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Abstract. As more and more processes are digitized, the protection of
personal data becomes increasingly important for individuals, agencies,
companies, and society in general. One principle of data protection is
data minimization, which limits the processing and storage of personal
data to the minimum necessary for the defined purpose. To adhere to
this principle, an analysis of what data are needed by a piece of software
is required. In this paper, we present an idea for a program analysis
which connects data minimization with secure information flow to assess
which personal data are required by a program: A program is decomposed
into two programs. The first projects the original input, keeping only
the minimal amount of required data. The second computes the original
output from the projected input. Thus, we achieve a program variant
which is compliant with data minimization. We define the approach, show
how it can be used for different scenarios, and give examples for how to
compute such a decomposition.
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1 Introduction

Privacy and data protection are urgent topics as more and more processes in
are digitized. One consequence of this digitization is the increasing amount of
stored and processed personal data. To ensure that users’ privacy is respected
and their data protected, the European legislator reacted with the General Data
Protection Regulation (GDPR) [3] which regulates the collection and processing
of personal data. One important principle is data minimization, which limits the
collection and storage of personal data to those which are “necessary in relation
to the purposes for which they are processed” [3, §5(1)(c)].

Therefore, authorities and companies must analyze which personal data are
necessary for the conduct of their operation. This not only includes inspecting the
accessed and used personal data, but also analyzing how they are involved in the
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process and what decisions, if any, depend on them. For example, an authority
may store the exact income of a person, but if it only needs to know that the
income is above a certain threshold, it can just store this Boolean information.
As a result of such an analysis, only the minimal necessary information should
be collected.

Contribution. We sketch a formal approach to analyze and assess the data usage
of algorithms (Sect. 2). The idea of the analysis is to decompose a given program
into two parts: The first part projects the original input data onto the minimal
set of data from which the result can be computed. The second part computes
the original output from this minimal data. We discuss how this decomposition
can be applied in different scenarios (Sect. 3) and which additional constraints
are added to the base problem. Moreover, we give two examples of how such
a decomposition can be computed with different precisions using syntactic or
semantic analyses.

2 A Formal Approach to Data Minimization

tax_rate(age, income: H,
base: L) {

if (age<18) return 0*base;
if (age<25 && !(income>1000))

return base;
if (income<=1000)

return 2*base;
return 3*base; }

Fig. 1. An example program which com-
putes someone’s tax rate based on their age
and income.

For the presentation of the ap-
proach, we model a program as a func-
tion f : I → O which maps the given
input i ∈ I to an output f(i) = o ∈ O.
The input space I = H×L is a combi-
nation of personal data H, which are
Highly confidential, and Low confiden-
tial data L like configuration parame-
ters. The high and low categorization
is defined by the author or auditor.
This modeling assumes that programs
are side-effect free and that the output o is computed only by considering the
inputs in H × L. Fig. 1 shows an example program whose output is the tax rate,
whose confidential inputs H are the age and income of a person, and whose
non-confidential input L is a base tax rate, from which the actual taxe rate is
computed.

Basic idea. Given a program f : H×L→ O, we want to find a decomposition into
two programs (π, ρ) such that f(h, l) = ρ(π(h), l) for all inputs (h, l) ∈ H×L and
such that the information provided by π(h) is minimal. We call π the projection
and ρ the reduction.

The information provided by π(h) can be described as the information leakage,
a notion commonly used in quantitative information flow. Leakage is the amount
of secret information (here, the amount of information about h) that is disclosed
by a program [7]. The leakage is given in bits and computed from the entropy.
Different entropy definitions reflect different attacker capabilities. For simplicity,
we consider the min-entropy which reflects how well the input can be guessed by
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an attacker in one try. This leads to a minimization of the number of possible
images of π for deterministic programs: minπ |{π(h) | h ∈ H}| .

Our approach is also related to secure information flow, which analyses
whether an attacker learns secret information by observing the exposed output.
In some situations, secret information is declassified. For example, paper reviews
are confidential until the final acceptance decision is drawn. By computing the
decomposition, we want to infer the minimal amount of secret information that is
declassified by f . This declassified information is represented by the image of π.

An additional benefit of our approach is that it allows for a comparison between
programs. Given two programs f, f ′, we can compute both decompositions and
compare the images of the projections π and π′ to find out which version requires
less information.

We assume that the decomposition of f into (π, ρ) is computed either by the
author of f who honestly wants to observe the principle of data minimization or
by an independent auditor with access to f ’s source code.

Unwanted degenerate solution. If all parameters are in H (e.g., if we replaced the
parameter base in Fig. 1 with a constant), there is a trivial solution to the stated
problem definition, where π(h) = f(h) projects all inputs h to the output f(h)
and ρ is just the identity function ρ = id. In our tax example, this represents a
decomposition in which the applicants compute their tax rates by themselves and
only submit these final tax rates to the authority. This solution is undesirable
for various reasons: First, it does not provide any insight into which information
is required by the computation. Second, from the viewpoint of the authority,
the decision might not be auditable later, especially if the required personal
information has changed. Collecting a rudimentary amount of personal data may
be required to simplify later validation.

The given formalization thus requires further constraints to give useful results.
The constraints depend on the operational purpose and the usage context in
which the personal data should be minimized.

3 Usage Scenarios

In this section, we consider some usage scenarios, each of which leads to different
additional constraints.

Paper-based form. Public authorities often ask applicants for personal data using
paper-based forms. These forms are of course static; their contents cannot change
depending on the user’s input. Also, they should not require the applicant to do
very complex computations.

Let us again consider Fig. 1. It shows a simple program which computes the
tax rate based on the applicant’s age and income, which are both in H. The
authority wants to collect the minimal amount of personal information required
by this program.

To keep the projection simple enough to compute for the person filling out
the form, and to prevent degenerate solutions, we add the following constraint:
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The projection π is only allowed to contain basic unary and binary expressions
over a single variable, e.g., x < 2 or ¬x. In our example, the function which maps
age and income to the three truth values age < 18, age < 25, income > 1000 is
a valid projection.

The reduction ρ then only has to know the values of these Boolean expressions
instead of the exact age and income. Indeed, it is common in tax applications
that applicants only need to confirm that they qualify for some taxation rule
without giving the exact reason why they qualify. Only in doubt does the tax
office request further evidence to check the confirmation.

Web form. Our second scenario uses the same setting, but instead of a paper-
based form, we use a web form. In this case, the decomposition represents the
system borders: π represents the web form in the browser, ρ the program on the
authority’s servers. The user can enter their complete personal information, but
the browser will only send the required information to the authority. This allows
π to synthesize expressions that would be too complex to put on a paper form.
However, the actual decision-making should still be done in ρ, not in π. We thus
modify the previously stated constraint: The program π is allowed to contain
Boolean and arithmetic expressions over multiple variables , e.g., x < y ∧ y < z,
x + y, or x + y > 0. This allows for a smaller information leakage between π
and ρ, but the requirement that π only contain basic expressions (and not, for
example, if or while statements) ensures that the actual computation is still
done in ρ. One reason behind this requirement is that π runs on a non-trusted
computer system, i.e., the browser of the customer or applicant. To ensure a
proper evaluation of the personal data, we still need to transfer them to the
trusted server where ρ is executed. Thinking beyond, we might want to decompose
f into three programs, one that runs on the non-trusted platform and minimizes
the data to be transferred to the server, one that runs on the server and minimizes
the data to be stored, and one which computes the final decision from the storage.
In general, we can extend the approach to a decomposition into an arbitrary
number of program parts, as long as it is defined which computations must be
done in which part.

Outsourcing computation to the cloud. We consider a company which wants to
outsource expensive computations to the cloud while exposing as little internal
data and computation as possible. The decomposition into π and ρ represents
different environments. The program π is executed on the company’s system—
a trusted environment where sensitive computations can be executed—and ρ
is executed in the cloud. Therefore, ρ should contain expensive computations
on the minimal required sensitive data. Thus, in this scenario, π can be any
arbitrary program. Additionally, we assign computation costs to each statement
or expression in f . We want to keep sensitive computations from f from being
moved into the cloud computation ρ. We thus receive new constraints: The
program f is split into π and ρ, such that the computation cost of π is minimal,
and no (or only a certain amount of) sensitive computation is done in ρ.
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4 Approaches to the Computation of the Decomposition

In this section, we sketch some ideas how such a partitioning can be (approxi-
mately) computed. For now, we assume that f is loop-free and that all expressions
are side-effect-free. We also assume that f is free of local variables; i.e., the only
variables that occur are the parameters. We give some ideas of how these restric-
tions can be lifted at the end of this section.

The first approach works syntactically by collecting the set E of all expressions
in f which contain at least one sensitive parameter in H. Choose a set Π ⊆ E
such that all expressions in E can be built up only from expressions in Π,
low parameters in L, literals, and the basic binary operators. E.g., from the
expressions a and b, we can build a + b > 0 and also a + c > 0 if c ∈ L. A
function that maps f ’s parameters to such a subset Π is a valid projection π.
The reduction ρ belonging to π is the function whose body is equal to f ’s body,
except that every expression e in Π is substituted by a new variable, which
represents the value of e as computed by π.

For example, a possible solution for Fig. 1 is Π = {age < 18, age <
25, income > 1000}. The program π maps age and income to the values of
the expressions in Π, and ρ is identical to f except that all expressions in
Π have been replaced by new variables, e.g., the expression age < 18 has
been replaced by a new variable ageUnder18. If we allow π to contain expres-
sions over multiple variables, as in our second scenario, we can also choose
Π = {(age < 18), (age < 25 ∧ ¬income > 1000), (income > 1000)}.

The second approach works semantically: We collect the path conditions
and returned expressions for each path by using symbolic execution, a common
technique for program analysis and widely available for different programming
languages. For Fig. 1, this yields the four conditions

R1 = age < 18;

R2 = ¬(age < 18) ∧ age < 25 ∧ ¬(income > 1000)

R3 = ¬(age < 18) ∧ ¬(age < 25 ∧ ¬(income > 1000)) ∧ income ≤ 1000

R4 = ¬(age < 18) ∧ ¬(age < 25 ∧ ¬(income > 1000)) ∧ ¬(income ≤ 1000))

and the four return expressions 0, base, 2 ∗ base and 3 ∗ base. We choose a set
of expressions Π from whose values the value of the path conditions and return
expressions of all reachable paths can be computed (e.g., from a and b, we can
compute a + b > 0, but also a + b + c− c > 0 for any c) and construct π, ρ as
before.

tricky(a, b: H) {
if(a != 0)

if(b < 0) return a-b;
else

if(a != 0) return b;
return a; }

Fig. 2. An example with unreachable code
and misleading syntax which are unde-
tectable by the syntactical approach.

For Fig. 1, this leads to the same
solution(s) as the syntactic approach.
However, the semantic approach has
several advantages in comparison to
the syntactic approach. First, it is
robust against misleading syntactical
constructs. A programmer may try to
change a program’s syntax to increase
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the required information in favor of
the company. For example in Fig. 2, the programmer split an expression a!=0
and b<0 into two if-statements. A syntactic analysis would include both ex-
pressions in the projection, missing the fact that they can be joined into a!=0
&& b<0, Moreover, working on a semantic level makes the analysis aware of
unreachable code. For example, the return b; in Fig. 2 is not reachable. A
syntactic approach would include b in the projection, while a semantic approach
could notice that this return statement is unreachable.

In general, semantic approaches track and extract the required information
precisely. The disadvantage is the complexity and low scalability of the analysis.
The halting problem is reducible to the computation of the exact minimizing
decomposition. Thus, the exact decomposition is undecidable in general.

To allow local variables, we can transform a program into its static single
assignment (SSA) form, in which every local variable is only assigned to exactly
once. The SSA form allows us to expand the definitions of all variables and
then delete all unnecessary assignments; e.g., the statements a=b;c=a can be
transformed into c=b. We can then apply our—slightly adapted—approaches on
this transformed program. For programs containing loops, we cannot expand
variable definitions like this, since the correct expansion depends on which loop
iteration we are in. One way to solve this may be to choose an upper bound for
the number of loop iterations and unroll all loops.

5 Limitations

Our proposed approach has several limitations. First, we do not assess whether
the given data are “adequate, relevant, and limited to what is necessary” for the
stated purpose, as required by GDPR §5(1)(c). We only consider whether the
data are required to compute the output of the given program. For example, the
gender of a person may not be (legally) relevant for some application process, but
if the program’s output depends on it, our approach will mark it as required. This
difference was discussed by Biega et al. [2], where you can also find a discussion on
the wording of GDPR §5(1)(c), including the legal meaning of the term relevant.

Second, the approach is not aware of statistical correlations or dependencies
between parameters. If two parameters are correlated, e.g., address and income,
the approach is unable to infer that knowing a person’s address may also allow
one to draw conclusions about their income. Datta et al. [4] show how systems
can be validated against this proxy discrimination.

Furthermore, this is a white-box approach which requires access to the source
code and the program structure. On the one hand, this gives us the possibility
to output either witnesses that show why certain data are indeed required by a
program or formal guarantees that the date are not required. On the other hand,
it limits the scalability of the approach, as it needs to scale with large source code.
Also, we need to adapt the approach in situations where the source code may not
be available (e.g., built-in library functions). As discussed in Sect. 4, using the
source code of the program makes our approach, especially the syntactic variant,
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vulnerable to adversaries. Programmers may be able to exploit the program
structure to increase the minimal required amount of information.

6 Related Work

Pfitzmann and Hansen [9] identify five concepts for data minimization: anonymity,
unlinkability, undetectability, unobservability, pseudonymity, and authenticity. We
follow a different approach and only consider whether personal data are required
for the execution of a program. In detail, we try to find a similar program which is
functionally equivalent and requires less personal data. Goldsteen et al. [5] present
a method for the minimization of the required personal data in a machine learning
model. Their approach removes and generalizes the input features. The features
which promise the least degeneration of accuracy are identified in the learned
model. Later in the application phase of the trained machine, only the survived
features are collected. The other features are removed. Therefore, the training
still requires personal data. A similar approach is followed by Biega et al. [2].
They investigate data minimization for recommendation systems under a global
and per-user minimization strategy. Ramadan et al. [10] present a framework for
modeling business processes that evaluates the security, data-minimization, and
fairness requirements, and allows the detection of conflicts between them based
on a catalog of domain-independent anti-patterns.

Program Slicing [1] is a technique to omit unnecessary statements from a
program. A statement is unnecessary if it does not influence the output. We can
compute a program’s slice, in which every statement influences the output. In
such a slice, the required data is easier to identify. Our approach goes further:
Instead of just removing completely unnecessary statements, it is also able to
replace expressions with less informative variants and thus actually decrease the
amount of required information.

Kammüller [6] demonstrates the formalisation of the GDPR using the Decen-
tralized Label Model (DLM) [8] in Isabelle. In DLM, data is labeled with owner
and reader lists which define access rights. DLM allows multiple principles, i.e.,
users who are granted access rights. In contrast to DLM, our approach consumes
only one algorithm as input and input categorization. It can be extended for
multiple principles: If we consider each principle’s information use separately,
we can compute the minimal amount of required information for each principle.
Then, instead of granting a principle read access to the complete information,
they only receive the required amount of information. In contrast to Kammüller,
who checks for GDPR compliance, we focus on a program transformation which
makes a program GDPR-compliant.

7 Conclusion

We present a novel connection between data minimization and secure information
flow. The idea is to split a given program into two programs: one which projects
the specified personal data to the minimal needed amount of data, and one which
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computes the original output from the minimized data. We elaborate various
additional constraints on this formalization depending on different usage scenarios
and also discuss the feasibility of the approximation of such a flow-minimizing
program split.

In the future, we plan to extend our approach to programs with loops. We
also plan to implement both a syntactic and a semantic approach as outlined
in Sect. 4, which automatically computes (minimal or approximately minimal)
projections and appropriate reductions for programs in a real-world programming
language.
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