmware designed for a variety of microcontrollers. Hav-
ing a fully free and open source code is an innovative aspect for
this kind of software, enabling full customization by the user. In
this work we present the features and structure of OpenIPMC as
well as its example implementations on Xilinx Zynq UltraScale+
(ZynqUS+), Espressif ESP32 and ST Microelectronics STM32
architectures.

Index Terms—PICMG, ATCA, IPMC, Electronic board man-
agement

I. INTRODUCTION

The Advanced Telecommunications Computing Architec-
ture (ATCA) standard [1] is developed by a consortium of
leading computer hardware manufacturers known as the PCI
Industrial Computer Manufacturing Group (PICMG) [2]. This
standard defines mechanical, electrical and functional design
rules, connector pin assignments and communication protocols
to be used in the design of electronic boards and their housing
shelves for industrial computing applications. The rules aim
to guarantee a high availability and reliability of the deployed
systems, an objective which is achieved with the aid of
a sophisticated Hardware Platform Management (HPM) [3]
infrastructure. The ATCA standard is widely adopted in the
telecommunications industry and its use extends to a broader
range of applications, such as medical equipment [4] secure
networking, military electronics and large physics experiments
[5].

L. Calligaris (corresponding author, email: luigi.calligaris at cern.ch), A.
Cascadan and B. Casu are with the Scientific Computing Center (NCC) of
São Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz, 271,
São Paulo - SP, 01140-070, Brazil.

A. França da Costa and A. A. Shinoda are with the Electrical Engineering
Department (FEIS) of São Paulo State University (UNESP), Av. Professor
José Carlos Rossi, 1370 Campus III, Ilha Solteira - SP, 15385-000, Brazil.

L. A. Ramalho is with Exact and Earth Sciences Department (FACET) of
Mato Grosso State University (UNEMAT), Rua A, S/n, Bairro São Raimundo,
78390-000, Caixa Postal 92, Barra do Bugres, Mato Grosso.

L. E. Ardila-Perez and O. Sander are with the Institute for Data Processing
and Electronics (IPE) of Karlsruhe Institute of Technology, Hermann-von-
Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

This work is supported by the Fundação de Amparo à Pesquisa do Estado
de São Paulo (FAPESP), through grants number 18/18955-0 and 17/16245-3.

The focus on high availability and reliability, the large data
bandwidth offered by the shelf backplane, the availability
of large electrical power, good thermal dissipation, and the
possibility to insert and remove boards and other components
in a running system (hot swap) make ATCA systems very
attractive for use in high energy physics experiments [6]–[12],
where the requirements for very large detector read-out rate,
low latency, high availability and compact physical size of the
back-end systems of the detectors push the limits of current
technology. Examples of ATCA boards used in High Energy
Physics are the Serenity [13] and Apollo [14] boards, which
are going to be used in the back-end of the tracker detector
of the CMS experiment [15] following its Phase-2 upgrade.

Each electronic board compliant to the ATCA standard is
required to host an Intelligent Platform Management Con-
troller (IPMC), which is typically implemented using a mi-
crocontroller running a firmware that implements the IPMC
functions. Many IPMC solutions have been proposed over the
years, some of which commercial in nature [16], [17] and
others non-commercial in nature [18]–[21]. These solutions
employ a firmware specifically written for their intended target
microcontroller, consequently making it tedious to migrate the
firmware in the event those parts become obsolete. Further-
more, vendor tool-chains supporting those older parts tend to
be excluded from new software updates, making them rely
on the support of legacy operating systems, which can be
difficult to operate over the lifetime of the target boards. Lastly,
closed-source implementations - including commercial ones -
often pose significant bureaucratic barriers to developers by
requiring their institutions to sign Non-Disclosure Agreements
(NDA). This may cause lengthy approval processes by the
home institution of the researchers and prevent non-staff
participants (e.g. students) from participating officially to the
project. These are some of the reasons that motivated us to
look into developing a free and open-source solution.

II. THE ATCA SHELF

An ATCA shelf is a standardized form factor chassis accom-
modating Field Replaceable Units (FRU). These can be various
“intelligent” (i.e. capable of mutual coordination) components
such as cooling fan trays, power supplies or user-designed
electronic boards, which are the focus of our development.
FRUs need to be compliant to a set of mechanical, electrical
and interface specifications, as defined in the PICMG standard,
to ensure their proper inter-operation. From the point of view
of an ATCA electronic board, the resources made available by
a shelf are:

ar
X

iv
:2

01
1.

01
08

8v
2

 [
ph

ys
ic

s.
in

s-
de

t]
 1

 J
un

 2
02

1

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOLẊX, NO. XX, XXXX 2020 2

Power: Each board is powered by a two-channel, redundant,
-48 V rail.

Cooling: Redundant fan trays drive an air stream to remove
the heat generated by the electronics.

Data and clock bus: ATCA specifies a number of back-
plane topologies, supporting the transmission of synchroniza-
tion clock signals and high speed links between the boards.

IPMB: The backplane exposes to all FRUs a dual-redundant
two-wire bus, compatible with the I2C protocol with a sig-
nalling level of 3.3V. The two buses are named Intelligent
Platform Management Bus A and B (IPMB-A and IPMB-B),
also referenced collectively as IPMB-0. The two buses are used
by the FRUs and the Shelf Management Controller (ShMC) to
relay messages in multi-master mode, that is, listening as I2C
slaves for messages addressed to them and taking control of
one of the available buses as I2C masters to send a message,
managing failures and collisions in case they take place.

Other management signals: A set of pins in the backplane
electrically encodes the address of the physical slot a board is
inserted in.

A. Hardware Platform Management

The main task of the HPM system is monitoring the health
of the hardware by collecting sensor data (voltages, current
draws, temperatures, fan speeds, etc.) and taking corrective
actions (increasing the fan speed, switching off power, trigger
alarms, etc.) in case the measurements lie outside the nominal
range. The system is also tasked with orchestrating the power
consumption of the FRUs in a shelf, such that the overall pa-
rameters do not depart from the allowed operational envelope.

Fig. 1. ATCA HPM Architecture. Adapted from [1].

As shown in Fig. 1, the HPM system is composed of IPMCs
that manage one or more FRUs, one or two Shelf Management
Controllers (ShMC) for each shelf, and an optional external
System Manager. The System Manager is a global high-level
controller that manages ShMCs in multiple shelves connected
by a network; the ShMC is a device that orchestrates the
behavior of all the IPMCs running inside the FRUs hosted
on its shelf; and the IPMC is a controller local to each FRU

that is responsible for controlling all aspects specific to the
FRU operational state and providing real-time hardware status
and sensor information to the ShMC. The communication
between FRUs and ShMCs takes the form of messages based
on the Intelligent Platform Management Interface (IPMI) [23]
[22] protocol. In the specific application to ATCA, the IPMI
protocol is extended through the addition of remote board
control, fault detection and fault management functions.

B. IPMC: Hot-swap and other functions

One of the main roles of the IPMC is the management of the
hot-swap operation, where the board is activated or deactivated
in a graceful way, assisted by the ShMC. The procedure
starts with the insertion of a board into a shelf, the IPMC is
powered immediately, informing the ShMC about its presence.
The board activation request from the user is signalled by
locking the mechanical handle on the front plate of the board,
which triggers a switch. The IPMC then sends to the ShMC
information about its sensors (like name, units, conversion
constants, thresholds and many others), board identification
and power requirements. The ShMC then evaluates the power
budget in the shelf and may or may not authorize to power
ON the board. If power-ON permission is granted, the IPMC
follows the specific steps needed to bring the electronics
on the board to the active state, for example booting an
operating system on a processor. In a similar fashion, when the
front handle is unlocked the IPMC begins the board-specific
procedure to shut down gracefully the electronics in the board,
coordinating with the ShMC in doing so.

Considering the hot-swap as an example, it is clear that the
main reason for the IPMC to exist in the standard, is that it
exposes a standard abstract interface for the management of
the board, hiding the board-specific details from the ShMC.
Thanks to this standard interface, the ShMC can be designed
generically and without the need for prior knowledge of the
details of boards installed into the shelf. This also means that
the IPMC needs to be specifically customized for the board it
is designed to run in, either by configuring its generic firmware
through scripts, or by designing a firmware tailored for this
purpose. Other functions of the IPMC include declaring the
list of sensors available on the board to the ShMC, reading
them out and transmitting their readings to the ShMC, which
is the device tasked with the ultimate decision on whether to
command the shut down a FRU in the shelf.

ATCA boards can host expansion boards (see Fig. 2), which
can be Advanced Mezzanine Cards (AMCs) [24] - meant to
be inserted into front-facing slots of the main board - and
Rear Transition Modules (RTMs) [1], [25], [26] - hosted in
an optional slot on the rear of the backplane. When expansion
boards are used, the IPMC operates as the managing controller
for their operation, in a similar way as the ShMC manages the
FRUs in a shelf. The communication between IPMC and the
expansion boards takes place via a local IPMI bus (IPMB-
L) - with electrical characteristics similar to a single IPMB-0
channel - and a number of status and control signals.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOLẊX, NO. XX, XXXX 2020 3

Fig. 2. Example scheme of an ATCA electronic card hosting expansion
boards.

III. OPENIPMC

OpenIPMC is a piece of portable software implementing the
behavior of an IPMC. It stems from a collaboration between
São Paulo Research and Analysis Center (SPRACE) and the
Karlsruhe Institute of Technology (KIT) on development of
electronics for the Phase-2 upgrade of the CMS experiment.
The development of OpenIPMC is the evolution of a previous
project led by SPRACE researchers in collaboration with
Fermilab, in which the collaborators successfully developed
the IPMC [20] [21] for the Pulsar2b ATCA board [27].
The free and open-source nature of OpenIPMC helps in
the customization and debugging of the firmware running
on prototype ATCA boards during their development and
commissioning, and allows adapting it to the operational needs
as they evolve over the expected long period of operation.

The software is written in C language, based upon the
FreeRTOS free and open-source real-time operating system
[28] and targeting embedded Microcontroller Units (MCUs)
and systems-on-a-chip (SoCs). Thanks to the very wide sup-
port of FreeRTOS across different hardware manufacturers,
OpenIPMC can easily be ported to any MCU/SoC supported
by FreeRTOS, provided that the device is equipped with
sufficient amount of resources to run the code and with
enough I/O peripherals to interface the microcontroller to the
ATCA backplane and local board functions. In our tests we
estimated the size taken by OpenIPMC by observing the size
increment experienced by a basic firmware when OpenIPMC
was included (table I). From the table we can also observe
that, while OpenIPMC requires just a few tens of kiB, there
are large variations in the overall firmware size across different
microcontrollers and SoCs, likely due to differences in the
board support package implementations. We have not yet
optimized the stack size for the OpenIPMC real-time tasks,
which will be described in the next paragraphs. The sizes
presented in the table include instructions, core data and the
RAM reserved for the heap working space.

In the case of MCUs which do not ship with enough hard-

TABLE I
ESTIMATED SIZE OF OPENIPMC IN FIRMWARE AND TOTAL SIZE OF

FIRMWARE FOR DIFFERENT ARCHITECTURES.

Device OpenIPMC size (kiB) Total size (kiB)
ZynqUS+ 55 218

ESP32 33 93
STM32 40 75

ware peripherals to cover all the needed I2C channels, commu-
nication can be established by pairs of software-driven GPIOs
to emulate such peripherals. Still, this operation can be rather
CPU-intensive and therefore should be avoided on very busy
channels when possible. When choosing a microcontroller or
SoC for IPMC applications, we recommend the use of devices
with at least three I2C dedicated peripherals (either hard in-
silica cores or soft cores in the programmable logic of an
FPGA), with two to be to used in IPMB-0 communication and
at least one to control local devices such as temperature and
current sensors. In cases where the board can host AMCs or
RTMs, an additional hardware peripheral should be dedicated
to the operation of the IPMB-L interface. OpenIPMC achieves
portability thanks to a stringent separation between its core
behavioral code and the accessory interface to the underlying
microcontroller drivers and hardware. This is accomplished
through a Hardware Abstraction Layer (HAL) and board-
specific control functions (as shown in Fig. 3).

Fig. 3. Schematic of the relationships between the core of OpenIPMC,
its HAL and the hardware-specific drivers in the context of the FreeRTOS
runtime, and the hardware peripherals of the SoC/microcontroller.

A. Running OpenIPMC in FreeRTOS

OpenIPMC was designed to be integrated in a wider micro-
controller firmware according to the needs of the developer
and, therefore, it was a natural choice to adopt a multi-task
real time operating system such as FreeRTOS as underlying
infrastructure. The core of OpenIPMC runs as a collection
of FreeRTOS tasks (described in the following paragraphs)
running in parallel and interacting via thread-safe queues and
semaphores, with no requirement for exclusive access to the
processor. Hence, the developer has the freedom to extend
the functions of the firmware by adding independent tasks
excluded from the OpenIPMC execution flow. The FreeRTOS
scheduler [28] allows to set the priority of each task, such
that the critical ones can be guaranteed to execute with low
latency, unimpeded by low-priority tasks. OpenIPMC executes
in parallel the tasks listed below.
ipmb0_msg_receiver_task Listens for incoming

messages on IPMB-A and IPMB-B. It performs basic veri-

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOLẊX, NO. XX, XXXX 2020 4

Fig. 4. IPMI message transactions in OpenIPMC. “Hardware Abstraction Layer” represents the collection of adapter functions between OpenIPMC and the
I2C driver available for the desired platform. “Application” Layer represents the set of functions responsible to execute the IPMI commands coming from
ShMC. Processes in this layer also can generate requests to the ShMC by calling the proper API.

fication on the message, checking its checksum and the type
of the message (request or response). The task forwards the
message to the proper queue according to its type.
ipmb0_msg_sender_task Processes messages out-

bound to the IPMB-A and IPMB-B channels. The task pops
messages from a specific output queue, chooses the IPMB
channel to use, sends the message and manages retries in case
of transmission failures.
ipmi_incoming_requests_task Is responsible for

generating responses for received requests, triggering the
proper processes to do so. This task interacts with both
previously described ipmb_0_msg tasks.
fru_state_machine_task Drives the FRU state tran-

sitions, such as responding to the hot-swap events and trigger-
ing the board-specific activation/deactivation routines.
ipmc_handle_switch_task Periodically samples the

state of the front-plate handle and triggers hot-swap events.
This task interacts with fru_state_machine_task.
ipmc_blue_led_blink_task Controls the blinking

time of the blue-LED, a device mandated by the PICMG
standard in the front panel to indicate the power sta-
tus of the board. This task polls the current state in
fru_state_machine_task.

The interplay between tasks responsible for the IPMI mes-
sage transactions described above and the data flow between
them are schematized in Fig. 4.

We chose to use FreeRTOS as a base for our software
because it is a mature and widely-used real-time operating
system designed to be robust, with a tiny footprint, and a
wide range of supported devices [28]. Among the safety
features offered by this Real-Time Operating System (RTOS),
we employ the stack overflow detection feature to evaluate
the stability of our application, and we have the possibility
to trigger a global reset of the MCU upon such an event.
Furthermore, OpenIPMC has been designed to avoid the use

of dynamic memory allocation after its initialization. As a
good practice, all tasks and other FreeRTOS objects (queues,
semaphores, etc) are allocated just once, at startup, and heap
over-run events are set to be logged if they occur. The few
globally-accessible symbols are protected through the use of
mutexes against racing conditions.

B. OpenIPMC Hardware Abstraction Layer

1 // The pointer to this function will be
2 // registered into the OpenIPMC HAL as the
3 // implementation of the blue-LED state change.
4 void ipmc_ios_blue_led_set(int blue_led_state)
5 {
6 if(blue_led_state == 1)
7 gpio_driver(BLUE_LED_PIN_NUMBER, SET_TO_HIGH);
8 else
9 gpio_driver(BLUE_LED_PIN_NUMBER, SET_TO_LOW);

10 }

Listing 1. A function implementing the blue-LED state change
on a specific hardware. This ipmc_ios_blue_led prototype is
available as an example in the OpenIPMC code.

The HAL provides OpenIPMC with an interface to the
hardware (IMPB-A, IMPB-B, hardware address pins, status
LEDs, handle switch, etc.) that is prescribed in the PICMG
standard to be present in every ATCA board and is funda-
mental for OpenIPMC operation. This HAL is composed of
a set of functions that call the drivers used to access the
relevant peripherals in the microcontroller. These functions
take the form of declared - but undefined - functions in the
base software release of OpenIPMC, and must be implemented
by the developer of a new board to fit the specific hardware
interface. As an example, turning ON the blue-LED, could be
accomplished through a GPIO being flipped to the HIGH or
LOW status, or be controlled by an on-board device like an
I/O Expander attached to a local I2C bus. The idea behind the
OpenIPMC HAL is to give the board developer the freedom
to choose how to turn ON the blue-LED in hardware and

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOLẊX, NO. XX, XXXX 2020 5

implement the corresponding function in software to do so. In
Listing 1 we show as an example the code needed to operate
a GPIO-driven blue status LED in the front panel.

C. Board-Specific Controls

The interaction between OpenIPMC and the electronics in
the payload (that is, the electronics responsible for the main
functions of the ATCA board) takes place through an API,
which accepts the registering of callbacks to functions manag-
ing the various operations to be performed on the payload. The
choice of using an implementation based on function callbacks
is justified by the fact that boards are designed with great
variety in terms of functions and components, additionally
the PICMG standard makes no prescription on this aspect of
the board design. Through the API the user can implement
payload control routines that fit the hardware design of his
choice. We chose to call this layer, made of callable hardware
interface functions, the ”board-specific controls” (see Fig. 3).

Among the classes of operations that need to be imple-
mented in the IPMC according to the PICMG standard are
the ones relative to Power Management and Sensor Read-
ings. Power Management refers to the activation, deactiva-
tion, reset and the regulation of the power draw of the
different circuits present on the payload. In OpenIPMC this
management is performed by the state machine implemented
in fru_state_machine_task, which calls a number of
user-defined board-specific controls. Different states (M0, M1,
...) of the state machine represent the different power states
of the payload during activation and deactivation operations.
Since the ShMC centralizes the management of power alloca-
tion for all the ATCA boards in the shelf, the activation/deac-
tivation process involves negotiations between OpenIPMC and
the ShMC through the IPMB bus. The other operations on the
payload specified by the PICMG standard, like Cold Reset and
Warm Reset, can be also implemented through board-specific
controls.

The IPMC must be able to collect sensor readings from the
payload and send them to the ShMC, formatted in accordance
with the IPMI specifications. Similarly to the case of Power
Management described above, it is the responsibility of the
user to provide a function callback such that OpenIPMC can
read a sensor value using the correct procedure and protocol
(for example, by accessing an SPI or I2C register, writing
and reading a GPIO, using a lookup table to interpret data,
etc.). A sensor reading is generally triggered by a request sent
by the ShMC. OpenIPMC receives this request on the IPMB
bus, interprets it and executes the callback associated with the
reading of that specific sensor, and finally sends the value and
sensor status to the ShMC.

According to the standard, the IPMC is also responsible
for sending to the ShMC information about each sensor such
as sensor type, measurement units, linearization parameters,
threshold values, accuracy, a string containing its name, and
other information, which is collected into a data structure
called the Sensor Data Record (SDR) [23]. This is generated
by the IPMC at startup and transmitted to ShMC during
the activation process. OpenIPMC provides an API to create

SDRs for the board sensors and automatically manages their
transmission to the ShMC.

The implementation of the Board-Specific controls and of
the HAL layers strongly depend on the specific hardware
being targeted and on its driver interface, as designed by the
hardware manufacturer. Due to the wide variety of microcon-
trollers supporting FreeRTOS from different manufacturers,
the implementation and debugging of these layers should be
tailored to the target hardware on a device-by-device basis. We
believe that the design of this layer should be left in control
of the user to match his specific needs.

D. Licensing and code distribution

OpenIPMC is released under Mozilla Public License 2.0
[29], a license which allows of the open-source code to be stat-
ically linked, as it is common when building microcontroller
firmware binaries. The code is currently publicly available on
Gitlab.com [30].

IV. DEVELOPMENT AND TESTING PLATFORMS

We began the development of OpenIPMC on the AVNET
Ultra96 board [31], establishing early the separation between
behavioral code, HAL and the board-specific controls de-
scribed before. This separation was of great help to port
the code to a number of different architectures. With the
exception of the Trenz-Serenity one, all tests were performed
at São Paulo State University using an ATCA horizontal shelf
manufactured by Comtel (model CO6B-6U-FM40X) with 6
slots and two redundant ShMM-700R Shelf Management
Controllers by PigeonPoint (running firmware version 3.6.1.3).

Fig. 5. Development setup with the Ultra96 sitting on top of the Pulsar-2b.

A. Ultra96-Pulsar2b Development Platform

In this setup the Ultra96 acts as an IPMC for a Pulsar-
2b board. The ZU3EG SoC on the Ultra96 board belongs to
the ZynqUS+ EG family [32], [33], containing four ARM A53
high-performance application processors (APU) and two ARM
R5 real-time processors (RPU). APU and RPU are independent
processing units within the same SoC package which can run

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOLẊX, NO. XX, XXXX 2020 6

different operating systems. The FreeRTOS instance hosting
the OpenIPMC tasks runs on the RPU, leaving the APU free
to run a Linux-based operating system. The communication
between the Ultra96 and the ATCA backplane takes place
through an adapter board, which fits into the Mini-DIMM
slot normally used by the Pulsar-2b to host its IPMC board.
This adapter board exposes on a 2ṁm header the IPMB-A
and IPMB-B buses, the hardware address lines, the blue-LED
control and the handle switch state line, such that they can be
connected to the pins of the Ultra96 through a flat cable (Fig.
5).

In tests performed on this setup, OpenIPMC correctly
executes its management tasks, such as the activation and
deactivation triggered by the handle switch, and the declaration
and read-out of a dummy sensor to the ShMC. In this setup,
both power and sensor management are simulated, since the
current version of the DIMM adapter does not provide access
to the sensors I2C bus and the power supply controls of
the Pulsar-2b. Furthermore, using this platform, OpenIPMC
was used to trigger the boot sequence of a CentOS Linux
distribution [42] on the APU of the ZynqUS+.

B. Trenz-Serenity Development Platform

The Trenz-Serenity Platform is the platform currently being
used at KIT for the development of a centralized management
architecture based on ZynqUS+ [34]. Its main components are
the Serenity ATCA Carrier Card [13] and a Trenz TE0803
module [35] hosted on a custom adapter card (Trenz Adapter),
which allows the TE0803 to fit into the slot - originally
designed to accommodate a COMExpress industrial computer
[36] - present on the Serenity board (Fig. 6). Additionally,
the Trenz Adapter interconnects the TE0803 module to the
IPMC slot on the Serenity board through a ribbon cable and
an adapter Mini-DIMM board, allowing the ZynqUS+ on the
TE0803 module to perform the role of an IPMC.

Fig. 6. Trenz-Serenity setup in a vertical shelf at KIT.

Similarly to the case of the Ultra96-Pulsar2b platform,
the Trenz TE0803 module hosts a ZynqUS+ EG device.
OpenIPMC runs on the ARM Cortex-R5 cores and the IPMB
channels are implemented using both I2C hard peripherals

available on the ZynqUS+ Processing System (PS). However,
this test setup presents a number of significant differences
compared to the Ultra96 case and the OpenIPMC HAL
subsystem has been modified accordingly. For example, due
to the different signal routing on the Trenz module some
critical signals (Hardware Address, blue-LED, Handle Switch
and 12V Enable) have been routed to PCA9557 IO expanders
controlled by an I2C master in the ZynqUS+. Since both I2C
channels available on the ZynqUS+ PS are already allocated
to the IPMB buses, to drive the expander we use a software-
emulated I2C master, where two GPIO signals are controlled
by a driver to behave as the SDA and SCL lines of an I2C
peripheral.

On this setup, OpenIPMC has shown to correctly perform
its management tasks, including turning ON the main board
power supply, managing sensors and triggering the boot of
a CentOS Linux distribution running on the APU of the
ZynqUS+.

C. ESP32-Pulsar2b Development platform

To demonstrate the hardware independence of the core be-
havioral code of OpenIPMC we performed an exercise, porting
OpenIPMC to an architecture significantly different to the
ZynqUS+ SoC used in the two development setups described
earlier, and measuring the human effort needed to complete
the porting. We chose as platform the Espressif ESP32 micro-
controller, which is based on a Harvard-architecture Tensilica
Xtensa LX6 processor, significantly different from the ARM
R5 cores on the ZynqUS+. The ESP32 microcontroller is
an affordable yet powerful device designed for wireless IoT
applications [37] [38].

Fig. 7. ESP32-Pulsar2b development platform at SPRACE in São Paulo.

We assembled the platform for this demonstration starting
from the Ultra96-Pulsar-2b setup and swapping the Ultra96
with a breadboard on which we installed an ESP32 develop-
ment board, as shown in Fig. 7. In this setup, the only signals
connected are the IPMB buses (allowing communication to
the ShMC), the handle switch (which was emulated by a
simple bi-stable switch), and the blue-LED (a simple through-
hole LED), the last two being installed on a breadboard. For
simplicity the Hardware Address, being a set of static signals

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOLẊX, NO. XX, XXXX 2020 7

bound to simple GPIO pins, was not read out and its expected
values were trivially hard-coded into the HAL.

Porting OpenIPMC to this platform required just 3 person-
weeks, which we identify as a success. Most of the time was
spent in circumventing an inflexible implementation of the I2C
multi-master mode in the ESP32 IDF board support package,
while porting of the core OpenIPMC code required very little
effort. The difficulty arises from the I2C driver when the device
is in slave mode listening for messages: in the ESP32 the
driver expects the developer to know in advance the size of
each future incoming message, which is not the case for IPMB
communication, where messages from the master can have
variable length. We tested the behavior of the IPMC and its
interaction with the ShMC and found it to work as expected.

D. STM32-Pulsar2b Development platform

Aiming for deployment into a mass-produced, reliable and
affordable microcontroller, we chose to port OpenIPMC to
the STM32 family [39], which is one of the most widely used
families of microcontrollers worldwide. They are available in a
large variety of types optimized for a large number of applica-
tion classes. Specifically, the STM32H7 family is composed of
high-performance microcontrollers [41], characterized by pow-
erful processors and a large number of IO peripherals, which
makes them interesting for use in a feature-rich IPMC. On
this test platform, we replaced the ESP32 board in the ESP32-
Pulsar2b Development platform with the NUCLEO-H745ZI-
Q development board manufactured by ST Microelectronics,
which hosts a STM32H745ZIT6U microcontroller [40]. This
device is characterized by a dual Cortex-M7/Cortex-M4 core,
four I2C, four USART and four UART peripherals, and a large
number of GPIO channels.

Fig. 8. STM32-Pulsar2b development platform at SPRACE in São Paulo.

We ported OpenIPMC on the STM32 successfully and
with relatively little effort, taking around 5 person-weeks.
Most of the effort was focused in circumventing an inflexible
implementation of I2C multi-mastering, similar to the case of
ESP32. We could verify that OpenIPMC behaves as expected
in its communication with the ShMC and in the activation
process. In Fig. 9 an oscilloscope trace of the IPMB-A and
IPMB-B SDA buses shows the exchange of messages between

the IPMC and the ShMC. The transaction takes place in around
300 µs, well below the IPMI latency requirement.

Fig. 9. Example of IPMB communication: OpenIPMC is running on the
NUCLEO-H745ZI-Q board, receiving a message from the ShMC on IPMB-
A (activity on the left) and replying on IPMB-B (activity on the right) in
around 300 µs. The apparent cross-talk is an artifact of the measurement
setup.

E. Comparison between different test platforms

In table II we summarize the differences in the use of
different peripherals to read and operate the various I/O needed
by OpenIPMC. Note that Soft-Reset and 12V Enable are
board-specific controls, which were only used in the Trenz-
Serenity setup.

V. SUMMARY AND OUTLOOK

In this document we presented OpenIPMC, a software
written in C for embedded microcontrollers implementing
an IPMC as defined by the PICMG ATCA standard. The
operation of the software has been demonstrated successfully
on different hardware architectures such as ZynqUS+, ESP32
and STM32. We plan to continue our development on new
hardware designs, where OpenIPMC will be given full control
and monitoring duties over its hosting ATCA carrier board. We
also plan to introduce support for local add-on boards, such as
AMCs and RTMs. While OpenIPMC has been conceived in
a context of academic research, its full customizability make
it attractive for many other applications, such as innovative
industrial designs and board prototyping.

ACKNOWLEDGMENT

The authors wish to acknowledge the Fundação de Amparo
à Pesquisa do Estado de São Paulo for its financial support
through grants number 18/18955-0 and 17/16245-3. We also
want to thank the members of the CMS Phase-2 Tracker
Upgrade Data Processing Systems group for the regular
exchange of ideas, and in particular Dan Gastler, Gregory
Iles, Eric Hazen, Peter Wittich and Mark Pesaresi for the help
in defining the requirements for IPMCs used in the Phase-2
back-end boards. We would also like to thank Sthefany
Fernandes de Souza for her effort in setting up and testing
FreeRTOS.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOLẊX, NO. XX, XXXX 2020 8

TABLE II
COMPARISON OF PERIPHERAL USAGE BETWEEN THE DIFFERENT TEST SETUPS. PS = PROCESSING SYSTEM AND PL = PROGRAMMABLE LOGIC IN

ZYNQUS+.

Ultra96-Pulsar2b Trenz-Serenity ESP32-Pulsar2b STM32-Pulsar2b
SoC/microcontroller ZynqUS+ ZU3EG ZynqUS+ ZU4EG ESP32 STM32H745
Architecture ARM Cortex-R5 ARM Cortex-R5 Tensilica Xtensa Lx6 ARM Cortex-M7
IPMB-A I2C-PS I2C-PS I2C I2C
IPMB-B I2C-PS I2C-PS I2C I2C
Hardware
Address (bit 0)

GPIO-PL
PCA9557 using software-emulated

I2C on GPIO-PS
GPIO GPIO

Hardware
Address (bits 1-7)

GPIO-PS
PCA9557 using software-emulated

I2C on GPIO-PS
GPIO GPIO

Blue LED GPIO-PL
PCA9557 using software-emulated

I2C on GPIO-PS
GPIO GPIO

Handle Switch GPIO-PL
PCA9557 using software-emulated

I2C on GPIO-PS
GPIO GPIO

Soft Reset - GPIO-PS - -

12V Enable -
PCA9557 using software-emulated

I2C on GPIO-PS
- -

REFERENCES

[1] PICMG, “PICMG 3.0 - AdvancedTCA Base Specification”, Revision
3.0, March 24, 2008.

[2] PICMG, “Open Modular Computer Standards”, Available: https://www.
picmg.org/. Accessed May 26, 2021.

[3] PICMG, “Hardware Platform Management”, Available: https://www.pi
cmg.org/product-category/hardware-platform-management/. Accessed
May 28, 2021.

[4] A. B. Mann et al., ”A flexible advancedTCA based sampling ADC
system for multimodality positron emission tomography,” 2007 IEEE
Nuclear Science Symposium Conference Record, 2007, pp. 1729-1732,
doi: 10.1109/NSSMIC.2007.4436494.

[5] PICMG, “AdvancedTCA® Overview”, Available: https://www.picmg.or
g/openstandards/advancedtca/. Accessed May 26, 2021.

[6] CMS Collaboration, “The Phase-2 Upgrade of the CMS Tracker”,
Technical Design Report, CERN-LHCC-2017-009, Jul. 1, 2017.

[7] CMS Collaboration, “The Phase-2 Upgrade of the CMS DAQ Interim
Technical Design Report”, CERN-LHCC-2017-014, Sep. 12, 2017.

[8] ATLAS Collaboration, “Technical Design Report for the ATLAS Inner
Tracker Pixel Detector”, CERN-LHCC-2017-021, Sep. 23, 2017.

[9] ATLAS Collaboration, “Technical Design Report for the ATLAS Inner
Tracker Strip Detector”, CERN-LHCC-2017-005, Apr. 01, 2017.

[10] ATLAS Collaboration, “Technical Design Report for the Phase-II Up-
grade of the ATLAS TDAQ System”, CERN-LHCC-2017-020, Sep. 23,
2017.

[11] LHCb Collaboration, “LHCb Tracker Upgrade Technical Design Re-
port”, CERN-LHCC-2014-001, Feb. 21, 2014.

[12] LHCb Collaboration, “LHCb Trigger and Online Upgrade Technical
Design Report”, CERN-LHCC-2014-016, May. 14, 2014.

[13] A. Rose et al. “Serenity: An ATCA prototyping platform for CMS Phase-
2,” PoS TWEPP2018 (2019), 115 doi:10.22323/1.343.0115

[14] A. Albert, J. Butler, Z. Demiragli, K. Finelli, D. Gastler, E. Hazen,
J. Rohlf, S. Yuan, T. Costa De Paiva and V. Martinez Outschoorn,
et al. PoS TWEPP2019 (2020), 120 doi:10.22323/1.370.0120
[arXiv:1911.06452 [physics.ins-det]].

[15] L. Calligaris on behalf of the CMS collaboration, J. Phys. Conf. Ser.
1690 (2020) no.1, 012039 doi:10.1088/1742-6596/1690/1/012039

[16] J. Mendez et al. “CERN-IPMC solution for AdvancedTCA blades”,
PoS, vol. TWEPP2017, Santa Cruz, CA, USA, September 11-15, 2017,
vol.TWEPP-17, 2018, p. 053. DOI 10.22323/1.313.0053

[17] Nvent Schroff, “Pigeon Point Shelf Management Mezzanine Solutions”
https://schroff.nvent.com/solutions/schroff/applications/picmg-products.
Accessed May 26, 2021.

[18] S. Lafrasse. “LAPP IPMC Overview”, IPMC Workshop - ATLAS
upgrade, 2018 https://indico.cern.ch/event/737733/contributions/30
77000/attachments/1730606/2796822/LAPP IPMC Overview.pdf.
Accessed May 26, 2021.

[19] P. Perek et al., “ATCA carrier board with dedicated IPMI controller”,
Proceedings of the 17th International Conference Mixed Design of
Integrated Circuits and Systems - MIXDES 2010, 2010, pp. 139-143.

[20] L. A. Ramalho et al., “Development of an Intelligent Platform Manage-
ment Controller for the PulsarIIb”, in IEEE Nuclear Science Symposium
and Medical Imaging Conference, San Diego, CA, USA, 2015.

[21] T. C. Paiva, “Remote development environment with reconfigurable
components in the advanced telecom computing architecture context”,
M.S. thesis, FEIS UNESP, Ilha Solteira, SP, Brazil, 2016.

[22] Intel, Hewlett-Packard, NEC, Dell, “Intelligent Platform Management
Bus Communications Protocol Specification”, v1.0 R1.0, 2002.

[23] Intel, Hewlett-Packard, NEC, Dell, “Intelligent Platform Management
Specification”, Version 1.5, Revision 1.1, 2002.

[24] PICMG, AMC.0 R2.0, “Advanced Mezzanine Card Base Specification,”
2006

[25] PICMG, IRTM.0 Revision 1.1, “AdvancedTCA Intelligent Rear Transi-
tion Module (IRTM) Base Specification ,” 2011

[26] PICMG, 3.8 R1.0, “AdvancedTCA Rear Transition Module Zone 3A,”
2011

[27] S. Ahuja et al., “A Full Mesh ATCA-based General Purpose Data
Processing Board (Pulsar II),” doi:10.2172/1431570

[28] FreeRTOS Reference Manual. Accessed May 26, 2021.
[29] “Mozilla Public License Version 2.0”, https://www.mozilla.org/en-US/

MPL/2.0/. Accessed May 26, 2021.
[30] “OpenIPMC repository”, https://gitlab.com/openipmc/openipmc
[31] Avnet, “Ultra96”, Available: http://zedboard.org/product/ultra96.

Accessed May 28, 2021.
[32] Xilinx DS891, Zynq Ultrascale+ Datasheet v1.8, 2019.
[33] Xilinx UG1085, Zynq Ultrascale+ Tech. Ref. Manual v2.2, 2020.
[34] L. Ardila-Perez et al., A novel centralized slow control and board

management solution for ATCA blades based on the Zynq UltraScale+
System-on-Chip, 24th International Conference on Computing in High
Energy & Nuclear Physics CHEP2019, EPJ Web Conf.245 (2020), p.
01015. DOI 10.1051/epjconf/202024501015.

[35] Trenz Electronic GmbH, “TE0803 - Zynq UltraScale+”, Available: https:
//shop.trenz-electronic.de/en/Products/Trenz-Electronic/TE08XX-Zynq-
UltraScale/TE0803-Zynq-UltraScale/. Accessed May 28, 2021.

[36] PICMG, “PICMG COM.0 - COM Express Module Base Specification”,
Revision 3.0, Mar. 31, 2017.

[37] Espressif Systems, ESP32 Datasheet v3.6, 2020.
[38] Espressif Systems, ESP32 Tech. Ref. Manual v4.4 , 2020.
[39] STMicroelectronics, “STM32 32-bit Arm Cortex MCUs”, Available: ht

tps://www.st.com/content/st com/en/products/microcontrollers-micr
oprocessors/stm32-32-bit-arm-cortex-mcus.html. Accessed May 26,
2021.

[40] STMicroelectronics DS12923, STM32H745xI/G Product Datasheet Rev
1, 2019.

[41] STMicroelectronics RM0399, STM32H745/755 and STM32H7474/757
Reference Manual v3.0, 2020.

[42] CERN SoC working group, “CentOS for ZynqMP” https://twiki.cern
.ch/twiki/bin/view/SystemOnChip/CentOSForZynqMP. Accessed May
26, 2021.

https://www.picmg.org/
https://www.picmg.org/
https://www.picmg.org/product-category/hardware-platform-management/
https://www.picmg.org/product-category/hardware-platform-management/
https://www.picmg.org/openstandards/advancedtca/
https://www.picmg.org/openstandards/advancedtca/
http://arxiv.org/abs/1911.06452
https://schroff.nvent.com/solutions/schroff/applications/picmg-products
https://indico.cern.ch/event/737733/contributions/3077000/attachments/1730606/2796822/LAPP_IPMC_Overview.pdf
https://indico.cern.ch/event/737733/contributions/3077000/attachments/1730606/2796822/LAPP_IPMC_Overview.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmp-spec-v1.0.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmp-spec-v1.0.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v1.5-rev1.1-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v1.5-rev1.1-2.pdf
https://www.freertos.org/Documentation/RTOS_book.html
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
https://gitlab.com/openipmc/openipmc
http://zedboard.org/product/ultra96
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/TE08XX-Zynq-UltraScale/TE0803-Zynq-UltraScale/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/TE08XX-Zynq-UltraScale/TE0803-Zynq-UltraScale/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/TE08XX-Zynq-UltraScale/TE0803-Zynq-UltraScale/
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/resource/en/datasheet/stm32h745zg.pdf
https://www.st.com/resource/en/datasheet/stm32h745zg.pdf
https://www.st.com/resource/en/reference_manual/dm00176879-stm32h745755-and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00176879-stm32h745755-and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://twiki.cern.ch/twiki/bin/view/SystemOnChip/CentOSForZynqMP
https://twiki.cern.ch/twiki/bin/view/SystemOnChip/CentOSForZynqMP

	I Introduction
	II The ATCA Shelf
	II-A Hardware Platform Management
	II-B IPMC: Hot-swap and other functions

	III OpenIPMC
	III-A Running OpenIPMC in FreeRTOS
	III-B OpenIPMC Hardware Abstraction Layer
	III-C Board-Specific Controls
	III-D Licensing and code distribution

	IV Development and Testing Platforms
	IV-A Ultra96-Pulsar2b Development Platform
	IV-B Trenz-Serenity Development Platform
	IV-C ESP32-Pulsar2b Development platform
	IV-D STM32-Pulsar2b Development platform
	IV-E Comparison between different test platforms

	V Summary and outlook
	References

