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Abstract

Known for the ability to observe precipitation at spatial resolution higher than rain gauge networks and

satellite products, weather radars allow us to measure precipitation at spatial resolutions of 1 kilometer

(typical resolution for operational radars) and a few hundred meters (often used in research activities).

In principle, we can operate a weather radar at resolution higher than 100 m and the expectation is that

radar data at higher spatial resolution can provide more information. However, there is no systematic

research about whether the additional information is noise or useful data contributing to the quantitative

precipitation estimation. In order to quantitatively investigate the changes, as either benefits or draw-

backs, caused by increasing the spatial resolution of radar measurements, we set up an X-band radar

field experiment from May to October in 2017 in the Stuttgart metropolitan region. The scan strategy

consists of two quasi-simultaneous scans with a 75-m and a 250-m radial resolution respectively. They

are named as the fine scan and the coarse scan, respectively. Both scans are compared to each other in

terms of the radar data quality and their radar-based precipitation estimates. The primary results from

these comparisons between the radar data of these two scans show that, in contrast to the coarse scan, the

fine scan data are characterized with losses of weak echoes, are more subjected to external signals and

second-trip echoes (drawback), are more effective in removing non-meteorological echoes (benefit), are

more skillful in delineating convective storms (benefit), and show a better agreement with the external

reference data (benefit).
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1. Introduction

Precipitation information is of interest to both the meteorology and hydrology communities. Meteorol-

ogists deal with hydrometeors either in the atmosphere or reaching the ground surface, whereas hydrol-

ogists are concerned with the water after it reaches the ground surface. This difference determines the

different roles of precipitation data in meteorological or hydrological applications. For instance, regard-

ing numerical modeling, precipitation data are often among final output of many Numerical Weather

Prediction (NWP) models, whereas they serve as fundamental input for the majority of hydrological

models.

Demand for spatiotemporal resolution of precipitation data varies among these different appli-

cations. In terms of meteorological applications, observational rainfall data are used for various purposes:

to assess whether an NWP model is robust or reliable, to calibrate or validate satellite observations, and

to capture fine features of severe weather systems. Each purpose is associated with its own demand on

the spatiotemporal resolution. Grid resolutions of the majority of NWP models are on the 1-kilometer

scale (Vannitsem et al., 2021). For inter-comparisons between areal and point measurements of precipi-

tation, spatial resolution of the areal measurements should be as high as possible. To investigate severe

weather systems characterized by large gradients in rainfall intensity, spatial resolution of precipitation

data should be about tens to hundreds of meters, and temporal resolution should be shorter than 5 minutes

(Ochoa-Rodriguez et al., 2015) especially if these weather systems move and evolve rapidly.

When it comes to hydrological modeling, unlike lumped and semi-distributed models, physics-

based fully distributed models are capable of providing a detailed description of hydrological processes

(infiltration, runoff, etc.) at almost any location within a single catchment. They perform calculations

for each grid cell, and thus require precipitation input to be high-resolution (Salvadore et al., 2015).

The demand for the spatiotemporal resolution depends on the size of a catchment (Rossa et al., 2011;

Schellart et al., 2014). This demand is stronger for small-sized catchments, particularly those in urban

environments where small-sized features of intense precipitation can exert a considerable impact.

Such strong demand for the resolution is attributed to unique characteristics of urban catch-

ments. First, unlike a rural environment, an urbanized area is characterized by diminished natural reten-

tion and vast expanses of impervious surfaces. This speeds up the reaction of a catchment to precipitation,

such as surface or subsurface flows, and increases the likelihood of urban floods. Second, the majority

of urban catchments are relatively small. This small size accelerates the flood reaction speed, and also

1



implies less physical space for flood control structural facilities. Third, the conventional design for the

existing drainage systems for many developed metropolitan regions is imperfect, and these systems are

unable to respond promptly to the more frequent precipitation extremes against the background of cli-

mate change (Seneviratne et al., 2012; Arnbjerg-Nielsen et al., 2013; Prein et al., 2017). Fourth, urban

environments are extremely spatially heterogeneous, which implies non-linear interactions among dif-

ferent hydrological components, and adds complexity to the hydrological modeling. Fifth, in case of a

hilly orography such as the Stuttgart metropolitan area to be investigated in this thesis, the flow of water

downstream can be further accelerated, thus inducing rapid peak flows. These characteristics lead to

more rapid hydrological responses in urban catchments with durations of less than a few hours, thereby

rendering the aftermath of urban floods more devastating, requiring a shorter lead time for flood alert sys-

tems, making urban flood management more challenging. In Europe, the flood-related economic losses

have been a few billion euros per year, together with numerous causalities (Sénési et al., 1996; Douben,

2006; Barredo, 2007; Kron et al., 2012; Jongman et al., 2014). As urbanization is still expanding all over

the world (Nations, 2019), growing attention is being paid to floods in urban catchments. The relevant

applications are forecasting, real-time management and risk assessment of urban floods.

Precipitation input should be high-resolution in these applications concerning urban floods.

A theoretical analysis recommended the desirable spatiotemporal resolution to be 1-minute and 1-km2

(Schilling, 1991). Other applied studies adjusted the resolution depending on sizes of urban catchments.

Berne et al. (2004) proposed a resolution of 3 km and 5 minutes for a 10-km2 catchment, and 2 km and

3 minutes for a 1-km2 urban catchment. A 2.5-km resolution is for a 6-km2 catchment (Emmanuel et al.,

2012), and a 1-km2 resolution for a 10-km2 catchment (Schellart et al., 2012). It turns out that the 1-km

spatial resolution should be sufficient for precipitation data in urban hydrology.

If we need precipitation information at such a resolution of 1 km and 5–10 minutes, what can

be the source? Rain gauges, satellites and ground-based weather radars all provide precipitation mea-

surements, but each of them has its pros and cons. Owing to the effective area less than 1 m2, a rain

gauge provides point measurements at its local measuring site, which implies a lack of spatial informa-

tion between rain gauges. Germany has the world’s densest rain gauge network, but the average distance

between rain gauges is on the order of 10 km (Kidd et al., 2017). In fact, rain gauge densities are much

lower in the majority of countries and regions except Germany. Given the sparse rain gauge networks in

reality, these point measurements from rain gauges are insufficient to describe the spatial variability of

precipitation on small scales whose rainfall characteristic lengths are shorter than the distance between

any two rain gauges (Sharif et al., 2006; Villarini et al., 2008; Maier et al., 2020). For satellite products,

one datum represents the mean value over a footprint or pixel, but the spatiotemporal resolution of the

majority of satellite observation is too coarse, on the order of several kilometers and hourly to daily. It

means, neither rain gauge measurements nor satellite precipitation products are able to resolve precip-

itation’s great spatial variability. Thus, we focus on the ground-based weather radar which is able to
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measure precipitation at a spatial resolution higher than the 2-km resolution, and at a temporal resolu-

tion shorter than the 15-minute time interval, over geographic coverage on the order of 4× 104 km2. A

large amount of research on urban hydrological modeling has utilized weather radar measurements to

reconstruct or predict urban floods (Niemczynowicz, 1991; Schilling, 1991; Yuan et al., 1994; Han et al.,

2000; Tilford et al., 2002; Einfalt et al., 2004; Sharif et al., 2006; Smith et al., 2007; Wright et al., 2014;

Rico-Ramirez et al., 2015; Niemi et al., 2017; PC et al., 2019).

Radar measurements are sampled in a polar coordinate system. A radar datum represents

the averaged information of atmospheric particles within a radar sampling volume. In terms of opera-

tional applications, these data are often converted to the Cartesian coordinate, in which a radar datum

represents the averaged information of targets within a grid. Despite the radar’s ability to provide mea-

surements at the 1-km spatial resolution, chances are that precipitation can be spatially heterogeneous

under this 1-km spatial scale, which is often the case for convective precipitation (Bornstein and Lin,

2000; Dabberdt et al., 2000; Bentley et al., 2010; Davini et al., 2012). An extreme example showed

that precipitation measurements from nine rain gauges within a single radar pixel (500× 500m2) for

a 4-day period showed discrepancies up to twice in terms of precipitation amounts measured by these

nine rain gauges (Jensen and Pedersen, 2005). High gradients of rainfall accumulation amounting up

to 15 mmkm−1 were found from precipitation measurements of 13 rain gauges at a 1× 5km2 test site

(Fiener and Auerswald, 2009). Convective storms exhibited very small-scale rainfall variability on the

basis of precipitation measurements of 27 rain gauges within a 2×2km2 domain (Peleg et al., 2013). The

radar measurements at the 1-km resolution are unable to resolve these sub-kilometer spatial variability

demonstrated by these studies.

To investigate this sub-kilometer variability, Paschalis et al. (2013) used a stochastic space-

time model which generated artificial high-resolution precipitation data, and Gires et al. (2012) down-

scaled the original resolution of 1 km2 and 5 min by using multifractal cascades models. Although both

methods produced ‘extra’ datasets at other resolutions higher than the original measurements, these ex-

tra datasets were essentially based on radar measurements at the original resolution and contain no new

information beyond the original resolution. Whether these statistically manipulated data reflect the true

physics of changing sampling resolutions is in doubt. The most reasonable way to deepen into this sub-

kilometer precipitation variability is to measure precipitation directly at spatial resolutions higher than

the 1-km resolution. However, a few studies about radar sampling suggested that errors increased with

higher spatial resolutions (Fabry et al., 1994; Jordan et al., 2000; Piccolo and Chirico, 2005; Shuck-

smith et al., 2011). Thus, we are interested in whether radar measurements sampled at the sub-kilometer

resolution contain more errors compared to those sampled at spatial resolutions coarser than the 1-km

resolution, and also interested in how large these errors can be. Besides, each aforementioned study

involves measurements sampled with one spatial resolution only, and we are curious about whether their

conclusions are still valid in case of two direct measuring resolutions. Moreover, these studies quantify
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sampling errors using statistics calculated on the basis of precipitation accumulation, but we are also

concerned with errors in the directly measured radar variables. Since errors indicate bad data quality, we

are essentially interested in quality of information from radar measurements, and this information can be

in terms of both radar variables and precipitation quantities. However, within the author’s knowledge,

few studies involved such radar datasets with various sampling resolutions, and no research has ever used

such radar datasets to investigate effects or outcome of changing spatial resolutions in a systematic and

quantitative manner. The aim of this thesis is to fill in this gap.

The most prevalent and crucial application of radar measurements is to estimate precipita-

tion in terms of either instantaneous precipitation intensity or precipitation accumulation amount over a

period. That is also the reason for these measurement errors expressed in terms of precipitation accu-

mulation amount in the aforesaid research. Thus, besides the radar variables, we analyze radar-derived

precipitation estimates. In accord with definitions of the level II and III data in the common data record-

ing systems for weather radars, for the remaining thesis, radar data are defined as the output directly from

radar signal processors, and they are the level II data; the level III data are derivatives of the level II data,

such as these radar-derived precipitation estimates. Quality of any data depends on the intended uses of

the data. Since we focus on using radar measurements for precipitation estimation only, quality of both

the level II and III data depends on their ability to help us quantify precipitation in the real world.

The important attributes of data quality are accuracy and reliability. The accuracy refers to the

exactness of the data, and the reliability is about whether the data contradict other trusted resources. Since

precipitation data are also available from other instruments, to evaluate quality of the level III data, we can

check whether these level III data are commensurate with other sources of precipitation measurements.

However, we do not have direct measurements for the variable of the level II data, so assessment of the

quality of the level II and III data should be separated. As is well-known, radar observation is subject

to lots of factors, and radar data contain various sources of noise which severely affects the accuracy

of radar measurements. Thus, regarding the quality of the level II data, we can inspect whether and

how much the data are contaminated by noise. Noise is unwanted, irrelevant or meaningless data. In

this research, noise is the data which bring misleading information about precipitation; for instance, an

indication of rain in case of a dry condition, or an indication of heavy rain intensity in case of light rain,

or vice versa. The existence of noise makes it difficult for the ‘true’ precipitation information to be seen

clearly. The more noise exists, the worse the data quality is. Thus, the quality of the level II data can be

assessed by a measure of how much noise—‘fake’ or ‘wrong’precipitation information—a radar collects

compared to the ‘true’ precipitation information.

The radar-derived precipitation estimates are calculated from radar data via empirical rela-

tions which are also subject to their own errors and uncertainties. It means, besides the errors and

uncertainties of the radar data which propagate into the radar-derived precipitation estimates, these em-

pirical relations also bring errors and uncertainties to these precipitation estimates. Unlike some radar
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variables, precipitation quantities obtained by means of arithmetic calculations are all in the linear scales

and have their own physical meaning, which implies the quality of radar-derived precipitation estimates

is not identical to the quality of radar data. This is an additional reason why we assess the quality of

radar data and radar-derived precipitation estimates separately, which is not addressed by other previous

studies.

The foregoing assessment of noise in radar data brings us a good knowledge of characteris-

tics of noise in radar data. This assessment facilitates developments of radar data quality control (QC)

procedures which improve radar data quality by filtering out various types of noise. We plan to develop

individual procedures responsible for each type of noise, and expect some of these procedures are iden-

tical but some of them are different between the radar data with different resolutions. Through these

procedures we can examine how these data QC procedures impact the effects of the spatial resolution

on radar data quality. After applying data QC procedures to the radar data, the data quality of precipi-

tation estimates based on the radar data should be altered. Thus, we can also compare the sensitivity of

radar-based precipitation estimates to the data QC procedures in case of different spatial resolutions. No

similar study has existed.

Similar to the aforementioned literature, we plan to employ a scientific control, in which the

experimental group will use radar data or precipitation quantities with relatively higher resolutions and

the control group will use relatively lower spatial resolutions. This scientific control enables comparisons

between the experimental and control groups, and we hypothesize that both groups should be different.

Then, differences deduced from these comparisons can serve as indications of the effects of spatial

resolutions on radar data and radar-based precipitation estimation. However, unlike these aforementioned

literature, this research aims at radar measurements with different sampling resolutions. We expect

results of this research to reflect the physics caused by using different resolutions that are truly and

physically sampled. The previous studies using only the statistically generated ‘artificial’ resolutions

were unable to demonstrate such physics.

Because of a lack of the relevant research, the aim of this research is to investigate the effects

of changing spatial resolutions of radar sampling in two aspects—radar data quality and radar-based

precipitation estimation—using radar datasets measured using two sampling resolutions, at least one of

which is at the sub-kilometer resolution. Since radar measurements sampled at two radial resolutions

are available, we can investigate these effects through comparisons of radar data quality and radar-based

precipitation estimation between two spatial resolutions. To fulfill the aim, the following objectives

should be addressed through the thesis

- 1) to determine the differences between two spatial resolutions in terms of radar data quality by

assessing and comparing radar data quality between the radar data at different spatial resolutions

through characteristics of noise in radar data;
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- 2) to determine the differences between two spatial resolutions in terms of radar-based precipita-

tion quantities by assessing and comparing radar-based precipitation quantities at different spatial

resolutions by evaluating their consistency with references;

- 3) to inspect the sensitivity of these two categories of differences to the data QC procedures.

The field experiment’s design is constrained by practical technical limitations, so sampling

at two sampling resolutions is sufficient. In addition, considering the strongest demand for the spatial

resolution of precipitation measurements in urban hydrology, our radar experiment site was chosen in

an urban environment. The portability of the X-band radar renders itself as the optimal instrument to

observe precipitation customized for a specific location within a relatively small coverage (on the order

of 1×104km2 ).

The thesis is structured as follows. Chapter 2 provides an introduction to theories of radar

meteorology. It involves basic concepts of the weather radar system and its working principles, explains

definitions of dual-polarization and physical meanings of polarimetric variables, and elucidates the radar-

based quantitative precipitation estimation based on both single-polarization and polarimetric variables.

Chapter 3 describes the X-band radar field campaign, with an emphasis on the scan strategy and the

resultant two radar datasets in two different spatial resolutions, referred as the fine scan data and the

coarse scan data, respectively. Chapter 3 also describes supplementary datasets which contributes to the

subsequent analyses, and presents statistical concepts to be used later on.

The data analyses, results and relevant discussions are presented in Chapter 4 and 5. Chapter

4 discusses the effects of the spatial resolution on radar data quality by comparing the two X-band radar

datasets which are at two different spatial resolutions. The comparisons are performed on the various

aspects: i) existence of one part of ‘extra’ data which are only available in one dataset and absent in the

other dataset, ii) characteristics of these extra data quantitatively described by the single-polarization or

polarimetric radar variables, iii) procedures of identification and removal of these extra data if they are

identified as noise, iv) spatiotemporal variations of these extra data over the entire measuring period and

the whole radar coverage, v) statistical errors of polarimetric variables, vi) range dependences of radar

variables, either single-polarization or polarimetric. Through these comparisons, we simultaneously

process the data QC procedures for both fine and coarse scan datasets to improve the radar data quality

for the precipitation estimation in Chapter 5. It compares two sets of precipitation estimates derived

from these two radar datasets at two different spatial resolutions. The comparisons between the fine and

coarse scans are done in terms of: i) their ability to resolve structures of convective systems through

case studies of convective storms, ii) their agreement with other precipitation measurements at various

temporal scales, iii) spatial distributions of radar-derived precipitation quantities. The sensitivity of

differences shown by the comparisons regarding radar data quality to the radar data QC procedures is

also presented at the end of Chapter 4, and the sensitivity of differences shown by the comparisons
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concerning precipitation quantities to the radar data QC procedures are in the last part of Chapter 5.

Chapter 6 summarizes the main conclusions of these results.
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2. Basic Theory of Radar Meteorology, Dual-polarization and
Radar-based Precipitation Estimation

Basic knowledge of radar meteorology is a prerequisite for designing a radar experiment (Section 3.1)

and performing data analysis procedures in the following sections. This chapter gives concepts of both

single-polarization and polarimetric variables and their characteristics. These concepts are associated

with the radar data QC procedures (Chapter 4), visualization of convective storm inner structures (Section

5.1) and quantitative precipitation estimation (QPE) (Section 5.2 and Section 5.3).

2.1. Weather radar system and principles

Scattering, absorption and refraction are the processes which occur when the electromagnetic (EM)

waves interact with atmospheric particles. The Rayleigh scattering approximation that is valid for the

majority of atmospheric hydrometeors is used to define the radar equation and radar reflectivity that is

the most important radar variable in QPE (Section 5.3). A radar system transmits EM signals whose

propagation path is controlled by the refraction process, and the trajectory of this path should be known

for the radar-gauge match-up procedure (Section 5.2). The pulse-to-pulse sampling of a weather radar

fits its hardware design. The sampling parameters affect radars’ performance and their ability to observe

precipitation. Knowledge of physical constraints between these sampling parameters is a prerequisite

for designing the scan strategy for a radar experiment (Section 3.1). Doppler dilemma is closely related

to second-trip echoes—a type of noise discussed in Section 4.3. Weather radars can be categorized

according to its microwave frequency, and the S-, C- and X-band radars exhibit different characteristics

in terms of radar measurements. Discussions on these different characteristics correspond to the selection

of instruments (Section 3.1).

Electromagnetic waves’ interaction with atmospheric particles

Radar is an acronym for “RAdio Detecting And Ranging”. As active remote sensors emitting EM waves,

radars have been used for military, civil navigation, automobile, agriculture and geophysics. For a meteo-

rological radar, its EM waves propagate through the atmosphere filled with hydrometeors (cloud droplet,

raindrop, ice crystal, graupel, snowflake, etc.) (Fig. 2.1) and non-meteorological scatterers.
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Fig. 2.1.: Sketch of single-polarized (horizontally) EM wave propagation, where the red color indicates the electric
field, and the blue color represents the magnetic field

The EM wave, a traverse wave whose oscillation direction is perpendicular to the direction

of wave propagation, can be characterized by wavelength (λ ), frequency ( f ), phase, amplitude, and

polarization (direction of electric field oscillation). When the EM wave irradiates a single particle,

several processes occur. A proportion of the EM energy is absorbed in the process named absorption,

but a fraction of the absorbed energy is immediately re-radiated in the same frequency in all directions

out of the particle; this re-radiation process, in which the propagation direction of the EM wave deviates

from its original straight forward direction, is called scattering, and the term backscattering refers to that

part of the scattered radiation returning back to the radar (180◦ angle to the incident waves). For particles

in the atmosphere, scattering and absorption are two crucial processes.

For a spheric scatterer whose diameter is D, the backscattered power flux density (power per

unit area) at the radiation receiving point at range r (Sr) is related to the power flux density intercepted

by the particle Sinc through a parameter named as radar backscattering cross section (σb) as

Sr =
σb

4πr2 Sinc. (2.1)

In order to better understand σb, we can assume a spheric particle which is capable of scattering radiation

isotropically (uniformly in all directions) and is also located at range r. With the complex refractive index

of this scatterer (n) and the dielectric constant (also called relative permittivity) (εr), if the size of a spheric

particle is much smaller than λ (πnD� λ ), the radar cross section (σb) approximates to the sixth power

of D following (Hulst and van de Hulst, 1981)

σb =
π5|K|2D6

λ 4 , (2.2)

where K is named as dielectric factor, associated with n, or the dielectric constant (also called relative

permittivity) εr through

K =
n2−1
n2 +2

=
εr−1
εr +2

. (2.3)

This is the Rayleigh scattering approximation for a small spherical particle, which forms the basis of the

weather radar equation in terms of power measurement (to be discussed in the next subsection). For a
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unit volume (Vc) filled with spherical particles whose radii are all small enough to satisfy the Rayleigh

scattering approximation criterion, the ensemble radar cross section is given as

∑
j

σ j =
π5|K|2

λ 4 ∑
j

D6
j , (2.4)

where j represents each particle within this unit volume. This ensemble radar cross section per unit

volume leads to the concept of radar reflectivity (η)

η =
∑ j σ j

Vc
=

π5|K|2

λ 4

∑ j D6
j

Vc
=

π5|K|2

λ 4 Z, (2.5)

where

Z =
∑ j D6

j

Vc
. (2.6)

Z is the radar reflectivity factor per unit volume in units of mm6 m−3. It is the most important quantity

in radar meteorology. The magnitude of Z on the linear scale varies over several orders of magnitude

from 0.01 mm6 m−3 to 106 mm6 m−3. For convenience, 10 log10 Z is calculated for each Z, with the unit

of decibels (dB) of mm6 m−3 (written as dBZ), and then the magnitude of Z on the logarithmic scale

becomes between -20 dBZ and 60 dBZ.

If the circumference (πD) of this scatter becomes comparable with or larger than λ , Rayleigh

scattering approximation becomes invalid. The σb magnitude is no longer proportional to the 6th power

law, but oscillates (decreases or increases alternatively) as the particles size increases. This oscillation

of σb is named as resonance. This scattering is termed as Mie scattering, for particles whose sizes

are comparable with the wavelength (πD ≈ λ ). Beyond the Mie scattering regime, for particles whose

dimensions are much larger than λ , the scattering is not longer dependent on λ but instead is proportional

to the 2nd power of the diameter; this is termed as optical or non-selective scattering. The variations in

scattering amplitude with size of scatterers over the complete scattering regime, including Rayleigh, Mie

and optical scattering, can be found in Fig. 2.2 in Fabry (2015) and Fig. 3.10 in Zhang (2016)

The above definition of Z is based on the Rayleigh scattering approximation which is only

valid if πnD� λ , or specifically πnD/λ is less than 0.3 for hydrometeors (Ryzhkov et al., 2011). This

criterion depends on λ , which means the shorter-wavelength radar has a stricter requirement on the

sizes of particles. Thus, meteorologists are in favor of using radars in longer wavelengths to ensure

the Rayleigh scattering approximation is valid. For the non-spherical particles, such as hailstones, ice

crystals or snowflakes and the majority of non-meteorological targets (such as insects, birds, ground

clutters), the σb magnitude is not yet theoretically defined. Under both circumstances, the term equivalent

radar reflectivity factor per unit volume (Ze) is used to approximate the magnitude of backscattering. It

means that the radar reflectivity factor actually refers to Ze. Conventionally we name Z and Ze as radar

reflectivity (not η).
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Fig. 2.2.: Schematic diagram to show the concept of duty cycle, and its relation to pulse duration and pulse
repetition time, peak power and average power, and this plot is not drawn to scales (adjusted from
https://msi.nga.mil/Publications)

Besides the dimension criterion, Eq. 2.4 is valid for uniformly filled homogeneous spheroids

only, and invalid for mixed-phase, or oblate or prolate spheroids. The equation for the Rayleigh scattering

for non-spheric particles is beyond the scope.

As mentioned, in addition to the scattering, EM waves also interact with hydrometeors through

absorption in which the absorbed EM energy is converted into thermal energy and then dissipates. The

energy loss due to the absorption becomes more significant for the short wavelengths, which limits the

usage of short-wavelength weather radars for precipitation observation.

Weather radar sampling parameters and system hardware

The majority of weather radars are pulsed radars. A radar transmits EM waves in a form of sequential

short-duration high-power pulses at a single frequency. One pulse lasts on the order of 1µs with power

varying from a few hundreds of watts (W) up to a few megawatts (MW). Given that the majority of

weather radars are monostatic with one antenna for the collocated transmitter and receiver, after one

pulse is fired, the transmitter turns silent and waits over a relatively long duration for the weak signals

to be scattered back to the receiver, before transmitting the next pulse. The short duration when the

transmitter is sending out EM waves is termed as pulse duration (τ), and the silent time is termed as

reseting time (Fig. 2.2). Summation of τ and reseting time is the pulse repetition time (PRT or Ts), which

is usually on the order of 1 ms. The pulse repetition frequency (PRF), which is inversely proportional to

PRT, defines how many pulses are transmitted during a unit of time (one second conventionally), varying

from a few hundreds to a few thousand Hz for weather radars. The duty cycle, defined as the ratio of τ

to PRT, is also the ratio of average power to peak power (the power transmitted into the atmosphere from

antenna) (Fig. 2.2). For weather radars, the duty cycle is roughly on the order of 0.1%.

A single radar beam is regarded as being in the shape of an elongated cone, and the shape of

a unit volume Vc along one radar beam is analogous to a truncated cone (Fig. 2.3(a)). Such a unit volume
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(a)

(b)

Fig. 2.3.: (a) A sketch of a sampling volume within a conical radar beam with scattering (blue arrows) and backscat-
tering (the single red arrow opposing the direction of wave propagation) (adapted from Montopoli and
Marzano (2011)). The sampling volume is defined by range spacing ∆r, horizontal beamwidth Θ and the
vertical beamwidth Φ , located at a point (θe,φa,r) in the spherical coordinate whose origin is collocated
with the antenna, where θe is the elevation angle (with respect to the horizon), φa is the azimuth angle
(with respect to the north), G is antenna gain function, and r is the radial distance; (b) the antenna gain
function with mainlobe, sidelobes and backlobe with the definition of θbeam (adapted from a figure of
https://msi.nga.mil/Publications)

can be named as sampling volume, or resolution volume or contributing volume or pulse volume or radar

gate. Each sampling volume corresponds to one radar measurement, and each radar measurement of a

sampling volume is a reflection of the averaged information about hydrometeors within that unit volume.

Ideally, the size of a sampling volume can be expressed as

Vc ≡ π
r Θ

2
r Φ

2
∆r, (2.7)

where r is the range, ∆r is the range spacing or radial resolution, Θ is the horizontal (azimuthal)

beamwidth and Φ is vertical (elevation) beamwidth of a radar beam. r is the distance between the radar

and the center of Vc; ∆r is the interval between the centers of two successive Vc along the radar beam;

rΘ or rΦ describes the angular or cross-range distance between the centers of two adjoint Vc along the

azimuthal direction.

The dimension of the sampling volume is associated with the radar pulse. The maximum

distance an EM wave travels forth and back within a pulse cycle also defines the possible maximum

distance of a sampling volume to the radar. This maximum unambiguous range rmax is defined via

rmax ≡
c

2(PRF)
, (2.8)
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and varies from tens to hundreds of kilometers for weather radars. The centers of consecutive Vc are

spaced at an interval of ∆r, and the length of ∆r is determined by τ following

∆r =
τc
2
. (2.9)

Recall that τ usually lasts a few microseconds, the range spacing ∆r varies from the order of 100 m to

the order of 1 km. ∆r is independent of the range and can be adjusted by changing τ (Section 3.1.4).

In contrast, the cross-range distance between two sampling volumes along angular directions, either

rΘ or rΦ , increases with the increasing range. It leads to the gradual enlarging of sampling volumes

and deteriorating spatial resolution, which brings about the range dependency effect inherent in the radar

measurements (Section 4.9). For the power measurements such as Z, extreme values tend to be smoothed

out within a larger sampling volume, which constrains the radar’s detectability in the far range. The range

dependency orrange degradation is a source of errors in radar data applications. In brief, the dimension

of Vc represents the spatial resolution of radar measurements and the spatial resolution is defined by ∆r

and azimuth (angular) resolution (rΘ or rΦ). ∆r is typically smaller than the azimuth resolution. For

a common beamwidth of 1◦, the maximum size of the sampling volume, determined by τ and PRF,

can be up to a few cube kilometers. The majority of meteorological radar beams are designed to be in

circular symmetry with equal horizontal and vertical beamwidths (Θ = Φ), symboled as θbeam (Rauber

and Nesbitt, 2018).

The hardware design of weather radars is congruent with the aforementioned radar pulse sam-

pling strategy. The monostatic pulsed weather radar, which transmits and receives EM waves, requires

at least four fundamental parts: transmitters, receiver, antenna and Transmitter-Receiver (T-R) switch

(Fig. 2.4), in spite of its sophisticated mechanical and electronic configuration in reality. The transmitter

(Magnetron or Klystron or solid-state) sends out the high-power pulsed microwave signals on the orders

of 105–106W through a waveguide (an energy-efficient conductor connecting transmitter and antenna)

to the antenna—a combination of a feed horn and a reflector—regulating how the EM waves are radiated

into the space. A circular parabolic reflector is quite typical for weather radars, and its diameter Da is

associated with θbeam through (Fabry, 2015)

θbeam ≈ 1.22
λ

Da
. (2.10)

For instance, for a 1◦-θbeam, the antenna size of a 5-cm wavelength weather radar should be no less

than 3 m. The backscattered signal, which is on the order of 10−10W and usually much weaker than the

transmitted signal, should be amplified in the T-R switch before entering the very sensitive receiver. Then,

the receiver amplifies the received signals, and the signal processor processes these signals to retrieve

radar variables which can be shown in the real-time display such as the Plain Position Indicator (PPI),

if the antenna rotates in a full circle, or Range-height Indicator (RHI) if the antenna performs vertical
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Fig. 2.4.: The block diagram for a pulsed weather radar hardware, where T-R is the acronyms for transmitter-
receiver

cross section scanning. We talk about only four main components in the radar hardware (Fig. 2.4), but in

reality the modern radar hardware is far more complicated (Fig.13.1 of Fabry (2015), Fig.13 of Kumjian

(2018) and Fig.2.1 of Ryzhkov and Zrnić (2019)).

In accordance with the conical radar beam (Fig.2.3(a)), an antenna should radiate energy

into a narrow angular range. Such an antenna is called a non-isotropic or directive antenna, unlike an

isotropic antenna which radiates the EM energy equally in all directions. For the fixed amount of EM

energy into the antenna, the non-isotropic antenna is able to transmit stronger signals into a certain

direction. However, for this non-isotropic antenna, in reality, a portion of energy still goes to other

directions beyond this narrow angular range. It means, the antenna beam pattern, which describes the

radiation distribution around the radar, ideally should be a single envelop along the main axis of the radar

beam named as mainlobe, but in reality consists of many smaller peaks named as sidelobe (Fig. 2.3(b)).

The mainlobe usually occupies the majority of energy, but the occasional presence of sidelobes may

still induces erroneous measurements. Associated with the mainlobe, θbeam is more precisely defined as

the angular width of the mainlobe, and is conventionally defined as the width across the antenna beam

pattern between the two points where the power is reduced to half of the most intense power along the

beam axis (or 3 dB less than the maximum value).

An antenna gain function (GΘ ,Φ ) is defined to describe how efficiently the antenna radiates

energy relative to the desired direction. It is defined as the ratio of the actual power received at a point

of the angular coordinate (Θ ,Φ) to the assumed power that impinging on the same point if the antenna

is perfectly isotropic. Particularly, GΘ ,Φ along the beam axis (Θ = 0, Φ = 0), is the ratio of the actual

power (P1) received along the beam axis to the supposed power (P0) that would have been received at the

same location if the radiator is perfectly isotropic

G = 10 log
(

P1

P0

)
. (2.11)

The antenna gain can be related to the antenna beamwidth through

g =
π2 k2

g

ΘΦ
, (2.12)
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where g is G on the linear scale, and k2
g = 1 for the circular antenna.

Radar antenna can be manipulated in two modes. First, the antenna rotates over 360◦ full

circle and so a radar beam also rotates over 360◦ following the radar antenna. Such a 360◦ sweeping is

termed as a radar sweep. A radar scan strategy, also called Volume Coverage Pattern (VCP), consists of

at least one sweep. Usually the rotation speed is fixed, and the time for a scan strategy is predetermined.

This scan strategy is repeated continuously over the entire measuring period. Then we obtain a circular

radar coverage, which can be displayed via PPI—a top view of the coverage with a radar situated in the

exact center of the radar coverage, with the longitude as the x-axis and the latitude as the y-axis. The

second mode is vertical sweeps of a radar antenna, which can be visually displayed by RHI—a vertical

cross section with the range as the x-axis and the altitude as the y-axis.

Radar equation for disturbed targets

The size of a radar sampling volume varies from approximately 0.1 to 10 km3 (Eq. 2.7). The concen-

tration of raindrops varies from 10 to 104m−3, which means a radar sampling volume roughly contains

1–105 billion raindrops whose sizes are on the order of 1 mm. Thus, one measurement from a sampling

volume actually represents the average status contributed by all the particles within this single sampling

volume, and we name it as a distributed target (or beam-filling targets) (its antonym is solitary target

or point target). For distributed targets, in terms of the power measurement, the classical weather radar

equation (Probert-Jones, 1962) with additional three explicit loss factors (Smith, 1986) is expressed as

Pr = [
10−18π3c
1024 ln(2)

][
Ptτg2ΘbΦbLmLr

λ 2 ][
La

r2 ][|K|
2Ze], (2.13)

where
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Pr received power at the receiver, in W

Pt peak power of the transmitter, in W

Ze equivalent radar reflectivity factor, in mm6m−3

c microwave propagation speed in this medium,ms−1

τ pulse duration of the transmitted pulse, in s

g antenna gain, dimensionless

Θb azimuth beamwidth of the antenna, in radian

Φb elevation beamwidth of the antenna, in radian

λ radar wavelength, in m

|K|2 2nd power of dielectric factor, dimensionless (0.93 for liquid water and 0.176 for ice)

r range to the target, in m

Lm
microwave loss due to transmission through the radar hardware system (waveguide, an-
tenna, radome, etc.), dimensionless

Lr receiver loss, dimensionless

La
atmospheric loss due to attenuation by gases or particles along the propagation path, or is
regarded as transmittance of the atmosphere along the path (Fabry, 2015), dimensionless

All the quantities in Fig. 2.13 are in SI units except Ze which is in mm6m−3. We skip the

derivation of Eq. 2.13 which is available in most of textbooks on radar meteorology. The first bracket is

a constant value; the second bracket is about the radar parameters characterizing the radar system; the

third bracket represents properties of the intervening atmosphere along the propagation path between the

radar and targets; and the fourth bracket represents characteristics of targets.

For a given radar (fixed λ , g, Θb and Φb) operated in a predetermined scan strategy (fixed

Pt and τ), excluding three loss factors, the first and second brackets in Eq. 2.13 can be grouped as a

radar constant Cr. Given that |K|2 depends whether scatterers are water or ice along with additional

slight dependence on the temperature and λ , if we assume liquid hydrometeors only, the |K|2 is also kept

constant. Then, Eq. 2.13 can be reformatted as

Pr =
Cr|K|2Ze

r2 . (2.14)

which means that the power received by radar reflected from a sampling volume of atmosphere at range

r is inversely proportional to r2. It implies that, the received power degrades rapidly with the increasing

range of the sampling volume or the target to the radar. Such a feature is named as range dependence.

As mentioned, a distributed target, such as a single sampling volume along the radar beam

(Vc), contains a huge quantity of scatterers. Each scatter contributes its portion to the power of the total

returned signal. In other words, the received EM signal from one sampling volume is an aggregative rep-
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resentation of all the scatterers within that single sampling volume (Fig. 2.3(a)). We assume a rectangular

waveform with τ and Ts illuminating two particles; one is at range r1 at time t1; the other is at range r2

and at time t2. r1 can be any point within rmax, and r2 depends on r1. In the range-time diagram with the

time as the abscissa and the radial range as the ordinate (Fig. 2.7), the propagation of the front and rear

points of a pulse is shown as the lines r = ct and r = c(t− τ). The received signal at t ′ is a combination

of the scattered signals from the closer particle at r1 whose amplitude is evaluated at t1 (the yellow dot

in Fig. 2.7), and the farther particle at r2 whose amplitude is evaluated at t2 (the green dot in Fig. 2.7).

In reality, more than two particles coexist in the atmosphere. More precisely, the received signal at t ′,

aggregates the signals scattered by all the particles located between r1 and r2 evaluated between t1 and t2

satisfying the relation of r
r2
= t−t ′

t2−t1
along the line with slope of−c (horizontally flip of the characteristics

line r = ct).

Within a unit volume, each scatterer, depending on its relative movement and position, may

interfere constructively or destructively with the other scatterers, which leads to random fluctuations in

the returned signals at the reception point; this refers to Rayleigh fading model (Goodman, 2015). This

stochastic property of radar echoes implies that a measurement from a single pulse might be absolutely

different from the statistically averaged status, thus the radar usually needs to illuminate a sampling

volume multiple times. Another extreme situation is that, the measurements of two successive pulses

are identical if the in-between time gap of these two successive pulses is too short. To address this

duplication, decorrelation time or the time to independence (τdecorr) defines the time which should be

long enough to allow scatterers within a sampling volume to reshuffle (to move around relative to other

scatterers), to generate measurements statistically independent from measurements of the previous pulse

(mathematically below the correlation of 0.01). In this way, averaging over these multiple independent

samples can provide a true representation of the mean status and can cancel out the constructive or

destructive interferences. The decorrelation time increases with a longer λ and a narrower distribution

of the scatter velocity represented by the spectral width (σv) following (Fabry, 2015; Zhang, 2016)

τdecorr =
λ

4π1/2σv
. (2.15)

The dependence of τdecorr on λ is clear, because the decorrelation requires hydrometeors to reshuffle

over a distance of appreciable fraction of λ . For a moderate stratiform precipitation, σv = 1.5ms−1 for

instance (Sauvageot, 1992), τdecorr is on the order of 3 ms for X-band (3.5-cm λ ). Although a sampling

volume is illuminated multiple times, not all the measurements are independent. Thus, we introduce

another term—number of equivalent independent samples MI, defined as

MI = M/µM, (2.16)
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where M is hit per scan or the theoretical maximum number of transmitted pulses received by a target per

azimuth resolution or can be interpreted as the number of samples for one estimate, and M is regulated

by the PRF and antenna rotation speed (Na) in unit of rpm (revolutions per minute) (Wolf, 2021)

M = PRF× θbeam

6×Na
=

TD

PRT
, (2.17)

where the dwell time (Td) defines the duration a radar beam dwelling on a target,

Td =
θbeam

6×Na
, (2.18)

and

µM =
M−1

∑
m=−(M−1)

(1− |m|
M

)|r(m)|2, (2.19)

where

r(m) = exp( j 2k vD Ts m)exp(−(2π mσvn)
2) (2.20)

is the autocorrelation coefficient (Ryzhkov and Zrnic, 1998b),

σvn = σv/(2va) = 2σv Ts/λ (2.21)

is the normalized spectrum width (Doviak et al., 1993), va = λ/(4Ts) is the unambiguous velocity,

k = 2π/λ is the radar wave number, vD is the mean Doppler Velocity, σv is the Doppler velocity spectrum

width (Doviak et al., 1993), and j is the imaginary one. Obviously, MI, an indicator of the correlation of

samples from successive transmitted pulses, depends on radar parameters (λ , τ , PRF and θbeam) and the

spread of radial velocity (σvn) in the sampling volume (Doviak et al., 1993). MI should be large enough

to guarantee the reasonable accuracy of radar measurements.

Ray propagation path

In the refraction process, the propagation direction of the EM wave deviates from the straight line when

the wave travels from one medium to another medium, if both mediums are characterized by different

refractive indexes, and the refractive index (n) is the ratio of the EM wave velocity in the vacuum (c) to

that in a non-vacuum medium (vc),

n =
c
vc
. (2.22)

The magnitude of n depends on pressure, temperature, and humidity. Given that pressure, temperature,

and humidity vary everywhere in the atmosphere, the geometry of a radar beam never follows a straight
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Fig. 2.5.: Illustration of a propagation path of a radar beam in the assumed standard atmosphere (curvatures are
exaggerated for illustrative purpose) (adapted from Fig. 4.4 in Rauber and Nesbitt (2018)), where the solid
dark blue line is the propagation path of the radar ray which bends due to the atmospheric refraction, the
dashed gray line is the path of the ray under the circumstance of no refraction, the dot green line is
the curvature of the earth lifted to the same altitude as the height of radar antenna, ∆h is the relative
displacement of the sampling volume caused by the refraction in the air

line but a curve instead. Because n of the near surface atmosphere is about 1.0003, for convenience,

refractivity (N) is defined as

N = (n−1)×106. (2.23)

The N, as a function of atmospheric temperature, pressure and vapor pressure, normally decreases with

the increasing altitude (varying from∼400 m near the surface to∼200 m in the middle troposphere in the

warm season), which makes the ray bend downward towards the earth’s surface (Fig. 2.5). To calculate

the actual path of a radar ray, for convenience, the standard refraction of the International Standard

Atmosphere is assumed via its vertical gradient dn
dh =−39−6km−1 or equivalently dn

dΞh = 39N ·unitskm−1

(Rauber and Nesbitt, 2018).

With the assumed refractive index, the height of a sampling volume along the radar beam (h)

can be calculated as

h =
√

r2 +(k ae)2 +2rae sin(θe)− kae +h0, (2.24)

where h0 is the above mean sea level (AMSL) height of radar antenna, and ae is the radius of the earth,

θe is the elevation angle of the radar beam, and

k =
1

1+ae(
dn
dh)

, (2.25)

and meanwhile the distance of the projected point of that sampling volume on the ground surface to the

radar (s) approximates to

s = k ae sin−1(
r cos(θe)

k ae +h
). (2.26)

The derivation of Eqs. 2.24 and 2.26 can be find in Rauber and Nesbitt (2018) and these equations will

be used to determine radar gates geographically collocated with external instruments (Section 5.2).
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This standard atmosphere is a conventional approximation of the low-level atmosphere, but it

is not always valid. A phenomenon named as anomalous propagation (AP), also abbreviated to anaprop,

occurs when non-standard refractive indexes prevail through the atmosphere. It includes the scenarios

of sub-refraction (less bending with dn
dh < −39−6km−1 ), and super-refraction with dn

dh > −39−6km−1

(more bending). A special case of the super-refraction is ducting or trapping, in which the refractivity

declines much faster than the normal situation. In other words, the vertical gradient of the refractivity dn
dh

is even more negative than minus the curvature of the earth around −157−6km−1 so that the downward-

bending radar ray is trapped in a layer of atmosphere and strikes to the ground surface. The ducting

usually occurs when the upper air is extremely warm and dry compared to the lower air, in case of noc-

turnal temperature inversion, thunderstorm outflows and fronts. It enables radar beams to scan immobile

obstacle reflectors (Section 4.5) at the farther ranges which are normally well below the ray, and these

resultant unwanted AP echoes bring uncertainties into radar measurements (Section 4.5).If the vertical

gradient of the refractivity deviates much from the standard values, the propagation path should be recal-

culated by using real-time refractivity estimated from atmospheric soundings from nearby radiosondes.

Due to the curvature of the earth, as the radar beam goes farther from the radar, the sampling

volume along that radar beam rises with the increasing altitude. Such an increase in altitude is more

apparent for long-range radars. Owing to the combination of the earth’s curvature and the refraction

process, the height of the sampling volume can be indicated by the displacement (∆h= h−h0) in Fig. 2.5.

For instance, in case of the foregoing assumed standard atmosphere, for a radar beam with a tilted

elevation angle of 1.5◦, the altitudes of sampling volumes at the ranges of 50 km, 100 km and 150 km are

1.5 km, 3.2 km and 5.2 km above the height of the radar antenna, respectively.

During the warm season, the altitude of the freezing level (or the 0◦C isotherm level) fluc-

tuates around 3–4 km in altitude in the southern Germany (Fig.B.19). Then, the radar beam at the far

range penetrates into solid phase precipitation. Given the large discrepancy of dielectric factor between

water and ice (Eq. 2.13), Z value in the solid phase precipitation is much different from that of liquid

phase, which brings errors to Z measurements. The situation can be more complicated if mixed phase

hydrometeors prevail. This effect is named as overshoot. Clearly, the proportion of sampling volumes

affected by this overshooting effect depends on θe and air temperature.

In order to mitigate the overshooting effect, especially for those who are primarily interested

in liquid precipitation at the ground surface, it is better to use θe closer to the horizon. However, in most

of the time, obstacles dwell at least somewhere within the radar observational coverage, blocking fully or

partially the radiation, making the radar “blind” or “half-blind” to the precipitation behind these obstacles

(Fig. 2.6). This is named as beam blockage, or beam shielding, or beam occultation. For a propagation

path free from blockage, when the path is calculated using the standard refraction, the partial blockage

might occur for this radar beam, in case of the actual refraction different from the standard refraction.

What is even worse, the departures from the standard refraction often occur when meteorological systems
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Fig. 2.6.: Two-dimensional schematic diagram to show radar beam partial blockage, where 50% of the transmitted
power is shielded by an obstacle, indicated by the blue shaded area, and the antenna pattern follows the
typical Gaussian-shaped distribution

of our interest are present. For the partial blockage, the assumed Gaussian-shaped antenna pattern for

the weather radar is distorted, for instance, missing the peak value along the beam axis if the blockage

exceeds 50%. This modifies the receiver power in Eq. 2.13. Therefore, in order to determining proper

θe in the radar experiment or selecting the suitable measuring site, it is necessary to consider seriously

about the local topographic features (Section 3.1).

Doppler radial velocity and Doppler dilemma

Besides amplitude, the received EM wave also contains information about another property—phase.

Doppler effect describes a phase change (equivalently frequency change) at the receiver when an ob-

jective is approaching or is leaving away from the radar. Utilizing the Doppler effect, a Doppler radar

measures the phase of each returned EM pulse, and according to the phase change between two succes-

sive pulses, we can measure the radial velocity–the reflectivity-weighted velocity along the radar beam

– through

vr =±
λ

2Ts
(
∆Φ

2π
), (2.27)

where ∆Φ is the phase shift (in radians) during a pulse period between two successive pulses, and we

regulate positive (negative) velocity if the target is moving away from (towards) the radar. The solution

to Eq. 2.27 is not unique. For instance, the radial velocities are identical for the phase change of π and the

phase change of −π . To address this velocity ambiguity, for the Doppler radar, all the phase increments

should be less than π

|∆Φ |=
∣∣∣4π vr Ts

λ

∣∣∣< π, (2.28)

which leads to the definition of maximum unambiguous velocity or Nyquist velocity as

|vr|<
λ PRF

4
≡ vmax. (2.29)
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This Nyquist velocity sets the two-end threshold for the available Doppler velocity values, and any

velocity higher than vmax or lower than −vmax is folded into the Nyquist interval, which is referred as

velocity aliasing.

As shown by the range-time diagram with the time as the abscissa and the radial range as

the ordinate (Fig. 2.7), the propagation of front edges of two successive pulses in a rectangular shape is

represented by the characteristics lines r = ct and r = c(t−Ts). The signal received at t ′′ at the antenna

port is contributed from both scatterers at r′′ and r2. The range r′′ exceeds rmax, and the velocity aliasing

occurs. The signal scattered by the scatterer at range r′′ is termed as second-trip echo (Section 4.3).

Fig. 2.7.: Illustration of concepts about range aliasing (adjusted from Figs. 5.6 and 5.11 in Bringi and Chandrasekar
(2001)), where the x-axis is time, the y-axis is range, τ is the pulse duration, Ts is pulse repetition time,
the blue solid slanted lines are characteristic lines, r = ct represents the leading edge of the first pulse,
r = c(t− τ) represents the rear edge of the first pulse, and r = c(t−Ts) represents the leading edge of
the second pulse, the horizontal red dashed line represents the maximum unambiguous range, the pixel
(r1, t1) and pixel (r2, t2) represents two point scatterers within the maximum unambiguous range and
both point scatterers contribute to the received signal at the antenna at time of t ′, and the received signal
at time t ′′is a superposition of scattered signals from the scatterers beyond rmax, and also the scatterers
within rmax

Implied by Eq 2.29, more frequent pulses or a larger λ allows more tolerance on measuring

radial velocity unambiguously. Combing Eqs. 2.29 and 2.8, we obtain

rmax vmax =
cλ

8
(2.30)

Eq. 2.30 describes the Doppler dilemma, one of the major compromises we need to balance

carefully when it comes to choosing the radar frequency or designing the scan strategy. For instance, for a
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given λ , widening Nyquist interval leads to very high PRF, increasing chances of contaminations caused

by multi-trip echoes (Section 4.3.1). Furthermore, the radial velocity is only one component of a three-

dimensional wind field, and the Doppler radar is unable to provide any information about the motions

perpendicular to radar beams. In other words, retrieving a wind field requires additional approximations

or assumptions.

Despite these foregoing limitations, research has shown that the measured Doppler velocity

provides plenty of information to decipher storm motions. Doppler velocity has become a standard initial

dataset assimilated into NWP models for short-term forecast or nowcasting, and the Doppler capacity

has been a necessity for operational radars.

Given that within a sampling volume each particle has its distinct radial velocity, Doppler

spectrum of the ensemble of these particles represents the reflectivity-weighted distribution of particle

radial velocity (Rauber and Nesbitt, 2018). Regarding Doppler spectrum, Z and (Z-weighted) mean

Doppler velocity (VDo) are usually regarded as the zeroth and first moment of the scattered signal, and

the second moment is regarded as the spectrum width (σv)—the variance of VDo (Rauber and Nesbitt,

2018). It is a measure of degree of dispersion of VDo (or variability of wind) within a sampling volume,

and the σv of hydrometeors is attributed to several different causes as

σ
2
v = σ

2
shear +σ

2
dv +σ

2
α +σ

2
t , (2.31)

where the right side equation consists of the wind shear term, terminal velocity term, the antenna scan

rate term and turbulence term (Doviak et al., 1993). A graphical illustration for these causes can be

found in Figure 5.2 in Fabry (2015). Since σv is affected by several different factors, its usage is not that

straightforward. In operation, σv is used to estimate turbulence and check the quality of radial velocity,

and occasionally is used to locate the significant wind shear (Klazura and Imy, 1993).

Weather radar types: S-, C- and X-band radars

With respect to the purpose of precipitation observation, the weather radars mainly function in three

microwave frequencies: S-band (3.0 GHz), C-band (5.5 GHz), X-band (10 GHz). The wavelength affects

radars’ technical characteristics (Tab. 2.1), such as the spatial resolution of radar sampling, which is of

the most concern in this research. From the foregoing Eq. 2.7, the spatial resolution of radar sampling

is subject to θbeam, whereas there is a physical constrain between the antenna aperture size, θbeam and

λ (Eq. 2.10). For instance, the beamwidths of the 1-m antenna for S- and X-band radars are 5.7◦ and

1.8◦ respectively, corresponding to 3-km and 1-km rΘ at the 30-km range respectively. Thus, a high

spatial resolution with a small size aperture is practically possible at the short λ ; this is an advantage of

using X-band radar. Meanwhile, Eq. 2.10 implies this cross-range resolution, constrained by the antenna
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aperture size and λ , cannot be adjusted after radar design or construction. As a consequence, changing

spatial resolution for radar measurements refers to changing ∆r, which can be manipulated by modifying

τ because ∆r is linearly proportional to τ (Eq. 2.9).

Tab. 2.1.: Typical characteristics for S-, C- and X-band weather radars

Parameter X-band C-band S-band

Frequency (GHz) 8–12 (9.3) 4–8 (5.6) 2–4 (2.9)

Wavelength (cm) 2.5–4 (3.2) 4–8 (5.3) 8–16 (10.3)

Peak power (kW) 50–200 250–500 500–1000

Antenna diameter (m) 2.5 4.2 <7.5

Typical Range (km) 30–60 100–130 100–200

Radial resolution (km) 0.05–1 0.25–2 1–4

Regarding the precipitation estimation, the major differences among these three frequencies

lie in the following two aspects: i) attenuation and ii) validity of the Rayleigh scattering approximation.

First, the amplitude of EM wave is attenuated (reduced) due to presence of particles in the atmosphere. In

most cases except some extreme precipitation events (Ryzhkov and Zrnic, 1995), the attenuation is neg-

ligible in S-band, moderate in C-band and severe in X-band radars, respectively. Second, as mentioned,

the Rayleigh scattering approximation used in Eq. 2.13 is only valid if the particle size is much shorter

than λ (πnD/λ<0.3). It means that, for a particle whose diameter is more than 2.3 mm for C-band or

1.4 mm for X-band, the Rayleigh approximation becomes invalid and Z is not longer proportional to the

6th power of the particles size (Tab. 2.1). In short, selecting radar frequency depends on not only the

technical aspects such as cost, weight and size of hardware, but also on the practical requirements of an

application. For instance, we need to consider the aimed sensitivity of radar data to weak echoes, the

desired ability to resolve small or rapidly evolving features (spatial and temporal resolutions), and the

impact of intervening atmosphere exerted by attenuation.

For the pulse radar, one more drawback of the shorter-wavelength radar is due to the Doppler

dilemma. For the X-band frequency, to achieve the ability to measure ±50 ms−1 radial velocity, the

maximum range is less than 23 km (Eq. 2.30). It confirms that the trade-off between range and velocity

aliasing is particularly severe for radars in the short wavelengths (Joe and May, 2003). Thus, the dual

PRF mode with two different pulse repetition frequencies can be a solution (Doviak et al., 1977; Sirmans

et al., 1976).

In European continent, the majority of operational weather radars operated by the local

weather service agencies are in the C-band frequency, except some S-band radars in the southern Eu-

rope where heavy and convective precipitation is more frequent. In general, the X-band radar takes up a

small portion in the operation radar network. In contrast, owing to its portability and mobility relative to
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Fig. 2.8.: Mapping distribution of the S-, C- and X-band country-level weather radar network by countries, screen
shot from the World Meteorological Organization (WMO) radar database website (wrd.mgm.gov.tr)

S- or C-band radars, the X-band radar is primarily used as a research radar being deployed specifically

in proximity to small-sized catchments or urban environments of specific investigations.

2.2. Polarimetry, polarimetric quantities and their characteristics

The polarization is a fundamental property of an EM wave besides the other two properties—frequency

and amplitude. Despite the fact that polarization was explained by Young and Fresnel in the 1800s and

documented in the Maxwell equation in 1861, polarization did not attract much attention from radar en-

gineers until the 1950s (Giuli, 1986). Calculating wave scattering of non-spherical raindrops (Atlas et al.,

1953; Waterman, 1965) provided the theoretical basis for polarization diversity. A summary of the rele-

vant research around the 1950s was presented in Atlas (1964). In spite of the theoretical analyses (Atlas

et al., 1953; Shupiatskii, 1959) and a few measurement activities on radar polarimetry after World War

II (Browne and Robinson, 1952; Hunter, 1954; Shupiatskii and Morgunov, 1968), it was the progress

in the research on radiowave (3 KHz–1 GHz ) attenuation in the 1970s that prompted the research on

polarimetry in the microwave frequency (1 GHz–1000 GHz). The period before the 1980s was the early

stage when the radar instrumentation and the radar theory were the main focus. After that, the golden

period for the research on radar meteorology began until 1995 followed by the period when the relevant

operational activities flourished. The change of the research focus was well reflected by different names

of two radar polarimetry workshops in 1981 and 1995, named as Polarization Techniques in Radar Me-

teorology (Metcalf and Humphries, 1981), and Weather Radar Polarimetry for Research and Operational

Applications (Illingworth and Zrnic, 1995), respectively.

The advantages of radar polarimetry have been justified by a vast number of scientific re-

search and operational applications in terms of interpreting and quantifying precipitation, especially its

capability to estimate precipitation quantitatively, to decipher internal structures of convective storms, to
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assess the bulk property of hydrometeors quantitatively, and to assist the NWP and hydrological model-

ing (Thorndahl et al., 2017; Ryzhkov and Zrnić, 2019). In order to better understand these advantages,

the concept of dual-polarization, definitions and characteristics of polarimetric variables, as well as the

polarimetric radar hardware system are presented as follows.

Concept of polarization and dual-polarization

For a homogeneous sphere, the backscattering from horizontally and vertically polarized waves exhibits

no difference in polarization. Instead, it is the non-spherical nature of raindrops that motivates the de-

velopment of weather radar polarimetry to improve radar-based precipitation estimation. However, the

meaning of the dual-polarization is distinct from polarization.

The state of polarization is a property of a monochromatic (i.e., time-harmonic) EM wave

besides its amplitude, frequency and phase. According to the Maxwell equations, the electric polarization

P is the average electric dipole moment or the vector sum of all the dipole moments within a unit volume

of the medium (Bohren and Huffman, 1983),

P = ε0χE, (2.32)

where ε0 is the permittivity, χ is the electric susceptibility, and E is the electric field. After putting a

piece of the unpolarized matter (P = 0) into an external electric field, the electric field induces a net

dipole moment, and this matter becomes polarized (P 6= 0).

Since an EM wave is a time-harmonic wave, a certain point of its electric field vibrates si-

nusoidally with time if this point is far enough away from the sources. The electric vectors ~E lie in a

plane perpendicular to the direction of wave propagation. The polarization can be described by a curve

connecting all the end points (the tip) of the instantaneous electric vectors within a single plane over

time. We call this curve the locus of the tip of electric vectors (Zhang, 2016) or the vibration ellipse

(Bohren and Huffman, 1983), and this plane the polarization plane (Ryzhkov and Zrnić, 2019). Within

a three-dimensional Cartesian coordinate system, consider an EM wave propagating along the x-axis

direction with its angular frequency ω = 2π f and wave number k, the electric vectors lie within the y-z

plane,
~E(x, t) = Ey(x, t)ŷ+Ez(x, t)ẑ, (2.33)

Ey(x, t) = Ay cos(ω t− k x+φ01), (2.34)

Ez(x, t) = Az cos(ω t− k x+φ02), (2.35)
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where, the orthogonal axes ŷ and ẑ define the polarization plane, Ay and Az are the amplitudes of y- and

z-components of the wave, φ01 and φ02 are their initial phases. When the initial phase difference is an

integer multiple of π ,

δ = φ02−φ01 = 0 or π, (2.36)

the electric vectors satisfy the criterion as

~E(x, t) = (Ay ŷ+Az ẑ)cos(ω t− k x+φ1) (2.37)

The term A = Ay ŷ+Az ẑ, which describes the electric vectors as a function of time and the location,

represents a straight line. In other words, if the locus of the tips of the electric field ~E(x, t) becomes

a straight line, the wave is termed as linearly polarized. Waves can also be in circular and elliptical

polarizations, but nowadays they are not commonly used in the modern weather radars. Our discussion

is constrained to the linear polarization only.

Conventionally, given that the x-axis of the three-dimensional Cartesian coordinate is set as

parallel to the local flat surface of the ground, the wave propagating along the x-axis oscillating with

the x-y plane is named as a horizontally-polarized wave, whereas the wave propagating along the x-axis

oscillating with the x-z plane is named as a vertically-polarized wave. Clearly, the axis ŷ (ẑ) corresponds

to horizontal (vertical) polarization. For the linearly polarized wave, the horizontally and vertically

polarized components of the electric field Ey and Ez are kept in phase or out of phase (Ryzhkov and

Zrnić (2019); Eq. 1.9).

In brief, the polarization, as a property of a wave, describes the time-varying direction and

relative magnitude of the electric vector (Balanis, 2016). When it comes to an isotropic sphere, the

scattered wave is independent of the directions of the electric field. It means that the amplitude and

phase of the horizontally-polarized wave is identical to that of the vertically-polarized wave. It implies

that the polarization has no special implication and seems a “boring” property.

All the aforementioned concepts in Section 2.1 deal with a conventional Doppler single-

polarization radar, which only transmits horizontally-polarized waves which propagate horizontally (per-

pendicular to the x-z plane)) with the electric field oscillating in a horizontal plane (x-y plane), in the

standard 3D Cartesian coordinate. Illuminated by these horizontally-polarized waves, a hydrometeor

behaves as a horizontal dipole antenna.

It is also possible for a radar to transmit vertically-polarized waves which propagate also

horizontally but with electric field oscillating in a vertical plane (x-z plane). A raindrop, if in equilibrium,

can be regarded as a sphere as far as it is small enough, and becomes oblate (the major axis of the spheroid

oriented horizontally) as its size increases. This change in shape is owing to aerodynamic force, and this

oblateness becomes greater as raindrops become larger (Beard and Chuang, 1987; Pruppacher and Klett,
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Fig. 2.9.: Three-dimensional illustration of concept of dual-propagation (adjusted from Fig. 7.1 in Rauber and Nes-
bitt (2018))

2011). Owing to the difference between the horizontal and vertical dimensions of the oblate drops, the

interaction between the EM wave and this non-spheric particle differs depending on whether the particle

is illuminated by a horizontally or vertically polarized wave. Then, the different interactions lead to

differences in the amplitude and phase of the scattered waves or the received signals by radars.

To give insights into how different polarizations of the incident radiation affect the particles’

scattering response, consider a highly non-spheric ice crystal composed of a large number of tiny spheres

with its major axis oriented horizontally (Kumjian, 2018). Once illuminated by the external EM waves,

each sphere is activated, inducing its own electric field which is immediately exerted on its neighboring

spheres. In this way, each sphere is affected by the electric field from both the external incident EM

waves (indicated by the blue arrows in Figs. 2.10(c) and 2.10(d)) and from their neighboring spheres

(indicated by the black arrows in Figs. 2.10(c) and 2.10(d)). Both electric fields are in the same direction

if the external incident EM wave is horizontally polarized, and in the reverse direction if the external

incident EM wave is vertically polarized (Figs. 2.10(a) and 2.10(b)). Summation of two electric fields of

the identical direction results in constructive inference (indicated by the orange arrow in Fig. 2.10(c)),

while the electric fields of the reverse directions cancel out, leading to destructive inferences (indicated

by the orange arrow in Fig. 2.10(d)). As a consequence, for this oblate spheroid, the total scattered EM

energy under the horizontally-polarized wave is more than that under the vertically-polarized wave. This

explains the principle of the dual-polarization for the non-spheric particle.

Besides the amplitude of the scattered wave, the nonsphericity of hydrometers is also illus-

trated in terms of phase shifts. An EM wave traveling into a non-vacuum medium becomes slower com-

pared to the same EM wave traveling into a vacuum, and the refractive index is a measure of how slowly

EM waves propagate in a homogeneous medium relative to the vacuum (Eq. 2.22). As mentioned, the

majority of hydrometeors in the atmosphere are oblate with the major axis oriented horizontally longer

than that of the minor axis oriented vertically, with exceptions of very tiny raindrops whose size is on the

order of 0.1 mm. For the atmosphere filled with these oblate hydrometeors, the horizontally polarized

wave propagates through more matters (water) than the vertically polarized waves (Rauber and Nesbitt,
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(a) (b)

Fig. 2.10.: Illustration of the concept of dual-polarization taking a highly non-spheric homogeneous particle as an
example (adapted from Figs. 4 and 5 in Kumjian (2018)), where (a) is the electric field pattern for a tiny
sphere of the particle illuminated by a horizontally incident wave and the associated enhancement of
the internal electric field by summing external electric field (blue arrows) and the electric filed induced
by the nearby tiny sphere (black arrows), (b) is the same as (a) but for a vertically incident wave and the
associated reduction of total electric field

2018), and n for the horizontally polarized waves is larger than that for the vertically polarized waves

(Ryzhkov and Zrnić, 2019). It accounts for a more significant slowdown in the propagation speed for the

horizontally polarized wave than the vertically polarized one,

ch < cv, (2.38)

where ch = c/nh, cv = c/nv, ch is the propagation speed of the horizontally polarized waves, and cv is

the propagation speed of the vertically polarized waves. Then, τ of the horizontally polarized wave is

also shorter than that of vertically polarized one, ch τ < cv τ . For a pair of horizontally and vertically

polarized waves which are transmitted simultaneously, the front ends of the reflected signals return from

a scatterer at range r1 to the radar receiver at time t = 2r1/ch and t = 2r1/ch; for the next pair of waves

and a scatterer at range r2, the returning time points are t = Ts + 2r2/ch and t = Ts + 2r2/ch. As a

result, at any time point, the scattered wave in the vertical polarization has undergone more vibrations,

equivalently a larger amount of phase shifts relative to the wave in the horizontal polarization (Fig. 2.11).

This difference in phase shift for the coincident horizontally and vertically polarized waves is named

as differential phase (ΦDP). Note that there is also a phase shift between the two successive pulses of
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Fig. 2.11.: Illustration of the concept of propagation differential phase (adapted from Fig. 2.10. in Ryzhkov and
Zrnić (2019)), where ch is the propagation speed for the horizontally polarized waves, and cv is the
propagation speed for the vertically polarized waves, Ts is pulse repetition time, r1 is the range of a
scatterer for the first pair of horizontally and vertically polarized waves, r2 is the range of a scatterer for
the second pair of horizontally and vertically polarized waves, τs and τs +Ts are the time points when
the radar receiver samples received signals

the same polarization caused by the relative motions of scatterers to the radar due to the Doppler effect

(Eq. 2.27), illustrated as

2r1

ch
+Ts 6=

2r2

ch
+Ts, (2.39)

2r1

cv
+Ts 6=

2r2

cv
+Ts, (2.40)

and this Doppler phase shift is absolutely distinct from ΦDP regarding the dual-polarization.

In terms of the differences between horizontally and vertically polarization in either amplitude

or phase shift, the non-spherical nature of hydrometers is the prerequisite to utilize the radar polarimetry

in precipitation observation and quantification. Historically, this nonsphericity accounted for the early-

stage research on the radar polarimetry.

Utilizing these differences in the interaction between waves and particles brings us addi-

tional measurables which hold further information (except ZH, VDo and σv) about bulk properties of the

precipitation such as size, shape, orientation and phase (solid or liquid). This feature is termed as dual-

polarization. The radar which is able to utilize the information from both horizontal and vertical polar-

ized waves is called a polarimetric radar, and the radar variables on the basis of the dual-polarization are

polarimetric variables. The dual-polarization can be interpreted quantitatively by means of the scattering

model from an electromagnetic perspective (Bringi and Chandrasekar, 2001; Zhang, 2016; Ryzhkov and

Zrnić, 2019)).
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Polarimetric radar system

Compared to the single-polarization radar system, the polarimetric radar system needs to further take

into consideration appropriate types of a polarization base and a transmission/receive mode.

At the early exploratory period (1950s–1970s), radars in circular polarization, originally in-

tended for clutter suppression (White, 1954; Offutt, 1955; Beasley, 1966), were modified to explore some

meteorologically interesting phenomena (McCormick and Hendry, 1979a). Notable works were from

National Research Council of Canada in the early 1970s (Hendry and McCormick, 1971; McCormick

and Hendry, 1979b; Barge and Isaac, 1973). Nevertheless, the introduction of differential reflectivity

(ZDR) by Seliga and Bringi (1976) and differential phase (Seliga and Bringi, 1978) brought popularity to

the linear polarization, which led to the early version of the modern weather radar. The linear orthogonal

polarization coherent pulse Doppler radar emerged around the late 1970s–1980s in the United States

(Seliga and Bringi, 1976). Retrievals of ZDR and KDP from the linear polarization were found to be more

reliable compared to the circular polarization which became obsolete later on. Currently most of weather

surveillance polarimetric radars are configured in the linear polarization, and it is easier to remove the

propagation effect than other orthogonal polarization bases (Zrnić, 1996). So are the radars in German

weather service radar network and the weather radars in this research.

In addition to the polarization base, there are three options for the transmission/receiver

mode of a polarimetric radar in principle: alternate transmission and alternate reception (ATAR) mode,

alternate transmission and simultaneous reception (ATSR) mode, and simultaneous transmission and

simultaneous reception (STSR) (Zhang, 2016). The polarimetry can be implemented in either dual-

polarization (STSR) mode or full-polarization (ATSR) mode, where the ATAR mode can obtain either

dual-polarization or full-polarization (Zhang et al., 2019). Dual-polarization implies the capacity to ob-

tain polarimetric information from two copolar channels, while full polarization involves the information

switched from a co-polar and a cross-polar channel.

The ATAR mode still involves one transmitter and one receiver, but sequentially changes its

polarization state. It was used at the early stage and is obsolete. Its limitation is its poor capability in

estimating the copolar component that is related to calculations of the copolar correlation coefficient.

Only with some specific assumptions is the radar with a single receiver able to estimate the cross-polar

component (Zrnić, 1991). The hydrometeors are assumed as “frozen” during the time gap between two

alternate pulses, but it is not the case in reality due to the reshuffling of hydrometeors. Thus, it requires

the inter-pulse time interval to be much shorter than the decorrelation time. Obviously, the ATSR and

STSR mode is not subject to this constrain.

The ATSR mode has one more receiver compared to the ATAR mode. It allows estimations

of cross-polar components. Both alternate transmission (ATAR and ATSR) modes require a fast and

high-power switch which is less economically feasible.
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The STSR mode involves one more transmitter compared to the ATSR mode and has been

adopted widely currently. An advantage of the STSR mode is that the radar’s technical configurations

don’t need to be modified too much when upgrading from single-polarization to dual-polarization for

an existing radar (Doviak et al., 2000). The second merit is that the expensive and sensitive switch

is not mandatory in the STSR mode. However, one well-recognized drawback of the STSR mode is

the potential cross-polar contamination caused by canted particles in the ice phase of convective storms

(Ryzhkov and Zrnić, 2007; Hubbert et al., 2010; Wang et al., 2006). Thus, the STSR mode usually

assumes an absence of cross coupling between H and V electric fields, or equivalently zero mean canting

angle for all the hydrometeors within the sampling volumes, and negligible antenna errors (Hubbert

et al., 2010). Note that a radar with the STSR mode is unable to measure the Linear Depolarization Ratio

LDR (to be defined in the next section).

The weather radar polarimetry in Germany started from a German Aerospace Research Es-

tablishment (DLR) C-band polarimetric radar in the late 1980s. Its design was the most advanced at that

time. It included the elliptical polarization, double receivers for simultaneous reception of orthogonally

polarized waves, and the flexibility to change transmission polarization from pulse to pulse. For more

details about this radar system design, see Schroth et al. (1988)); for its polarimetric measurements of a

convective storm and the accompanying interpretation of precipitation physics, see Bringi et al. (1991)

and Meischner et al. (1991).

The first measurement of ZDR in Europe dates back to 1980s (Hall et al., 1980). Besides

Germany, France and Italy also built their own radar systems which were different from the current

modern mode (Cordesses et al., 1983; Husson and Pointin, 1989; Leonardi et al., 1984; Ryzhkov et al.,

1994). Generally the radar polarimetry for research in Europe started around the 1990s (Meischner et al.,

1991), and for operational purpose around 2005 (Saltikoff and Nevvonen, 2011). The currently available

operational radar products include Radar-Online-Aneichung (RADOLAN) in Germany (Bartels et al.,

2004b), Nimrod in UK (Moore et al., 2004), and the OPEAR programme which incorporates the radar

data sharing through several countries (Holleman et al., 2008; Huuskonen et al., 2012).

A historical account of the evolution of radar polarimetry technology (Bringi and Hendry,

1990; Bringi and Zrnic, 2019) discussed in detail different radar systems developed in various configu-

rations in different key research institutes over the world. The current popular configuration selected by

manufacturers and radar meteorologists should be the best compromise with practical considerations of

cost and maintenance. The technical configurations on polarimetry, such as polarization base and imple-

mentation mode, strongly affect estimations of polarimetric variables and their interpretation. Thus, a

standard configuration for the radar system can avoid the non-standard measurements and reduce confu-

sions.
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Defining polarimetric variables

The polarimetric variables are defined on the basis of scattering matrix. Thus, we first talk briefly about

the scattering matrix, to facilitate the following definition of polarimetric variables. When an EM wave

propagates through a medium filled with scatterers, in addition to the part of EM energy lost due to

absorption, a portion of energy is scattered in a form of secondary radiations in all directions. The

scattering matrix describes the relation between the electric field of the scattered radiation ~Es and the

electric field of the incident radiation ~E j through

~Es =
e− jkr

r
~S~E i, (2.41)

where the superscript i is related to the incident EM field, the superscript j is about scattered fields, r is

the distance between the particle and observing point in the ~Es which is far from the particle (r > 2D2/λ ),
~S is the scattering matrix, and e− jkr is the propagation term. This scattering equation (Eq. 2.41) in the

matrix form can be expressed asEs
h

Es
v

=
e− jkr

r

shh(k̂s, k̂i) shv(k̂s, k̂i)

svh(k̂s, k̂i) svv(k̂s, k̂i)


E i

h

E i
v

 , (2.42)

where E i,s
h and E i,s

v are the horizontally and vertically polarized components of the incident and scattered

field, k̂i is the unit vector of the incident wave, k̂s is the unit vector of the scattered wave, and the

backscattering matrix is given as

~S =

shh shv

svh svv

 , (2.43)

where the terms shh, shv and svv are backscatter coefficients, the second subscript refers to the polarization

of the incident waves transmitted by a radar, and the first subscript indicates the polarization of the

backscattered waves, and svh = shv. The power returned in the same polarization state as the transmitted

power is termed as the co-polar power, such as shh and svv, whereas the cross-polar power refers to the

power returned in the state orthogonal to the transmitted power such as shv and svh.

For the backscattering ~ks =−~ki, then we have |s(−~ki,~ki)|2 = |s(−~ki,~ki)|2 = |s(π)|2.

Thus, the radar reflectivity of the horizontal polarization transmission (Eq. 2.5) is expressed

in another form (Battan, 1973) as

Zhh =
4λ 4

π4|Kw|2
〈n|shh(π)|2〉, (2.44)
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where the operator 〈·〉 is the ensemble average of a distribution of hydrometeors with various physi-

cal properties including size, shape, canting angle, density, composition, dielectric constant and falling

velocity. Similarly Z of the vertical polarization transmission is expressed as

Zvv =
4λ 4

π4|Kw|2
〈n|svv(π)|2〉. (2.45)

The differential reflectivity (Seliga and Bringi, 1976) is the ratio of Z measured at the horizontal po-

larization from a horizontally polarized incident wave to Z measured at the vertical polarization from a

vertically polarized incident wave, with the expression as

ZDR = 10 log
(Zhh

Zvv

)
= 10 log

(〈n|shh(π)|2〉
〈n|svv(π)|2〉

)
. (2.46)

The linear depolarization ratio is the ratio of the cross-polar signal power to copolar power with the same

polarization at the receiver, given as

LDR = 10 log
(Zvh

Zhh

)
= 10 log

(〈n|svh(π)|2〉
〈n|shh(π)|2〉

)
. (2.47)

The cross-correlation coefficient (Sachidananda and Zrnic’, 1985) is the pulse-by-pulse correlation be-

tween the returned power of the horizontally and vertically polarized transmissions, and is calculated

as

ρhv =
|〈ns∗hh(π)svv(π)〉|(

〈n|shh(π)|2〉〈n|svv(π)|2〉
)1/2 . (2.48)

When it comes to the variables associated with the wave propagation, the differential phase

shift ΨDP is the difference between the phase of the horizontally polarized wave (φhh) and the phase of

the vertically polarized wave (φvv)

ΨDP = ϕhh−ϕvv = δ +φDP +φ0, (2.49)

and ΨDP is also the sum of the backscatter differential phase (δ0), the propagation differential phase

(φDP) and the system offset phase (φ0). These three terms on the right side of Eq. 2.49 have different

meanings: i) δ0 is a local term caused by the electromagnetically large non-spheric particles at the range

r, ii) φDP is caused by the two-way propagation between the particle and the radar, and iii) φ0 is the phase

shift between two transmit signals at the antenna controlled by the radar system.

The reason for the naming of φDP as the propagation differential phase is as follows. As men-

tioned before, when interacting with hydrometers in the atmosphere, the propagation speed of an EM

wave is reduced and thus the EM wave acquires an additional phase shift (Fig. 2.11), and the amount of

this phase shift caused by the wave propagation is proportional to n. The aggregative effective refrac-
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tive index for a unit volume containing a large number of scatterers is related to the forward-scattering

amplitude of each scatter. In fact, atmosphere gases contribute the majority part to φhh and φvv, but the

difference φhh−φvv is caused by the non-spheric and preferentially orientated hydrometeors. Thus, we

are not concerned about the absolute value of the φhh and φvv but their differences only. The specific

differential phase, the range derivative of φDP is given as

KDP =
1
2

d(φDP)

dr
=

φDP(r2)−φDP(r1)

2(r2− r1)
. (2.50)

The number 2 in the denominator is introduced because it represents the two-way propagation of the

radar signals—the first time from the radar to the scatterers and the second time from the scatterers back

to the radar.

Note that the variables defined by the above equations ignore the propagation effect and are

referred as the intrinsic radar variables.

Besides, for the rest of this thesis, the subscripts in capitalized letter means logarithmic scale

and in lower-case means linear scale, such as the pair of ZH and Zh, another pair of ZDR and Zdr. This

lower-case/capital-letter convection is also for other parameters. Specifically, z also represents the linear-

scale radar reflectivity in linear scale with unit of mm6m−3.

Characteristics of polarimetric variables

Besides backscattering, hydrometeors along the radar beam also cause attenuation, phase delay and

depolarization. Strictly, the characteristics of polarimetric weather radar measurements are dependent

on the physical (size, shape, and orientation), statistical (the distribution of sizes and orientations), and

EM properties (dielectric constant and conductivity) of hydrometeors (raindrops, snowflakes, hailstones,

cloud droplets, ice crystals, etc.), as well as other scatterers (aerosols, insects, birds, etc.) that might be

also in the radar resolution volume. Clearly, characteristics of polarimetric variables vary among different

types of hydrometeors. Chapter 5 of the book Ryzhkov and Zrnić (2019) discusses characteristics of each

polarimetric variables for raindrops, frozen particles and mixed-phase hydrometeors respectively. We

discuss in brief one or two most interesting characteristics for each polarimetric variable regarding the

size dependence or the frequency dependence primarily for pure liquid precipitation. A more exhaustive

discussion about the characteristics and for other types of precipitation is available in radar meteorology

textbooks (Fabry, 2015; Zhang, 2016; Rauber and Nesbitt, 2018; Ryzhkov and Zrnić, 2019).

The axis ratio of a hydrometeor is the ratio of the horizontal axis radius to the vertical axis

radius. ZDR (Eq. 2.46) is a measure of the Z-weighted mean axis ratio of the hydrometeors in a unit

volume. ZDR is independent of total concentration of hydrometeors, and is subject to the calibration issue

owing to the potential difference in the polarization port of the radar hardware. ZDR is a good measure
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of median drop diameter (Dm) (Maki et al., 2005), that is, ZDR can serve as an additional constrain to

drop size distribution (DSD). Thus, incorporating ZDR into precipitation estimation should help mitigate

rainfall estimation uncertainties caused by DSD variability.

From definition, we know KDP depends on the EM waves’ forward propagation, but it is

estimated through backscattered echoes (Mueller, 1984; Jameson and Mueller, 1985; Sachidananda and

Zrnić, 1986). KDP is not affected by the calibration and attenuation, immune to partial beam blockage,

and less sensitive to the variation of DSD compared to Z (Sachidananda and Zrnić, 1986; Ryzhkov

and Zrnić, 1996; Zrnić and Ryzhkov, 1996). Besides, KDP is directly proportional to the concentration

of particles, and monotonically increases with D if the concentration is fixed. Its magnitude increases

with oblateness and dielectric constants. These features render KDP as a useful variable for precipitation

estimation (Section 4.6). One drawback is that its data quality is affected by Z gradient owing to the

non-uniform beam-filling (NBF) (Ryzhkov and Zrnic, 1998a; Ryzhkov, 2007).

Negative KDP values occasionally appear on the presence of large wet aggregates in melting

layers or of large hailstones which are characterized by noticeable backscatter differential phase (δ ).

Negative KDP values also occasionally appear on the rear side of intense convective storms, such as squall

lines or isolated hail-bearing convective cells at the far distance away from the radar, owing to the large

gradient of ZH along the azimuth direction within the radar beam or non-uniformity of measurements

(Ryzhkov and Zrnić, 1996). KDP is a measure of the mean of the mass-weighted axis ratio of the drops

(Jameson, 1985).

The copolar correlation coefficient (ρHV) is a measure of degree of decorrelation caused by

variability of the size, shapes, orientation and phase composition of hydrometeors within a unit volume.

The presence of backscatter differential phase reduces ρHV and its dependence on phase composition

is more remarkable than that on the shape and orientation. Besides, ρHV is a good indicator of the

data quality of polarimetric measurements, and ρHV in high data quality should be not less than 0.995.

Its magnitude is independent from hydrometeor concentration, unaffected by propagation and free of

calibration issue. ρHV is a measure of shape variations and irregularities in individual resolution volumes

(Balakrishnan and Zrnic, 1990)

Tab. 2.2 summarizes the typical sources of noise for polarimetric variables. The variables

subject to miscalibration require calibration before usage, and the variables affected by attenuation re-

quire attenuation correction before usage. Tab. 2.3 summarizes the factors which affect the magnitude of

polarimetric variables.
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Tab. 2.2.: Effects of sources of noises on polarimetric variables adopted from Tab. 6.1 of (Ryzhkov and Zrnić,
2019) and (Kumjian, 2013), where NBF is the acronyms for non-uniform filling effect

– Miscalibration Attenuation
Resonance
scattering

Beam block NBF Depolarization Noise

ZH Y Y Y Y Y Y

ZDR Y Y Y Y Y Y Y

φDP(KDP) Y Y Y

ρHV Y Y Y

Tab. 2.3.: Characteristics of polarimetric variables adopted from (Kumjian, 2013)

– dependent
of particle
concentration

dependent
on particle
density

dependent on
DSDvariability

dependent on
wavelength

used for
quantitative
estimation

ZH Y Y Y Y

ZDR Y Y Y Y

φDP(KDP) Y Y Y Y

ρHV Y Y

The typical values of polarimetric values determined via either theoretical simulation, radar

measurements, disdrometer measurements or subjective experience are available (Tab. 2.4). Polarimetric

variables are used collectively to develop the hydrometeor classification to improve precipitation estima-

tion, and to assist hail and tornado detection.

Despite the invariable definitions, these polarimetric variables exhibit different features de-

pending on the radar frequency. One prominent feature is that KDP is inversely proportional to λ , and

precipitation estimation using KDP is more reliable for X-band radar measurements. For the shorter λ ,

the Rayleigh scattering approximation becomes more easily violated and consequently the chance of the

resonance effect increases, particularly affecting power measurements. T-matrix simulations shows, for

pure rain, ZDR increases approximately monotonically with the equivalent D for the S-band frequency,

but for the C- band X-band frequency, the monotonic dependence of ZDR on the D is interrupted by

occasional bumps because of the resonance effect. Although the resonance criteria is less stringent for

the C-band frequency, its impact is more remarkable than that at X-band frequency. Also the shorter λ

correspond to a wider numerical range for ρHV measurements. For instance, ρHV values below 0.97 in

the rain medium is more frequent in the C-band radar data with remarkable sensitivity to hail and melting

snow.
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Tab. 2.4.: Typical values for polarimetric variables for different types of hydrometeors (from Tab. 8.1 in (Doviak
et al., 1993)), similar tables with slightly different thresholds can be found in Straka et al. (2000)

– ZH(dBZ) ZDR(dB) ρHV KDP(◦ km−1) LDR(dB)

Drizzle <25 0 >0.99 0 <-34

Rain 25–60 0.5–4 >0.97 0–10 -27– -34

Snow (dry, low density) <35 0–0.5 >0.99 0–0.5 <-34

Crystal (dry, high density) <25 0–5 >0.95 0–1 -25– -34

Snow (wet, melting) <45 0–3 0.8–0.95 0–2 -13– -18

Graupel (dry) 40–50 -0.5–1 >0.99 -0.5–0.5 <-30

Graupel (wet) 40–50 -0.5–3 >0.99 -0.5–2 -20– -25

Hail (< 2 cm, wet) 50–60 -0.5–0.5 >0.95 -0.5–0.5 <-20

Hail (> 2 cm, wet) 55–70 <-0.5 >0.96 -1– 1 -10– -15

Mixture of rain and hail 50–60 -1–1 >0.9 0–10 -20– -10

The foregoing discussion of characteristics of polarimetric variables is just a brief. Detailed

descriptions and interpretations about the polarimetric variables are available in radar meteorology text-

books (Doviak et al., 1993; Bringi and Chandrasekar, 2001; Zhang, 2016; Kumjian, 2018; Ryzhkov and

Zrnić, 2019).

2.3. Radar-based precipitation observation and estimation

As an integral part of the atmospheric observing system, the weather radar can observe many aspects

of the atmosphere. The applications of weather radar data usually fall into two main categories. First,

in terms of wind, the applications include the wind field retrieval from the Doppler velocity used for

mesoscale weather prediction and data assimilation, and the studies on turbulence and atmospheric struc-

ture from the clear-air echoes from wind profilers which is a type of Doppler radar. Second, in terms of

precipitation, the applications include precipitation observation for a concrete understanding of precipi-

tation physics (such as determining the thermodynamic phase of hydrometeors and delineating melting

layers, and discerning the presence of hails), precipitation estimation for hydrological floods prediction,

and the non-meteorological derivatives such as tracking bird immigration routines.

Our focus of radar measurements is the second category—QPE. The conventional single-

polarization radar provides information about spatiotemporal variability of precipitation via Z, while the

weather radar polarimetry is intended to mitigate the ambiguities inherent in the single-polarization radar

data to obtain more accurate QPE through improving radar data quality, distinguishing precipitation from

other non-meteorological scatterers, and mitigating the impact of DSD variability on QPE.

39



Drop size distribution and polarimetric variables

The same precipitation intensity may occur in case of either a large number of small drops or a small

number of big raindrops. Obviously, R is insufficient to describe the precipitation microphyiscs. Usually

a comprehensive understanding of precipitation microphysics can be obtained from DSD (equivalently

particle size distribution (PSD))(Maki et al., 2005; Zhang, 2016). The DSD model is given as

Nt =

ˆ Dmax

0
N(D)dD [#m−3], (2.51)

where Nt is the total number concentration, N(D) is the number of drops whose diameter is equal to a

certain value of D. The n th moment of the DSD is given as

Mn =

ˆ Dmax

0
DnN(D)dD [mn]. (2.52)

The mean volume diameter is the volume-weighted size distribution of raindrops

Dm =
M4

M3
[m], (2.53)

and is related to ZDR directly. It is one of the motivations for developing radar polarimetry because the

the information about Dm provided by ZDR can add one more constrain to reduce the DSD variability.

Then, the rain rate (rainfall rate, precipitation rate) is given as

R = 6π×10−4
ˆ Dmax

0
D3wt(D)N(D)dD [mmhr−1], (2.54)

and the liquid water content (LWC) is given as

LWC =
ρwπ

6

ˆ Dmax

0
D3wt(D)N(D)dD [kgm−3], (2.55)

where wt is the terminal or falling velocity of raindrops. The rainfall rate is proportional to the 3.67th

moment of raindrop size distribution. The gamma model (Ulbrich, 1983) is used to describe DSD, and

is given as

N(D) = N0Dµexp(ΛD) [# m−3mm−1], (2.56)

where N0 (mm−µ−1 m−3), µ and Λ (mm−1) are concentration, shape and size parameters, respectively.

When µ = 0, the gamma model is simplified to an exponential model. The well-known and simple

Marshall-Palmer DSD model (Marshall and Palmer, 1948) is a special version of the exponential model

if N0 is suggested to be 8×10−6m−4

N(D) = 8000exp(ΛD). (2.57)
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If the scattering amplitude of each hydrometeor and DSD are known, polarimetric radar variables can be

calculated by integrating all the scattering amplitudes over all the sizes. Consequently, radar variables

can be defined in the form of DSD as

Zh =
λ 5

π5|K|2

ˆ Dmax

0
σh N(D)dD (mm6m−3), (2.58)

Zv =
λ 5

π5|K|2

ˆ Dmax

0
σv N(D)dD (mm6m−3), (2.59)

where σH or σV is the backscattering cross section of raindrops for horizontal or vertical polarization,

ρHV =

´ Dmax
0 shh(D)svv(D)N(D)dD

[
´ Dmax

0 |shh|2N(D)dD]1/2[
´ Dmax

0 |svv|2N(D)dD]1/2
, (2.60)

where ρHV = ρHV(0)/eiδ , and δ is the backscatter differential phase shift

KDP =
180λ

π
Re
ˆ Dmax

0
[ fHH− fVV]N(D)dD (◦ km−1), (2.61)

where fHH and fVV are the forward-scatter amplitude at horizontal and vertical polarization respectively,

and Re indicates the real part,

ΦDP = 2
ˆ r2

r1

KDP(r)dr (deg). (2.62)

The T-matrix, a numerical simulation of the scattering amplitudes, is commonly used to re-

trieve theoretical values for the polarimetric values once the DSD is available with supplementary as-

sumptions of the axis-shape ratio. It is widely used to provide theoretical estimates of polarimetric

variables with conditions of varying temperature, particle canting angle and mixed phase.

In addition to this normal procedure about deriving the polarimetric variables from DSD, the

polarimetric variable measurements can be reversely used to reconstruct DSD (Gorgucci et al., 2002).

Incorporating polarimetric variables into numerical weather prediction is currently one of the hottest

topics in the radar meteorology community.

Single-polarization and polarimetric rainfall estimators

Eqs. 2.58 and 2.54 imply a relation between Z and R. However, this relation is indefinite and is subject

to a great variability, as first pointed out by Twomey (1953), and substantiated by 69 Z-R relations

published even before the 1970s (Battan, 1973), and a complete summary by Rosenfeld and Ulbrich

(2003) which reported more 200 published Z-R relations. Such a great variability of these Z-R relations

is attributed to either DSD variability caused by evaporation, air vertical motion, phase change, wind

drift, or measuring methodology such as data selection, sampling volume discrepancy, measurement
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errors, and fitting procedures (Tab. 2.5). The second term in Tab. 2.5 refers to presences of hails, bright

bands, and non-meteorological targets such as ground clutters.

Tab. 2.5.: Sources of errors in radar-based precipitation estimation, adopted from Tab. 10.1 (Ryzhkov and Zrnić,
2019)

Factors
Addressed using
radar polarimetry ?

Variability of drop size distribution Yes

Contamination from mixed-phase and frozen hydrometeors Yes

Radar miscalibration Yes

Attenuation Yes

Partial beam blockage Yes

Nonuniform beam filling Not

Sampling errors Not

Overshooting precipitation Not

Evaporation Yes

Vertical air motion Not

For the classic Marshall-Palmer Z-R relation Z = 200R1.6, the single-polarization rainfall

estimator for Zh in unit of mm6m−3 is given as

R(Zh) = 3.65×10−2Z0.625
h [mmh−1]. (2.63)

Eq. 2.63 is used frequently to estimate precipitation rate and calculate precipitation accumulation (AR)

used in Chapter 5 .

In addition to ZH, polarimetric variables are believed to improve QPE, but the role of each

polarimetric variable in precipitation estimation differs from the others. Correspondingly, analogous

to the general form of the Z-R relation (R(Zh) = aZb
h), the polarimetric rainfall estimators also de-

scribe quantitative relations between R and polarimetric variables in power-law forms as well. They

are R(KDP) = aKb
DP, R(Zh,Zdr) = aZb

hZc
dr, R(Kdp,Zdr) = aKa

DPZc
dr, R(A) = aAb. Be cautious that the coef-

ficients a and b in an estimator differ from another estimator. These coefficients can be estimated based

on the simulated dataset with the assumed drop shape-size axis ratio relations (Brandes et al., 2002), and

DSD from the disdrometers. Similar to coefficients in the ZH rainfall estimator, these coefficients are

subject to DSD variability. For the estimators involving KDP, the coefficients also depend on the radar

frequency. For instance, for R(KDP) = aKb
DP, the value of a falls between 15 and 20, and of b varies

between 0.7 and 0.85 (Matrosov, 2010; Maki et al., 2005; Matrosov et al., 2006; Giangrande et al., 2014;

Borowska et al., 2011; Anagnostou et al., 2009; Koffi et al., 2014; Park et al., 2005; Martner et al., 2008).
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KDP has been suggested as a measure of R starting from 1970s (Humphries, 1974; Seliga and

Bringi, 1976, 1978; Sachidananda and Zrnić, 1986, 1987; Jameson, 1985, 1991). Using KDP in rainfall

estimation (Zrnić and Ryzhkov, 1996) is less sensitive to DSD and unaffected by the absolute calibration.

The non-spheric shape of a raindrop causes the difference in phase shift between two polarization states

(Fig. 2.11). The magnitude of this difference depends on the accumulative oblateness of all the non-

spheric raindrops; the larger a raindrop is, the more oblate it appears (Green, 1975; Pruppacher and Pitter,

1971), and the more non-spheric raindrops are within the propagation path, the greater the differential

phase shift (φDP) is. Accordingly, KDP quantifies the amount of φDP per unit interval of propagation path

and indicates R. Since R is the 3.67th moment of the DSD, and KDP is found to be the 4.24th and 5.6th

moment at the large drops and small drops respectively (Sachidananda and Zrnić, 1987). Thus, KDP is

less affected by the DSD variability compared to ZH. Unlike ZH and ZDR are subject to the melting

hydrometeors, R(KDP) is immune to the bright band contamination.

Humphries (1974) first proposed a linear relationship between KDP and R, although the linear

relationship is not true in fact. The KDP-based rain rate estimator with a frequency-scaling is expressed

as (Bringi and Chandrasekar, 2001)

R(KDP) = 129(
KDP

f
)b mmh−1, (2.64)

where b = 0.85. For the Beard-Chuang equilibrium shape model (Beard and Chuang, 1987), a equals

to 50.7, 30.3 and 18.2 for the S-, C- and X-band frequencies, respectively; for the Pruppacher-beard

equilibrium shape model (Pruppacher and Beard, 1970), a equals to 40.5, 24.4 and 14.5 for the S-, C-

and X-band frequencies, respectively. The difference in coefficients a and b in R(KDP) is attributed to

the DSD variability and the non-uniformity across the radar beams.

R(KDP), especially in the S-band frequency, often also includes negative KDP values be-

cause the magnitude of φDP is low and the negative KDP is often caused by the noise resulting from the

KDP retrieving procedure rather than the physical presence of negative KDP as mentioned in the previous

section. In contrast, in the X-band frequency, the magnitude of φDP is three times higher than that in the

S-band frequency, and thus, the retrieval of KDP is more reliable and Eq. 2.64 is also used in Section 4.6.

Besides the foregoing relation to R, KDP is more closely related to LWC

KDP = a(LWC)b, (2.65)

where b = 1.4 and the value of a is 0.3, 0.65 and 0.89 for the S-, C- and X-band frequencies (Ryzhkov

and Zrnić, 2019).

ZDR alone cannot support the precipitation estimation, but ZDR plays its role in QPE via its

combination with ZH or KDP in the rainfall estimators. The function of ZH is to add one more constraint
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to reduce the DSD variability (Jameson, 1991). However, in practice, the KDP-ZDR joint estimator will be

affected by additional errors regarding ZDR measurements when ZDR is close to 0 dB, and by differential

attenuation (Ryzhkov and Zrnić, 1996) and resonance effect especially at the shorter wavelengths.

In contrast, the role of ρHV in improving QPE is less straightforward. In general, ρHV can

help distinguish the echoes from non-precipitating echoes and reduce the potential contamination from

these non-precipitating scatterers.

Besides the frequent usage of ZH, ZDR and KDP, specific attenuation (A) was shown their great

potential to estimate R (Ryzhkov et al., 2014; Diederich et al., 2015). A is defined as the attenuation a

wave experiences during its propagation in a unit distance, typically 1-kilometer. The dependence of

A on the DSD resembles the dependence of R on the DSD most among other parameters. However, A is

not directly measured in most current operational radars.

The multi-parameter estimation of polarimetric data provides more quantities to constrain

the DSD, thereby reducing the degree of freedom of variability. Despite the theoretical superiority of

polarimetric rainfall estimators, their practical applications are negatively affected by the errors, and

their performance might be subject to precipitation types as well (convective or stratiform). Neverthe-

less, research has shown improved precipitation accuracy benefiting from the utilization of polarimetric

variables (Zrnic and Ryzhkov, 1999; Matrosov et al., 2002). The synthetic algorithm in the current Next-

Generation Radar (NEXRAD) network in the United States, in which R(Z) estimators are used for light

rain and R(KDP) is used for heavy rain, was proven to bring a better performance than the conventional

Z-R relation (Ryzhkov et al., 2005).

A comprehensive utilization of polarimetric radar variables is present in Fig. 2.12. The po-

larimetric measurement can be directly used to estimate R via the aforementioned polarimetric rain es-

timators (the brown arrow in Fig. 2.12). Characterizing the error structures inherent in the polarimetric

measurements can bring us a quantitative representation of the errors which assists in incorporating po-

larimetric data into NWP models by means of either improving microphysical parameterization scheme

or data assimilation (the blue arrows in Fig. 2.12). Besides the precipitation estimation, other applica-

tions of radar data include wind retrievals using Doppler velocity, and using refractivity as the initial field

for driving NWP models since refractivity is a function of moisture, temperature and pressure.
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Fig. 2.12.: A schematic summary of the role of dual-polarization in the QPE and QPF (adjusted from Fig. 7.14 in
Zhang (2016))
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3. Experiment, Data and Methods

Observational data used for this research primarily come from an X-band radar field experiment (Section

3.1) in Stuttgart, with supplementary datasets from a C-band radar (Section 3.2.1), the local rain gauge

network (Section 3.2.3), as well as a micro rain radar (MRR) (Section 3.2.2). The X-band radar scan

strategy comprises two types of volume scans (Section 3.1.4), serving as the experimental fundamental

for this research. Besides the radar scan strategy, we go over the selections of instruments and the

measuring site, and present information on the measured datasets from our field campaign as well as the

supplementary datasets from other sources. Some general statistical concepts and methods are mentioned

in Section 3.3.

3.1. Stuttgart 2017 field experiment and X-band radar datasets

A field experiment was established and implemented in order to obtain the radar data that serve our

research objectives (Chapter 1). For this field experiment, we discuss selections of its main instrument

and its measuring site, design of its scan strategy, the radar variables obtained from measurements and

the derivatives of radar data as follows.

3.1.1. Instrument: X-band radar

An X-band radar was selected as the main instrument in the field experiment for the following two

reasons. First, according to the aim (Section 1), this research needs high-resolution radar data. Based

on the comparison of weather radars in different frequencies (Section 2.1), the radial resolution on the

scale of less than 300 m is used more frequently at the X-band frequency, and the X-band radar used in

my research is able to provide measurements at a resolution as high as 50 m. Second, the X-band radar

is relatively small and portable. Given our research interest in an urban environment, it is convenient to

transport and set up an X-band radar in or close to an urban environment. The X-band radar used in our

field experiment is the Meteor 50DX (Selex Systems Integration GmbH) dual-polarized radar contributed

by Karlsruhe Institute of Technology (Fig. 3.1(a)). The technical information is given in Tab. 3.1.
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(a) (b) (c)

(d)

Fig. 3.1.: (a) The X-band radar, (b) the C-band radar, (c) the MRR, and (d) the X-band and C-band radar location
and range coverage with the underlying terrain height in gray shading. The light green curve around the
X-band radar is the boundary of the city of Stuttgart; the dots either in orange or pink colors represent
DWD rain gauge network

3.1.2. Radar measuring site

Since urban environments show the strongest demand for high-resolution radar measurements (Section

1), the field experiment site should be in proximity to an urban environment. We select Stuttgart for

the following four reasons. First, the Stuttgart metropolitan area is one of the most populated and ur-

banized areas in Germany with ample industrial activities. Second, the Stuttgart region has ample pre-

cipitation. Climatologically, it is characterized by annual rainfall amount of 650–700 mm and summer

rainfall amount of 250–350 mm from May to September (Zheng et al., 2019). Severe convective storm

events occur quite frequently during summers, often resulting in severe flash floods affecting traffic and
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Tab. 3.1.: Technical details of X- and C-band radars, where SHV is the acronym for simultaneous transmis-
sion/reception

– X-band C-band

Transmitter type Magnetron Magnetron

Transmission mode SHV SHV

Antenna type Central feed Central feed

Antenna reflector Diameter (m) 1.8 4.2

Antenna gain (dB) 42.5 45.7

Radome diameter (m) 2.55 —

Wavelength (cm) 3.2 5.3

Frequency (MHz) 9400 5610

Peak Power (kW) 75 250

Beam Width (◦) 1.3 1.0

Location 48.8◦N, 9.25◦ E 49.09◦N, 8.44◦ E,

Height above sea level (m) 315 148

Period May–Oct 2017 1997–present

city dwellers’ properties. This is also the reason why our field experiment period was done in sum-

mertime. Third, the Stuttgart region is well-known for its complex topography; the city nestles in the

Neckar Valley Basin, enclosed by the hills at heights of 300–400 meters and vineyards. Specifically,

the city is shielded by the Black Forest in the west, the Swabian Alb in the South, the Schurwald in

the East and the Stromberg and Heuchelberg regions in the Northwest. Such a topography is likely to

make aftereffects of flooding events more terrible, further warranting the hydrometeorological research

in Stuttgart. Fourth, the current operational radar measurements in Stuttgart are insufficient. Within the

DWD radar network, two radars closest to Stuttgart are located 45 km and 135 km away from Stuttgart’s

city center, respectively. Given the current spatial resolutions of DWD radars, the Stuttgart’s downtown

area lacks high-resolution radar measurements, hence the reason that X-band radar measurements from

our field experiment can offset this deficiency. Fifth, a project “three-dimensional observations of at-

mospheric processes in cities”, a module in the German research programme “Urban Climate Under

Change” ([UC]2) was also conducted in summer 2017 in Stuttgart (Scherer et al., 2019). Our X-band

radar field experiment provided supplementary precipitation observation to this project as well.

For selecting a measuring site within the Stuttgart metropolitan area, we considered the land

use right, availability of electricity, surrounding obstructions and microwave emission regulation. Even-

tually we selected the measuring site in a vineyard in the town called Bad Cannstatt, northeast of Stuttgart

city in Germany, at a latitude of 48.8◦N, a longitude of 9.25◦ E and at a height above seal level of 315 m

(Fig. 3.1(d)). It is around 5 km away from the Stuttgart city center (using Stuttgart Schlossplatz as the

reference point), 15 km away from University of Stuttgart where the MRR is located (Section 3.2.2),
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and 68 km away from the C-band radar (Section 3.2.1). In spite of our initial intention to avoid nearby

obstacles, a few terrain structures reside less than 5 km away from the X-band radar (Fig. 3.2(a)). The

measuring period lasted from May 23 to October 16 in 2017, which corresponds to our research focus

on the summer or warm season precipitation.

3.1.3. Radar beam shielding

In order to maximize radar visibility and data availability, an ideal experiment site for a ground-based

weather radar is a flat terrain without obstructions in the 360◦ all azimuthal directions, especially for a

radar performing a full-circle volume scan. However, it is hard to find an absolutely clutter-free location

in the hilly Stuttgart region. Thus, the beam blockage was inevitable in the field experiment we conducted

in Stuttgart in 2017.

For a sampling volume along a radar beam with an elevation angle of θe, we project it to the

ground. Assuming the standard atmosphere condition, there should be a radar propagation path which

connects this projected point to the radar site, and we can determine an elevation angle (θsfc) for this

path (Fig. 2.5). Similarly, for each sampling volume, we can determine its θsfc. This elevation follows

the terrain and its meaning is analogous to the terrain-following vertical coordinate in numerical weather

modeling. Basically, θsfc is a function of θe, r and Θ , and can be positive or negative depending on

terrain height. Then, consider a scenario that θsfc for a sampling volume located at the 30-km range

reaches a maximum value compared to all the other sampling volumes along the same radar beam. In

other words, θsfc of all the sampling volumes farther than 30 km away from the radar are no more than

this maximum value, which means the radar beam along that azimuthal direction is intercepted by a high

terrain structure at the 30-km range. Then, for all the sampling volumes farther than 30 km away from

the radar, we adjust their θsfc to the peak value. After adjustment, we name these elevations as terrain-

following minimum elevation (θmin). The θmin is able to quantify the beam blockage effect or the radar

visibility. It is analogous to beam blockage fraction which has been used frequently to show the degree

of beam blockage effect from another perspective (Delrieu et al., 1995; Bech et al., 2003; Zhang et al.,

2011)

Recall that the mechanical θbeam of our X-band radar is 1.3◦ (Tab. 3.1), for the lowest-elevation

sweep at 1.5◦(Tab. 3.2), the radar beam should fall between an angular width from 0.85◦ to 2.15◦from the

horizon along the vertical direction. It means that, with the assumed standard atmosphere, the sample

volume whose θmin below 0.85◦ is free of the beam blockage, whose θmin between 0.85◦and 2.15◦ are

affected by the partial beam blockage, and whose θmin over 2.15◦ are affected by the total beam blockage.

For our X-band radar field experiment, at the 1.5◦-elevation, θmin over half of the radar coverage is below

0.85, and nearly 1/6 of the radar coverage in the southwest directions is affected by the partial blockage

effect (Fig. 3.2(b)).

50



(a) (b)

Fig. 3.2.: (a) Terrain heights along the range rings of 5 km, 15 km, 45 km and 75 km away from the X-band radar
with the names of terrain structures within the 5-km range. (b) Terrain-following minimum elevation
over the X-band radar coverage. The blue dot in (b) is the location of X-band radar and the red dot is
MRR location; the hatch-filled sector in (b) is the area without radar radiation; the black curve around the
center of (b) is the boundary of the city of Stuttgart; the pink dots in (b) are the locations of rain gauges
from DWD rain gauge network; the triangles in (b) highlight the rain gauges which are close to the radar
and free of the partial blockage; the gray concentric circles in (b) show the 25-km, 50-km, 75-km and
100-km range rings

Besides the beam blockage caused by the local topography, the radar’s radiation was off in

the sector between the azimuth of 91◦ and 170◦ below the fourth elevation of coarse scan because of the

local administration of microwave radiation,(Fig. 3.2(b)).

3.1.4. Scan strategy design

The scan strategy defines how a radar is operated, by regulating 1) its radial resolution ∆r, 2) scanning

time interval, 3) antenna tilted elevation angle (θe), 4) antenna rotation speed (Na), 5) PRF and the

associated rmax. The scan strategy is crucial to the radar performance and the data quality (Helmert et al.,

2014). Designing a scan strategy requires careful considerations, and is always a matter of compromises.

For instance, we considered the constraint between the spatial and temporal resolution (Villarini et al.,

2008; Cristiano et al., 2017) when determining the scanning time interval, and we considered the Doppler

dilemma when determining the radial resolution and PRFs. As follows, we discuss in order 1) ∆r,

2) temporal resolution and scanning time, 3) θe, 4) Na, 5) PRF and rmax for the X-band radar field

experiment in Stuttgart.

Corresponding to our aim of this thesis (Chapter 1), the X-band radar in this field experiment

was operated with two types of scans whose technical details are given in Tab. 3.2. The most important

difference between these two scans is their radial resolution; one is 75 m and the other one is 250 m. We

refer the scan with the 75-m radial resolution as the fine scan, and the scan with the 250-m resolution as

the coarse scan. Recall the definition of a radar sampling volume (Eq. 2.7), given the identical Θ for both
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Tab. 3.2.: Performance parameters for X- and C-band radar measurements

Radar X-band fine X-band coarse C-band

Radial resolution (m) 75 250 500

Pulse duration (µs) 0.5 1.67 3.33

Pulse Repetition Frequency (Hz) 2000 500 1180

Duty cycle (max) (dimension-
less)

0.001 0.00083 0.0039

Averaged power (W) 75 62.5 980

Operation range (km) 75 100 120

Doppler range (km) 75 300 127

Nyquist velocity (ms−1) 32 4 15.6

Antenna speed (◦ s−1) 13.5 18 20

Antenna speed (rpm) 2.25 3.0 3.5

Scan duration (second) 100 255 300

Number of elevations 3 10 14

Elevations (◦)
1.5, 3.2, 5.0 (before
13:30 UTC 6 June
2017); 1.5, 3.6, 6.2

1.5, 3.6, 6.2, 9.4,
13.3, 18, 23.8,
30.8, 39.5, 90

0.4, 1.1, 2, 3, 4.5,
6, 7.5, 9, 11, 13,
16, 20, 24, 30

Data amount (Giga) 250 101 1070

scans, the difference in ∆r determines the different spatial resolutions for both scans. This difference in

the spatial resolution is the basis for our investigation about the effect of spatial resolutions on the radar

data. From here on, the subscripts f and c are used to represent the fine and coarse scans, respectively.

In a scientific control design, control and experimental groups should be identical in every

respect except one difference merely. In order to investigate effects of the radial resolution on the radar

data, we can regard radar data measured by coarse scans as the control group, and the radar data measured

by fine scans as the experimental group. In a standard scientific control, the radial resolution should be

the only difference between fine and coarse scans, and all other technical parameters should be identical

for both scans. Nevertheless, it is hard to implement such a procedure in reality. In practice, the fine and

coarse scans also differ in other technical parameters and we point them out as follows.

The second difference is scanning time interval. In the scanning procedure, for each 10-

minute interval, a 100-second fine scan was repeated three times, followed by a 255-second coarse scan

(Fig. 3.3). The coarse scan repeats each 10 minutes and its temporal interval is even, but the temporal

interval for the fine scan is uneven. In other words, the fine and coarse scans have different temporal

resolutions. However, if we consider only the third fine scan with each 10-minute interval, its temporal

resolution is also in 10 minutes.
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Fig. 3.3.: The X-band radar scan strategy over a 20-minute period with each 10-minute interval as a unit, including
three fine scans in cold colors and one coarse scan in warm colors. Each fine scan contains three sweeps
whereas each coarse scan contains 10 sweeps; the green lines indicate a time gap (roughly 100 seconds)
between the first sweep in the third fine scan and the first sweep in the coarse volume scan

The third difference is the number of sweeps in volume scans. Both fine and coarse scans are

volume scans comprising full 360◦ radar sweeps with different elevation angles, but a fine scan contains

three sweeps and a coarse scan contains 10 sweeps (Tab. 3.2). This is one reason why the scanning time

of coarse scans is much longer than that of fine scans. Using only three sweeps in fine scans shortens

the time gap between a fine volume scan and a subsequent coarse volume scan. Within each 10-minute

interval, the coarse scan lags only 100 seconds behind the third (temporally adjacent) fine scan. We

assume that the majority of precipitation does not change too much within a 100-second period, and so

the third fine scan and coarse scan with each 10-minute time span are deemed as quasi-simultaneous,

which serves as a basis for our following comparison between fine and coarse scans in Chapter 4 and

Chapter 5.

The fourth difference is Na, which also partially accounts for the second difference about

scanning time interval. Theoretically, Na is associated with number of independent sample (Section 2.1).

A small Na (such as 1 rpm or 6◦ s−1) can be dictated to reduce and isolate statistical measurement errors

(Ryzhkov et al., 2005). Hence, the difference in terms of Na adds another freedom of variability to our

comparison between the fine and coarse scan data besides ∆r.

The fifth difference is PRF and its associated rmax. Recall Eqs. 2.2 and 2.9, the duty cycle is

the ratio of τ to PRT which is inversely proportional to PRF, and the ∆r is linearly proportional to τ .

Normally, for a specific radar, the duty cycle is steady, which means changing radial resolutions changes

PRFs simultaneously. The fine and coarse scan use different PRFs (Tab. 3.2). Recall Eq. 2.8, determined

by the PRF, the rmax is 75 km and 300 km for the fine and coarse scans, respectively. The rmax defines

the distance within which a radar is able to observe the targets without ambiguity. This short rmax in fine

scans implies a larger chance of second-trip echoes, whereas because of the large rmax, the coarse scan

data are not affected by the second-trip echoes.

The discussion above illustrates that these foregoing differences between the fine and coarse

scans, except ∆r, are essentially associated with ∆r. Thus, it is unrealistic to change ∆r only but keep

all other aspects identical for both scans. Although the fine and coarse scans aren’t strictly perfect
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experimental and control groups, this alternating scan strategy is the best option compared to other

possible alternatives to be discussed below.

One alternative is to operate two or multiple radars simultaneously and each of them uses its

own ∆r. For instance, a radar network consisted of four X-band radars separated over 30 km from each

other (Chandrasekar et al., 2012), one study involved two X-band radars only 3.7 km away from each

other (i Ventura et al., 2015), and another study used two S-band radars placed 2 km away from each

other (Brandes et al., 1999). However, these radars were not co-located and they observed precipitation

systems from different viewing angles. It contradicts the principle of the scientific control. For instance,

one radar may be under the front side of a squall line, with another radar under the rear part of that

squall line. To avoid this situation, we can place two radars at exactly the same location. However, the

interference may occur between two co-located radar systems which operate simultaneously. Another

drawback of using two radars is that both the hardware and technical configurations of both radars must

be identical and remain constant during the entire measuring period, which requires lots of additional

efforts. A more realistic reason not to use two radars is that we had access to only one X-band radar in

2017. Therefore, instead of involving two radars, we designed this alternating scan strategy which gave

us radar datasets characterized by different radial resolutions.

The feasibility of this alternating scan strategy lies in the assumption that precipitation sys-

tems remain unchanged during the 100-second time gap between both scans. However, to which degree

this assumption is valid depends on characteristics of precipitation systems. For the fast-developing and

short-lived convective storms, this assumption is invalid. One way to increase the credibility of this as-

sumption is to shorten the time gap between the fine and coarse scans, which can be done by reducing

number of sweeps, if the antenna rotation speed is unchanged. For example, if each fine or coarse scan

contains only one sweep, then the time gap can shrink to a duration on the order of 30 seconds. However,

we did not adopt this idea, but instead insisted on volume scans with multiple radar sweeps, for the fol-

lowing three reasons. First, this study mainly addresses summer precipitation and a large proportion of

the summer precipitation systems are convective storms with substantial vertical extends and structures.

In order to observe upper structures of convective storms, high-elevation sweeps are necessary. The sec-

ond reason is that, using volume scans containing different elevation angles allows us to access valid

radar measurements when the radar data from the lowest elevation sweep are affected by ground clutters

or beam blockage. The third reason is due to the vertical incident scan required for ZDR calibrations

(Section 4.7),

Given that both fine and coarse scans are volume scans, a proper selection of elevation angles

is also crucial to the scan strategy (Fabry et al., 1992). According to the radiosonde data, the mean freez-

ing level of the Stuttgart region during the X-band radar’s measuring period is 3.3 km AMSL (Fig. B.19).

Within the 75-km range, nearly all the sampling volumes along the 1.5◦ elevation sweeps are below

3.3 km (Fig. 3.4), which implies the radar beam at the 1.5◦ elevation observes liquid precipitation during
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Fig. 3.4.: The VCP of the coarse scan in the X-band radar experiment. The slanted dashed lines represent center-
lines of radar beams and every two slanted solid lines near each dashed line in the same color represent
the radar azimuthal interval for that radar beam; the horizontal solid blue line at the roughly 3 km height
indicates the mean freezing level averaged from May to October 2017 in Stuttgart based on Fig. B.19,
the short black vertical line is the vertical interval between two adjacent elevations

the majority of time. The bright band phenomenon—an enhancement of radar reflectivity ZH resulting

from phase transition of solid hydrometeors to liquid hydrometeors aloft—is less likely to occur in the

1.5◦ elevation sweep, and thus bright-band correction will be excluded in this study. The vertical interval

between two elevations (Fig. 3.4) increases with the farther range. It is a reflection of range dependence

(Section 2.1). For instance, to achieve the 1-km vertical resolution, we should focus on convective storms

within the 30-km range.

The second and third lowest elevations of fine scans were slightly different from their coun-

terparts of the coarse scans before 13:30 UTC on 6 July 2017 (Tab. 3.2). Thus, when we compare the

radar measurements from the second and third elevations between fine and coarse scans, we only use the

radar data measured after 13:30 UTC on 6 July 2017. When we deal with surface precipitation estimation

on the basis of radar data at the lowest elevation, we use the radar data over the whole measuring period.

Given that the terms “fine scan” and “coarse scan” are used throughout the remaining thesis,

to clarify, we specify the fine scan as the volume scan using the 75-m radial resolution while the coarse

scan refers to the volume scan using the 250-m radial resolution. Correspondingly, the term fine scan

data refers to the radar data obtained from fine scans, while the term coarse scan data refers to the radar

data obtained from the coarse scan.

3.1.5. X-band radar measureables and derived datasets

Radar variables are classified into three levels in our radar data recording system similar to the one

employed in the WSR-88D (Crum et al., 1993) and DWD radar network (Helmert et al., 2014). The

level I data are EM signal outputs from a radar receiver. They are mainly used for engineering purposes,

and are not involved in this thesis. The level II data are outputs obtained after EM signals have been
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processed by the default data QC procedure within the built-in radar processor, and are named as base

data. The level III data are the products derived from the base data or outputs produced by customized

algorithms, and are named as base product. The precipitation estimate calculated on the basis of radar

reflectivity in the base data is the example of the level III data. Corresponding to the research questions

(Chapter 1), the level II data are used for the first part of data analyses concerning radar data quality

(Chapter 4), and the level III data are involved in the second part of data analyses regarding the radar-

based precipitation estimates (Chapter 5).

During the Stuttgart experiment, 12 radar variables were collected (Tab. 3.3). The first seven

variables in Tab. 3.3 are from single-polarization, whereas the rest were obtained through the dual-

polarization capability. A default clutter removal procedure within the radar processor converts the

uncorrected radar reflectivity (u-ZH) into the (corrected) radar reflectivity (ZH), while the built-in phase

filtering procedure converts the uncorrected differential phase shift (u-φDP) to the corrected differential

phase shift (φDP) (Tab. 3.3). A variable named as clutter correction (CCOR) defines the difference be-

tween the u-ZH and ZH. We use (corrected) radar reflectivity for the rest of the thesis, but this default

correction is not perfect and we need additional data QC procedures (Chapter 4). The difference between

u-φDP and φDP is that the φDP is the filtered and smoothed differential phase after applying the phase fil-

tering procedure which removes the fluctuating noisy components of the directly measured u-φDP. The

majority of discussions on differential phase in this thesis is about u-φDP, including spike signal (Section

4.2), second-trip echoes (Section 4.3) and non-meteorological echo removal (Section 4.5), whereas the

KDP retrieval and attenuation correction (Section 4.6) uses the filtered φDP. Because ZH, φDP and KDP are

calculated using the built-in procedures from the radar signal processor, these variables are also regarded

as the level II base radar data in this thesis. Unlike the base radar data, the processed radar data refer to

the radar data after being applied with external radar data processing procedures (discussed in Chapter

4).

Numerical ranges and accuracies of all these 12 variables given in Tab. 3.3, are customized

by the radar signal processor of our X-band radar, and can be different from radar datasets from other

experiment. A large portion of data have no numerical value within their corresponding numerical ranges,

and we regard that the data is invalid or cannot be retrieved. The radar data reading algorithm assigns

-32 dBZ to both u-ZH and ZH, −0.5dB to SNR, -0.0039 to SQI and ρHV, 0◦ to u-φDP and φDP, and NaN

value to VDo, KDP, and ZDR for such situations. The retrievability and validity of KDP and VDo is used in

non-meteorological echo removal (Section 4.5) and second-trip echo removal (Section 4.3), respectively.

For ZH, besides the data at their original resolutions, we interpolated ZH of fine scans into a

new dataset at the same ∆r as the coarse scan, named as f2c data, and we also obtained the coarse scan

data as the same ∆r as the fine scan data, named as c2f data. Both linear interpolations are performed on

the rainfall rate scale (Section 3.3.1). We deal with f2c and c2f data mainly in Section 5.3. As mentioned
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Tab. 3.3.: Measurables from the Stuttgart X-band radar field experiment. For Doppler velocity, the values in before
round brackets are for the fine scan data, the value within round brackets are for the coarse scan data

Measurable Unit Numerical Range Accuracy

Uncorrected radar reflectivity (u-ZH) dBZ -31.5 – 95 0.5

Radar reflectivity (ZH) dBZ -31.5 – 95 0.5

Signal-to-noise ratio (SNR) dB 0 – 72 0.5

Signal quality index (SQI) dimensionless 0 – 1 0.0039

Doppler velocity (VDo) ms−1 ±32(±4) 0.252(0.0315)

Spectrum width (σv) ms−1 0 – 12 0.0625

Clutter correction ratio (CCOR) dB 0 – 70 0.315

Differential radar reflectivity (ZDR) dB -8 – 12 0.0787

Uncorrected differential phase (u-φDP) ◦ 0 – 360 0.0055

Filtered differential phase (φDP) ◦ -180 – 180 0.0055

Specific differential phase (KDP) ◦ km−1 -32 – 32 not applicable

Copolar cross-correlation coefficient (ρHV) dimensionless 0 – 1 0.0039

in Section 2.2, the term intrinsic variables refer to the radar variables without considering propagation

effect, that is, without attenuation correction.

When it comes to VDo, the Doppler dilemma (Eq. 2.30) constrains the unambiguous velocity

between -32 m/s and +32 m/s for the fine scan data and between -4 m/s and +4 m/s for the coarse scan

data (Fig. 3.5). This narrow range of Doppler velocity for the coarse scan limits the reliability of using

Doppler velocity.

Fig. 3.5.: Doppler velocity ambiguity of the X-band radar fine and coarse scans
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In addition to the single-polarization variable (Z, VDo and σv defined in Section 2.1) and po-

larimetric variables defined in Section 2.2, another three variables in Tab. 3.3 are defined as

SQI =
|R1|
R0

(3.1)

SNR = 10 log(
R0

PN
) (3.2)

CCOR = 10 log(
T0−PN

R0−PN
) (3.3)

where R0 is signal autocorrection at lag 0, R1 is signal autocorrection at lag 1, PN is noise power level, and

T0 is signal autocorrelation at lag 0 from uncorrected data. SQI varies from 0 (completely uncorrected

data) to 1 (completely corrected data) (SELEX, System Integration GmbH, 2015). SQI is related to σv,

and low SQI corresponds to high σv, and the erratically high σv,implies weak signal near the noise level

(Klazura and Imy, 1993). The relation between SNR and SQI is given as

SQI =
SNR

SNR+1
exp(−π2σ2

v

2
) (3.4)

Various algorithms exist for retrieving KDP (Wang and Chandrasekar, 2009; Otto and Russ-

chenberg, 2011; Maesaka et al., 2012; Giangrande et al., 2013; Huang et al., 2016). Given that KDP is the

range derivative of φDP (Eq. 2.50), the intuitive equation for computing KDP is

K̂i
DP =

φ
i+1
DP −φ i

DP
2∆r

(3.5)

where φ i
DP is φDP at the i th gate. However, because of the random gate-to-gate fluctuations, calculating

KDP using the adjoint gates often generates erratic KDP values. A simple solution is to calculate KDP as

the slope of φDP profile over N radar gates via the least square fitting as

K̂i
DP =

∑
N
i=1(φ

i
DP− φ̄DP)(i− N+1

2 )∆r

2∑
N
i=1[(i− N+1

2 )∆r]2
(3.6)

where φ DP is the average of φDP over the N-gate interval. A series of such N consecutive gates is named

as a calculating window. Obviously, the number of radar gates or the length of the calculating window

affects the accuracy of KDP retrievals (Ryzhkov and Zrnić, 1996). For instance, a longer calculating

interval might cause excessive smoothing, thereby leading to underestimations of KDP. In principle, the

spatial resolution of KDP is usually not consistent with the radar variables, but instead depends on both

the number of gates used in the KDP retrieval and ∆r. The standard KDP retrieval algorithm normally uses

range derivatives over a number of radar gates, so the spatial resolution of KDP is coarser than that of the

original radar data. In the signal processor of our X-band radar, the number of radar gates for calculating

KDP is conditioned by the magnitude of ZH (SELEX, System Integration GmbH, 2015). If N gates are
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used for ZH above 45 dBZ, 2×N gates are needed for ZH between 35 and 45 dBZ and 3×N gates for

ZH less than 35 dBZ. A typical value of N is 6, but basically the signal processor determines N depending

on the range resolution.

In our Rainbow signal processor, the built-in procedure for retrieving KDP of the Rainbow pro-

cessor sequentially includes selecting “good data”, smoothing the u-φDP, determining and subtracting the

system offset, unwrapping, and finally deriving KDP along radial directions (Selex-SI, 2012; M.Thurai,

2007). KDP is a range derivative and is subject to statistical fluctuations. Thus, the KDP retrieval requires

a filter which is able to smooth the peak and introduce biases (Chandrasekar et al., 2012). The “good

data” selection uses criteria in terms of SNR, ρHV and texture of u-φDP (see definitions of the texture

parameter in Section 3.3.1). A phase filtering procedure is necessary to suppress the fluctuations in the

range profiles of the u-φDP measurements. The signal processor of our X-band radar provides two op-

tions for filtering φDP in the KDP retrieval procedure—finite impulse response (FIR) filter (Proakis and

Manolakis, 1988) and simple smoothing based on linear regression (M.Thurai, 2007). FIR is more ad-

vanced since it was deliberately designed to tackle the non-monotonic features in the φDP range profile

induced by backscatter of the raindrops which are large enough to violate the Rayleigh scattering approx-

imation (Section 2.1), and to simultaneously preserve the physically meaningful trends of φDP (Hubbert

and Bringi, 1995). However, the FIR filter is much more computationally intensive. For the real-time

KDP retrieval output, the signal processor automatically chooses the simple smoothing filtering other than

the FIR. We did not process the φDP data manually once more to calculate the KDP filtered by the FIR,

which implies that KDP data in this research are affected by the backscatter effect.

3.2. Supplementary instruments and datasets

In addition to the X-band radar, this study also involves the data from a C-band radar, an MRR and

DWD rain gauge network. For qualitative analyses, the radar images in terms of ZH measured by the

C-band radar are compared to the radar image of the X-band radar data (Section 5.1). For quantitative

analyses, the ZH and associated precipitation estimates derived from the C-band radar and MRR datasets

are compared to ZH of the X-band radar data, and precipitation measurements from rain gauges are also

compared to precipitation estimates of the X-band radar data (Section 5.2).

3.2.1. 23-year C-band radar and its measurables

A C-band radar has been situated on the roof of a seven-floor high building on the north campus of

Karlsruhe Institute of Technology (KIT) since 1997, at a latitude of 49.09◦N, a longitude of 8.44◦ E and

at a height above sea level of 148 m. The radar was single-polarized until June 2013 when the dual-

polarization capability was added. However, this study mainly uses ZH from this C-band radar, and the
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only exception is Section 4.6 which uses the C-band ZDR. The VCP of C-band radar data comprises 14

elevations, starting from 0.4◦, followed by 1.1◦ and 2.0◦ (Tab. 3.2). However, we leave out the data from

the 0.4◦-elevation sweep owing to the overwhelming beam blockage and ground clutter contaminations

in the 0.4◦ elevation sweeps, and only use the radar data starting from the 1.1◦ elevation sweep. Given

that our X-band radar field experiment lasted from 23 May to 16 October 2017, we address the C-band

radar data measured during 21 summer seasons (five months from 1 May to 30 September every year)

from 1998 to 2019 except 1997 (due to bad data quality in May and June) and 2013 (due to the change

of radar hardware). It means we have roughly 462, 000 volume scans in the total 105 months. The

spatiotemporal resolution of the C-band radar dataset is 500 m and is different from those of the fine and

coarse scans (Tab. 3.2), which provides the foundation to compare radar measurements at three different

spatial resolutions (Section 5.1)

Effort has been made to maintain the radar hardware’s stability and data consistency since

1997. The radar engineer technicians from DWD calibrate this C-band radar every half a year using

power curves of the receiver, and the radar meteorology group in KIT continuously compares the radar-

derived precipitation estimates with local rain gauge measurements. The evolution of the minimum

detectable signal (MDS) averaged over each month shows the stability of the radar hardware over the

past two decades (Appendix B.2.1) .

3.2.2. Micro rain radar and its measureables

We also use a vertical-pointing K-band (24 GHz) MRR manufactured by METEK GmbH and operated

by the University of Stuttgart. The MRR is located at a latitude of 48.73◦N, a longitude of 9.1◦ E at the

453-m height above sea level, around 13 km away southwest of the X-band radar (Fig.5.23(a)). Unlike

pulsed weather radars, the MRR utilizes frequency modulated continuous waves. Other technical speci-

fications of the MRR are available from METEK GmbH (2014). The MRR retrieves Doppler spectra of

hydrometeors on the basis of the received spectral power (Peters et al., 2002). The MRR directly mea-

sures Doppler frequency ( fD), the frequency shift between the transmitted and received signals of the

MRR. If we know the Doppler frequency ( fD), DSD and terminal fall velocities of falling raindrops (wt),

the measured spectral volume reflectivity η( fD) can be related to the volume reflectivity η(D) through

η(D) = η( fD)
∂ fD

∂wt

∂wt

∂D
(3.7)

and then N(D) is calculated according to

N(D) =
η(D)

σ(D)
(3.8)
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where σ(D) is single particle scattering cross section and can be calculated by the Mie theory. Once

n(D) is available, Z, LWC and R can be calculated with aid of empirical relations about terminal velocity

of hydrometeors. It means R data from the MRR is not directly derived from Z from the MRR (Peters

et al., 2002).

This MRR provides us datasets of ZH and R with a 1-minute temporal resolution and a 100-m

vertical resolution between 0.1 km to 3 km above the ground surface of the measuring site. A weighing

Pluvios rain gauge situated a few meters away from the MRR provides simultaneous 5-minute rainfall

measurements which serve as coincident and co-located reference to the MRR dataset. Precipitation

measurements from the MRR and the Pluvios rain gauge are well correlated, at least during the measuring

period of our X-band radar campaign (Appendix B.3.2).

3.2.3. Rain gauge network and its precipitation measurements

This study utilizes the 1-minute rain gauge rainfall measurements downloaded from Climate Data Cen-

ter (CDC) of DWD (DWD Climate Data Center (CDC), 2019) over the X- and C-band radar coverage

(Fig. 3.1(d)). The minimum measure accuracy for the 1-minute gauge measurement is 0.01 mm. The

DWD regularly changes the suppliers of rain gauges over certain years (personal communication), and

the current rain gauge employed is the rain[e]H3 weighting tipping bucket precipitation senor from Lam-

brecht Meteo GmbH (LAMBRECHT, 2021), with an automatic self-empty capability against freezing.

The spatial distribution of the rain gauge network is presented in Fig. 3.1(d). During the summer 2017,

there were 86 rain gauges within a 100-km radius of the X-band radar, 125 rain gauges within a 120-km

radius of the C-band radar, and 67 rain gauges in the area overlapped by both the X-band and C-band

radar coverages. Actually, the number of rain gauges changes with time over two decades (Fig.B.9).

Rain gauges are always subject to measurement errors (Upton and Rahimi, 2003; Vasiloff

et al., 2009; Habib et al., 2010), such as timing and transmission errors, risk being clogged with water

trickling in over time, random mechanical errors, non-shielded tipping-bucket, strong wind (reduce gauge

collection efficiency), and undercatch in case of heavy rain. The rain gauge network is operated by DWD,

so we have no control over rain gauge data quality. For the remaining thesis, we assume these rain gauge

measurements are on-time and trustworthy.

3.3. Statistical methods in this study

The radar datasets used in this study are large, such as 84,000 X-band radar volume scans and 460,000

C-band radar volume scans. In order to extract useful information from such a large amount of data,

we need to orderly organize, efficiently analyze, graphically present and physically interpret information

behind these datasets. The following statistical concepts and methods serve as useful tools.
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3.3.1. Univariate descriptive statistics

A population is defined as the entire group of an element or variable of interest. For the hourly precipi-

tation rate in the Stuttgart metropolitan region, one seldom obtains its total population, but instead what

an instrument can provide is a sample—a subset of the population. There may exist several different

samples for a specific population.

A quantity which describes or characterizes a population is called a parameter, and an esti-

mate of a population parameter through samples is called a statistic (Zar, 2007). The descriptive statis-

tics, such as mean, median and standard deviation, summarize the dataset and draw clear-cut conclusions

about the variable of interest. The descriptive statistics measure the central tendency (arithmetic mean,

median and mode, etc.), and also variability/dispersion (standard deviation, etc.). We acknowledge that

mean and standard deviation are statistically neither robust nor resistant (Wilks, 2006), but they are still

utilized in the following analyses because of their wide use and also for the purpose of comparison with

others’ research.

As ZH is expressed on the logarithmic scale (Section 2.1), its arithmetic operations such as

averaging or subtracting conflict with the physical meaning of variables in the logarithmic scale, and

thus should not be done directly on the logarithmic scale (Fabry, 2015). In contrast, precipitation amount

and precipitation intensity are on linear scales. Thus, for calculating the arithmetic mean of ZH, we can

convert ZH into R using Z-R relation (Section 2.1), calculate the arithmetic mean of R, and then convert

the mean rainfall rate back ZH using the inverse Z-R relation. An exception is to keep ZH in logarithmic

scale for calculating correlation coefficients (Fabry, 2015).

A variable in the circular scale has no true zero points but arbitrary designations of high or

low values, such as wind direction (θV). In meteorology, for θV, we conventionally assign the direction

of east as 90◦ and the direction of west as 270◦, but it doesn’t imply that the wind direction in the west is

“larger” than that in the east. Therefore, calculating descriptive statistics of circular variables should be

different from statistics of linear variables. We adopt the circular descriptive statistics from Zar (2007)

and utilize the tools from Berens et al. (2009) to calculate the descriptive statistics of circular variables,

such as differential phase φDP and u-φDP.

For a radar variable x, its texture parameter σ(x) defines its localized spatial variability. The

texture parameter at a radar gate σ(xr) calculates standard deviation or root mean square difference of that

radar datum (xr) across a certain number of adjacent radar gates, either within a box whose dimensions

are along both radial and azimuthal directions, or within a moving window containing radar gates along

one radial direction merely. σ(xr) can be calculated using several different techniques (Giuli et al., 1991;
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Schuur et al., 2003; Chandrasekar et al., 2013). Similar to Dufton and Collier (2015), the one we used is

calculated as

σ(xr) =

√√√√ 1
N−1

(N−1)/2

∑
i=−(N−1)/2

(xr+i− x)2 (3.9)

where N is the number of radar gates within the calculating window of which the target radar gate is in the

center, and thus normally N is an odd number. Obviously, the magnitude of a texture parameter changes

with N, so we should be cautious about N. Given that ∆r is 75 m for fine scans and 250 m for coarse

scans, when calculating σ(x) for both fine and coarse scan data, we have two options—using either

equivalent window length or equal number of radar gates. Note that the texture parameters for φDP (σφDP)

and u-φDP (σφDP) use the circular scale standard deviations. This thesis also involves the texture parameter

for ZDR (σZDR), and the texture parameter for ρHV (σρHV). Be cautious about distinguishing σ(x) from the

standard deviation of a sample of data (SD(xr)). The former represents a spatially localized variation,

while the latter is used to represent the variation with a sample.

3.3.2. Frequency, probability and probability density

A variable can be discrete (discontinuous) or continuous; a discrete variable can take on only certain

values, whereas a continuous variable can be any conceivable value within a specific observed range.

The majority of meteorological variables are conceptually continuous but reported discretely owing to

accuracies of instruments. For instance, air temperature and precipitation amount can be any real number

in principle but are conventionally reported as discrete multiples of 0.1◦C and 0.01 mm. The situation

is similar for all the radar variables except KDP (Tab. 3.3). For instance, the ZH value outputted from our

radar processor is linearly spaced between -32 dBZ and 95 dBZ with an even interval of 0.5 dB. It means

that, the value 14.76 dBZ might exist in nature, but is rounded to 15 dBZ in our radar dataset.

Given the large amount of the radar dataset (Tab. 3.2), in order to quantitatively summarize

such a big dataset, we use frequency, relative frequency, frequency distribution, probability and probabil-

ity density. The frequency (or absolute frequency) presents a list of all the observed values of a variable

and counts how many times each value is observed in a sample. The relative frequency is the proportion

of the total frequency. The summation of all the absolute frequencies in a sample should equal to the

total sample size and the relative frequency varies between 0 and 1 (0% to 100%).

A frequency distribution is the distribution of the total number of observations among various

categories (groups or range intervals). A bar graph presents the frequency distribution for a discrete

variable. In contrast, for a continuous variable, its frequency distribution is tabulated by categories or

groups, which can be graphically presented by a histogram whose adjacent bars are normally touching

each other. The vertical axis of a histogram can be absolute or relative frequency. If the number of

categories or groups are too many, we often use a frequency polygon which connects the midpoint of
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each adjacent bar by straight lines. If the width of bars is small enough, these connected straight lines

look like in the shape of smooth curves.

A phenomenon occurs in any one of different ways, but in only one of those ways at a time,

and each possible output is referred to as an event, such as a ZH datum being 15.0 dBZ or 15.5 dBZ. To

obtain a frequency distribution, the sample range of data is divided into several intervals or bins, typically

with equal bin width (∆xi), and then the number of samples (ci) whose values fall into each interval is

counted. Then the absolute frequency of an event is ci, and the relative frequency of an event is the

ratio of the occurrence frequency of an event to the total number of all the events ci/∑ci. If a sample

is large enough, the probability of an event can be expressed in the long-run relative frequency. This

interpretation of probability essentially follows frequency interpretation (Wilks, 2006). Regarding the

event of hourly AR exceeding 5 mm, if a rain gauge located within Stuttgart city reported 66 times of

1-minute R over 5 mmh−1 in 2017, the relative frequency is 0.15% and thus we regard the probability of

precipitation hourly AR over 5 mmh−1 as 0.15%.

Analogous to the frequency distribution, we are also interested in the probability distribution

of a variable over its whole range, using probability density function (PDF, or f (xi)) defined as

f (xi) =
ci

Nt ·∆xi
(3.10)

where Nt = ∑ci is the total number of the sample. PDFs can efficiently summarize information from

a large dataset. Plotting the PDFs into a frequency polygon leads to the total area under the frequency

curve being 1 (
´ b

a f (x)dx = 1), which facilitates a direct comparison between different PDFs or differ-

ent datasets. When visualizing a PDF, the height of PDF is density rather than probability; instead a

probability is the area under the PDF curve.

As mentioned, radar variables are continuous, but outputs of the radar processor are discrete

values. According to Tab. 3.3, we use the minimum interval as the bin width for plotting PDFs to avoid

unnatural distortions of the PDFs caused by inappropriate bin widths, such as 0.5 dB for ZH. If the data

amount is sufficiently big, then frequency polygons are semi-smooth curves. Any irregular troughs or

ridges along these frequency polygons curve imply hidden noise or distortions of data, and demand a

cautious inspection of the dataset (Section 4.9). Besides this intuitive judgment, we can also calculate

the expectation (E(X)) and variance or standard deviation (σ(X)) from the PDFs through the following

equations

E(X) =

ˆ b

a
x f (x)dx (3.11)

σ(X) =

√ˆ b

a
(x−µ)2 f (x)dx (3.12)

E(X)≈ xk f (xi)∆x (3.13)
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σ(X)≈ (xi−E(X))2 f (xi)∆x (3.14)

where Eqs. 3.11 and 3.12 are for continuous variables, while Eqs. 3.13 and 3.14 are for discrete variables.

This calculation is valid for variables which do not follow the Gaussian distribution, such as precipitation

intensity whose small or near-zero values dominate the whole dataset. The ZH data from all the volume

scans at a specific radar gate are used to calculate a PDF which can be used to calculate the mean

precipitation rate over that radar gate. PDFs for multivariate are in Section 3.3.3.

The cumulative frequency distribution (CFD) provides information about sample quantiles or

percentiles. As the median is the value above and below which lies half the set of data, a quantile can be

defined as below which lies other fractional portion of the data. Quartiles divides one complete dataset

into four equal parts and are actually special cases of quantiles. We reserve Q for quantile or quartile,

such as the symbol Q0.1 for the 0.1 quantile, the symbol Q0.25 for the lower quartile, and the symbol

Q0.75 for the upper quartile.

3.3.3. Bivariate analysis

The paired data (X,Y) refers to two variables (X and Y) linked together. A bivariate sample consists of

paired data and can be expressed as

(X1,Y1),(X2,Y2), ...,(Xi,Yi), ...,(Xn,Yn)

In other words, within a bivariate sample, each datum Xi is paired with a corresponding datum Yi, and

thus the total numbers of the X sample and the Y sample are equal.

The concept of paired data will appear frequently in the next chapters. Paired data can be a

pair of data from two individual samples—ZH data from a coarse scan and a fine scan within each 10-

minute interval, if both are spatially interpolated into the same spatial resolution; paired data can also be

data obtained using different observational techniques —precipitation measurements from rain gauges

and precipitation estimates derived from the coincident and concurrent radar data.

For a dataset consisting of paired data, we are interested in the statistics to describe the re-

lationship between these two variables (X and Y). Correlation and regression are used to illustrate and

quantify such a relationship. The linear regression illustrates the linear dependence of one variable on

the other variable, whereas the linear correlation illustrates the association between two variables neither

of which is assumed to be functionally dependent upon the other. Non-linear correlations illustrated as a

monotonic increasing trend is also another possibility.
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Scatterplot and joint histogram

The scatterplot or scatter diagram is a typical graphical summary of bivariate data; one coordinate axis

represents one quantity of the paired data (X) while the other coordinate axis represents the other quantity

of the paired data (Y). The scatterplot presents an association between X and Y, and this association is

not causality. If this association is strong enough, it can be explained in the following three ways: a) X

causes Y to change, b) Y causes X to change, c) a third unknown or unquantified variable causes both

X and Y to change. For instance, no causality exists between two samples because both are measured

individually from two instruments/methods, such as radar measurements from fine and coarse scans, and

so only the situation c) is reasonable.

In spite of the prevalence of scatterplots in bivariate analyses, the scatterplot for the instan-

taneous R or hourly AR is usually visually unfriendly. Rain in measurable intensity is a rare case; dry

periods or light rain dominate the entire measuring period, which means a huge amount of precipitation

measurements are below the minimum measurable threshold of rain gauges. This feature is reflected in

the scatterplot where the majority of scatterers cluster around the origin of the scatterplot. Many scatter-

ers are overlapped at one location and indistinguishable. Graphically, we cannot know the frequency of

scatterers at a location. For instance, the scatterplot with the paired values of 1.1 mmh−1 and 0.9 mmh−1

occurring 10 times, and the paired values of 1.1 mmh−1 and 0.1 mmh−1 occurring once, is graphically

equivalent to another scatterplot with the paired values of 1.1 mmh−1 and 0.9 mmh−1 occurring once,

and the paired values of 1.1 mmh−1 and 0.1 mmh−1 occurring 10 times, given the size and color of dots

is kept the same (Fig. 3.6(a) and Fig. 3.6(b)). Although the first scenario shows stronger agreement than

the second scenario, such stronger agreement is graphically hidden in the scatterplot. This is a drawback

of the scatterplot, especially for the dataset with a large data amount.

In contrast, the joint histogram, also named as the two-dimensional bivariate histogram or

heatmap, serves an alternative way to tackle the overploting of scatterplots (Figs. 3.6(c) and 3.6(d)). The

color of dots indicates the occurrence frequency of the sample with each two-dimensional bin. Fig. 3.6(d)

shows the majority of the paired data close to the diagonal line, indicating a better concordance between

the X and Y sample sets. The two-dimensional probability density function (2D-PDF) is a form of the

joint histogram, if the data in both the X and Y sample sets are normalized to the probability density

function.

Statistics for correlation and concordance

Three types of correlation coefficient (CC) statistics are used to describe the correlation between two

variables: Pearson correlation coefficient (CCPS), Spearman rank correlation coefficient (CCSP) (Spear-

man, 2010; Spiegelman, 2010), and concordance correlation coefficient (CCC)(Steichen and Cox, 2002;
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(a) (b)

Fig. 3.6.: Illustration of drawbacks of scatterplot and advantages of joint histogram: (a) bad concordance, and (b)
good concordance

Lin, 1989; McBride, 2005). A “good” statistic should be unbiased, efficient, reliable and consistent (Zar,

2007).

CCPS refers to “Pearson product-moment coefficient of linear correlation”, which is the most

common statistic to measure the strength of the association between two variables or two samples.

CCPS(X ,Y ) =
1

N−1

N

∑
i=1

(
Xi−µX

σX
)(

Yi−µY

σY
) (3.15)

CCPS is statistically neither robust nor resistant and it is sensitive to outliers. However, due to its common

use and its application in regression analyses, CCPS is frequently used in the next chapters.

In contrast, CCSP is statistically more robust and resistant, and its equation is

CCSP(X ,Y ) = 1− 6∑
N
i=1 di

2

N3−N
(3.16)

where di is a difference between X and Y ranks: di = rank of Xi - rank of Yi. CCSP indicates the strength

of monotonic relations, rather than the linear relationship reflected by the foregoing CCPS.
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Fig. 3.7.: Schematic comparison of the linear and orthogonal regression. The blue lines show the vertical dis-
tance whose sum of squares is minimized in the simple linear regression; the red lines show the shortest
distances perpendicular to the fitting lines and orthogonal regression minimizes the length of red lines

CCC (Lin, 1989) is also used to evaluate the relationship between two variables, and is cal-

culated as

ρc =
2σXY

σXX +σYY +(µX−µY)2 (3.17)

CCC was supposed to be superior than other procedures such as CCPS, least square for slope and intercept

(Zar, 2007). CCC less than 0.9 indicates the poor strength-of-agreement; CCC between 0.9 and 0.95 is

moderate; CCC between 0.95 and 0.99 is substantial; CCC larger than 0.999 is almost perfect (McBride,

2005).

Besides these foregoing CCs in different definitions, when it comes to the paired data of

two variables with the identical physical meaning, if the orthogonal regression brings about straight

fitting lines characterized by the 45◦-slope and a zero intercept, Y = X , these two variables are perfectly

correlated and also in a perfect concordance.

Specifically, in order to assess the relation between rain gauge precipitation measurements

(ARG) and radar-based precipitation estimates (ARR), we define ∆ = ARR − ARG, and the following

statistics: bias B = 〈∆〉, averaged absolute deviation (AAD) = 〈|∆|〉, root mean square error RMSE =

(〈|∆|2〉)1/2, relative root mean square error rRMSE = normalized by the mean rain gauge precipitation

accumulation (ARG), and normalized bias nB divided by (ARG) as well (Jaidan et al., 2018).

Orthogonal regression

The linear least-square fitting is used to perform a linear regression between two variables, one termed

as predictor (X) and the other termed as response (Y ). The linear least-square fitting minimizes the sum

of squares of predictor errors.

Unlike the linear regression which implicitly assumes that measurement errors exist only in

the response variable (Y ), the Deming regression assumes the measurement errors of X and Y to be in

Gaussian distribution and independent. The Orthogonal Regression (OR) is a special case of the Deming
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regression if the variances of two measurement errors of X and Y are identical. It minimizes the distance

of the response values perpendicular to the fitting line (red lines in Fig. 3.7), which implies the fitting

coefficients keep constant if the X-axis and Y-axis is exchanged.

A classical use of OR is to test the consistency of one quantity which is measured by two

instruments or two experimental methods, referred to X1 and X2. No causality or dependence exists

between X1 and X2, so the terms “response” and “predictor” are inappropriate. In the paired datasets

of our study, we eliminate the concept of “response” and “predictor”, and then both variables X and Y

refer to two independent samples which observe the same thing but resulted from different instruments

or measuring methods. If X1 = X2, we can conclude both the measurements from the instruments are

perfectly correlated and also comparable in magnitude, which implies both instruments are able to ob-

serve that variable accurately. However, in reality, two instruments have different measurement errors,

conflicting the assumption of the equal measurement error variance, and casting doubt on the use of OR

. For example, the variances of measurement errors from radar and rain gauge measurements are quite

likely to be different. Therefore, the results of orthogonal regression should be interpreted with caution.
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4. Effects of Spatial Resolution on Radar Data Quality

Data, regardless of their sources, always include both useful and irrelevant information, and must be

processed to obtain the meaning information, which can be done by data quality management. We

usually access radar data after they were produced (such as after a field campaign), so the data quality

management for the radar data lies in data QC—the reactive and corrective procedures—other than data

quality assurance.

The Data QC is a crucial step before using observational data into applications (Friedrich

et al., 2006). The objective of this chapter is to investigate the effects of spatial resolution of radar

measurements on the data quality of the radar “base” data by comparing the differences between two

radar datasets at two different spatial resolutions—the fine and coarse scan data. The following data

analyses include: i) deciphering the sources of errors and uncertainties which affect the radar data quality,

ii) developing the automatic algorithms to identify and filter out the less qualified data or noises, iii)

characterizing the spatiotemporal distribution of various types of noises.

4.1. Visual inspections of differences between fine and coarse scans

Looking through radar images is always the first step for the majority of the radar data users when they

obtain a new set of radar data, and nowadays the radar images have become common for the public as

well. Similarly, at the first step, we also conduct qualitative visual inspections over a small sample of

radar images. Such “quick” looks before any data processing or calculation are supposed to provide us a

preliminary overview about the similarities and differences between the fine and coarse scan datasets.

4.1.1. Loss of weak echoes in fine scans

Since the peak power of a radar transmitter is relatively unvaried (Section 3.1), a short pulse duration

means shortening the time in which the transmitter is sending out EM waves, weakening the total trans-

mitted power and correspondingly reducing the returned echoes. In other words, in case of a shorter

pulse duration, the radar signal processor tends to overlook the weak returned signals and subsequently

a diminished percentage of measurable radar reflectivity (ZH) above a certain threshold—approximately

12 dBZ for our fine scan shown in Fig. 4.1(e).
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(a) (b) dBZ

(c) (d) dBZ

(e)

Fig. 4.1.: PPI displays of ZH at the 1.5◦ elevation at 01:23(01:24) UTC on 11 October 2017 to show a lack of weak
echoes in fine scan data, where the ZH of the fine scan (a) is interpolated into the same spatial resolution
as the coarse scan, (b) only includes ZH of the coarse scan within the 75-km range, in order to present
both PPI displays at the same dimension, (c) uses the same data as (a), but in a discrete color scheme and
zoomed in the northeast quarter (the same for (d)), the black stars indicate the location of radar, and the
size of light blue dots in (c) and (d) represents the magnitude of 10-minute rainfall accumulation during
01:10–01:19 UTC from DWD rain gauge measurements, and (e) is PDF of ZH for the original coarse scan
data at 01:24 UTC, and the fine scan at 01:23 UTC interpolated into the same spatial resolution as the
coarse scan referred as f2c
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(a) (b)

(c) (d)

(e) (f) dBZ

Fig. 4.2.: PPI displays of ZH around 04:30-04:39 UTC on 7 July 2017 to show the additional suspicious echoes in
fine scan data, where (a), (e) and (f) are the fine scans of 1.5◦ elevation at 04:33 UTC, (b) is the coarse
scan of 1.5◦ elevation at 04:34 UTC, (c) is the fine scan of 3.6◦ elevation at 04:33 UTC, and (d) is the fine
scan of 1.5 ◦ elevation at 04:31 UTC. In (a), the unfilled trapezoids in cyan refer to the suspicious echoes
caused by external EM sources, and the unfilled ellipses in green-yellow color refer to the second-trip
echoes; the unfilled squares in (b) show the weak echoes present in the coarse scan but absent in the fine
scan; in (e) the suspicious echo caused by external transmission is removed (Section 4.2); in (f) both
types of suspicious echoes are removed (Section 4.3); the black stars indicate the location of the X-band
radar site

At the first glance at PPI displays in Fig. 4.1, we notice the area with measurable ZH(above

-32 dBZ) in the fine scan (Fig. 4.1(a)) is much smaller than that of the coarse scan (Fig. 4.1(b)). Besides,

the areas which can be only seen in the radar images of the coarse scan are characterized by ZH mainly be-

tween -12 and 12 dBZ, corresponding to the areas in red, yellow and purple in both Figs. 4.1(c) and 4.1(d).
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Radar reflectivity below 12 dBZ, which is equivalent to rainfall rate less than 0.2 mmh−1 and corresponds

to drizzle or light rain with very small drops, is usually referred as weak echoes and has a minimal con-

tribution to flash floods. Light rain was reported by rain gauges, as indicated by these blue dots in both

Figs. 4.1(c) and 4.1(d). For the coarse scan (Fig. 4.1(d)), all the blue dots overlap with the measurable

ZH, but for the fine scan (Fig. 4.1(c)), there is no measurable radar signal near the rain gauges which

report precipitation. In short, the fine scans miss weak precipitation.

In contrast, the area with ZH over 12 dBZ resides in both scans with nearly identical shapes

and locations, corresponding to the green area in both Figs. 4.1(c) and. 4.1(d), which means the fine

scan has comparable capability as the coarse scans in observing moderate-to-heavy precipitation that

is of most interest to hydro-meteorological applications. The difference in PDF (Fig. 4.1(e)) further

quantitatively confirms a diminished presence of weak echoes along with these remaining strong echoes

for fine scans.

This deficiency of weak radar reflectivity is ubiquitous through the entire radar data, which

means plenty of cases to illustrate this reduction of weak radar echoes. However, we deliberately choose

the example case in Fig. 4.1—light rain to minimize the effect of attenuation correction (Section 4.6), no

precipitation at 75–150 km radar range to avoid the possible contamination from the second-trip echoes

(Section 4.3), and no calibration (Section 5.2.1). These strict criteria attempt to eliminate other possible

reasons accounting for the difference in ZH value between the fine and coarse scans, and to illustrate

merely the lack of weak radar echoes in fine scans in a rigorous manner.

Regarding radar detection, radar sensitivity refers to detectability of weak echoes against

the background of the radar receiver’s noise (Smith, 1986). The background noise may also include

interference signals (natural or man-made), or even ground clutters. The background noise usually tends

to fluctuate rapidly, so the matter of the radar sensitivity is a statistical problem. The system sensitivity

is greater at the expense of a loss in effective spatial resolution, which fits much clearly with losses of

weak echoes in the fine scan data we discussed above.

4.1.2. Additional suspicious echoes in fine scans

Despite the reduced presence of weak echoes, the radar images of fine scans often show additional

echoes which are absent in the coarse scan. For instance, comparing the radar images between the fine

and coarse scans in Figs. 4.2(a) and 4.2(b), we can find that, contrary to the weak echoes present in the

coarse scan but absent in the fine scan (within the dashed square in Fig. 4.2(b)), some radar echoes only

exist in the fine scan, such as these within the trapezoids or ellipses in Fig. 4.2(a). We classify these

radar echoes seen only in this fine scan into two types based on their patterns and intensity. Within the

trapezoids, the suspicious echoes reside along the radar beams interrupted with random short breaks,

narrow in the azimuth directions (only spreading over one to three azimuths) but elongated in the radial
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directions, either with moderate (the trapezoid to the south of the radar) or strong (the trapezoid in the

northwest of the radar coverage) intensity. For two trapezoids in the north-northeast (NNE) directions in

Fig. 4.2(a), the suspicious signals may also radiate from the radar site, but they are overlapped with the

precipitation targets and it is not easy to distinguish them from the precipitation body. These suspicious

echoes disappear or relocate to absolutely different azimuthal directions in the sweeps of 3.6◦ elevation

within the same volume scan, and of 1.5◦ elevation of the volume scan performed 90 seconds earlier,

thus suspicious echoes are random both in time or space. The second type of suspicious signals is quite

different from the first type. The “extra” radar reflectivity (ZH) within the ellipses remains steady in

the temporally adjacent radar scan or the radar sweeps of adjacent elevations, usually with a weak-to-

moderate intensity. The different characteristics of suspicious echoes in the trapezoids and ellipses imply

different causes behind both.

The meteorologically meaningful radar echoes appear in similar shapes with comparable in-

tensity in both fine and coarse scans and their spatially or temporally adjacent scans, no matter how tiny

they might be in size, such as these sparely scattered convective storms in the western part of the radar

coverage in all the four PPI displays in Fig. 4.2. We trust the radar’s reliable ability to observe, and be-

lieve that no arbitrary radar echo exists in a radar image without a reason, and thus there must be reasons

for both suspicious echoes.

To recap, our glances over radar images gives us a quick overview on similarities or dissimi-

larities between the fine and coarse scans before meticulous examinations. It not only confirms the loss

of weak echoes in the fine scan which is in accord with the radar theory, but also unfolds two types of

suspicious echoes that add “extra” ZH into the fine scan solely. We discuss extensively about these two

types of suspicious echoes respectively in the following two sections to assess their roles in radar data

quality.

4.2. Spike signals from an unknown source

The radar reflectivity (ZH) patterns within the trapezoids in Fig. 4.2 along the azimuthal directions vary

in intensity, and are random in space and time; they don’t recur in the adjacent elevations and are also

absent in the preceding and following volumetric scans. We name these “spike-shaped” patterns briefly

as spike signals; we deliberately use the term “signal” rather than “echo”, because their EM energy may

not be from our X-band radar but other external EM sources.

4.2.1. Characteristics of spike signal

In addition to the varying ZH (Figs. 4.2 and 4.3(a)), the spike signals are characterized by unreasonably

high u-φDP above 200◦ (Fig. 4.3(b)), and these u-φDP values keep nearly constant over consecutive radar
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gates (Fig.4.3(c)), which is equivalent to a low σu-φDP . Such features are quite distinct from other kinds

of echoes, as we know that radar gates contaminated by ground clutters have both high u-φDP values and

large σu-φDP values while the precipitation echoes are usually characterized by low u-φDP. Thus, we can

distinguish the spike signals from ground clutters and precipitation via a combined use of u-φDP and its

texture, automatically for the entire radar data. For instance, in Fig. 4.3, despite different ZH intensity,

spike signals within both the trapezoid 1 and 3 exhibit u-φDP higher than 210◦ and low σu-φDP lower than

10◦, both satisfying the criteria of high u-φDP and low σu-φDP , thereby being identified as a flag for the

spike signal (marked as the green lines in Figs. 4.3(d) and 4.3(e)). By the way, we select this case in

Fig. 4.3 deliberately in which spike signals don’t penetrate through the precipitation to avoid the mis-

leading overlapping with precipitation echoes, and these three trapezoids from 1 to 3 represent three

scenarios respectively—spike signal with moderate ZH, spike signal within the azimuths where the radar

radiation was off, and spike signals with high ZH.

Given that microwave radiation of radar was deliberately switched off for the azimuths be-

tween 91◦ to 170◦ (Section 3.1) during the entire measure period, the existence of spike signals within

this azimuthal range (the trapezoid number 2 in Fig. 4.3) leads to our argument that the energy of spike

signals comes from an external source—probably a transmitter operating in exactly the same frequency

as our X-band radar. A candidate is the navigation radar for the inland vessels traveling along the Neckar

River as shown in Fig. 4.4(a). The traffic regulations (minimum safety standards ) of the European Union

for inland waterways requires all the vessels to have a 9-GHz radar as the secondary navigation radar

in addition to a S-band radar as the primary one for the purpose of navigating and avoiding collisions

(ETSI, 2016). Although technical details of the 9-GHz X-band navigation radars vary among different

design modes and manufacturers, the spatial resolution of these pulsed X-band navigation radars can be

as high as 5 meters (note that these X-band navigation radars are absolutely different from our X-band

weather radar).

After identifying the spike signals in the entire X-band radar dataset by applying the afore-

mentioned criteria relying on the u-φDP dataset, we find the identified spike signals exhibit diurnal

variations and spatial patterns which might be associated to the navigation radars (Fig. 4.4). The oc-

currence frequency of spike signals was much lower during the nighttime especially from 23 UTC to

04 UTC (01 am to 06 am local time in summer daylight saving time), which may be explained by the

reduced transportation activity of inland vessels during the nights. Moreover, for both fine and coarse

scans, the spike signals are spatially distributed more frequently in the azimuthal range between 310◦and

60◦ (Figs. 4.4(c) and 4.4(d)), which corresponds to a twist in the inland waterway of the Neckar River

near our X-band radar site within the highlight shaded dark blue area in Fig. 4.4(b).
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(a) dBZ

(b) (c)

(d)

(e)

Fig. 4.3.: A case of spike signal at 15:13 UTC on 13 September 2017 to characterize and identify the spike signals
using u-φDP and σu-φDP , where (a) is a PPI display of ZH at the 1.5◦ elevation (with the black star as the
X-band radar site location), (b) is u-φDP in azimuth-range section, (c) is σu-φDP in azimuth-range section,
(d) is the 60◦ azimuth ray section of u-φDP (in blue lines) and σu-φDP (in red lines), as well as flags for
spike signals (in green lines), and (e) is the same as (d) but for the 335◦ azimuth

Clearly, it seems impossible to find another type of the EMtransmitter that is able to contin-

uously send signals following such duration variations. These above characteristics of the spike signals

help us narrow down the possibility for the source, which supports our assumption that these spike sig-

nals are from external shipborne navigation X-band radars along the Neckar River inland waterway in

proximity to our X-band radar site. Besides, other X-band radar field experiments near waterways also
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reveal the similar suspicious signals in their radar datasets. Note that this type of spike signal caused by

shipborne radars is absolutely different from the echoes from ships’ corner reflectors for C-band radars

(Rico-Ramirez et al., 2007; Werner, 2014).

(a) (b)

(c) % (d) %

(e)

Fig. 4.4.: Spatiotemporal statistics of spike signals for the whole measuring period and its association with inland
waterways, (a) the Neckar waterway within the 75-km range of the X-band radar, (b) the Neckar water-
way within the 10-km range, (c) spatial distribution of relative frequency of spike signals over each radar
gate for fine scan data, (d) the same as (c) but for coarse scan data, the small inserted plots in (c) and (d)
are absolute frequency of spike signal along the azimuthal directions (the data within the 15-km range
are excluded to mitigate the contamination of ground clutters), and (e) diurnal variation of the relative
frequency of spike signals over radar sweeps of three elevations and all the radar gates
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This type of spike signals becomes less frequent with the increasing elevations for both fine

and coarse scans (Fig. 4.4(e)); higher altitudes can mitigate the impact from the waterway. Moreover,

spike signals are much less frequent in coarse scans, which means the radar measurements with a higher

spatial resolution are more subject to external emissions.

4.2.2. Spike signal identification and filtering

Filtering unwanted data (noise) usually has two steps—removing the suspicious data and fill in empty

areas with the right values. Based on the characteristics of the polarimetric variables discussed above, we

can identify spike signals on the basis of the u-φDP and its texture (σu-φDP). These identified spike signals

exhibit statically spatial distributions over some certain azimuthal directions and clear diurnal variations,

arbitrary intensity and random azimuth directions from-scan-to-scan. Obviously, these spike signals

were from a steady source during the entire measuring period. The X-band radars on the transporting

ships near the Neckar waterway are the only sources within our X-band radar coverage accounting for

the suspicious spike-shaped signals. To clarify, this spike signal we talk about should be distinguished

from the echoes for C-band radars in the form of a trail along coasts, which are also caused by the

ships(Werner, 2014; Rico-Ramirez et al., 2007).

After identification, the majority of the spike signals occur in the non-precipitating gates, and

we treat them as not a valid measurement. However, the spike signals occasionally spear into precipita-

tion (Fig. 4.2(a)), which means that these gates should have provided precipitation echoes had they not

been contaminated by the spike signals. After removing the erroneous data over these gates, we inter-

polated the radar measurements from the adjacent azimuthal directions to fill in the removed data (the

dark blue curve in Fig. 4.5). For example, we used the ZHfrom azimuths of 311◦ and 314◦ to calculate

the ZH for the azimuth of 312◦whose data are contaminated by spike signals.

Fig. 4.5.: Ray cross-section at 312◦ azimuth of ZH before (in light blue) and after (in dark blue) spike signal filter-
ing, where the shaded areas are flagged as spike signals, and the red curve in the bottom part is SQI with
two thresholds values of 0.3 and 0.75 in green horizontal lines
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We also found that the spike signals correspond to SQI lower than a certain threshold (the red

curve in the bottom part of Fig. 4.5), which is approximately 0.3 in our fine scan dataset. We might treat

these radar gates with low SQI values but measurable radar reflectivity (ZH> 0dBZ) as spike signals; this

is another criterion to filter out the spike signals.

4.3. Second-trip echo removal for fine scans

As discussed in Section 4.1.2, another type of extra echoes in the fine scan exhibits different characteris-

tics from the spike signals above (Section 4.2). As follows, we present a brief theory of the second-trip

echo (STE), show their existences in our dataset, seek for the criteria to remove them, and assess their

effect on the specific differential phase (KDP) retrieval and attenuation correction.

4.3.1. General concept of second-trip echo

A transmitter for the pulsed weather radar sends out EM signals, waits a while with the switched off

radiation for the reflected signals, and then sends out the second series of signals. Ideally we assume the

first series of signals has already returned to the radar before the second series of signals is emitted.

The PRF controls how often the transmission repeats or how long the transmitter is off be-

tween the first and second series of transmission. For instance, the PRF for fine scans is 2000 Hz

(Tab. 3.2), which means the transmission repeats each 0.666 µs. Such a 0.666-µs duration allows the

signal to travel forth and back totally c×2× 0.666 µs = 75 km at the speed of light (c≈ 3×108 ms−1).

Given this 75-km round-trip distance, all the signals reflected by the targets within rmax =75 km are able

to return to the radar before the next series of transmission is sent out. For the signal reflected by the tar-

get located at 75+∆r0 km away from the radar, it takes ∆t+2µs to travel (note that ∆r0 = c×∆t), but the

radar wrongly supposes that this returned signal travels ∆t only and is reflected from the target located at

∆r0 km away from the radar. This is the cause of the second-trip echo. According to the radar equation

(Eq. 2.13), the intensity of the radar signal over a certain radar gate is proportional to the square of its

distance to the radar (r). Given a certain total received power Pr regardless of the first-trip or second-trip

echo, ZH is corrected with a range factor of 1/r2. The second-trip echo is wrongly applied with a range

factor of 1/(∆r0)
2 rather than the true 1/(75+∆r0)

2, and thus its linear-scale radar reflectivity zste (with

the uppercase letter) is expressed as

zste =
(∆r0)

2

(∆r0 + rmax)2 z0 = (
1

1+ rmax
∆r0

)2z0 (4.1)

where z0 is the supposed linear-scale radar reflectivity if r0 exceeds rmax, or if the range ambiguity occurs.
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Eq. 4.1 tells us three points: i) zste is usually less than the supposed z0, since the term rmax/∆r0

is always positive (Eq. 4.1); ii) the larger ∆r0 is, the greater zste is; iii) the larger rmax is, the smaller

zste is. Regarding the second point, for a convective system with ZH of 55 dBZ (roughly 100 mmh−1

in rainfall rate if following Marshall-Palmer Z-R relation) located at 305 km away from the X-band

radar (∆r0 = 5 km), it is reported by the coarse scan as 19.3 dBZ (0.6 mmh−1) at a fake location 5 km

away from the radar. If this convective system moves to a location 310 km away from X-band radar

(∆r0 = 10 km), the second-trip echo is regarded as 25 dBZ (1.3 mmh−1) at 10 km away from the radar.

Thus, zste increases with an increasing ∆r0.

Regarding the third point, because rmax of the coarse scan is much longer than that of the fine

scan (rmax =75 km), the effect of second-trip echoes is usually much less severe for the coarse scans. For

fine scans, if a second-trip echo of 19.3 dBZ occurs at 5 km away from the radar, it requires a convective

storm with ZH of 43.5 dBZ at 80 km away from the radar, in contrast to ZH of 55 dBZ in the coarse scan at

305 km away from the radar. We know ZH of 43.5 dBZ (18.5 mmh−1) is more likely to occur than ZH of

55 dBZ, assuming the rainfall intensity probability distribution is spatially homogeneous in our area of

study. It means the second-trip echoes in the fine scan data are more likely to reach moderate (or even

heavy) intensity.

Moreover, for the coarse scan, the second-trip echo won’t occur until the convective storm is

located 300 km away from the radar, while the second-trip echoes occur in fine scans as far as any targets

are situated beyond 75 km away from the radar. It means that the second-trip echo is more frequent in

the fine scan data. Therefore, although the second-trip or multi-trip echoes may occur for both fine and

coarse scans, the impact is far more severe in fine scans along with intenser and more frequent second-trip

echoes.

We consider two scenarios to illustrate the causes of second-trip echoes in our X-band radar

experiment. When the precipitation is located between 75 km to 100 km away from the X-band radar,

both the C-band radar and the X-band radar coarse scan can observe this precipitation at its origin location

(Figs.4.6(a) and (b)), but it appears between 0 km to 25 km away from the X-band radar with reduced

intensity for the fine scan (Fig4.6(c)). When the precipitation is located between 100 km to 150 km

away from the X-band radar in the northwestern azimuthal directions, it is visible to the C-band radar

(Fig4.6(d)) but invisible to the coarse scan (Fig4.6(e)), and for the fine scan it appears between 25 km

and 75 km away from the X-band radar (Fig4.6(f)).
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Fig. 4.6.: Configuration of second-trip echoes, where panels in the upper row are for precipitation in the range
of 25–75 km, panels in the bottom row are for precipitation in the range of 100–150 km, the black
stars/upward-pointing triangles indicate the location of the X-band/C-band radar, the blue filled circles
are the location of the precipitation echoes, the red filled circles are the location of the second-trip echoes
corresponding to the blue filled circles, the black unfilled circles are 75-,100- and 150-km range rings for
the X-band radar, the green unfilled circles are 120-km range rings for the C-band radar, the light blue,
light red and light green shaded areas correspond to the radar coverages for the X-band fine scan, coarse
scan and C-band radar, respectively

In both scenarios, the second-trip echoes in fine scans represent the targets in wrong locations

with incorrect ZH intensity. In the second scenario, some radar echoes are present in the fine scan but

absent in the coarse scan. Under the circumstance of no precipitation, if an echo only appears in a fine

scan and not in the simultanous coarse scan, we can infer it is the second-trip echo; under the circum-

stance of second-trip echoes overlapped existing precipitation within the radar coverage, ZH intensity

of the existing precipitation in the fine scan is larger than that in the coarse scan without second-trip

echoes. Therefore, the second-trip echo accounts for one of the major differences between the fine and

coarse scans. Since the second-trip echo introduces “extra” measurement at the wrong locations with

false intensity, we regard it as another type of noise and aim to filter it out.

To recap, we talked about the cause of second-trip echoes and their severe impact on the

fine scan data. As follows, we verify the existence of second-trip echoes in our fine scan data via other

concurrent measurements—coarse scan, rain gauge network and the nearly C-band radar—in terms of

both power and phase measurements.

4.3.2. Characteristics of second-trip echoes in terms of radar reflectivity

According to the external ZH measurement from the C-band radar (Section 3.2.1), only one large con-

vective system was located between 60 and 110 km away from the X-band radar in the northwestern
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direction, and the rest of the radar coverage was free of precipitation targets (Fig. 4.7(c)). The majority

of this precipitation system was beyond 75 or even out of the observational coverage for the fine scan.

Nevertheless, echoes with moderate intensity around 10–20 dBZ lay along the radar beams from the radar

site to the radar coverage edge in the northwestern azimuthal direction of the fine scan (Fig. 4.7(a)); these

echoes are present in neither the coarse scan data (Fig. 4.7(b)) nor C-band radar measurements. Associ-

ating to Fig. 4.6, we know these “extra” echoes that are merely present in the fine scan are the second-trip

echoes of the large convective precipitation system beyond 75 km from the X-band radar.

(a) (b)

(c) (d) dBZ

Fig. 4.7.: PPI displays of ZH showing presences of the second-trip echoes in terms of ZH on 7 July 2017, where (a)
is for the fine scan at 00:03 UTC at the 1.5◦ elevation sweep, (b) is for the coarse scan at 00:04 UTC at
the 1.5◦ elevation sweep, (c) is for the C-band radar at 00:05 UTC at the 4.5◦ elevation sweep, where the
black star (or the upward-pointing triangle) indicates the location of the X-band (or C-band) radar site,
the concentric circles in cyan indicate the 75-km, 100-km, 150-km range rings of the X-band radar, and
the circles in bronze indicate the 120-km range rings of the C-band radar, and (d) is nearly the same as
(a), but after filtering the second-trip echoes

Given that there was no precipitation within the 50-km range (Fig. 4.8(b)), we can infer

all the additional echoes within the 50-km range of the fine scan are second-trip echoes. Using the

ZH measurements in the range of 75–100 km from the coarse scans and according to Eq. 4.1, we calculate

the theoretical second-trip echoes (Fig. 4.8(d)). They reveal similar shapes as the measured second-trip

echoes in the fine scan (Fig. 4.8(c)), and slightly less intensity owing to the radar reflectivity attenuation.

This example clearly demonstrates the existence of second-trip echoes in terms of ZH.

83



(a) (b) dBZ

(c) (d) dBZ

Fig. 4.8.: Illustration of the second-trip echo in terms of radar reflectivity ZH for the case in Fig. 4.7, where (a) is
ZHof the fine scan at 00:03 UTC, (b) is ZH of the coarse scan at 00:04 UTC, (c) is ZH within 0–25 km
radar coverage at 00:03 UTC, and (d) is the artificial ZH in the 0–25 km range generated from the coarse
scan in the 75–100 km radar coverage at 00:04 UTC

4.3.3. Characteristics of second-trip echoes in terms of differential phase

Second-trip echoes also exist in the form of the “extra” uncorrected differential phase u-φDP measurements,

which is rarely discussed in literature. The u-φDP values of the second-trip echoes are quite different be-

tween the fine and coarse scans (Figs. 4.9(a) and 4.9(b)). Lack of u-φDP measurements within the 50-km

range in the coarse scan (Fig. 4.9(b)) is in a good accord with the absence of precipitation within the 50-

km range illustrated already in Figs. 4.7(c) and 4.8(b), which is in contrast to the presence of u-φDP within

the 50-km range in the fine scan. However, by comparing Fig. 4.9(c) to Fig. 4.9(d), we find that u-φDP in

the 0–25 km range of the fine scan is similar to that in 75–100 km range of the coarse scan, although part

of radar gates lack the valid u-φDP in the 0–25 km range of the fine scan owing to the radar processor

built-in ground clutter removal procedure.
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(a) (b) dBZ

(c) (d) dBZ

Fig. 4.9.: Illustration of the second-trip echoes in terms of u-φDP for the case in Fig. 4.7, where (a) is for the fine
scan at 00:03 UTC, (b) is for the coarse scan at 00:04 UTC, (c) is for the fine scan within the 0–25 km
radar coverage at 00:03 UTC, and (d) is for the coarse scan within the 75–100 km radar coverage at
00:04 UTC

Theoretically, unlike radar reflectivity, the differential phase has no range factor correction

to reduce the magnitude of second-trip echoes. The second-trip echoes in terms of u-φDP remain the

same magnitudes as the origin measurements, and are simply relocated from a farther range r km to a

closer range r− rmax km away from the radar. For instance, if we simply move u-φDP at the 75–100 km

range measured by the coarse scan (the red curve in the upper plot Fig. 4.10(a)) to the 0–25 km range

(the yellow curve in the upper plot Fig. 4.10(a)), despite the turbulent u-φDP measurements in the fine

scan, both curves match well with each other. To mitigate the effect of the turbulent nature of u-φDP,

we averaged u-φDP arithmetically over a few azimuths along the azimuthal directions, and ended up

with a high linear correlation between the coarse scan in the 75–100km range (within the light yellow

shading area in Fig. 4.10(b)) and the fine scan in the 15–25 km range (within the light yellow shade

area in Fig. 4.10(b)). This close linear correlation in u-φDP measurements between the fine scan and

the “relocated” coarse scan substantiates that the extra u-φDP measurements are due to the second-trip

echoes.
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(a) (b)

Fig. 4.10.: Ray cross-section to show second-trip echoes in terms of φDP at 00:00 UTC on 7 July 2017 for the
case in Fig. 4.7, (a) u-φDP and ZH for a single azimuth of 324◦ for the fine scan (in blue), the coarse
scan (in red) and manipulated shifted coarse scan (in yellow), (b) u-φDP interpolated into 750-m ∆r and
averaged over azimuths from 323◦ to 329◦. CC is the Pearson correction coefficient calculated in terms
of u-φDP between the fine scan and the shifted coarse scan for the radar gates within the light green
shaded area (roughly between 5 and 25 km range)

Despite a lack of the reference u-φDP in the coarse scan beyond the 100-km range, it is rea-

sonable to infer that the extra u-φDP measurements in the range of 25–75 km in the fine scan (Fig. 4.9(a))

are also the second-trip echoes of the precipitation system in the 100–120 km range seen by the C-band

radar (Fig. 4.7(c)). At the location roughly 60 km away from the radar, the second-trip echo diminishes

and u-φDP returns back to the low value, resulting in a dramatic drop in u-φDP along the radar beam

(Fig. 4.10(b)). Recall that KDP is a derivative of differential phase relative to the distance to the radar, we

thus expect large negative KDP values at the edge of the second-trip echoes with dramatic drops in u-φDP.

These negative KDP values are caused by second-trip echo, have no physical implication for precipita-

tion or cloud physics, and should be excluded. However, their removal is tricky, because these gates,

although very close to the second-trip echoes, are not subject to the second-trip echoes and thus won’t be

filtered out by the second-trip echo filtering. Thus, we inevitably end up with some erroneous negative

KDP estimates due to the second-trip echo in format of u-φDP.

Comparing the upper and lower plots in Fig. 4.10(a), we easily see the second-trip echoes exist

in the form of both power and phase measurements, indicated by the “extra” ZH and u-φDP measurements

solely in fine scans and not in coarse scans. The difference between the power and phase measurements

is the reduced magnitude for second-trip echoes in the form of ZH — the yellow curve in the lower part in

Fig. 4.10(a) with ZH much less than the red curve in the range of 75–100 km— and the unchanged mag-

nitude for the second-trip echo in terms of u-φDP. Besides, the second-trip echo distorts the monotonic

increasing trend of u-φDP (Fig. 4.10), which may induce errors for KDP retrievals and associated rainfall

estimation using KDP.
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If the probability of precipitation is assumed to be homogeneous and the probability of pre-

cipitation within the 75-km range is P, then the probability of second-trip or tripe-trip echoes within the

75-km range is 8×P. Therefore, it is crucial to filter out second-trip echoes for fine scan data.

4.3.4. Second-trip echo removal procedure

In the operational application, the second-trip echoes can be prevented by using two pulse durations in the

scan strategy or, is filtered during the radar signal processing (Zrinc and Mahapatra, 1985; Torres et al.,

2004; Cao et al., 2011). However, our research investigates both the fine and coarse scans individually.

Using the information from coarse scans to process the fine scan data conflicts with our initial purpose

for this research. Therefore we need to seek other methods to filter out the second-trip echoes in our fine

scans.

(a) (b)

(c) (d)

Fig. 4.11.: Azimuth-range sections of radar variables which are unable to detect second-trip echoes in the fine scan
from the same case as Fig. 4.7, (a) ZDR, (b) KDP, (c) ρHV, and (d) SNR

In our X-band radar data, besides ZH and u-φDP, the second-trip echoes also reside in the form

of ZDR, KDP, ρHV and SNR (Fig. 4.11) and the magnitude of these variables over the second-trip echoes

are comparable to that of weak precipitation; thus, it is inappropriate to distinguish the second-trip echoes
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from weak precipitation by using these variables. For instance, although SNR is relatively low for the

second-trip echoes, but its magnitude is comparable with SQI of the weak precipitation situated at the

270◦ and around 55 km (Fig. 4.11(d)). On the other hand, it implies that, utilization of these variables

for other applications (non-meteorological echoes removal or precipitation estimation) should exclude

second-trip echoes.

In contrast, the signal quality index SQI and Doppler velocity VDo can serve as effective dis-

criminators to detect second-trip echoes in fine scans (Fig. 4.12). Locations of precipitation determined

according to the radar reflectivity exceeding 5 dBZ (Fig. 4.7(b)) tally well with the radar gates whose

SQI values are over 0.4 in Fig. 4.12(a), and the SQI value for the second-trip echoes is at the comparable

magnitude as these non-precipitation radar gates. According to this feature, we may identify a radar

gate being contaminated by the second-trip echo if its ZH exceeds 5dBZ but with very low SQI values

(second-trip echoes may also occur over the gates with ZH less than 5dBZ, but they are of little interest for

precipitation estimation and so we excluded them in the following second-trip echo removal procedure).

Similarly, there is no valid Doppler velocity VDo over the radar gates affected by second-trip echoes, but

these precipitation gates have valid VDo measurements regardless of the intensity of VDo or ZH. Therefore,

using the magnitude of SQI or the retrievability of Doppler Velocity can help us identify and filter out

the second-trip echoes. In practice, we identified these radar gates with both ZH over 5 dBZ and SQI less

than 0.3 as the gates affected by the second-trip echoes. Because the SQI values fluctuate (Fig. 4.13),

the SQI threshold of 0.3 is not fixed, and we added some tolerances to this threshold. The SQI value is

well above 0.3 for the radar gates with precipitation (the shaded blue area), so this SQI filter can remove

the unwanted noises, and simultaneously reserve the precipitation information—the overlap of the blue

and red curves in the range between 35 and 67 km in Fig. 4.13(b). The SQI value in the coarse scan is

irrelevant to the second-trip echo (the red curve in Fig. 4.13(a)).

(a) (b)

Fig. 4.12.: Azimuth-range sections of effective discriminators to detect second-trip echoes from the same case as
Fig. 4.7, (a) SQI and (b) VDo
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The theoretical basis for using SQI is presented herein. SQI is also named as normalized

coherent power (NCP). NCP is ratio of the power used to calculate the Doppler velocity to the total power

used to calculate radar reflectivity. It means that, SQI or NCP is highly relevant to the Doppler velocity

VDo. Specifically, NCP is approximately inversely proportional to the Spectrum Width (Bell et al., 2013).

SQI or NCP is very efficient in removing noise, with its value near one indicating strong coherence of

the velocity, and with its value near zero indicating noise. In other words, the lower the SQI values are,

the more likely that given radar return is noise (Lim and Chandrasekar, 2011). Although NCP indicates

the probability of weather echoes, this single parameter alone is unable to define an optimal threshold to

delineate weather echoes in all situations.

(a)

(b)

Fig. 4.13.: An example ray to show second-trip echo removal process using the SQI from the fine scan in the same
case at 00:03 UTC 7th July 2017 as Fig. 4.7. (a) includes SQI for the fine and coarse scans respectively
(in blue and red lines respectively), and the light blue areas are the radar gates with valid Doppler veloc-
ity values; (b) includes ZH for the fine and coarse scans respectively (in blue and red lines respectively),
and the light green areas flag the radar gates as being contaminated by second-trip echoes for the fine
scan

The spatial distribution and diurnal variation of the identified second-trip echoes (Fig. 4.14)

are quite different from those of spike signals (Fig. 4.4). First, the frequency of second-trip echoes de-

creases with the increasing distance away from the radar starting from roughly 15 km away from the

radar, while there is no range degradation for spike signals. Within the 15-km range, the second-trip

echoes are less frequent, probably due to the built-in clutter removal procedure which has already re-

moved part of the suspicious second-trip echoes in the near range. Second, the second-trip echo is

distributed more evenly across the azimuth directions except those suffering from partial blockage, while

the majority of spike signals reside along the azimuths between 315◦ and 45◦and is even more concen-

trated along the azimuth of 325◦. Third, the identified second-trip echoes occur more frequently during

the convective active period (13 UTC to 20 UTC, afternoon in the local time) (Figs. 4.14(c) and 4.14(d)),

while the spike signals are frequent during the entire daytime including the mornings. This is because,

according to Eq. 4.1, ZH of second-trip echoes is usually weaker than the true ZH magnitude of precip-

itation echoes, and so the diurnal variation of the second-trip echoes is essentially associated with the
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diurnal variation of summer precipitation that is in moderate-to-heavy intensity. In additional to the for-

going three differences between the spike signals and the identified second-trip echoes, both are more

prevalent in the lower elevations (Fig. 4.14(c)) since the radar beams are slanted. The precipitation echoes

at altitudes between 2.0 and 3.9 km are responsible for the second-trip echoes in the 1.5◦ elevation, be-

tween 4.7 and 9.0 km are responsible for the second-trip echoes in the 3.6◦ elevation. Most stratiform

precipitation is below 5 km in altitude, and only convective precipitation system can contribute to the

second-trip echoes at the second elevation. Thus, we find a decrease of second-trip echoes with the

increasing elevations.

(a) (b)

(c) (d)

Fig. 4.14.: Spatiotemporal statistics of identified second-trip echoes (a) using the filter based on SQI, (b) using the
filter based on Doppler Velocity VDo, diurnal variation of the absolute occurrence frequency of identified
radar gates by different filters for the radar data (c) at the first elevation and (d) at the second and third
elevations. The small inserted plots in (a) and (b) are summations of the absolute frequency of identified
second-trip echoes along the azimuth distribution (data in the first 15-km range are excluded to mitigate
the impact of ground clutters); in (c), the curve from the upper to the bottom represent the number
of second-trip echoes identified by the VDo-based filter (dashed blue line), the number of second-trip
echoes identified by the VDo-based filter excluding ground clutter gates (solid blue line), the number
of second-trip echoes identified by the SQI-based filter (dotted green line), the number of second-trip
echoes identified by the SQI-based filter (dotted green) excluding the gates identified as spike signals
based on the spike filters (magenta solid line), the number of spike signals identified by the spike filters
(Section 4.2.2) (brown solid line), the number of spike signals identified by the spike filters but unable
to satisfy the SQIfilters (violent solid line), respectively; in (d) the lines have similar meaning as those
in (c), but for the second and third elevations of 3.6◦ and 6.2◦
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The second-trip echo filter based on the retrievability of Doppler velocity VDo tends to iden-

tify more second-trip echoes than the filter based on SQI (Figs. 4.14(a) and 4.14(b)). Specifically, some

radar gates clustered in several small irregularly shaped groups within the 30-km range (Fig. 4.14(b)) are

characterized by very high frequency of invalid Doppler velocity VDo measurements, and these gates tally

with ground clutters (Section 4.4). It implies that VDo-based filter also tends to leave out the radar gates

contaminated by the ground clutters. However, even if we exclude these gates frequently contaminated

by ground clutters (the blue solid curves in Fig. 4.14(c)), the number of second-trip echoes identified by

the VDo-based filter still surpasses those identified by SQI. The remaining excess is partially owing to

lack of invalid VDo measurements for radar gates along the edges of precipitation systems. It implies that

the VDo-based filter also tends to leave out a portion of radar data but that portion in fact is not affected

by second-trip echoes, in additional to the excess associated with the ground clutters. Therefore, it is in-

appropriate to use the VDo-based filters, and instead we prefer to use the SQI-based filters, corresponding

to our intention to keep as much useful information as possible rather than an exhaustive filtering.

Since the majority of spike signals have low SQI values (Section 4.3.4), the filter was origi-

nally intended to remove second-trip echoes according to the low SQI values but also inevitably filters

out spike signals (the green dotted curves in Fig. 4.14(c)). If we exclude the spike signals which are

also filtered out by the SQI-based filters, we can exclusively obtain the number of second-trip echoes

identified by the filters based on the low SQI values (the magenta solid curve in Fig. 4.14(c)). For in-

stance, at 05 UTC in the first elevation, the number of second-trip echoes identified by SQI values is

around 7.5 million, and the number of a combination of second-trip echoes and spike signals is around

11 million. Analogous to the difference between the dashed blue curve and solid blue curve for the VDo-

based filters, the actual number of second-trip echoes filtered out by SQI is relatively 15%–30% less than

the inclusive number before separating the spike signals and second-trip echoes. Then we compared the

real number of second-trip echoes filtered out by second-trip echo filters based on both VDo and SQI —the

number of radar gates filtered by the VDo-based filters excluding the radar gates contaminated by ground

clutters (the blue solid curve) and the number of radar gates filtered by SQI-based filters (the magenta

solid curve in Fig. 4.14(c)). It turns out a nearly constant spacing between them, which again illustrates

the surplus of radar gates filtered out depending on the retrievabililty of VDo.

Although the filter based on the low SQI values also removes the spike signals, it is not com-

plete. Not all the SQI values of spike signals are below the predetermined SQI threshold for which we

use value 0.3 here. Roughly 20% of spike signals will be omitted if we identify the spike signal by

merely using the SQI values, when comparing the portion of the lowest line relative to the second lowest

line in Fig. 4.14(c)). It implies that using SQI-based filters is unable to remove both second-trip echoes

and spike signals simultaneously and it is necessary to keep an independent spike signal filter aside from

considering the SQIvalues.
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Given the characteristics of the above three types of filters, the SQI-based filter identifies

the second-trip echoes and majority of the spike signals, while the VDo-based filter identifies second-

trip echoes but also other gates contaminated by ground clutter or along the edge of precipitation sys-

tems. Acknowledgedly, there is a gap between the identified second-trip echoes and intrinsic second-trip

echoes, the same for the identified spike signal and the intrinsic spike signals. For instance, ideally we

assume the spike filter used in Section 4.2.2 identifies all the existing spike signals, but in fact it still

omits a small number of intrinsic spike signals. Similarly, the filter based on a fixed predetermined

SQI value might ignore a small portion of second-trip echoes. However, it is more or less useless to

separate the spike signals and second-trip echoes when we tend to filter out these suspicious data within

our radar dataset in practice. Thus the most efficient option is to apply both the spike filter and the SQI-

based second-trip echo filter, and then we can remove nearly all the spike signals and most of second-trip

echoes. Otherwise, if we aim to identify merely the second-trip echoes, we can use the SQI-based fil-

ter and then exclude the spike signals already identified by the spike filter (the magenta solid curve in

Fig. 4.14(c)).

4.4. Z-based ground clutter identification

Radar images often contain radar gates with very high radar reflectivity ZH distributed in irregular shapes

in the region without precipitation. Such high ZH values are caused by physical structures whose surfaces

are able to reflect the EM signals such as buildings, trees, wind farms, and communication towers. These

structures are referred as Ground Clutter (GC) targets, and these radar gates with high ZH are referred

as GC gates. Although physical locations of these targets are normally geographically stationary over

a certain period (such as the five-month measuring period for our X-band radar experiment), these GCs

are in slightly changeable locations in proximity to the GC targets, and vary in ZH intensity. This change

is due to the fact that the propagation path of radar beams through the atmosphere is governed by the

continuously varying atmospheric temperature and humidity.

The refractive index (Eq. 2.22), which quantitatively represents the variations of air temper-

ature and humidity, is used to calculate the propagation path of radar beam using vertical variations of

refractive index. For simplicity, we assume the standard atmosphere scenario (Section 2.1), and deter-

mine the radar beam propagation path using the assumed refractive index for the “standard atmosphere”.

If the real-time refractive index differs much from the assumed value, then the propagation path of radar

beam will deviate much from the assumed path, causing AP (Section 2.1). In some extreme circum-

stances, the curvature of the radar beam is so large that it bends to the ground at an intersect point much

closer than the supposed location, or is so small that the radar beam never reaches the ground. The for-

mer scenario occurs often when a shallow layer of moist cool air lays at the ground surface after intense
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convective storms’ departure. The changeable nature of GCs increases the difficulty to delineate them

sharply from precipitation targets.

One feature which assists us in delineating GCs is that high ZH magnitudes occur much more

frequently over these GC gates than normal levels. Acknowledgedly, the complex topography is char-

actered with enhanced precipitation. For example, in the Black Forest region, the occurrence frequency

of precipitation (from light to heavy rain) is less than 15% and of the heavy precipitation only is less

than 2% (Zheng et al., 2019). However, the occurrence frequency of moderate-to-high ZH over these

GC gates is even much higher than these regions with enhanced precipitation. In general, if a radar gate

continuously reports radar reflectivity with measurable intensity (at least greater than 5 dBZ) and quite

often with moderate intensity (greater than 35dBZ), this gate should be identified as a GC gate. Based

on the probability frequency of ZH reaching measurable and moderate intensity for each radar gate, we

establish a map to show geographic distribution of the frequent GCs within the radar coverage.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.15.: Mapping of occurrence frequencies of ZH within different intensity ranges in azimuth-range coordinate
(across the 0-15km range and the 180-360◦ azimuths) during the predetermined non-rainy period (totally
25 whole days), (a) between 20 and 25 dBZ, (b) between 25 and 30 dBZ, (c) between 30 and 35 dBZ,
(d) between 35 and 40 dBZ, (e) between 40 and 45 dBZ, (f) between 45 and 50 dBZ, the “static” GC
gates based on (g) the fine scan only, (h) the coarse only, and (i) both fine and coarse scans

The ZH intensity of signals reflected by the GC targets varies, depending on the wetness or

materials of the surface of those targets. To address this large variation of echo intensity, we stratify the
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radar reflectivity measurements into six different intensity ranges: 20–25 dBZ, 25–30 dBZ, 30–35 dBZ,

35–40 dBZ, 40–45 dBZ and 45–50 dBZ). Only ZH measurements from 25 non-rainy days are involved

to avoid misleading echoes from precipitation and insects, and the spike signal should be also filtered

in advance. A radar gate is identified as a GC gate if it has “unrealistically” high frequency of radar

reflectivity in one of the intensity ranges. For instance, if a radar gate has more than 0.2% relative

frequency of ZH falling between 20 and 25 dBZ, it is deemed as a GC gate (Fig. 4.15(a)). Similarly for

other intensity ranges but with different thresholds for the relative frequency, we obtain six sets of GCs

gates and then combine them. Such multiple thresholding helps us detect GCs regardless of its changing

intensity, and thus reduces missed detections. This procedure is the same for both fine and coarse scans.

Although the lowest elevation of our volume scan in this X-band experiment was set to be

1.5◦ in order to avoid “seeing” the GCs, GCs still exist within the radar coverage, especially along the

southwestern directions where the Stuttgart downtown is situated. The GC gates identified by either the

fine or coarse scan data both align well with the topographic features such as ridges (Fig. 4.16), but the

GC gates in either fine or coarse scans exhibit different characteristics in terms of effective area and

ZH intensity. First, the GCs identified by the coarse scans have a larger areal extent (the greater area in

color red in Fig. 4.16). If we interpolate both the blue and red areas into a polar coordinate with 25-m

radial resolution, then proportion of GC gates identified by the coarse scans takes up 2.1%, larger than

that of 1.3% by the fine scans. The smaller areal extent of the GCs in fine scans implies a high efficiency

in data usage. Second, the GCs identified by coarse scans are characterized by higher ZH (comparing

between Figs. 4.17(a) and 4.17(b)). For the GCs identified by both fine and coarse scans, their mean

ZH values in coarse scans are much larger than that of fine scans (Fig. 4.17(c)), in sharp contrast to these

radar gates identified neither by fine nor coarse scans whose mean ZH values in fine scans are reversely

slightly greater than those of coarse scans.

(a) (b)

Fig. 4.16.: (a) Mapping of static GC gates in polar coordinate with underlying topography, where the blue (red)
shaded area corresponds to GCs identified by fine (coarse) scans and the yellow area corresponds to
GCs identified by both fine and coarse scans, (b) the corresponding topography
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Both differences indicate that the GC contaminations are less in fine scan data whereas coarse

scans end up with a larger positive bias in terms of radar reflectivity due to the presence of GCs. As men-

tioned that we have set the lowest elevation as 1.5◦ to avoid the GCs as much as possible, the advantage

of fine scans, or the benefit of using this shorter radial resolutions, could be more pronounced if the radar

is situated in the center of a region that is scattered with a number of artifacts such as wind farms.

(a) (b)

(c)

Fig. 4.17.: Comparison of echo intensity between fine and coarse scans in terms of ZH over GC gates determined
using the multiple-thresholding procedure, mapping the ZH averaged over the entire measuring period
of the GC gates determined from (a) fine scan data, and (b) coarse scan data, (c) PDFs of ZH between
fine and coarse scans over deliberately interpolated 25-m resolution radar gates, identified neither by
fine nor coarse scans (the left upper panel), by coarse scans only (the right upper panel), by fine scans
only (the left bottom panel), by both fine nor coarse scans (the right bottom panel), respectively

In brief, the characteristics of GCs differ between the fine and coarse scans in terms of the

occurrence frequency and ZH intensity of the GCs. The identified GCs are less prevalent in fine scans,

implying that the high spatial resolution can help mitigate the negative impact of GCs. Regardless the

difference, we apply the same procedure for both fine and coarse scans to identify GCs on the basis of

abnormally high frequencies of ZH measurement, obtaining the static GC maps for fine and coarse scans

respectively. For simplicity, we discard all the measurements over these fixed GCs, by assuming that

these GCs are spatially steady. However, the assumption is invalid because GCs are changeable; it is
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the drawback of this static mapping method. Thus, we need another method that is able to identify GCs

dynamically.

4.5. Non-meteorological echo removal

One application of the polarimetric information is non-meteorological echo removal (NMER). It was

one of the motivations for weather radar polarimetry. The reason is, in case of radar dataset with single-

polarization variable but without polarimetric variables, the echoes returned from non-meteorological

scatters are always mixed with precipitation echoes, making the radar dataset unreliable and even ques-

tionable.

One important part of this section is to develop a NMER procedure by virtue of the polari-

metric variables from our X-band radar measurements. The NMER is a common procedure for distin-

guishing between the non-meteorological echoes and precipitation echoes, but the algorithm depends on

the radar instruments and the radar data. Thus, for our X-band radar dataset, we need to develop our own

FLC algorithm.

We also aim to compare characteristics and performances of this NMER applied over between

fine and coarse scans to see whether the higher spatial resolution in radar measurement can facilitate the

NMER procedure. As follows, we first inspect the characteristics of different echo types, then use a

quantitative fuzzy logic classification (FLC) procedure to identify automatically these echoes types, and

then assess the results of identification.

4.5.1. Polarimetric characterization of echo classes

A radar receives returned signals regardless of the types of targets. It means, although precipitation is of

our interest, the radar measurements unavoidably include the echoes reflected by other non-meteorological

targets. The traditional ρHV thresholding is an easy method to identify and remove the non-meteorological

echoes, especially in the operation sectors. However, in a strict sense, ρHV thresholding has a few limita-

tions related to non-uniform beam filling and its dependence on the radar system performance (Section

2.2).

Besides the GCs (Section 4.4), biological scatterers, such as insects, were also prevalent in

our radar coverage (recall that our experiment was conducted in a vineyard during the summertime when

insects were ubiquitous). Another type of echoes, which is absolutely distinct from either insect echoes

or GCs (Appendix B.1.3), also occurred during the non-rainy period, but it was rare so we don’t discuss

it separately here. Thus, our radar dataset mainly consists of three types of echoes: GC including AP

(Section 2.1), biological scatterers primarily from insects—Insect echo (IC), and precipitation echo (PR)
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Correspondingly, we will classify the radar echoes into these three categories. Each type of echo has its

distinctive characteristics. For example, ρHV values are low for the GCs but high and more uniform for

precipitation. However, a single radar variable is not sufficient to separate the classes decisively, because

there are usually a few exceptions. For instance, the ρHV values are also low for the tumbling hails within

the intense convective storm. Combing variables can help resolve this insufficiency. For instance, high

radar reflectivity ZH cannot distinguish between heavy rain and hail, but a combination of high ZH and

near-zero ZDR indicates a strong probability of dry hails, and a combination of high ZH and near-zero

ZDR with collocated ρHV depression implies the presence of wet hailstones.

Several techniques have been investigated to classify the echoes (Straka et al., 2000; Marzano

et al., 2007; Dolan and Rutledge, 2009; Schuur et al., 2012; Chandrasekar et al., 2013; Grazioli et al.,

2015; Bechini and Chandrasekar, 2015; Wen et al., 2015; Besic et al., 2016). Among these techniques,

several studies have proved the capacity of FLC method in identifying echo types (Zrnic and Ryzhkov,

1999; Liu and Chandrasekar, 2000; Gourley et al., 2007; Park et al., 2009; Al-Sakka et al., 2013; Dufton

and Collier, 2015; Krämer and Verworn, 2008; Dufton and Collier, 2015). We will present the procedure

of constructing our own FLC and its application into our X-band radar data as follows. Basically, our

method is adjusted on a combined basis of Krause (2016) and Dufton and Collier (2015).

The basic principle of the FLC is to combine and utilize the characteristics of several radar

variables to achieve a more definite separation among echoes. The practice of this FLC procedure might

vary among different studies. First, they vary in terms of the suspected targets. Park et al. (2009) and

Marzano et al. (2006) further classified the precipitation targets into big drops, snow, light rain, heavy

rain, graupel and so on. Thompson et al. (2014) aimed to distinguish mainly the solid precipitation

such as dry snow or wet snow, graupel, and deliberately excluded the data below 3 km. For the radar

situated onshore, the sea clutters should be taken into account. Second, the radar data are different.

The polarimetric variables such as φDP are frequency-dependent, so its representation in the FLC should

be adjusted quantitatively if shifting from S-band to X-band radar data. For the radar data in which the

variable Linear Depolarization Ratio (LDR) is available, hailstones are much easily detected (Straka et al.,

2000). Third, these algorithms are different. Dufton and Collier (2015) added the range correction in

their FLC. Liu and Chandrasekar (2000) used beta functions. Someone applied artificial intelligence to

train their dataset. Someone relied on the polarimetric variables from the theoretical simulation such

as T-matrix (Al-Sakka et al., 2013) for establish the training dataset. Temperature information was

incorporated often (Al-Sakka et al., 2013; Schuur et al., 2012; Kouketsu and Uyeda, 2010).

In addition, the discriminators (variables that help us discriminate classes of echoes) involved

in numerous versions of the FLC are different, although intuitively it is better to involve more variables

available to include more comprehensive information. For instance, GCs are usually characterized by

low Doppler velocity VDo ( -1 – 1 ms−1) so VDo is often used to detect GCs (Krause, 2016). Neverthe-

less, the unambiguous velocity in our coarse scan dataset is so low that the measured VDo of 0 ms−1
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might be intrinsically 4 ms−1 and other multiples of 4 ms−1, hence the reason we cannot trust VDo in our

echo classification. In addition, ZH is also often used in identifying echoes, because ZH less than 0 dBZ

corresponds to 0 mmh−1 rainfall rate or equivalently absence of rain, and insects usually correspond to

ZH between 0 and 20 dBZ. However, in our dataset, ZH at the far range (beyond 50 km away from the

radar) deteriorates faster than the range degradation for C-band or S-band radars, due to the strong signal

attenuation (Section 4.6). The variation of ZH along the radial direction might be even greater than differ-

ences of ZH between different types of echoes in our investigation. The case study below also confirms

that ZH is poor in distinguishing between targets. As a result, our FLC procedure mainly relies on the

following five discriminators: ZDR and its texture parameter σZDR , ρHV and its texture parameter σρHV ,

and it texture parameter of u-φDP σu-φDP .

A complete FLC procedure theoretically consists of four components: i) fuzzification and

membership functions, ii) inference, iii) aggregation, iv) defuzzification (Liu and Chandrasekar, 2000;

Dufton and Collier, 2015). The main step in our FLC procedure is to determine the membership func-

tion (MF) for each echo and for each radar variable, which requires a training dataset comprised of

the volumetric scans clearly containing GCs, insects or precipitation. We selected the volume scans by

inspecting radar images by eye. To guarantee that the training dataset is representative enough, these

volume scans for studying the GCs and ICs are not only from the long dry period but also shortly before

or right after either stratiform or convective precipitation. Moreover, our measuring period lasting from

May to October precludes the possibility of solid precipitation (except occasional hails), hence the reason

we only discuss liquid precipitation. However, the liquid precipitation may be diverse. For instance, a

rain event dominated with a large number of small raindrops might exhibit different polarimetric char-

acteristics from a rain event containing a small number of large raindrops. To ensure representativeness,

our discussion includes a large variety of rain events—scattered isolated convective storms, large-scale

stratiform precipitation, small-sized light rain, a cluster of convective storms embedded or followed by

stratiform precipitation. Eventually, this training dataset involves a large number of volume scans and

is supposed to be sufficiently large (Table 4.1), and representative enough as well. We try to avoid the

presence of second-trip echoes in the cases selected herein, although in principle the second-trip echoes

should show characteristics identical to the meteorologic returns.

Tab. 4.1.: The fuzzy logic classification training dataset for three classes of echoes: ground clutter (GC), insect
echo (IC) and precipitation echo (PR). Note that an episode includes an unfixed number of volume scans

Echo type GC IC PR

Number of episodes 14 20 21

Duration of time (hour) 55 97 74.5

Number of radar gates for fine scans (106) 13 44 22.5

Number of radar gates for coarse scans (106) 3.6 11 3.3
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(a)

(c)

(e)

Fig. 4.18.: Range variation in terms of PDF for texture parameters (a) σZDR , (c) σu-φDP and (e) σρHV for fine scans,
comparisons between fine and coarse scans in (b), (d), and (f) for over 20 widespread stratiform pre-
cipitation episodes (250 volume scans together), where the green curves from the bottom to up in (a)
or (c) or (e) are 0.1, 0.5 and 0.9 quantiles (Q0.1, Q0.5 and Q0.9) , the shaded areas in (b) or (d) or (f)
are between the 0.1 quantile (Q0.1) and 0.9 quantile (Q0.9), and the curves (b) or (d) or (f) are the 0.5
quantile (Q0.5)

After obtaining the training dataset with three subsets (GC, IC, and PR), we characterize the

echoes of either GC, ICs or PRs using radar data from its corresponding subset. For instance, to study

characteristics of GCs, we use the volume scans purely from the GC subset. Nevertheless, quite often,
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one volume scan contains more than one class of echoes. To mitigate this ambiguity, we use the radar

gates within the 25-km range for GCs, within the 50-km range for ICs, and in the 25–50 km range for

PRs. We exclude the PRs within the 25 km range to avoid overlap with these frequent ICs and GCs

in the close range (less than 25 km away from the radar). The reason to also exclude the PRs beyond

the 50 km range lies in the range dependence of texture parameters. The texture parameters, which are

calculated based on 250 volume scans of wide-spread stratiform precipitation, increase slowly within the

50-km range, and more abruptly beyond the 50-km range (Fig. 4.18). We expect the range dependence

of measurements during the convective precipitation might be even more pronounced. The radar beam

beyond 50 km away from the radar reaches the vertical height exceeding 1.3 km, where the GCs and

ICs are rare in principle. Since the GCs and insects dominate within the 50-km range, there is no need

to apply the FLC for the radar gates beyond 50 km away from the radar. Thus, our training dataset

focuses on the PRs in the 25–50 km range where the range dependence of texture parameters is quite

small (Fig. 4.18). Besides, within the IC subset, due to the persistence of GC targets, a portion of the

radar received signals which are supposed to be reflected from insects might actually be from GCs. It

brings misleading information for characterizing the ICs. To tackle this ambiguity between the GCs and

insects, we exclude some gates in the IC subset which are frequently affected by GCs determined by the

static GC maps from Section 4.4.

The differences between these three classes of echoes are easily visually perceptible from

radar images. Basically, the GCs, mainly at weak intensities and occasionally at moderate intensity,

are scattered throughout the near range within 25 km (Figs. 4.19(a) and 4.19(b)). In contrast, the ICs

are clustered much densely along with weak intensity mostly (Figs. 4.19(c) and 4.19(d)). Since IC are

mainly weak echoes in term of ZH, the area with measurable ZH in the fine scan is much smaller than

that of the coarse scan, in accord with the conclusion in Section 4.1.1 that the fine scan data tend to

overlook the weak echoes. In other words, if we are interested in precipitation, then disturbances of GCs

and ICs are seemingly much suppressed in the fine scan data, and we have less demand for removing

the non-meteorological echoes for fine scans. Unlike the GC and IC, the PRs are characterized by a vast

variety of intensity in terms of ZH (Figs. 4.19(e) and 4.19(f)). Several convective storms exist within the

radar coverage, and the center of each storm has higher ZH surrounded by the weaker intensity. Note

the volume scans presented in Fig. 4.19 are randomly selected but they are representative of the entire

dataset.

Besides the foregoing visual inspection, we quantitatively characterize the differences be-

tween GC, ICs and precipitation (PR) echoes through the PDFs of the polarimetric discriminators. Ac-

cording to Eq. 3.9, the magnitude of texture parameters depends on the number of radar gates involved

in the calculation or the length of calculating window. To assess the effect of the calculating length on

the magnitude of textures, we compute the texture parameters in three different lengths: 1.0 km, 1.5 km

and 2.0 km—equivalently 17, 23 and 29 radar gates along radar beams for fine scan data, and of 5, 7 and
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9 radar gates for coarse scan data. Although the textures in larger lengths are supposed to be slightly

greater than those in shorter lengths, textures calculated in three different lengths are in general quite

comparable regardless of the type of echoes (Figs. 4.20, 4.21 and 4.22). The following analyses only

involve the textures in the 1-km length.

(a) (b)

(c) (d)

(e) (f) dBZ

Fig. 4.19.: PPI displays of six selected volume scans to show the ZH characteristics of GC for (a) a fine scan at
04:03 UTC on 11 June 2017, and (b) a coarse scan at 04:04 UTC on 11 June 2017, of IC for (c) a
fine scan at 10:13 UTC on 15 June 2017, and (d) a coarse scan at 10:15 UTC on 15 June 2017, of PR
for (e) a fine scan at 18:03 UTC on 9 June 2017, and (f) a coarse scan at 18:04 UTC on 9 June 2017,
where the black star represents the location of our X-band radar, the areal dimension of (a) and (b) is
15 km×15 km, and of the other panels is 75 km× 75 km
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(a)

(b)

Fig. 4.20.: Characteristics of discriminators—polarimetric variables (ZDR, ρHV) and their texture parameters (σZH ,
σZDR , σφDP and σρHV )—in terms of PDFs for GCs within the 25-km range radar coverage in an example
episode from 18:40 UTC on 10 June 2017 to 04:29 UTC on 11 June 2017, (a) is for the fine scan data
and (b) is for the coarse scan data, where the blue, red and green curves represent the texture parameters
calculated with window lengths of 1.0 km, 1.5 km and 2.0 km respectively
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For the GCs, the frequencies of either σZDR above 2 dB, or σφDP above 40◦ or σρHV above 0.2

are higher in the fine scan data rather than that in the coarse scan data (Fig. 4.20). Similarly, as illustrated

by the location of peaks in these PDFs, ICs exhibit a higher frequency of larger texture parameters

calculated using the fine scan data than the coarse scan data (Fig. 4.21). In contrast, the PDFs of texture

parameters for PRs are quite comparable between the fine and coarse scans (Fig. 4.22).

(a)

(b)

Fig. 4.21.: Similar to Fig. 4.20, but for ICs from 05:20 to 11:59 UTC on 15 June 2017 within the 50-km range of
the radar coverage
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(a)

(a)

Fig. 4.22.: Similar to Fig. 4.20, but for PRs from 16:40 to 18:59 UTC on 9 June 2017 in the radar coverage in the
25–50 km range

Recall that Fig. 4.22 is for PRs in the 25–50 km range. We also calculated PDFs using the

PRs within the radar coverage in the 50–75 km range (not shown). The PDFs of texture parameters

calculated using the radar data at this farther range (with 50–75 km range) slightly differ from those
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texture parameters based on the radar data in the near range (25–50 km). The major difference lies in

ρHV which is an indicator of data quality, and σρHV . Farther than 50 km away from the radar, the low

value of ρHV is much more frequent within the precipitation targets, which often leads to large σρHV ,

and consequently we end up with flatter or wider MFs for both ρHV and σρHV . The non-uniform beam

filling (NBF) effect in the farther range further reduces the magnitude of ρHV (Ryzhkov, 2007).

Fig. 4.23.: Comparison of PDFs of discriminators—polarimetric variables (ZDR, ρHV) and their texture parameters
(σZH , σZDR , σφDP and σρHV )—for all three classes: GC (in dashed lines), IC (in dash-dotted lines) and
PR (in solid lines), and also between fine (in red colors) and coarse scans (in blue colors) using all the
episodes in the entire training dataset as shown in Table.4.1

The polarimetric discriminators for three classes of echoes exhibit quite different characteris-

tics, especially between the precipitation class and the other two non-meteorological classes, as seen from

their PDFs (Fig. 4.23). First, the PDFs for the precipitation class (PR) are remarkably more concentrated

or slimmer, in contrast to the wide/flat distribution for the GC and ICs. This difference suggests great
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potential to distinguish precipitation echoes from the other two non-meteorological echoes. Second, for

precipitation class, PDFs for the coarse scans of all the discriminators except ZDR are even slightly slim-

mer than those for the fine scans. This difference between the fine and coarse scans suggests the effect

of spatial resolution on the characteristics of radar echoes. Third, the differences between GCs and ICs

are mainly seen in terms of ZDR, σφDP and σρHV . For instance, ICs have higher frequencies in ZDR around

2–5 dB for the fine scans, and around 3–7 dB for the coarse scans, while ZDR values for GCs are smaller

either for the fine scans or coarse scans. These differences suggest that discriminators have different

contributions to classifying echoes.

4.5.2. Fuzzy logic memberships calculation

The noticeable differences in the characteristics among these three classes serve as the foundation for our

FLC. On the basis of the PDFs in Fig. 4.23, we construct the piecewise MFs which allow us to calculate

the membership (Mi, j) individually for each class of echo (represented by the first subscript index i) and

each polarimetric discriminator (represented by the second subscript index j) (Fig. 4.24). A membership

numerically varies from 0 to 1, and a larger value indicates a higher probability being a certain type of

echo. Rather than a trapezoid shape (Zrnić et al., 2001) or beta function (Liu and Chandrasekar, 2000),

the MFs here are in the form of multi-apex shapes. The apexes-confining shapes of MFs are determined

quantitatively based on the curvature of the PDFs; the method to determine the apexes is objective and

quantitative, and the criteria for fine and coarse scans are identical.

In our FLC procedure, these five discriminators contribute to various extent to distinguishing

one class of echoes from the other two, and the three discriminators in the form of texture parameters

exhibit different distinguishing abilities between the fine and coarse scan data (Fig.4.24). ZDR contributes

little to distinguishing between precipitation classes from others, but high ZDR values are much likely to

indicate ICs. ρHV plays a more pronounced role in distinguishing between the PRs and non-meteorological

echoes (GC and IC), but not between the GCs and ICs shown by the similar MFs for these two non-

meteorological echoes. For precipitation targets, unlike MFs for ρHV in other radar frequencies from

others’ studies, the X-band radar data provide ρHV values less than 0.9 more frequently. Three tex-

ture parameters are supposed to effectively distinguish precipitation echoes from the other two non-

meteorological echoes. Unlike ZDR and ρHV that are relatively similar between fine and coarse scans, the

MFs in terms of these texture parameters differ between fine and coarse scans. For either GCs or ICs, the

overall σZDR of the coarse scans is smaller than its counterpart of the fine scans. However, for the PRs,

σZDR has a higher frequency of being above 1 dB, which results in a larger overlap with the other two

non-meteorological echoes. In comparison to the fine scans, this larger overlap of MFs of the coarse scan

data might imply a lower efficiency to distinguish precipitation classes from either GCs or ICs. σu-φDP ,

particularly for the fine scans, exhibits obvious discrepancies among all three classes of echoes, implying
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the usefulness of σφDP in identifying echo classes. Besides, similar to σZDR , σφDP also differs between fine

and coarse scans. This difference is, for either GCs or ICs, large values in σφDP for fine scans are clearly

more frequent than those of coarse scans. This difference suggests a higher efficiency of fine scan data

in identifying echoes rather than coarse scan data. In parallel, the distinctive separation of the MFs of

these three classes demonstrated by σρHV substantiates a good capacity of σρHV to distinguish among

these three classes of echoes. Besides, regardless of the echo types, σρHV also show higher frequencies

of greater magnitudes for fine scans rather than coarse scans, which again implies that the polarimetric

data of fine scans has a greater distinguishing efficiency than those of coarse scans.

Fig. 4.24.: MFs for five discriminators (ZDR, ρHV, σZDR , σφDP and σρHV ) for three classes of echoes and for both
fine and coarse scans, and the meaning of the lines are the same as those in Fig. 4.23
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After calculating membership (Mi, j) for each echo class and for each discriminator utilizing

the above MFs, the next step is to obtain an aggregative membership function for each class (Mi) by

aggregating memberships of these five individual discriminators

Mi =
∑wi, jMi, j

∑wi, j
(4.2)

where the first index means the echo type, i=1 for GC, i=2 for IC, and i=3 for PR, and then the second

index means which discriminator is used, j=1 for ZDR, j=2 for ρHV, j=3 for σZDR , j=4 for σφDP and j=5

for σρHV , M is the membership, w represents the weights in the aggregation. For each target, we can

calculate the aggregative memberships in terms of ground clutters (MGC), of insect echoes (MIC) and of

precipitation echoes (MPR), regardless of echo classes.

(a)

(b)

Fig. 4.25.: CDFs of memberships in terms of ground clutters, insect echoes and precipitation echoes for each
discriminator (Mi, j) for the precipitation (PR) subset of the training dataset for (a) fine scan data and (b)
coarse scan data, where the second subscript j in MGC, j, MIC, j and MPR, j indicates which discriminator
is. The curves in colors of blue, red, yellow, purple and green are for ZDR ( j = 1), ρHV ( j = 2), σZDR
( j = 3), σφDP ( j = 4) and σρHV ( j = 5), respectively

Take the precipitation target as an example (Fig. 4.25). In order to identify a radar echo as the

precipitation echo, its MGC and MIC should be much smaller than its MPR, that is to say, all the MGC, j and
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MIC, j should be as low as possible while all the MPR, j are as high as possible. We calculate these three

aggregative memberships (MGC, j, MIC, j and MPR) for the entire PR subset of the training dataset. It turns

out that the majority of the memberships (Mi, j) fit our anticipation with a few exceptions. For instance,

over 25% of memberships in terms of ground clutter based on ZDR (MGC,1) surpass 0.9 (Fig. 4.25). This

large magnitude of MGC,1 magnifies (MGC), which opposes our expectation. Similarly, the memberships

in terms of insect echoes based on ZDR (MIC,1) contribute to a high MIC which should be low for the

precipitation target (Fig. 4.25). The large magnitude of both MGC,1 and MIC,1 corresponds to the MFs

based on ZDR in Fig. 4.24, where the MF for precipitation echoes are entirely overlapped within the MFs

of ground clutters and insect echoes.

Furthermore, the relative contributions of each discriminator to the aggregative membership

differ between the fine and coarse scans. For instance, in the fine scan data (Fig. 4.25(a)), nearly 75% of

the memberships in terms of insect echoes based on σZDR , σφDP and σρHV are nearly 0, in contrast to their

counterparts in the coarse scans that are characterized by much higher magnitudes (Fig. 4.25(b). The

cumulative probability function (CDF) of the memberships for each discriminator for each echo type

quantitatively reflects the degree of overlapping or separation of the MFs.

In Eq. 4.2, the weight of each variable wi, j indicates the expectation of that variable’s im-

portance. Given that these discriminators contribute to various extent to the aggregative membership

function Mi, we can adjust weighting coefficients to balance the different contributions from these five

discriminators. For example, more advanced methods such as the neural network method (Jang, 1993)

and iterative testing (Krause, 2016) have been used to train the weights in their fuzzy logic procedure

(Jang, 1993; Krause, 2016), in which the variable exhibiting a larger overlap with other variables indi-

cates less trust, and then is given less weight. In the iterative method, the FLC procedure is repeated

iteratively until achieving the best results (Krause, 2016). Lakshmanan et al. (2015) emphasized the

better discriminating ability of σZDR and gave more weight to ZDR while ZDR is excluded due to the cali-

bration issue. Krause (2016) assigned w = 2 to σZDR and σφDP , respectively, and w = 1 to ρHVand σρHV ,

respectively because Krause (2016) thought σρHV was highly correlated with ρHVvalues. However, we

are not sure about whether their ideas work for our algorithm.

Obviously, appropriate weighting coefficients can further improve the efficiency of our FLC.

However, due to the time constraint, I had no time to seek for the optimal weighting coefficients, but

for simplicity assume equal weight for each discriminator in the following calculation. Besides the

simplicity, the assumed equal weights further guarantee the equivalence between the fine scan and the

coarse scan in terms of the aggregative membership calculations, in order to aid the following comparison

of the FLC procedure between fine and coarse scans.

Besides the weights, the availability of discriminators calls for our attention. A texture pa-

rameter is calculated over a number of consecutive radar gates along the radial direction, which is named
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as a calculating window. Quite often, some radar gates within the calculating window have no valid

measurements. For instance, for calculating a texture parameter in the 1-km length for a radar gate (G0)

located outside the precipitation system, a few gates at the one-side end of the calculating window may

be located along the margin of the precipitation system. If this non-rainy radar gate is neither GC nor

insect echo, it has no valid measurements, and likewise the majority of remaining radar gates within this

calculating window have no valid measurements except a few gates along the edge of PRs. The texture

parameter for that non-rainy radar gate (G0) can be still calculated based on the rainy radar gates within

its calculating window, and thus we obtain a “rainy” texture for this non-rainy radar gate (G0). It gives us

a false impression that this radar gate itself (G0) contains PRs. To avoid this mistake, a texture parameter

is only calculated if more than half of the radar gates have valid measurements. This criterion is crucial

for the radar gates in proximity to the margin of precipitation system. With this criterion, a radar gate

near the edge of precipitation is very likely to lack valid values for texture parameters, and therefore no

membership. Another less frequent situation is that the majority of the radar gates within the calculating

window have valid measurements but the center radar gate does not has a valid value. In other words,

the availability of ZDR is not equivalent to the availability of σZDR , and the unavailability of ZDR also

does not imply the availability of σZDR . Thus, the number of discriminators available over a single radar

gate can vary from 0 to 5 given that we use five discriminators in our FLC procedure. According to our

sensitivity study (not shown here), for a radar gate with only four valid discriminators, its membership

in terms of either ground clutters or insect echoes (MGC or MIC) is high if this radar gate contains GCs or

insect echoes, but its membership in terms of precipitation echoes (MPR) are low even if we suppose this

radar gates contains PRs. It means that MPR is only possible if all the five discriminators are available.

However, for MGC or MIC, there is no such requirement for availability of valid values for discriminators.

This finding is reasonable since the PRs should have valid polarimetric measurements.

Then, for each radar gate, we calculate three memberships in terms of ground clutters (MGC),

insect (MIC) and precipitation echoes (MPR). Understandably, for a radar gate contaminated by ground

clutter, its membership in terms of ground clutters (MGC) should be larger than the other two member-

ships (MIC and MPR); similarly for a radar gate with ICs, its MIC should be greater than MGC and MPR;

within the precipitation targets, we expect MPR to be larger than MGC and MIC. Conversely, for a radar

gate, we may identify it: 1) as ground clutter if its membership in terms of ground clutter (MGC) is the

highest among all the three memberships, 2) as insect echo if its membership in terms of insect echo

(MIC) is the largest, 3) as precipitation echo if its membership in terms of precipitation echo (MPR) is the

greatest. In other words, the final identification depends on the relative magnitude of the memberships

for these three types of echoes.

To verify these criteria of assigning echo types, we calculate the three memberships (MGC,

MIC and MPR) individually for each radar gate in the training dataset, in which we have already deter-

mined the echo types for each volume scan according to the previous visual inspections (Fig. 4.26). For
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radar measurements within the PR subset, the majority of memberships in terms of precipitation echoes

(MPR) are larger than the other two memberships (MGC) and (MIC). For the fine scan data, less than 8%

of MPR is below 0.4, while 90% of MGC and MIC are less than 0.4; the median of MPR about 0.8 is much

larger than the medians of MGC and MIC, which are both less than 0.35. Besides, radar gates in the PR

subset of the training data correspond to MPR above 0.8, whereas the majority of MIC over the same radar

gates are below 0.2 (Figs. 4.27(e) and 4.27(f)). The highest magnitude for (MPR) meets our expectation.

In contrast, the memberships in terms of precipitation echoes (MPR) are quite low for the ground clutters

(Fig. 4.26(a)) and insect echoes (Fig. 4.26(b)). For instance, most of MPR are less than 0.4 within the

ground clutters, and less than 0.45 within the insect echoes. It implies that we may identify a radar gate

as non-meteorological echo as far as its MPR is less than 0.45. Furthermore, in accordance with our previ-

ous discussion that MFs of texture parameters are different between fine and coarse scans (Fig. 4.24), the

aggregative memberships (MGC, MIC and MPR ) differ much between fine and coarse scans. For instance,

the separation between the memberships in terms of precipitation MPR and other two non-meteorological

classes MGC and MIC is remarkably wider in the fine scan data rather than that in the coarse scan data,

illustrated by the larger spacing between the CDF curves of MPR and the other two (MGC and MIC).

(a) (b) (c)

Fig. 4.26.: CDFs of memberships for ground clutter class, insect class and precipitation class (MGC, MIC and MPR)
for both fine and coarse scans in the training dataset (a) with the known class of ground clutters, (b)
with the known class of insect echoes and (c) with the known class of precipitation, where green lines
are for MGC, and red lines for MIC, blue lines for MPR, solid lines for fine scan data, and dashed lines
for coarse scan data

However, the memberships in terms of ground clutters (MGC) and insect echoes (MIC) are

not distinct from each other but instead quite comparable in magnitude for all the three types of targets.

For instance, within the ground clutters, the median of MGC nearly equals the median of MGC for fine

scans; similarly, the ICs within the coarse scan data also provide their medians nearly equivalent for two

memberships MGC and MIC. This comparability is further substantiated by the two-dimensional bivariate

histogram of MGC and MIC (Figs. 4.27(c) and 4.27(d)), especially by the symmetric 2D histogram for the

coarse scan data in which both MIC and MGC are very likely to fall between 0.65 and 0.9. For fine scans,

the majority of MIC falling between 0.7 and 0.9 are also close to the majority of MGC between 0.45 and

0.75. This comparability between MGC and MIC points to the potential difficulty of assigning the radar

gates whether with GCs or with ICs in the next step of our FLC procedure.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.27.: Two-dimensional bivariate histograms of the relative frequency of the memberships in terms of, between
ground clutters (MGC) and precipitation echoes (MPR) (a) for fine scans and (b) for coarse scans in the
GC subset of training dataset; between insect echoes (MIC) and ground clutters (MGC) (c) for fine scans
and (d) for coarse scans in the IC subset of training dataset; between precipitation echoes (MPR) and
insect echoes (MIC) (e) for fine scans and (f) for coarse scans in the PR subset of training dataset
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4.5.3. Echo class assignment

After obtaining the memberships (MGC, MIC and MPR) for each radar gate, it is time to assign the echo

type to each radar gate. We may assign the type of class according to the relative magnitude of member-

ships, and it should bring about a satisfying performance in distinguishing the PRs from the other two

non-meteorological echoes, since MPR is clearly much high in precipitation echo and quite low in non-

meteorological echoes as mentioned before. However, we also see a challenge in identifying between

GC and insects because both memberships are of comparable magnitude. Although our main objective

to distinguish the non-meteorological echoes and PRs can be fulfilled, for the sake of the completeness

of this FLC, we still hope to also distinguish between GCs and ICs.

Instead of using the relative magnitude of memberships (MGC, MIC and MPR) we compare

the magnitudes of quantiles of each calculated membership according to the CDF in Fig. 4.26. More

specifically, for a radar gate, we may identify it as GC if the quantile of its membership in terms of ground

clutter Q(MGC) is the highest, as insect echo if the quantile of its membership in terms of insect echo

Q(MIC) is the largest, and as precipitation echo if the quantile of its membership in terms of precipitation

echo Q(MPR) is the greatest. In other words, the final identification depends on the relative magnitude of

quantiles of their memberships. This step provides us another method to explore how to better distinguish

between the GCs and ICs. The entire flow for our FLC procedure is shown as follows (Fig. 4.28).

Fig. 4.28.: The block diagram of the FLC algorithm developed specifically for the X-band radar data in this re-
search, where GC, IC and PR are abbreviations of ground clutters, insect echoes, and precipitation
echoes

The echo class types identified by our FLC procedure fit our expectation to a large extent

(Fig. 4.29). For the volume scans at 04 UTC on 11 June 2017, before applying FLC, we assumed both the

fine and coarse scans containing only GCs in the range less than 25 km away from the radar (Figs. 4.19(a)

and 4.19(b)), and our FLC procedure identifies most of the radar gates of both scans as GCs with occa-

sional ICs, which meets our expectation (Fig. 4.29(a) and 4.29(b)). The occasional presence of ICs is

reasonable; though we hope all the volume scans only contain the GCs, ICs are very common and un-

avoidably appear in the GC subset.

For another pair of volume scans at 10 UTC on 15 June 2017, we initially assumed that both

the fine and coarse scans exclusively contained the ICs within 50 km away from the radar (Figs. 4.19(c)
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and 4.19(d)). Then, our FLC result shows the majority of echoes are ICs with intermittent underlying

GCs, and most of these GCs are located within the close range (25 km away from the radar) (Figs. 4.29(c)

and 4.29(d)). This result, albeit slightly different from our initial assumption, is also quite reasonable

because GCs should be naturally persistent in space and in time, contaminating at least a portion of the

radar gates at the closer range.

In parallel, for the third pair of volume scans at 18 UTC on 9 June 2017, according to our

previous visual inspections through radar images, we assumed precipitation prevailed in the range beyond

25 km away from the radar (Figs. 4.19(e) and 4.19(f)). It turns out that the echo types identified by

means of our FLC procedure are again in good accord with the initial visual inspection (Figs. 4.29(e)

and 4.29(f)). Especially for the fine scan, most radar gates beyond 25 km are identified as PRs with a

few exceptions, and the majority of the exception gates, if within 50 km away from the radar, lie along

the edge of the precipitation system. Beyond the 50 km away, more radar gates are identified as insect or

GCs even inside the precipitation system. This false identification is caused by the misuse of MFs. Recall

that the MF in terms of PRs is based on the radar gates exclusively within the near range (25 to 50 km

away from the radar) (Section 4.5.1). If we use these MFs intend for the range between 25 to 50 km to

calculate the membership (MPR)) for the radar gates beyond 50 km away from radar, we are much likely

to obtain inappropriate magnitudes of memberships and subsequent misidentification, as a result of the

range dependence of texture parameters (Fig. 4.18). Additionally, this misidentification is more apparent

in the coarse scan than that of the fine scan. A possible explanation is that coarse scans tend to keep more

weak echoes especially along its edge and the ICs usually belongs to the weak echoes. Another potential

explanation is that, despite the same length for texture parameters for fine and coarse scans, the number

of radar gates involved in calculating these texture parameters differs between fine and coarse scans. For

instance, the texture in the 1-km length involves 15 radar gates for the fine scan data and five radar gates

for the coarse scan data in their calculating windows. Using fine scan data, equivalently involving more

radar gates, is more successful in identifying the echo types accurately in our FLC procedure which in

fact was constructed following the same principle and criteria for both fine and coarse scans.

In fact, we particularly inspected three memberships (MGC, MIC and MPR) for the coarse scan

at 18 UTC on 9 June 2017 associated with Fig. 4.29(f). σρHV accounts for lower values of MPR for the

radar gate at the far range (beyond 50 km). It might be a corollary of the low ρHV radial streak caused

by the non-uniform beam-filling (Ryzhkov, 2007), or the deteriorating radar performance and worsening

data quality with the increasing range. Thus, for a proper classification, we should develop another

set of MFs specifically to characterize the foregoing given polarimetric discriminators at the far range.

However, such an set of MFs is not included because non-meteorological echoes are not common at the

far range of our radar coverage thanks to the 1.5◦ elevation for the lowest scan.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.29.: Azimuth-range section of identified echo classes using the FLC procedure for the same volume scans
in Fig. 4.19, where the green/red/blue colors are for GC, IC and PR, respectively

To make this FLC algorithm even simpler, we can treat the radar measurements with radar

reflectivity ZH less than -5 dBZ as very weak echoes irrelevant to precipitation or other issues associated

with low SNR, and thus there is no need to identify echo types for them (most of them are GCs or insects

or noise). In this way, we separate the type of echoes into four classes with this additional fourth class of

very weak echoes (Fig. 4.30). Referring to radar images in terms of radar reflectivity ZH (Fig. 4.19), the

spatial distribution of these identified echo classes shown in the polar coordinates is reasonable, with a

majority of GCs in Figs. 4.30(a) and 4.30(b), with a majority of ICs in Figs. 4.30(c) and 4.30(d), and with

a majority of PRs between 25-50 km away from the radar in Figs. 4.30(e) and 4.30(f).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.30.: PPI displays of identified echo classes using the FLC procedure for the same volume scans in Fig. 4.19,
where the green color is for GCs, the red color for insect, and the blue color for precipitation, and the
smaller (bigger) black circles represent the 25-km (50-km) range rings

After testing our FLC procedure for the training dataset with the predetermined echo classes,

we apply our FLC procedure to volume scans outside the training dataset, to further evaluate the per-

formance of our FLC procedure. For the volume scans at 21 UTC on 26 June 2017, visually from the

radar images, we thought the non-meteorological echoes prevailed in the close range (within the 0-25 km

range) of the volume scans in a combination of the majority of ICs and a smaller portion of GCs, and one

additional convective cell located at the 20-25 km range in the southwestern direction; several convec-

tive storms in different sizes and shapes were in the near range (within the 25–50 km range); stratiform
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precipitation with a few embedded convective storms dominated in the far range (within the 50-75 km

range) (Figs. 4.31(a) and 4.31(b)).

(a) (b) dB

(c) (d)

Fig. 4.31.: PPI displays for a case mixed with GCs, ICs, convective and stratiform precipitation at 21:33
(21:34) UTC on 26 June 2017, of ZH for (a) the fine scan and (b) the coarse scan, of the identified
echo classes for (c) the fine scan, and (d) the coarse scan

With the 25-km range, our FLC procedure based on fine scans can successfully identify GCs

ICs and PRs at the locations which are in good accord with the intensity of radar reflectivity ZH. Starting

from the radar site, the GCs are scattered closest to the radar, and surrounded by the densely clustered

ICs. In this case, both GCs and ICs are below 10 dBZ. Beyond 25 km away from the radar, our FLC

procedure identifies most of radar gates as PRs, and very few gates as ICs (Figs. 4.31(c) and 4.31(d)).

In contrast, the FLC based on the coarse scans tends to identify a larger portion of radar measurements

beyond 50 km away from the radar as ICs, which should be unlikely in reality. However, we notice most

of these identified ICs beyond 50 km away from the radar are located near the edge of the precipitation

system with ZH below 15 dBZ, similar to the situation in Fig. 4.30(f) in our aforementioned discussion.

As we know, a large proportion of weak echoes are absent in fine scans but are kept in coarse scans

(Section 4.1.1), hence the reason these falsely identified ICs in the far range are much less in the fine

scan but more frequent in the coarse scan.
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We also notice that the FLC based on the coarse scan identifies a large number of radar gates

within the close range (0–15 km) as GCs, but at the same locations these radar gates are identified as ICs

by the fine scan. Based on my subjective visual inspection, these radar gates are much likely to be ICs.

It implies that our FLC procedure based on the coarse scans exhibit a weaker capacity to correctly dis-

tinguish between GCs and ICs. However, these radar gates identified as different classes by the fine and

coarse scans correspond to the radar reflectivity less than 0 dBZ, and our FLC procedure still correctly

identifies them as non-meteorological echoes, which means we already achieved our main objective – to

distinguish between PR and non-meteorological echoes. On the other hand, the different performances

of FLC in the fine and coarse scan data suggest one more benefit of using radar measurements in a higher

spatial resolution.

As we mentioned, changing the weights in calculating the aggregative memberships can pro-

mote the capacity of our FLC. There is still great potential to improve the accuracy of the results of the

preceding FLC procedure by adjusting the weights in aggregating the memberships in terms of each echo

class instead of assuming equal weights (Eq. 4.2). For instance, for φDP, we only use its texture, whereas

for ZDR and ρHV, we use both their own value and their textures. It means that we gave two units of

weight to ZDR and ρHV, but only one unit of weight to φDP. However, we do not have evidence to prove

that φDP is less important than the other two variables in terms of their roles in echo classification. Thus,

one reasonable solution is to increase the weight of φDP from one to two, and then we have equal weights

for all three polarimetric variables (ZDR, φDP and ρHV) used in our FLC procedure.

4.5.4. Spatiotemporal variations of identified echo classes

After applying this above FLC procedure to the entire fine and coarse scan datasets respectively, we

obtain the spatial distribution of identified echo classes (Fig. 4.32), which is undoubtedly significantly

distinct from the spatial distribution of spike signals (Fig. 4.4) and second-trip echoes (Fig. 4.14). For

both fine and coarse scan, the relative frequency of non-meteorological echoes (GCs and ICs) exceeds

90% for these radar gates very close to the radar, and these echoes are clustered in several irregular

shapes, These radar gates are constantly impacted by the non-meteorological echoes consisting of GCs

and ICs, but in fact primarily affected by the persistent and stable GCs. Despite this similarity, the area

of these GC gates in the coarse scan data extends more that in the fine scan data, in accord with our

findings in Section 4.4 that the coarse scan data are more susceptible to the GCs. Another difference is

the deceasing gradient in the relative frequency along the radar beams as the radar gates become farther

away from the radar. This gradient is very clear in the coarse scan data but invisible in the fine scan data.

The reason is that weak echoes such as the ICs are preserved more in the coarse scans than in the fine

scans. On the other hand, the fine scan data have a seemingly less frequency of precipitation echoes in

comparison with the coarse scan data (Fig. 4.32(c)). However, the frequency does not directly equal the
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intensity or the precipitation amount. The miss part in the fine scan mainly consists of the weak echoes

above -5 dBZ but below 5 or 10 dBZ, and it barely contributes to the precipitation amount. Thus, the

identified precipitation echoes from our fuzzy logic classification are less frequent in fine scans, but it

won’t lead to differences in the precipitation estimation between fine and coarse scans.

(a) (b) %

(c) (d) %

Fig. 4.32.: PPI displays of the relative frequency of identified echo classes for the entire measuring period, being
identified as GCs and ICs within the 30-km range for (a) fine scans and (b) coarse scans, or being
identified as precipitation echoes within the 75-km range for (c) fine scans and (d) coarse scans

4.6. Attenuation correction

The shorter wavelength of the X-band radar renders its power measurements vulnerable to the attenua-

tion (reductions in magnitude of ZH and ZDR), which is the major reason impeding the wide use of the X-

band frequency in precipitation observation until the availability of attenuation correction procedures. As

shown in the following case study, the erroneous ZH /ZDR measurements caused by the presence of atten-

uation /differential attenuation are in contrast to the attenuation-corrected ZH /ZDR measurements, which

emphasizes the necessity of effective attenuation correction algorithms. Then, we process ZH /ZDR measurements

with two attenuation correction procedures, and verify these attenuation-corrected measurements by

KDP measurements. We also discuss differences between fine and coarse scans regarding attenuation

correction to illustrate the effect of radial resolution on the attenuation correction.

119



4.6.1. Incorrect measurements caused by attenuation and differential attenuation

Absorption of EM waves or scattering of EM waves out of the beam is collectively referred as attenuation.

It is caused by atmospheric gases invariably and ubiquitously, by hydrometeors when raining, and by

liquid water residing on the radar radome occasionally. Since the magnitude of attenuation caused by

gas is negligible compared to that by hydrometeors, attenuation by hydrometeors is our target within this

thesis. The attenuation of weather radar signals by atmospheric hydrometeors has been long recognized

(Ryde, 1946; Atlas and Banks, 1951; Hitschfeld and Bordan, 1954; Gunn and East, 1954).

The magnitude of attenuation depends on the frequency/wavelength of the EM waves and

becomes greater for the shorter-wavelength radars (Bringi et al., 1990). Thus, the attenuation issue is

significantly less for the S-band (10-cm λ ) radars and is conventionally neglected except in rare cases

(Ryzhkov and Zrnic, 1995). This accounts for a typical use of the S-band radars over broad areas or in the

region where heavy rain events are frequent. For the C-band (5.5-cm λ ) radars widely used in European

continent, the attenuation becomes moderate and should not be neglected. Attenuation correction for the

C-band radar data is strongly recommended before using radar data in the QPE (Krämer and Verworn,

2008; Jacobi and Heistermann, 2016; Vulpiani et al., 2008; Gu et al., 2011). When it comes to the

X-band radar (10-cm λ ), the attenuation becomes far more severe. Thus, in the X-band frequency, the

attenuation correction is a prerequisite or a must, (Delrieu et al., 2000; Matrosov et al., 2002; Anagnostou

et al., 2004; Matrosov et al., 2005; Park et al., 2005; Gorgucci et al., 2006; Snyder et al., 2010), otherwise

ZH and ZDR measurements are inaccurate.

Attenuation occurs no matter in which polarization direction. Recall the definition of ZDR

(Eq. 2.46), the magnitude of ZDR also changes due to the fact that attenuation in the horizontally po-

larized direction is normally severer than that in the vertically polarized direction. This inconsistency

of attenuation between two polarization directions leads to a change in the magnitude of ZDR. Such a

change, mostly in the form of a reduction, is referred as differential attenuation.

To show how the attenuation (differential attenuation) affects ZH (ZDR ) measurements, we

conduct visual inspections for the following two cases: one for convective storms, and the other for

stratiform precipitation. As mentioned, the C-band radar signals are less attenuated. In the first case, ac-

cording to the C-band radar measurements (Fig. 4.33(e)), a convective storm present roughly 30–40 km

west to the radar exhibits ZH around 45–60 dBZ, but ZH from the X-band radar measurements of either

the fine or coarse scans barely reaches 35 dBZ (Figs. 4.33(a) and 4.33(c)). Moderate precipitation pre-

vails between the X-band radar and this intense convective storm. It means that the radar echoes returning

from that the convective storms have to propagate forth and back through the intermediate precipitation.

The hydrometeors along the propagation paths weaken the radar signals through the attenuation, thereby

reducing ZH. Situations are the same for other convective storms scattered within the entire radar cover-
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age. Although the morphologies of these convective systems are alike between the X-band and C-band

radar measurements, the overall intensity of ZH for the X-band radar is appreciably lower.

(a) (b)

(c) (d)

(e) (f) dB

Fig. 4.33.: PPI displays of ZH where (a), (c) and (e) are based on ZH from the fine scan, coarse scan and C-band
radar data respectively for a case at 15:53–15:55 UTC on 18 August 2017, (b), (d) and (f) are for another
case at 10:05 UTC on 3 October 2017. The black stars represent the location of the X-band radar site,
the green straight horizontal lines are the azimuth of 270◦, the black squares in (a), (c) and (e) confine a
convective storm in the western direction (at the 270◦ azimuth) in the radar coverage for the case on 18
August 2017, and the larger unfilled sectors in black or red numbered as 1 in (b), (d), and (f) indicate
the location of widespread stratiform precipitation whose ZH intensity is considerably weakened by
attenuation, and the smaller unfilled blue sectors numbered as 2 indicate the area with a lack of radar
measurements caused by severe attenuation
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In the other case, according to the C-band radar measurements, a squall line in roughly

50-km length with ZH intensity around 40–50 dBZ was approaching the X-band radar, leaving behind

widespread stratiform precipitation with ZH intensity around 25–40 dBZ (Fig. 4.33(f)). In contrast, for

the X-band radar measurements, a part of radar coverage west to the radar has no measurable ZH at all

(the blue unfilled triangle numbered as 2 in Figs. 4.33(b) and 4.33(d)), while precipitation in the remain-

ing radar coverage is characterized by considerably less ZH intensity from 5 to 25 dBZ, owing to the

attenuation. It is worth noting that, beyond the 55-km range, the weak ZH still expands in the radar cov-

erage of the coarse scan, but almost vanishes in the fine scan. Keep in mind that this difference between

the fine and coarse scans matters in the following discussion on correcting attenuation (Fig. 4.37).

When it comes to ZDR, according to the C-band radar measurements (4.34(e), the strong

convective in the first case exhibits ZDR up to 4 dB, but ZDR from the X-band radar measurements is

less than 2.5 dB along with a large part of negative ZDR. Analogous to the above ZH attenuation, this

reduction in the magnitude of ZDR reflects the impact of differential attenuation. Similarly, the differential

attenuation also occurs for other convective storms within the radar coverage. In the second case, the

C-band radar provides ZDR measurements varying between 0.5 and 2.5 dB across the radar coverage

(Fig. 4.34(b)). In contrast, for the X-band radar measurements, ZDR measurements are absent in the

western part of radar coverage (the blue triangle numbered as 2 in Fig. 4.34(d)), along with the remaining

ZDR in a much smaller magnitude or negative values (the black sector numbered as 1 in Fig. 4.34(d)).

Similar to the situation in ZH, we also see a deficiency of low or negative ZDR (Park et al., 2005) beyond

the 55-km range in the fine scan, while for the coarse scan, the negative ZDR measurements still persist

within the entire radar coverage.

The first case shows that the attenuation weakens ZH intensity of convective systems, whereas

the second case exhibits the weakened ZH in stratiform precipitation and even an absolute loss of radar

echoes behind a squall line. The absolute loss occurs once the returned echo power is below the noise

level, as illustrated by the reduction in ρHV and SNR(not shown). We here use the C-band radar measure-

ment as a reference to demonstrate the reduction or loss in the X-band radar measurements, however, the

attenuation occurs for C-band radars as mentioned (Aydin et al., 1989), in the overall moderate magni-

tudes. It means the magnitude of the X-band radar attenuation shown here might be even more severe.

In other words, if an S-band radar is nearby, it might help give us a more accurate feeling about how

strong the attenuation in the X-band frequencies could be. In principle, despite the varying magnitude,

the attenuation is omnipresent throughout our X-band radar measurements during the rainy period. Even

for the radar beams propagating through into drizzle, the attenuation also occurs, but with weak and

probably unnoticed magnitudes.
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(a) (b)

(c) (d)

(e) (f) dB

Fig. 4.34.: PPI displays of differential reflectivity ZDR to show the effect of differential attenuation on diminishing
the radar measurements of ZDR, where (a), (c) and (e) are based on ZDR from the fine scan, coarse
scan and C-band radar data for the case at 15:53-15:55 UTC on 18 August 2017, (b), (d) and (f) are
for another case at 10:05 UTC on 3 October 2017, and the meaning of the geometry are identical to
Fig. 4.33. The ZDR calibration (Section 4.7) has been already applied

Via the foregoing two distinct cases, we show how the attenuation and differential attenuation

modify the radar data and bring about incorrect ZH and ZDR measurements. Given that attenuation and

differential attenuation occur all the time and ubiquitously in our X-band radar dataset, we need to correct

the attenuation and differential attenuation, and the correction should be applied with a procedure that

can work automatically for the entire dataset.
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4.6.2. Differential phase-based attenuation correction

The radar reflectivity and differential reflectivity measured from our X-band radar are propagation-

included radar variables (Z′H and Z′DR), which can be linked to the unattenuated (intrinsic) ZH and ZDR through

two terms: two-way path-integrated attenuation (PIA) and Two-way path-integrated differential attenua-

tion (PIADP) (Meneghini and Nakamura, 1990)

PIAH = ZH−Z′H (4.3)

PIADP = ZDR−Z′DR (4.4)

The attenuation correction is to obtain the unattenuated (intrinsic) ZH and ZDR, that is, to calculate the

PIA and PIADP, and then add PIA and PIADP to the measured Z′H and Z′DR. Thus, the key of attenua-

tion correction is to determine PIA and PIADP. We introduce specific attenuation (A) and accompanied

specific differential attenuation (ADP) as follows

PIA≡ 2
ˆ r

0
A(s)ds (4.5)

PIADP ≡ 2
ˆ r

0
ADP(s)ds (4.6)

where s is the length of the propagation path along which the attenuation occurs, A is the amount of at-

tenuation for a wave propagating through a unit distance, and ADP is the difference of specific attenuation

between the horizontally and vertically polarized waves:

ADP = AH−AV (4.7)

The larger A (ADP) is, the more severe attenuation (differential attenuation) is.

Similar to differential phase shift that is the range interval of KDP (Eq. 2.62), the PIA and

PIADP are the range integral of A and ADP (Eqs. 4.5 and 4.6). A basic assumption was proposed that

A and ADP are linearly proportional to KDP (Bringi et al., 1990), and the coefficients for this linear pro-

portionality are written as α and β in unit of dB/◦,

α = AH/KDP (4.8)

α = ADP/KDP (4.9)

Accordingly, we obtain two approximations as follows,

PIA =−α φDP (4.10)
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PIADP =−β φDP (4.11)

In other words, the amount of ZH or ZDR attenuated during the path propagation is assumed to increase

linearly with the increasing magnitude of u-φDP measurement.

The magnitudes of the coefficients α and β vary widely with the radar frequency (Table 4.2)

and show dependence on temperatures well (Jameson, 1992; Carey et al., 2000; Ryzhkov et al., 2014;

Bringi et al., 1990).

Tab. 4.2.: Numerical range of linearity coefficient α and β (from Table 6.4 in Ryzhkov and Zrnić (2019))

Frequency α(dB/◦) β (dB/◦)

S-band 0.015 – 0.04 0.0025 – 0.009

C-band 0.05 – 0.18 0.008 – 0.1

X-band 0.14 – 0.35 0.03 – 0.06

We examine the linearity between two pairs of variables—u-φDP and ZH, as well as u-φDP and

ZDR in a heavy rain event with both convective and stratiform precipitation (Fig. 4.35(e)). We only

involve the radar measurements whose KDP value is between 2 and 3 ◦ km−1, to avoid the negative

KDP values, weak echoes from light precipitation or other disturbances on the ZH data, analogous to

the criterion used by Ryzhkov and Zrnic (1995) who chose KDP of 1–2 ◦ km−1. It turns out both pairs of

variables exhibit clear linearities, and the linearity between u-φDP and ZDR is stronger than that between

the other pair (Fig. 4.35). The linearity coefficients (α and β ) estimated from this rainy episode are sim-

ilar to the theoretical values in literature (Tab. 4.2), and their magnitudes are comparable in the fine and

coarse scan data.

We further calculate coefficients of linearity (α and β ) individually within each volume for

all together 646 volume scans during rainy periods for both fine and coarse scans (Fig. 4.36). Either α

or β is comparable between fine and coarse scans. The most frequent value for α is between -0.25 and

-0.15 dB/◦, and is between -0.045 to -0.055 dB/◦ for β , which exactly matches up with the values in

literature (Tab. 4.2).
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(a) (b)

(c) (d)

(e)

Fig. 4.35.: Relationships between φDP and ZH measurements, or between φDP and ZDR measurements for a rainy
episode characterized by intense convective systems embedded in widespread stratiform precipitation
during 16:10-22:49 UTC on 21 July 2017, (a) and (c) are for fine scans, (b) and (d) are for coarse scans,
and (e) is a PPI display. In (a-d), the green lines are the linear least square fitting lines, “CC” represents
the Pearson correlation coefficient, α represents the linearity coefficient between u-φDP and ZH, and β

represents the linearity coefficient between u-φDP and ZDR. The black star in (e) represents the location
of the X-band radar, with two marks representing locations of two DWD rain gauges indexed as 1255
and 4349. A sample defined here refers to a fine scan or a coarse scan excluding the 75–100 km range
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Fig. 4.36.: The scatter diagram with PDFs to compare the linearity coefficients between fine and coarse scans from
the selected 646 volume scans during the rainy periods, (a) for coefficient between u-φDP and ZH –α ,
and (b) for coefficient between u-φDP and ZDR —β

However, there is a vast variety of the two linearity coefficients: α varies between -0.4 and

0.5 ◦ km−1, and β varies between -0.08 and 0.02 ◦ km−1. This high variability in magnitudes means that

we may need to adjust the α and β values scan-by-scan for attenuation correction in practice. Moreover,

the previous calculation implicitly assumes that α and β are constant with each volume scan. Neverthe-

less, in reality, the coefficients can even vary between radar beams or even within a single radar beam.

For instance, when the center of a rapidly developed convective cell in the near range coexists along one

radar beam with the decaying flank of the mature convective system in the far range, α and β can be

different between sections along the radar beam. Given that the α and β values vary greatly in space

and in time, assuming universally constant values for α and β is questionable. In order to tackle the spa-

tiotemporal variability, α and β values should be allowed to change over each segment and each radar

beam. Thus, for every range gate at range r

ZH(r) = Z′H(r)+α φDP(r) (4.12)

ZDR(r) = Z′DR(r)+β φDP(r) (4.13)

The differential phase at the first radar gate φDP(r0) is normally azimuth-dependent and should be sub-

tracted from all the φDP measurements along the ray.

Rather than estimating PIA (PIADP) at each range gate, the ZPHI method (Hitschfeld and

Bordan, 1954; Marzoug and Amayenc, 1994; Testud et al., 2000; Le Bouar et al., 2001; Tabary et al.,

2011) estimates PIA for the last radar gate (rN) across the range interval along a propagation path, and

then distribute the total attenuation to each gate based on the reflectivity Zh in linear scale (mm6m−3),

assuming

A = aZb
h (4.14)
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where the parameter b is almost constant for a given frequency, and the parameter a varies with temper-

ature. The attenuation-corrected ZH is expressed as

Zh(r) =
Z′h(r)

[1−0.46ba
´ r

r0
Z′bh (s)ds]1/b

(4.15)

a =
1− exp[0.23bPIAH (rN)]

0.46b
´ rN

r0
Z′bh (s)ds

(4.16)

as a function of the change in differential propagation phase ∆φDP across the range interval (from r0 to

rN), the measured Zh in the linear scale, the coefficient a and parameter b. The attenuation correction in

ZPHI is constrained by ∆φDP. The complete derivation of Eqs. 4.15 and 4.16 can be found in Bringi and

Chandrasekar (2001), or a simplified version (Zhang, 2016), along a detailed implementation (Testud

et al., 2000).

Given the variety of α and β values, assuming a constant coefficient α is a big limitation of

the ZPHI algorithm. In contrast, in the iterative ZPHI (Bringi et al., 2001), also called as Self-consistent

with Constraint Method (SCWC), the optimal value for the coefficients (αopt and βopt) are determined dy-

namically within a predetermined range through optimizations to achieve a minimal difference between

the constructed and measured differential phase profile,

χ = ∑ |φ
(e)
DP(rn,α)−φ

(m)
DP (rn)|;αmin ≤ α ≤ αmax (4.17)

where φ
(m)
DP (rn) is the measured φDP at the radar gate n, and φ

(e)
DP(rn,α) is the constructed φDP with as-

sumed coefficient α . Once the attenuated-corrected ZH is obtained, there are two ways to obtain the

attenuated-corrected ZDR—processing the same optimization procedure to seek the best value for coeffi-

cient β , or assuming a linear relation as follows

βopt =
ZDR(rN)−Z′DR(rN)

φ
(m)
DP (rN)−φ

(m)
DP (0)

(4.18)

As an extension to ZPHI, the idea of the iterative ZPHI is closer to the physics and more

reasonable. Unlike the ZPHI method assuming a constant coefficient α , the iterative ZPHI algorithm

seeks for the optimal coefficients to tailor the constructed φDP with the φDP measurements. It means that

this iterative ZPHI method utilizes the φDP measurements along the entire propagation path, in contrast

to that ZPHI algorithm which only uses φDP at the farthest radar gate as a constraint.

For this study, we applied both the ZPHI and iterative ZPHI attenuation correction procedures

built-in in the Rainbow5 radar signal processor with the default setting for the X-band radar (M.Thurai,

2007; Selex-SI, 2012). More detailed aspects of the attenuation correction procedure algorithms are

available in the user manual of the radar data processor (SELEX, System Integration GmbH, 2015).
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The effect of attenuation correction is shown in Figs. 4.37 and 4.38, corresponding to the

aforementioned two cases (Figs. 4.33 and 4.34). Applying either the ZPHI or iterative ZPHI attenuation

correction procedure, the ZH measurements regain high intensity. For the first case of convective storms,

either for the fine or coarse scans, the attenuation-corrected ZH of the storm west of the radar reaches

above 55 dBZ, agreeing with ZH from the C-band radar (the black squares in Figs. 4.37(a) and 4.37(c)).

In the second case, for the coarse scan, over the northern part of the radar coverage (the sector numbered

as 1 in Fig. 4.37(d)), the majority of ZH in the stratiform precipitation returns to a magnitude comparable

to the C-band radar measurements. Nevertheless, no ZH is corrected over the western sector of the radar

coverage (the sector numbered as 2 in Fig. 4.37(d)), which is due to the total loss of radar signals. For the

fine scan, the total loss of radar signals also occurs in the sector 2, and no ZH is corrected (Fig. 4.37(b)).

However, in the north part of the radar coverage (the sector 1), for the fine scan, nearly a third of stratiform

precipitation, most of which is beyond 50 km away from the radar, is still missing, although the remaining

two thirds of stratiform precipitation mostly within the 50-km range magnify their ZH intensity to a

magnitude comparable to the C-band radar measurements (Fig. 4.37(b)). It means that these attenuation-

corrected ZH are different between the fine and coarse scans in the stratiform precipitation area (the Sector

1). The attenuation correction is able to recover the majority of ZH for the coarse scan but still miss a

large portion of ZH for the fine scan.

(a) (b)

(c) (d dB

Fig. 4.37.: PPI displays of attenuation-corrected ZH as the same case as Fig. 4.33
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This difference in attenuation-corrected ZH between fine and coarse scans is essentially as-

sociated with the fine scans’ tendency to lose weak echoes. Although the weak echoes with ZH below

20 dB have minimal impact on the radar-based precipitation quantities (Section 4.1.1), the impact of weak

echoes can be more problematic in case of severe attenuation (differential attenuation), For instance, if

the attenuation lessens the ZH intensity from moderate to weak, then these weak echoes vanish in the

fine scan, and we end up with an absolute lack of ZH of the fine scan over the area where severe attenua-

tions occur. In other words, attenuation correction is unable to retrieve any ZH measurement if the radar

signals totally vanish, which is the situation occurring in the northern part of the radar coverage for the

fine scan (Fig. 4.37(b)). In contrast, the weak echoes remain in the coarse scan, so the ZH correction still

functions for the coarse scan data as far as the ZH measurements are available, albeit in weak intensity

(Fig. 4.37(c)). In this way, the loss of weak echoes combined with severe attenuation leads to another

form of difference between fine and coarse scans—recurrent losses of radar echoes when attenuation

occurs.

(a) (b)

(c) (d) dB

Fig. 4.38.: PPI displays for attenuation-corrected ZDR as the same case as Fig. 4.34

As regards differential attenuation correction, in the first case of convective storms, either

for the fine or coarse scans, the attenuation-corrected ZDR in the center of the convective storm west of

the radar increases considerably, reaching a magnitude only slightly less than ZDR of the C-band radar
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(Fig. 4.38(c)). Recall the concept of resonance (Section 2.1), and its dependence on radar λ . The res-

onance only occurs, if the raindrops are large enough and the threshold size of the raindrops increase

with λ . Because λ in the C-band frequency is longer than that of the X-band frequency, within the

same precipitation, the resonance should less frequent in C-band radar measurement than that of X-band

radar. However, the resonance effect is more significant in C-band rather than X-band. For instance, the

resonance effect adds 1 dB or 1.5 dB to the X-band ZDR but 3 dB or 4 dB to the C-band ZDR. Thus, the

resonance effect is the reason why ZDR from the X-band radar measurement, even after correcting attenu-

ation, is less than that of the C-band radar. Outside this convective storm, the overall ZDR after differential

attenuation noticeably increase, approaching the ZDR magnitude of the C-band radar measurements.

(a) (b)

(c) (d)

Fig. 4.39.: Diminished linear relationships between u-φDP and ZH, or between u-φDP and ZDR after attenuation cor-
rection or differential attenuation correction using the iterative ZPHI method, for the same case as
Fig. 4.35, (a) and (c) are for the fine scans, and (b) and (d) are for the coarse scans

Similar to the part of unsuccessful attenuation for ZH, differential attenuation also fails to

recover ZDR in the areas devoid of radar echoes (the unfilled triangles west of the radar in Figs. 4.38(b)

and 4.38(d)). Besides, the abnormal linear pattern along the radar beams in the attenuated-corrected

ZDR is obvious in both fine and coarse scans, reflecting somehow the insufficiency/inability of this dif-

ferential attenuation correction.
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The linearity between u-φDP and ZH or ZDR should diminish or vanish after attenuation cor-

rection. The linear correlation between u-φDP and the attenuation-corrected ZH barely exists, but the

linear correlation between u-φDP and the attenuation-corrected ZDR is kept to some extent (Fig. 4.39).

The remaining linearity between u-φDP and the attenuation-corrected ZDR may be another explanation

corresponding to the discrepancy between the attenuation-corrected ZDR and ZDR of the C-band mea-

surements.

Several factors influence the accuracy of the foregoing attenuation correction using φDP—

DSD variability, temperature dependency, drop shape-size relationship, existence of backscatter differ-

ential phase, and statistical error in φDP measurements (Carey et al., 2000).

4.6.3. Comparing two attenuation correction methods

The iterative ZPHI attenuation correction procedures allows flexibility for coefficients α and β and thus

should be more advanced. However, in the implementation, the values of α and β tend to reach the

extreme values—two ends of the allowed range—after one or two iterations (through personal commu-

nication). Here we quantify the relative performance of ZPHI and the iterative ZPHI according to the

AR over a certain time interval, which is calculated using ZH corrected by means of ZPHI and iterative

ZPHI algorithms ARZPHI,f,andARiterative,f for fine scans, and ARZPHI,c and ARiterative,c for coarse scans,

respectively. AR0,f and AR0,c are for the AR without attenuation correction. Note that ZH involved here is

base data, not processed by the external QC procedures. To compare between ZPHI and iterative ZPHI

algorithms, we calculate ∆f = ARZPHI,f−ARiterative,f for the fine scans, and ∆c = ARZPHI,c−ARiterative,c for

coarse scans, respectively. To show the difference between the fine and coarse scans, we also calculate,

∆fc,0 = (ARZPHI,c−ARZPHI,f), ∆fc,ZPHI = (ARZPHI,c−ARZPHI,f) and ∆fc,iterative = (ARiterative,c−ARiterative,f);

the positive values for these three terms means the precipitation quantities of the coarse scan data

is greater than its counterpart in the fine scan data. Besides, we define ∆fc = ∆c−∆f = (ARZPHI,c−
ARZPHI,f)− (ARiterative,c−ARiterative,f), to show whether the differences between ZPHI and iterative ZPHI

algorithms are larger for the fine or coarse scans; the positive values of ∆fc mean a greater difference

between the fine and coarse scans if the ZPHI algorithm rather than the iterative ZPHI algorithm is used.

For this heavy rain event lasting for 4 hours (Fig. 4.35), attenuation correction can regain the

AR exceeding 30 mm (Figs. 4.40(a) and 4.40(c)) especially over the intense convective cells, while the

difference between two attenuation correction algorithms (∆f) is merely around 2 mm (Fig. 4.40(e)). It

means that the difference caused by different attenuation correction procedures is significantly smaller

than difference in AR between without and with attenuation correction. The larger portion of positive

values in ∆f means that the ZPHI algorithm is able to recover more precipitation than the iterative one.
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(a) (b) mm

(c) (d) mm

(e) (f) mm

Fig. 4.40.: PPI displays showing the effect of attenuation correction on the rainfall accumulation for a 4-hour
rainy episode from 20:00 to 23:00 UTC on 21 July 2017, (a) ARf the total AR estimated from the
fine scans without attenuation correction, (b) ARZPHI,f with ZH corrected by ZPHI attenuation correc-
tion, (c) ∆ = ARc−ARf difference between the fine and coarse scans before attenuation correction, (d)
∆ = ARc−ARf after attenuation correction (e) ∆f = ARZPHI−ARiterative the difference in rainfall accu-
mulation corrected by ZPHI and iterative ZPHI for fine scan, and (f) ∆c−∆f

The attenuation correction modifies the difference in AR between the fine and coarse scans.

Before attenuation, this difference is relatively small (Fig. 4.40(c)), and becomes remarkably larger after

attenuation correction (Fig. 4.40(d)). Either before or after attenuation correction, the negative values

dominate the radar coverage, which means AR estimated from coarse scans is smaller than that of fine

scans. In other words, although ZH of both fine and coarse scans increases after attenuation correction,
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the fine scans regain a greater AR. Given ZH is not processed by the data QC procedures, one possible

explanation for the greater amount of ZH correction for the fine scan data is that, in this 4-hour precipi-

tation event, the widespread precipitation also persisted beyond the 75-km range of the radar coverage,

resulting in the second-trip echoes. These second-trip echoes, although in the moderate intensity, bring

about the “extra” amount of “fake” precipitation into the total amount of AR. It again reflects the neces-

sity of the second-trip echo removal (Section 4.3). The relationship between the second-trip echo and

attenuation correction procedures is presented in Appendix B.1.2.

In addition to the foregoing comparisons over a large area, we also examine the effect of

attenuation correction over time. The reference data are the rain gauge measurements of two selected

DWD rain gauge situated in the adjacent azimuthal directions. The 5-minute AR is calculated from the

1-minute rainfall amount measured by the rain gauges, and then divided by the 5-minute time span to

obtain the 5-minute averaged R for each 5-minute interval. This R is then converted into the equivalent

radar reflectivity Ze using the Marshall-Palmer Z-R relation. We compare three types of ZH —without,

with ZPHI and with iterative ZPHI attenuation correction—to the Ze from rain gauges. Within each 10-

minute interval, Ze of the first 5-minute interval is compared to ZH of fine scans, and the of Ze the second

5-minute interval is compared to ZH of coarse scans.

The majority of ZH increases, after being applied with attenuation corrections, and gets closer

to the rain gauge measurements (Fig. 4.41). The increase is far more remarkable for the rain gauge

(numbered 1255) farther from the radar than the other one located closer to the radar site, and this

larger correction of ZH in the farther range tallies with the physics of attenuation. The radar signals

arriving at the farther rain gauge need to propagate a longer distance through the atmosphere filled with

more liquid water and therefore is subject to a severer attenuation. Besides, the attenuation-corrected

ZH from the ZPHI and iterative ZPHI procedures are nearly identical except a small difference from

20:00 UTC to 20:59 UTC for the rain gauge numbered as 1255. However, unlike the comparison over

a large area ( Fig. 4.40), there is no clear tendency that the difference between fine and coarse scans

becomes greater after rather than before correction over these two particular rain gauges. Instead, after

attenuation correction using either ZPHI or the iterative ZPHI procedure, ZH of both fine and coarse scans

exhibits good agreements with Ze of the rain gauge measurements. Overall, the difference between the

uncorrected and corrected ZH is far more pronounced than the difference between the fine and coarse

scans, and also than the difference between two attenuation correction algorithms. Keep in mind that the

rain gauge measurements allow us to verify ZH only. There is no suitable reference for ZDR to enable a

quantitative evaluation of the attenuation-corrected ZDR.
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(a)

(b)

(c)

(d)

Fig. 4.41.: Time series of ZH from different datasets during the same rain event as Fig. 4.40. (a) and (b) are for two
rain gauges with ID numbers of 4349 and 1255 respectively, with Ze converted from DWD rain gauge
measurements (denoted as Gauge), the attenuated and uncorrected ZH (denoted as raw), the attenuation-
corrected ZH using the ZPHI algorithm (denoted as DPACT(1)), the attenuation-corrected ZH using the
ZPHI algorithm (denoted as DPACT(2)). (c) and (d) are for the rain gauge with ID number 1255 with
and without attenuation correction, where “atc” means the attenuation-corrected ZH using the ZPHI
algorithm

After comparing AR retrieved from ZH corrected by ZPHI and iterative ZPHI algorithms re-

spectively in the preceding case study, we find the differences between ZPHI and iterative ZPHI atten-

uation correction are moderate but exist. However, the algorithms of the built-in attenuation correction

procedures provided from the signal processor are not open-source, and it is not easy to investigate the

reason for these differences. The further analyses in Section 5.2.1 show the iterative ZPHI procedure out-

performs. Since then, without special statements, the iterative ZPHI procedure is the default attenuation

correction for the remaining of this thesis.
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4.6.4. Verifying attenuation correction with KDP

Given that KDP is immune to attenuation (as far as the echo power is above the noise level) (Section 2.2),

the rainfall estimate on the basis of KDP (R(KDP) = aKb
DP)) is not affected by attenuation. Thus, we can

assess the performance of the attenuation correction by comparing KDP-based rainfall estimates to the

attenuation-corrected ZH-based rainfall estimates.

As shown in Section 2.3, the coefficients a and b in the KDP-based rainfall estimator vary

much depending on the radar frequency and drop size distribution. However, within this section, we only

aim to prove that the rainfall estimates from the attenuation-corrected ZH are comparable to the rainfall

estimates using KDP, so the exact values of a and b are not that important. We use 17 for a and 0.73 for

b.

Return to the first example where an intense convective appears in moderate intensity due

to the severe attenuation (Fig. 4.33(a)). Along the 270◦ azimuth, according to KDP data, a convective

storm centered at 35 km away from the radar is more intense than another convective storm centered at

10 km away from the radar, and moderate stratiform precipitation prevails between the two convective

storms. it is in accord with the C-band radar measurements (Fig. 4.33(e)). The only difference between

the KDP data and C-band radar ZH measurements is, as a result of the total loss of echoes, the KDP data

end within 40 km away from the radar, at a shorter range than the C-band radar data. As discussed before,

the attenuated and uncorrected ZH intensity of the farther convective storm is much less than that of the

closer one because of the severe attenuation, in contrast to what are presented by KDP data or C-band

radar data. In terms of precipitation estimation, R estimated based on the attenuated ZH for the farther

convective storm hardly exceeds 3 mmh−1, in contrast to R estimated using the KDP data in magnitude of

over 45 mmh−1 (upper in Fig. 4.42(b)).

After attenuation correction has been applied, R estimated using ZH around 30–40 km away

from the radar increases dramatically for the farther storm and moderately for the closer storm, and thus

reaches similar magnitudes as R calculated from the R(KDP) estimator, for the coarse scan (Fig. 4.42(b))

and the fine scan (Fig. 4.43(b)). Owing to the fast movement of this storm within the 100-second time

interval between the coarse scan and the fine scan, the precipitation presented by this cross-section along

the ray differ slightly between fine and coarse scans. However, in general, R from the KDP-based rain

estimator resembles the corresponding R from the ZH-based rain estimator.
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(a)

(b)

Fig. 4.42.: Ray cross-sections to show the effect of attenuation correction, of the following variables: uncor-
rected and attenuation-corrected ZH, uncorrected and attenuation-corrected ZDR, KDP, ρHV, the rainfall
rate based on the uncorrected ZH and attenuation-corrected ZH—R(ZH), rainfall rate based on KDP —
R(KDP), uncorrected and corrected differential phase φDP, and texture of corrected φDP (σφDP )for the
azimuth at 270◦ for the coarse scan at 15:44UTC on 18 August 2017, along the green horizontal line in
Fig. 4.33(c), where the blue solid lines in (a) represent the uncorrected ZH (or ZDR), the green dot lines
represent the attenuation-corrected ZH (or ZDR), the red solid line in upper (bottom) of (a) is KDP (ρHV),
the blue solid line/green dot line/red solid line in the upper panel of (b) represents the R estimated based
on uncorrected ZH, based on corrected ZH, and base on KDP, respectively, the dark (light) blue solid lines
in the bottom of (b) represent φDP (u-φDP), the red (yellow) solid lines in the bottom of (b) represent
the texture of corrected (uncorrected) φDP (σu-φDP ), the light blue horizontal dashed line in the upper
(bottom) of (a) is ZH at 35 dBZ (ZDR at 0 dB), and the light red horizontal dashed line in the upper of (a)
is KDP of 0 ◦ km−1. ZH are from the coarse scan exclusively. The blank areas beyond the 45-km range
are kept to emphasize the absolute loss of radar signals
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(a)

(b)

Fig. 4.43.: Ray cross sections to compare between fine and coarse scans in terms of uncorrected and attenuation-
corrected ZH or ZDR, the R estimated based on uncorrected and attenuation-corrected ZH – R(ZH) and
based on KDP – R(KDP), and u-φDP and φDP along the same radar beam as Fig. 4.42. The blank areas
beyond the 45-km range are kept to emphasize the absolute loss of radar signals

In addition to ZH, the negative ZDR data become positive after differential attenuation correc-

tion (Fig. 4.42(a)). ρHVkeeps being above 0.95 until 5 km before the total loss of signal occurs. The

constant difference (around 50◦) between uncorrected and processed φDP gives a value for the system

phase shift (Fig. 4.42(b)), and the processed φDP retrievals of both fine and coarse scans follow the mono-

tonically increasing trend, despite slight differences in magnitude. The profile of σφDP is smooth and thus

σφDP has no specific usage.

The case is deliberately selected to show attenuation and the corresponding attenuation cor-

rection for three different scenarios—for stratiform precipitation (in the range of 15–30 km), a intense

convective storm (between 10–42 km, and for total losses of signal (beyond 42.5 km away from the
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radar)). R estimated using attenuation-corrected ZH can reach the same order of magnitude withR esti-

mated using KDP. In contrast, lack of attenuation correction leads to an appreciable negative ZH bias and

its corresponding precipitation estimates. Such contrast verifies the necessity of attenuation correction

in QPE. The attenuation correction process recovers the reduced signals and provides a more exact es-

timation of rainfall rate, especially for the precipitation behind strong convective. It further proves that,

at the X-band frequency, the precipitation estimation based on ZH can only be trustful if the attenuation

correction is applied in advance.

In addition to the necessity of attenuation correction, the above example also illustrates the

advantage of using KDP in rainfall estimating at the X-band frequency—free of the negative affect caused

by ZH attenuation. However, KDP in essence is calculated using φDP over calculation window—an inter-

val consisting of several successive radar gates, so the spatial resolution of KDP-based rainfall estimation

is much coarser than that of ZH measurements. This difference in the radial resolution between KDP and

ZH is clearly reflected in difference between R(KDP) and R(Zcorrected). The fluctuating curve of rain-

fall estimates based on ZH, regardless before or after attenuation correction, is in sharp contrast to the

spatially smooth curve with large widths along the radial direction for R(KDP) (Fig. 4.43(b)). Such differ-

ence attributes to the fact that ZH is measured at each radar sampling volume, whereas KDP is estimated

using the φDP measurements that has been smoothed (Park et al., 2005) by removing fluctuations in the

u-φDP measurements. More precisely, the spatial resolution of KDP retrievals deteriorates and it depends

on the length of calculation window. It implies, R(KDP) is not high-resolution, and the ratio of the spatial

resolution of R(KDP) of fine to coarse scans is no longer 10 to 3.

As mentioned in Section 3.1.5, KDP in our X-band radar dataset was retrieved automatically

through the built-in KDP retrieval procedure (Selex-SI, 2012) which uses a ZH dependent window length

according to the handbook (M.Thurai, 2007). This flexible window length changes the number of radar

gates within the calculating window depending on the ZH intensity in the center of calculating windows.

This flexible calculation window for the KDP retrieval fits the physics because the change in difference

phase through the light rain is small and can be noisy, and it is more reliable to involve more gates to

achieve a substantial change in φDP. However, the built-in KDP retrieval procedure states that the choice of

the window length depends not only on the ZH intensity but also on the range spacing and radar frequency

(wavelength). The built-in KDP retrieval procedure does not explicit state the exact number of radar gates

used for retrieving KDP. Chances are that, in order to achieve a sufficient change in φDP, the calculating

window lengths of fine and coarse scans are adjusted to be comparable, which means no difference

in spatial resolution for KDP data between the fine and coarse scans, and so are its associated rainfall

estimates. In order to figure out the length of calculating window for calculating KDP, we particularly

count the frequency of retrievable KDP. The spatial distribution of the retrievable KDP (not shown) shows

KDP at the first 20 gates and the last 13 gates are inaccessible for fine scans, and at the first 6 gates and
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the last 7 gates are inaccessible for coarse scans. Thus, we suspect the number of radar gates used to

retrieve KDP are 13 and 7 gates respectively for fine and coarse scans.

Moreover, it is worth noting that the attenuation correction was not applied before KDP retrieval.

It indicates, although the “true”KDP value are unaffected by attenuation, the retrieving procedure utilizes

the attenuated ZH for dynamically adjusting KDP calculation lengths, and thus is implicitly influenced by

attenuation.

As mentioned in Section 3.1.5, the first step in the KDP retrieval—“good” data masking—

selects radar data which satisfy the criteria of small σu-φDP , high ρHV, and SNR above a threshold (M.Thurai,

2007), and KDP is only retrieved over these good data. This criterion could be different between fine

and coarse scan data especially in terms of the texture parameter, illustrated by the different PDFs of

σu-φDP (Section 4.5.1). Even if the criteria are identical for fine and coarse scans, the ability of the mask

to filter out the bad data could differ between fine and coarse scans, and then we end up with a situation

that KDP retrievals are available in the fine scans but not in the coarse scans. Besides, with the same

precipitation, the “true” value of KDP may be the same or comparable for both fine and coarse scan, but

the KDP values retrieved in practice are quite often not equal to the theoretical values. As a consequence,

we may expect the retrieved KDP values to be different between the fine and coarse scans.

Despite the advantage of immunity to attenuation, KDP-based rainfall estimation also demon-

strates undesirable characteristics such as smearing and speckling, and unphysical behaviors such as

negative rainfall rate. The reason for these abnormal characteristics is the resonance effect (backscatter

effect of large raindrops) which is more common at the X-band frequency rather than at the S- and C-

band frequencies (Giangrande et al., 2013; Huang et al., 2016), and the non-uniform beam filling (NBF)

effect (Ryzhkov, 2007).

The coefficients a and b depend on the drop shape model assumed for the R(KDP) estimator.

A rigorous method to determine an appropriate drop shape model requires a large dataset of raindrops

collected from the local disdrometers data and theoretical simulations, which is beyond the scope of this

thesis. It means the R(KDP) estimator with a= 17 and b= 0.73 used previously may not be quantitatively

accurate.

To sum up, when it comes to the KDP -based rainfall estimate, we need to keep the following

four points in mind. First, we only know the spatial resolution of KDP retrieval should be coarser than

ZH, but we don’t know the exact values, and are not sure whether the radial resolution of KDP retrieval

of fine scans is comparable or still three times higher than coarse scans. Second, the retrieval of KDP for

both coarse and fine scans are implicitly affected by the ZH attenuation. Third, as mentioned in Section

4.3.3, a portion of KDP retrievals in the fine scan data are contaminated by second-trip echoes and thus are

not reliable. Fourth, the differences in data quality between fine and coarse scans might lead to the dis-

crepancy in the good data masking process between fine and coarse scans, and subsequent discrepancies
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in the availability of KDP retrievals and associated KDP-based rainfall estimates between fine and coarse

scans. Another limitation of KDP in rainfall estimation is the backscatter effect (Trömel et al., 2013)

4.6.5. Effect of radial resolution on attenuation correction

Attenuation correction algorithms utilize u-φDP, which is a variable integrating over the range and whose

magnitude theoretically should not be influenced by the radial resolution. Thus, it should be reasonable

to suppose that the attenuation correction procedure functions in the same manner for fine and coarse

scans, except the cases of the total loss of radar signals (more precisely, the returned echo power below

the noise level) which are much more frequent in fine scans as already discussed in Fig. 4.37(b). However,

Feng et al. (2016) showed that X-band radar data with 450-m sampling resolution is slightly closer to

attenuation-corrected intrinsic measurements than the radar data with 750-m radial resolution.

As mentioned, the ZPHI algorithm is constrained by the valid φDP measurements at the last

gate of the propagation path—more precisely, an average of the last few radar gates—within the rainy

medium since the attenuation through water vapor is normally small and thus negligible. As mentioned,

the maximum range for fine and coarse scans are 75 km and 100 km respectively (Section 3.1). For the

precipitation prevailing beyond the 75-km range but within the 100-km range, the attenuation correc-

tion for fine scans uses φDP at the radar gates within the 75-km range (more preciously within 73.5 km

roughly) as the constraints, whereas the attenuation correction for coarse scans uses φDP over the radar

gates at the farther periphery of precipitation system (between 75 and 100 km) as the constraints. The

different φDP constraints for fine and coarse scans respectively might lead to differences propagating into

the attenuation-corrected fine and coarse scan data. Another scenario is, for precipitation whose entire

body is within the 75 km, if the extremely severe attenuation occurs and weakens radar signals below

the noise level (Fig. 4.37), the measurable signals of fine scans may cease at a range closer to the radar

than that of the coarse scan. It means, the φDP constraints used in the attenuation correction are from

radar data at different ranges for the fine and coarse scans, and the φDP constraints are much likely to be

different from each other.

One more scenario which may also cause differences in φDP measurement and the resultant

difference in the constraints for attenuation correction, is with regard to second-trip echoes in the fine

scans (Fig. 4.44(a)). Between azimuths of 180◦and 200◦, the processed φDP measurements of the fine

scan surpass much that of the coarse scan, corresponding to the prevalence of second-trip echoes between

30 and 70 km away from the radar in the fine scan. This excess of φDP in the fine scan is in accord with

our previous discussion on the sensitivity of attenuation to second-trip echoes (Fig. B.2 or Section4.3).

For the remaining azimuths of this case or another pair of volume scans without the presence of second-

trip echoes, the processed φDP measurements of fine and coarse scans agree quite well with each other

(Fig. 4.44(b)).
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(a) (b)

(c) (d)

(e) (f) dB

Fig. 4.44.: Two pairs of volumes scans at 19:03(19:04) UTC and at 20:33(20:34) UTC on 21 July 2017) to evaluate
the agreements between fine and coarse scans in terms of the φDP constraints at ends of rays used for
attenuation correction. (a), (c) and (e)) are for the case with apparent second-trip echoes, (b), (d) and (f)
are for the case 1.5 hour later without second-trip echoes, and the unfilled triangle in (c) points out the
location of second-trip echoes

Briefly, the processed φDP data used in the attenuation correction procedure exhibit a good

accordance between fine and coarse scans over the areas free from second-trip echoes contamination or

extremely severe attenuation, although we admit they may differ between fine and coarse scans in the

foregoing special scenarios.
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The iterative ZPHI does not requires the initial and terminal φDP values, so we don’t discuss

the effect of resolution on the iterative ZPHI.

4.7. Differential reflectivity calibration

As a ratio between the horizontally-polarized and vertically-polarized power, ZDR might be miscalibrated

in practice (Frech, 2013). Our X-band radar employs the SHV mode (Section 2.2) with two separate

orthogonal channels. Chances are these two channels differ from each other regarding the transmis-

sion power, receiver gains and other engineer aspects. For instance, despite using the same antenna for

horizontal and vertical polarization, the antenna beam pattern might still differ between both polariza-

tions. Such difference yields the system bias for ZDR measurements—∆ZDR. In order to address this

ZDR miscalibration, the solar radiation in H- and V-polarizations should be checked continuously during

the experiment to monitor ∆ZDR the reception component, but this procedure is not for the transmission

part. Alternatively, ZDR measurements from the vertical incidence (or birdbath scan, or vertical-pointing

scan, or 90◦-elevation sweep) are a widely accepted and reliable method to estimate ∆ZDR, as far as the

vertical-pointing scan is included in the scanning strategy. For the radar which is unable or does not plan

to perform the birdbath scan, alternative solutions might include cross-power techniques (Hubbert et al.,

2008).

Besides the routine of checking on the solar radiation, our X-band experiment in Stuttgart

deliberately included a birdbath scan for the coarse scan for the ZDR calibration purpose. Thus, we focus

on using the birdbath scan to calibrate ZDR directly for coarse scans, and then using inter-comparison of

ZDR data between the fine and the coarse scans to indirectly estimate the ZDR system bias for fine scans.

4.7.1. Calibrating coarse scans

Raindrops falling in still air are mostly oblate with their symmetry axes oriented in vertical direction

normal to the flat surface of the ground (Pruppacher and Beard, 1970; Beard and Chuang, 1987; Andsager

et al., 1999; Pruppacher and Klett, 2011); when projected into the x-y plane (or the horizontal plane),

the shape of raindrops are spheric and symmetric, leading to a lack of polarimetry in the radar beams of

vertical incidences. It means, ZH should be identical to ZV and correspondingly the intrinsic differential

reflectivity ZDR should be zero (Gorgucci et al., 1999a). For the spherical raindrops, a deviation of

ZDR from zero can be used to determine the ZDR offset—∆ZDR. Similar to others, we use the feature to

calibrate ZDR via the vertical incidences available in coarse scans.

Nevertheless, in real scenario especially when it rains, the air vertical motion is not zero,

tilting the symmetric axes of the falling raindrops away from the vertical direction. In other words,

raindrops were tilted with canting angles—deviations of the long axes of raindrops from the horizontal
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plane (Rauber and Nesbitt, 2018). From a viewpoint of polarimetry, the canting angle can be defined

as the angle between the normal to the polarization plane and the projection of the raindrops’ symmetry

axis on the same polarization plane (Huang et al., 2008). Past literature has showed that the mean canting

angle β̂ is close to 0◦with a standard deviation around 7◦ for drops larger than 2 mm (Huang et al., 2008).

Besides canting angle, drops oscillation and shape deformation due to break-up further complicate the

orientation of falling raindrops. In order to mitigate the fluctuation, we take the ZDR measurement of all

the vertical scans into account.

The results turn out that ZDR is negatively biased throughout our measurements (Fig. 4.45(a)).

This negative bias remains in a relatively constant magnitude, regardless of the vertical heights (except

the lowest 500m layer) (Fig. 4.45(b)), the rainfall intensity (Fig. 4.45(d)), and the time (Fig. 4.45(c)).

Since the accuracy required for ZDR is 0.1 dB, the ZDR offset is determined as +0.78 dB, and we calibrate

the ZDR measurements with +0.78 dB for all the elevations, assuming that the miscalibration is fixed for

sweeps at different elevations within the coarse scan.

(a) (b)

(c) (d)

Fig. 4.45.: ZDR calibration for the coarse scan using the radar sweeps of vertical incidence (θbeam = 90◦) for the
entire measuring period, where (a) is the coarse scan PDF, (b) is the PDFs at different vertical altitudes,
(c) is the PDFs for the light rain period only, (d) is the two-dimensional bivariate histogram of the
absolute occurrence frequency between ZH and ZDR, and the red/green lines indicate the magnitude of
ZDR miscalibration for the coarse scan
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We consider all the ZDR measurements over all the altitudes without any criteria, unavoidably

including ZDR measurements, which are from other scatters such as hail or ground clutters, or which are

of poor quality. Besides, quite a number of convective or heavy precipitation events occurred within our

experiment in Stuttgart, and the aforementioned raindrop canting and oscillation contribute to anisotropy

of falling raindrops. Additionally, the ice aggregates in the bright band will also exhibit non-zero intrinsic

ZDR. Despite the factors contributing to fluctuations in ZDR offset, the PDF based on 20 thousands of

birdbath scans should be sufficient, and the single peak clearly seen in PDFs should be close to the true

ZDR offset.

4.7.2. Calibrating fine scans

Given that the vertical incidence scan is not included in fine scans, theZDR measurement from birdbath

scans are not available. Alternatively, we compare PDFs of ZDR between fine and coarse scans for their

corresponding elevations to see whether a “relative” miscalibration of ZDR exists between fine and coarse

scans. Since small raindrops are can be fairly assumed as spherical, we consider light rain events exclu-

sively in order to minimize other factors responsible for changing ZDR values.

The ZDR data in our dataset are negatively biased of 0.44 dB for fine scan and of 0.60 dB

for coarse (Fig. 4.46(a) and Figure 4.46(b)). Given that the ZDR calibration factor for coarse scans is

+0.78 dB ZDR the calibration factor for fine scans can be determined as +0.62 dB.

(a) (b)

Fig. 4.46.: ZDR calibration in light rain (ZH < 20 dBZ) for fine scans by comparing difference in ZDR between fine
and coarse scans for the non-vertical elevations taking the 1.5◦ elevation sweeps as an example, where
(a) and (b) are PDF for the fine and coarse scans respectively

4.8. Polarimetric radar data quality

Polarimetric data have been used in removing spike signal, second-trip echoes, non-meteorological

echoes and correcting attenuation in the previous sections. However, we have not yet evaluated the data

quality of these polarimetric measurements. To evaluate Z, we can compare R calculated from ZH via the
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assumed Marshall-Palmer Z-R relation (Section 2.3) to the external reference such as rain gauge mea-

surements. Unlike ZH, there is no direct reliable reference for polarimetric measurements. Alternatively,

we assess statistical errors of the polarimetric variable estimates.

As mentioned in Section 2.1, an estimate of a certain polarimetric variable is calculated on

the basis of a pulse train consisting several successive transmitted pulses, and its variance can be re-

garded as the statistical accuracy or statistical error of polarimetric variables. Understandably, the more

equivalent independent samples MI are used to estimate polarimetric variable, the smaller the statistical

errors will be (Eq. 2.16). Besides, the radar polarimetry involves comparisons of two polarization states,

so the correlation between horizontally and vertically polarized signals is also crucial to the data quality.

For weather signals, the horizontally polarized signals are well correlated with the vertically polarized

one, and this absolutely differs from noise which has correlation between the horizontally and vertically

polarized signals. This correlation can be quantitatively represented by ρHV, hence the reason that ρHV is

a measure of quality of polarimetric measurements (Section 2.2).

Based on theory of weather signal processing (Doviak et al., 1993), the analytical standard

deviations of estimates for the polarimetric variables depend on MI (Section 2.1) and ρHV, and are ex-

pressed as

SD(ẐH)≈ 10 log[1+
1√
MI

] (4.19)

SD(ẐDR)≈ 4.343

√
2

MI
(1−ρ2

HV) (4.20)

SD(ρ̂HV)≈

√
1−ρ2

hv
2MI

(4.21)

SD(φ̂DP)≈
180

π ρhv

√
1−ρ2

hv
2MI

(4.22)

The hats over variables’ names indicates they are estimates of polarimetric variables. As mentioned in

Section 3.3.1, we reserve the symbol σ for texture parameters, and desingate the symbol SD for standard

deviation of polarimetric variables.

Determined by Na and PRF (Table 3.2), the total numbers of transmitted pulses within each

azimuth resolution (M) are 148 and 28 for our fine and coarse scans respectively (Eq. 2.17). Then, MI

is calculated using Eqs. 2.16, 2.19, 2.20 and 2.21. σv varies depending on the degree of perturbation in a

flow, being 1 ms−1 for rain, up to 5 ms−1 for convective storms (Sauvageot, 1992). Here we consider the

typical range from 1 ms−1 to 4 ms−1. Take the analytical standard deviation of φDP for instance. With

Eq. 2.16, Eq. 4.22 can be reformed into

√
M ·SD(ρ̂HV) =

180√
2π

(|ρhv|−2−1)1/2√
µ (4.23)

146



The term
√

M · SD(ρ̂HV) decreases with more variability in VDo and higher ρHV, and this decreasing

tendency depends on ρHV (Fig. 4.47). For instance, if reducing ρHV from 0.99 to 0.9, the standard devi-

ation of φDP triples, and if further reducing ρHV from 0.9 to 0.7, the standard deviation of φDP doubles

(Fig. 4.47). These curves tally with their counterparts of the S-band frequency in Fig.1A in Ryzhkov and

Zrnic (1998b).

(a) (b)

Fig. 4.47.:
√
(M) ·SD(φ̂DP) as a function of the normalized spectrum width σvn = 2σvT/λ under the condition of

ρHV =0.7, 0.9 and 0.99, for the fine (a) and coarse (b) scan

For the S-band radar polarimetric variables, the desired statistical errors should be less than

0.2 dB for ZDR, 2◦ for φDP and 0.01 for ρHV, respectively (black lines in Fig. 4.48) (Melnikov and Zrnic,

2004; Melnikov and Zrnić, 2007). For the C-band frequency, SD( ˆφDP) is around 3–4◦ (Keenan et al.,

1998). Given that the phase shift is inversely proportional to λ , we adjust the threshold of SD(φDP) to

5◦ for the X-band frequency.

In order to compare the standard deviations directly between the fine and coarse scans, we

adjust the x- and y-axes (since M and σvn differ between the fine and coarse scans) as shown in Fig. 4.48.

Standard deviations of polarimetric variables for both fine and coarse scans decrease with the increasing

Td, but the decreasing tendencies differ between the fine and coarse scan. For a specific ρHV, the stan-

dard deviations of estimates of φDP (SD(φ̂DP)) of fine scans are much larger than those of coarse scans

(Fig. 4.48(b)), whereas the standard deviations of estimates of ρHV or ZDR (SD(ρ̂HV) or SD(ẐDR)) of fine

scans are slightly smaller than those of coarse scans (Figs. 4.48(a) and 4.48(c)). In particular, SD(φ̂DP)

of coarse scans with ρHV= 0.7 is nearly identical to SD(φ̂DP) of fine scans with ρHV= 0.9 (Fig. 4.48(b)).

Besides, the higher ρHV leads to smaller differences in these standard deviations between fine and coarse

scans.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.48.: Theoretical standard deviations of polarimetric variables for fine and coarse scans, where (a), (b) and
(c) are SD(φ̂DP), SD(ẐDR) and SD(ρ̂HV) as a function of σv for fine and coarse scans with conditions
of ρHV = 0.7, ρHV = 0.9 and ρHV = 0.99, and (d), (e) and (f) are SD(φ̂DP), SD(ẐDR) and SD(ρ̂HV) as
a function of Td, with conditions of ρHV = 0.97, ρHV = 0.99, σv = 1ms−1 and σv = 4ms−1, the black
horizontal lines are SD(ZDR) = 0.2dB, SD(φDP) = 2◦ and SD(ρHV) = 0.01

On the other hand, standard deviations of polarimetric variables also vary with Td (Sachi-

dananda and Zrnić, 1986; Kostinski, 1994; Zhang, 2016). Td for fine and coarse scans are fixed as 74 ms

and 55 ms (Eq. 2.18 and Tab. 3.2). Instead of the fixed values, here we assume Td is changeable and keep

other technical specifications unchanged. It turns out that the standard deviations of polarimetric vari-
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ables decrease with the increasing Td (slower antenna rotation rate) (Fig. 4.48(d), 4.48(e) and 4.48(f)).

SD(ẐDR) can be below 0.2 dB only if Td is longer than 22 ms for the fine scan and exceeds 38 ms for

the coarse scan, when σv = 4ms−1 and ρHV= 0.99 (Fig. 4.48(d)). SD(φ̂DP) can be below 5◦ only if Td is

more than 6 ms for the fine scan and exceeds 3 ms for the coarse scan, when σv = 4ms−1 and ρHV= 0.99

(Fig. 4.48(e)). SD(ρ̂HV) can be below 0.01 only if Td is over 100 ms for the fine scan and exceeds 150 ms

for the coarse scan when σv = 4ms−1 and ρHV= 0.99 (Fig. 4.48(f)). The differences between ρHV = 0.99

and ρHV = 0.97 ((d), (e) and (f) in Fig. 4.48) also indicate that a small difference in ρHV also changes

significantly the level of fluctuation of estimates of all the polarimetric variables.

After discussing the theoretical standard deviations of estimates of polarimetric variables

(Fig. 4.48), we pay attention to the real measurements, in particular from light rain events in which

the raindrops are assumed to be spherical and nearly uniform in shape and scattering properties (Marks

et al., 2011). In addition, the small size of raindrops in light rain can avoid the potential certainties caused

by resonance effect. Following the method in Marks et al. (2011), polarimetric measurements from this

light rain are used as indicators of data quality.

We calculate the following statistics for each selected volume scan containing light rain: stan-

dard deviations for measurements of ZDR, ρHV, KDP, φDP and σu-φDP (SD(ZDR), (SD(ρHV), (SD(KDP),

(SD(φDP), SD(σφDP)), median for ZH, ρHV, KDP and φDP, mean ZDR, and AAD for ZDR. Note that each

volume scan includes the same amount of radar pixels which are identified as being light rain regardless

of fine or coarse scans to guarantee identical sample sizes for calculating standard deviations (19.6×103

radar gates for the cases presented in Fig. 4.49). The medians of ZH measurements vary between 10

and 20 dBZ, and the medians of ZDR measurements fall below 0.3 dB, which confirms the selection of

light rain medium. Note that SD(ZDR) is distinct from SD(ẐDR). SD(ZDR) is calculated on the basis of

polarimetric measurements of light rain with a volume scan, while SD(ẐDR) represents the theoretical

variability of ZDR as a function of ρHV or other radar parameters.

Recall that ρHV is a measure of data quality, the standard deviation SD(ρHV) larger than 0.01

in light rain is used as a warning for the radar system (Doviak et al., 1993; Marks et al., 2011). Our

ρHV data of all these light rain episodes exhibit the median values above 0.99 with SD(ρHV) around

0.005, which substantiates the good data quality for polarimetric moments in our measurements for both

fine and coarse scans (Fig. 4.49). In addition, SD(ZDR) is around 0.2 dB, and SD(φDP) is less than 5◦,

both of which are congruent with the theoretical thresholds in Fig. 4.48. For ZDR, φDP and KDP, fine scans

have slightly greater standard deviations than those of coarse scans.
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(a)

(b)

Fig. 4.49.: Statistics of polarimetric variables in light rain for (a) fine scans, (b) coarse scans, including median
of ZH, mean ZDR, AAD of ZDR, standard deviation of ZDR (SD(ZDR)), median of u-φDP, median of
σu-φDP , median of KDP, median of ρHV, standard deviation of u-φDP (SD(φDP)), standard deviation of
σu-φDP (SD(σφDP)), standard deviation of KDP, and standard deviation of ρHV over selected 21 light raiy
events for the fine scans and 20 light rain volume scans for the coarse scans (each volume scan is
calculated from roughly 20×103 radar gates with light rain signature)

150



In addition to these foregoing standard deviations, the absolute deviations of ZDR are less than

0.2 dB, in agreement with the 0.2 dB thresholds of Marks et al. (2011). When it comes to KDP, its medians

surpass 0.2◦ km−1 for the fine scans and 0.1◦ km−1 for the coarse scans, instead of the theoretically

expected value of 0◦ km−1. Its standard deviations (SD(KDP)) are around 0.3–0.4◦ km−1 for fine scans

and around 0.2 ◦ km−1 for coarse scans, respectively, greater than 0.1–0.2◦ km−1 in Marks et al. (2011).

Besides, we also calculate σφDP since it is associated with SD(KDP) (Eq. 4.25). Be cautious

that the texture of φDP (σφDP) is different from the aforementioned standard deviation of φDP (SD(σφDP)).

We calculate σφDP using 31 and 9 gates, since the range interval of 31 consecutive radar gates in the

fine scan equals to that of 9 consecutive radar gates in the coarse scan. Comparing σφDP in the 31-gate

length from the fine scan with σφDP in 9-gate length from the coarse scan means comparing σφDP of the

same calculating window length between the fine and coarse scans. Comparing σφDP in 9-gate length

from the fine scan with σφDP in 9-gate length from the coarse scan means comparing σφDP of the same

radar gates. Comparison in the same window length emphasizes the spatial variability of the variables,

whereas comparison in the same number of radar gates underlines the statistical consistency.

If we compare σφDP of the same calculating window length, then the fine scans exhibit ob-

viously higher medians (around 2–2.7◦ km−1) than those of the coarse scans (around 1.5–2◦ km−1)

(Fig. 4.49). If we compare σφDP of the same number of radar gates, then the fine scans exhibit slightly

higher medians (around 1.5–2.5◦ km−1) than those of the coarse scans (around 1.5–2◦ km−1). Standard

deviations of σφDP (SD(σφDP)) of fine scans vary between 1 and 4◦ km−1, in contrast to values between 1

and 2◦ km−1 for the coarse scan, regardless of the number of radar gates.

The foregoing comparisons lead to two conclusions. First, an increase in the number of radar

gates for calculating the texture magnifies the median of σφDP , but exerts nearly no effect on SD(σφDP).

Second, the most noticeable difference between the fine and coarse scans lies in σφDP , and the fine scans

have larger median and wider standard deviation of σφDP compared to that of the coarse scans. In compar-

ison to σφDP in 25-gates length which was characterized by its median of 2.5◦ and its standard deviation

of 0.6◦(Marks et al., 2011), both fine and coarse scans exhibit larger standard deviations and comparable

medians.

The foregoing statistics are for the light rain medium (Fig. 4.49), but when it comes to KDP, we

are more interested in moderate-to-heavy precipitation because of the advantage of using KDP in rainfall

estimation since KDP is not affected by attenuation.

Interpretation of statistical errors in KDP estimation depends on the retrieving method. If

KDP is estimated using two neighboring gates (Eq. 3.5), then the fluctuations at the two gates are uncor-

rected, so their variances add together. If ρHV are equal at the two gates, then the standard deviations of

φDP are also equal, and then the corresponding standard deviation of KDP is
√

2 larger than the standard
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deviation of φDP. On the other hand, if KDP is retrieved using the least square fit of φDP (Eq. 3.6), the

variance of estimates of KDP over the interval of N radar gates is given as

var(K̂DP) =
var(ΦDP)

N(N+1)(N−1)
3 (∆r)2

(4.24)

where var(ΦDP) is the variance of ΦDP with the N-gate interval. According to Eq. 4.24, the accuracy or

standard deviation of estimates of KDP is independent of KDP but depends on the texture of φDP over the

N-gate interval, and the theoretical formula is as follows (Gorgucci et al., 1999b)

SD(K̂DP) =

√
3σφDP

N3/2∆r
(4.25)

where N is the number of range gates for retrieving each KDP. As mentioned, in our radar signal pro-

cessor, the calculating interval for KDP is adjusted according to the intensity of ZH (Section 3.1.5), so

we also adjust the interval for calculating σφDP using 31 (9) gates for ZH below 30 dBZ, 21 (7) gates for

ZH between 30 and 45 dB, and 11 (5) gates for ZH above 45 dB for fine (coarse) scans. Note that Eq. 4.25

in principle assumes the uniform precipitation within its each calculating interval, which might not be

valid if the calculating interval is too long.

Then we calculate SD(K̂DP) using φDP from real measurements as follows. For the 6-hour

precipitation episode consisting of stratiform and convective precipitation discussed in Section 4.6, fol-

lowing the method in Marks et al. (2011), based on ZH intensity, we stratify the radar measurements into

0.5-dB increment from 30 dBZ to 55 dBZ. For instance, there are 306 157 radar gates whose ZH equal

30 dBZ, and the average KDP of those radar gates is 0.213 ◦ km−1. The maximum allowed KDP, defined

as 20% of this average KDP, is 0.0425 ◦ km−1. Their textures of φDP vary from 0.56◦ to 38.2◦, and accord-

ing to Eq. 4.25, SD(K̂DP) vary from 0.134 ◦ km−1 to 9.16 ◦ km−1. For ZH of 30 dBZ, 21 gates are used

to calculate σφDP , so the number of independent samples are 14579 (306157/21). Then, the reduction

factor which is defined as the square root of the number of independent samples is 121 (
√

14579). The

observed range of KDP is 0.001 (0.134/121)–0.0759 (9.16/121) ◦ km−1. The same procedure for other

ZH increments. The results show that the observed ranges of KDP are well below the maximum allowed

KDP values, supporting the reliability of KDP retrievals (Figs. 4.50(a) and 4.50(b)).
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(a) (b)

(c) (d)

Fig. 4.50.: Accuracy or standard deviation of KDP for a heavy rain event from 18 UTC to 23 UTC on 21 July 2017,
(a) and (b) are for fine and coarse scans, respectively.

The length of the calculating path for KDP is crucial to the statistical accuracy of KDP (Fig. 4.50(c)).

Following Gorgucci et al. (1999b), after combining Eqs. 2.64 and 4.25, we can obtain the pathlength re-

quired to estimate KDP below a given fractional standard error (FSE) for the X-band frequency, which is

given as

L = [
√

3∆r
18.2

(KDP)0.85
σ(φDP)

FSE
]2/3 (4.26)

To estimate KDP with 20% accuracy for a precipitation rate of 24 mmh−1 or equivalently radar reflec-

tivity of 45 dBZ, the path for KDP retrieval should be at least 3 km or 4 km for the fine and coarse scans

respectively (Fig. 4.50(d)).

4.9. Probability density function (PDF)

Our Stuttgart field experiment collected the single-polarization radar variables—uncorrected ZH cor-

rected ZH, SNR, SQI, VDo, σv and CCOR—and the polarimetric variables—ZDR, u-φDP, filtered φDP,

KDP and ρHV (Section 3.1.5). As we will show soon, the majority of radar variables do not follow the

normal distribution so the typical statistics (median, mean, .etc.) cannot fully describe characteristics

of each variable. Instead, we use the distribution of absolute (relative) occurrence frequency, or PDFs
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of radar variables to characterize general features of each radar measurable. From the PDFs, we can

easily extract information such as data availability and the frequent values, and also analyze the range

dependency of these radar variables.

We have two categories of data; one is the radar data retrieved directly from the radar built-in

signal processor without external data QC procedures, and the other one is the radar data processed with

the external data QC procedures discussed in the previous sections (Section 4.2, Section 4.3, Section 4.5,

Section 4.6 and Section 4.7). The PDFs are calculated from both categories. Although the default data

processing chain in the Rainbow signal processor automatically rejects some bad data (SELEX, System

Integration GmbH, 2015), the default data QC is incomplete and calls for further steps; this is the reason

why these external data QC procedures (Section 4.2, Section 4.3, Section 4.5, Section 4.6 and Section

4.7) are needed to identify and to filter out bad data before applying the radar data for precipitation

estimation in Chapter 5.

4.9.1. PDF for base data

A radar cannot distinguish the sources of echoes but instead treats the non-meteorological echoes or other

types of noise equally with precipitation echoes. However, only precipitation echoes are of interest to

us. Before applying data QC procedures, the non-meteorological echoes or other kinds of noise appear

in forms of some weird features within the base data.

(a) (b) 105

Fig. 4.51.: Range variation of absolute occurrence frequency of the X-band radar polarimetric measurements at the
1.5◦ elevation for the entire measuring period for radar reflectivity (ZH) for the fine (a) and coarse (b)
scans respectively

One of the deficiencies in the radar measurements is the range dependence owing to the

broadening θbeam as the range increases. For instance, the minimum detectable radar reflectivity (Zmin)

increases with r. For instance, Zmin at r = 20km, r = 40km and r = 60km are around -1.5 dBZ, 5 dBZ

and 9 dBZ for the fine scans, and around 14 dBZ, -7 dBZ and -3 dBZ for the coarse scans (Fig. 4.51).
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Obviously, Zmin in the fine scan is much larger than that in the coarse scan, corresponding to the lack of

weak echoes in the fine scan as discussed in Section 4.1. In brief, the range dependence differs between

the fine and coarse scans. Besides, several vertical lines reaching above 50 dBZ are present within the

10-km range, but such lines are much less obvious in the fine scan. The vertical lines are caused by the

abnormally high ZH from the GCs, which is more prevalent in the coarse scan.

(a) (b)

(c) (d)

(e) (f)

Fig. 4.52.: Range variation of absolute occurrence frequency of the X-band radar polarimetric measurements at the
1.5◦ elevation for the entire measuring period, specifically, ZDR (a) and (b), u-φDP (c) and (d), ρHV (e)
and (f), panels on the left/right column are for the fine/coarse scan data respectively

For the fine scan, ZDR within the 15-km range has a wider distribution across the -8 dB and

10 dB than ZDR beyond the 15-km range (Fig. 4.52(a)), while such a wide distribution extends to 35 km

for the coarse scan, along with particularly high frequencies of large positive ZDR for the range between
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15 km and 35 km (Fig. 4.52(b)). Large ZDR is caused by the non-meteorological echoes, and is most

likely by GCs. It implies that the coarse scan data are more subject to the GCs, in accord with our

discussion in Section 4.4. Beyond 15 km for the fine scan and beyond 35 km for the coarse scan, we can

see the majority of ZDR data fall between -3 dBZ and 3 dBZ with the peak around 0 dBZ.

The frequency distributions of u-φDP, either the fine and coarse scans, show two ridges, a

major one around 50◦ and a minor one around 240◦ (Figs. 4.52(c) and 4.52(d)). The major one is due

to the system differential phase (Eq. 2.49) and the minor one is caused by the spike signals which are

characterized by abnormally high differential phase (Section 4.2). In accord with our conclusion in

Section 4.2 that spike signals occur much more frequently in the fine scans, the minor peak in the fine

scan data is more apparent than its counterpart in the coarse scan data. Besides, similar to ZDR, u-φDP in

the coarse scan data is also affected by GCs to a greater extent than that of the fine scan.

Within the 15-km range for the fine scans and within the 35-km range for the coarse scans,

ρHV has comparable occurrence frequencies across the value 0–0.99 (Figs. 4.53(e) and 4.53(f)). Besides

this large proportion of low ρHV primarily caused by GCs, the frequency distributions for the fine and

coarse scan data are quite similar. This similarity between fine and coarse scans can be also seen from

ZDR and u-φDP if the noise echoes or these weird features are absent (such as the data beyond 40 km away

from the radar). It implies that the fine and coarse scan data (at least for ZDR, φDP and ρHV) should be in

good accord with each other if the noises are successfully removed.

In contrast, the frequency distributions of KDP, SNR and SQI show discrepancies between the

fine and coarse scans (Fig. 4.53). For the fine scan data, KDP retrievals are distributed more broadly and

are less concentrated around the 0 ◦km−1, while for the coarse scan data, the majority of KDP data are

more concentrated between -2 and 2 ◦km−1 (Figs. 4.53(a) and 4.53(b)). Given that KDP is retrieved over

the radar data which must satisfy the “good” data criteria (Section 3.1.5), no KDP is retrieved over the

data contaminated by GCs within the 30-km range. No major differences exist between the fine and

coarse scan data in terms of u-φDP, which implies the difference in KDP between the fine and coarse

scans is very likely due to the KDP retrieval algorithm. The number of radar gates and the interval of

calculating windows in the KDP retrieval are associated with ∆r. Thus, it is reasonable to infer differences

in KDP retrievals between the fine and coarse scans result from the difference in spatial resolutions of the

radar data.

The frequency distributions of SNR of the coarse scan data are wider through the entire range

than those of the fine scan data (Figs. 4.53(c) and 4.53(d)). For instance, at the 50-km range, the chance

of SNR being larger than 40 dB in the coarse scan is nearly 10 times more than that of the fine scan. At

the 75-km range, SNR greater than 50 dB is quite rare in the fine scans but frequent in the coarse scans.

SNR data are also subject to GCs, illustrated by the strange vertical structures within the 15-km (35-km)

range for the fine (coarse) scan data. The large magnitude of SNR in the coarse scans be associated with
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loss of weak echoes in the fine scans, and the related worsening capacity in attenuation correction for the

fine scan data. It pinpoints the sacrifice we made if we set our radar measurements at a higher spatial

resolution.

(a) (b)

(c) (d)

(e) (f)

Fig. 4.53.: The same as Fig. 4.52, but the upper row is for KDP, the middle row is for SNR, and the bottom row is
for SQI

When it comes to SQI, the frequency distribution of the fine scan data is quite different from

that of the coarse scan data (Figs. 4.53(e) and 4.53(f)). The most impressive difference is that for the

fine scan beyond 25 km, the majority of SQI dat are constrained below 0.25, with very little SQI data

between 0.4 and 0.7, and the minority of SQI more than 0.8. For the coarse scans, the majority of

SQI data are roughly below 0.45. Unlike the fine scans, there is no lack of SQI and the frequency of
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SQI decrease gradually as SQI increases from 0.45 to 0.55 (illustrated by the gradually changing color),

and remains in a relative small magnitude. With the range increases from 25 km to 75 km, SQI can be as

high as 1 in the fine scan data, but the upper maximum SQI in the coarse scan data becomes lower than

1. As we know, SQI above 0.8 corresponds to precipitation echoes, and the low SQI values represent

the non-meteorological echoes or noises. Thus, in the fine scans, this deficiency of SQI between 0.4

and 0.7 can be used to distinguish the non-meteorological and precipitation echoes efficiently. However,

such a criterion is not applicable in the coarse scan data. This contrast is exactly associated with the

second-trip echo removal in Section 4.3. Within the 20-km range, except SQI above 0.8 corresponding

to the precipitation echoes, there is a certain amount of SQI between 0.4 and 0.8. For the fine scan data,

within this range, this upper threshold within 0.4 and 0.8 declines gradually as the range increases, and

then converges to 0.4 at the 25-km range approximately. In contrast, for the coarse scan, the change in

SQI with the increasing range is gradual and smooth without clear-cut delineations. Besides, we also

notice separated artificial vertical lines around 25–30km range for the fine scans.

Given that precipitation is a rare event in nature, if without data QC, the majority of radar data

are not precipitation echoes. It implies that the differences or similarities we pinpoint from the above

frequency distributions of polarimetric variables mostly reflect characteristics of clear-sky echoes and

non-meteorological echoes. This base radar dataset without data QC procedures definitely contains the

precipitation echoes, but their proportion is quite tiny. Thus, the polarimetric characteristics of precip-

itation echoes are hidden in the general feature of the non-meteorological echoes. In order to inspect

polarimetric variables of precipitation echoes and keep consistent with the previous discussion about

the range dependence of polarimetric texture parameters (Fig. 4.18), we also calculate the quantiles and

PDFs for these polarimetric variables using the same dataset of stratiform precipitation events.

More quantitatively by means of quantiles and PDFs, for the range beyond 15 km, 80% per-

cent of ZDR falls between -1 dB and 1 dB for the fine scans (Fig. 4.54(a)). The PDFs of the coarse scan

data have similar shapes to those of the fine scan data and are slightly shifted downward, which is in

good agreement with the different ZDR calibration factors for the fine and coarse scan data discussed in

Section 4.7. The PDFs of u-φDP of the fine scan are nearly identical to that of the coarse scans, except

the first 15-km range in which the GC contamination in the coarse scan introduces a higher frequency

of abnormally high φDP (Figs. 4.54(c) and 4.54(d)). When it comes to ρHV, for the fine scan, the exis-

tence of GCs brings about a large portion of low ρHV values within the 15-km range, and the medians of

ρHV reach the maximum values around the 15-km range and then gradually decrease due to the enlarging

sampling volume and resultant non-uniform beam filling effect (Fig. 4.54(e)). Within the 15-km range,

the coarse scan has a wider distribution extending downward to the lower values, illustrated by the slight

downward shift of the 0.1 quantile (Q0.1) and 0.5 quantile (Q0.5) (Fig. 4.54(f)). In contrast, beyond 15 km

away from the radar, the coarse scan data are characterized by a slightly upward 0.1 quantile (Q0.1) and

an apparently upward 0.5 quantile (Q0.5) compared to the fine scan. This difference exactly tallies with
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our discussion in Section 4.5 that the fine scan has a more obvious decreasing trend in ρHVand a clearly

high frequency of low ρHV values with the increasing range. It reconfirms a very important difference be-

tween the fine and coarse scan, that is, the higher radial resolution may bring about a severer non-uniform

beaming filling effect and thus reduce ρHV.

Fig. 4.54.: The same as Fig. 4.18 (merely stratiform precipitation), but for ZDR, u-φDP and ρHV
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Fig. 4.55.: Same as Fig. 4.54, but for SNR, SQI and σv

With respect to SNR, the median values in the fine scan data decrease rapidly within the

35-km range, and keep consistent around 1 dB beyond 35 km. The median value (Q0.5) and the 0.9

quantile (Q0.9) of the coarse scan are clearly larger than those of the fine scan data, which tallies with

the differences between the fine and coarse scan data we just discussed in Figs. 4.53(c) and 4.53(d). For

SQI in the fine scan data, with the increasing range, the lower thresholds remain invariable, the medians

decrease rapidly and the upper thresholds decline gradually (Fig. 4.55(c)). The coarse scan has similar
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shapes in terms of the decreasing tendency of these three quantiles. Through the entire range, the 0.9

quantile (Q0.9) of the coarse scans is always 0.1 lower than that of the fine scan, but the quantile 0.5

(Q0.5) is always 0.1 higher than that of the fine scans except the first 15-km range (Fig. 4.55(d)). It agrees

with our previous discussion that the fine scan data have a more definite ability to discriminate between

precipitation echoes and all the other types of echoes according to their SQI values. In the fine scan

data, σv increases slightly with the increasing range, whereas σv of the coarse scan are limited to the

1 ms−1 due to the Doppler dilemma. The reason to mention σv is that SQI is closely linked to σv. The

Doppler dilemma in the coarse scans accounts for the reason why SQI values in the coarse scans cannot

distinguish between the precipitation echoes and other, but SQI values in the fine scans can.

Fig. 4.56.: The same as Fig. 4.54, but for KDP and uncorrected ZH

For KDP, the 0.1 quantile (Q0.5) and 0.9 quantile (Q0.9) are approximately symmetric around

the 0 ◦km−1, and the widths of the frequency distributions of the coarse scan data are slimmer than those

of the fine scan, concurring with the contrast between Figs. 4.53(a) and 4.53(b). For the uncorrected

ZH, except the first 15-km range with some abnormally high ZH values caused by GCs, as the range

increases, the 0.9 quantile (Q0.9) keeps consistent, the median values (Q0.5) increase slightly and the

increasing trend of the 0.1 quantile (Q0.1) is more obvious than that of Q0.9. The dramatic difference
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between the fine and coarse scan data is that lower thresholds of the coarse scan data are mostly about

8–10 dB lower than those of the fine scan. It is another illustration that the fine scan data tend to overlook

the weak echoes which are kept in the coarse scan data. Note that this uncorrected ZH is without the

clutter correction procedure default in the radar signal processor, and should be distinguished from the

(corrected) ZH in the base data (Section 3.1.5).

However, the PDFs (Figs. 4.54, 4.55 and 4.56) are only based on the selected stratiform pre-

cipitation episodes. For the overall precipitation, in order to decipher its characteristics in terms of

polarimetric radar variables, it is necessary to apply data QC procedures to distinguish the precipitation

echoes from others, which is the topic as follows.

4.9.2. PDF for processed data and range dependence

Although the radar was operating continuously for 24 hours every day, the moderate-to-heavy precipi-

tation occurred even less 1% of the operating time. If we calculate PDFs using all the measurements

from the entire measuring period, then the resultant PDFs represent primarily the characteristics of non-

meteorological or clear-sky echoes that are not of interest to us. Since we are concerned mostly with

precipitation, the PDFs of our interest should be based purely on the radar echoes from precipitation tar-

gets. To achieve this, we specifically select over 2000 volume scans from precipitating periods in which

we collected a large amount of the radar data reporting valid KDP (roughly four times the radar data re-

porting invalid KDP). KDP is only retrievable if it is a good data satisfying the low texture of differential

phase, high ρHV, and high SNR (see “good data masking” in Section 3.1.5). Thus, a valid KDP retrieval is

associated with precipitation except that it is contaminated by noise. Accordingly, we classified the radar

measurements into two categories depending on whether the valid KDP retrieval was available or not. To

clarify, since we have already applied the spike signal and second-trip echoes removal, the radar data with

valid KDP retrieval can be regarded as precipitation echoes, whereas the radar data without KDP retrieval

indicate the non-meteorological echoes or the radar data along edges of precipitation systems. The latter

situation is because KDP is usually retrieved over a calculating window consisting of several radar gates.

PDFs are calculated using Eq. 3.10, in which ∆xi for ZH, ZDR, φDP, ρHV, SNR, SQI, VDo,

KDP are 0.5 dB, 0.079 dB, 1◦, 0.003937, 0.5 dB, 0.003937, 0.252 ms−1and 0.05◦ km−1, respectively. The

total data include 57.5 and 17.2 million radar gates for fine and coarse scans respectively.

For the precipitation echoes, the PDFs of ZH for either fine or coarse scans regardless of the

range have unimodal shapes free of apparent skewness, resembling the normal distribution (Fig. 4.57).

The PDFs for ZH from the 0 –7.5 km range interval are much different from others, although we have

already remove data from the first 750 m range. This abnormality implies cautions to use the radar data

very close to the radar. For other range intervals, both the centers and left flanks of PDFs shift noticeably

to the right sides as the ranges increase, while the right flanks of PDFs slightly shift to the left sides as
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the range increases (Figs. 4.57(a) and 4.57(b)). The much narrower shifts of the right flanks than the left

flanks of PDFs imply a gradually slimmer PDFs of ZH with the increasing range.

(a) (b)

(c) (d)

Fig. 4.57.: PDFs of ZH within each 7.5-km interval of the radar range from the first elevation during stratiform
precipitation events to illustrate the range dependence of ZH, where (a) and (b) are for the data with
valid KDP but (c) and (d) are for the data without valid KDP retrievals

The rightward shift of the left flanks of PDFs corresponds to an increase in the lower threshold

of the available ZH values. For instance, for the fine scan data, 0 dBZ, which is available within the 15-

km range, becomes barely inaccessible beyond 15 km away from the radar. Besides, this shift of the

left flanks slows down with the increasing range—wider gaps between the bluish lines and narrower

gaps between the red lines in Figs. 4.57(a) and 4.57(b) respectively. This rightward shift shows a large

discrepancy between fine and coarse scans. For precipitation echoes, within each range interval except

the first 7.5 km, the left flanks of PDFs of coarse scans are on the left side of those of fine scans (Fig. 4.58).

It implies, the lower ZH values can be measurable in the coarse scan but not in the fine scan, which exactly

corresponds to the loss of weak echoes in fine scans (Section 4.1). The explanation is that the noise level

of fine scans is higher than that of coarse scans. Since the signal weaker than the noise level is removed

in the signal processing procedure, more weak echoes are absent in the fine scans.
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Fig. 4.58.: Comparing PDFs of radar reflectivity (ZH) between the fine and coarse scans, between precipitation
echoes and non-meteorological echoes, within each 7.5-km interval of the radar range

For a quantitative illustration, we regard the intersection of each left flank with the abscissa

as Zmin. Zmin increases with the increasing range but this increase shrinks (Tab. 4.3). For instance, for the

fine scan, Zmin of the 22.5–30 km range is 3.5 dB larger than its closer range interval (15–22.5 km), but

is only 2.5 dB less than its farther range interval (30-37.5 km). Clearly, Zmin measurements of fine scans

are much (at least 10 dB) larger than those of coarse scans.

Tab. 4.3.: Range dependence of Zmin for both fine and coarse scans

Range (km) 0–7.5 7.5–
15

15–
22.5

22.5–
30

30–
37.5

37.5–
45

45–
52.5

52.5–
60

60–
67.5

67.5–
75

Fine (dBZ) -30 -10.5 -4 -0.5 2.0 4.5 6.0 7.5 9 10

Coarse (dBZ) -31.5 -22.5 -16.5 -12.5 -10 -8 -6 -4.5 -3 -2
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In contrast, the leftward shift of the right flanks of PDFs corresponds to a decrease in the

upper threshold of the available ZH values, and the shift is much smaller than the rightward shift of the

left flanks, as illustrated by the closely cluster left flanks in Figs. 4.57(a) and 4.57(b). This subtle right-

to-left shift of these right flanks is attributed to either the smoothing effect of the range dependence or

attenuation. As the sampling volume becomes larger with the increasing range, the intense ZH values tend

to be averaged over this larger volume, and the extreme values are smoothed out. Moreover, attenuation

becomes more frequent and severer with the increasing range since the radar signals have to propagate

through more water to reach the targets farther away from the radar. Unlike large gaps among the left

flanks, there is almost no gap between fine and coarse scans in terms of right flanks, illustrated by the

nearly overlapped green and pink lines of the right sides of the peaks in Fig. 4.58. It also corresponds

to our discussion in Section 4.1 that despite loss of a large number of weak signals in fine scans, the

capability to observe intense echoes is not affected by the smaller ∆r.

(a) (b)

(c) (d)

Fig. 4.59.: The same as Fig. 4.57, but for ZDR

The PDFs of radar data without valid KDP retrievals are slimmer than those of precipita-

tion echoes, and they are located on left side of those of precipitation echoes, which is as expected

(Figs. 4.57(c) and 4.57(d)). Unlike precipitation echoes whose PDFs are close to symmetry, the PDFs of

the non-meteorological echoes are left skewed with longer tailors on the right sides of the PDFs. This

skewness implies that the majority of the non-meteorological echoes are weak in intensity and only a
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small portion can reach 10 dBZ. Despite these differences in PDFs, either for fine and coarse scans, Zmin

are identical for both precipitation echoes or the non-meteorological echoes—the overlapped red and

pink intersection points, or the collocated blue and green intersection points in Fig. 4.58. It implies the

ability to observe weak echoes—the detectability of radar—does not change with the targets.

Regarding comparisons between fine and coarse scans, while the precipitation echoes share

the overlapped peaks between fine and coarse scans, the peaks of PDFs for the non-meteorological echoes

of fine scans are always located roughly 15 dB left the peaks of coarse scans (Fig. 4.58). For the range

intervals 37.5–45 km until 60–67.5 km, the heights of peaks are quite comparable between fine and coarse

scans.

Fig. 4.60.: The same as Fig. 4.58, but for ZDR

The PDFs of ZDR from precipitation echoes are narrower than those of non-meteorological

echoes (Figs. 4.59 and 4.23. The PDFs of ZDR become flatter and the heights of peaks get lower with the

increasing ranges, either for fine and coarse scans, either for precipitation or non-meteorological echoes.

For precipitation echoes, the right flanks of fine scans nearly overlap those of coarse scan, while the left
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flanks of coarse scans are always on the left sides of the left flanks of fine scans with roughly 0.1 dB

spacing (Fig. 4.60). This contrast corresponds to the slight different ∆ZDR between fine and coarse scans

(Section 4.7).

(a) (b)

Fig. 4.61.: The same as (a) and (b) in Fig. 4.57, but for u-φDP

Fig. 4.62.: The same as Fig. 4.58, but for u-φDP
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With the increasing range, the PDFs of u-φDP become flatter with the peaks moving from

around 53◦ to 55◦, and become left-skewed (Fig. 4.61). This increased skewness with noticeable tailors

on the right sides of the peaks is as expected, because the differential phase is an accumulative variable

ideally monotonically increasing with the range (Section 2.2). When it comes to the differences between

fine and coarse scans, the PDFs in fine scans are lower than those of coarse scans, indicating that the fine

scan data have less valid u-φDP measurements (Fig. 4.62).

Fig. 4.63.: The same as Fig. 4.58, but for ρHV

Similar to ZDR and φDP, the farther the radar measurements are away from the radar, the flatter

the PDFs of ρHV become (Fig. 4.63). The discrepancy between fine and coarse scans also becomes more

pronounced with the increasing range, since the PDFs of the fine scan shrink much faster. NBF partially

accounts for these much shorter PDFs of ρHV for the fine scans than the coarse scans. It implies NBF is

more evident in the fine scans. Since Θ is kept the same for both fine and coarse scans and ∆r of the fine

scans is more than three times less than that of the coarse scans, a possible explanation is that the ratio of

the azimuthal resolution to the radial resolution becomes extremely large for the fine scan especially for
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the radar gates at the far range. For instance, at the 60-km range, the ratios are 14 and 4.2 for the fine and

coarse scans respectively. This larger ratio of the fine scan renders NBF more severe for the fine scan,

associated with the worsen data quality for the polarimetric variable for fine scans as well. Besides, a

single dent appears around ρHV = 0.99 for each PDF, for fine scans starting from 37 km and for coarse

scans starting from 52.5 km away from the radar.

Opposing to ZDR, u-φDP and ρHV, the PDFs of SNR become narrower with the increasing

range (Figs. 4.64(a) and 4.64(b)), along with the leftward-moving peaks to the smaller SNR values (Tab. 4.4).

This decrease in SNR corresponds to the increase of noise in the radar signals, another manifestation of

the range dependence of radar measurements. Besides, the PDFs of fine and coarse scans are also in

sharp contrast. The PDFs of SNR for the fine scans are much narrower than that of the coarse scan.

The PDFs of fine scans are more left skewed while the PDFs of coarse scans are close to symmetry. In

general, the peak values of the fine scan data are roughly 10 dB less than those of the coarse scan data

(Tab. 4.4). The upper thresholds fall between 25 and 50 dB for the fine scans and between 35 and 60 dB

for the coarse scans. For the non-precipitation echoes, SNR values are below 10 dB for both fine and

coarse scans (Figs. 4.64(c) and 4.64(d)).

(a) (b)

(c) (d)

Fig. 4.64.: The same as Fig. 4.57, but for SNR
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Tab. 4.4.: Range dependence of SNRpeak for both fine and coarse scans for precipitation echoes

Range (km) 0–
7.5

7.5–
15

15–
22.5

22.5–
30

30–
37.5

37.5–
45

45–
52.5

52.5–
60

60–
67.5

67.5–
75

Fine (dB) 32.5 23 15.5 13.5 13 11 11 10.5 10 9.5

Coarse (dB) 44 33 30 26 24.5 23 21.5 20 19.5 19

When it comes to SQI, for the precipitation echoes, the PDFs become flatter and more

right-skewed with the larger tailors extending to lower values, with the increasing range (Figs. 4.65(a)

and 4.65(b)). For instance, the PDFs of the SQI for the range less than 45 km exhibit peaks above 0.8,

but such peaks disappear for the range farther than 45 km (Fig. 4.65(b)). This gradual change in shapes

of PDFs is reasonable since it exactly corresponds to the severer deterioration of data quality for the

radar measurements farther away from the radar. Besides, the PDFs of SQI of the coarse scan are much

flatter than those of the fine scans, and the chance of SQI smaller than 0.8 is much larger for SQI of the

coarse scan data. The reason why SQI below 0.4 is rare for the fine scan data is that the second-trip echo

removal has been applied to get rid of the data affected by the second-trip echo contamination.

(a) (b)

(c) (d)

Fig. 4.65.: The same as Fig. 4.57, but for SQI
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For the radar data without valid KDP retrievals, the PDFs of SQI for either fine and coarse

scans become narrower with the increasing range, and the PDFs of fine scans are narrower than those of

coarse scans, along with the stationary peaks around 0.16 for the fine scan and 0.19 for the coarse scan

regardless of the range intervals except the first 7.5 km (Figs. 4.65(c) and 4.65(d)). The tailors of PDFs

for the coarse scans extend to the magnitude over 0.6, while the tailors in PDFs for the fine scan are

normally less than 0.4. It implies, SQI of the coarse scan for the non-meteorological echoes can often

reach higher values.

The fine scan data are characterized by larger SQI for precipitation echoes and smaller SQI for

non-meteorological echoes, whereas the coarse scan data are characterized by smaller SQI for precipi-

tation echoes and larger SQI for non-meteorological echoes (Fig. 4.66). It means SQI of fine scans is

more capable of distinguishing precipitation echoes from non-meteorological echoes, compared to coarse

scans, which corresponds to our SQI-based second-trip echo removal for fine scan data.

Fig. 4.66.: The same as Fig. 4.58, but for SQI
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The Doppler dilemma limits the reliability of VDo measurements in the coarse scans, but the

symmetry of VDo either for precipitation echoes or non-meteorological echoes is evident (Figs. 4.67(b)

and 4.67(d)). In contrast, the PDFs of VDo for the fine scan are not symmetric, and the negative VDo values

are more frequent than the positive values. Besides, for the fine scans, the PDFs of VDo become flatter

with the increasing range. The peaks in PDFs of VDo around 0 ms−1for the range less than 30 km away

from the radar reflect the relative stationary feature of GCs.

(a) (b)

(c) (d)

Fig. 4.67.: The same as Fig. 4.57, but for VDo

PDFs of KDP either for the fine and coarse scans get flatter as the increasing range, but the

heights of peaks of fine scans are much shorter than those of coarse scans, regardless of the range interval

(Figs. 4.68(a) and 4.68(b)). It means KDP is less retrievable in the fine scans rather than the coarse scans.

KDP is only retrieved for the good data (Section 3.1.5), so it is tempting to consider the less availability

of valid KDP retrievals in fine scans implies a worsening data quality in the fine scan data than the coarse

scan data. However, for KDP larger than 0.25 ◦ km−1 which corresponds to R over 5 mmh−1), between

the 7.5-km and 15-km range, the PDFs of KDP of the fine scan are nearly overlapped with those of the

coarse scan. The same overlap can be seen at other range interval as well. It means that the large KDP has

the nearly equal chance to be retrieved in the fine and coarse scans. This absence of small KDP retrievals

in fine scan is much likely attributed to loss of weak echoes below the noise level. Besides, the peaks in
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PDFs of KDP of the fine scans are around 0.15 and 0.2◦ km−1, and those of of the coarse scans are 0.1

and 0.15◦ km−1.

(a) (b)

Fig. 4.68.: The same as (a) and (b) in Fig. 4.57, but for KDP

Fig. 4.69.: The same as Fig. 4.58, but for KDP
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4.9.3. Effect of data quality procedure on PDF

The radar echoes during the rainy days are a mixture of non-meteorological and precipitation echoes,

whereas the non-rainy days should only contain the non-meteorological echoes. During the entire mea-

suring period lasting over 147 days from 23 May to 16 October 2017, 23 full days (24 hours from

00:00 UTC to 23:59 UTC as one unit) had absolutely no precipitation over the whole X-band radar cov-

erage, and these days are defined as clear-sky days. The rest of these days are named as rainy days

regardless of the rainy duration, rain intensity or rain’s areal extent. Accordingly, we divide the radar

measurements into two datasets, one dataset from these clear-sky days and the other one from these rainy

days. The former is referred as the “csky” dataset and the latter as the “rain” dataset. Keep in mind that

before applying the NMER, the non-meteorological echoes prevail in the “rain” dataset where the “csky”

dataset only contains the non-meteorological echoes.

For the “csky” dataset, the PDFs of the fine scans are much lower than that of the coarse scans

for ZH less than 0 dBZ, and PDFs of both scans nearly overlap for ZH greater than 0 dBZ (Fig. 4.70(a)). It

implies that weak echoes still exist in the fine scan and the majority of these lost echoes are weaker than

0 dBZ in magnitude. It also implies that, the non-precipitation echoes greater than 0 dBZ are persistent

during the absolutely non-rainy days. For the “rain” dataset, for ZH below 0 dBZ, similar to the situation

in the “csky” dataset, the PDF of the fine scan is much lower than that of the coarse scan. However,

for ZH above 0 dB, in contrast to the situation in the “csky” dataset, there are noticeable discrepancies in

PDFs between the fine and coarse scans. For instance, the PDF of the fine scan exhibit a peak around

12 dBZ, which is not seen in the PDF of the coarse scan. For ZH above 20 dB, both PDFs get closer to

each other and share the similar tendency, but along with a narrow gap (around 1–2 dB in width). This

gap indicates that ZH in fine scan is always 1–2 dB greater than that of the coarse scan. This gap attributes

to the difference in the ZH absolute calibration (to be discussed in Section 5.2 and Section 5.3).

After obtaining the general feature for the PDFs of the “rain” and “csky” datasets, we analyze

the effect of data QC procedures on these PDFs. We start with the attenuation correction, then spike

signal filtering and second-trip echo removal, and followed by NMER.

The effect of attenuation correction is to increase ZH magnitudes, leading to higher PDFs for

the higher ZH, and meanwhile lower PDFs for the relatively low ZH. For the fine scan, the reduction in

PDF starts around -2 dBZ, while such reduction starts at 1 dBZ for the coarse scan data, and attenuation

correction makes no difference on PDFS below 1 dBZ (-2 dBZ) for the fine (coarse) scan (Fig. 4.70(b)).

In other words, the weak echoes present in the fine and coarse scans could be also precipitation echoes,

and the attenuation can reduce the ZH intensity of precipitation echoes as low as 1 dBZ (-2 dBZ) for the

fine (coarse) scan. The ZH magnitude of 1 dBZ (-2 dBZ) corresponds to R less than 0.05 mmh−1, which

is closer to the minimum accuracy of a rain gauge. Besides, after correcting attenuation, for ZH greater

than 40 dBZ, the discrepancy in terms of the PDF still exists between the fine and coarse scans. In brief,
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attenuation removes the precipitation that should be observed by radar if attenuation does not take effect,

so correcting attenuation is one of the necessary data QC procedures (Section 4.6).

(a) (b)

Fig. 4.70.: PDFs of ZH for the fine and coarse scan respectively, where (a) compares the “rain” and “csky” datasets,
and (b) compares the data with and without attenuation correction for the “rain” dataset

Given the fraction of echoes affected the spike signals is quite small (Section 4.2), the spike

signal removal procedure does not modify the PDFs much as other data QC procedures (Fig. 4.71(b)).

However, for ZH between 40 dB and 60 dB in the “rain” dataset, we can still see the PDFs for the data

after spike signal filtering are on the left side of the PDFs for the data without spike signal filtering.

Besides, for the “csky” dataset, we notice a more apparent leftward shift of PDFs for ZH between 5 dB

and 25 dB. Given that spike signals are quite often characterized by high ZH (Section 4.2), the existence of

precipitation echoes in the “rain” dataset reduces the relative portion of these spike signals characterized

by high ZH, so removing spike signals only makes a small difference on the PDFs. However, the high

ZH in the “csky” dataset have a larger chance being caused by spike signals, so the modification of PDFs

after removing spike signals is much clear.

Compared to the spike signals, the amount of the second-trip echoes is much larger (Section

4.3). Thus, removing the second-trip echoes leads to the obvious reductions of PDFs in both the “rain”

and “csky” datasets (Fig. 4.71(b)). The reduction starts from ZH as low as -10 dBZ, and the reduction is

more obvious in the “rain” dataset.

The most striking modification to the PDFs comes from NMER, which removes nearly all

the ZH measurements for the “csky” dataset, and converts the bio-mode PDFs of the fine scan data and

the irregularly-shaped PDFs of coarse scan data into the singe-peak PDFs which resemble the normal

distribution (Figs. 4.71(c) and 4.71(d)). Besides, after applying the NMER procedure, the PDFs of both

fine and coarse scans becomes similar to each other, for instance, both peaks reaching around 0.3 %dB−1.
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(a) (b)

(c) (d)

Fig. 4.71.: PDFs of ZHwhere (a) is for the effect of spike signal filtering for the “rain” or “csky” fine scan
datasets with or without attenuation correction, (b) is for the effect of second-trip echo filtering for
the “rain” or “csky” fine scan datasets with or without attenuation correction, (c) is for the effect of
non-meteorological echo filtering for the “rain” or “csky” fine scan datasets with or without attenuation
correction, and (d) is the same as (c), but for the coarse scan data

(a) (b)

Fig. 4.72.: PDFs of ZH to directly compare the effect of attenuation correction, NMER, spike signal and non-
meteorological echo filtering on the fine and coarse scan respectively, where (a) is for ZH below 40 dBZ,
and (b) is for ZH above 40 dBZ

In general, these data QC procedures gradually render the PDFs of both scans similar to

each other, especially for ZH below 40 dBZ (Fig. 4.72). For the large ZH of our particular interest, the
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attenuation correction increase the ZH magnitude, but the NMER reduces the ZH magnitude, and the

discrepancy between the fine and coarse scans persists.

4.10. Sub-summary

The differences between the fine and coarse scans in terms of radar data quality are discussed extensively

from various perspectives within this chapter. Starting from radar images for ZH, we find that the fine

scan data tend to overlook weak echoes but exhibit two additional types of suspicious noise which is

not present in the coarse scan data. Further analyses identify the causes for both types of suspicious

noise, and they are referred as spike signals and second-trip echoes. The spike signals are also present

in the coarse scans but in a much less frequency than those of the fine scans, while the second-trip

echoes are absent in the coarse scans. Despite these two extra sources of noise in the fine scans, the GC

contamination is less severe for the fine scan. The polarimetric characteristics differ among three echoes

types—GCs, ICs and PRs. These differences also differ between the fine and coarse scans. Despite the

same algorithm, the non-meteorological echo removal procedure using the fine scan data is more efficient

in filtering out non-meteorological echoes than that using the coarse scan data. Besides, the attenuation

correction procedure is based on u-φDP and theoretically should not be affected by the difference in ∆r.

However, associating to the loss of weak echoes in the fine scan, the comparison in the attenuated-

corrected ZH between fine and coarse scan data pinpoints that the attenuation correction is slightly less

effective in the fine scan.

The characteristics of polarimetric variables provides us the rationale to remove spike signals,

non-meteorological echoes, and correct the attenuation, while the second-trip echoes removal is based on

single-polarization variable (SQI). For each source of noise, the nose identification is treated separately

from the noise filtering procedure, although both steps are associated with each other. In addition to the

identification and removal of noises, the spatiotemporal distribution, the general statistics, such as PDF ,

of the noise are compared between different sources of noise, and also are compared between the fine

and coarse scan data, providing us a more extensive understanding of effects of the spatial resolution on

the X-band radar data quality.

Going through several data QC procedures including removing spike signals, second-trip and

non-meteorological echoes, correcting attenuation and calibrating ZDR, we obtain the radar data which

are characterized by less noise and better data quality. Afterwards, we also discuss the range dependence

on the characteristics of ZH and other polarimetric variables for precipitation echoes, and also compare

the range dependence between the fine and coarse scans.
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5. Effects of Spatial Resolution on Radar-based Precipitation
Estimation

Precipitation tity can be calculated based on either the single polarization or polarimetric radar vari-

ables (Section 2.3). These radar variables are the level II data (Section 3.1.5), and these precipitation

quantities—the derivatives of these level II data—are the level III data (Section 3.1.5). Since the quality

of the level II data is affected by the spatial resolution (Chapter 4), these radar-based precipitation quan-

tities should be also affected by the spatial resolution. Thus, we need to investigate effects of the spatial

resolution on the radar-based precipitation estimation.

With the fine scans as the experimental group and the coarse scans as the control group,

effects of the spatial resolution can be illustrated by comparing the fine scan data with the coarse scan

data. The comparisons can be done in three aspects: i) the ability to present details of convective storm

inner structures (Section 5.1), ii) the agreement with external precipitation references (Section 5.2), iii)

the spatial distribution of total precipitation accumulations (Section 5.3). Comparisons of the first aspect

involve radar data at three radial resolutions—the fine and coarse scan data and the C-band radar data

(Fig. 5.1). Comparisons of the second aspect includes i) comparisons between the X-band radar data

and measurements from rain gauges (Section 5.2.1), i) comparisons between the X-band radar data and

the MRR measurements (Section 5.2.2), i) comparisons between the C-and X-band radar data (Section

5.2.3) (Fig. 5.1). Comparisons of the third aspect only involve the X-band radar data. The comparison

of the first aspect is qualitative, and of the other two aspects are quantitative and can be used to derive Z

calibration factor in the absolute calibration procedures.

Fig. 5.1.: Block diagram of different precipitation datasets and their uses in Chapter 5, Xf denotes the X-band
radar fine scan data (in blue), Xc denotes the X-band radar coarse scan data (in red), C stands for the
C-band radar data (in green), G stands for the rain gauge measurements (in purple), MRR means the
Micro-Rain-Radar (MRR) (in orange)
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5.1. Convective storm case study

One of the most important applications of radar measurements lies in convective precipitation—either

delineating its structure (Houze Jr et al., 1989; Pazmany et al., 2013; Wurman and Kosiba, 2013; French

et al., 2015), or interpreting storm microphysical features (Ryzhkov and Zrnić, 1994; Cao et al., 2008;

Kumjian et al., 2014; Homeyer and Kumjian, 2015), or tracking and nowcasting convective storms (Asai

et al., 1977; Rosenfeld, 1987; Handwerker, 2002; Kyznarová and Novák, 2009; Hu et al., 2019; Fridlind

et al., 2019), detecting the potential presence of hailstones (Hubbert et al., 1998; Kennedy et al., 2001;

Matrosov et al., 2013; Vulpiani et al., 2015; Capozzi et al., 2018).

In general, convective precipitation is more variable in space than stratiform precipitation.

The precipitation data, if their spatial resolution is too coarse, are unable to depict inner structures of the

convective storms, or miss the intensity maximums, whereas the high-resolution precipitation data are

able to present the large spatial variability of precipitation fields (Thorndahl et al., 2014). It implies that

observing convective storms requires high-resolution precipitation measurements. In contrast, stratiform

precipitation is relatively homogeneous, and its demand for spatial resolution is less. In other words,

the benefits of the high-resolution precipitation can be seen most clearly when it comes to convective

precipitation. To align with the aim of this research, the high resolution refers to the sub-kilometer

resolution.

In order to illustrate such benefits, we focus on small-size and intense convective storms

which are characterized with highly heterogeneous spatial distributions. Similar to Section 4.1, we also

conduct visual inspections over radar images to examine the differences between fine and coarse scans in

terms their presentation of convective storms in radar images of either single-polarization or polarimetric

variables. Regarding ZH, the C-band radar data at the 500-m radial resolution are also available. Thus,

ZH of the fine and coarse scan (250-m radial resolution) data, together with the C-band ZH allow us to

compare ZH in three different spatial resolutions. For other radar variables, the comparisons are only done

between fine and coarse scans. Utilizing the coincident and col-located radar measurements of different

spatial resolutions, we discuss the differences in precipitation patterns from radar images, and the reasons

accounting for these differences, to pinpoint the merits of using high-resolution radar measurements.

Three criteria for selecting convective storms for this case study are as follows. The C-band

radar is about 65 km away from the X-band radar, a convective storm which is present in proximity to

the C-band radar should be far away from the X-band radar. Given that radar measurements in the polar

coordinate are highly range-dependent (Sections 2.1 and 4.9.2), for a single convective storm closer

to either the X- or the C-band radar, the precipitation patterns described by C-band or X-band radar

measurements should be quite different from each other. Thus, the first criterion is regarding the range

of convective storms. To minimize the range effect on comparisons of radar datasets, we only consider

the convective storms which are at the same distances to both C- and X-band radars.
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The radar images we discuss here are in the form of PPI displays, and the second criterion

is about elevation angles for the PPI displays. A PPI display of one radar sweep samples hydrometeors

at a certain height above the ground rather than across the entire vertical extent. In order to minimize

uncertainties caused by the vertical variability of convective storms, we should select the elevations of

PPI displays to ensure that radar beams of both radars penetrate into the convective storm at the same

altitude.

(a) (b) dBZ

Fig. 5.2.: PPI displays at the 1.5◦ elevation using fine scans, where (a) is for a storm at 13:50–13:59 UTC on 7 July
2017, (b) is for a storm at 12:20–12:29 UTC on 9 July 2017, the dark blue triangle/star represents the
location of the C- or X-band radar site, the unfilled square indicates the storm to be discussed in Section
5.1

Tab. 5.1.: Azimuthal direction of convective storms in Fig. 5.2 to the X-band radar (φa), distances of these convec-
tive storms to the X- and C-band radars (sX and sC), and heights of the selected radar beams of X- and
C-band radars intersecting the centers of these convective storms (HASL,X and HASL,C)

Storm φa (◦) sX (km) sC (km) HASL,X (km) HASL,C (km)

“N” 357 63 63 2.2 2.5

“W” 261 43 43 5 4.8

The third criterion is regarding the QC procedure. No attenuation correction is applied to

the C-band radar data, and the attenuation at the C-band frequency is less severe than that of the X-

band frequency due to different λ s. In order to eliminate the effect of attenuation, we only consider the

convective storms between which and both radars there was no precipitation (Fig. 5.2). Besides, in order

to focus on the precipitation echoes from the convective storms, we also only consider convective storm

free of the contaminations from either spike signals, second-trip echoes or non-meteorological echoes.

Among all these convective storms which satisfy all these three criteria, we select two storms

at different azimuthal directions and ranges to both radars but in nearly the same size (Tab. 5.1). In the

polar coordinate, the orientation of a radar gate depends on its azimuthal directions and the size of a radar
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gate is affected by its range, so we expect patterns of the ZH intensity and the ZH-derived R change with

the azimuthal direction and the range of the precipitation echoes to a radar. The first storm is 63 km away

from and to the north of the X-band radar, while the second storm is 43 km away from and to the west of

the X-band radar. Such different azimuthal directions and distances to the radar allow us to assess how

φa and r affect the ZH-derived R pattern, and the comparable size is to mitigate the potential impact of

the storm size on this dependence of the ZH-derived R pattern on φa and r. According to their azimuthal

direction to the X-band radar, we designate the first and second storms as the storm “N” and the storm

“W” respectively.

The storm “W” is only two days later than the storm “N”, so the large-scale atmospheric

circulation patterns did not change too much. During that 2-day period, two low pressure systems dom-

inated the arctic region. For both storms, the relative humidity at the 700 hPa pressure level reached

above 90%, and the air temperatures at 850 hPa were more than 16◦C, with the prevailing westward and

southwestward winds respectively, which provided the warm moist air to trigger the convective systems.

Regarding the PPI displays, because the PPI displays are made after converting the polar

coordinate into the Cartesian coordinate, we see rectangular pixels in these PPI displays if we zoom

in these radar images. Grid lines of the polar coordinate are added to demonstrate the sizes of single

radar gates in the original polar coordinate for the fine and coarse scan datasets and the C-band radar

dataset. Be aware that the size and shape of a radar gate in the polar coordinate are different from the

rectangular pixel in the Cartesian coordinate. Due to small sizes of convective storms, the PPI displays

presented below focus on the area of 15 km×15 km around the convective storms instead of the entire

radar coverage. We present the PPIs in terms of R calculated from Z after attenuation correction and

ZH calibration (a data QC procedure to be discussed in Section 5.2), and polarimetric radar variables.

For storm “N” (Fig. 5.2(a)), the fine scan provides us with the smoothest contours of ZH-

derived R in comparison to those of the other two radar datasets (Fig. 5.3(a)). These smooth contours in

the fine scan data present a clear-cut ZH-derived R gradient, a distinct indicator of a complete internal

structure of the convective storm, along with a clear illustration of localized heterogeneity within very

small areas. In contrast, the coarse scan presents the slightly rugged contours which indicate a choppy

structure of this storm, and is unable to present the very tiny areal heterogeneity (Fig. 5.3(c)) as the

fine scan. From the C-band radar data, we can only infer the approximate location of the storm center

according to these much more rugged contours, and the shape or the structure of the storm is even more

ambiguous (Fig. 5.3(e)). Thus, via the comparison of the radar images from these three radar datasets,

this example clearly illustrates three different levels of clarity in terms of presenting inner structures of

convective storms on the basis of the ZH-derived R at three different resolutions. Obviously, the fine scan

data which at the highest spatial resolution is able to present precipitation pattern most clearly, which is

the benefit of high-resolution radar data.
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(a) (b)

(c) (d)

(e) (f) mmh−1

Fig. 5.3.: Zoomed-in parts of PPI displays of the convective storm “N” marked in Fig. 5.2(a) to compare the ZH-
derived R between the X- and C-band radar data, where (a) is for the 75-m resolution fine scan, (b) for
the 25-m interpolation of the 75-m resolution fine scan, (c) for the 250-m resolution coarse scan, (d) for
the 25-m interpolation on the 250-m resolution coarse scan, (e) for the 500-m resolution C-band radar
and (f) for the 25-m interpolation on the 500-m resolution C-band radar data, (a)–(d) are at 1.5◦ elevation
for the X-band radar volume scan, (f) and (e) are at the 1.1◦ elevation for the C-band radar volume scan,
the black straight lines and curves are the grid lines of the polar coordinate (including only two azimuthal
grid lines for a neat visualization and also to show the sizes of single radar gates for the 75-m, 250-m and
500-m radial resolution radar data)

The smoothness in the fine scan data (Fig. 5.3(a)) is unnaturally oriented along the azimuthal

direction. This unnatural feature is attributed to the intrinsic feature of the polar coordinate of the original

radar measurements. Θ for all three radar datasets is 1◦, so rΘ is roughly 1.1 km at the 63-km range,

which is much larger than ∆r of the fine scan. The ratios of rΘ to ∆r, symbolled as κ , are 0.07, 0.25
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and 0.5 for the fine or coarse scans or the C-band radar data respectively. The shape of a radar gate is

a line oriented along the concentric circles for fine scans, an elongated rectangle for coarse scans, and a

short rectangle for C-band radar data (the intersecting black lines in Figs. 5.3(a), 5.3(c) and 5.3(e)). The

different κ reflects a limitation of achieving high spatial resolution by increasing ∆r only but keeping

Θ unchanged. This imbalance in rΘ and ∆r of radar gates lessens the benefits of using radar data at

high-spatial resolutions.

To study the effect of spatial resolutions, other research interpolated their radar datasets which

are measured at a single spatial resolution into the interpolated radar datasets at various spatial resolutions

(Chapter 1). In contrast, this research uses the radar datasets which are already measured at spatial reso-

lutions and do not need interpolations. Thus, our results emphasize the pure characteristics of increasing

the ‘measured’ spatial resolution rather than the ‘interpolated artificial’ spatial resolution. However, we

are curious about the effect of the interpolation, and interpolate all the three radar datasets into the 25-m

spatial resolution (the right column in Fig. 5.3). Then we compare the radar datasets of the same spa-

tial resolution—the fine scan data, the interpolated coarse scan and the interpolated C-band radar data.

The ZH-derived R contours of the interpolated coarse scan data and C-band radar data become smooth

(Figs. 5.3(d) and 5.3(f)). When comparing the interpolated fine and coarse scans (Figs. 5.3(b) and 5.3(d)),

we notice R in the southeastern corner of the storm center is lower in the coarse scan (10 mmh−1 or

equivalent to roughly 40 dBZ) than that in the fine scan (25 mmh−1 or equivalent to roughly 45 dBZ).

According to the subsequent PPI displays (not shown), this storm moves eastward and decays rapidly. It

seems that the less intense ZH-derived R in the southeastern corner of the storm center is due to the evo-

lution of the storm during the 100-second time gap between 13:53 UTC and 13:54 UTC. For the C-band

radar, this interpolation smooths the ZH-derived R contours considerably, as illustrated by the contrast

between Figs. 5.3(e) and 5.3(f). The shape of the storm center in the interpolated C-band radar data ap-

pears as an oval, which differs from the irregular shapes of storms shown in the X-band radar data either

fine and coarse scans. This discrepancy may attribute to the coarse resolution of the original C-band

radar measurements. The difference in R intensity between the C- and X-band radars might be due to

the miscalibration of either or both C-band and X-band radar data, or the attenuation caused by weak

precipitation lying in the southern direction of this convective storm. Above all, we may conclude that,

in spite of the interpolation in the same 25-m spatial resolution, the effect of the high ‘measured’ spatial

resolution on the visualization is still obvious, interpolation (downscaling) can render the ZH-derived R

contour smooth but the small spatial heterogeneity cannot be created or reproduced.

Despite the same range, this storm is to the north of the X-band radar but to the northeast of

the C-band radar, so the relative positions of this storm to the C- and X-band radars are different. In order

to assess the effect of this relative location on comparisons of radar images, we inspect the storm “W”

which was situated 42 km away to the west of the X-band radar and to the southeast of the C-band radar

(Fig. 5.2(b)). As mentioned, the storm “W” is in the same size as the storm “N”; the encircled areas of
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the 16 mmh−1 R contours of both storms are comparable. In comparison to the storm “N”, the storm

“W” gets closer to both radars (only 43 km away), along with κ of the individual radar gates to be 1/10,

1/3, 2/3 for the fine scan, the coarse scan and the C-band radar data; these ratios are less contrasting than

those of the storm “N”.

(a) (b)

(c) (d)

(e) (f) mmh−1

Fig. 5.4.: The same as Fig. 5.3, but for the storm “W” shown in Fig. 5.2(b), (a) to (d) are at 6.2◦ elevation for the
X-band radar volume scan, (f) and (e) are at the 4.5◦ elevation for the C-band radar volume scan

Similar to the storm “N”, before interpolation, the contours of the ZH-derived R pattern be-

come more wrinkled as the radial resolution decreases from 75 m to 500 m (the left column in Fig. 5.4).

The 25-m interpolation makes the structure of the storm center in the interpolated coarse scan data resem-

ble much that in the fine scan data (Figs. 5.4(b) and 5.4(d)). Accordingly, we may state that the necessity
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of increasing the measured spatial resolution may be reduced, since the benefits of higher measured spa-

tial resolution might be partially achieved through interpolation. However, there is a clear discrepancy in

the shapes of the storm internal structure presented by the X- and C-band radar data. In the C-band radar

data, the distance of storm’s north-and-south side is shorter while the distance of storm’s east-and-west

side is wider (Figs. 5.4(e) and 5.4(f)). This discrepancy may be caused by the relative direction of the

storm to both radars.

Then we discuss the polarimetric data. For both storms, the area with measurable ZDR is larger

in the coarse scan, with a portion of measurable ZDR outside of the 20-dB contours (Fig. 5.5), in accord

with the discussion in Section 4.1.1 that the weak echoes are lost in fine scans but remain in coarse scans.

Similar to the ZH-derived R contours, the contours of the measured ZDR in the fine scan data consist

of the short lines orienting along the azimuthal direction, bringing the azimuth-oriented higher spatial

variability of ZDR. For the storm “N”, one difference between the fine and coarse scan is the presence

of ZDR over 8 dB at the farther side of the storm presented by the coarse scan and the absence of such

a region in the fine scan data (Figs. 5.5(a) and 5.5(b)). This discrepancy may be due to the combination

effect of the severe attenuation and losses of weak echoes in the fine scan (Section 4.6 and Fig. 4.37). For

both storms, the square or rectangular pixels are easily seen in the coarse scans, but not in the fine scans;

instead, the single radar gate in the fine scans is a shape of a narrow line (Figs. 5.5(c) and 5.5(d)).
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(a) (b)

(c) (d) dB

Fig. 5.5.: Zoomed-in parts of PPI displays of ZDR ((a) and (b)) for the storm “N” in Fig. 5.2(a), ((c) and (d)) for the
storm “W” in Fig. 5.2(b), (a) and (c) for the fine scan data, (b) and (d) for the coarse scan data, where the
black contours represent the ZH contours in 20 and 50 dBZ

Although the ZH-derived R patterns of both storms resemble each other well (Figs. 5.3(a)

and 5.4(a)), it is not the case for the ZDR patterns (Fig.5.5). The majority of the storm “N” is character-

ized by positive ZDR exceeding up to 5 dB, while the center of the storm “W” presents ZDR over 4 dB

and is surrounded by an extensive area of the near zero ZDR. The vertical heights may explain such a

discrepancy, given that the center of the storm “N” intercepted by the 1.5◦ elevation radar beams is at an

altitude of 2.5 km above the sea level in contrast to the 5-km altitude for the storm “W”. We can infer

that, the raindrops at lower levels are big oblate drops which are characterized by large positive ZDR,

while the hydrometeors at higher altitudes may be smaller in size and also tumble around with quite

random canting angles, because of the existence of the strong updraft within the storm center.

For u-φDP, the difference between fine and coarse scans is not that apparent (Fig. 5.6) since the

differential phase is a parameter, integrating over the radar range, increasing with the range and should

not be subject to the radial resolution.
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(a) (b)

(c) (d)
◦

Fig. 5.6.: The same as Fig. 5.5, but for u-φDP

Besides ZH-derived R, KDP is also quantitatively related to R (Section 2.3). For the storm “N”,

the precipitation patterns delineated by KDP of the fine and coarse scan data are different (Figs. 5.7(a)

and 5.7(b)), although their spatial distribution of the ZH-derived R is quite comparable (Figs. 5.3(a)

and 5.3(c)). The area with KDP larger than 2◦ km−1 is an oval oriented in west-east direction for the

fine scan, but in the north-south direction for the coarse scan. The area with KDP greater than 3.5◦ km−1

in the fine scan is more extensive than that of the coarse scan, but KDP of the coarse scan exceeds 4◦ km−1.

It seems that the high KDP values in the fine scan ‘dilute’ into a larger area in the coarse scan.

For the storm “W”, the storm center is surrounded by negative or near-zero KDP either from

the fine or coarse scan data, and the negative KDP is more apparent and extensive in the fine scan data

(Figs. 5.7(c) and 5.7(d)). KDP in the storm center is less than 2 ◦ km−1 for the coarse scan, but surpasses

4 ◦ km−1 for the fine scan. Besides, in the farther end of the storm (western of the storm), the fine scan

data exhibits a secondary weak maximum which is absent in the coarse scan. In general, the spatial

distribution of KDP magnitude presented by the fine scan is more heterogeneous. These noticeable dif-

ferences between fine and coarse scans contradicts the resemblance in the ZH-derived R patterns for fine

and coarse scan data (Figs. 5.4(a) and 5.4(c)).
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(a) (b)

(c) (d) ◦ km−1

Fig. 5.7.: The same as Fig. 5.5, but for KDP

These differences in KDP values may be attributable to the KDP retrieval algorithm. As we

mentioned, the KDP data we use in this research do not undergo the iterative FIR filtering, and thus are

frequently contaminated by the backscatter phase. Especially in the convective storms, the existence

of large raindrops leads to substantial backscatter phases, and neglecting these large backscatter phases

brings about the uncorrected KDP retrievals. We infer the contamination of backscatter is more pro-

nounced for the fine scan data. This comparison in terms of KDP between fine and coarse scan data proves

that the difference at the radial resolution of radar measurements can propagate into the KDP retrieval pro-

cedure, and we need recommended to adjust the KDP retrieval algorithm setting according to the radial

resolutions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.8.: The first four panels are the same as Fig. 5.5, but for ρHV, and (e) is for the PPI display at 6.2◦ elevation
at 13:53 UTC on 7 July 2017, and (f) is for the PPI display at 1.5◦ elevation at 12:53 UTC on 9 July 2017

In accord with the ZH-derived R pattern, the spatial distribution of ρHV in the fine scan is

characterized by short lines owing to the large contrast between the widths and lengths of radar gates,

whereas the coarse scan presents ρHV in a more uniform spatial distribution due to its smaller κ (Fig. 5.8).

Similar to the ZDR pattern, the area with valid ρHV values expands wider in the coarse scans than that

of the fine scans, since the fine scans tend to lose weak echoes which are kept in the coarse scans.

Besides, for either the storm “N” or the storm “W”, either the fine or coarse scan, the edge of the storm

is characterized by a thin outer skin (a few pixels wide) characterized by very low SQI values (less than

0.5). It attributes to the decaying of precipitation echoes between the non-rainy space and precipitation

systems. For the storm “N”, as the range of the radar gates increases, the magnitude of ρHV decreases
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from above 0.98 in the front side of the storm to less than 0.8 in the rear side of the storm (Figs. 5.8(a)

and 5.8(b)).

For the storm “W”, the ρHV valley with ρHV values as low as 0.7, is surrounded by a hook-

shaped area of high ρHV with a dent in the farther side (in the western) of the storm. Since the vertical

heights of the centers of both storms are different, we also inspect the PPI display at the 6.2◦ elevation for

the storm “N” (Fig. 5.8(e)), and the PPI display at 1.5◦ elevation for the storm “W” (Fig. 5.8(f)). For the

storm “N”, the altitude of sampling volumes at the 6.2◦ elevation is around 7.3 km ; for the storm “W”,

the altitude of sampling volumes at the 6.2◦ elevation is around 1.5 km. The upper part of the storm “N”

does exhibit a very small ρHV valley, but the hook-shape structure is absent. The low-level structure of the

storm “W” is characterized by a high ρHV uniform center surrounded with relatively lower ρHV values. In

brief, the difference between the fine and coarse scan is not noticeable in terms of ρHV, and interpolation

can be easily implemented since ρHV is on a linear scale.

(a) (b)

(c) (d) dB

Fig. 5.9.: The same as Fig. 5.5, but for SNR

The SNR contours of the fine and coarse scans are quite similar in terms of shapes but not

intensity. Indicated by the shrunk contours, the storm in the fine scan data exhibits smaller SNR than its

counterparts in the coarse scan (Fig. 5.9). This difference corresponds to the reduction of weak echoes in

fine scans, as we discussed in Section 4.1.
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The SQI data exhibit a remarkable discrepancy between the fine and coarse scans (Fig. 5.10).

The fine scan data demonstrate a distinct separation of rainy and non-rainy areas indicated by the

SQI values; the storm is clearly delineated by SQI larger than 0.65, and the area without precipitation

is characterized by SQI between 0.0 and 0.4. In contrast, SQI of precipitation echoes is as low as SQI of

the non-precipitation echoes. This vagueness in magnitude of SQI in the coarse scan is associated with

the extremely small maximum Nyquist velocity, and it substantiates our use of SQI for the fine scan data

but neglect of SQI for the coarse scan data in the previous data QC procedure (Sections 4.2 and 4.3).

(a) (b)

(c) (d)

Fig. 5.10.: The same as Fig. 5.5, but for SQI

By means of the foregoing radar images, we compare the radar datasets at different spatial

resolutions for two selected convective storms. Both storms are at the comparable distances to both C-

and X-band radars, and have similar sizes, although measured during different rainy episodes. Similar

comparisons have been conducted for a number of convective storms (not shown), the results are also

similar to the case study of these two storms.

Our aforementioned discussion deciphers the differences between radar data at different spa-

tial resolutions. However, these differences might be caused by other reasons, not only the effect of

radial resolutions on radar measurements. For each comparision, the fine scan is 100 seconds ahead of

the coarse scan, and the C-band radar is 1 minute later than the coarse scan (2.5 minutes later than the
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fine scan). The time gaps at such lengths are short and can be ignored for the majority of stratiform

precipitation, but could be long and cannot be ignored for convective storms. The lifetime of convective

storm varies from half of an hour to 1-2 hours, and can be even as short as 20 minutes for small-size and

intense convective storms, such as the two convective storms in our foregoing case study. Convective

storms evolves and moves continuously. During the time gaps between the measuring time of these radar

datasets, the intensity and morphology of the convective storms are much likely to change, and such

changes should be more apparent for the small convective storms which usually develop more rapidly

and move faster than other large convective storms. Therefore, in our previous case study, precipitation

patterns measured by a fine scan and its successive coarse scan should be different in terms of magnitude

of these radar variables, which is reflected as the altered shape of contours of the radar variables. To

determine which factor takes the main role is on the case-by-case basis.

In other words, the different storm intensity between the fine and coarse scans illustrated by

these radar images can be caused either by using different radial resolutions for radar measurements, or

by the dynamic evolution of convective storms during the time gap between measuring time of differ-

ent radar datasets, or a combination of both factors. Although we are only interested in the effect of

radial resolution, we are unable to separate the effect of storm evolution, especially if we are to inter-

pret the different shapes of contours of radar variables between the fine and coarse scans. Fortunately,

the different smoothness presented by the fine and coarse scans are not affected by the factor of storm

evolution. Thus, the difference we can confirm from our foregoing comparison is that the fine scan data

can present clearer structures with smooth contours and sharp gradients, and are able to pick up a few

rainfall extremes that were smoothed out by the coarser radar measurement (Paz et al., 2018).

Regarding the difference between the storms presented by the C- and X-band radars, the

heights of the storm center sampled by the C- and X-band radar beams are also not identical. Although

we try to select the radar elevations in order to minimize this difference in altitude, the intersection

points of the X-band radar beams can still be 300 to 400 m higher or lower than that of the C-band radar

beams (Table 5.1). Given the larger vertical variability of convective precipitation, this displacement in

the vertical direction serves as another factor contributing to differences in the foregoing comparison of

convective storms presented by C- and X-band radars.

Each convective storm in nature evolves and moves continuously, and no two storms are the

same. Case studies of individual convective storms via the fine /coarse scan and C-band radar datasets

are not an easy job. This large temporal and vertical variability of convective storms adds difficulty or

introduces disturbances when we compare these three radar datasets. The time gaps of the measuring

time points and different heights inhibits the direct comparisons across these datasets. The reason to

mention the unfavorable factors in our comparison is to render our discussion critical. We acknowl-

edge such uncertainties are unavoidable, but the foregoing comparison of two convective storms at three
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spatial resolutions still shows the characteristics and merits of using the higher-resolution radar data in

improving our understanding of convective precipitation.

5.2. Evaluation of radar data using independent references

Until now the data analyses are constrained to the X-band radar data. For a comprehensive assessment of

the accuracy and reliability of our radar measurements, the external precipitation information is needed.

Besides, the absolute calibration of radar measurements also requires the external data as references. In

fact, precipitation measurements from other instruments are available; a number of DWD rain gauges

(Section 3.2.3) and an MRR (Section 3.2.2) were also operated simultaneously during our X-band radar

measuring period and within the X-band radar coverage. Both can be the alternative sources of precip-

itation information serving as a reference to evaluate the X-band radar data and perform the absolute

calibration.

Rain gauges and the MRR measure precipitation from different perspectives. Both types of

instruments are necessary, and their individual comparisons to the X-band radar data are not duplicate

tasks. Rain gauges, located near the ground surface and spatially distributed within the radar coverage,

are used for areal comparisons, whereas the vertical-looking MRR is used for comparing the data along

vertical directions. A rain gauge measures the water amount (volume or weight) falling into a small-area

aperture within a certain period of time, whereas the MRR essentially utilizes the Doppler frequency

of microwave signals. Given that rain gauges and MRR have different measuring methodologies, their

respective comparisons with C- and X-band can provide different perspectives to evaluate our radar data.

Thus, we compare the X-band radar data with independent precipitation measurements from

the local rain gauge network and MRR, respectively. This comparison aims to quantitatively assess the

agreement between the X-band radar measurements and precipitation measurements from other indepen-

dent instruments, and then we use this agreement to assess the accuracy and reliability of our X-band

radar measurements in terms of QPE.

Besides, the outcome of comparisons can be used for the ZH calibration. The radar system

consists of many different mechanical or electronic components and each of them might make its con-

tribution to the systematic errors of the entire radar system, which leads to an overall deviation of the

ZH magnitude. This deviation is named as ZH calibration factor (∆Z). Usually a weather radar system in

operation should be calibrated regularly in an attempt to minimize ∆Z to be within 1 dB for the accept-

able error for the QPE. ∆Z can be either positive or negative in principle. The approaches to determine

this ∆Z include comparisons with targets of known backscattering cross sections like corner reflectors

or spheres suspended from balloons or aircraft, or comparisons with disdrometer measurements (Atlas,

2002; van den Heuvel et al., 2018a). The common approach which has been used widely over decades
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is to compare with rain gauge measurements which are easily available in most cases (Wilson, 1970;

Brandes, 1975; Ninomiya and Akiyama, 1978; Collier, 1986; Wood et al., 2000). ∆Z is calculated as the

average ratio of rain gauge-observed and radar data-estimated precipitation quantities at a number of rain

gauges without taking the spatial variation into account. According to the Marshall-Palmer Z-R relation,

10(Z+∆Z)/10 = 200R1.6
G , (5.1)

where Z is the measured radar reflectivity, RG is the precipitation rate measured by rain gauges. Thus,

∆Z = 10(log10 200+1.6 log10(RG))−Z (5.2)

A synonym for this procedure is named as the radar-gauge adjustment.

In our case, the X-band radar was calibrated by professionals from the manufacturer before

being transported to measuring sites. Right before and during the measuring period, we utilized the solar

information to calibrate the potential deviation in the receiver. However, according to past experience

and similar to others’ radar experiments, those actions were not sufficient, and the chances are that the

magnitude of ∆Z 6= 0dB. Since precipitation measurements from rain gauge network, an MRR and a

C-band radar are also available, we compared the ZH measurements with external references to see how

much the radar-based precipitation estimates deviated from the external references. The quantitative

deviation obtained from the comparison between radar data and the external references can be used to

determine ∆Z quantitatively (Eq. 5.2).

5.2.1. Radar-Gauge comparison

The concept of Radar-Gauge (R-G) comparison is introduced after discussing advantages and drawbacks

of weather radars and rain gauges. Regarding the data used in R-G comparison, we select the rain gauges,

and use different versions of radar datasets processed with different combinations of the radar data QC

procedures. Then we describe the procedure which geographically matches up rain gauges and radar

gates, and this procedure produces a coincident and col-located R-G dataset. The statistics showing

the R-G agreements (correlation and concordance) and for ZH calibration are described, followed by the

results of the R-G comparisons performed in terms of three temporal scales.

Pros and cons of rain gauges and weather radars

The rain gauge was the first tool that probed the rain and snow over the centuries before the appearances

of remote sensing instruments. It is still one of the fundamental instruments in a standard meteorologi-

cal or hydrological in-situ observation station. Precipitation measurements from rain gauges have been
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widely used across either the hydrological or meteorologic community, for the purpose of weather mon-

itoring, severe weather surveillance and flooding event alerts. The routine use of rain gauges implies

their widespread data availability and consistency with historic records. The long history of rain gauges

implies the potential to access a long-term record of precipitation for climatology studies. Besides, the

rain gauge measurement is intuitive, despite the fact that its working principle evolves with adverts of

new technologies and that numerous types of rain gauges have existed up to now. However, the draw-

backs of rain gauges are also well-known, one of which is its inability to represent the spatial distribution

of precipitation. A rain gauge only measures the precipitation falling into its small valid area, usually

around 0.02 m2, and is unable to tell us precipitation information in the space between any two rain

gauges. Accordingly, this way a rain gauge collects the rainfall information is referred as ‘point’ mea-

surement. Interpolation through the rain gauge measurements at the isolated individual points may be

accepted for the large-scale stratiform precipitation which is supposedly more spatially uniform. How-

ever, in most cases, precipitation is characterized by high spatial variability, which cannot be resolved

by rain gauge measurements from scattered points. Even for a dense rain gauge network, chances are

these rain gauges fail to capture the small-scale precipitation systems which just pass through the space

between two rain gauges, particularly for the isolated or scattered convective storms. What is worse, the

majority of the rain gauge networks in reality are sparse, worsening the spatial representativeness of the

rain gauge measurements.

In contrast, a weather radar is able to measure all the precipitation falling into its coverage

whose areal extent can be up to on the order of 100 km2. Unlike the point measurements of rain gauges,

the radar provides areal measurements. A single radar can provide a complete description of precipitation

over a reasonably large region, which exactly compensates for the drawback of rain gauge measurements.

Since both instruments can supplement each other, the national weather services in many countries across

the world have already adapted the joint use of rain gauges and ground-based weather radars, in order

to achieve a more comprehensive observation of the precipitation spatiotemporal distribution, such as

the s Radar-Online-Aneichung (RADOLAN) dataset provided by DWD (Bartels et al., 2004a; Weigl and

Winterrath, 2009).

Nevertheless, the radar observation of precipitation also has its demerits. As mentioned, what

a radar physically measures is EM signals rather than rain or snow, and the conversion of EM signals to

the precipitation information is indirect and undergoes several idealized hypotheses which are not always

valid in reality. Deviations from these hypotheses bring about uncertainties and errors to the radar-

based precipitation estimation, even under the idealized circumstance that all the radar measurements

are accurate without systematic errors. The typical sources of error and uncertainty in estimating the

surface rainfall (Austin, 1987) have been reviewed in several papers by the researchers either from the

meteorology and hydrology community. In addition to a short summary presented in Tab. 5.2, in my
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viewpoint, the two most typical sources of errors are nonlinearity in Z-R relation and uneven sampling

volumes (Vivekanandan et al., 2003).

Tab. 5.2.: A variety of errors associated with radar-based precipitation estimation (Legates, 2000)

Regarding reflectivity measurement

1. Ground clutter contamination overestimate

2. Anomalous propagation overestimate

3. Partial beam blockage underestimate

4. Attenuation during propagation underestimate

5. Wet radome attenuation underestimate

6. Incorrect hardware calibration over/under-estimate

Regarding rainfall estimator

1. Variation in drop size distribution over/under-estimate

2. Solid or mixed phase hydrometeors overestimate

3. Drop falling velocity over/under-estimate

Regarding below beam effect

1. horizontal wind drift over/under-estimate

2. Evaporation of falling drops overestimate

3. Coalescence below the radar beam underestimate

In contrast to the aforementioned complexity in using radar data in the precipitation estima-

tion, the rain gauge measurement is straightforward, and easy to understand and interpret, especially

for the users without specific training to understand the radar data. Together with other merits of rain

gauges just discussed above (the widespread data availability, long-term records, etc.), the precipitation

measurements from rain gauges have been routinely regarded as a benchmark, and used as a reference to

calibrate other precipitation instruments such as precipitation satellites, passive radiometers, and ground-

based weather radars. In an objective and precise sense, each instrument has its own merits and demerits.

The true precipitation information exists in nature, but none of these instruments alone is able to probe it

in a strict sense, which is limited by the measuring methodology of each instrument.

Introducing R-G comparison

For the weather radar community, especially in the operational weather/hydrology service sectors, there

is a longterm convention of using the rain gauge measurements to evaluate and calibrate the radar data.

The early work dates back to Zawadzki (1975); Wilson and Brandes (1979). In spite of other available

methods for the Z calibration (Williams et al., 2013; van den Heuvel et al., 2018b), the calibration through

the comparison between radar data and rain gauge measurements is still widely used. Although we
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acknowledge neither the rain gauge nor the weather radar alone can be an idealized instrument, we

follow this convention by comparing the precipitation estimates derived from radar data with rain gauge

measurements. This procedure is named after the R-G comparison, and the rest of this section focuses on

this R-G comparison. To clarify, holding a scrupulous attitude, we refer to the procedure of comparing

the radar-based precipitation estimates and rain gauge precipitation measurements as evaluation rather

than validation, and regard rainfall information from rain gauges as a reference rather than the ‘truth’.

The radar-based precipitation quantities are calculated through non-linear empirical relations—

precipitation estimators (Section 2.3). We calculate the precipitation intensity/rate in unit of mmh−1 us-

ing the Marshall-Palmer Z-R relation Z = 200R1.6 whose non-linearity introduces an issue about intensity

resolution (Einfalt et al., 2004). For instance, for light rain with Z at 10 dBZ, the disturbance of 0.5 dBZ

causes the deviation of 0.01 mmh−1 (0.154−0.143= 0.011mmh−1 and 0.165−0.154= 0.011mmh−1).

Similarly, the deviations caused by disturbance of 0.5 dBZ are on the order of 0.2 mmh−1 and 3.5 mmh−1

for the moderate (30 dBZ) and heavy (50 dBZ) rain, respectively. Due to the nonlinear relationship be-

tween Z and precipitation intensity, the intensity resolution increases significantly when Z changes from

low to high intensity. The higher Z is, the less accurate the radar-based precipitation estimate is. It also

implies, averaging Z at various intensities introduces a bias, and this bias increases with inhomogeneity

of the Z field. Because the R-G comparison requires conversion between Z and R through non-linear re-

flectivity to rainfall relationship or equation (Z-R) relations, the intensity resolution is a potential source

of errors in the R-G comparison.

Tab. 5.3.: Precipitation intensity estimated from the Marshall-Palmer relations

Z (dBZ) 9.5 10 10.5 29.5 30 30.5 49.5 50 50.5

R (mmh−1) 0.143 0.154 0.165 2.54 2.73 2.94 45.2 48.6 52.3

The sources of error and uncertainty in the R-G comparison can be classified into three sca-

tologies, unique to the radar, or unique to the rain gauges, or shared by both radars and gauges. Regarding

the radar data, besides the intensity resolution discussed above, the sources of errors lie in the radar-based

precipitation estimation which is limited by lack of a unique transformation from Z to R, hardware cal-

ibration problems, and contamination by ground clutter, partial beam occlusion, or vertical variation of

precipitation (Anagnostou et al., 2004). Besides measurements errors (Section 3.2.3), the sampling errors

of rain gauges have been discussed by previous literature (Morrissey et al., 1995; Steiner, 1996; Nystuen,

1998; Villarini et al., 2008). Meanwhile, radar measurements are also affected by the sampling errors,

both temporal and spatial (Fabry et al., 1994; Villarini et al., 2008; Cristiano et al., 2017). In the R-G

comparison, measurements from both radar and gauges are in the same temporal scale, and the R-G com-

parison highly depends on its temporal resolution of data—the sources of error shared by both datasets.

The rain gauge provides the 1-minute precipitation amount (Section 3.2.3) and R estimated from radar
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data is instantaneous (Section 2.3). Accumulating these precipitation quantities over the longer time

interval can help reduce the random errors in both datasets.

We adopt various approaches to tackle these sources of errors. As shown in Appendix B.3.2,

the Marshall-Palmer Z-R relation should be suitable for the precipitation estimation in the area close to

Stuttgart during summertime (Appendix B.3.2). The radar data involved in the following R-G compar-

ison are ZH with different combinations of the data QC procedures discussed in Chapter 4. These QC

procedures address the data contamination by non-meteorological echoes. To mitigate the beam block-

age effect (Section 3.1.3), we constrain the R-G comparison only over the selected rain gauges which

are located in the azimuthal directions free of beam blockage. We trust the data from DWD, and don’t

introduce the data QC for rain gauge mesaurements. To address the errors in terms of the time scale, the

R-G comparisons are carried out in three different temporal scales—hourly, daily and the total period.

Selection of rain gauges and versions of radar datasets

We selected rain gauges for the following R-G comparison. From May to October in 2017, there were

totally 50 / 82 rain gauges within the 75-km / 100-km range for the X-band radar. Excluding the rain

gauges located within southeastern quarter in which the radar did not emit radiation, we have 39 / 65

rain gauges (Fig. 5.11(a)). Then, removing rain gauges within the azimuthal sector which is affected by

the partial beam blockage for the radar beam at the 1.5◦ elevation, we have 28 / 46 rain gauges. Further

eliminating the rain gauges which is in proximity to the edge of 75-km radar coverage because the radar

signals of fine scans already decay severely beyond 73 km away from the radar, we have 24 / 46 rain

gauges. It implies that, there are 22 rain gauges located between the 75 km and 100 km away from the

radar. These 22 rain gauges theoretically can be involved in the X-band radar data evaluation, merely

for the coarse scan. However, owing to either the range degradation, or higher altitudes caused by the

slanted radar beams, or the deteriorating impact of attenuation as the range increases, we expect a weaker

agreement in the R-G comparison over these 22 rain gauges located beyond 75 away from the X-band

radar. Meanwhile, the magnitude of ∆Z may change depending on whether the R-G comparison is also

conducted over the rain gauges within 75 km or 100 km away from the radar.

Recall the utmost objective of this research. We are interested in comparing the fine and

coarse scan data in a fair manner. Thus, it is more reasonable to merely consider the 24 rain gauges

within the 75-km range of the X-band radar and leave out those 22 rain gauges beyond 75 km away

from the radar. In brief, after excluding the rain gauges which are improper in the R-G comparison, and

keeping the consistency of R-G comparisons between the fine and coarse scans, we ended up with 24

rain gauges to be used in the following R-G comparison for both fine and coarse scan datasets.
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(a) (b)

(c) (d)

Fig. 5.11.: Information on the rain gauges involved in the R-G comparison between the rain gauges from DWD rain
gauge network and the X-band radar in the Stuttgart field experiment, where the black stars indicate the
location of the X-band radar, and the gray concentric circles indicate the 25-km, 50-km, 75-km and 100-
km range rings. (a) shows the rain gauges within the 100-km range of the X-band radar, the red filled
diamond markers indicate the rain gauges within the total beam blockage area, the yellow filled square
markers indicate the rain gauges within the partial beam blockage area, the green filled triangle markers
indicate the rain gauges beyond the 73-km range, the blue filled round markers are the rain gauges to
be selected for the final R-G comparison. (b) shows the height of the match-up radar gates above the
ground surface, and (c) shows the distances of rain gauges to the center of the corresponding match-up
radar gates, where the unfilled dark red circles in (b) and (c) are the DWD rain gauges excluded due to
the either partial or total beam blockage. (d) is obtained by zooming the plot in (c) for a specific rain
gauge highlighted by the unfilled square in magenta,

The R-G comparison in this thesis uses different versions of radar data which are processed

using different data QC procedures (Chapter 4) or their various combinations. Statistics indicating the

correlations and concordance are calculated for each R-G comparison. The role of individual data QC

procedure in the precipitation estimation can be illustrated by comparing the magnitude of these statistics.

For instance, a R-G comparison uses the X-band radar data without any QC procedures and the other

R-G comparison uses the X-band radar data with attenuation correction. The statistics, such CCPS, of

both R-G comparisons are compared to each other. If CCPS of the second R-G comparison is higher than

that of the first R-G comparison, then the X-band radar data after being applied attenuation correction

correlate more with the rain gauge measurements. Because rain gauge measurements are regarded as
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the reference, a closer correlation with the rain gauge measurements means R from the radar data after

being applied attenuation correction are more accurate and reliable. It substantiates the importance of

attenuation correction procedure in improving the data quality of the X-band radar dataset. Similar

procedures are carried out for other R-G comparison using other data QC procedures, and their statistics

are also compared and evaluated. Thus, through comparing the statistics representing the correlations

and concordance between rain gauge and radar measurements, we can assess the effect of different data

QC procedures on the R-G comparison, and further assess the role of these QC procedures on the quality

of radar-derived precipitation estimation.

In addition to the radar data processed with different combinations of QC procedures, we can

also compare the radar data from fine and coarse scans according to the statistics in their respective R-G

comparison. It provides an indirect method to compare the fine and coarse scan datasets in terms of their

precipitation estimation.

R-G matching-up procedure

A rain gauge provides point measurements in contrast to the radar measurements over a large area. For

a better agreement in the R-G comparison, we need to seek the radar measurements measured at the

same (or close) time and location as the rain gauge. This procedure is named after the R-G matching-up

procedure whose details are shown as follows.

At a certain time point, for a rain gauge, we seek the radar gate geographically the closest to

that rain gauge, obtain its ZH (or other polarimetric variable) of that radar gate, and then calculate rainfall

rates (Rradar) using ZH of that radar gate via radar-based precipitation estimators (R = R(ZH)), such as the

Marshall-Palmer Z-R relation. Next, integrating these radar-derived rainfall rates (Rradar) over a certain

period of time (either an hour or 24 hours), we obtain rainfall accumulation (ARradar). The corresponding

precipitation accumulation from the rain gauge (ARG) over the same period is also calculated. Dividing

both ARradar and ARG by the time interval, we get the mean rainfall rate Rradar and RG. Then, we use the

inverse form of R = R(ZH) to calculate the equivalent mean radar reflectivity Zradar and ZG corresponding

to Rradar and RG. So, we get a pair of ARradar and ARG, and a pair of Zradar and ZG. Repeat the foregoing

steps for a number of rain gauges. In this way, we obtain the coincident R-G dataset of ARG and the

matched-up ARradar, of Zradar and the matched-up ZG. The following R-G comparisons are performed in

two aspects, between ARradar and ARG, and between Zradar and ZG. Through this geographical match-up

procedure, each rain gauge is linked to a specific match-up radar gate in the polar coordinate of the radar

measurements.

This match-up procedure could be done alternatively by involving several radar gates (such

as 3× 3 gates along both the radial and azimuthal directions, or all the gates within a 1 × 1km2 area

of the rain gauge, rather than merely a single radar gate. However, using the areal means over several
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the radar gates implicitly decreases the spatial resolution of the radar data that are involved in the R-G

comparison. It contradicts the objective of this study intended to investigate the advantages of the high-

resolution radar measurements compared to the normal- or low-resolution radar data. Thus, we only use

the ‘nearest’ radar gate for the following both C- and X-band R-G comparison (also for the radar-MRR

comparison in Section 5.2.2).

A deeper insight into the concept of this ‘nearest’ radar gate is as follows. We suppose

the directions of centerlines of radar beams remain static in space, exactly from 0.5◦ to 359.5◦with a

1◦ interval, although in practice the exact azimuths slightly deviate from 0.5◦with a small fraction, up

to 0.06◦. We regard these deviations as negligible. Since that the radial resolution is fixed, the position

of each radar gate is static in space. Given that radar measurements are in polar coordinate, the radar

beam is in the shape of a cone, and its projection to the ground surface is shaped as a 1◦ sector of a circle.

The area of a radar gate along a radar beam is shaped as a 1◦ sector enclosed by two concentric circles

(Fig. 5.11(d)). This area becomes larger with the increasing range of the radar gate, up to 9.8×104 m2 and

4.4×105 m2 for the fine and coarse scans respectively. It means a radar gate is not a single point as a rain

gauge, but extends over a certain area. When we search for the ‘nearest’ radar gate to match up a specific

rain gauge, we actually seek for an area which covers that rain gauge. Obviously, the size of such an area

varies. Conventionally, we regard what the radar measures over a radar gate is the ensemble mean within

that sampling volume. In the foregoing match-up procedure, the center of a radar gate is used to represent

the location of a radar gate. It implies a physical distance or displacement ∆γ between the center of the

match-up radar gate and the rain gauge (Fig. 5.11(d)). This displacement varies with the range of the

radar gate if the spatial resolution of radar measurements is unchanged. Among the rain gauges to be

compared with the X-band radar, ∆γ exceeds 500 m, and the average ∆γ is 200 m (Fig. 5.11(c)). Among

the rain gauges to be compared with the C-band radar, the average ∆γ is 400 m with a maximum of 1 km

(not shown). For the C-band data at 500-m resolution, ∆γ is comparable to its radial resolution, while

for high-resolution X-band radar data, ∆γ can be a few times as its radial resolution, and should be taken

into consideration for the R-G comparison. ∆γ essentially is a reflection of the effect of the radar data’s

range-dependence on the R-G comparison, and it renders the R-G comparison range-dependent.

Statistics in the R-G comparison

After constructing the paired R-G dataset, the degree of agreement between radar estimates and gauge

measurements can be used to evaluate data quality of both data. As mentioned, the sampling methodol-

ogy of a radar is absolutely different from that of rain gauges. The four possible scenarios are that only

the radar, or only the rain gauge, or neither or both are of good quality. The good agreement between

radar’s and gauge’s measurements is impossible if the first two scenarios occur. Since both instruments

have different sources of errors and uncertainties, a good R-G agreement is also impossible if neither in-
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strument works properly. The good R-G agreement is most likely to occur in case both instruments work

correctly and are able to provide measurements of good data quality. In other words, the disagreement is

a normal situation, and the agreement is unlikely just a matter of chance. Thus, especially for radar and

gauge datasets which are sampled via absolutely different methods, the close agreement between them

implicitly indicates good data qualities for both datasets.

The following statistics (Section 3.3.3) are used to quantify this degree of agreement: Pearson

correlation coefficient (CCPS), Spearman rank coefficient (CCSP), Lin’s concordance correlation coeffi-

cient (CCC), bias (B), normalized bias (nB), Root Mean Square Error (RMSE), relative RMSE (rRMSE),

absolute average difference (AAD), and slope and intercept of least square orthogonal fitting line. Re-

garding the R-G comparisons, CCPS and CCSP are indicators of linear and non-linear correlations re-

spectively, whereas other statistics measure concordance—the comparableness or equivalence between

ARG and ARX-band . Thus, the degree of agreement can be evaluated in two aspects—correlation and

concordance. Higher values in CCPS, CCSP and CCC, smaller magnitudes in the absolute values of B and

nB, smaller values in RMSE (rRMSE), and AAD, the fitting line with its slope closer to 1 and intercept

approaching zero, imply a tight concordance and correlation between the rain gauge measurements and

radar estimates.

Recall the concepts of these three CCs (Section 3.3.3). CCPS is high for the tight linear

correlation but low for the non-linear correlation, CCSP is high for either linear and non-linear correlation,

and CCC is high for the comparable magnitudes of both data. It implies, if the radar data and rain gauge

measurements are compared via the same variable, CCPS and CCSP should be high in case of good accord

between two datasets. If the comparison is done in terms of two variables, such ZH from radar data, and

rainfall rate from the rain gauge measurements, CCPS is definitely low because the rainfall rate is not

linearly proportional to ZH (recall the Marshall-Palmer Z-R relation), but CCSP can be high if both data

are correlated well nonlinearly. The ZH calibration, such as adding or subtracting a few dBs to ZH before

converting to the rainfall rate, does not affect CCPS, but changes CCC. Only after the radar data are

calibrated properly to reach the comparable magnitude with the rain gauge can CCC be high. According

to the characteristics of these three CCs, for the radar data without ZH calibration, we mainly reply on

CCPS to determine the R-G correlation.

As mentioned, the difference between radar estimates and gauge measurements is also used

to calibrate the radar data. The accuracy of ZH is usually 1 dB, which roughly corresponds to 18% bias

in radar-based rain rate estimation. To align with the minimum interval, we use 0.5 dB in this research.

For the X-band radar data, the different pulse durations between fine and coarse scan may correspond

to different ∆Z. The results in Section 5.3 have already shown a discrepancy in the calibration factors

between the fine and coarse scan data. Thus, we need to calibrate the fine and coarse scans separately,

and obtain ∆Z probably which could be equal or unequal between fine and coarse scans.
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Since CCPS is immune to the ZH calibration, we use other statistics to seek the strongest

concordance, and then determine the magnitude of ∆Z. Analogous to the concept of the bias in statistics

defined as the systematic difference between an estimate of and the true value of a parameter, for the

R-G comparison, we define the bias as the difference between rain gauge measurements and radar-

based precipitation estimates (Section 3.3.3), although we acknowledge neither of them provides the

true value. Determining ∆Z (Eq. 5.1) implicitly assumes rain gauge measurements as the reference, and

the magnitude of radar-based precipitation estimates needs to be adjusted to minimize the difference

between radar and gauge measurements. In other words, the ZH calibration is to make both the rain

gauge measurements and the calibrated radar data comparable in magnitude by adding or subtracting a

few dBs to ZH. Such a few dBs are the magnitude of ∆Z. In the R-G comparison on the total period

time scale, we use the absolute averaged deviation (AAD), whereas we use the bias for the hourly R-G

comparison. AAD on the total period time scale is essentially equivalent to the bias for the hourly R-G

comparison.

Indubitably, the magnitudes of AAD, RMSE and bias is the largest for the R-G comparison on

the total period time scale, the second largest for the daily R-G comparison, and the least for the hourly

R-G comparison, since the precipitation accumulation over the 5-month is definitely larger than the 24-

hour accumulation, and also greater than the 1-hour accumulation. For comparing the performance of

R-G comparison across these three temporal scales, or comparing the performance of R-G comparison

between the fine and coarse scans, we can use rRMSE and nB, both of which are dimensionless.

The least square fitting is very sensitive to variables in large magnitudes, but for precipitation

measurements, those large precipitation quantities such as AR are rare and more vulnerable to random

errors. In order to mitigate unfavorable effects of random errors, the comparisons are also conducted in

terms of ZH, and such comparisons are able to reflect the R-G consistency for these small-to-medium

precipitation quantities due to the logarithmic scale of ZH. This is the reason why the R-G comparisons

are done separately for AR and Z.

Temporal scales of R-G comparison

The rain gauge provides the 1-minute precipitation amount, from which we can calculate precipitation

accumulation over a certain period of time. The following R-G comparisons are conducted on three tem-

poral scales—over the total measuring period, daily and hourly, respectively. It means we need the total

precipitation accumulation over the entire measuring period (ARt), 24-hour precipitation accumulation

(ARd), and 1-hour precipitation accumulation (ARh), respectively from both the X-band radar and rain

gauges. ARh numerically equals precipitation rate averaged over 1 hour.

How to calculate AR sometimes make differences. Occasionally the rain gauge measurements

are not available when the instrument malfunctions. What is worse, such a situation often occurs during
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heavy rain episodes. If the failure time of a rain gauge is too long, its ARG is less the value it is supposed

to be. Using such ARG the R-G comparison inevitably brings errors, so we set up the following criteria

that ARG is allowed in the R-G comparison only if the rain gauge measurements are available during the

more than 95% of the accumulating time.

Accumulating can reduce the random errors in the measurements, and the sampling spatial

uncertainties tend to decrease for increasing accumulation time (Villarini et al., 2008). Thus, the R-G

comparison on the basis of the total precipitation should be most trustworthy. ARh depends on which time

point is used as the starting point for the 1-hour accumulation, and similarly ARd depends on which time

point is used as the starting point for the 1-day accumulation. The choice of starting points occasionally

affect the R-G comparison.

Besides the starting time point, the wind drift brings more uncertainties to the R-G compar-

ison on the hourly scale. Radar beams are slanted at a certain angle; in this part of analysis we focus

on the radar data in the 1.5◦ elevation sweep. To perform the radar-gauge comparison, we match-up the

rain gauge and radar data geographically to obtain a dataset with coincident dataset from both radar and

gauge. For each rain gauge, we need to search a radar gate which is geographically closest to that rain

gauge. However, the radar sampling volume along the slanted radar beam is alway at a certain height H0

above the ground surface. If the slope is fixed, this height depends on the distance of the rain gauge to

the radar site. If the radar beam samples the hydrometeors within that radar sampling volume at a time

point t0, it will take a time interval ∆t for these ascent hydrometers to reach the ground surface. The

length of the time interval depends on the height of the sampling volume and the falling velocity of the

hydrometeors. The magnitude of the falling velocity depends on the air vertical motion and sizes of the

particles, and the sizes of these particles are affected by the microphysical processes such as coalescence

and break-up. The magnitude t0 sometimes can be as long as 10 minutes. For the R-G comparison on an

hourly scale, we have rain gauge measurements from t0 to t1, if t1 is 1 hour later than t0. For the radar

measurement, the hourly accumulation time should start from t0−∆t instead of t0. t0 is changeable and

different for each rain gauge and variable for each precipitation event, so it is not easy to determine δ t

for each paired R-G dataset. It implies the comparison in hourly scale in principle is inconsistent. For

hourly accumulation, the situation exists but is much mitigated. Such issue is non-existent for the total

period accumulated precipitation.

Regarding the sensitivity of R-G comparison to data QC procedures, since the R-G compar-

ison on the basis of ARt should be most trustworthy, we will discuss six different combinations of data

QC procedures, and for each setting of data QC procedure, the comparisons are performed in terms of

ZH and AR respectively (Tab. 5.4). We discuss four different combinations of data QC procedures for the

R-G comparison on the basis of ARd (Tab. 5.5) and four different combinations of data QC procedures

for the R-G comparison on the basis of ARh (Tab. 5.6). As follows, we calculate statistics and present
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the 2D-PDF or scatterplots to visualize the comparableness and correlation between the radar and gauge

measurements for each combination of data QC procedure as shown in Tabs. 5.4, 5.5 and 5.6.

Tab. 5.4.: Combinations of data quality control procedures for studying sensitivity of the R-G comparisons over
the total period to the data QC procedures

Comparison
in AR

Comparison
in Z

Spike
signal
removal

Second-trip
echo
removal

Non-
meteorological
echo removal

Attenuation
correction

ZH
calibration

Figs. 5.12(a)
and 5.12(b)

Figs. 5.15(a)
and 5.15(b)

N N N N N

Figs. 5.12(c)
and 5.12(d)

Figs. 5.15(c)
and 5.15(d)

Y Y N N N

Figs. 5.13(a)
and 5.13(b)

Figs. 5.16(a)
and 5.16(b)

Y Y Y N N

Figs. 5.13(c)
and 5.13(d)

Figs. 5.16(c)
and 5.16(d)

Y Y Y N Y

Figs. 5.14(a)
and 5.14(b)

Figs. 5.17(a)
and 5.17(b)

Y Y Y Y N

Figs. 5.14(c)
and 5.14(d)

Figs. 5.17(c)
and 5.17(d)

Y Y Y Y Y

Tab. 5.5.: Combinations of data quality control procedures for studying sensitivity of daily R-G comparisons to the
data QC procedures

Figs. in AR Figs. in Z Spike
signal
removal

Second-
trip echo
removal

Non-
meteorological
echo removal

Attenuation
correction

ZH
calibration

Figs. 5.18(a)
and 5.18(b)

N N N N N

Figs. 5.18(c)
and 5.18(d)

Y Y Y N N

Figs. 5.18(e)
and 5.18(f)

Y Y Y Y N

Figs. 5.19(a)
and 5.19(b)

Figs. 5.19(c)
and 5.19(d)

Y Y Y Y Y
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Tab. 5.6.: Combinations of data quality control procedures for studying sensitivity of hourly R-G comparisons to
the data QC procedures

Figs. in AR Figs. in Z Spike
signal
removal

Second-trip
echo
removal

Non-
meteorological
echo removal

Attenuation
correction

ZH
calibration

Figs. 5.21(a)
and 5.21(b)

Figs. 5.21(a)
and 5.21(b)

N N N N N

Figs. 5.21(c)
and 5.21(d)

Figs. 5.22(c)
and 5.22(d)

Y Y Y Y N

Figs. 5.21(e)
and 5.21(f)

Figs. 5.22(e)
and 5.22(f)

Y Y Y Y Y

(a) (b)

(c) (d)

Fig. 5.12.: Scatter diagrams of ARt between the one measured from DWD rain gauges (ARDWD) and the one es-
timated from X-band radar data ARX-band with different combinations of data QC procedures (filtering
second-trip echoes, correcting attenuation and ZH calibration, etc.), where the left/right column is for
the fine/coarse scan respectively, (a) and (b) are for the base data without any data QC process, (c) and
(d) are for radar data after filtering out spike signals and second-trip echoes, where the solid red lines
represent the fitting curve of the orthogonal fitting, and the dashed red lines are diagonal lines
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(a) (b)

(c) (d)

Fig. 5.13.: Similar to Fig. 5.12, but (a) and (b) are for radar data after filtering out spike signals, second-trip echoes
and non-meteorological echoes, (c) and (d) are for radar data after filtering out spike signals, second-trip
echoes, non-meteorological echoes as well as ZH calibration

Light rain dominates the rainy periods, followed by less frequent moderate rain, and heavy

rain is rare. It means, for instantaneous or short-period precipitation quantities such as R and ARh, the

amount of data in low values is significant larger than that in large values. It means, the visualization

for these instantaneous or short-period precipitation quantities should be different from those for the

accumulative precipitation quantities for longer period such as ARt and ARd. For the R-G comparison

in terms of ARt, each rain gauge only corresponds to a paired sample (ARG and ARX-band). Thus 24

rain gauges correspond to 24 pairs of paired R-G samples. Since this number is small, the scatter plot

clearly shows the relation between the radar and gauge measurements. For the daily R-G comparison,

the number of the paired R-G samples exceeds three thousands. The majority of these paired R-G

samples are low in the daily precipitation accumulation, and thus, in the scatter plot, lots of scatterers are

clustered about the origin, and are indiscernible along with a bad visual effect. In order to improve the

visualization, we switch to the two-dimensional bivariate histogram (Section 3.3) to show the relation in

the R-G dataset. The number of samples increases even further for the hourly R-G comparison, so we

use the two-dimensional bivariate histogram for the hourly comparison as well.
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R-G comparison over the total period

The R-G comparison using the radar data without any data QC procedure brings about extremely low

correlation coefficients (CCPS) for both fine and coarse scans (Figs. 5.12(a) and 5.12(b)). After removing

the spike signals and second-trip echoes, CCPS for the fine scan data becomes positive, while CCPS for the

coarse scan data remains nearly the same (Figs. 5.12(c) and 5.12(d)). Given the fact that spike signals are

much more prevalent in the fine scans, and the second-trip echoes exist only in the fine scans, the spike

signal and second-trip echo removal procedures improve the fine scan data, but have minimal effect

on the coarse scan data. The NMER procedure significantly increases CCPS for both fine and coarse

scans, which highlights the negative effect of non-meteorological echoes on the radar data quality and

the necessity of eliminating the non-meteorological echoes (Figs. 5.12(c) and 5.13(a))..

(a) (b)

(c) (d)

Fig. 5.14.: Similar to Fig. 5.13, but all four panels are for the attenuation corrected radar data

After further removing the non-meteorological echoes, the scatter diagrams exhibit similarity

in terms of the positions of scatterers between the fine and coarse scans (Figs. 5.13(a) and 5.13(b)). It im-

plies the comparableness of fine and coarse scan data which is only possible after removing these noises

in the radar data (including the spike signals, second-trip and non-meteorological echoes). However,

the scatterers are well below the diagonal lines. This underestimation is attributed to severe attenuation.
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If the ZH calibration is done for the radar data without attenuation correction, then ∆Z determined by

minimizing AAD values, are 4.5 dB and 6.5 dB, respectively for the fine and coarse scans. As antici-

pated, the ZH calibration effectively cuts down (absolute) values of AAD, B, rRMSE and normalize bias

(nB), and the scatterers and their associated least square fitting lines become closer to the diagonal lines

(Figs. 5.13(c) and 5.13(d)). ∆Z of 4.5 dB and of 6.5 dB are quite large. This is because, without correct-

ing attenuation, these ∆Zs include compensations for ZH magnitudes due to the severe attenuation, and

this ZH calibration actually plays a role in combing attenuation correction and ZH calibration procedures.

(a) (b)

(c) (d)

Fig. 5.15.: Same as Fig. 5.12, but in terms of Zt converted from rainfall rate averaged over the entire period

In principle, the attenuation correction should be applied before ZH calibration. For the radar

data processed with attenuation correction and NMER, CCPS is larger than the radar data processed with

NMER but without attenuation correction, and the fitting lines for both fine and coarse scans become

almost parallel to the diagonal lines, with its slope much closer to 1 (Figs. 5.14(a) and 5.14(b)). Besides

CCPS and fitting curves, the remaining other statistics (AAD, bias, etc.) are smaller, indicating that the

attenuation correction procedure strengthens the R-G correlation and reduces the difference between the

two datasets. However, similar to Fig. 5.13(a), the majority of scatterers are still below the diagonal

lines, calling for the ZH calibration. The attenuation correction has already compensated part of smaller

magnitudes in ZH, but not all of them. It means both fine and coarse scans are truly miscalibrated.
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Similarly, ∆Z is determined by minimizing AAD, leading to ∆Z of 2 dB and 4 dB for the fine and coarse

scans, respectively.

As mentioned, besides AR, Z are also used for the R-G comparison. Zt corresponding to ARt

is calculated as follows. ARt is divided by the number of measuring hours leads to the mean precipitation

rate of the 5-month measuring period, which can be converted to Zt by means of the inverse form of the

Marshall-Palmer relation. Similar to the R-G comparison in terms of ARt, the R-G comparisons in terms

of Zt using ZH without data QC exhibit bad correlations between measurements of the radar and rain

gauges (Figs. 5.15(a) and 5.15(b)), indicated by the closely clustered scatterers. The subsequent spike

signal and second-trip echo removal procedures slightly tighten the R-G correlation for the fine scan

data (Figs. 5.15(c) and 5.15(d)), and the additional NMER procedure largely increases CCs (Figs. 5.16(a)

and 5.16(b)). Especially for the fine scans, the slope of the fitting curve becomes 1 along with an intercept

of 4.7 dB. Adding ∆Z = 4.5dB to the fine scan data, we ended up with the fitting curve with a slope of

1 and an intercept of 0.2 dB (Figs. 5.16(c)). For the coarse scan, with ∆Z = 6.5dB, the scatterers move

leftward, approaching the diagonal line, although this fitting curve still deviates from the diagonal line

(Fig. 5.16(d)).

(a) (b)

(c) (d)

Fig. 5.16.: Same as Fig. 5.13, but in terms of Zt converted from rainfall rate averaged over the entire period
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Indicated by the increase in CCs, the R-G correlations become even stronger if the attenuation

correction is applied, but all the scatterers are still below the diagonal line, indicating the radar data

are still clearly underestimated against the rain gauge measurements even after correcting attenuation

(Figs. 5.17(a) and 5.17(b)). For the fine scan, the attenuation correction procedure modifies the slope of

the fitting curve and shifts the fitting curve from the diagonal line. With ∆Z = 2dB and ∆Z = 4dB for

fine and coarse scan data respectively, the R-G scatterers are relocated much closer to the diagonal lines

(Figs. 5.17(c) and 5.17(d)).

(a) (b)

(c) (d)

Fig. 5.17.: Similar to Fig. 5.16, but all four panels are for the attenuation-corrected radar data

Tabs. 5.7 summarizes CCs and AADs of the foregoing R-G comparisons with all the six com-

binations of data QC procedures in terms of both AR and Z. As mentioned, CCPS quantifies the lin-

ear correlation, and AAD quantifies the difference between radar and gauge measurements in terms of

magnitude of AR. Adding removals of spike signals and second-trip echoes increases CCs slightly but

enlarges AAD, so the role of the spike signal removal and second-trip echo removal procedures is to

tighten the R-G correlation but both procedures increase differences in the AR magnitude (Figs. 5.12(a)

vs. 5.12(c)). For both fine and coarse scan data, removing non-meteorological echoes tremendously in-

creases CCPS but also enlarges AAD (Figs. 5.12(c) vs. 5.13(a), or Figs. 5.12(d) vs. 5.13(b)), so the role of

non-meteorological echo removal is to further intensify the R-G correlation and NMER has no contribu-
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tion towards reducing the difference in the magnitudes of AR. The additional attenuation correction leads

to increases in both CCs and reductions in AAD, which shows the role of attenuation correction in both

tightening the R-G correlation and filling up the R-G gap in the AR magnitude (Figs. 5.13(a) vs. 5.14(a),

or Figs. 5.13(b) vs. 5.14(b)). Applying the ZH calibration to either attenuation-corrected or uncorrected

radar data tremendously reduces AAD, but has no impact on CCs. It means the role of the ZH calibration

is to change the AR magnitude of radar-derived precipitation estimates, but has no effect on the R-G

correlation (Figs. 5.13(a) vs. 5.13(c), or Figs. 5.13(b) vs. 5.13(d) for the radar data without attenuation

correction, and Figs. 5.14(a) vs. 5.14(c), or Figs. 5.14(b) vs. 5.14(d) for the attenuation-corrected radar

data).

Tab. 5.7.: CCs and AAD for the R-G comparisons over the total period using ZH processed with different combi-
nations of data QC procedures

Scan Figs.
in Z

AAD(mm) CCPS CCSP CCC Figs.
in ARt

CCPS CCSP CCC

Fine
Coarse

5.12(a)
5.12(b)

135
222

-0.1
-0.15

-0.26
0.3

-0.02
-0.03

5.15(a)
5.15(b)

-0.13
-0.03

-0.26
0.3

-0.02
0

Fine
Coarse

5.12(c)
5.12(d)

176
224

0.2
-0.14

0.34
0.3

0.02
-0.03

5.15(c)
5.15(d)

0.23
-0.01

0.34
0.3

0.02
0

Fine
Coarse

5.13(a)
5.13(b)

185
226

0.64
0.66

0.47
0.55

0.04
0.03

5.16(a)
5.16(b)

0.60
0.61

0.47
0.55

0.03
0.03

Fine
Coarse

5.13(c)
5.13(d)

31
45

0.64
0.66

0.47
0.55

0.62
0.58

5.16(c)
5.16(d)

0.60
0.61

0.47
0.55

0.58
0.53

Fine
Coarse

5.14(a)
5.14(b)

99
162

0.85
0.8

0.78
0.76

0.23
0.1

5.17(a)
5.17(b)

0.82
0.74

0.78
0.76

0.2
0.08

Fine
Coarse

5.14(c)
5.14(d)

26
38

0.85
0.8

0.78
0.76

0.81
0.7

5.17(c)
5.17(d)

0.82
0.74

0.78
0.76

0.79
0.63

R-G daily comparison

In terms of ARd, CCs are high for the radar data which have not been processed with any data QC pro-

cedures (Figs. 5.18(a) and 5.18(b)). However, similar to the R-G comparison for the entire period, the

most R-G paired data are well below diagonal lines, which means that the radar precipitation estimates

are severely underestimated in comparison to the rain gauge measurements. After filtering all the noises

(spike signals, second-trip and non-meteorological echoes all together), CCs increase slightly, and the

bias, rRMSE and nB all decline more obviously (Figs. 5.18(c) and 5.18(d)). The additional attenuation

correction procedure improves the radar data,making them approach the rain gauge measurements, illus-

trated quantitatively by the reduced AAD, bias, rRMSE, nB, as well as the increased CCs (particularly

CCC), and qualitatively by less tilted fitting lines (Figs. 5.18(e) and 5.18(f)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.18.: Two-dimensional bivariate histogram of the absolute occurrence frequency to compare ARd measured
from the DWD rain gauge network (ARDWD) and estimated from X-band radar data ARX−band with
different combinations of data QC procedures (filtering second-trip echoes, correcting attenuation and
ZH calibration, etc.), where (a) and (b) are for the base data without any data quality process, (c) and
(d) are for the radar data after filtering noise including spike signals, second-trip echoes and non-
meteorological echoes, (e) and (f) are for the data after filtering out the noise and correcting attenuation,
and the meaning of red dashed/solid lines, CC, N, AAD, B, rRMSE, and nB are the same as Fig. 5.12

The ZH calibration procedure further shifts the R-G paired data back to the diagonal lines,

along with reductions in bias, AAD, rRMSE and nB (Figs. 5.19(a) and 5.19(b)). From the scatter dia-

gram, we see the scatterers with large AR values still deviate from the diagonal line, but they can be

distributed in both sides of the diagonal line (Figs. 5.20(a) and 5.20(b)). Comparing Figs. 5.19(a) and

5.20(a) shows pros and cos of scatter diagrams and 2D-histogram respectively. Although ARd cancels
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out lots of random errors and uncertainties, for the heavy rain case, we still see large discrepancies be-

tween the rain gauge and radar measurements. Several reasons may account for these discrepancies,

including the inappropriateness of Marshall-Palmer Z-R relation, the distinct sampling methods between

radar and gauges, the incapability of attenuation correction to recover all the signals. Similarly, for

the R-G comparison in terms of ARd, the R-G comparison in terms of Z converted from daily mean R

also shows a good agreement between the radar estimates and rain gauge measurements (Figs. 5.19(c)

and 5.19(d)).

(a) (b)

(c) (d)

Fig. 5.19.: Two-dimensional bivariate histogram of the absolute occurrence frequency, (a) and (b) of ARd measured
from the DWD rain gauge network (ARDWD) and estimated from X-band radar data ARX−band, (c) and
(d) of Z converted from daily mean rainfall rate (R), where the solid red lines represent the orthogonal
fitting curves and the dashed red lines are diagonal lines

Tab. 5.8 summarizes CCs and AAD. In contrast to the R-G comparison over the entire mea-

suring period, CCs of the daily R-G comparisons are high, so changes in CCs are not apparent. Filtering

out the noises, such as spike signals, second-trip and non-meteorological echoes, slightly increases CCs,

but enlarges biases. The subsequent attenuation correction procedure reduces the magnitudes of biases,

but does not alter CCs. The role of these data QC procedures in the daily R-G comparison is identical to

that in the R-G comparison over the total period. The slope of fitting line also clearly shows the role of
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these data QC procedures; removing the noise creates a larger discrepancy in terms of ARd magnitude ,

while attenuation correction and ZH calibration reduce such a discrepancy.

(c) (d)

Fig. 5.20.: The same as Figs. 5.19(a) and 5.19(b) but in the form of scatterplot

Tab. 5.8.: CCs and bias for the daily R-G comparisons using ZH processed with different combinations of data QC
procedures

Scan Figs. B(mm) CCPS Slope CCC

Fine
Coarse

5.18(a)
5.18(b)

-0.9
-1.21

0.88
0.79

0.4
0.32

0.66
0.54

Fine
Coarse

5.18(c)
5.18(d)

-1.25
-1.53

0.9
0.88

0.38
0.29

0.63
0.51

Fine
Coarse

5.18(e)
5.18(f)

-0.68
-1.1

0.90
0.90

0.63
0.48

0.82
0.72

Fine
Coarse

5.19(a)
5.19(b)

-0.03
0.05

0.89
0.89

0.84
0.91

0.89
0.89

Fine
Coarse

5.19(c)
5.19(c)

–
–

0.87
0.86

0.94
0.95

0.87
0.85

R-G hourly comparison

When it comes to the hourly R-G comparison, the radar data are obviously underestimated when com-

pared with the rain gauge measurements as well (Figs. 5.21(a) and 5.21(b)), and the combined use of

spike signal removal, second-trip and NMER and attenuation correction procedures strengthens the R-G

correlation, and reduces the deviation of radar estimates from the reference data—rain gauge measure-

ments (Figs. 5.21(c) and 5.21(d)). Analogous to the R-G comparison on the other two time scales, the

following ZH calibration for the hourly R-G comparison also further reduces the difference between the

radar estimates and rain gauge measurements, contributing to a pronounced R-G agreement in terms of

R magnitude (Figs. 5.21(e) and 5.21(f)). As discussed, the hourly R-G comparison contains far more

216



scatterers, and the 2D histogram is much more suitable to illustrate the R-G correlation. Note that ARh

numerically equals to the mean of all the instantaneous R within that hour, so we use the hourly mean

rainfall rate R herein.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.21.: Similar to Fig. 5.18, but in terms of hourly R estimates, where (a) and (b) are for the base data without
any external data QC process, (c) and (d) are for radar data with data QC processes (removing noise
and attenuation correction) but without ZH calibration, and (e) and (f) are for the radar data after being
applied with both data QC processes and ZH calibration

Regarding the equivalent mean Z converted from the mean hourly R, the filtering procedure

and attenuation correction increase CCs (Figs. 5.22(c) and 5.22(d)), and the ZH calibration trims devia-

tions of radar estimates from rain gauge measurements (Figs. 5.22(e) and 5.22(f)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.22.: 2D-PDF to compare the equivalent mean Z converted from the hourly R retrieved from between the
X-band radar data (RX-band) and precipitation measurements from DWD rain gauge network (RDWD),
where (a) and (b) are for the radar data without any external data QC procedures, (c) and (d) are for
radar data with four data QC procedures (removing three types of noise and attenuation correction) but
without ZH calibration, and (e) and (f) are for the radar processed data after being applied with both four
data QC procedures and ZH calibration, where CCs are CCPS, CCSP and CCC from left to right, and N
represents number of samples or scatterers

Tab. 5.9 summarizes CCs and biases for the hourly R-G comparison. Similar to the daily R-G

comparison, the data QC procedures except the ZH calibration increase CCs, but the main contribution to

reduce the absolute of bias is made by the ZH calibration.

From Fig. 5.14, Fig. 5.17, Fig. 5.18, Fig. 5.19, Fig. 5.21 and Fig. 5.22, CCCs in the R-G com-

parison on the basis of the fine scan data are always slightly larger than those of the coarse scan data. It is

218



not accidental. A possible explanation is that, a rain gauge is closer to its matched radar gate in the fine

scans than to its matched radar gate in the coarse scans. It indicates the benefit of using the radar mea-

surements at a higher spatial resolution, which is particularly true for convective storms characterized

with large spatial variability.

The foregoing analyses compare the radar and rain gauge measurements, and also perform

the absolute ZH calibration by the radar-gauge adjustment. Literature has proved that the use of the

gauge-corrected radar measurements can result in better prediction accuracy than what is achieved with

the radar-only or gauge-only input (Vieux et al., 2009), and using radar data combined with rain gauge

measurements can even help improve model’s predictions (Vonach et al., 2018). Similarly, our results

also prove the radar data after the absolute ZH calibration should be in a higher quality, and the absolute

ZH calibration is a necessary data QC procedure in addition to these data QC procedures presented in

Chapter 4.

Tab. 5.9.: CCs and bias for the hourly R-G comparisons using ZH processed with different combinations of data
QC procedures

Scan Figs.
in Z

B(mm) CCPS CCSP CCC Figs.
in R

CCPS CCSP CCC

Fine
Coarse

5.21(a)
5.21(b)

-0.037
-0.05

0.7
0.66

0.6
0.6

0.56
0.48

5.21(a)
5.21(b)

0.73
0.70

0.76
0.72

0.69
0.63

Fine
Coarse

5.21(c)
5.21(d)

-0.028
-0.046

0.8
0.74

0.82
0.78

0.78
0.66

5.22(c)
5.22(d)

0.77
0.73

0.79
0.75

0.76
0.69

Fine
Coarse

5.21(e)
5.21(f)

-0.001
-0.002

0.8
0.74

0.82
0.78

0.79
0.73

5.22(e)
5.22(f)

0.77
0.73

0.79
0.75

0.77
0.73

5.2.2. Radar-MRR comparison

The antenna of a MRR usually looks up vertically when rain drops fall down approximately along the

vertical direction as well. Relying on empirical relations between wt and raindrops’ D, the DSD can be

retrieved, and then can be used to calculate Z, R, and LWC(Section 3.2.2).

The MRR owned by the University of Stuttgart is situated within the radar coverage of both

C- and X-band radars (Fig. 5.23(a)). The C-band radar is in the northwest of the MRR, while the X-band

radar is in the northeast direction. For both the C- and X-band radars, their slanted radar beams at dif-

ferent elevations intersect the vertical radar beams of the MRR at different heights, and we only consider

the measurements at these intersection points for the following radar-MRR comparison (Figs. 5.23(c)

and 5.23(d)). The C-band radar is located nearly 5 times farther from MRR compared to X-band radar

(Fig. 5.23(a)); the sampling volumes are roughly 1.4 km3 for the intersection between the C-band radar

and the MRR, and 0.05 km3 for intersection between the X-band radar and the MRR, respectively.
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(a) (b)

(c) (d)

Fig. 5.23.: (a) Top view of the locations of C- and X- band radars and Micro Rain Radar (MRR), where the red and
blue concentric circles are the 20-km, 40-km and 60-km range rings; (b) cross section of the intersection
of radar beams of the C- and X-band radar along the shortest line (the brown solid line in (a)) between C-
and X-band radars, where the green dots in the intersection points represent the radar sampling volumes
whose radar data taken into analyses in the Section 5.2.3; (c) cross section of the intersection of the
radar beams of the C-band radar and MRR; (d) cross section of the intersection of the radar beams of
the X-band radar and MRR, HAGL is the height above the ground surface, HASL is the height above the
mean sea level, ∆D is the distance between the MRR and the radar

Similar to Section 5.2.1, the following radar-MRR comparison is performed on three time

scales, instantaneous, hourly and daily, in terms of ZH or Z or R or AR. The instantaneous ZH for the X-

band radar means the ZH measuremetns from a radar sweep of a volume scan, without any interpolation

or integration. The instantaneous R for the X-band radar is calculated from the instantaneous ZH using the

Marshall-Palmer Z-R relation. The MRR provides ZH and R in the 1-minute temporal resolution, which

is referred as the instantaneous ZH and R. It means that both the MRR and the X-band radar measure

ZH instantaneously, and we can directly compare these instantaneous ZH measurements between the radar

and the MRR.

These instantaneous ZH measurements are converted to R through the Marshall-Palmer Z-R

relation, generating instantaneous precipitation rate (R) in unit of mmh−1 for both the X-band radar and

MRR for the second form of the radar-MRR comparison. Averaging these instantaneous R within an
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hour brings about hourly R in unit of mmh−1 for both the X-band radar and MRR, and then we can

compare the hourly R between the X-band radar and the MRR. Convert the hourly R to the equivalent

mean Z, and we have the fourth form of the radar-MRR comparison. Further integrating the hourly mean

precipitation rate over 24 hours, and we obtain ARd also for both the X-band radar and MRR, and then

compare both. Similarly, dividing ARd with number 24 leads to the daily R from which the equivalent

mean Z can be calculated for both the X-band radar and MRR, which allows us to compare the daily

precipitation accumulation in the logarithmic scale.

For an intersection point at a single elevation (Fig. 5.23(d)), the role of a single MRR is similar

to that of a rain gauge. Unlike the R-G comparison over a rain gauge network consisting a number of

rain gauges, for the radar-MRR comparison, ARt is only one pair of data. For rain gauges, since their

corresponding match-up radar gates are usually located a few hundreds to a few thousand meters above

the rain gauge, there is a time lag between the time point when the radar beam intercepts the precipitation

and the time point when the rain gauge detects the precipitation (Mittermaier et al., 2004; Lack and Fox,

2007; Dai et al., 2013). Thus, the R-G comparison on the instantaneous R is improper. In contrast, the

temporal resolution of MRR measurements is one minute. The radar beams from the X-band radar and

MRR can intersect each other nearly simultaneously without any time gap, so the radar-MRR comparison

on the instantaneous time scale is reasonable. The sample size for the instantaneous Z and R data should

be very large. Due to the precipitating time in nature less than 2%, the majority of the instantaneous Z

and R represent dry conditions, so we use a double-conditional criterion that precipitation quantities of

both the radar and MRR should be simultaneously larger than 0.1 mmh−1.

The reason for performing the radar-MRR comparisons in terms of both instantaneous ZH and

R is that each form of comparison provides information which supplements each other. In nature, heavy

precipitation is rare. In other words, the less intense the precipitation is, the more frequent it is. Thus,

the majority of ZH values on the logarithmic scale are below 20 dBZ, while the high ZH values take up

only a very tiny portion. The calculations for CCs and the least square orthogonal fitting treat the high or

low ZH values equally, and thus their results are predominantly determined by low ZH values. ZH in weak

intensity is of less interest to the people who are concerned mainly with the precipitation amount, but is a

good indicator of data quality of the radar measurements. In contrast, for the variable in terms of R or AR,

the data from heavy rain play the main role, and contribute much to the results of CCs and least square

fittings. It agrees with concerns of most hydrologists, but the sample size of data in heavy precipitation

intensity is quite small. In brief, the radar-MRR comparison using ZH emphasizes the frequent light rain

and the overall data quality, whereas the radar-MRR comparison using R represents the infrequent heavy

rain and the quality of precipitation estimation. A combination of both ZH and R or AR provides us a

more thorough evaluation of the C- and X-band radar data

The previous R-G comparison presents satisfying results, but the radar-MRR comparison is

still necessary. Given that only one MRR was available within the X-band radar coverage during the
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measuring period, its role is somehow similar to that of only one rain gauge. The radar-MRR compari-

son cannot evaluate the radar data through a large areal extent, but instead it gives an insight into radar

measurements along the vertical direction. In the R-G comparison, we focus on the radar data of the

lowest elevation since we are interested in the radar measurements as much as close to the rain gauges

installed on the ground surface. In contrast, the MRR measurements can be available through the ver-

tical direction, which allows us to compare the X-band radar data with MRR measurements at different

altitudes above the ground (Fig. 5.23(d)). The maximum range of the MRR is 2.9 km, so only the X-

band radar beams of the lowest five elevations can physically intersect the vertical radar beams of MRR

(Fig. 5.23(c)). Thus, in principle, for the coarse scan, we can compare the measurements of the MRR

and the X-band radar at five altitudes up to 2.9 km above the ground. However, aligned with the ultimate

objective of this study on the effect of spatial resolution, in order to compare the performance of the

radar-MRR comparison between fine and coarse scans, we limit the following radar-MRR comparison

to the lowest three elevations in which the radar data of both scans are accessible.

Meanwhile we are also interested in evaluating the X-band radar data along the vertical extent

other than at the lowest elevation, for the following reasons. First, we obtained ∆Z via the previous R-G

comparison using the X-band radar data at the 1.5◦ elevation. Theoretically, ∆Z should be invariable

within a volume scan regardless of the elevation. We are not sure about whether this invariability is

valid in practice for our X-band radar measurements. Thus, the radar-MRR comparison can aid us in

checking the consistency of ∆Z within either the fine scan data or the coarse scan data. Second, the

solid or mixed-phase of precipitation is more frequent at higher altitudes, and bright bands may be seen

in the slanted radar beams at larger elevation angles. The regional freezing level during rainy periods

in summer is as high as 2.5 km on average. The X-band radar beams of the lowest three elevations

intersect the MRR radar beam below 1.5 km (Fig. 5.23(d)), implying that all the hydrometeors within our

consideration theoretically should be in liquid phase. It provides us a chance to assess how the vertical

variability of precipitation (primarily liquid phase) affects the evaluation of radar data using external

references. Third, the measuring principle of the MRR is absolutely distinct from either weather radars

or rain gauges (Section 3.2.2), which may aid us with a more comprehensive estimation of precipitation.

Radar-MRR comparison in instantaneous scale

We start with ZH without any data QC procedure, since ZH can be directly accessed in the both X-band

radar and MRR measurements. Regardless of the elevation of radar beams (an indication of the above-

ground height of the match-up sampling volumes), no matter for fine or coarse scans (the sample size

of the fine scan data is three times as that of the coarse scan data), CCs are quite high compared to their

counterparts in the previous R-G comparisons (recall Fig. 5.22), and the majority of paired data (ZX-band

and ZMRR) are in proximity to the diagonal lines (Fig. 5.24). CCs decrease slightly as the elevation of
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paired data increases. As discussed, the high CCs show the majority of the X-band radar ZH data, partic-

ularly in low intensity, agree well with the measurements from MRR. The tighter correlation between the

X-band radar and MRR rather than the R-G correlation may be due to the fact that both measurements

are from the collocated and simultaneous sampling volumes. All the fitting curves are below the diagonal

lines, in accord with the positive ∆Z from the previous R-G comparisons. For either the fine or coarse

scan data, the fitting curve become closer to the diagonal line (45◦ inclined) as the elevation of paired data

increases. For each elevation, the intercept of the fitting curve for the fine scan is always roughly 1 dB in

magnitude less than that for the coarse scan, but both slopes are comparable (for instance, Figs. 5.24(a)

and 5.24(b)).

With a combination of several data QC procedures which remove spike signals, second-trip

and non-meteorological echoes, and also correct attenuation, the sample size N is reduced by one-third

for the 1.5◦ elevation, and only slightly for the 3.6◦ and 6.2◦ elevations (Fig. 5.25). It is because most of

non-meteorological echoes and the majority of second-trip echoes occur in the low level of atmosphere,

corresponding to the radar measurements at the lowest elevation. The data QC procedures responsible

for the removal of second-trip and non-meteorological echoes modify the radar data mainly at the lowest

elevation, and the modification of radar data at the other two elevations is caused by mainly attenuation

correction and secondarily spike signal filtering (the chance of the latter one is much smaller). CCs,

regardless of which definition, change little, but the slopes of the fitting curves become further closer to 1,

compared to the radar-MRR comparison using the radar measurements without the data QC procedures.

Such improvements illustrate the necessity of data QC procedures for the X-band radar data. Except

the coarse scan at 1.5◦ elevation, despite the change in slopes, the intercepts of the fitting curves remain

nearly unchanged. It implies that, the attenuation correction tends to increase the magnitude of ZH, and

the increases are reflected in the values of slopes rather than the intercepts (except the coarse scans at

1.5◦ elevation).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.24.: 2D-PDFs of instantaneous ZH, where (a) is for the fine scan data at the 1.5◦ elevation from 23 May
2017 to 16 October 2017, (b) is the same as (a) but for the coarse scan, (c) is for the fine scan data at
3.6◦ elevation from 6 July 2017 to 16 October 2017, (d) is the same as (c) but for the coarse scan, (e) is
for the fine scan data at the 6.2◦ elevation from 6 July 2017 to 16 October 2017, (f) is the same as (e)
but for the coarse scan, CCs are CCPS, CCSP and CCC from the left to right, N is the number of paired
data, the red solid lines are the orthogonal fitting curves, and the red dashed lines are the diagonal lines

224



(a) (b)

(c) (d)

(e) (f)

Fig. 5.25.: Same as Fig. 5.24, but in terms of the instantaneous ZH applied with data QC procedures, including
filtering spike signals, second-trip and non-meteorological echoes, correcting attenuation, but excluding
the ZH calibration

Then we look at the radar-MRR comparison in terms of instantaneous R converted from both

the instantaneous ZMRR and ZX-band measurements without any data QC procedures. RX-band of the X-

band radar is estimated from ZH using the Marshall-Palmer relation, but RMRR is estimated using the other

empirical relation specifically for the MRR (Section 3.2.2). For the 1.5◦ elevation, the linear correlation

(inferred from CCPS) between the X-band radar and MRR is stronger than that of the R-G comparison

(recall Figs. 5.21(a) and 5.21(b)), but along with larger AAD and biases (Figs. 5.26(a) and 5.26(b)). As

discussed, such stronger correlation is attributed to the coincident measuring manner in the radar-MRR

comparisons. However, when it comes to the 3.6◦ and 6.2◦ elevations, CCPS become lower than that of
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the 1.5◦ elevation remarkably for the fine scan data and minimally for the coarse scan data, whereas

CCSP is greater than that of the 1.5◦ elevation, for both fine and coarse scans. It opposes the radar-MRR

comparison in terms of ZH where CCs of all three definitions decrease with the increasing elevations

(recall Fig. 5.26). This contrast may be explained in two aspects. First, as discussed, the radar-MRR

comparison in terms of Z weights Z in low intensity, while the radar-MRR comparison in terms of R

weights R in large intensity. It means that, at the 3.6◦ and 6.2◦ elevations, the X-band radar data agrees

linearly with the MRR measurement for the low ZH or in light rain, but not for the high ZH or in moderate-

to-heavy rain. Meanwhile, the increasing CCPS indicates, at the 3.6◦ and 6.2◦ elevations, the correlation

between the X-band radar and MRR measurements inclines to be more non-linear. We may infer it

is attributed to major changes in the DSD for hydrometeors at higher altitudes which invalidates the

Marshall-Palmer Z-R relation for estimating R from radar measurements at higher altitudes. Thus, we

ended with the diminishing CCPS but increasing CCSP for the radar-MRR comparison at the 3.6◦ and

6.2◦ elevations.

Besides CCs, the majority of scatterers for comparing RMRR and RX-band fall below the di-

agonal lines, proving that the radar measurements are underestimated relative to their counterparts of

MRR. An exception exists for the fine scan at 6.2◦ elevation, where the fitting line nearly overlaps the

diagonal line, and scatterers are distributed more or less evenly in both sides of the diagonal lines. Other

statistics (AAD, bias, rRMSE, nB) decrease with the increasing elevations. Such decreases are associ-

ated with an shrinkage in the absolute magnitude of R at higher altitudes. The falling raindrops undergo

microphysical processes which modify DSD. Recall the definition of Z (Eq. 2.6) and the radar equation

(Eq. 2.13). The magnitude of Z is proportional to the sixth power of D and thus is very sensitive to the

large rain drops. Assuming the same precipitation intensity through the vertical extent, the precipitation

at higher altitudes consist of a larger number of smaller raindrops in contrast to a smaller number of large

raindrops at lower levels, so ZH measured by the radar at higher altitudes is smaller, as well as RX-band

estimated at higher altitudes. In brief, the decrease in the bias and AAD is due to an inherent vertical

variability of precipitation.

If RX-band is estimated using ZH data which are processed with all the data QC procedures

except the ZH calibration, the scatterers become closer to the diagonal lines, and the fitting curves get

closer to the diagonal lines (Fig. 5.27), compared to the scenario without any data QC procedures (recall

Fig. 5.26). The underestimation is still obvious for the 1.5◦ elevation, calling for the ZH calibration.

However, for both fine and coarse scan data at the 6.2◦ elevations, the fitting curves become above the

diagonal lines, which means a negative ∆Z. It implies ∆Z are different for the radar data of different

elevations.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.26.: Similar to Fig. 5.24, but in the form of the absolute occurrence frequency of instantaneous rainfall
rate (R) converted from the radar reflectivity (ZH) through the Marshall-Palmer Z-R relation, where
CCs from the left to right sides are the Pearson (CCPS), Spearman (CCSP), and Concordance (CCC)
correlation coefficients

Besides the fitting curves, the data QC procedures bring a slight reduction on the bias AAD,

rRMSE and nB, regardless of the elevations, for both fine scans or coarse scans. Unlike the foregoing

R-G comparison, data QC procedures do not change (improve) the radar-MRR comparison significantly.

A few reasons may explain it. First the second-trip and non-meteorological echoes primarily prevail at

the lowest elevations (Section 4.3 and Section 4.5), and also the spike signal is also quite infrequent at the

azimuthal direction of the MRR to the X-band radar (Fig. 4.4). It means, for the 3.6◦ and 6.2◦ elevations,

the combination of several data QC procedures can be simplified as merely the attenuation correction
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procedure. Second, given that the MRR is quite close to the X-band radar (only 10 km), the chance that

moderate-to-heavy precipitation occurs at the space between MRR and the X-band radar is much less.

Thus, the attenuation correction only modifies ZH to a minor or moderate extent, so we did not see a

tremendous improvement with the application of attenuation correction.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.27.: Same as Fig. 5.26, but in terms of instantaneous rainfall rate (R) estimated from the radar reflec-
tivity (ZH) applied with data QC procedures, including filtering spike signals, second-trip and non-
meteorological echoes, and correcting attenuation

Comparing the statistics from radar data without data QC procedures with the statistics from

radar data with data QC procedures shows the combination effect of filtering spike signals, second-trip

and non-meteorological echoes, and correcting attenuation increases CCs and reduces biases (Tabs. 5.10

and 5.11). Unlike the R-G comparisons, the variation of the radar-MRR comparisons with elevations is
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discussed. The difference in CCPSs and biases with elevations shows ZH measurements from the lowest

elevation of the X-band radar correlate best with the MRR measurement, but present the largest biases

before applying ZH calibration.

Tab. 5.10.: CCs and bias for the instantaneous R-G comparisons using ZH processed without data QC procedures

θe Scan Figs.
in Z

B
(mm)

CCPS Slope CCC Figs.
in R

CCPS Slope CCC

1.5◦ Fine
Coarse

5.26(a)
5.26(b)

-0.17
-0.19

0.84
0.88

0.41
0.29

0.63
0.52

5.24(a)
5.24(b)

0.95
0.94

0.84
0.84

0.88
0.83

3.6◦ Fine
Coarse

5.26(c)
5.26(d)

-0.1
-0.13

0.59
0.87

0.55
0.53

0.59
0.74

5.24(c)
5.24(d)

0.86
0.93

0.94
0.94

0.82
0.86

6.2◦ Fine
Coarse

5.26(e)
5.26(f)

-0.05
-0.08

0.52
0.77

1.04
0.65

0.52
0.73

5.24(e)
5.24(f)

0.81
0.88

0.97
0.96

0.80
0.84

Tab. 5.11.: CCs and bias for the instantaneous R-G comparisons using ZH processed with data QC procedures

θe Scan Figs.
in Z

B
(mm)

CCPS Slope CCC Figs.
in R

CCPS Slope CCC

1.5◦ Fine
Coarse

5.27(a)
5.27(b)

-0.13
-0.17

0.85
0.90

0.64
0.52

0.83
0.75

5.25(a)
5.25(b)

0.94
0.94

0.91
0.86

0.89
0.84

3.6◦ Fine
Coarse

5.27(c)
5.27(d)

-0.05
-0.1

0.55
0.83

0.92
0.78

0.51
0.83

5.25(c)
5.25(d)

0.86
0.94

0.98
0.98

0.83
0.88

6.2◦ Fine
Coarse

5.27(e)
5.27(f)

0
-0.04

0.51
0.72

1.48
1.41

0.44
0.71

5.25(e)
5.25(f)

0.82
0.89

1.0
1.02

0.81
0.86

Radar-MRR hourly and daily comparison

Here we discuss the precipitation quantities on the hourly and daily scales. To make it short, we only

present the results already being applied with data QC procedures except the ZH calibration. Although

its sample size of the paired data in terms of ARh is much smaller than that of the instantaneous R, com-

parisons in terms of both R and ARh share some similarity. For instance, the X-band radar data at the

1.5◦ elevation are still considerably underestimated in comparison with the coincident MRR measure-

ments, and such underestimation diminishes for the 3.6◦ and 6.2◦ elevation with the scatterers closer to

the diagonal lines (Fig. 5.28). However, the comparisons on hourly and instantaneous scales are different

in other aspects. Since the hourly averaging cancels out the random variation and random errors in the

measurements, CCs of all three definitions are larger than that using instantaneous R. Meanwhile, these

correlations are also larger than their counterparts in the R-G comparison (recall Figs 5.21(f)). Thanks

to the sampling strategies of both instruments and high temporal resolution of MRR, we are able to use

the collocated and coincident measurements for the radar-MRR comparison, which accounts for this
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improved correlation. Because the absolute magnitudes of ARh and R are different, it is improper to

compare AADs or biases directly. We can compare rRMSE and nB instead, and both are smaller on the

hourly scale than those of the instantaneous scale.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.28.: Scatter diagrams to compare the MRR and X-band radar data in terms of hourly mean rainfall rate
calculated from the instantaneous rainfall rate (R) in Fig. 5.27; the meaning of other statistics are the
same as Fig. 5.27, and also similar to Fig. 5.27; the radar data are applied with data QC procedures,
including filtering spike signals, second-trip and non-meteorological echoes and correcting attenuation,
the meaning of dashed red lines and solid red lines and other statistics (CC, N, AAD, B, rRMSE and
nB) are the same as Fig. 5.26

Correlation between the X-band radar and MRR can be even more easily visualized for the

radar-MRR comparison in terms of the equivalent mean Z with the data QC procedures. Besides the high

CCs of all three definitions, all the fitting curves are characterized by the slope close to 45◦(Fig. 5.29).
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For each single elevation, the intercept of the fine scan is always roughly 1 dB less than that of the coarse

scan, which agrees with ∆Z we obtain from the foregoing R-G comparison and ∆Z of fine scan data is

always less than that of the coarse scan data. When compared to the radar-MRR comparison in terms

of the instantaneous ZH, CCs on the basis of the hourly equivalent ZH at the 3.6◦ and 6.2◦ elevations are

higher.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.29.: Same as Fig. 5.28, but in terms of hourly equivalent radar reflectivity (Ze)

The results of the radar-MRR comparison in terms of ARd resemble the results in terms of

ARh, such as the evident underestimations at the 1.5◦ elevation, and the moderate underestimations for

the 3.6◦ elevation for the coarse scan, illustrated by relative positions of the fitting curve and diagonal

lines (Fig. 5.30). However, a few minor differences still exist. With regard to ARh , CCSP decrease
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slightly as the elevations increase (recall Fig. 5.28). In contrast, regarding ARd, both CCSP and CCPS

reach their maximum for the radar-MRR comparison at the lowest elevation, in which CCC falls to its

minimum value. It implies that, the linear correlation between the radar and MRR is the tightest at the

1.5◦ elevation, but the closeness in terms of the AR magnitude is the least at this 1.5◦ elevation. The least

closeness may be attributed to the beam blockage effect along the southwestern azimuthal directions, or

is due to the ZH miscalibration. With the increasing elevations from 1.5◦ to 6.2◦, CCSP decreases slightly

and CCC increases slightly, and the minimum CCPS occurs in the second lowest elevation.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.30.: Similar to Fig. 5.28, but in terms of daily precipitation accumulation (AR)

When it comes to the equivalent ZH converted from the daily average precipitation, the radar-

MRR comparison exhibits high CCs of all three definitions, and the fitting curves with the slopes ap-
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proaching 1 (Fig. 5.31). These CCs on daily scale are higher than those on the hourly scale (recall

Fig. 5.29). Moreover, the intercepts of all the fitting curves are quite comparable around 3.5 dB, except

2.5 dB for the fine scan at the 1.5◦ elevation.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.31.: Same as Fig. 5.30, but for equivalent radar reflectivity Ze converted from the daily averaged precipitation
rate

Regarding the hourly time scale, at the 1.5◦ elevation, the radar-MRR comparisons (Tab. 5.12

present the larger biases than its counterpart in the R-G comparison (Tab. 5.9), but obviously higher

CCPSs before ZH calibration. The beam blockage effect for the 1.5◦ elevation is the reason for these

larger biases, and the biases become much smaller for the other two elevations.
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Regarding the daily time scale, at the 1.5◦, the radar-MRR comparison 5.13) also presents

present the larger biases than its counterpart in the R-G comparison (Tab. 5.8), but obviously higher

CCPSs before ZH calibration. Similar to the comparisons on the hourly time scale, absence of the beam

blockage effect at the higher elevations reduces the biases.

Tab. 5.12.: CCs and biases for the hourly R-G comparisons using ZH processed with different combinations of data
QC procedures

θe Scan Figs.
in Z

B
(mm)

CCPS Slope CCC Figs.
in R

CCPS Slope CCC

1.5◦ Fine
Coarse

5.28(a)
5.28(b)

-0.06
-0.09

0.91
0.93

0.59
0.45

0.82
0.72

5.29(a)
5.29(b)

0.94
0.96

0.95
0.91

0.89
0.88

3.6◦ Fine
Coarse

5.28(c)
5.28(d)

-0.01
-0.04

0.82
0.89

1.08
0.82

0.82
0.87

5.29(c)
5.29(d)

0.96
0.97

1.05
1.02

0.94
0.93

6.2◦ Fine
Coarse

5.28(e)
5.28(f)

0.01
-0.01

0.81
0.86

1.29
1.02

0.79
0.86

5.29(e)
5.29(f)

0.93
0.93

1.07
1.04

0.93
0.91

Tab. 5.13.: CCs and bias for the daily R-G comparisons using ZH processed with different combinations of data QC
procedures

θe Scan Figs.
in Z

B
(mm)

CCPS Slope CCC Figs.
in R

CCPS Slope CCC

1.5◦ Fine
Coarse

5.30(a)
5.30(b)

-1.5
-2.09

0.92
0.93

0.56
0.42

0.78
0.64

5.31(a)
5.31(b)

0.98
0.98

0.96
0.95

0.93
0.9

3.6◦ Fine
Coarse

5.30(c)
5.30(d)

-0.28
-0.85

0.85
0.88

1.01
0.74

0.85
0.83

5.31(c)
5.31(d)

0.98
0.98

1.06
1.01

0.98
0.95

6.2◦ Fine
Coarse

5.30(e)
5.30(f)

0.25
-0.26

0.87
0.91

1.19
0.96

0.86
0.90

5.31(e)
5.31(f)

0.97
0.97

1.10
1.07

0.96
0.95

Analogous to the R-G comparisons in terms of ARt in Section 5.2.1, we also total the pre-

cipitation accumulation over the entire period based on the MRR and X-band radar coincident dataset

(ARX-band and ARMRR ). Comparing ARX−band and ARMRR, we obtain ∆Z for the data at each elevation for

fine and coarse scans, respectively (Tab. 5.14). Unlike the hypothesis we made, according to the radar-

MRR comparison, ∆ZH are not consistent with a volume scan through the sweeps of different elevations.

∆Z are the largest at the lowest elevation (2 or 2.5 dB larger than that of the second lowest elevation). It

contradicts our preliminary assumption that ∆Z obtained via the previous R-G comparisons replying on

the radar data at the lowest elevation only can also be applicable to the radar data at other elevations. One

explanation is the vertical variability in DSD and the associated invalid rainfall estimators (the Marshall-

Palmer Z-R relation) at higher altitudes. Another factor is the potential partial beam blockage for the

lowest elevation in the azimuthal directions of MRR to the X-bad radar (Fig. 3.2(b)). This partial beam

blockage reduces the intensity of radar echoes, calling for a large positive ∆ZH at the 1.5◦ elevation.
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Tab. 5.14.: Radar reflectivity calibration factors ∆ZH(dB) obtained from the X-band radar-MRR comparison

Elevation (◦) Fine (dB) Coarse (dB) Fine (atc) (dB) Coarse (atc) (dB)

1.5◦ 5.0 6.5 3.5 4.5

3.6◦ 3.0 4.0 0.5 2.5

6.2◦ 3.0 3.0 0.5 1.0

R-G: 1.5◦ 4.5 5.5 2.0 3.0

Besides, according to this radar-MRR comparison, ∆ZH for the coarse data is larger than that

for the fine scan data. For instance, at the 1.5◦ elevation, ∆ZH for the coarse scan data is 1 dB greater

than that of the fine scan data, no matter whether the attenuation correction is applied or not, which is in

good accord with the results from the R-G comparison, although the values of ∆ZH from the radar-MRR

comparison are slightly different from those of the R-G comparison. This difference might be caused

by the miscalibration of the MRR instrument, or the effect of partial beam blockage along the azimuthal

direction of MRR to the X-band radar.

5.2.3. Comparison between C- and X-band radar data

This section tackles a comparison between the C- and X-band radar measurements—the X-C compari-

son. The reasons for this additional comparison are as follow. First, unlike the previous R-G or radar-

MRR comparisons in which MRR and rain gauges are characterized by completely different measuring

principles from weather radars, the C- and X-band radars both adopt a similar measuring principle in

general. Second, the previous R-G or radar-MRR comparisons are basically conducted over a limited

number of spatially sparsely scattered radar gates, whose effective measuring areas are just a fraction

of the total radar coverage area. In contrast, the direct comparison between the C- and X-band radar

datasets are conducted over large areas. It involves a significant larger sample, and we expect the results

should be more convincing and robust.

We compare C- and X-band radar measurements in three ways using the radar data, i) at direct

intersections of the radar beams from C- and X-band radar, ii) of two case studies, iii) over the entire

measuring period. The C-X comparison at intersections uses radar data at the original polar coordinate,

where X-C comparisons of the other two ways are based on the radar data at the three-dimensional

Cartesian coordinate. For the other two ways, since the C- and X-band radars are situated at different

sites and have their own volume scans with different elevation angles, for the direct comparison, we

need to interpolate both the C- and X-band radar data into the same polar coordinate. Given the radial

resolution of C-band radar data is 500 m, the grid size for interpolation is 500 m×500 m×100 m, starting

from the 1-km altitude above the radar site.
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We don’t process external QC procedure to the C-band radar data directly generated by the

radar signal processor. To avoid potential data contaminations due to non-meteorological echoes, we

omit the C-band radar data below 1 km above the radar site. To keep consistency, the X-band radar data

within the 1-km height above the ground surface are also excluded. In this way, most non-meteorological

echoes in the X-band radar dataset are already excluded, which eliminates the necessity of spike signal

removal, second-trip echo and NMER. Regarding the attenuation in the C-band frequency, the ZPHI or

iterative ZPHI attenuation correction (Section 4.6) can be performed to the C-band radar data. However,

parameters in the attenuation correction procedure have to be changed if it is applied to the C-band rather

than the X-band radar data, since the attenuation correction procedure is based on φDP measurement

whose magnitude is frequency-dependent. Thus, the C-band data are without attenuation correction.

Attenuation correction is a necessity to the X-band radar data, so the only data QC procedure applied to

the X-band radar is the attenuation correction (Section 4.6).

C-X comparison at intersections of radar beams

Intersections of the radar beams of the C- and X-band radars are determined through the geographi-

cal matching-up (Fig. 5.23(b)). We exclude intersections above 3 km altitude to avoid contamination

from bright-band and solid precipitation, and exclude intersections along the C-band radar beam at the

0.4◦ elevation to avoid ground clutters. Each single intersection has different distances to both radars,

and at the same intersection, Vc along the X-band radar beam is much smaller than that of the C-band

radar beam. To avoid the huge difference in the sampling volumes, we also exclude the intersection

points whose sampling volume of the C-band radar beams is more than 20 times larger or smaller than

the co-located sampling volume of the X-band radar beams. Most intersection points for the fine scans

cannot satisfy this criterion, and thus we mainly focus on the comparison between the coarse scan data

and the C-band radar data.

For each intersection, we obtain the paired dataset with ZH from the C- and X-band radars.

Since ZH less than -5 dBZ is unlikely the precipitation echo, if we use -5 dBZ as the threshold to roughly

separate precipitation and non-meteorological echoes, the paired data with both ZH from C- and X-band

radar below -5 dBZ occupy roughly 85% for this whole paired dataset, with both ZH above -5 dBZ occu-

pying 10%. The remaining 5% paired data correspond to the situation in which either ZH of C-band radar

is greater than -5 dBZ or ZH of coarse scan data is larger than -5 dBZ. It implies, both ZH measurements

from C- and X-band radars agree well with each other about whether echoes are from precipitation or

not during most of the time. When we compare the ZH dataset from the C-band radar with the ZH dataset

from the X-band radar, if one of the radar datasets suffers great data quality issues, it is very likely that

both radar datasets disagree with each other. Thus, the agreement does not only indicate a good accord

between two datasets, but also implies both radar datasets are in good or at least acceptable data quality.
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If we take the paired data with both ZH greater than -5 dBZ into account only, the C- and

X-band radar data (coarse scan) show a close agreement in terms of both ZH and R over the selected

intersections, illustrated by the high CCs and the overlap of the fitting lines with the diagonal lines

for the comparison in terms of ZH (Fig. 5.32(a)) and the near-zero bias for the comparison in terms of

R (Fig. 5.32(b)). For the X-C comparison in terms of R, the reason for the slightly larger number of

scatterers above diagonal lines might be due to the lack of attenuation correction in the C-band radar

data.

(a) (b)

Fig. 5.32.: Comparison between the C- and X-band radar measurements at the intersection points of C- and X-band
radar beams, where (a) is 2D-PDF of instantaneous radar reflectivity (ZH); the meanings of the red lines
and statistics are identical to Fig. 5.24, and (b) is the bivariate histogram of the absolute occurrence
frequency of instantaneous rainfall rate (R) with orthogonal linear fitting; the meanings of the red lines
and statistics are identical to Fig. 5.26

Case studies

We talk about two cases. The first case addresses measured instantaneous ZH from single volume scans

during the 5-minute interval, whereas the second case calculates R based on ZH of multiple volume scans

during the 100-minute period. The comparison based on the single volume scans is very likely to be

affected by random variation.

The first case consists of several medium-sized convective cells in the southwestern direction

of the X-band radar. Take gridded data at the 2.9-km altitude for example. The interpolated fine and

coarse scan data after applying the data QC procedures resemble the C-band radar data well spatially

(Fig. 5.33). The comparisons in terms of ZH between both C- and X-band radar dataset, either the fine or

coarse scan, present high CCs and fitting curves with 45◦ and small intercepts, for both fine and coarse

scan data (Figs. 5.34(a) and 5.34(b)).
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(a) (b)

(c)

Fig. 5.33.: Interpolated gridded ZH from (a) a fine scan at 13:23, (b) a coarse scan at 13:24 and a C-band radar scan
at 13:25 UTC on 2 June 2017 at an altitude of 2.9 km above the ground surface

(a) (b)

Fig. 5.34.: Comparison of instantaneous ZH and R between C- and X-band radar dataset for the case of Fig. 5.33,
where (a) and (b) are 2D-PDFs in terms of ZH whose meanings of statistics and red lines are identical
to Fig. 5.24

For the second case, also take the gridded data at the 2.9-km altitude for example. The spatial

distribution of R calculated from the X-band ZH of either the fine or coarse scans, greatly resemble

that of the C-band radar data (Fig. 5.35). The blank circle in the fine scan is attributed to the lack of

radar measurements at elevations above 6.2◦ in the fine scan. Both fine and coarse scan data are highly
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correlated with the C-band radar data, and CCs of the coarse scans are higher than those of the fine

scans (5.36(b)). From the aspect of rainfall rate R, similar to the case study discussed above, the lack of

attenuation correction in the C-band radar data renders the precipitation rate estimated from the C-band

radar dataset slightly lower than that of either the fine or coarse scan data. For other altitudes, CCs in

the comparison between the fine scan data and the C-band radar data are lower than their counterpart

between the coarse scan data and the C-band radar data. One possible explanation is the aforementioned

lack of fine scan data at the higher elevations.

(a) (b)

(c) mmh−1

Fig. 5.35.: Interpolated gridded averaged rainfall rate (R) over a 100-minute convective episode from 23:10 UTC
on 29 May to 00:49 UTC on 30 May 2017 at an altitude of 2.9 km above the ground surface estimated
from radar reflectivity (ZH) from the fine scan (panel (a)), coarse scan (panel (b)) and C-band (panel (c))
radar data respectively
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(a) (b)

(c) (d)

Fig. 5.36.: Similar to Fig. 5.34, but for the case in Fig. 5.35, and the violet solid lines and magenta dashed lines
are the summation of 100-minute precipitation accumulation over all the interpolated gridded pixels at
a 2.9 km altitude, the left (right) column is for the fine (coarse) scan data

Overall data

In terms of ZH, the C-X comparison either for the fine or coarse scan shows high CCs and fitting curves

in 45◦ inclination (Figs. 5.37(a) and 5.37(b)). Moreover, the intercept of the fitting curve for the fine

scan is 1 dB less than that for the coarse scan, exactly agreeing with the calibration factors obtained

from the previous R-G comparison. In contrast, in terms of R, the fitting curves are below the diagonal

lines (Figs. 5.37(c) and 5.37(d)). One possible explanation is, as opposed to the comparison in terms

of ZH which excludes ZH below -5 dBZ, the comparison in terms of R takes all the weak echoes in to

account. Another possible reason lies in the inappropriateness of the Marshall-Palmer relation at the

1.7 km altitude.
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(a) (b)

(c) (d)

Fig. 5.37.: Comparison between the C- and X-band radar measurements over all the gridded data interpolated into
the horizontal surfaces 1.7 km above the radar site, where (a) and (b) are 2D-PDF of instantaneous radar
reflectivity (ZH), the meanings of the red lines and statistics are identical to Fig. 5.24, and (c) and (d)
are the bivariate histogram of the relative occurrence frequency of instantaneous rainfall rate (R) with
orthogonal linear fitting, the meanings of the red lines and statistics are identical to Fig. 5.26

5.3. Precipitation estimation from fine and coarse scans

In addition to case studies of individual convective storms in Section 5.1, we are interested in the quanti-

tative characteristics of precipitation quantities over longer time intervals, such as ARt. Aligned with the

research objective, we are concerned with what differences are between AR calculated using ZH from the

fine and coarse scan data respectively (ARf and ARc). Similar to the foregoing discussion on sensitivity

of the R-G comparison to the radar data QC procedures (Section 5.2), we are also concerned with the

sensitivity of these differences between ARf and ARc to each data QC procedure.

Given the different ∆r between the fine and coarse scans, in order to quantify the difference

between ARf and ARc, we interpolate the fine scan radar data into the same ∆r as the coarse scan data

and also interpolate the coarse scan data into the same ∆r as the fine scan data (Section 3.1.5). The

former interpolation is upscaling and the latter one is downscaling. The interpolation is done in terms
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of R, which is on the linear scale and is calculated from ZH using the Marshall-Palmer Z-R relation.

We obtain Rf2c from the upscaling and Rc2f from the downscaling respectively. By integrating Rf2c and

Rc2f over the total measuring period, we obtain AR based on the fine scan data but at the 250-m radial

resolution—ARf2c (Fig. 5.38(a)), and AR based on the coarse scan data but at the 75-m radial resolution—

ARc2f (Fig. 5.38(b)). After introducing DAR = ARf2c−ARc or DAR = AR f −ARc2f, we analyze i) spatial

distributions of positive or negative DARs, ii) how the magnitude of DARs changes with different data QC

procedures. So far we have five data QC procedures available— removal of spike signals (Section 4.2),

second-trip (Section 4.3) and non-meteorological echoes (Section 4.5), attenuation correction (Section

4.6) and ZH calibration (Section 5.2).

Before applying these data QC procedures, ARf2c primarily varies from 150 to 200 mm (Fig. 5.38(a)),

in contrast to ARc which primarily varies from 100 to 150 mm (Fig. 5.38(b)). Despite the loss of weak

echoes in fine scans, ARf2c is much larger than ARc, especially at the farther range beyond 30 km

(Fig. 5.38(c)). It means the contribution of the weak echoes to AR is negligible, and there should be

other factors accounting for the greater magnitude of ARf2c, and contributions of those factors to AR are

much greater than the contribution of weak echoes to AR.

(a) (b) mm

(c) (d) mm

Fig. 5.38.: Azimuth-range sections of AR estimated from the fine (a) and coarse (b) scan data, DAR before (c) and
after (d) processing data QC procedures
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The radar data contaminated by GCs are usually characterized with high ZH. Since the fine

scan data are less subject to the GCs (Section 4.4), the GC gates usually exhibit higher ARc rather than

AR f , and their locations can be easily discernible by negative DAR (Fig. 5.38(c)). Moreover, the absolute

magnitude of DAR is much less between the azimuths of 180◦ and 300 degree, and even approaches zero

between the azimuths of 200◦ and 225◦(Fig. 5.38(c)). It is due to the partial blockage effect of radar beam

caused by the terrain structures near the radar site (Fig.3.2), and this beam blockage effect is more severe

between azimuths of 200◦ and 225◦.

In principle, the precipitation amount falling into a certain region during a certain period

of time should be unaffected by how instruments observe the precipitation. If both fine and coarse

scans measure precipitation in a correct way, accumulating precipitation quantities over a 5-month period

surely offsets any instantaneous or localized differences between ARf and ARc, and then DAR should

be zero. A positive or negative DAR conflicts our assumption. The dominance of a positive DAR in

Fig. 5.38(c) implies potential data quality issues for the base data processed by the radar signal processor

only without external data QC procedures. The issues can be relevant to either or both fine and coarse

scan data, which confirms the necessity of applying the data QC procedures discussed in Chapter 4.

After applying the all five data QC procedures, the dominance of positive DAR disappears,

and the positive and negative DAR values spatially randomly alternate (Fig. 5.38(d)). Especially for the

azimuths between 225◦ and 360◦beyond 15 km away from the radar, the absolute magnitude of DAR

varies below 30 mm. However, we also notice the obvious positive DAR remains between the azimuths

from 0◦ to 7◦, and from 35◦ to 55◦, and the magnitude of these spatially continuous DAR is reduced after

these data QC procedures.

The comparison of DAR patterns between before and after data QC procedures (Figs. 5.38(c)

and 5.38(d)) proves that data QC procedures generally improve the reliability of the radar-based precipi-

tation estimation. This is an accumulative effect of all the data QC procedures, however, the contribution

of one individual step to the final precipitation estimation may be different from that of other steps. As

follows, we compare ARf2c with ARc, both of which are at 250-m radial resolution, with or without one of

the data QC procedures—the spike signal removal, the second-trip echo removal, the non-meteorological

echoes filtering, the attenuation correction, the ZH calibration—of their combinations to illustrate the ef-

fect of each individual data QC procedure on the radar estimation of precipitation (Tab. 5.15).
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Tab. 5.15.: Combinations of data QC procedures to show sensitivity of DAR to the data QC procedures

Figs. Spike
signal
removal

Second-trip
echo
removal

Non-
meteorological
echo removal

Attenuation
correction

ZH
calibration

5.39(a), 5.45(a) N N N N N

5.39(c) Y N N N N

5.39(e) Y Y N N N

5.39(b), 5.45(b) N N N Y N

5.39(d), 5.45(c) Y N N Y N

5.45(d) N Y N Y N

5.39(f), 5.45(e) Y Y N Y N

5.42(a) Y Y NMER 1 N N

5.42(c) Y Y NMER 2 N N

5.42(e) N N MEER 3 N N

5.42(b) N N NMER 1 Y N

5.42(d) Y N NMER 2 Y N

5.42(f), 5.45(f) Y Y NMER 3 Y N

5.38(d) Y Y NMER 3 Y Y
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Tab. 5.16.: Combinations of data QC procedures to show sensitivity of DDAR to the data QC procedures

Figs. Spike
signal
removal

Second-trip
echo
removal

Non-
meteorological
echo removal

Attenuation
correction

ZH
calibration

Fig.5.40(a)
N N N N N

Y N N N N

Fig.5.40(c)
Y N N N N

N Y N N N

Fig.5.40(e)
N N N N N

N Y N N N

Fig.5.40(b),
5.46(b)

N N Y N N

Y N Y N N

Fig.5.40(d),
5.46(d)

Y N Y N N

N Y Y N N

Fig.5.40(f),
5.46(c)

N N Y N N

N Y Y N N

Fig.5.41(a),
5.46(a)

N N N N N

N N N Y N

Fig.5.41(b)
Y N N N N

Y N N Y N

Fig.5.41(c)
N N Y N N

N N Y Y N

Fig.5.43(a)
Y N NMER 1 N N

Y N NMER 2 N N

Fig.5.43(c)
Y N NMER 2 N N

Y N NMER 3 N N

Fig.5.43(e)
Y N NMER 1 N N

Y N NMER 3 N N

Fig.5.43(b)
Y N NMER 1 Y N

Y N NMER 2 Y N

Fig.5.43(d),
5.46(f)

Y N NMER 2 Y N

Y N NMER 3 Y N

Fig.5.43(f)
Y N NMER 1 Y N

Y N NMER 3 Y N

Fig.5.46(e)
Y N N Y N

Y N NMER 3 Y N
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Applying the spike signal removal reduces DAR either with or without attenuation correction

(Fig. 5.39(c) or Fig. 5.39(d)), and this reduction is consistent with our discussion in Section 4.2 that the

spike signals occur much more frequently in the fine scan data than those in the coarse scan data. The

spike signals often appear with erratically high ZH above 45 dBZ, introducing positive anomalies. Thus,

this spike signal filtering procedure removes the unwanted data in the fine scans, and corrects the fine

scan data to be closer to the coarse scan data, in terms of AR.

(a) (b)

(c) (d)

(e) (f) mm

Fig. 5.39.: Azimuth-range section of DAR, (a), (c) and (e) are for radar data without attenuation correction, (b), (d)
and (f) are for radar data with attenuation correction, (a) and (b) are for radar data without any filtering,
(c) and (d) for the radar data after filtering spike signals, and (e) and (f) are for the radar data after
filtering the second-trip echoes and the majority of spike signals
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Applying the second-trip echo removal also reduces DAR (Fig. 5.39(e) or Fig. 5.39(f)). Simi-

lar to the spike signal removal above, filtering out the second-trip echoes removes these unwanted “extra”

fake precipitation as well. For this X-band radar dataset, the second trip echoes prevail only in the fine

scan data. As mentioned in Section.4.3, the second-trip echo filtering adopted in our research also auto-

matically remove the majority of spike echoes, which leads to smaller magnitudes in DAR values after

applying the second-trip echo removal only than those after filtering spike signals only.

In order to quantitatively compare changes in DAR under the conditions of different data QC

procedures, we define a term as as DDAR, referring to the difference between two DARs which use

different data QC procedures. For instance, if the scenarios without and with spike filtering are defined

as scenario 1 and scenario 2, respectively, then DDAR1,2 = (DAR)2− (DAR)1 quantitatively presents

the magnitude of fake precipitation estimates associated with the spike signals (either Fig. 5.40(a) or

Fig. 5.40(b)). Similarly, for instance, if the scenarios without and with second-trip echoes filtering are

defined as scenario 1 and scenario 3, respectively, DDAR1,3 = (DAR)3− (DAR)1 quantitatively presents

the magnitude of fake precipitation estimates associated with a combination of the second-trip echoes

and the majority of spike signals (either Fig. 5.40(e) or Fig. 5.40(f)). The pure effect of second-trip

echoes can be seen by comparing the scenario 2 and scenario 3 (either Fig. 5.40(c) or Fig. 5.40(d)).

Obviously, the second-trip echoes account a smaller proportion for the difference between fine and coarse

scans, compared to the spike signals, in terms of precipitation accumulation amount, for the data either

without attenuation correction (Fig. 5.40(a)) or with attenuation correction (Fig. 5.40(c)). Although the

occurrence frequency of the second-trip echoes is much higher than that of the spike signals (Figs. 4.4

and 4.14), the spike signal filtering takes a slightly more important role in correcting the magnitudes

of precipitation estimation for the fine scan. The reason is that the majority of second-trip echoes are

weak in intensity, and contribute marginally to magntiudes of the rainfall accumulation, whereas a large

portion of spike signals is characterized by high ZH along with moderate or heavy “fake” precipitation.

The attenuation correction also influences the magnitude of DARs; differences in AR between

fine and coarse scan become more remarkable after correcting attenuation (Fig. 5.39). The magnitude of

such increased DARs is related to other data QC procedures. For instance, if the radar data without and

with attenuation correction are defined as scenario 4 and 5 respectively, DDAR4,5 = (DAR)5− (DAR)4

quantitatively presents extra difference between fine and coarse scans caused by the attenuation correc-

tion procedure (Fig. 5.41). DDAR is the largest for the radar data without any filtering, becomes smaller

when the spike signals are filtered, and even shrinks when further applying the second-trip echo removal.

This gradual shrinkage reflects why the attenuation correction enlarges DAR. In practice, we applied the

attenuation correction in prior to the spike signal and second-trip echo filtering. Without filtering out

noise, the attenuation correction algorithm treats all the noise equally as the precipitation echoes, and the

corrected ZH values are also added to these noises, accounting for the larger difference between fine and

coarse scan resulting from the attenuation correction.
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(a) (b)

(c) (d)

(e) (f) mm

Fig. 5.40.: Azimuth-range section of DDAR, (a), (c) and (e) are for the radar data without attenuation correction,
(b), (d) and (f) are for the radar data with attenuation correction, (a) and (b) compare DAR based on
the radar data with and without spike echoes filtering, (c) and (d) compare DAR based on the radar data
with spike signal removal or with second-trip echo removal, and (e) and (f) compare DAR based on the
radar data with and without second-trip echoes removal
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(a) (b)

(c)

Fig. 5.41.: Azimuth-range section of DDAR, the difference between DAR using radar data without or with attenu-
ation correction, where (a) compares the radar data without any filtering, (b) is for the radar data with
spike echoes removal only, and (c) is for the radar data with second-trip echoes removal

The non-meteorological echoes (including GCs) removal (NMER) can be achieved through

three methods: the retrievability of KDP either prior to or after removals of the spike signals and second-

trip echoes, or through the fuzzy logic classification based on polarimetric variables and their texture

parameters (Section 4.5). The third method presents the largest DAR (Fig. 5.42(e)). DARs from the first

and second methods are quite similar, but both show range dependence — DARs diminish as the radar

gates become farther from the radar. Such a range dependence is unexpected and undesirable. Besides,

a small number of radar gates contaminated by GCs remain if the first and second NMER approaches

are used, while the third NMER method is able to completely remove data contaminated by GCs. Lack

of range-dependence and successful removals of GCs imply that the third NMER method is more robust

and reasonable than the other two NMER methods.
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(a) (b)

(c) (d)

(e) (f) mm

Fig. 5.42.: Azimuth-range section of DAR, (a), (b) and (c) are for the radar data without attenuation correction, (b),
(d) and (f) are for the radar data after attenuation correction, (a) and (b) are for the radar data applying
spike signal and 2nd-trip echo filtering after NMER, (c) and (d) are for the radar data applying spike
signal and 2nd-trip echo filtering in prior to NMER, (e) and (f) are for the radar data applying the fuzzy
logic polarimetric NMER

The term DDAR is defined again in order to quantitatively show the magnitude of DARs

with different NMER methods. If the scenario with the first, the second and the third NMER meth-

ods are defined as scenarios 6, 7 and 8, respectively, then DDAR6,7 = (DAR)7− (DAR)6 quantitatively

presents the differences in DAR caused by using the first or second NMER methods (either Fig. 5.43(a)

or Fig. 5.43(b)). Similarly, DDAR7,8 = (DAR)8− (DAR)7 defines the difference in DAR between us-
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ing the first and third NMER methods (Fig. 5.43(c) and 5.43(d)), and DDAR6,8 = (DAR)8− (DAR)6 de-

fines the difference in DAR between using the first and third NMER methods (Fig. 5.43(e)), and 5.43(f).

The first and second NMER methods are nearly identical except a few radar gates in proximity to the

GCs, which means that it makes almost no difference whether removing the spike signal and second-

trip echoes filtering before or after the NMER. In contrast, DARs of the third NMER method differ

greatly from those of other two methods. This third NMER method brings about a more noticeable

difference between the fine and coarse scan. As demonstrated in Section 4.5, the fuzzy logic NMER

exhibits different performances between the fine and coarse scans, explaining the large magnitude of

DDAR6,8 = (DAR)8− (DAR)6. Since (DAR)8 is not range-dependent but (DAR)7 is range-dependent,

DDAR7,8 shows the range-dependent pattern (Fig. 5.43(c) and 5.43(d)). Moreover, DDAR is greater if

the attenuation correction is applied to ZH. Besides, DDAR is positively large around the radar gates

located near the GCs in contrast to GC radar gates delineated by negative DAR in (Fig. 5.39). Given that

DAR values are negative over these GCs, the positive DDAR = (DAR)8− (DAR)6 means the magnitude

of (DAR)8 is less than that of (DAR)6 over these GCs. It means the third NMER method is capable of

getting grid of the GCs, while the other two methods are less capable than the third NMER method,

which accounts for such distinct DDARs in Fig. 5.43(c).

DAR is still not reduced to zero for the radar data after removing the spike signals, second-

trip echoes, non-meteorological echoes and correcting attenuation. Another factor that has not been

discussed in Chapter 4 but is also associated with radar data quality is the ZH calibration. Because of

the difference in τ for the fine and coarse scans, ZH can be miscalibrated differently. ∆Z obtained from

Section 5.2 confirms the different calibration factors for both fine and coarse scans. As discussed in

Section 5.2, ∆Z are +2 dB and +3.5 dB for the fine and coarse scans respectively. After taking ∆Z into

consideration, DAR is minimized (Fig. 5.38(d)) and we ended up with AR comparable for the fine and

coarse scan data.

The PPI displays are also shown to see the spatial distribution of improvements to the precip-

itation estimation after the radar data are applied with the data QC procedures (Fig. 5.44). Comparing

DAR without and with data QC procedures indicates that noise in the radar data, regardless of spike sig-

nals or second-trip echoes, tends to obscure the true precipitation information. Only after successfully

eliminating the noise can the radar-based precipitation estimation be reliable. However, ARs from the fine

and coarse scans are still not comparable in two azimuthal sectors in the north and northeast directions.

Besides, in the south direction beyond 50 km away from the radar, a moderately positive area prevails.

It corresponds to the Black Forest region which is renowned for its high altitude, and consequent ampler

precipitation and higher frequency of heavy precipitation compared to other regions. Chances are that

DSDs in the Black Forest may differ from those of other regions, and then the Marshall-Palmer Z-R

relation is inappropriate, resulting in the deviations in the ZH-based precipitation estimates.
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(a) (b)

(c) (d)

(e) (f) mm

Fig. 5.43.: Azimuth-range section of DDAR, (a), (b) and (c) are for the radar data without attenuation correction,
(b), (d) and (f) are for the radar data after attenuation correction, (a) and (b) compare the radar data with
the NMER methods 1 and 2, (c) and (d) are for the radar data with the NMER methods 2 and 3, (e) and
(f) are for the radar data with the NMER methods 1 and 3
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(a) (b) mm

Fig. 5.44.: PPI displays corresponding to (c) and (d) in Fig. 5.38

As mentioned, either the interpolated fine scan data in 250-m radial resolution, or the interpo-

lated coarse scan data at 75-m radial resolution are obtained through the interpolation on the scale of R

utilizing the Marshall-Palmer relation. Inversely, we also covert the interpolated R back to Z through the

inverse form of the Marshall-Palmer relation, and then obtain data of another two parameters Zf2c and

Zc2f.

The 2D-PDF in terms of ZH is used to show the correlation between this “interpolated” radar

reflectivity in the fine and coarse scans (Fig. 5.45). Since this 2D-PDF varies with the different data

QC procedures and their combinations, in order to illustrate the effect of each data QC procedure on the

probability distribution of ZH, the difference between two 2D-PDFs is defined as ∆PDF = PDF2−PDF1,

where the subscripts 1 and 2 refer to different data QC scenarios (Fig. 5.46). The positiveness in ∆PDF

refers to the higher 2D-PDF in the scenario 2 than that in the scenario 1, vice versa for the negativeness.

For instance, the positiveness at ZH between 45 to 50 dBZ means the radar data under the scenario 2 has

a larger number of ZH between 45 and 50 dBZ than the scenario 1.

Start with the attenuation correction. Its effect is to expand the 2D-PDF to the right upper

corner, since the attenuation correction procedure recovers these “attenuated” weak echoes back to high

ZH values, but the slope and intercept of the fitting curve stay the same (Fig. 5.45(a) and 5.45(b)).These

added moderate-to-high ZH values are corrected from the low ZH values, with the former corresponding to

the positive area in Fig. 5.46(a), and the latter corresponding to the negative area in Fig. 5.46(a). Either the

positive or negative area lies symmetrically along the diagonal line, which indicates that the attenuation

correction is immune to the difference in ∆r between fine and coarse scan data.
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(a) (b)

(c) (d)

(e) (f) %dB−2

Fig. 5.45.: 2D-PDF of ZH to compare the interpolated fine and coarse scan data in terms of ZH, where (a) is for
radar data without any data QC procedure, (b) for radar data with attenuation correction, (c) for radar
data with attenuation correction and spike signal filtering, (d) for radar data with attenuation correction
and second-trip echo removal, (e) for radar data with attenuation correction, spike filter, second-trip
echoes removal and NMER using KDP, and (f) for radar data with attenuation correction and NMER
using the polarimetric fuzzy logical methods. The black line is the diagonal line, the red line is the
fitting curve, CC is the Pearson correlation coefficient

Applying the spike signal removal after attenuation correction slightly decreases the inter-

cept of the fitting curve (Fig. 5.45(c)). The negative area, an indicator of the removed ZH values by the

spike signal removal, extends over ZH values between 10 dBZ and 35 dBZ, and concentrates around the
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diagonal line, with its centerline in proximity to, or more accurately, slightly above the diagonal line

(Fig. 5.46(b)). It illustrates that spike signals primarily vary around 10 dBZ and 35 dBZ. Meanwhile, this

spike signal removal procedure creates a small positive area centered at -5 dBZ, which is caused by the

interpolation.

The second-trip echo removal procedure further reduces the intercept of the fitting curves

(Fig. 5.45(d)). Recall that our second-trip echo removal algorithm also removes the majority of spike

echoes (Section 4.3), a portion of the negative areas above 10 dBZ is identical to the elongate negative

area along the diagonal line caused by the removal spike signals already shown in Fig. 5.45(b), and the

remaining negative area corresponds to ZH values primarily below 15 dBZ, with a center around 0 dBZ

for Zf2c and -12 dBZ for Zc (Fig. 5.46(c)). This clear deviation of this negative area from the diagonal

line is exactly in accord to the fact that the second-trip echoes only occur in fine scans. Obviously, only

this latter negative area represents the change in ZH associated with the second-trip echoes. Unlike the

former negative area which is due to the spike signals and is constrained in proximity to diagonal line,

this latter area is more extensive but “diluted” with smaller magnitudes, which means the second-trip

echoes are prevalent in our radar data and their ZH magnitudes vary widely but seldom surpass over

20 dBZ (Fig. 5.45(d)).

Adding the NMER procedure, regardless of which NMER method, modifies the shape of the

2D-PDF, such as cutting off its two-sided tailors, and turns the previously negative intercept of fitting

lines into positive values, which means ZH values of fine scans are slightly greater than those of coarse

scans (either Fig. 5.45(d) or Fig. 5.45(f)). Specifically, the NMER 3 brings the fitting curve with a slope

of 1 and an intercept of 1.4 dB (Fig. 5.45(e)). This intercept on the magnitude of 1.4 dB corresponds

exactly to ∆Z of 1.5 dB and 3.0 dB for the fine and coarse scans, respectively (to be elaborated in Section

5.2).

According to ∆PDF , ZH values eliminated by this NMER are primarily below 5 dBZ, and oc-

casionally vary from 5 dBZ to 30 dBZ (Fig. 5.46(e)). The former corresponds to a negative area in shape

of a slanted oblate oval, whereas the latter corresponds to an elongated area expanding to the right upper

corner. The former area is in absolutely dark blue while the latter area is in light color. It means that, the

majority of the non-meteorological echoes are characterized by ZH intensity less than than 10 dBZ, corre-

sponding to the non-existence of any precipitation or the presence of light rain. Besides, the former area

is roughly symmetric about the diagonal line, but the latter area deviates slightly from the diagonal line

at a magnitude of 1–2 dB, which is quite likely to be caused by the different ZH miscalibration between

the fine and coarse scan data. It indicates that most of the non-meteorological echoes are comparable

between the fine and coarse scan data in terms of ZH intensity if ZH values of both data are calibrated

correctly.

255



(a) (b)

(c) (d)

(e) (f) ×10−3%dB−2

Fig. 5.46.: Difference between two 2D-PDFs of radar reflectivity (ZH), where (a) compares the 2D-PDFs for radar
data between without and with attenuation correction, (b) for radar data between without and with spike
signal removal, (c) for radar data between without and with filtering both spike and second-trip echoes,
(d) for radar data between without and with second-trip echo removal, (e) for radar data between with
or without NMER method 3, (f) for radar data between two different NMER methods, and the black
line is the diagonal line

The characteristic of this negative area caused by the non-meteorological echo filtering pro-

cedure (Fig. 5.46(e)) differs from that of the other two negative areas caused by the spike signal removal

(Fig. 5.46(b)) and the second-trip echo removal (Fig. 5.46(d)). For the spike signal, the negative ∆PDF

area lies along the diagonal line, with its maximum centered around 15–20 dBZ and with definite con-

tours, and the negativeness decreases toward both the right upper or the left lower corner. The negative
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∆PDF area with respects to the NMER also lies along the diagonal line, and its negativeness decrease

toward the right upper corner, but its left lower corner is far below -15 dB. Taking the 20-25 dBZ square

from both Fig. 5.46(c) and 5.46(e), the negativeness caused by the spike signal removal is more than that

caused by the NMER procedure. It is the same for other ZH data greater than 25 dBZ. This comparison

implies the number of spike signals larger than 20 dBZ is more than that of non-meteorological echoes,

although the overall number of non-meteorological echoes is tremendously greater than that of spike

signals.

Unlike the NMER methods 1 and 2 both of which require additional steps to filter spike

signals and second-trip echoes, NMER method 3 automatically removes the majority of spike signal and

the second-trip echoes along with its non-meteorological echoes, because the polarimetric characteristics

of spike signals and second-trip echoes are distinct from the precipitation echoes. When comparing the

2D-PDFs of the NMER methods 2 and 3, we see negative areas which indicate that the NMER method 3

tends to filter out more ZH than the combination of NMER 2 and spike signal/second-trip echo removals

(Fig. 5.46(f)). Be cautious about the magnitude of the darkness in Fig. 5.46(f) is smaller than the rest in

Fig. 5.46.

In brief, these data QC procedures only slightly modify CCPS between Zf2c and Zc, slopes and

intercepts of the fitting curves. However, although the change in numerical values is small, we obtain a

more reasonable fitting line after processing the radar data with the proper data QC procedures. For the

inter-comparison using ∆PDF, the positive and negative areas in ∆PDF present information about how

the data QC procedures change the ZH distribution simultaneously for both fine and coarse scans.

However, the precipitation estimation within the entire chapter is retrieved only based on

ZH through the Marshall-Palmer relation. The empirical single-polarization rainfall estimators are often

not valid or proper. No matter which external sources we used to evaluate the X-band radar measure-

ments, the sensitivity of this rainfall estimation to DSD variability is inherent, bringing about unavoid-

able discrepancies between the radar-based precipitation estimates and the true R. Thus, it is not easy to

achieve quantitative agreements between radar data and rain gauge measurements. Thus, polarimetric-

tuned rainfall estimators have been proposed (Ryzhkov et al., 1997; Brandes et al., 2003; Bringi et al.,

2004) (Section 2.3). Nevertheless, the coefficients in these polarimetric estimators are highly variable

depending on the DSD, radar frequency and precipitation type. Determination of proper coefficients and

then the subsequent precipitation estimation could be a future work.
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5.4. Sub-summary

Recall Fig. 5.1. This chapter focuses on effects of the spatial resolution on the radar-based precipitation

estimates by comparing these radar-based precipitation estimates calculated respectively from the fine

and coarse scan data.

For case studies of convective storms (Section 5.1), comparisons of radar images from ZH in

three different resolutions show the radar data with higher spatial resolution are more capable of present-

ing the small-scale ZH-derived R gradients, depicting spatially highly variable precipitation patterns, and

delineating inner structures of convective storms. This is a benefit of radar data at high spatial resolution.

We also compare the X-band radar fine and coarse scan data with external precipitation

datasets including the C-band radar, rain gauge measurements and MRR (Section 5.2). Both fine and

coarse scan data are processed with different combinations of data QC procedures, so we obtain various

versions of fine and coarse scan datasets. Comparing radar data of these versions shows different degrees

of agreement. The differences in degree of agreement indicate various roles of data QC procedures on

the agreement between the X-band radar data with other precipitation datasets. We quantify the degree

of agreement in two aspects—correlation and concordance (comparableness of magnitude), and find the

removal of noises including spike signals, second-trip echoes and non-meteorological echoes strengthens

the linear correlations, but has no contribution to minimize the difference in magnitudes of precipitation

quantities. We also find the attenuation correction can both improve the correlation and concordance,

while the ZH calibration plays the main role in shrinking differences in magnitudes of precipitation quan-

tities. For each combination of data QC procedure, the degree of agreement is also compared between

the fine and coarse scans, and the fine scan data show a closer agreement with the external references,

proved by the higher correlation coefficient and their least square orthogonal fitting curves. It is regarded

as one more benefit of using the radar data at a higher spatial resolution. ∆Z values for the ZH absolute

calibration procedures are also obtained through the R-G comparisons.

The spatial distributions of ARt (Section 5.3) (Fig. 5.1) are also generated using the fine and

coarse scan data which are processed with different data QC procedures. Large discrepancies exist

between ARf and ARc in terms of the magnitude or the spatial distribution of AR. Analyzing spatial dis-

tributions of the difference between ARf and ARc for each combination of data QC procedures gives the

information about the sensitivity of different data QC procedures on the radar-based precipitation quanti-

ties. For instance, we find, although fine scan data tend to miss weak echoes, the presence of spike signals

and second-trip echoes of the fine scan brings larger precipitation amount. Although second-trip echoes

occur much more frequently than spike signals, their contribution to the “fake” precipitation is much less

than their counterpart caused by spike signals. The attenuation correction enlarges differences between

ARf and ARc, which corresponds to different ∆Z calculated from the aforementioned R-G comparisons

between the fine and coarse scans.
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To sum up, comparisons about radar-based precipitation quantities in terms of the foregoing

three aspects show the differences between fine and coarse scan data, illustrate the sensitivity of these

differences to the data QC procedures, and demonstrate effects of the spatial resolution on the radar-based

precipitation estimation.
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6. Summary

Precipitation information underpins many hydrological and meteorological applications. The weather

radar is the only tool which is able to observe precipitation at the temporal resolution of 5-10 minutes

and the spatial resolutions at the 1-km resolution. However, the requirement for the spatial resolution

of precipitation data can sometimes be even more demanding than this 1-km resolution, due to high

spatial heterogeneity of precipitation. For instance, regarding hydrological applications for small urban

catchments, we are interested in the precipitation variability unsolved by the 1-km resolution precipita-

tion data which are currently derived from radar measurements provided by the majority of operational

radar networks. Observation of this sub-kilometer precipitation variability requires radar measurements

to be at the corresponding sub-kilometer spatial resolution. Although radar data at resolutions higher

than 1-km scale have been available in some field campaigns using X-band radars, there is no systematic

research about what differences are made by changing the radar sampling from a coarser resolution to a

finer resolution. Previous studies on effects of spatial resolutions of radar measurements dealt with the

statistically generated resolutions instead of the directly measuring spatial resolution, and they focused

on errors quantified by precipitation quantities other than the directly measured radar variables. Our aim

of this research is to investigate effects (either benefits or drawbacks) of increasing the spatial resolution

of radar measurements using radar data with different spatial resolutions which are directly measured and

include at least one sub-kilometer resolution. We specifically interpret the effects caused by changing

spatial resolutions in two aspects—in terms of radar data quality and radar-derived precipitation estima-

tion. In brief, we investigate effects of spatial resolutions on radar data quality and effects of spatial

resolutions on radar-derived precipitation estimation.

This research is based on an X-band radar dataset obtained via a 5-month field campaign

in the Stuttgart metropolitan area. An X-band radar was operated in a scan strategy with two quasi-

simultaneous scans at two different radial resolutions, 75 m and 250 m for fine and coarse scans, respec-

tively. In terms of the scientific control, the coarse scan data is regarded as the control group and the fine

scan data as the experimental group. Regarding our aim, to illustrate effects of the spatial resolution, we

compare both fine and coarse scan datasets, in terms of radar data quality and radar-derived precipitation

estimates, corresponding to the research objectives proposed in Chapter 1. First, different characteristics

of noise between fine and coarse scans indicate differences in radar data quality caused by changing spa-

tial resolution of radar measurements. Second, different degrees of consistency with other precipitation

measurements between fine and coarse scans indicate differences in radar-derived precipitation estima-
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tion caused by changing spatial resolution of radar measurements. Third, the above differences in radar

data quality and in radar-derived precipitation estimation exhibit different degrees of sensitivity to the

various data QC procedures.

The comparisons lead to the following data analyses and associated results in 12 different

points. The last three points belong to the data analyses regarding the quality of the radar-derived precip-

itation estimates, and the remaining points are for the data analyses regarding the quality of radar data.

It means data analyses of the first 9 points use the level II radar data and correspond to the first research

objective, while data analyses of the other 3 points are for the second research objective and use the level

III data—precipitation quantities which are estimated based on the radar data. Only the analyses about

weak echoes and convective storms are qualitative, and the remaining are all quantitative. Among them,

the data analyses concerning spike signals, second-trip echoes and non-meteorological echoes generate

their corresponding data quality control procedures customized for this research.

1) Loss or presence of weak echoes. The visual inspections over radar images give us a first

impression on similarities or dissimilarities between two scan datasets. These quick inspections mainly

focus on the spatial distribution and intensity of radar variables. They not only confirm the first difference

between fine and coarse scans—the loss of weak echoes in the fine scan which is in accord with the radar

theory, but also unfold two types of suspicious echoes that add ’extra’ ZH into the fine scan data;

2) Data contaminations caused by spike signals. One type of suspicious data, termed as

spike signals, is characterized by the unreasonably high and stable u-φDP values, and we used these two

characteristics as the criteria to identify these spike signals automatically. Based on the diurnal variation

and spatial distribution of these identified spike signals in the entire dataset, we speculate these noises

are from the X-band radars on ships along the Necker inland waterway. We also find these spike signals

are also present in coarse scan data but at a much lower frequency, which implies the external spike

signals affect the fine scan data in a much more intense extent than the coarse scan data. It is the second

difference between the fine and coarse scans; the fine scan data are more subjected to external noises.

The by-product of this part of data analyses is the spike signal removal procedure applicable for both fine

and coarse scan data.

3) Data contamination caused by second-trip signals. The other type of suspicious data

frequent in the fine scans but not in the coarse scans is the second-trip echo. Given that the maximum

range of the radar coverage in the fine scan is identical to its theoretical rmax, the second-trip echoes ap-

pear frequently in the fine scan in form of extra ZH and φDP magnitudes. In contrast, the maximum range

of the radar coverage in the coarse scan is even less than 1/4 of its theoretical rmax, the second-trip echoes

of the coarse scan seldom reach measurable magnitudes. Thus we can omit them safely. It is the third

difference between the fine and coarse scan data—only the fine scan data are affected by the second-trip

echoes. The ZH magnitude of a second-trip echo is reduced in comparison to its original ZH magnitude,
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while the u-φDP magnitude of a second-trip echo is the same as its original u-φDP magnitude. These

’extra’ high u-φDP magnitudes distort the monotonic increasing tendency of u-φDP along the azimuthal

direction, leading to the prevalence of erroneous negative KDP retrievals in the fine scan data, which is

another illustration of the third difference between the fine and coarse scan data in terms of KDP. Be-

sides, these ’extra’ high u-φDP values used in attenuation correction also bring the wrong corrections to

ZH and ZDR, which means the attenuation correction in the fine scan data sometimes can be wrong if the

second-trip echoes are not filtered. This negative effect caused by high u-φDP of second-trip echoes in

the fine scans is regarded as the third illustration of the third difference between the fine and coarse scan

data. Both KDP retrieval and attenuation correction procedures necessitate the removal of second-trip

echoes. Given low magnitudes of SQI for most second-trip echoes, SQI is used to identify and filter out

the second-trip echoes. The spatiotemporal distribution of all these identified second-trip echoes in the

entire dataset further demonstrates the unique characteristics of second-trip echoes distinct from other

types of noises. The by-product of this part of data analyses is the second-trip removal procedure solely

applicable for the fine scan data.

4) ZH data contamination caused by ground clutters. The ground clutters, identified via

their abnormal high frequency of large ZH, also show different characteristics between the fine and coarse

scans in terms of its occurrence frequency, spatial extent and ZH intensity. The identified ground clutters

expand in a much smaller areal extent in the fine scans, and the mean ZH of these ground clutters is

smaller in the fine scan data than their counterpart in the coarse scan data. Both differences imply that

the high spatial resolution can help mitigate the contamination of ground clutters in the radar data using

ZH only without further information from Doppler velocity or polarimetric variables. Such a mitigation

in the data contamination caused by ground clutters in the fine scan is the fourth difference between the

fine and coarse scans. The by-products of this part of data analysis are the ground clutter static maps

established for the fine and coarse scan respectively. Unlike the above two points about spike signals and

second-trip echoes, this static map is used for identification rather than data correction.

5) Polarimetric data contamination caused by non-meteorological echoes. Besides the

ground clutters, the radar data are also severely contaminated by insect echoes. During rainy period, three

classes of echoes (ground clutters, insect echoes and precipitation echoes) are always present simultane-

ously and even mixed with each other. In order to distinguish between non-meteorological (consisting

of ground clutters and insect echoes) and precipitation echoes, a fuzzy logic classification was devel-

oped and this procedure includes establishing membership functions, aggregating memberships from the

selected polarimetric discriminators, and assigning echo classes. Membership functions are built based

on polarimetric variables and their texture parameters. The fine and coarse scan data exhibit different

characteristics in terms of polarimetric variables and their texture parameters, and their associated mem-

bership functions; it is the fifth difference between the fine and coarse scan data. These differences in

membership functions between the fine and coarse scans lead to different performances of this classifi-
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cation procedure depending on whether the fine or coarse scan data are used. The results show that the

classification procedure using the coarse scan data has higher chance to misidentify precipitation echoes

as non-meteorological echoes than the same procedure using the fine scan data. It means the fine scan

data are more efficient in identifying precipitation echoes from ground clutters and insect echoes; it is the

second illustration of the fifth difference between fine and coarse scan. This fuzzy logic classification is

the by-product of comparisons between fine and coarse scans. The algorithm is physics-based, intuitive,

easy to implement and computationally efficient; it only relies on polarimetric variable without referring

to any other external information, and is free from ZH constraint to avoid the ZH degradation caused by

range dependence and attenuation.

6) Attenuation correction. Attenuation correction is a necessary step in the data quality

procedure for the X-band frequency, and in this research we use the attenuation correction on the ba-

sis of u-φDP. Given u-φDP is a variable integrated over the range and its magnitude is not affected by

the radial resolution of radar sampling, the attenuation correction should not be affected by the radial

resolution in principle. However, it is not true in case of severe convective storms or for precipitation

behind wide-spread stratiform precipitation. If the ZH data are attenuated below the signal noise level

and become weak echoes, these ZH data are “overlooked” by fine scans, and we are unable to recover

these lost ZH via attenuation correction. In contrast, these weak echoes remain in the coarse scan, and

the attenuation correction is able to recover ZH in the coarse scan data. The situation is similar for differ-

ential attenuation correction for ZDR. This difference in the attenuation-corrected ZH or ZDR is the sixth

difference between the fine and coarse scan, which is essentially linked to the aforementioned first differ-

ence. Besides the comparison between fine and coarse scan, our analysis also evaluates the performance

of two attenuation correction algorithms—the ZPHI and iterative ZPHI algorithms respectively, and also

validates the magnitudes of attenuation-corrected ZH data by comparing their precipitation estimates with

the precipitation estimates based on KDP which is immune to the attenuation.

7) Statistics errors. To see whether fine and coarse scans differ with respect to characteristics

of polarimetric variables, we evaluate our polarimetric dataset via the following three aspects: a) the

theoretical statistical errors or accuracy of polarimetric variables using the perturbation method; b) a

variety of statistics of polarimetric measurement in light rain; c) the standard deviation of KDP in the

convective precipitation systems. Based on the scanning parameters, the theoretical statistical errors of

the fine scan data are greater than those of the coarse scan data, but the difference shrinks for the larger

ρHV. It means, for the majority of precipitation echoes, the difference in theoretical statistical errors

between fine and coarse scans is much smaller. For the statistics in the light rain, both fine and coarse

scan data exhibit good data quality, and these statistics are comparable in magnitude for both scans. The

statistics evaluating the quality of KDP for convective storms are also comparable for both scans.

8) Range dependence. The range dependence of radar variables, either single-polarization

or polarimetric, is discussed for three categories of dataset. They are a dataset including precipitation
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echoes merely, a dataset including non-meteorological echoes only and the entire radar data including

precipitation and non-meteorological echoes. In terms of the entire radar dataset without applying data

QC procedures, within the 30-km range, ZDR and u-φDP of the coarse scan data are in larger magnitudes

than those of the fine scan data, whereas ρHV of the coarse scan data are in smaller magnitudes. In the

farther range beyond 30 km away from the radar, KDP of the coarse scan is more concentrated within

low values with a narrower distribution, whereas SNR and SQI of the coarse scan data are in larger

magnitudes than those of the fine scan data. Besides, the four sets of data—the non-meteorological

echoes in fine scans, non-meteorological echoes in coarse scans, precipitation echoes in fine scans and

precipitation echoes in coarse scans—all exhibit different characteristics from others in terms of their

range dependence; the most dramatic differences are present for ZH, SNR and SQI. This difference in

terms of the range dependence is the seventh difference between the fine and coarse scan data.

9) Roles of QC procedures. The aforementioned four data QC procedures are removals of

spike signals, second-trip echoes and non-meteorological echoes (ground clutters and insect echoes), and

attenuation correction. Given the importance of ZH, PDFs of ZH data with various combination of data

QC procedures are compared between fine and coarse scan data. This comparison is used to evaluate

th effects of these data QC procedures on the ZH data, and also to assess the difference in such effects

between the fine and coarse scan data. Attenuation correction increases the frequency of high ZH for

both scan datasets, while the other three data QC procedures tend to shrink the difference in PDFs of

ZH between the fine and coarse scan data. It implies, in the raw data without external data QC procedures,

the differences in PDFs are attributed to several types of noise which exhibit different characteristics in

the fine and coarse scan datasets. Applications of data QC procedures remove these noises, thereby

reducing the discrepancies between the fine and coarse scan data. For ZH applied with these four data

QC procedures, PDFs of both fine and coarse scan data become closer but are still not identical. If the

PDF of coarse scan data is shifted slightly rightwards, equivalent to adding a constant increment of ZH to

the coarse scan, then PDFs of both scans can resemble each other. The existence of this increment of

ZH is due to the different miscalibration for fine and coarse scans regarding the radar system hardware.

This difference is irrelevant to the effect of different spatial resolutions, but it is directly related to the

magnitude of ZH-based precipitation estimates (to be discussed below).

After analyzing the level II data and addressing the first research objective from the above

discussion, starting from here, we focus on the level III data and address the second research objective.

10) Convective storm delineation. The weather radar is well-known for its capability to

resolve convective storm structures. For the majority of radar data users, the primitive use of radar data

is via quick looks through radar images. In order to see the differences between fine and coarse scans

in terms of their presentations of precipitation structures, a series of visual and qualitative inspection

of radar images is done for two small-sized intense convective storms. The C-band radar data with the

500-m radial resolution is also involved, serving as the reference at a third radial resolution. Given ZH is
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a good indication of precipitation instantaneous intensity, the contours and ZH gradients are more smooth

and natural for the fine scan data, with a clearer presentation of the storms’ internal structure from the

radar images than those of the coarse scan. However, we cannot make quantitative investigations for these

case studies of convective storms. The reason lies in the time gap between the fine and coarse scans.

During this 100-second time gap, the convective precipitation evolves and moves, with the changing

storm’s internal structures; such a change is even more rapid for the small-size intense convective storms.

It implies that, the discrepancy between the fine and coarse scan data is caused by a combination of the

effect of radial resolution and evolutions of convective storms. We are unable to distinguish which factor

plays the main role in explaining such discrepancies. For other radar variables, the comparison is done

between the fine and coarse scan data without the C-band radar data. In the radar images, similar to ZH,

the gradients of other radar variables are smoother for the fine scans, which can assist us in delineating

the internal structures of convective storms. This difference, albeit gained from the visual inspection, fits

common sense, and meets our expectation before performing any filtering or correction to the radar data.

Thus, the eighth difference between the fine and coarse scan is that, the fine scan data are more skillful

in presenting a natural and clear configuration of convective storm internal structures.

11) Evaluation with external references. To evaluate quality of radar-derived precipitation

quantities and to determine calibration factors (ZH offset) for ZH measurements, we use three external

sources of precipitation measurements as the reference; they are from rain gauge network, MRR and

C-band radar. Comparing precipitation quantities estimated respectively from fine and coarse scans to

these external precipitation datasets, the agreement between these precipitation quantities and these ex-

ternal datasets can be used to indicate the quality of precipitation quantities estimated using the fine or

coarse scan data. Besides, this comparison between radar and gauge measurements (R-G) is a routine for

absolute ZH calibration in operational utilizations of weather radar data. This procedure is also named

as radar-gauge adjustment. The comparisons are performed in three temporal scales—the total measur-

ing period, daily and hourly respectively, and based on different fine or coarse scan datasets processed

with various combinations of data QC procedures. Results show that, regardless temporal scales and

combinations of four data QC procedures (spike signal, second-trip echo removal, non-meteorological

echo removal and attenuation correction), the fine scan data exhibit greater correlations with precipita-

tion measurements from rain gauges, proved by the higher correlation coefficient and the least square

orthogonal fitting curves which are closer to the one-to-one diagonal line. This stronger agreement with

the rain gauge measurements in the fine scan data than the coarse scan data meets our expectation. For

geographically matching up rain gauges with the closest radar gates, because of the smaller sampling vol-

umes of the fine scan, the distance of a rain gauge and its matched-up radar gates can be shorter for the

radar gates of fine scans than those of coarse scans. It means the precipitation information derived from

radar measurements of the fine scan resembles more what is measured by rain gauges whose effective

measuring area are quite small. This is the ninth difference between the fine and coarse scan.
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Results from R-G comparison also show, among these four data QC procedures, attenuation

correction contributes most to a stronger agreement between the radar and rain gauge measurements.

It is because the attenuation correction adds the ZH increment on the order of several dB directly to

ZH value, thereby significantly changing the magnitude of ZH. The difference in ZH magnitude after

applying all the four data QC procedures is attributed to radar miscalibration. Thus, from the comparison

between the radar and gauge measurements, we obtain the calibration factors for the fine and coarse

scans respectively as 4.5 dB and 6.5 dB for the ZH without data QC procedure, and 2 dB and 4 dB for

ZH after applying these four data QC procedures. The similar comparisons were conducted for MRR

measurements. Unlike rain gauge measurement, the MRR measurements along the vertical extent allow

us to evaluate the ZH measurements at radar sweeps of other elevations. For the comparison using MRR

measurements, correlation coefficients for the coarse scan are higher.

12) Spatial distribution of precipitation total accumulation. Given the different spatial res-

olutions for the fine and coarse scan, we obtain another two ZH datasets by interpolating the fine scan data

as the same resolution as the coarse scan, and interpolating the coarse scan data as the same resolution

as the fine scan. Then differences in radar-derived precipitation estimates between the fine and coarse

scan data can be directly calculated, referred as DAR. We specifically define DAR as subtracting AR of

the coarse scan data from AR of the fine scan data, so the positive values mean precipitation quantities

estimated by the fine scan data are greater than those estimated by the coarse scan data, and vice versa.

We investigate spatial distributions of the magnitudes of DARs estimated from ZH with various combi-

nations of data QC procedures. Each combination of data QC procedures corresponds to a distribution

map of DAR magnitudes. Before any data QC procedure, DARs are positive over the majority of the

entire radar coverage except the negative values over the radar gates severely affected by ground clutters;

applying the attenuation correction procedure further enlarges DAR magnitudes; applying the removal

of second-trip echoes and spike signals reduces DARs; applying the polarimetric non-meteorological

echo removal also slightly enlarges DARs, but turns the initial negative DARs over the radar gates con-

taminated by ground clutters into positive values; applying the calibration factors to both data further

reduces DAR to the minimum level as close to zero as possible, leading to random alternating positive

and negative values over the radar coverage. The role of these four data QC procedures is to remove their

corresponding types of noise. These changes in the distribution map of magnitudes of different DARs

calculated using ZH with various combinations of these four data QC procedures indicate different roles

of these types of noise in the magnitude of radar-based precipitation quantities. These distribution maps

directly compare the spatial characteristics of precipitation estimation between fine and coarse scans, and

the changes across distribution maps indicate the sensitivity of precipitation estimation to these data QC

procedures. The spatial distribution of DARs together with its sensitivity to data QC procedures is the

eleventh illustration of differences between the fine and coarse scans.
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Tab. 6.1.: A summary of the differences between the fine and coarse scan data

Category Type Fine scan Coarse scan Outcome

Radar
data
quality

Weak echo Reduced amount Remaining Identification

Spike signal Frequent Occasional QC
correction

Second-trip echo Very frequent Absent QC
correction

Ground clutter in Z Smaller extent,
weaker in intensity

Wider extent,
stronger in intensity

QC
correction

Non-meteorological
echo

Different statistics in terms of polarimetric variables QC
correctionMore efficient in removal Less efficient in removal

Attenuation
correction

Correct insufficiently Correct more QC
correction

Statistic errors
Greater theoretical error Less theoretical error

Identification
Comparable for measured errors

Range dependence Different characteristics Identification

Probability
distribution

Different responses to quality control procedures Identification

Radar-based
precipitation
estimation

Characterizing
convection storm

More details, smoother,
more nature

Less details, irregular
gradients

Identification

Evaluation with
external references

Greater agreements Worse agreements QC
correction

Precipitation
total accumulation

Different responses to quality control procedures Identification

The foregoing discussions about the differences (Tab. 6.1) between the fine and coarse scan

data correspond to three research objectives proposed in Chapter 1. All the differences from these com-

parisons, although illustrated in various ways and related to different factors, can be fundamentally

attributed to the difference in radial resolutions. For our X-band radar data, using the sub-kilometer

high-resolution radar measurements brings about both benefits and drawbacks, but there is no census

on whether the benefits are more than the drawback, verse vice. The relative importance of benefits or

drawbacks should be considered on a case-by-case basis, and depends on the propose of using the radar

data. Our exhaustive discussion can provide practical guidelines for the radar meteorologists when they

plan to increase the spatial resolution for their radar measurements.

Associating these foregoing differences to the past research, we can summary originality of

this research as follows,
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i) Previous studies by other researchers to explore the precipitation sub-kilometer variability

unsolved by radar measurements in the spatial resolutions coarser than the 1-km resolution were primar-

ily based on statistical manipulations which essentially utilizes radar data at only one spatial resolution.

In contrast, this research involves two independent measurements sampled independently and physically

in different spatial resolutions, which gets rid of the need for statistical manipulations and eliminates the

associated uncertainties, and thus renders results of this thesis more rigorous and trustworthy.

ii) Previous studies mainly used results from numerical simulations of hydrological models

as the criteria to evaluate the quality of radar measurements in different artificial resolutions, but their

evaluation criteria are sometimes unstable. In contrast, this study focuses merely on the precipitation

estimates which can be easily calculated and are not dependent on the hydrological models.

iii) Some research whose experiments also utilized the small temporal or spatial scale but their

datasets were for a very short time (from a few hours or days), and so their results are less convincing

and less robust. In contrast, this research is based on a quite large radar dataset from a radar field

campaign whose areal coverage expands over 1.5× 104 km2 for a 5-month period, strengthening the

representativeness and credibility of the results of this research.

Tab. 6.2.: Recommendations for fine and coarse scans in practical radar data applications

Category Concerns Fine or coarse

Radar data quality

Inclusion of weak echoes Coarse

Complete attenuation correction Coarse

Free of second-trip echo contamination Coarse

Free of contamination from external signal Coarse

Less ground clutter contamination Fine

Efficient non-meteorological removal Fine

Radar-based
precipitation estimation

Detailed delineation of convective storm Fine

Radar-gauge comparison Fine

Detection of light rain/snow Coarse

We obtain a comprehensive understanding of the effects of spatial resolutions on the radar

data quality and the radar-based precipitation estimation. We also have a more concrete knowledge of

the benefits and drawbacks brought by using a higher spatial resolution, which can provide guidelines in

selecting an appropriate spatial resolution for other radar experiments. In general, the recommendation

is flexible. On the basis of data analyses regarding the various differences between fine and coarse scan

data in different scenarios, whether the fine scan data are preferred over the coarse scan data or the other

way around depends on the propose of radar data applications (Tab. 6.2).
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A. Acronyms and Symbols

2D-PDF Two-dimensional probability density function

AAD Averaged absolute deviation

AMSL Above mean sea level

AP Anomalous propagation

ATAR Alternate transmission and alternate reception

ATSR Alternate transmission and simultaneous reception

CCC Concordance correlation coefficient

CCOR Clutter correction ratio

CDF Cumulative Distribution Function

FSE Fractional standard error

DLR German Aerospace Research Establishment

DSD Drop size distribution

DWD German Weather Service

EM Electromagnetic (waves)

FIR Finite impulse response

FLC Fuzzy logic classification

GC Ground Clutter

IC Insect echo

KIT Karlsruhe Institute of Technology

LWC Liquid water content

MDS Minimum detectable signal

MF Membership function

271



MRR Micro rain radar

NBF Non-uniform beam filling

NEXRAD Next-Generation Radar

NCP Normalized coherent power

NMER Non-meteorological echo removal

NNE North-northeast

NWP Numerical Weather Prediction

OR Orthogonal Regression

PDF Probability Density Function

PPI Plain Position Indicator

PR Precipitation echo

PRF Pulse repetition frequency

PRT Pulse repetition time or Ts

QC Quality control

QPE Quantitative precipitation estimation

QPF Quantitative precipitation forecast

Radar RAdio Detecting And Ranging

RADOLAN S Radar-Online-Aneichung

RMSE Root Mean Square Error

rRMSE Relative Root Mean Square Error

RHI Range-height Indicator

rpm Revolutions per minute

R-G Radar-Gauge

SCWC Self-consistent with Constraint Method

SD Standard devation

SHV Simultaneous transmission/reception

SNR Signal-to-noise ratio

272



STSR Simultaneous transmission and simultaneous reception

STN Meteorological station with rain gauge

SQI Signal quality index

UTC Universal Time Coordinate

VCP Volume Coverage Pattern

WSR-88D Model number of the current operational weather radar in United States

T-R Transmitter-Receiver

Z-R Reflectivity to rainfall relationship or equation

a Generic coefficient of a power-law relationship

ae Radius of Earth

A Specific attenuation (dBkm−1)

ADP Specific differential attenuation (dBkm−1)

A Wave amplitude vector

Ay Wave amplitude vector in y-axis direction

Az Wave amplitude vector in z-axis direction

AR Precipitation accumulation ——

ARG Precipitation accumulation from rain gauge

ARR Precipitation accumulation from radar data

a Generic exponent of a power-law relationship

B Bias

c Speed of light in a vaccum

c Coarse scan, used in subscript

ch Propagation speed for the horizontally polarized waves

ci Number of sample in a category

cv Propagation speed for the vertically polarized waves
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CC Correlation coefficient

CCPS Pearson correlation coefficient

CCSP Spearman rank correlation coefficient

Cr Radar constant

di Difference between the ranks of two sample

D Diameter of hydrometeor or scatterer

Da Diameter of a prabolic refector, or antenna aperture size

Dm Mass/volume-weighted diameter

Dmax The maminum diameter of hydrometeors in DSD

E Electric field

~E Electric field

~E(~r, t) Electric field

~E(x, t) Electric field vector within the y-z plane

Ey Wave amplitude vector in y-axis direction

Ez Wave amplitude vector in z-axis direction

f Fine scan, used in subscript

f Frequency of wave

fD Doppler frequency

fHH Forward-scatter amplitude at horizontal polarization

fVV Forward-scatter amplitude at vertical polarization

f () Probability density distribution

g Linear scale antenna gain function

G Antenna gain function

h Height of an example sampling volume

h0 Height of antenna above the ground

HAGL Height above the ground surface

HASL Height above the mean sea level
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j Indices of series

j Incident wave used in supercript

k Wavenumber

kg Coefficient in defining antenna gain

k̂i Unit vector of the incident wave

k̂s Unit vector of the scaterred wave

KDP Coefficient in defining antenna gain

K Dielectric factor

Kw Dielectric factor of water

LDR Linear depolarization ratio

Lm Microwave loss

Lr Receiver loss

La Atmospheric loss

m Indices of series

M Hit per scan, number of signal sample along sample time axis

Ml Number of equivalent independent samples

Mn The n th moment of DSD

n Complex refraction index

nB Normalized bias

N Number of radar gates, or number of a sample

Na Antenna rotation speed

Nr Refractivity

Nt Total number concentration

N0 Number concentration parameter (mm−µ−1 m−3)

N(D) Drop size distribution

P Probability of an event

P0 Supposed power received along radar beam axis
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P1 Actual power received along radar beam axis

PN Noise power level

Pr Intensity of the received power

Pr Intensity of the transmitted power

P Electric polarization

~P Electric polarization

PIA Two-way path-integrated attenuation

PIADP Two-way path-integrated differential attenuation

Q Quantile of a sample

r Radar range—the distance of a radar pixel to the radar site along the radar beam

rmax Maximum unambiguous range

r(m) Autocorrelation coefficient

rΘ Angular resolution in km along the azimuthal direction

R Precipitation rate (mmh−1)

R0 Signal autocorrelation at lag 0

R1 Signal autocorrelation at lag 1

s Distance along the earth’s surface between two points

shh, svv Backscatter coefficient, or scattering amplitude of the wave scattering for co-polar component

shv, svh Backscatter coefficient, or scattering amplitude of the wave scattering for cross-polar

component

Sinc Power flux density intercepted by a particle

Sr Power flux density at the receiving point

~S Scattering matrix

t Time point

Td Dwell time

Ts Pulse repetition time

T0 Signal autocorrelation at lag 0 from uncorrected data
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va Unambiguous velocity

vc Speed of light in a medium except vaccum

vD Mean Doppler velocity

vmax Nyquist velocity

Vc Radar sampling volume

vr Radial velocity

wt Terminal fall velocity of falling raindrops

x̂ Unit vector along the x-axis direction in a three-dimensional cartesian coordinate

X Predictor

ŷ Unit vector along the y-axis direction in a three-dimensional cartesian coordinate

Y Response

ẑ Unit vector along the z-axis direction in a three-dimensional cartesian coordinate

Z Radar reflectivity factor

ZDR Differential reflectivity in logarithmic scale (dB)

Zdr Differential reflectivity in linear scale

Ze Equivalent radar reflectivity factor

Zhh Equivalent radar reflectivity factor at horizontal polarization in linear scale (mm6 m−3)

ZH Equivalent radar reflectivity factor at horizontal polarization in logarithmic scale (mm6 m−3)

Z
′
H Equivalent radar reflectivity factor at horizontal polarization in logarithmic scale (mm6 m−3)

Zmin Minimum detectable radar reflectivity

Zvv Equivalent radar reflectivity factor at vertical polarization in linear scale (mm6 m−3)

ZV Equivalent radar reflectivity factor at vertical polarization in logarithmic scale (mm6 m−3)

α Coefficient for attenuation correction, ratio of Ah and KDP

β Coefficient for differential attenuation correction, ratio of ADP and KDP

δ Phase difference

277



δh Displacement of a radar sampling volume

δ0 Backscatter differential phase

∆ Difference between two precipitation data

∆r Range spaceing or range interval over which echoes are averaged to make a final range gate

∆t Time gap

∆xi Bin width in histogram or PDF

∆Z Z calibration factor

∆Zatc Z calibration factor

∆ZDR Increament of ZDR for ZDR calibration

∆Φ Phase shift during a radar pulse

ε Dielectric constant or permittivity

εr Relative dielectric constant or relative permittivity

ε0 Free space permittivity

η Radar reflectivity

θe Elevation angle of radar beam

θbeam Beamwidth

θmin Terrain-following minimum elevation

θsfc Terrain-following elevation

Θ Horizontal or azimuth beamwidth, azimuthal resolution in ◦

κ Width-to-length ratio of a radar gate, ratio of radial resolution to azimuthal resolution

λ Wavelength

Λ Distributiion shape parmeter in DSD model (mm−1)

µ Distribution shape parameter in DSD model

µM Ratio of M to Ml

µX Expectation of sample X

µY Expectation of sample Y

ρHV Copolar cross-correlation coefficient
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ρw Density of water

σ Texture parameter of a variable

σb Backscattering cross section

σH Backscattering cross section for horizontal polarization

σv Spectrum width of Doppler velocity distribution

σV Backscattering cross section for vertical polarization

σX Standard deviation of sample X

σY Standard deviation of sample X

σ(D) Single particle scattering cross section

τ Transmit pulse duration

τdecorr Decorrelation time

φ Propagation differential phase

φa Azimuth angle of a radar beam

φhh Phase of horizontally polarized wave

φvv Phase of vertically polarized wave

φ0 System differential phase

φ01 Initial phase for y-component of electric field

φ02 Initial phase for z-component of electric field

φ0 Initial phase for z-component fo electric field

ΨDP Differential phase shift

Φ Vertical or elevation beamwidth

ΦDP Differential phase

χ Electric susceptibility

ω Angular frequency
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B. Appendix

B.1. Auxiliary analyses for X-band radar data

B.1.1. Sensitivity of attenuation correction to spike signals

The attenuation correction procedure is based on u-φDP (Section 4.6), and spike signals are character-

ized by high u-φDP (Section 4.3). If attenuation correction is applied prior to spike signal filtering, the

large u-φDP of spike signals might lead to erroneous ZH after attenuation correction. For example, for the

azimuth at 28◦, we see a tremendous increase in ZH after attenuation correction—the exponentially in-

creasing green curve within the rightmost shaded area in upper plot in Fig. B.1(b). In contrast, the black

curve for the ZH without attenuation correction stays steady around 20 dBZ, corresponding to rainfall

rate about 0.5 mmh−1. The ’unrealistic’ u-φDP of these spike signals used in the attenuation correction

procedure bring about the unreasonable radar reflectivity correction ∆Zatc; this large ∆Zatc superimposed

with the original ZH before applying attenuation correction (the black curve) leads to ZH up to 60 dBZ.

Such high ZH is usually associated with severe convective storms with heavy rain or hail, but obviously

the high ZH in this case is noise caused by a improper combination of the spike signals and attenuation

correction, and there is no heavy rain. We should filter out this misleading high ZH before using ZH for

estimating precipitation rates. It also reveals the necessity of spike signal filtering especially for ZH with

attenuation correction.

(a)

(b)

Fig. B.1.: Rays at azimuths of 27◦ (a) and 28◦ (b) for the same data as Fig. 4.5, where shaded areas are the radar
gates contaminated by the spike signals, the black/green lines are ZH before/after attenuation correction,
and the yellow lines are uncorrected differential phase φDP
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However, this erroneous ∆Zatc only occurs in a small part of the radar beam; along the same

radar beam, for other radar data contaminated by spike signals (other shading areas), ZH before and after

attenuation correction are the same. Besides, for the radar beam of the adjacent azimuth at 27◦, the

attenuation corrected ZH is identical to ZH without attenuation correction for the entire radar beam. It

implies, the presence of spike signals does not always lead to the wrongly ∆Zatc, and the attenuation

correction procedure is not always affected by spike signals.

Regardless of the impact of spike signals on attenuation correction, all these radar gates iden-

tified as being contaminated by spike signals are filtered out by applying the spike signal filtering pro-

cedure. It means that whether spike signals removal is applied prior to or after attenuation correction

makes nearly no difference to ZH values.

B.1.2. Sensitivity of attenuation correction to second-trip echo

As shown in Fig.4.9, the second-trip echoes bring “extra” erroneous u-φDP measurements. Given that the

attenuation correction procedure relies on the magnitude of u-φDP (Section 4.6) and precedes the second-

trip echo filtering in our data QC procedure, we inspect the impact of these ’extra’ second-trip echoes in

terms of u-φDP on the attenuation correction as follows.

(a)

(b)

Fig. B.2.: An example ray to illustrate that the existence of second-trip echoes in terms of uncorrected differential
phase φDP brings errors to the attenuation correction of the fine scan in the same case at 00:03 UTC
7 July 2017 as Fig. 4.7. The top figure shows the attenuation corrected ZH (in light blue line) for the
fine scan and their corresponding uncorrected ZH (in dark blue line), and the attenuation-corrected and
uncorrected ZH for the coarse scan (in the overlapping red and orange lines), and the green areas flag
the radar gates as being contaminated by second-trip echo; the bottom figure shows the uncorrected
differential phase φDP for the fine and coarse scans respectively (in thin blue and red lines respectively),
and specific differential phase KDP for fine and coarse scans respectively (in thin green and magenta
lines respectively). The yellow area highlights the suspiciously large negative KDP values associated
with second-trip echoes

282



B.1.3. Another type of suspicious echoes

A few radar images in our dataset display echoes with moderate intensity scattered throughout the entire

three-dimensional radar coverage during the non-rainy periods (Fig.B.3). Different from other types of

echoes (Section 4.5), the spatial distributions of these suspicious echoes can be either radial or circular.

I don’t know the sources for this type of noise. Fortunately, it only occurred a few times and does not

impact the entire dataset too much.

(a) (b)

(c) (d) dBZ

Fig. B.3.: PPI displays of ZH (a) at 1.5◦-elevation at 17:51 UTC on 3 June 2017, (b) at 3.2◦-elevation at 17:51 UTC
on 3 June 2017, (c) at 1.5◦-elevation at 08:03 UTC on 13 June 2017, and (d) at 3.2◦-elevation at
08:03 UTC on 13 June 2017

B.1.4. Spatial distribution of polarimetric variables

As a supplementary to Section 4.9.3, this section presents differences in the mean ZDR, ρHV, SNR and

SQI: 1) between the fine scan and coarse scans, and 2) between the data prior to and after the data quality

processes, that is, between the raw data and the processed data. These mean values are averaged over all

the measurements from 23 May 2021 to 16 October 2021.

For ZDR, the raw ZDR of the coarse scan presents a much larger area of the mean ZDR more

than 1.5 dB greater than the mean ZDRof the fine scan (Figs. B.4(a) and B.4(b)). This corresponds to the
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conclusion in Section 4.4 that the ground clutters are more prevalent in the coarse scan data. With the data

QC procedure, the averaged ZDR grater than 1.5 dB are removed to a large extent. The spatial distribution

of the mean ZDR of both scan gets similar to each other. As we know that ZDR is strongly affected by

the ground clutters (Section 4.5), such reductions of large positive ZDR in both scans substantiate the

non-meteorological echo removal can successfully remove the majority of the ground clutters.

(a) (b)

(c) (d) dB

Fig. B.4.: Range-azimuth mapping of ZDR, where (a) is for raw ZDR of fine scans, (b) for raw ZDR of coarse scans,
(c) for processed ZDR of fine scans, and (d) for processed ZDR of coarse scans

Prior to radar data QC, the mean ρHV in fine scans are quite different from that in coarse scans.

First, although in both scans the ρHV measurements smaller than 0.85 dominate in the range closer to the

radar site, such an area extends to a farther range for the coarse scan dataset. This again corresponds

to a larger amount of non-meteorological echoes in the coarse scan than the fine scan. Second, for the

farther range such as 30 km away from the radar, the majority of the mean ρHV values are above 0.95

for the coarse scan, but the mean ρHV values between 0.92 and 0.95 prevail in the fine scan. It implies

that the fine scans provide ρHV smaller than its counterpart at the same locations in the coarse scans. As

mentioned in Section 4.8 that ρHV is an indicator of the polarimetric data quality, the difference in spatial

distribution of ρHV implies a worse data quality for the fine scan data.
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(a) (b)

(c) (d)

Fig. B.5.: Range-azimuth mapping of ρHV, (a) for the raw ρHV of fine scans, (b) for the raw ρHV of coarse scans,
(c) for the processed ρHV of fine scans, and (d) for the processed ρHV of coarse scans

The data QC procedure removes the majority of non-meteorological echoes whose ρHV are

low. As a result, the low mean ρHV measurements within 20 km away in the raw dataset disappear in the

processed dataset, and for the rest of the range, the ρHV values also increase. Moreover, the discrepancies

in the ρHV magnitude between the fine and coarse scans become smaller. In other words, at least for ρHV,

the removal of non-meteorological echoes reduces the difference between the fine and coarse scan data.

It implies the non-meteorological echoes are more subject to the spatial resolution than the precipitation

echoes.

For SNR, before the data QC, the mean SNR in both datasets are low except the radar gates

in proximity to the radar site, and in general the mean SNR in the coarse scan data is slightly larger than

its counterpart in the fine scan data. After the data QC process is applied, the mean SNR in the processed

dataset increases to at least above 12 dB for the fine scan data, and at least above 15 dB for the coarse scan

data. In general, the SNR in fine scan is slightly smaller than that in the coarse scan, which corresponds

to loss of weak echoes in the fine scan (Section 4.1.1). Despite the slight discrepancy in the magnitude

of SNR between the fine and coarse scans, the data QC procedure discloses the range dependence which

is hidden by the presence of non-meteorological echoes for both scans.
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(a) (b)

(c) (d) dB

Fig. B.6.: Range-azimuth mapping of SNR, where (a) is for the raw SNR of fine scans, (b) for the raw SNR of
coarse scans, (c) for the processed SNR of fine scans, and (d) for the processed SNR of coarse scans

The situation is just the opposite for SQI. Before the data QC, the spatial distributions of

SQI in both scans are similar along with the range dependence, although the magnitude of SQI in the fine

scans is slightly lower than that in the coarse scans. In contrast, the data QC procedure brings about huge

discrepancies between the fine and coarse scans. The overall SQI magnitude in the fine scan significantly

increases to at least above 0.8 along with the clear range dependence. For the coarse scan, the overall

SQI magnitude also decreases from 0.7 to 0.55, except some abnormal areas between 180◦ to 225◦ in

azimuth. I cannot explain what cause these abnormal SQI values. Such an obvious discrepancy can be

attributed to the second-trip echo removal process which is only applied for the fine scan dataset (Section

4.3).
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(a) (b)

(c) (d)

Fig. B.7.: Range-azimuth mapping of signal-to-noise ratio (SQI), where (a) is for the raw SQI of fine scans, (b)
for the raw SQI of coarse scans, (c) for the processed SQI of fine scans, and (d) for the processed SQI of
coarse scans

B.1.5. C-band radar data consistency check

B.2. Auxiliary analyses for C-band radar data

B.2.1. C-band radar data consistency check

C-band radar data used in this study span from 1998 to 2012, and from 2014 to 2019. Given such long

time, we checked the data consistency via Zminover a 20-year period, before evaluating the C-band radar

data with the external rainfall measurements (MRR radar or rain gauge network) (Section 5.2).

The buildings and trees have changed over two decades, which means the static GC mapping

should be updated regularly. Thus, we also examined the evolution of ground clutter over this 20-year

period to establish the static GC map for each summer period (not shown).
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(a) (b)

(c) (d)

(e) (f)

Fig. B.8.: Ray curve of Zminover a month

B.2.2. C-band radar vs DWD

When it comes to using rain gauge measurements to evaluate the C-band radar data, we regard the

precipitation accumulation over a month as the minimum unit, and then we have 3-dimensional datasets

as follows,

Ai, j,k, i = 2005,2006, ...,2019, j = 5,6, ...,9,k = 1,2, ...,125 (B.1)
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where the first index means a year between 2005 and 2019, the second index is for the month (May to

September), and the third index represents the indexing of rain gauges sorted by their distances to the

C-band radar. Given that the C-band radar data have a much longer time series (over two decades), unlike

the foregoing R-G comparison for the X-band radar, the temporal scales we focus on here are monthly,

annual and the total period, that is to say, accumulation from every month in each year (Ai, j,k), 5-month

accumulation in each year (Yi,k = ∑
9
j=5 Ai, j,k), monthly accumulation across over all the years (for May,

June, July, August and September separately) (M j,k = ∑
2019
i=2005 Ai, j,k), and total accumulation including

all the five months across all the years (Tk = ∑
2019
i=2005 ∑

9
j=5 Ai, j,k).

Except the different time scales, the ideas of the R-G comparison using the C-band radar data

are akin to the previous discussion on the X-band radar data, in terms of the matching-up procedure, the

statistics and so forth. The precipitation estimates derived from the C-band radar data are also matched

to rain gauge measurements, and we are ended up with the coincident dataset from the C-band radar

data and rain gauge measurements. Only the C-band radar data from the 1.1◦ elevation are involved (the

data at the 0.4◦ are largely contaminated by the ground clutters and beam blockage effect). Because of

the data issue in May 1997 and the lack of measurements in June 2013 (due to the dual-polarization

upgrade), we exclude the summers of 1997 and 2013 to assure that the C-band radar dataset used in

the R-G comparison is of good data quality. According to the geographical distribution of rain gauges

within the 120-km C-band coverage (Fig. 3.1(d)), rain gauges are absent in the southwest sector due to

the country border between Germany and France. The number of rain gauges with valid measurements

changes over time (see Fig. B.9). The number of the available rain gauges was insufficient before 2005

(Fig. B.17), so the comparison between the C-band radar data and rain gauge measurements is conducted

only for 14 summers from 2005 to 2019 except 2013, equivalent to 70 months. For each rain gauge,

the comparison is conducted only if at least the 95% of time has valid measurements. The rain gauges

whose corresponding ’match-up’ radar gates always report abnormally high values induced by the ground

clutters or abnormally low values caused by the beam blockage effect are also excluded in the following

R-G comparison.

Take precipitation accumulation in July 2017 (Ai, j,k(i = 2017, j = 7,k = 1,2, ...,125)) as an

example (Fig. B.10(a)). The one-month precipitation accumulation over July 2017 from both radar data

and rain gauge measurements are in accord, illustrated by the CCSP of 0.69, the near 45◦ slope and the

small intercept of the orthogonal regression fitting line, the low AAD, the low rRMSE, and the near-zero

normalized bias. Not for July 2017 only, the majority of CCSPs for other single-month accumulations

exceed 0.6 (Fig. B.11), and the majority of RMSE values fall below 30 mm.
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Fig. B.9.: Data availability of precipitation measurements for the rain gauges within C-band 120-km coverage from
May to September from 2005 to 2019. NG means the number of available rain gauges at a month. The
color shading represents the percentage of the available rain gauge measurements for each month in each
year.

(a) (b)

(c)

Fig. B.10.: Scatterplot for comparing precipitation accumulation between C-band radar and DWD rain gauge for
(a) July 2017, (b) for May to September in 2017 and (c) for all the Julies through 2005-2019. The
color of these dots indicate the distance of a rain gauge to the C-band radar; the dashed red line is the
orthogonal regression fitting line; the solid red line is the diagonal line of scatterplot; the metrics shown
in the left upper corner include the OR fitting equation, AAD, CCSPs, rRMSE, nB and the number of
dots in the scatterplot N
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Take precipitation accumulation of the summer (May to September) in 2017 (∑9
j=5 Ai, j,k(i =

2017,k = 1,2, ...,125) or Yi,k(i = 2017,k = 1,2, ...,125)) as the second example (see Fig. B.10(b)). As

expected, AAD increases because this second example involves 5-month accumulation; the orthogonal

regression fitting line deviates more from the diagonal line, compared to the first example for July 2017.

This slight disagreement might be due to the absence of the C-band radar measurements for two rainy

days with long-time heavy rain events in September 2017 due to the malfunction of the radar hardware.

Take precipitation accumulated over all Julys from 2005 to 2019 ( ∑
2019
i=2005 Ai, j,k( j = 7,k =

1,2, ...,125) or M j,k( j = 7,k = 1,2, ...,125)) divided by number of years as the third example (see

Fig. B.10(c)). It also illustrates a good accord between radar and rain gauge, similar to the first example.

Fig. B.11.: Time series of Spearman CCs and RMSE from the comparison between rain gauges and C-band radar
data over the all the 5-month summers from 2005 to 2019 except 2013. The blue line is for Spearman
CCs and the red line is for RMSE

Analogous to the first example, if we consider the monthly precipitation accumulation for all

the single months (Fig. B.12(a)), the number of the paired data (AGradar,AGG) exceeds 7000. Analogous

to the second example, if we consider all the 5-month accumulation from 2005 to 2017 (Fig. B.12(b)),

the number of the paired data exceeds 1000. Analogous to the third example, if we consider the monthly

accumulation averaged from 2005 to 2017 for the total five months, the number of the paired data exceeds

350 (Fig. B.12(c)). The comparison based on the larger amount of the paired data is supposed to further

ensure the representativeness of our R-G comparison.

Regardless of the temporal scales, the R-G comparison based on the larger size of samples

also show good R-G correlations (Fig. B.12). The correlation efficients on all four temporal scales exceed

over 0.65. Considering the high variability of precipitation and intrinsic differences in the R-G compari-

son (Tab. 5.2 and Section 2.3), these CCs are high enough to support the correlation between the C-band

radar data and the independent measurements from the rain gauge network. Moreover, the orthogonal

regression fitting curves have slopes close to a slope of 45◦, further demonstrating the resemblance in

terms of the absolute magnitude of the precipitation accumulations obtained between the radar and rain

gauges. In addition, the relative RMSE decreases with the longer temporal scales, because the random

variations tend to cancel out if the integration time becomes longer, and normalized biases are close
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to zero, further substantiating the concordance between the radar-based precipitation estimates and rain

gauge measurements.

(a) (b)

(f) (e)

Fig. B.12.: Scatterplot for comparing precipitation accumulation between C-band radar and DWD rain gauge for
(a) individual single month accumulation, (b) 5-month accumulation in each year, (c) monthly accu-
mulation for a specific month (May, June, July, August and September individually ) averaged across
all the years, and (d) 5-month accumulation averaged over all the years. Other features are the same as
Fig. B.10

Colors of the dots in Fig. B.12 represents the distances of rain gauges to the C-band radar;

these dots distribute randomly along the diagonal line of the scatterplot. If radar data are severely affected

by the attenuation issue, the dots representing rain gauges located far from the C-band radar will mainly

lie below the diagonal lines. However, it is not the situation as our data show in Fig. B.12(d). Thus, we

may implicitly infer that attenuation at the C-band radar doesn’t lead to severe underestimation of the

precipitation estimates for the long-term accumulation.

If the aforementioned statistics (correlation coefficients, RMSE, etc.) are calculated for each

rain gauge individually, we can obtain the geographical distribution of the statistics (Fig. B.13), which

allows us to identify some rain gauges whose measurements disagree with the radar data, and to inspect

the range-dependence effect or the overshooting effect.

At the 2◦ elevation, the concordance between rain gauge measurements and radar estimates

deteriorates as the rain gauges are situated farther from the C-band radar, shown by the CCSPs decreas-
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ing from 0.8 to below 0.5 (Fig. B.13(b)). Besides, through the mapping of the mean field bias between

radar and gauge (Smith and Krajewski, 1991), we can find the radar overestimates the rain gauge mea-

surements for rain gauges near the C-band radar, and this overestimation gradually mitigates with the

further increasing range and reverses into an underestimation starting from the distance around 80 km;

this underestimation becomes more apparent with the further increasing range, and the magnitude of this

underestimation for the rain gauges beyond the 100-km distance away from the radar is much larger than

the magnitude of overestimation for the rain gauge in proximity to the radar (Fig. B.13(d)).

Fig. B.13.: Mapping statistics (such as CC and bias) of each rain gauge for comparison between the C-band radar
and DWD rain gauge measurement for summertime 1998–2019 at the 2nd and 3rd elevations. The
color shading shows the magnitude of CCSPs and bias (B = ARC-band−ARG as defined in 3.3.3); the
cool color in (c) and (d) implies that radar data overestimate the rain gauge measurements, vice verse
for the warm color; the green triangle in the center indicates the location of the C-band radar, the green
irregular closed curve in the southeast direction of the C-band radar shows the boundary of the Stuttgart
city; the large green circle confines the 75-km coverage of the X-band radar

This reason for this change in bias is as follows. Along a radar beam of the 2◦ elevation, the

radar gates 80 km away from the radar reach 3.3 km in height, as high as the averaged freezing level in this

region (Section 3.1.4). It means what the radar observes is likely to be solid hydrometeors (ice crystals,

snowflakes, etc.) or be a mixture of liquid and solid precipitation. The physical characteristics of the

solid hydrometers differ markedly from those of the liquid hydrometeors in terms of their size, shape,
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density and particularly ε . The dielectric factor K used in the radar equation (Eq. 2.13) is calculated

from ε , with a high value of 0.93 for liquid hydrometers but a low value of 0.176 for solid hydrometers.

These differences in physical properties inevitably lead to the differences in the radar’s observations

of solid, liquid, or the mixture phase precipitation, which demands a different precipitation estimator

such as a relation linking radar reflectivity and snow (Z-S relation) instead of the Z-R relation used

previously. In our case, it is impossible to observe the solid precipitation (snow or graupel) near the

ground surface during the summertime in the southern Germany, which implies that what rain gauges

measure should always be liquid precipitation except occasional hail. Using the aforementioned Z-R

relation radar reflectivity without distinguishing between liquid and solid hydrometers leads to incorrect

estimations of precipitation.

In principle, we expect the R-G discord for the radar gates at a certain height (around the

freezing level) above the surface, as the case of the 2◦ elevation radar beam beyond 3.3 km. This effect

caused by the curvature of earth and the slanting radar beam is named as overshooting. That accounts for

why people prefer radar data from low elevations when they estimate the precipitation near the ground

surface. A tradeoff exists between avoiding overshooting and avoiding the ground clutter contamination

when selecting the proper elevations. In the other words, for the high elevation, we may only rely on the

data from the radar gates below freezing levels for the purpose of comparison between the radar data and

rain gauge measurement if the classic Z-R relation is used.

Contradicting to the 2◦ elevation, the R-G comparisons at the 1.1◦ elevation over the majority

of the rain gauges exhibit high CCSPs exceeding 0.75 and small biases with the absolute magnitude

less than 20 mm, even for the rain gauges beyond 100km far away from the C-band radar. This accord

between two datasets suggests that, for R-G comparison at the 1.1◦ elevation, the range effect is minimal.

A short discussion follows about the noticeable biases in the R-G comparison for a few

rain gauges in Fig. B.13(c). The large negative or positive biases are mainly owing to the topography

(Fig. B.14(a)). For instance, a radar gate along the azimuth of 324◦ close to the 40-km range ring reports

a large positive bias whereas two radar gates along the similar azimuthal direction near the 80-km range

ring report negative biases. This positive bias is due to the ground clutter where an elevated terrain height

(maybe a hill) (the beam blockage in the northwest direction of the C-band radar starts roughly at the

40-km ring as well, as shown in Fig. B.14(b))) acts as a strong ’reflector’ which causes high ZH at a much

higher frequently. Meanwhile this reflector also reduces the radiation arriving at the farther radar gates

behind the reflector, resulting in the reduced radar reflectivity, which further leads to negative biases.

Besides a few radar beams in the northwestern direction, the terrain-induced beam blockage is more ob-

vious in the southern directions of the C-band radar (Fig. B.14(b)); the rain gauges located ’behind’ the

elevated terrain height (Black Forest and Swabian Alps) show an underestimation on the order of magni-

tude about 30 mm in terms of R-G comparisons of the monthly precipitation accumulation. Although all
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these radar gates are affected by the underestimation, the radar gates farther from the radar have a lower

CCSP illustrated by the smaller size of the circles.

Fig. B.14.: (a) Mapping of the statistics over rain gauges which show significant overestimation or underestimation
in Fig. B.13(c). The size of marker is linearly proportional to its CCSP; the diamond marks in cool colors
indicate the overestimation of radar data; the circular marks in warm colors indicate the underestimation
of radar data; three large green concentric circles represent 40-, 80- and 120-km range rings of the C-
band radar coverage. (b) The terrain-permitting minimum elevation for the 1.1◦ elevation sweep of the
C-band radar. The blue triangle indicates the location of the C-band radar; the red circle is the 40-km
range ring

In short, the range effect and overshooting influence the accuracy of the radar-derived precip-

itation estimates at the 2◦ elevation but not that much for the 1.1◦ elevation. Besides a few radar gates

affected by the topography, the majority of the ’match-up’ radar gates at the 1.1◦ show clear concordance

with the rain gauge measurements from their corresponding rain gauges. Interestingly, the attenuation at

the C-band radar is not as severe as that in the X-band radar (Section 4.6 and Section 5.2.1).

The long-term record data from the C-band radar and rain gauges allow us to have a quick

look on the dryness or wetness of the summers in the two decades (Fig. B.15(a)). August 2006, and July

2014 show the simultaneous and concordant monthly precipitation accumulation maximums from radar

estimation and rain gauge measurements, illustrated by peaks in the time series of monthly precipitation

accumulation averaged over all the R-G pairs. It is the same for the precipitation minimums in July 2015

and September 2016. In this way, we can easily identify the climatologically ’dry’ and ’wet’ months

or ’dry’ and ’wet’ summers. However, keep in mind that this annual variation of summer precipitation

is based on the geographically scattered samples—roughly 100 rain gauges and their match-up corre-

sponding radar gates. Although the rain gauges are distributed randomly and more or less evenly, the

total number is limited. Meanwhile, this time series easily show clear overestimations from May-July in

2007 and from June to August in 2011, and a clear underestimation in 2013.
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Fig. B.15.: Time series of R-G comparison of yearly/monthly precipitation accumulations from 2005 to 2019. The
dashed lines in (b) are the 5-month precipitation accumulations averaged from summer 2005 to 2019
except 2013

B.2.3. C-band radar vs MRR

The C-band radar is located around 60 km away from the MRR site, and radar beams of the C-band radar

at 1.1◦, 2.0◦ and 3.0◦ intersect the MRR radar beam (the lowest elevation of C-band radar is excluded)

at the altitudes of 1.1 km, 2.1 km and 3.1 km (Fig. 5.23(c)). However, the last intersection reaches the

maximum range of the MRR, in which the MRR measurements may be not that reliable. Thus, we

primary focus on the radar-MRR comparison for the C-band radar sweeps at 1.1◦ and 2.0◦ elevations,

and ignore the radar sweeps at 3◦ elevation.

The C-band radar and MRR match-up procedure is identical to that for matching up the X-

band radar and MRR. Since no data control quality procedures were applied to the C-band radar, we

exclude the discussion of the effect of data control quality on the radar-MRR comparison. On the other

hand, given that the C-band radar data do not undergo any data QC, we also exclude ZH below a certain

threshold (0 dBZ), to avoid these weak echoes which are most likely from non-meteorological targets

and have little weights in precipitation estimation, and thus are of no interest in this study. To make it
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short and avoid duplication, unlike the X-band radar-MRR comparison going through three time scales,

we only consider the C-band radar-MRR comparison in the instantaneous time scale.

Fig. B.16.: 2D-PDF with orthogonal linear fitting lines to compare the C-band radar and MRR measurements,
where (a), (c) and (e) are in terms of radar reflectivity ZH for the radar data of the elevation of 1.1◦, 2.0◦,
and 3.0◦, respectively, (b) and (d) are in terms of precipitation rate for the 1.1◦ and 2.0◦ elevations, the
dashed red line is the diagonal line, and the solid red line is the orthogonal fitting line, and (d) shows
the number of the paired radar data (ZC-band and ZMRR) under different scenarios
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ZH data from intersection points of the C-band radar and MRR at heights of 1.1 km and 2.1 km

show consistent concordances—illustrated by the closeness of fitting lines to the diagonal lines—and

correlation, illustrated by high correlation coefficients (Fig. B.16(a) and B.16(c)). In contrast, for the

intersection point at 3.1 km high, the fitting curve deviates substantially from the diagonal lines and

a large number of scatterers cluster whose MRR ZH values fall between 5 and 10 dBZ (Fig. B.16(e)).

Given that the radar-MRR comparison for the C-band radar only considers ZH above 0 dBZ, we notice

that, for the elevations of 1.1◦ and 2.0◦, ZC-band and ZMRR shows consistence in being above or below

the threshold simultaneously, but not for the elevation of 3.0◦ (Fig. B.16(f)). Both the deviation of the

fitting curve and disagreement on being below or above 0 dBZ reconfirms that ZH from the last radar gate

are in bad quality, probably due to the loss of signals, improper attenuation correction or inappropriate

use of the empirical relations between falling velocity of raindrops and drop size, and so the comparison

for the elevation of 3.0◦might be excluded. Besides, the correlation coefficients decrease slightly as the

elevation increases, but they are high enough to illustrate the correlation between the radar and MRR

measurements, even for the elevation of 3.0◦. It implies, the different magnitudes of both data do not

affect the values of CC. In brief, ZH from MRR and C-band radar (ZC-band and ZMRR) agree quite well

with each other.

B.3. Auxiliary analyses for other data

B.3.1. Precipitation climatology based on 20-year rain gauge network dataset

We first examine the annual variation of the total 5-month summer precipitation accumulation for the

rain gauges within the area of study. The entire dataset includes the rain gauge measurements over the

past two decades,and the measurements within one year is regarded as a subset. For each year, each

rain gauge, if its operation time is long enough (exceeding 97%), reports its 5-month precipitation accu-

mulation (ARG). Thus, the sub-dataset for a year contains N ARG (N is the number of rain gauges in a

year). On the basis of the inter-quartile range (IQR) and median in each sub-dataset, the summers 2003,

2015, and 2018 are identified as the ’dry’ summers, the summers 2000, 2002 and 2007 are considered

as the ’wet’ summers, and the summers 1999, 2004, 2012 and 2016 are regarded to be in a close resem-

blance with the ’mean’ status (Fig. B.17). The summer 2017, when we conducted our X-band radar field

experiment in Stuttgart, is identified as a moderately wet summer.
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Fig. B.17.: Boxplot of the 5-month summer precipitation accumulation over the rain gauge network (on the left
axis) and the number of available rain gauges within the C-band radar coverage (on the right axis),
where the rightmost box represents the ’mean’ box averaged from 1997 to 2019, the short horizontal
red lines within the boxes are median, the upper and lower sides of the boxes represent the first and third
quartiles (Q1 and Q4), equivalently the 0.25 and 0.75 quantiles (Q0.25 and Q0.75) (the length of the box
represents the inter-quartile range (IQR = Q3−Q1)), the whiskers extending upward from the upper
sides of the boxes represent the range from Q3 to Q3+ 1.5× IQR, the whiskers extending downward
from the lower sides of the boxes represent the range from Q1 to Q1−1.5×IQR, the ’plus sign’ markers
represent the outliers whose values are less than Q1−1.5× IQR or greater than Q3+1.5× IQR, three
gray horizontal dashed lines correspond to Q1, median and Q3 of the ’mean’ box

The length of boxes in the box diagram (Fig. B.17) represents the variability of the rainfall

accumulations among the rain gauges within the C-band radar coverage in a summer. The wet summer

2002, in spite of less than 20 available rain gauges, is associated with the box with the largest vertical

dimension, which implies that the precipitation in summer 2002 should be highly uneven within the

area. This large spatial variation in summer 2002 can be further confirmed via the comparison between

the boxes of 2001 and 2002. Since the rain gauge networks in summers 2001 and 2002 were nearly

identical, the much shorter length of box for summer 2001 further confirms its relative small spatial

variation.

Similarly, the relative short vertical dimension of the box for the summer 2017 implies that

the precipitation of 2017 spatially distributed more homogeneously compared to other years. Combined

with the apparent wetness of 2017, the precipitation in summer 2017 simultaneously satisfies two fa-

vorable criteria—enough precipitation amount and its (relatively) even spatial distribution; these two

characteristics strengthen the reliability of targeting the summer 2017 as the measuring period of our

X-band radar field experiment–a specifically detailed investigation (to be honest we did not and also was

unable to predict the precipitation of 2017 before our campaign; it is just our luck).
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Most of the red lines representing the medians are located below the center of the boxes

(Fig. B.17); these right-skewed boxes indicate right-skewness of the probability density distribution, a

larger variation among the precipitation measurements above the medians combined with a smaller vari-

ation among the precipitation measurement below the medians. The outliers appear only above the boxes,

which means the prevalence of the positive anomalies and the absence of the negative anomalies. The

extremely high values for some rain gauges are very likely due to a few convective precipitation events

with heavy precipitation amounts passing over some random rain gauges, resulting in outliers above the

upper whiskers. In 2017, a few outliers above the boxes imply the convective systems may have been

more active in 2007, which indirectly implies a sufficient number of extremely convective storms for our

specific study on convective precipitation.

B.3.2. MRR data evaluation with a rain gauge

Before comparing MRR with radar data and evaluating radar data with MRR (Section 5.2), we assessed

the MRR data with its collocated rain gauge. These data used in the assessment were from the entire

measuring period for the X-band experiment period.

(a) (b)

Fig. B.18.: (a) Scatterplot between rainfall rate measured by Pluvios rain gauge and rainfall rate measured by MRR,
and (b) 2D-PDF between rainfall rate and ZH both measured by MRR

The effective measure areas (projected on the ground surface) are on the order of cm2 for a

rain gauge, of m2 for a vertical-pointing radar, and of km2 for a volume scan radar, respectively. The

sampling manner of a vertical-pointing scan mode is closer to the rain gauge, compared to a volumetric

scan mode, in terms of the magnitude of the area. It implies that what a vertical-pointing scanning

mode observes should be statistically closer to what a rain gauge measures, and thus we give credence to

the agreement between precipitation estimates derived from a vertical-pointing MRR and precipitation

measurements provided by the rain gauge ’Pluvios’.
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For the Z-R relation (Z = aRb), on the basis of our datasets, the non-linear fitting procedure

determines the value for a about 200 and for b about 1.6, making our Z-R relation nearly identical to the

classic Marshall-Palmer relation. In other words, the classic Marshall-Palmer relation is applicable to

the precipitation in the area of investigation.

B.3.3. Freezing layer height

To estimate the freezing level height, we use the air temperature vertical profile calculated using the

radiosonde data from a radiosonde site in Stuttgart airport at 48.83◦N and 9.2◦E at an altitude of 321 m

above the sea level. The data were accessed from the University of Wyoming (Oolman, 2017; Durre and

Yin, 2008). Since we are interested in precipitation, the freezing level heights during the rainy periods

are also particularly sorted out. For the entire measuring period of our X-band radar experiment, the

freezing on average was around 3.2 km during the rainy period and 3.5 km including rainy and non-rainy

period (Fig. B.19)

Fig. B.19.: The CDF of the freezing level height from radiosonde data during the entire period and the rainy period
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4.5 Ray cross-section at 312◦ azimuth of ZH before (in light blue) and after (in dark blue)
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where (a) is ZHof the fine scan at 00:03 UTC, (b) is ZH of the coarse scan at 00:04 UTC,
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4.17 Comparison of echo intensity between fine and coarse scans in terms of ZH over GC

gates determined using the multiple-thresholding procedure, mapping the ZH averaged
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4.33 PPI displays of ZH where (a), (c) and (e) are based on ZH from the fine scan, coarse

scan and C-band radar data respectively for a case at 15:53–15:55 UTC on 18 August

2017, (b), (d) and (f) are for another case at 10:05 UTC on 3 October 2017. The black

stars represent the location of the X-band radar site, the green straight horizontal lines

are the azimuth of 270◦, the black squares in (a), (c) and (e) confine a convective storm
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and (f) indicate the location of widespread stratiform precipitation whose ZH intensity is
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4.40 PPI displays showing the effect of attenuation correction on the rainfall accumulation

for a 4-hour rainy episode from 20:00 to 23:00 UTC on 21 July 2017, (a) ARf the to-

tal AR estimated from the fine scans without attenuation correction, (b) ARZPHI,f with

ZH corrected by ZPHI attenuation correction, (c) ∆ = ARc−ARf difference between the

fine and coarse scans before attenuation correction, (d) ∆ = ARc−ARf after attenuation

correction (e) ∆f = ARZPHI−ARiterative the difference in rainfall accumulation corrected

by ZPHI and iterative ZPHI for fine scan, and (f) ∆c−∆f . . . . . . . . . . . . . . . . . 133
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and (b) are for two rain gauges with ID numbers of 4349 and 1255 respectively, with Ze
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ZDR, KDP, ρHV, the rainfall rate based on the uncorrected ZH and attenuation-corrected
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4.44 Two pairs of volumes scans at 19:03(19:04) UTC and at 20:33(20:34) UTC on 21 July

2017) to evaluate the agreements between fine and coarse scans in terms of the φDP constraints

at ends of rays used for attenuation correction. (a), (c) and (e)) are for the case with appar-

ent second-trip echoes, (b), (d) and (f) are for the case 1.5 hour later without second-trip

echoes, and the unfilled triangle in (c) points out the location of second-trip echoes . . . 142
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4.52 Range variation of absolute occurrence frequency of the X-band radar polarimetric mea-

surements at the 1.5◦ elevation for the entire measuring period, specifically, ZDR (a) and
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