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Abstract. Deductive verification has been successful in verifying inter-
esting properties of real-world programs. One notable gap is the limited
support for floating-point reasoning. This is unfortunate, as floating-point
arithmetic is particularly unintuitive to reason about due to rounding
as well as the presence of the special values infinity and ‘Not a Num-
ber’ (NaN). In this paper, we present the first floating-point support in
a deductive verification tool for the Java programming language. Our
support in the KeY verifier handles arithmetic via floating-point decision
procedures inside SMT solvers and transcendental functions via axioma-
tization. We evaluate this integration on new benchmarks, and show that
this approach is powerful enough to prove the absence of floating-point
special values—often a prerequisite for further reasoning about numeri-
cal computations—as well as certain functional properties for realistic
benchmarks.

Keywords: Deductive Verification · Floating-point Arithmetic · Tran-
scendental Functions.

1 Introduction

Deductive verification has been successful in providing functional verification for
programs written in popular programming languages such as Java [1,21,39,47],
Python [27], Rust [5], C [23, 53], and Ada [17, 48]. Deductive verifiers allow a
user to annotate methods in a program with pre- and postconditions, from which
they automatically generate verification conditions (VCs). These are then either
proven directly by the verifier itself, or discharged with external tools such as
automated (SMT) solvers or interactive proof assistants.

While deductive verifiers fully implement many sophisticated data represen-
tations (including heap data structures, objects, and ownership), support for
floating-point numbers remains rather limited – solely Frama-C and SPARK offer
automated support for floating-point arithmetic in C and Ada [30]. This state
of affairs is at least partially a result of previous limitations in floating-point
support in SMT solvers. Consequently, deductive verification has been used for
floating-point programs only by experts with considerable manual effort [13, 30].
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This is unfortunate as it makes deductive verification unavailable for a large
number of programs across many domains including embedded systems, machine
learning, and scientific computing. With the increasing need for parallelization
in code, scientific computing specifically has recently experienced algorithmic
challenges for which formal methods may contribute to a solution [9, 54].

One of the main challenges of floating-point arithmetic is its unintuitive
behavior and the special values that the IEEE 754 standard [37] introduces.
For instance, an overflow or a division by zero results in the special value
(positive or negative) infinity, and not a runtime exception. Similarly, invalid
operations like sqrt(-1.0) result in a Not a Number (NaN) value. These special
values are problematic as seemingly straight-forward identities do not hold (x
== x or x * 0.0 == 0.0). In addition, every operation on floating-point numbers
potentially involves rounding, which compromises familiar rules like associativity
and distributivity. Hence, reasoning support for writing correct floating-point
programs is indispensable.

Abstract interpretation-based tools can prove the absence of runtime errors
and special values [18, 41], and bound roundoff errors due to floating-point’s
finite precision [10, 19, 24, 34, 55]. SMT decision procedures [16] or SAT-based
model-checking [22,54], on the other hand, can prove intricate properties requiring
bit-precise reasoning. However, these techniques and tools largely support only
purely floating-point programs or program snippets, or analyze programs only
up to a predefined depth of the call stack. General reasoning about real-world
object-oriented programs, however, also requires support for features such as the
(unbounded) heap, necessitating different analyses which need to be combined
with floating-point reasoning.

Handling floating-points in a deductive verifier has unique advantages. First,
the deductive verification approach already comes with the infrastructure for
reasoning about complex control and data structures (like exception handling and
heap). Second, it allows one to flexibly combine the verifier’s symbolic execution
reasoning with external decision procedures. Third, depending on the theory
support, the verifier or external solver may also generate counterexamples of a
property and thus help program debugging – something an abstract interpretation-
based approach fundamentally cannot provide.

We report on adding floating-point support to the KeY deductive verifier,
providing the first automated deductive floating-point support for the Java
programming language. We focus mainly on proving the absence of the special
values infinity and NaN. While these are helpful in certain circumstances, for most
applications they signal an error. Hence, showing their absence is a prerequisite
for further (functional) reasoning. That said, our extension also allows one to
express and discharge arbitrary functional properties expressible in floating-point
arithmetic, including bounds on roundoff errors for certain programs, and bounds
on differences between two similar floating-point programs

We exploit both KeY’s symbolic execution and external SMT support. On
the one hand, we handle arithmetic operations by relying on a combination of
KeY’s symbolic execution to handle the heap and SMT based decision procedures
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to handle the floating-point part of the VCs. On the other hand, we support
transcendental functions via axiomatization in the KeY prover itself.

Transcendental functions such as sine are a common feature in numerical
programs, but are not supported by floating-point decision procedures. We explore
two ways of supporting them soundly but approximately, by encoding them as
axiomatized uninterpreted function symbols once directly in the SMT queries,
and once in additional calculus rules in KeY. Our evaluation shows that even
though such reasoning is approximate, it is nonetheless sufficient to prove the
absence of special values in many interesting programs.

We evaluate KeY’s floating-point support on a number of real-world floating-
point Java programs. Our benchmark set allows us to evaluate recent progress in
SMT floating-point support in Z3 [26], CVC4 [7] and MathSAT [20] on yet unseen
benchmarks. For instance, we observe that quantifiers are challenging even if they
do not affect satisfiability of SMT queries. Our benchmarks are openly available,
and we expect our insights to be useful for further solver development.

Contributions In summary, we make the following contributions:

– we implement and evaluate the first automated deductive verification of
floating-point Java programs by combining the strength of rule based and
SMT based deduction;

– we collect a new set of challenging real-world floating-point benchmarks in
Java;

– we compare different SMT solvers for discharging floating-point VCs on this
new set of benchmarks;

– and we develop novel automated support for reasoning about transcendental
functions in a deductive verifier.

2 Background

2.1 Introduction to KeY

KeY [1] is a platform for deductive verification of Java programs, working at a
source code level. The input is a Java program annotated in the Java Modeling
Language (JML) [43], encouraging a Design by Contract ([44,49]) approach to
software development. The user specifies the expected behavior of Java classes
with class invariants that the program has to maintain at critical points. Methods
are specified with method contracts, consisting mainly of pre- and postconditions,
with the understanding that if the precondition holds when the method is called,
the postcondition has to hold after the method returns.

After loading an annotated program, KeY translates it to a formula in Java
Dynamic Logic [1], an instance of Dynamic Logic [35] which enables logical
reasoning about Java programs. Logical rules are provided for the translation
of programs into first-order logic, and for closing the resulting goals, or proof
obligations. KeY is semi-interactive in that it allows manual rule application,
while also offering powerful built-in automation and macros. In addition, it is also
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possible to translate an open goal into SMT-LIB format [8] and call an external
SMT solver. For specific theories, SMT solvers can be much more efficient than
KeY’s own automation. This makes it possible to prove some goals, which depend
on SMT supported theories, by using an SMT solver, while others are proved
internally, using KeY’s own automation.

2.2 Floating-Point Arithmetic in Java

In the following, we summarize some central characteristics of Java floating-point
numbers, loosely following [52]. Each normal floating-point number x can be
represented as a triplet (s,m, e), such that x = (−1)s ∗m ∗ 2e, where s ∈ {0, 1}
is the sign, m (called significand) is a binary fixed-point number with one digit
before the radix point and p−1 digits after the radix point (note that 0 ≤ m < 2),
and e (exponent) is an integer such that emin ≤ e ≤ emax. Java supports two
floating-point formats (both in base 2): float (‘single’) precision with p = 24, and
minimal and maximal exponent emin = −126, emax = 127 and double precision
with p = 53, emin = −1022, emax = 1023.

Whenever the result of a computation cannot be exactly represented with
the given precision, it is rounded. IEEE 754 defines various rounding modes, of
which Java only supports round to nearest, ties to even. Rounding is exact, as if
one would first compute the ideal real number, and round afterwards.

The triple representation gives us two zeros, +0 and −0, represented by
(0, 0, 0) and (1, 0, 0), respectively. If the absolute value of the ideal result of a
computation is too small to be representable as a floating-point number of the
given format, the resulting floating point number is +0 or −0. In addition, there
are three special values, +∞, −∞, and NaN (Not a Number). If the absolute
value of the ideal result of a computation is too big to be representable as a
floating-point number of the given format, the result is +∞ or −∞. Also, division
by zero will give an infinite result (e.g., 7.13/+0 = +∞). Computing further with
infinity may give an infinite result (e.g., +∞++∞ = +∞), but may also result
in the additional ‘error value’ NaN (e.g., +∞−+∞ = NaN). Due to the presence
of infinities and NaN, floating-point operations do not throw Java exceptions.

By default, the Java virtual machine is allowed to make use of higher-precision
formats provided by the hardware. This can make computation more accurate,
but it also leads to platform dependent behaviour. This can be avoided by using
the strictfp modifier, ensuring that only the single and double precision types
are used. This modifier ensures portability.

3 Floating-Point Support in KeY

3.1 Arithmetics

In order to be able to specify and verify programs containing floating-point
numbers, we made several extensions to the KeY tool. First, we added the float

and double types to the KeY type system, together with an enum type for the
different rounding modes of the IEEE 754 Standard.
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Listing 1.1: The Rectangle.scale benchmark
/*@ public normal_behavior

@ requires \fp_nice(arg0.x) && \fp_nice(arg0.y)

@ && \fp_nice(arg1) && \fp_nice(arg2);

@ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y) &&

@ !\fp_nan(\result.width) && !\fp_nan(\result.height);

@ also

@ public normal_behavior

@ requires -5.53 <= arg0.x && arg0.x <= -3.38 &&

@ -5.53 <= arg0.y && arg0.y <= -3.38 &&

@ 3.1 < arg0.width && arg0.width <= 3.7332 &&

@ 3.0000001 < arg0.height && arg0.height <=4.0004 &&

@ 3.0003001 < arg1 && arg1 <= 4.0024 &&

@ -6.4000003 < arg2 && arg2 <= 3.0001;

@ ensures !\fp_nan(\result.x) && !\fp_nan(\result.y)&&

@ !\fp_nan(\result.width) &&!\fp_nan(\result.height);

@*/

public Rectangle scale(Rectangle arg0, double arg1, double arg2){

Area v1 = new Area(arg0);

AffineTransform v2 = AffineTransform.getScaleInstance(arg1, arg2);

Area v3 = v1.createTransformedArea(v2);

Rectangle v4 = v3.getRectangle2D();

return v4;

}

We further introduced functions and predicate symbols to formalize opera-
tions (+, *, . . . ) and comparisons (<, ==, . . . ) on floating-point expressions. The
translation supports both code with and without the strictfp modifier. However,
since the actual precision of non-strictfp operations is not known, the function
symbols remain uninterpreted. We extended KeY’s parser to correctly handle
programs and annotations containing floating-point numbers, and added logic
rules for translating floating-point expressions from Java or JML to JavaDL.

As an example, Listing 1.1 shows JML specifications of our Rectangle bench-
mark that contains floating-point literals and makes use of the fp_nan and fp_nice

predicates. fp_nan states that a floating-point expression is NaN and fp_nice,
which is shorthand for “not infinity and not NaN”, states that a floating-point
expression is not NaN or infinity. The Scale method contains two contracts that
are checked separately, ensuring that the class fields of a scaled rectangle object
are not NaN, considering different preconditions. For the first contract, the SMT
solver produces a counterexample. In the second, we bound inputs by concrete
ranges that we picked arbitrarily and get the valid result. In practice, such ranges
would come from the context, e.g. from the kind of rectangles that appear in an
application, or from known ranges of sensor values.

Concerning discharging the resulting proof obligations, there were two main
ways to consider. One is to create a floating-point theory within KeY by adding
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axioms and deduction rules, so that the desired properties can be proven in
KeY’s sequent calculus. The other way is to translate the proof obligations from
JavaDL to SMT-LIB and call an external SMT solver. While the KeY approach
traditionally favors conducting proofs within KeY, for this work, we partially
deviated from this way in order to harness the greater experience and efficiency of
SMT solvers when it comes to floating-point arithmetic. Our approach attempts
to get the best of both worlds by distinguishing between basic floating-point
arithmetic, i. e., elementary operations and comparisons, and more complex
functions which do not have an SMT-LIB equivalent (e. g., the transcendental
functions), or where the SMT-LIB function is not usefully implemented by current
SMT solvers (see Section 3.2).

Elementary operations and comparisons get translated to the corresponding
SMT-LIB functions. In SMT-LIB, all floating-point computations conform to the
IEEE 754 Standard. Therefore, only Java programs with the strictfp modifier
can be directly translated to SMT-LIB without loss of correctness.

We developed a translation from KeY’s floating-point theory to SMT-LIB.
In order to integrate it into KeY, we also overhauled the existing translation
from JavaDL to SMT-LIB to create a new, more modular framework, which
now supports all the features of the original translation, e. g., heaps and integer
arithmetic, but also floating-point expressions at the same time.

Floating-point intricacies sometimes require extra caution. For example, there
are two different notions of equality for floats: bitwise equality and IEEE754
equality. Our implementation ensures these are distinguished correctly, and that
the specification language remains intuitive for a developer to use.

Using the translation to SMT-LIB, we can specify and prove two classes of
properties in KeY: The absence of special values is specified using the fp_nan and
fp_infinite predicates (or the fp_nice equivalent). Furthermore, one can specify
functional properties that are expressible in floating-point arithmetic, e.g. one
can compare the result of a computation against the result of a different program
which is known to produce a good result or a reference value.

3.2 Transcendental Functions

Floating-point decision procedures in SMT solvers successfully handle programs
consisting of arithmetic and square root operations. Many numerical real-world
programs, however, include transcendental functions such as sin and cos. In Java
programs, these functions are implemented as static library functions in the class
java.lang.Math.

Unlike arithmetic operations, transcendental functions are much more loosely
specified by the IEEE 754 Standard—only an upper bound on the roundoff
error is given. Libraries are thus free to provide different implementations, and
even tighter error bounds. Exact reasoning in the same spirit as floating-point
arithmetic would thus have to encode a specific implementation. Given that these
implementations are highly optimized, this approach would be arguably complex.
We observe, however, that such exact reasoning about transcendental functions is
often not necessary and a sound approximate approach is sufficient and efficient.



Deductive Verification of Floating-Point Java Programs in KeY 7

In this section, we introduce an axiomatic approach for reasoning about
programs containing transcendental functions. We observe that with the flexibility
of deductive verification and KeY itself, we can instantiate it in two different ways.
We encode transcendental functions as uninterpreted functions and axiomatize
them in the SMT queries. Alternatively, we encode these axioms in KeY as logical
inference rules.

Axiomatization in SMT We encode library functions as uninterpreted func-
tions and include a set of axioms in the SMT-LIB translation for each method
that is called in a benchmark. That is, we extended KeY such that when a
transcendental function exists in the proof obligation, its definition alongside all
the axioms for that function are added to the translation.

For the axiomatization of transcendentals, we did not add rules that expand
to a definition or allow a repeated approximation of the function value (like
expansion into a Taylor series). Instead, we added a number of lemmata encoding
interesting properties related to special values. For instance, the following axiom
states that if the input to the sin function is not a NaN or infinity, then the
returned value of sin is between −1.0 and 1.0:
(assert (forall ((a Float64)) (=>

(and (not (fp.isNaN a)) (not (fp.isInfinite a)))

(and (fp.leq (sinDouble a) (fp #b0 #b01111111111 #b0000...000000))

(fp.geq (sinDouble a) (fp #b1 #b01111111111 #b0000...000000))))))

Note that this implies that the result is not a NaN or infinity. The other axioms
are similar in spirit, so we do not list them.

These axioms are expressed as quantified floating-point formulas and capture
high-level properties of library functions complying with the specifications in the
IEEE 754 Standard. Clearly, since we do not have the actual implementations of
these functions, we are not able to prove arbitrary properties. However, such an
axiomatization is often sufficient to check for the (absence of) special values, i.e.
NaN and infinity, as our experiments in section 4.4 show.

Taclets in KeY Reasoning about quantified formulas in SMT is a long-lasting
challenge [32]. We have also observed in our experiments with only arithmetic
operations (Section 4.3) that SMT solvers struggle with quantifiers in combination
with floating-points. We have therefore implemented an alternative approach
encoding the axioms not in the SMT queries, but instead as deductive inference
rules (so-called taclets) in KeY.

The rules encode the same logical information as the universally quantified
assertions that we add in SMT-LIB (and where we leave the choice of instantia-
tions entirely to the SMT/SAT solver). With our taclet approach, we instantiate
a quantifier (only) to one’s needs. We note that for proving a property correct,
this results in a correct (under)approximation. However, the prize for achieving
more closed proofs and shorter running times is that for disproving a prop-
erty, not considering all possible quantifier instantiations may lead to spurious
counterexamples, i.e., false positives.
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Benchmark Details Automode Statistics

benchmark # classes
# method

calls
# arith.

ops
library

functions
# goals closed

by KeY
# goals to be

closed externally
# rules
applied

automode
time (s)

Complex.add (2) 1 0 2 - 3 / 3 1 / 4 185 / 286 0.7 / 0.2
Complex.divide (2) 1 0 11 - 10 / 8 2 / 8 483 / 625 0.7 / 0.8
Complex.compare 1 0 2 - 3 2 216 0.2
Complex.reciprocal (2) 1 1 6 - 1 / 1 2 / 2 402 / 406 0.4 / 0.5
Circuit.impedance 2 1 3 - 1 4 360 0.5
Circuit.current (2) 2 3 14 - 11 / 11 4 / 1 1267 / 1238 4.0 / 4.1
Matrix2.transposedEq 1 3 3 - 3 1 735 0.9
Matrix3.transposedEq 1 4 34 - 3 1 1786 5.1
Matrix3.transposedEqV2 1 4 34 - 3 1 1796 5.4
Rectangle.scale (2) 3 + 1 23 22 - 32 / 32 32 / 16 5990 / 5617 18.4 / 14.5
Rotate.computeError 1 + 1 6 26 - 108 8 3693 74.2
Rotate.computeRelErr 1 + 1 6 28 - 120 8 3898 79.6
FPLoop.fploop 1 0 1 - 2 4 99 0.1
FPLoop.fploop2 1 0 1 - 2 4 99 0.1
FPLoop.fploop3 1 0 1 - 2 4 99 0.1
Cartesian.toPolar 2 + 1 3 6 sqrt, atan 1 4 438 0.5
Cartesian.distanceTo 1 + 1 1 5 sqrt 2 1 191 0.1
Polar.toCartesian 2 + 1 3 4 cos, sin 1 2 364 0.5
Circuit.instantCurrent 2 + 1 14 23 sqrt, atan, cos 17 2 1686 14.1
Circuit.instantVoltage 1 + 1 1 4 cos 0 2 138 0.1

Table 1: Benchmark details and KeY automode statistics, time is measured in
seconds

A heuristic strategy applies the rules automatically using the occurrences
of transcendentals as instantiation triggers. However, instantiating the axioms
too eagerly, considerably increases the number of open goals, which is why we
assume that the user selects the axioms to apply manually (and did so in the
experiments). After the application the proof obligation can either be closed by
KeY automatically, or be given to the SMT solver as before for final solving.

Currently, the set of axioms (in the SMT-LIB translation and as taclets
in KeY) only contains axioms for the transcendental functions occurring in
our benchmarks. So far we have 9 axioms; however, adding more axioms is
straightforward.

4 Evaluation

4.1 Benchmark Programs

We collected a set of existing floating-point Java programs representing real-
world applications in order to evaluate the feasibility and performance of KeY’s
floating-point support.

The left half of Table 1 provides an overview of our benchmarks. Each
benchmark consists of one method, which is composed of arithmetic operations
and method calls to potentially other classes. The invocations of methods from
java.lang.Math (e.g. Math.abs) are marked by “+1” in Table 1; these are resolved
by inlining the method implementation. For benchmarks that contain calls to
transcendental functions and square root, the called functions are listed; these are
handled by our axiomatization. We include sqrt in this list, as we have observed
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Listing 1.2: The Circuit.instantCurrent benchmark
public class Circuit {

double maxVoltage, frequency, resistance, inductance;

// ...

/*@ public normal_behavior

@ requires 1.0 < this.maxVoltage && this.maxVoltage < 12.0 &&

@ 1.0 < this.frequency && this.frequency < 100.0 &&

@ 1.0 < this.resistance && this.resistance < 50.0 &&

@ 0.001 < this.inductance && this.inductance < 0.004 &&

@ 0.0 < time && time < 300.0;

@ ensures !\fp_nan(\result) && !\fp_infinite(\result);

@*/

public double instantCurrent(double time) {

Complex current = computeCurrent();

double maxCurrent = Math.sqrt(current.getRealPart() * current.getRealPart() +

current.getImaginaryPart() * current.getImaginaryPart());

double theta = Math.atan(current.getImaginaryPart() / current.getRealPart());

return maxCurrent * Math.cos((2.0 * Math.PI * frequency * time) + theta);

}}

that exact support can be expensive, so it may be advantageous to handle sqrt

axiomatically. Benchmarks Rectangle, Matrix3, Rotation and Circuit are partially
shown in Listings 1.1, 1.3, 1.4 and 1.2 respectively4.

Each benchmark also includes a JML contract that is to be checked. For
some methods, we specify two contracts (marked by “(2)” in the first column
of Table 1), each serving as an independent benchmark. The contracts for most
of these benchmarks check that the methods do not return a special value i.e
infinity and/or NaN, the preconditions being that the variables are not themselves
special values and possibly are bounded in a given range. For the Matrix, FPLoop
and Rotate benchmarks, we check a functional property (see Section 4.3). FPLoop,
which has three contracts, additionally shows how to specify floating-point loop
behavior using loop invariants.

4.2 Proof Obligation Generation

To reason about the contract of a selected benchmark, we apply KeY, which
generates proof obligations or ‘goals’. Some of these goals (heap-related) are
closed, i.e. proven, by KeY automatically. The remaining open goals are closed
by either SMT solvers with floating-point support directly (sections 3.1 and 3.2),
or with a combination of transcendental KeY taclets and floating-point SMT
solving (Section 3.2).

4 All benchmarks are available at https://gitlab.mpi-sws.org/AVA/key-float-benchmarks/

https://gitlab.mpi-sws.org/AVA/key-float-benchmarks/
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Columns 6 and 7 in Table 1 show the number of proof obligations closed by
KeY directly and to be discharged by external solvers, respectively. The next two
columns show the number of taclet rules that KeY applied in order to close its
goals, and the time this takes. For benchmarks with two contracts we show the
respective values separated by ‘/’.

We run our experiments on a server with 1.5TB memory and 4x12 CPU cores
at 3GHz. However, KeY runs single-threadedly and does not use more than 8GB
of memory.

For our set of benchmarks, the symbolic execution process is fully automated.
Note that the machinery can deal with loop invariants, if they are provided. Loop
invariant generation is, however, particularly challenging for floating-points due
to roundoff errors [25,38], and a research topic in itself.

4.3 Evaluation of SMT Floating-Point Support

It was reported in previous work [30] that SMT support for floating-point
arithmetic is rather limited. However, with recent advances [16], we evaluate
the situation again. Most benchmarks used to evaluate SMT solvers’ decision
procedures [2] aim to check (individual) specialized (corner case) properties
of floating-point arithmetic. The proof obligations generated from our set of
benchmarks are complementary in that they are more arithmetic heavy, while
nonetheless relying on accurate reasoning about special values and functional
properties.

For each open goal not automatically closed, KeY generates one SMT-LIB file
that is fed to the solvers for validation. We compare the performance of the three
major SMT solvers with floating-point support CVC4 (1.8) [7], Z3 (4.8.9) [51] and
MathSAT (5.6.3) [20]. For this we set a timeout of 300s for each proof obligation.
While KeY is able to discharge proof obligations in parallel, for our experiments,
we do so sequentially to maintain comparability.

KeY’s default translation to SMT includes quantifiers. These quantifications
are not related to floating-point arithmetic, but are used to logically encode
important properties of the Java memory model, like the type hierarchy and
the absence of dangling references on any valid Java heap. If we reason about
floating-point problems in isolation, they are not needed, but if we want to
consider Java verification more holistically with questions combining aspects of
heap and floating point reasoning, they become essential. We manually inspected
that the proof obligations without our axiomatized treatment of transcendental
functions do not depend on these properties and investigate the quantifier support
by including or removing them from the SMT translations. We do not report
results with quantifiers for MathSAT, since it does not support them.

Table 2 summarizes the results of our experiments. Column 4 shows the
number of expected valid or invalid goals for all benchmarks. For each solver we
show the number of goals that each solver can validate or invalidate, together
with the average time (in seconds) needed. The goals resulting in timeout were
excluded from the computation of the average time. Column 3 shows whether
the SMT queries include quantifiers or not.
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index experiment
quantified
axioms

# goals
CVC4 Z3 MathSAT

# goals decided avg. # goals decided avg. # goals decided avg.

1 valid
contracts

3 80 79 4.1 25 18.4 - -
2 7 80 79 4.0 52 35.0 80 8.8

3 invalid
contracts

3 9 0 3.4 0 3.4 - -
4 7 9 8 36.7 7 27.6 9 3.9

5 axioms in SMT 3 10 9 33.2 4 63.4 - -
6 axioms as taclets 7 10 10 33.4 5 74.2 8 0.9

7 fp.sqrt 7 7 7 46.2 1 23.5 5 0.4
8 axiomatized sqrt 7 7 5 2.4 5 282.8 5 5.7

Table 2: Summary of valid / invalid goals correctly decided and average running
times of each solver for the SMT translations with and without quantified axioms
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Fig. 2: Runtimes for valid goals with
SMT translations without quantifiers

Rows 1 and 2 of Table 2 show the results for benchmarks with valid contracts.
This experiment thus represents the common behavior of KeY, whose main goal
is to prove contracts correct. Rows 3 and 4 of Table 2 demonstrate the results for
benchmarks with invalid contracts, i.e. for those we expect a counterexample for
at least one of the goals. The Appendix section of the technical report5 contains
the detailed results for each experiment separated by benchmark. Figure 1 and
Figure 2 show a more detailed view of the solvers’ running time for the valid
benchmarks. The x-axis shows the number of open goals that are discharged by
the SMT solvers, sorted by running time for each solver individually. The k-th
point of one graph shows the minimum running time needed by the solver to
close each of the k fastest goals. Note that each solver may have different goals
which are its k fastest. The y-axis shows the time on a logarithmic scale.

We conclude that in the presence of quantified axioms and floating-point
arithmetic solvers’ performance deteriorate for both valid and invalid goals.
In particular, none of the solvers is able to find counterexamples for any of
the invalid goals. However, when the quantified axioms are removed from the

5 Available at https://people.mpi-sws.org/~rosaabbasi/key_float.pdf

https://people.mpi-sws.org/~rosaabbasi/key_float.pdf


12 R. Abbasi et al.

SMT translations, their performance improves. For valid contracts, CVC4 and
MathSAT perform better than Z3, in terms of both number of goals validated
and the running time per goal. In particular, MathSAT is able to prove all goals.
However, the running time performance of CVC4 is better than MathSAT’s. For
invalid contracts, solvers are able to produce the expected counterexamples at
least partially. Particularly, MathSAT has a better performance than CVC4 and
Z3 in terms of both running time and the number of proof obligations for which
it can produce counterexamples.

We conducted another experiment on our Rectangle.scale benchmark to assess
the solvers’ sensitivity to various changes, applied to the benchmark’s contract
or its implementation. We considered modifications such as reducing the number
of classes while keeping the same functionality, having tighter and larger bounds
for variables, reducing the number of arithmetic operations etc. The details
of this experiment can be found in the Appendix of the technical report. In
summary, solvers’ performance seems to be sensitive to slight innocuous looking
changes such as the number of classes involved and variable bounds. For example,
constraining arg2 in the original benchmark more tightly allows CVC4 to validate
all goals (1 more). This behavior could be potentially exploited by e.g. relaxing a
variable’s bounds.

Proving Functional Properties Listings 1.3 and 1.4 show examples of functional
properties that are expressible in floating-point arithmetic and that KeY can
handle. The verification results are included in rows 1 and 2 of Table 2, for more
details see the Appendix of the technical report.

For Matrix, we check that the determinants of a matrix and its transpose
are equal. Note that this property holds trivially under real arithmetic, but
not necessarily under floating-points. After feeding transposedEq (which uses the
determinant method) and its contract to KeY, increasing the default timeout
sufficiently and discharging the created goal, CVC4 generates a counterexample
in 170.2s seconds and MathSAT in 16.2s. Z3 times out after 30 minutes. By
feeding transposedEqV2 (which uses the determinantNew method) to KeY, CVC4
validates the contract in 1.1s, MathSAT in 3.9s and Z3 times out again. One
thing worth noting is that the way programs are written can greatly influence the
computational complexity needed to reject or verify the contract. This is evident
from the fact that slightly modifying the order of operations (using determinantNew

instead) substantially reduces verification time and changes the verification result
for MathSAT and CVC4.

For Rotate, we check that the difference between an original vector and the
one that is rotated four times by 90 degrees, must not be larger than 1.0E-15.
We also verified the same bound for the relative difference (by exploiting another
method and contract) for this benchmark. FPLoop includes three loops, for which
the contracts check that the return value is bigger than a given constant.

Though not always very fast, these examples show that verification of func-
tional floating-point properties is viable.
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Listing 1.3: The Matrix3 benchmark
public class Matrix3 {

double a, b, c, d, e, f, g, h, i; //The matrix: [[a b c],[d e f],[g h i]]

double det;

// method transpose not shown

double determinant() {

return (a * e * i + b * f * g + c * d * h) -

(c * e * g + b * d * i + a * f * h);

}

double determinantNew() {

return (a * (e * i) + (g * (b * f) + c * (d * h))) -

(e * (c * g) + (i * (b * d) + a * (f * h)));

}

/*@ ensures \fp_normal(\result) ==> (\result == det); @*/

double transposedEq() {

det = determinant();

return transpose().determinant();

}

/*@ ensures \fp_normal(\result) ==> (\result == det); @*/

double transposedEqV2() {

det = determinantNew();

return transpose().determinantNew();

}

}

Listing 1.4: The Rotation benchmark
public class Rotation {

final static double cos90 = 6.123233995736766E-17;

final static double sin90 = 1.0;

// rotates a 2D vector by 90 degrees

public static double[] rotate(double[] vec) {

double x = vec[0] * cos90 - vec[1] * sin90;

double y = vec[0] * sin90 + vec[1] * cos90;

return new double[]{x, y};

}

/*@ requires (\forall int i; 0 <= i && i < vec.length;

@ \fp_nice(vec[i]) && vec[i] > 1.0 && vec[i] < 2.0) && vec.length == 2;

@ ensures \result[0] < 1.0E-15 && \result[1] < 1.0E-15;

*/

public static double[] computeError(double[] vec) {

double[] temp = rotate(rotate(rotate(rotate(vec))));

return new double[]{Math.abs(temp[0] - vec[0]), Math.abs(temp[1] - vec[1])};

}

}



14 R. Abbasi et al.

4.4 Evaluation of Support for Transcendental Functions in KeY

We evaluated the two approaches from Sections 3.2 and 3.2 on our set of bench-
marks; rows 5 and 6 in Table 2 summarize the results. (The detailed results of
these experiments are included in the Appendix of the technical report.) Note
that both approaches are fully automated.

We conclude that the SMT solvers do not perform very well when axioms for
transcendental functions are added to the SMT-LIB translation directly (e.g. Z3
validates 4 out of 10 goals). With the axiomatization at the KeY level, solvers
are able to validate more goals (with quantified formulas removed from the
SMT translations), e.g. Z3 is able to validate 5 goals and CVC4 can validate all.
Therefore, it is preferable to apply them on the KeY side via taclet rules.

All the solvers we have used in this work comply with the IEEE 754 standard
and therefore have bit-precise support for the square root function. They provide
bit-precise reasoning by effectively encoding the behavior of floating-point circuits
over bitvectors (which is naturally expensive), together with different heuristics
and abstractions to speed up solving time. However, depending on the property, we
do not always need bit-precise reasoning, so we propose handling the square root
function with the same taclet-based axiomatization as introduced in Section 3.2.

To this end, we conducted an experiment on the benchmarks containing sqrt,
comparing the approach from Section 3.2 (adding the necessary axioms, resp.
taclet rules) to using the square root implemented in SMT solvers (fp.sqrt). We
chose to include only axioms specified in or inferred from the IEEE 754 standard
(e.g. if the argument of the square root function is NaN or less than zero, then
the square root results in NaN).

Rows 7 and 8 in Table 2 summarize the results for this experiment; the
detailed results are included in the Appendix of the technical report. We observed
that for two out of the three benchmarks, the average running time of all solvers
decreases using the axiomatized square root. Furthermore, Z3 is able to reason
about more proof obligations with the axiomatized version. However, the success
of this approach depends on the axioms added to KeY and may not always work
if we do not have suitable axioms. For example, for the Circuit.instantCurrent

benchmark (Listing 1.2), using the axiomatized square root, CVC4 is not able to
validate the contract, but with fp.sqrt the contract is validated.

In summary, treating sqrt axiomatically can result in shorter solving times
than performing bit-precise reasoning, but the approach may not always succeed
when the axioms are not sufficient to prove a particular property.

4.5 Discussion and insights

The experiments show that highly automated floating point program verification
is viable for relevant properties (handling of special values and some functional
properties), up to a certain level of complexity (given by the SMT solvers). The
choices of which parts of a proof obligation are delegated to SMT, and how they
are translated to SMT, are crucial for achieving effective and efficient program
verification. Arithmetic operations proved to be more efficiently dealt with by
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delegation to SMT, whereas for transcendental functions, axiomatization and
rule based treatment in the theorem prover, outside the SMT solver, performs
clearly better.

5 Related Work

Our implementation uses the floating-point SMT-LIB theory [15], which how-
ever does not handle transcendental functions, as their semantics is (library)
implementation dependent. Some real-valued automated solvers do handle tran-
scendental functions [4,31], but to the best of our knowledge, the combination of
floating-points and reals in SMT solvers is still severely limited.

None of the existing deductive verifiers support floating-point transcendental
functions automatically. The Why3 deductive verification framework [28] has
support for floating-point arithmetic, with front-ends for the C and Ada pro-
gramming languages through Frama-C [23] and SPARK [17, 30], respectively.
Why3 has back-end support for different SMT solvers, as well as interactive proof
assistants like Coq. Until recently, Why3 would discharge still many interesting
floating-point problems with help of Coq, relying on significant user interaction. In
later work [30] (in the context with floating-point verification for Ada programs),
Why3 can achieve a higher degree of automation. Note, however, that the user is
still required to add code assertions as well as ‘ghost code’ to a significant extent.

The Boogie intermediate verification language [45] also supports floating-
point expressions, and targets Z3 for discharging proof obligations. In the Boogie
community, it was observed that writing a specification in Boogie leads to
decreases in SMT solver performance when compared to writing the goal in
SMT-LIB directly, probably due to an inherent mixing of theories when using
Boogie [3]. This matches our own experiences, and separation of theories should
be considered an important task for the further development of floating-point
verification.

Other deductive verifiers for Java have only rudimentary support for floating-
points. Verifast [39] treats floating-point operations as if they we real values, and
OpenJML [21] parses programs with floating-point operations, but essentially
treats float and double as uninterpreted sorts.

The model checkers Java Pathfinder (JPF) [56] and Java Bounded Model
Checker (JBMC) [22] support floating-point arithmetic. Besides being limited
to exploring the state space up to a bounded depth, JPF does not support sym-
bolic values (since it is an explicit-state model checker), and JBMC’s constraint
language does not support quantifiers and abstracting of method calls—which
are all features that we have used in this work.

Floating-point arithmetic has also been formalized in several interactive
theorem provers [14, 29, 40]. While one can prove intricate properties about
floating-point programs [12,13,36], proofs using interactive provers are to a large
part manual and require significant expertise.

Abstract interpretation based techniques can show the absence of special
values in floating-point code fully automatically, and several abstract domains
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which are sound with respect to floating-point arithmetic exist [18,41]. While the
analysis itself is fully automated, applying it successfully to real-world programs
in general requires adaptation to each program analyzed by end-users, e.g. the
selection of suitable abstract domains or widening thresholds [11].

Besides showing the absence of special values, recent research has developed
static analyses to bound floating-point roundoff errors [24,33,46,50,55]. These
analyses currently work only for small arithmetic kernels and the tools in particular
do not accept programs with objects.

Dynamic analyses generally scale well on real-world programs, but can only
identify bugs (when given failure-triggering input), rather than proving correctness
for all possible inputs. Executing a floating-point program together with a higher-
precision one allows one to find inputs which cause large roundoff errors [10,19,42].
Ariadne [6] uses a combination of symbolic execution, real-valued SMT solving
and testing to find inputs that trigger floating-point exceptions, including overflow
and invalid operations. Our work subsumes this approach as the SMT solvers
that we use can directly generate counterexamples, but more importantly, KeY
is able to prove the absence of such exceptions.

6 Conclusion

By joining the forces of rule-based deduction and SAT-based SMT solving, we
presented the first working floating-point support in a deductive verification tool
for Java and by that close a remaining gap in KeY to now support full sequential
Java. Our evaluation shows that for specifications dealing with value ranges and
absence of NaN and infinity, our approach can verify realistic programs within a
reasonable time frame. We observe that the MathSAT and CVC4 solver’s floating-
point support scales sufficiently for our benchmarks, as long as the queries do
not include any quantifiers, and that our axiomatized approach for handling
transcendental functions is best realized using calculus rules in KeY’s internal
reasoning engine. While our work is implemented within the KeY verifier, we
expect our approach to be portable to other verifiers.
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