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Abstract

In this thesis, the droplet wetting behaviors on chemically patterned and mechanically structured sur-
faces are investigated. Here, the equilibrium shapes and the quasi-equilibrium movements of droplets
on chemically patterned surfaces, the wetting behaviors of multiphase droplets on chemically hetero-
geneous surfaces, and the droplet permeation behaviors in a single pore structure are addressed. Last
but not least, the phase-field model is validated to investigate the droplet dynamics on solid heteroge-
neous surfaces and the validated model is utilized to study the controllable satellite droplet formation
during the thin liquid film dewetting process on chemically patterned surfaces.

For droplets on chemically patterned surfaces, firstly the equilibrium shape of droplets and the
contact line movement on chemically stripe-patterned surfaces are studied. The phase-field model is
shown to be highly robust when simulating the equilibrium shape, the spreading of the contact line,
and phase change of droplets on chemically patterned surfaces. A morphological diagram is obtained
which reveals that the droplet aspect ratio and the number of equilibrium shapes are closely related
to the scaled stripe width. Through the comparisons between condensing and evaporating droplets, a
hysteresis phenomenon is observed, proving that the different droplet shapes can be obtained via dis-
tinct moving paths. Furthermore, a mathematical-physical model is proposed to describe the droplet
configurations on three typically programmable, chemically patterned surfaces. This analytical model
is based on the calculation of surface energy landscape and has been successfully validated through
phase-field simulations and experiments. It can serve as guidance for experiments and simulations to
find different equilibrium shapes without blind attempts. Particularly, this analytical model is valid
for the situation where the chemical heterogeneity size is comparable to the droplet size. Besides, a
modified Cassie-Baxter model is proposed to address the anisotropic wetting configurations. Addi-
tionally, the multiphase phase-field model is used to study the multiphase droplet wetting behaviors
on chemically patterned surfaces. The interaction of liquid-liquid interface, influenced by different
values of interfacial tensions, is discussed.

The phase-field model is further validated to study the droplet wetting states in a pore structure.
Thereafter, the droplet wetting behavior in a pore structure is theoretically and numerically explored,
so as to find the criterion for droplet permeation. It is proved that the open angle and hydrophobicity
of the substrate both have a great impact on the droplet permeation behavior.

Finally, the Cahn-Hilliard model is coupled with Navier-Stokes equations to study the droplet
dynamics on chemically patterned surfaces. A new strategy was found to control the formation of
satellite droplets through a deliberate design of the chemical patterns.
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Kurzfassung

In dieser Arbeit wird das Benetzungsverhalten von Tröpfchen auf chemisch undmechanisch strukturi-
ertenOberflächen untersucht. Dabeiwerden die Gleichgewichtsformen und dieQuasi-Gleichgewichts-
bewegungen von Tröpfchen auf chemisch strukturierten Oberflächen, das Benetzungsverhalten von
mehrphasigen Tröpfchen auf chemisch heterogenen Oberflächen und das Tröpfchenpermeationsver-
halten in einer einzelnen Porenstruktur behandelt. Zu guter Letzt wird das Phasenfeldmodell vali-
diert, um die Tropfendynamik auf festen heterogenen Oberflächen zu untersuchen. Das validierte
Modell wird verwendet, um die kontrollierbare Bildung von Satellitentröpfchen während des Ent-
netzungsprozesses eines dünnen Flüssigkeitsfilms auf chemisch strukturierten Oberflächen zu unter-
suchen.

Für Tröpfchen auf chemisch strukturierten Oberflächen werden zunächst die Gleichgewichts-
form von Tröpfchen und die Kontaktlinienbewegung auf chemisch streifengemusterten Oberflächen
untersucht. Das Phasenfeldmodell erweist sich bei der Simulation der Gleichgewichtsform, der Aus-
breitung der Kontaktlinie und des Phasenwechsels von Tröpfchen auf chemisch strukturierten Ober-
flächen als sehr sicher und resistent. Das Ergebnis ist ein morphologisches Diagramm, das zeigt,
dass das Tröpfchen-Seitenverhältnis und die Anzahl der Gleichgewichtsformen eng mit der skalierten
Streifenbreite zusammenhängen. Durch denVergleich zwischen kondensierenden und verdampfenden
Tröpfchen wird ein Hysteresephänomen beobachtet, das beweist, dass die verschiedenen Tröpfchen-
formen über unterschiedliche Bewegungspfade gewonnen werden können. Darüber hinaus wird ein
mathematisch-physikalisches Modell vorgeschlagen, um die Tröpfchenkonfigurationen auf drei typis-
cherweise programmierbaren, chemisch strukturierten Oberflächen zu beschreiben. Dieses analytis-
che Modell basiert auf der Berechnung der Oberflächenenergielandschaft und wurde erfolgreich mit
Phasenfeldsimulationen und Experimenten validiert. Es kann als Anleitung für Experimente und Sim-
ulationen dienen, um verschiedene Gleichgewichtsformen ohne Blindversuche zu finden. Insbeson-
dere ist dieses analytische Modell für die Situation gültig, in der die Größe der chemischen Heterogen-
ität mit der Tröpfchengröße vergleichbar ist. Außerdem wird ein modifiziertes Cassie-Baxter-Modell
vorgeschlagen, in dem die anisotropen Benetzungskonfigurationen berücksichtigt werden. Zusätzlich
wird das Mehrphasen-Phasenfeldmodell verwendet, um das Benetzungsverhalten von mehrphasigen
Tröpfchen auf chemisch strukturierten Oberflächen zu untersuchen. Dabei wird die Interaktion der
Flüssig-Flüssig-Grenzfläche, die durch die unterschiedlichenWerte der Grenzflächenspannungen bee-
influsst wird, diskutiert.

Um die Tröpfchenbenetzungszustände in einer Porenstruktur zu untersuchen, wird das Phasen-
feldmodell weiter validiert. Anschließend wird das Benetzungsverhalten von Tröpfchen in einer

iii



Porenstruktur theoretisch und numerisch untersucht, umdas Kriterium für die Permeation der Tröpfchen
zu finden. Es wird nachgewiesen, dass der offeneWinkel und die Hydrophobizität des Substrats einen
großen Einfluss auf das Permeationsverhalten der Tröpchen haben.

Schließlich wird das Cahn-Hilliard-Modell mit Navier-Stokes-Gleichungen gekoppelt, um die
Tröpfchendynamik auf chemisch strukturierten Oberflächen zu untersuchen. Es wurde eine neue
Strategie gefunden, die es ermöglicht, die Bildung von Satellitentröpfchen durch ein bewusstes De-
sign der chemischen Muster zu steuern.
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Preface

This dissertation investigates droplet wetting behaviors on heterogeneous substrates via phase-field
simulations. It mainly addresses the equilibrium shapes and quasi-equilibrium morphological tran-
sition for droplets on chemically patterned surfaces. Based on the assumption of the geometry for
equilibrated droplets and surface energy minimization, the energy landscape method and modified
Cassie-Baxter model are proposed. The two models describe the equilibrium shapes of droplets on
chemically patterned surfaces where the droplet size is comparable to the surface heterogeneity, which
are confirmed by phase-field simulations. Besides, the droplet permeation behavior in pore structures
and the droplet dynamics on different substrates are also discussed. The introduction for the moti-
vations, physical fundamentals, the state of research, and numerical methods are presented in the
first three chapters. Chapters 4-9 contain 5 published and 2 unpublished articles, which are slightly
adjusted without changing the original contents. The 7 articles are listed as follows:

• Article 1: Y. Wu, F. Wang, M. Selzer, and B. Nestler. Investigation of equilibrium droplet-
shapes on chemically striped patterned surfaces using phase-field method. Langmuir, 2019,
35, 8500–8516.

• Article 2: Y.Wu, F. Wang, M. Selzer, and B. Nestler. Droplets on chemically patterned surface:
A local free energy minima analysis. Physical Review E Rapid Communications, 2019, 100,
041102.

• Article 3: Y. Wu, F. Wang, S. Ma, M. Selzer, and B. Nestler. How do chemical patterns affect
equilibrium droplet shapes? Soft Matter, 2020, 16, 6115-6127.

• Article 4: J. M. Scheiger, M. A. Kuzina, M. Eigenbrod, Y. Wu, F. Wang, S. Heissler, S. Hardt,
B. Nestler, P. A. Levkin. Liquid wells as self‐healing, functional analogues to solid vessels.
Advanced Materials, 2021, 33, 2100117.

• Article 5: Y.Wu†, M. Kuzina† (co-first author), F. Wang, M. Reischl, M. Selzer, B. Nestler, P. A.
Levkin. Equilibrium droplet shapes on chemically patterned surfaces: theoretical calculation,
phase-field simulation, and experiments. Journal of Colloid and Interface Science, 2022, 606,
1077–1086.

• Article 6: Y. Wu, F. Wang, W. Huang, M. Selzer, and B. Nestler. Capillary adsorption of water
droplets into a beak-shaped tube structure. Under review in Physical Review Letters.
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• Article 7: Y. Wu, F. Wang, T. Wang, M. Selzer, and B. Nestler. Phase-field investigation of thin
liquid film dewetting on chemically patterned surfaces. In preparation.

In the last chapter, summaries and future directions are given.
The following two works that published during the PhD study, are not included in the present

dissertation.

• H. Zhang,† Y. Wu† (co-first author), F. Wang, F. Guo, and B. Nestler. Phase-field modeling of
multiple emulsions via spinodal decomposition. Langmuir, 2021, 37(17), 5275–5281.

• M. Wörner, N. Samkhaniani, X. Cai, Y. Wu, A. Majumdar, H. Marschall, B. Frohnapfel, O.
Deutschmann. Spreading and rebound dynamics of sub-millimeter urea-water-solution droplets
impinging on substrates of varying wettability. Applied Mathematical Modeling, 2021, 95, 53–
73.

The permission to use the figures from literature has been granted by the corresponding publishers.
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君子终日乾乾，夕惕若厉，无咎。

All day long the superior man is creatively active. At
nightfall his mind is still beset with cares. In this

case, there will be no mistake.
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Introduction and literature review
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1. Introduction

1.1. Motivation

The wetting phenomena are ubiquitous in nature and our daily lives. For instance, the dewdrops
exhibited on leaves make the plants more resilient in hot and dry conditions (see Fig. 1.1 [1]). Some
birds have evolved themselves to possess feathers with superhydrophobic structures, which could
partially prevent heat loss from impacting rain droplets [2, 3]. In daily lives, the annoying trickle of
water along the outside of a receptacle as pouring, is called “teapot effect”, where surface wettability
of the receptacle takes an important role [4, 5]. The deposition of coffee particles at the edge of the
evaporating coffee contained droplets, known as the “coffee ring effect”, is caused by a capillary flow
[6].

Apart from explaining the underlying mechanisms for the common interesting wetting phenom-
ena in nature and daily lives, I am willing to harness the wetting properties for practical use. Nowa-
days, wetting is indeed of great significance for the cutting-edge technical applications. Various ap-
plications are based on the control of the droplet wetting behaviors. These include inkjet printing
[7, 8], droplet splitting and sampling (Fig. 1.2) [9, 10], microfluidics [11] and so on. Taking inkjet
printing, for example, the static wetting morphology is very crucial to improve the printing quality.
The inkjet printing technology has been applied to the fabrication of OLED displays, where precise
control of droplet size and position is essential. Arias et al. [12] stated that the size, position, and
resolution in the fabrication of thin-film-transistor array is affected by the balance between pinning

Figure 1.1.: Morning dews on a leaf [1].
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1. Introduction

Figure 1.2.: Droplet splitting and simultaneous arrayed reactions on a hydrophobic surface with hy-
drophilic areas. Different chemicals predeposited on the hydrophilic areas independently
reacts with the splitted droplets simultaneously after splitting [9].

and overspreading of the printed ink on the solid substrate. As shown in Fig. 1.2, chemical patterns
are introduced for the self-splitting method, making the simultaneous multireactions possible. A typ-
ical novel application of controlling droplet dynamics in microfluidics is the so-called hotspot cooling
technology [13]. As illustrated in Fig. 1.3, in the sealed vapor chamber, the working fluid vaporizes
around the hotspots and condenses on the bottom plate beneath the hotspots. The condensate droplets
coalesce and then jump from the superhydrophobic bottom plate to the hotspots. This process allows
handling of mobile hotspots, and thus provides a smart way of heat management in microelectronics.
For more discussions about the fundamentals and applications of wetting, readers are referred to the
book of Law and Zhao [14].

When a droplet contacts a solid surface, it will eventually arrive at the thermodynamic equilib-
rium state. If the solid surface is ideally homogeneous, the equilibrium shape of the droplet can be

Figure 1.3.: Schematic of the hotspot cooling technique in a sealed vapor chamber. The top (bottom)
plate is the superhydrophilic evaporator (superhydrophobic condenser) [13].
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1.1. Motivation

accurately described by the Young’s law. However, there are always mechanical and chemical inho-
mogeneities on real surfaces. These inhomogeneities may lead to anisotropic wetting morphologies
of the droplets, making it difficult to theoretically describe the equilibrium shapes. Although Wenzel
[15] and Cassie [16] have devoted themselves to the wetting droplet on heterogeneous surfaces, their
models are restricted to the situation where droplet size is much larger than the inhomogeneities. Un-
derstanding the droplet wetting behavior on heterogeneous surfaces has a fundamental meaning for
real-world applications. It is thus of vital significance to establish a theoretical framework to address
the wetting behavior on heterogeneous surfaces.

The present dissertationmainly focuses on the static states and quasi-staticmovements of droplets
on chemically patterned surfaces and mechanically structured surfaces. However, further exploration
of the droplet dynamics on solid heterogeneous is provided in the last part of the work. When we
consider the droplet dynamics on a solid surface, the moving contact line dynamics must be involved.
This leads to a multi-scale problem, since the large-scale dynamics are governed by hydrodynamics,
while the moving contact line dynamics is determined by the physics on around molecular length
scales [17]. In hydrodynamics, the classic no-slip boundary condition at solid wall leads to stress sin-
gularity. An alternative method to handle this problem is the phase-field (PF) method. As a diffuse
interface method, the PF method introduces diffusive fluxes and allows for the contact line motion
[18].

Figure 1.4.: (a) Scanning electron micrographs of 7.8-nm-thick copper rings with various widths fol-
lowing pulsed laser exposure. (b) Simulation results via thin-film model (Similar to Cahn-
Hilliard model [19]). Here, the light blue background indicates the original ring. As the
width of the ring increases, the ring transitions from a purely Rayleigh–Plateau-type insta-
bility to a situation where both thin-film instability and Rayleigh–Plateau-type instability
coexist [20].
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1. Introduction

The present thesis adopts two types of PF models (the Allen-Cahn model and Cahn-Hilliard
model) combined with a thermodynamics consistent wetting boundary condition to simulate the
droplet wetting behaviors. Both of the two types of PF models can be considered as the gradient
flow of the Lyapunov energy functional and the total free energy decreases with time. The two mod-
els thus have the same equilibrium solutions. However, the Allen–Cahn model is a gradient descent
method, which shows a different kinetic path as the Cahn–Hilliard type model. The advantage of
the Allen-Cahn model over the Cahn–Hilliard model is that it is more numerically efficient. Thus the
Allen–Cahn model is adopted to address the static and quasi-static problems in this work. As a natu-
rally conserved model, the Cahn–Hilliard model is appropriate to describe the dynamic process. For
instance, it has been applied to analyze interfacial instability phenomena such as Rayleigh–Plateau-
type instability, spinodal dewetting, droplet breakup, droplet impact, and splash, etc [21]. In this
thesis, Cahn–Hilliard model is utilized to analyze the droplet dynamics. Fig. 1.4 illustrates a typical
example for the interfacial instability phenomena, where the simulations show good agreement with
experiments.

1.2. Synopsis

The outline of this dissertation is as follows. In chapter 2, physical fundamentals and a literature
review of droplet wetting on heterogeneous surfaces are given. Subsequently, the phase-field mod-
els including the Allen-Cahn (AC) model and Cahn–Hilliard (CH) model utilized for simulating the
droplet wetting behavior is formulated in chapter 3. In chapter 4, the AC model is validated and
applied to investigate the equilibrium morphologies of droplets on chemically striped surfaces. In
addition, the morphology transitions for evaporating and condensing droplets in quasi-equilibrium
are contemplated. In the following chapters 5 and 6, an analytical model is proposed to delineate the
droplet patterns on chemically patterned surfaces. PF simulations are conducted to confirm the ana-
lytical model. Moreover, a modified Cassie–Baxter (CB) model is established. The analytical model,
PF simulations and experiments are used to quantitatively analyze the anisotropic wetting morpholo-
gies. In chapter 7, the multiphase AC model is utilized to simulate the confinement of low surface
tension liquid in a water ring placed on a chemically patterned surface. The model is further tested
for the studying of multiphase droplets movements driven by the wettability gradient on the substrate.
From chapter 4 to chapter 7, the droplet wetting behaviors on chemically patterned surfaces are con-
cerned. Chapter 8 moves on to discuss the mechanically or geometrically heterogeneous substrate.
This chapter presents the numerical and theoretical study of droplet penetration behavior in a pore
structure. Chapter 9 focuses on the dynamics of droplets on solid heterogeneous surfaces. The CH
model coupled with Navier-Stokes (NS) equations or CHNS model is validated against the data from
the literature. Thereafter, the thin-film dewetting on chemically patterned surfaces is explored by us-
ing CHNS model. Finally, in chapter 10, the whole work is summarized and important achievements,
findings are highlighted. The outlook and possible topics for future research are provided.

6



2. Physical fundamentals and literature review

Wetting is usually termed as the ability of a liquid to maintain contact with a solid surface. Wetting
phenomena are where the disciplines chemistry, physics, material science, and engineering meet.
Surface chemistry determines the contact energy of the surfacewith liquids and vapors and it is related
to short-ranged interactions. However, surface forces like van derWaals forces are long ranged, which
influence the way droplet spreading over a solid surface [22]. Indeed, wetting is involved in a wide
range of applications, for instance, from wetting of viruses at the nanoscale to oil recovery at a large
scale. In the following, a literature review for the physical fundamentals of wetting, droplet wetting
on chemically and mechanically heterogeneous surfaces are conducted.

2.1. Surface tension and Young-Laplace equation

Surface tension is an important factor for wetting phenomena. I could understand it from mechanical
and thermodynamic points of view, respectively. It has thus the dimension of force per unit length
or energy per unit area. For the former view, the cohesive forces for a molecule within the liquid are
equal in every direction, which results in a net force of zero. However, due to the lack of cohesive
forces outside of the liquid, the molecules at the surface are pulled inward of the liquid. Besides, there
is also tangential force parallel to the liquid surface. The net force causes the liquid surface to form a
minimum area. For the latter one, to minimize the energy of the liquid, the number of molecules at
the surface, which is of higher energy, must be minimized and this leads to a minimal surface area.
Actually the idea that surface tension can only be fully understood if the liquid-gas interface is not
considered as sharp but diffuse dates back to Poisson [23]. In the diffuse interface methods, the surface
tension of a flat interface is equal to the surface density of the excess grand thermodynamic potential
[24].

If the interface is curved, surface tension causes a pressure difference across the liquid-vapor
interface. The relationship between the pressure difference 𝛥𝑝 and the curvature of the interface is
revealed by the Young–Laplace equation, formulating as [25, 26, 27]:

𝛥𝑝 = 𝛾( 1
𝑅1

+ 1
𝑅2

), (2.1)

where 𝛾 is surface tension and 𝑅1, 𝑅2 depict the principal radii of curvature. Specially, for a spherical
droplet, I have:

𝛥𝑝 = 2𝛾
𝑅 , (2.2)
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2. Physical fundamentals and literature review

Figure 2.1.: Schematic of Young’s equation, which describes a mechanical force balance on the three-
phase contact line.

with 𝑅 denoting the droplet radius and 𝛥𝑝 is called Laplace pressure. The equation also explains the
creation of emulsions and emulsion coarsening via Ostwald ripening [28]. Moreover, Laplace pressure
gradient reveals the mechanism of directional transport of water drops in natural systems [29, 30, 31,
32], and most recently this mechanism is further applied to design droplet transport structures and
surfaces [33, 34, 35].

2.2. Contact angle and the Young’s law

When a droplet contacts with an ideally smooth, rigid, and solid substrate, it will form a contact line
where liquid, gas, and solid substrate meet. As illustrated in Fig. 2.1, the Young’s equation [25] relates
the surface tensions for liquid-solid 𝛾𝑙𝑠, liquid-gas 𝛾𝑙𝑔, and gas-solid 𝛾𝑔𝑠 and the equilibrium contact
angle 𝜃 through force balance as

𝛾𝑙𝑠 = 𝛾𝑔𝑠 − 𝛾𝑙𝑔 cos 𝜃. (2.3)

It is noted that the Young’s equation describes the droplet at an equilibrium state. The equilibrium
contact angle 𝜃 is measured macroscopically and its value quantifies the wettability of the surface. For
instance, when 𝜃 < 90∘, the solid surface is considered as hydrophilic while it is called hydrophobic
surface when 𝜃 > 90∘. Especially, when 𝜃 > 150∘, the surface becomes superhydrophobic, and the
droplet on it approaches a spherical shape.

Figure 2.2.: Droplet on rough surfaces. (a) Wenzel state. (b) Cassie-Baxter state.
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2.3. The Wenzel and Cassie-Baxter’s model

2.3. The Wenzel and Cassie-Baxter’s model

In reality, there are always roughness and defects on a real surface. The chemical and physical proper-
ties of the solid surfaces enormously affect the wetting behavior of droplets. It has been shown that if
the heterogeneity is three orders of magnitudes smaller than the sessile droplet, it will have little influ-
ence on the optical profile of the droplet [14, 36]. In this condition, I could still use the contact angle to
characterize the wetting state. The pioneers Wenzel, Cassie, and Baxter have laid the foundations for
describing wetting on rough and chemically heterogeneous surfaces since the 1940s [15, 37, 38]. There
are two wetting states when droplets are deposited on rough surfaces, namely, the Wenzel state and
the Cassie-Baxter state, as shown in Fig. 2.2(a) and (b), respectively. In Wenzel state, the droplet fully
wets the rough surface and when the substrate is hydrophilic in chemistry, the roughness facilities the
Wenzel state. However, in Cassie-Baxter state, the droplet stays over the rough structure with pockets
of air trapped beneath the droplet. In this state, the droplet indicates a large apparent contact angle
and has a small sliding angle. A typical example of this kind of superhydrophobic surface is the Lotus
leaf exhibiting a self-cleaning property. The apparent contact angle for Wenzel state is described by
the Wenzel equation

cos 𝜃𝑤 = 𝑟 cos 𝜃, (2.4)

where 𝜃𝑤 denotes the Wenzel angle, 𝜃 depicts the contact angle for the smooth surface with the same
material. 𝑟 is defined as the ratio of the real to the projected area covered by the drop. Cassie and
Baxter extended the formulation of the apparent contact angles for the wetting of porous surfaces. It
is assumed that the apparent contact angle is determined by the energies of the contact area under the
droplet, which has two components: components 1 and 2. The apparent contact angle is expressed as

cos 𝜃𝑎𝑝𝑝 = 𝑓1 cos 𝜃1 + 𝑓2 cos 𝜃2, (2.5)

where 𝑓1 and 𝑓2 are the area fractions for the two components and 𝜃1 and 𝜃2 are the corresponding
contact angles, respectively. Indeed Eq. 2.5 can be used to describe droplet wetting state on chemically
heterogeneous surfaces with two chemical components. For porous surfaces, one of the component
(𝑓2) is air (𝜃2 = 180∘), Eq. 2.5 becomes

cos 𝜃𝐶𝐵 = 𝑓1 cos 𝜃1 + 𝑓1 − 1, (2.6)

which is the Cassie-Baxter equation and 𝜃𝐶𝐵 is Cassie–Baxter angle. It should be noted that the
Wenzel and Cassie-Baxter models are valid only if the droplet size is much larger than that of the
surface structure. The expressed apparent contact angle of the droplet reveals the average wetting
properties of the substrate.

The chemical and geometric heterogeneity of the surfaces, however, can be large and delicately
modified to achieve controlled wettability, which is widely applied to printing techniques and mi-
crofluidic devices. These chemically heterogeneous and topographically structured surfaces have been
studied for decades [39, 40, 41, 42, 43, 44, 45, 46, 19, 47]. Due to the existence of the contact pinning
effect and contact angle hysteresis, there may exist multiple equilibrium states so that a unique ap-
parent contact angle is not sufficient to describe the wetting states. A theoretical description of the
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wetting behavior of droplets on these surfaces is very challenging. The multiple equilibrium states
of droplets correspond to different local free energy minima between which there are energy barri-
ers. The transition between different equilibrium states needs to overcome the energy barriers and
thus needs external disturbing forces such as vibration, gravity, and electrical force, etc. The present
thesis deals with the problems for wetting morphologies of droplets on chemically patterned surfaces
where the pattern size is comparable to the droplet size. A concise theoretical model is established to
address this problem and based on this framework the classic Cassie-Baxter model is extended. For
more details, please refer to chapter 5.

2.4. Multiphase-droplet-system

Multiphase flow especially ternary fluid flow is omnipresent in the applications of microfluidics, phar-
macology, combustion engines, oil recovery, and so on. In the past years, several numerical models
addressing the multiphase flow such as PF methods [49, 50, 51, 52, 53], lattice Boltzmann (LB) method
[54, 55, 56, 57], level-set model [58, 59, 60] have been proposed. Some of these papers are also involved

Figure 2.3.: Partial image of an isopropanol drop with (a) ethylene glycol (volume fraction 𝜙𝑣 = 0.1)
and (b) dodecane (𝜙𝑣 = 0.1) spreading on a silicon wafer. The surface tension gradient
between isopropanol and ethylene glycol is around 10 times greater than for dodecane.
(c) The thickness profiles of the drop in (a) and (b) are highlighted in red and blue colors,
corresponding to the red and blue dashed lines in (a) and (b) [48].
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with the wetting phenomena. In reality, the different phases can be miscible or immiscible, in/out of
chemical equilibrium (chemical potential matching for each component in the system [22]), where
many physical phenomena come into play. Typical examples for an immiscible multi-droplet system
at chemical equilibrium is the colliding of binary droplets in the air without substrate [61] or with
a substrate [62]. While for multiphase-droplet system out of chemical equilibrium, the interesting
phenomena include the concentration gradients induced Marangoni flow [6], selective evaporation of
droplets [63], fingering instability on substrates (see Fig. 2.3 [48]), and so on. For more examples and
comments, readers are referred to the review paper of Lohse and Zhang [64]. The present dissertation
utilizes a multiphase Allen-Cahn model to simulate the equilibrium states of immiscible multiphase
droplets on a chemically patterned surface (see chapter 7).

2.5. Droplet spreading and thin-film dewetting on solid substrates

When I initially release a droplet onto a solid surface, it will spread and evolve towards its equilibrium
shape. The spreading rate of the droplet is of vital importance for many practical applications such
as painting, coating, printing, lubrication, to name a few. There are two different descriptions of
droplet spreading: (i) Hydrodynamic model; (ii) Molecular kinetic model. The former one describes
that the dominant dissipation comes from the viscous flows in the bulk of the droplet. Based on this
concept, a scaling law determining the time evolution of the droplet base radius 𝑅𝑏(𝑡) is obtained,
which is formulated as 𝑅𝑏(𝑡) ∼ 𝑡1/10. This scaling law is known as Tanner’s law and has been widely
corroborated by numerous theoretical and experimental works [65, 66, 67, 68, 69, 70, 71, 72, 73, 74].
The latter one emphasizes the dissipation that occurs in the vicinity of the moving contact line caused
by the interaction between fluid and solid. This approach describes a scaling law of 𝑅𝑏(𝑡) ∼ 𝑡1/7 [75,
76, 77]. The above analysis is based on the assumption of a small droplet, namely, the droplet radius
is smaller than the capillary length. However, if the droplet is large, gravity will take an important
role. In this condition, the power in the scaling law becomes 1/8 or 1/7 [22, 78]. If the spreading drops
are of low viscosity, and I consider the interplay between inertia and surface tension and regardless of
viscous dissipation, the power low in the early stage of spreading becomes 𝑅𝑏(𝑡) ∼ 𝑡1/2 [79]. Bird et
al. [80] have shown that the exponent of the scaling law for initial wetting depends on the equilibrium
contact angle. In chapter 9, the CHNS model is validated against the experiments in the work of Bird
et al. [80].

When the substrate is not homogeneous, the spreading dynamics can be changed. The droplet
contact line could be pinned at the local structure or be guided to a preferred direction. Periodically
distributed inhomogeneities may cause a stick-slip behavior of the contact line (see Fig. 2.4). In past
years, numerous studies have been devoted to this topic theoretically [82, 83, 84, 85], numerically [86,
87, 88] and experimentally [89, 90, 91, 92, 93]. Since the spreading process is enormously influenced by
surface properties, researchers are devoted to designing functional surfaces to control the spreading
process of droplets. For instance, most recently, Miao et al. [94] found that the microchannel and
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Figure 2.4.: (a) Condensation on a strip patterned surface. The hydrophilic glass and hydrophobic
OTS can be recognized by the condensed droplet size: small(large) droplets correspond to
hydrophobic OTS (hydrophilic glass). (b) Static water drop on the strip patterned surface.
(c) Sliding drop on an inclined substrate. Top right: Lateral view. Bottom left: Contact line
view. (d) Stick-slip moving behaviors of the droplet front and rear contact points [81].

nanofiber array morphology facilitates the rapid superspreading on animals’ corneas, which provides
a guideline for accelerating the spreading speeds of droplets.

Thin-film dewetting phenomena have been exploited in liquids [95, 96, 97, 98, 99], polymers
[100, 101, 102, 103, 104, 105] and solids [106, 107, 108]. The study of thin-film dates back to Reynolds
[109] who created the so-called “lubrication theory”, which is a simplification of the NS equations
and denotes a single nonlinear partial differential equation for the film thickness. The film evolution
equation has the same form as the CH equation [19, 110]. In recent years, not only the film thickness
but other scalar fields have been considered in the coupled evolution equations to address the thin
film flows [99]. Various interesting physical phenomena are coming into play in thin-film dynamics.
For instance, in the dewetting process, rupture and hole formation usually happen, which leads to
different droplet patterns. The thin-film dewetting processes may also cause the fingering of viscous
flows, appearing in a wide range of areas. In nature, thin-films are present as tear film in eyes [111],
as liquid lining in lungs [112], or even as lava on earth [113]. The applications in which thin-films are
involved include microfluidics, lubricating coatings, solar cells, sensors, and others [99, 114]. Fig. 2.5
shows an example of a dewetting polymer thin-film with the pinch-off of a small droplet from the rim.
In this community, ruptures, the growth of holes, the stability of liquid fronts have been concerned
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Figure 2.5.: Left: Simulation of a dewetting polymer rim and pinch-off of a single droplet highlighted
with dashed lines. Right: Magnification of the highlighted droplet [105].

in the past years. To control the breakup of thin-films, structured or patterned substrates, heat and
electric fields, surfactant, and so on have been utilized, making this topic even more fascinating. In
chapter 9, thin-film dewetting on the chemically patterned surface is studied using the CHNS model,
and the aim is to explore a potential way to break the thin films in a controlled manner.

2.6. Evaporation and condensation of sessile droplets

Evaporation and condensation of sessile droplets on substrates are very common in daily lives and ap-
plications like painting, coating, ink-jet printing, DNA chip manufacturing, and so on. Condensation
or evaporation takes places when the ambient atmosphere is supersaturated or unsaturated. In the
presence of contact angle hysteresis, there are threemodes of evaporation or condensation for droplets
on a surface, namely, the constant contact angle (CCA) mode, the constant contact radius (CCR) mode
and a mixed mode (both contact angle and radius change). In the case of diffusion-controlled evapora-
tion, for a CCA mode, the evaporation rate is directly proportional to the radius of the droplet base or
the perimeter [115, 116, 117]. Semenov et al. [118] showed the total evaporation flux has nothing to do

Figure 2.6.: Evaporating sessile droplet on a substrate with locally non-uniform evaporation flux.
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Figure 2.7.: A binary drop of alcohol and water on a bath of sunflower oil. The binary drop spreads
and fragments into a myriad of tiny droplets [121].

with the distribution of the local evaporation flux over the droplet surface, but it is proportional to the
droplet perimeter. Researches have pointed out that when the contact angle 𝜃 < 90∘, the evaporation
happens more intensively in the vicinity of the three-phase contact line (see Fig. 2.6). The alternative
explanations are as follows [117]: (i) The existence of disjoining pressure at the three-phase contact
line; (ii) Non-uniform distribution of vapor flux over the droplet; (iii) Non-uniform distribution of the
temperature field.

In the evaporation process, Marangoni flow is generated due to a surface tension gradient caused
by temperature difference. The effect of Marangoni flow on evaporation rates of heated water drops
has been studied by Girard et al. [116]. They concluded that the contribution of the Marangoni flow
to the evaporation process can be neglected in comparison with the heat conduction inside the water
droplets. Semenov et al. [118] reported that the Marangoni convection introduces nonlinearity in
the proportionality of the evaporation rate to the radius of the droplet base. Hu and Larson [119]
reported that in particles contained droplet the Marangoni flow prohibits the formation of ring-like
stains during the drying process. There are a lot of interesting phenomena related to the Marangoni
flow, such as “tears of wine” [120], Marangoni bursting [121, 122] (see Fig. 2.7), and so on.

The investigation of the above-mentioned topics including droplet wetting, droplet dynamics,
phase transition, interfacial instability, and others has narrowed the gap from fluid dynamics to chem-
ical engineering, chemistry, and material science. These developments address the challenges in var-
ious areas like energy, environment, agriculture, medical, food, industrial production, and so on. To
have a quantitative understanding of such physicochemical hydrodynamics systems, numeric model-
ing is of great significance. In this dissertation, the phase-field models are utilized to address these
problems. In the next chapter, the phase-field models will be introduced.
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3. Phase-field method

The phase-field method has become a popular and powerful numerical approach for modeling the
mesoscale morphological and microstructure evolution in materials appearing in a wide range of ar-
eas including metallurgy, hydrodynamics, chemical reactions, phase transformations, and biology
[123]. This method describes different phases by using a set of order parameters that rapidly and con-
tinuously change across the interfacial regions but maintain constant values in the bulk phases. The
diffuseness of the interface between two phases is the most important characteristic of the phase-field
model. The concept of “diffuse interface” dates back to van der Waals [124] who considered capil-
lary phenomena based on thermodynamics. The advantage of the diffuse interface is that there is no
need to explicitly track the positions of interfaces. This property facilitates the numerical treatment
of topological changes and makes it possible to model near-singular interfacial phenomena such as
droplet breakup and coalescence, moving contact line [21, 125]. The temporal and spatial evolution of
the order parameters is governed by the Cahn-Hilliard (nonlinear diffusion equation) [126, 127] or the
Allen-Cahn equation (time-dependent Ginzburg-Landau) [128], both of which reduce the total free en-
ergy, obeying the second law of thermodynamics. The main purpose of this chapter is to give a brief
introduction of the Allen-Cahn type and Cahn-Hilliard type phase-field models which are adopted in
the present dissertation.

3.1. Allen-Cahnmodel for multiphase system

TheAllen–Cahn (AC) model is a reaction–diffusion model which has been utilized to study the motion
of anti-phase boundaries in crystalline solids [129], mixture of incompressible fluids [130], nucleation
of solids [131], the geometric evolution by mean curvature [132] and so on. The AC model involves
a second-order spatial derivative and thus is numerically efficient. However, it is not a mass con-
servative method, and several researchers have been devoted to developing a volume-preserved type
Allen–Cahn model [133, 134, 135, 136, 137, 138, 139, 140], where time-dependent or space and time
dependent Lagrange multipliers have been applied to address this issue.

The present dissertation adopts a volume-preservedAllen-Cahn-type phase-field (PF)modelwhich
introduces an antiforcing free energy density to counterbalance phase changes [141, 142, 52]. The
model is used to simulate the wetting behaviors of (multi-) droplets on chemically patterned sur-
faces surrounded by air. In this model, a space and time dependent vector-valued variable ⃗𝜙( ⃗𝑥, 𝑡) =
(𝜙1( ⃗𝑥, 𝑡), ..., 𝜙𝑁( ⃗𝑥, 𝑡)) is introduced to characterize the state of N-phase system. Here, each com-
ponent 𝜙𝛼(𝑥, 𝑡), 𝛼 ∈ 1, ..., 𝑁 , describes the state of the phase 𝛼. Particularly, in the bulk of each
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liquid phase (𝛼 ∈ 1, ..., 𝑁 − 1), I have 𝜙𝛼( ⃗𝑥, 𝑡) = 1; along the liquid-gas interface, the value of
𝜙𝛼( ⃗𝑥, 𝑡) changes from 0 to 1; in the gas phase (𝛼 = 𝑁 ), 𝜙𝛼( ⃗𝑥, 𝑡) = 0. Obviously, the constraint
∑𝑁

𝛼=1 𝜙𝛼( ⃗𝑥, 𝑡) = 1 must be satisfied. Based on the Ginzburg-Landau energy density functional, the
free energy functional with volume preservation is formulated as:

ℱ = ∫
𝛺

[(1/𝜖)𝑤( ⃗𝜙) + 𝜖𝑎( ⃗𝜙, ∇ ⃗𝜙) + 𝑓0( ⃗𝜙)]𝑑𝛺, (3.1)

where 𝛺 is the spatial domain and 𝜖 determines the interface width.
The multi-obstacle potential 𝑤( ⃗𝜙) reads:

𝑤( ⃗𝜙) = 16
𝜋2 ∑

𝛼<𝛽
𝛾𝛼𝛽𝜙𝛼𝜙𝛽 + ∑

𝛼<𝛽<𝛿
𝛾𝛼𝛽𝛿𝜙𝛼𝜙𝛽𝜙𝛿, (3.2)

with 𝛾𝛼𝛽 denoting the surface/interfacial energy density of the 𝛼-𝛽 phase boundary. The higher or-
der term ∑𝛼<𝛽<𝛿 𝛾𝛼𝛽𝛿𝜙𝛼𝜙𝛽𝜙𝛿 suppresses the artificial third phase contributions along binary phase
boundaries [143]. The multi-obstacle potential can be also substituted by a multi-well type potential
[144], but the multi-obstacle potential showed advantageous in terms of the calibration of surface
energy densities[141].

The term 𝑎( ⃗𝜙, ∇ ⃗𝜙) is the gradient energy density and is expressed as

𝑎( ⃗𝜙, ∇ ⃗𝜙) = ∑
𝛼<𝛽

𝛾𝛼𝛽(𝜙𝛼∇𝜙𝛽 − 𝜙𝛽∇𝜙𝛼)2, (3.3)

with ⃗𝑞 = (𝜙𝛼∇𝜙𝛽 − 𝜙𝛽∇𝜙𝛼) indicating a generalized gradient vector.
The bulk free energy density 𝑓0(𝜙) is introduced to ensure the volume preservation:

𝑓0( ⃗𝜙) =
𝑁

∑
𝛼=1

𝜒𝛼ℎ(𝜙𝛼). (3.4)

Here, 𝜒𝛼 is a weight function discussed in literature [141]. ℎ(𝜙𝛼) = 𝜙3
𝛼(6𝜙2

𝛼 − 15𝜙𝛼 + 10) depicts
an interpolation function and its first derivative equals zero in the bulk phase.

To model the liquid-solid interaction, a wall free energy 𝑓𝑤 is added to the original free energy
functional, thus:

ℱ = ∫
𝛺

[(1/𝜖)𝑤( ⃗𝜙) + 𝜖𝑎( ⃗𝜙, ∇ ⃗𝜙) + 𝑓0( ⃗𝜙)]𝑑𝛺 + ∫
𝐴𝑙𝑠

𝑓𝑤(𝜙)𝑑𝐴, (3.5)

with 𝐴𝑙𝑠 indicating the solid-fluid boundary. 𝑓𝑤 is given as

𝑓𝑤 = ∑
𝛼<𝛽

𝛾𝛼𝑠ℎ(𝜙𝛼) + 𝑚 ∑
𝛼<𝛽<𝛿

𝛾𝛼𝛽𝛿𝜙𝛼𝜙𝛽𝜙𝛿. (3.6)

Here, 𝛾𝛼𝑠 represents the surface tension between the phase 𝛼 and solid substrate.
The equilibrium state of the system meets with the condition for 𝛿ℱ/𝛿𝜙 = 0 (𝛿-variational

derivative). A time relaxation coefficient 𝜏 is introduced to describe the free energy evolution follow-
ing the gradient descent path (the so-called model A dynamics [145, 146]): 𝜏𝜖𝜕𝑡𝜙 = −𝛿ℱ/𝛿𝜙, which
is further formulated as

𝜏𝜖𝜕𝑡𝜙𝛼 = −(1/𝜖)𝑤,𝜙𝛼
( ⃗𝜙)) + 𝜖(∇ ⋅ 𝑎,∇𝜙𝛼

( ⃗𝜙, ∇ ⃗𝜙) − 𝑎,𝜙𝛼
( ⃗𝜙, ∇ ⃗𝜙)) − 𝑓0,𝜙𝛼

( ⃗𝜙) − 𝜆1, (3.7)
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3.2. Allen-Cahn model for two-phase system

in 𝛺 and the natural boundary condition on 𝐴𝑙𝑠:

− 𝜖𝑎,∇𝜙𝛼
( ⃗𝜙, ∇ ⃗𝜙) ⋅ �⃗� − 𝑓𝑤,𝜙𝛼

( ⃗𝜙) − 𝜆2 = 0. (3.8)

Here, �⃗� is the normal vector of the substrate. It is worth noting that Eq. 3.8 relates the interfacial/-
surface tensions between liquid-gas, liquid- liquid, liquid-solid, and gas-solid, and ensures the right
equilibrium contact angles on the substrate. The partial derivatives 𝜕/𝜕𝜙𝛼

and 𝜕/𝜕∇𝜙𝛼
of the func-

tions are indicated by the subscript ,𝜙𝛼
and ,∇𝜙𝛼

, respectively. The Lagrange multipliers 𝜆1 and 𝜆2
ensure the constraint ∑𝑁

𝛼=1 𝜙𝛼( ⃗𝑥, 𝑡) = 1 in the domain 𝛺 and on the substrate 𝐴𝑙𝑠, respectively,
which are given as follows:

𝜆1 = 1
𝑁

𝑁
∑
𝛼=1

(−(1/𝜖)𝑤,𝜙𝛼
( ⃗𝜙)) + 𝜖(∇ ⋅ 𝑎,∇𝜙𝛼

( ⃗𝜙, ∇ ⃗𝜙) − 𝑎,𝜙𝛼
( ⃗𝜙, ∇ ⃗𝜙)) − 𝑓0,𝜙𝛼

( ⃗𝜙)), (3.9)

𝜆2 = 1
𝑁

𝑁
∑
𝛼=1

(−𝜖𝑎,∇𝜙𝛼
( ⃗𝜙, ∇ ⃗𝜙) ⋅ �⃗� − 𝑓𝑤,𝜙𝛼

( ⃗𝜙)). (3.10)

For a sufficiently long time, the functional derivative 𝛿ℱ/𝛿𝜙 approaches zero, and the energy mini-
mum state or equilibrium state is achieved.

3.2. Allen-Cahnmodel for two-phase system

For a liquid-gas system 𝑁 = 2, I have then 𝜙𝑙( ⃗𝑥, 𝑡) + 𝜙𝑔( ⃗𝑥, 𝑡)=1 with the symbol 𝑙 and 𝑔 standing
for liquid and gas phases, respectively. In this case, by defining the local volume fraction of the liquid
phase 𝜙𝑙( ⃗𝑥, 𝑡) ∶= 𝜙 and then I obtain the local volume fraction of the liquid phase 𝜙𝑔( ⃗𝑥, 𝑡) = 1 − 𝜙.
The total free energy functional becomes

ℱ = ∫
𝛺

[(1/𝜖)𝑤(𝜙) + 𝜖𝛾𝑙𝑔(∇𝜙)2 + 𝑓0(𝜙)]𝑑𝛺 + ∫
𝐴𝑙𝑠

𝑓𝑤(𝜙)𝑑𝐴, (3.11)

with the obstacle potential: 𝑤(𝜙) = (16/𝜋2)𝛾𝑙𝑔𝜙(1 − 𝜙), if 0 ≤ 𝜙 ≤ 1; and 𝑤(𝜙) = ∞, if 𝜙 < 0 or
𝜙 > 1. 𝛾𝑙𝑔 is the liquid-gas surface tension. The term 𝜖𝛾𝑙𝑔(∇𝜙)2 indicates a gradient energy density
and 𝑓0(𝜙) ensures the volume preservation. The wall free energy density is simplified as

𝑓𝑤(𝜙) = 𝛾𝑙𝑠ℎ(𝜙) + 𝛾𝑔𝑠[1 − ℎ(𝜙)], (3.12)

without the higher order term. The evolution of 𝜙 is:

𝜏𝜖𝜕𝑡𝜙 = −(16/𝜋2)𝛾𝑙𝑔(1 − 2𝜙)/𝜖 + 2𝜖𝛾𝑙𝑔𝛥𝜙 − 𝑓 ′
0(𝜙) − 𝑘ℎ′(𝜙) − 𝑔′(𝜙), (3.13)

in 𝛺 and
− 2𝜖𝛾𝑙𝑔∇𝜙 ⋅ �⃗� + (𝛾𝑔𝑠 − 𝛾𝑙𝑠)ℎ′(𝜙) = 0. (3.14)

on 𝐴𝑙𝑠. 𝛾𝑙𝑠 and 𝛾𝑔𝑠 are liquid-solid and gas-solid interfacial tensions, respectively. Eq. 3.14 describes
an equilibrium relationship between 𝛾𝑙𝑔, 𝛾𝑙𝑠 and 𝛾𝑔𝑠, which leads to the classic Young’s law. This
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boundary condition can be also modified as a dynamic type by introducing a phenomenological pa-
rameter 𝜏𝑤 determining the deviation of the dynamic contact angle from the equilibrium one. It is
formulated as [21]:

𝜏𝑤𝜕𝑡𝜙 = 2𝜖𝛾𝑙𝑔∇𝜙 ⋅ �⃗� − (𝛾𝑔𝑠 − 𝛾𝑙𝑠)ℎ′(𝜙). (3.15)

The parameter 𝜏𝑤 is related to the physical properties such as density and viscosity. For smaller 𝜏𝑤
the contribution from the term 𝜏𝑤𝜕𝑡𝜙 can be neglected and the contact angle immediately approaches
the equilibrium contact angle as the liquid contact with the substrate. However, for greater 𝜏𝑤, the
dynamic contact angle deviates significantly from the static equilibrium one and the fast interfacial
dynamics or the states out of equilibrium can be captured. The study of moving contact lines by using
diffuse-interface approach has become popular in past decades [147, 148, 44, 149, 17, 150, 151, 152,
153], and this diffuse-interface model has been proved to agree remarkably well with the molecular
dynamics simulations and experiments.

According to the studied system, the total free energy may also include elastic strain energy, mag-
netic energy, electrostatic energy, and/or under applied external fields such as electrical, temperature,
and magnetic fields [123]. The present dissertation takes the influence of evaporation/condensation
and gravity into consideration. The total free energy can be extended as:

ℱ = ∫
𝛺

[(1/𝜖)𝑤(𝜙) + 𝜖𝛾𝑙𝑔(∇𝜙)2 + 𝑓0(𝜙) + 𝑓𝑑𝑟𝑖𝑣(𝜙) + 𝑔(𝜙)]𝑑𝛺 + ∫
𝐴𝑙𝑠

𝑓𝑤(𝜙)𝑑𝐴. (3.16)

Here, 𝑓𝑑𝑟𝑖𝑣(𝜙) describes the driving force for evaporation/condensation and is formulated as

𝑓𝑑𝑟𝑖𝑣(𝜙) = 𝑘ℎ(𝜙), (3.17)

where 𝑘 is a constant determining the phase change rate. The term 𝑔(𝜙) models the gravitational
effect, which is expressed as

𝑔(𝜙) = 𝜌𝑙 ⃗𝑔 ⋅ ⃗𝑥ℎ(𝜙) − 𝜌𝑔 ⃗𝑔 ⋅ ⃗𝑥[1 − ℎ(𝜙)]. (3.18)

Here, 𝜌𝑙 and 𝜌𝑔 are liquid and gas densities, respectively, and ⃗𝑔 is the gravity vector.
The evolution of 𝜙 in 𝛺 is

𝜏𝜖𝜕𝑡𝜙 = −(16/𝜋2)𝛾𝑙𝑔(1 − 2𝜙)/𝜖 + 2𝜖𝛾𝑙𝑔𝛥𝜙 − 𝑓 ′
0(𝜙) − 𝑘ℎ′(𝜙) − 𝑔′(𝜙). (3.19)

The evolution of 𝜙 on 𝐴𝑙𝑠 is also controlled by Eq. 3.14 or Eq. 3.15.

3.3. Cahn-Hilliardmodel for multiphase system

In this section, Cahn-Hilliard (CH) model is introduced. The CH model is a fourth-order PDE and
becomes more and more popular in simulating complex and evolving interface topologies and inter-
facial instability for multi-phase flow due to its conservative nature. For a multi-phase system, to
distinguish from the Allen-Cahn model, the order parameter is indicated by the vector-valued vari-
able ⃗𝑐( ⃗𝑥, 𝑡) = (𝑐1( ⃗𝑥, 𝑡), 𝑐2( ⃗𝑥, 𝑡), ..., 𝑐𝑁( ⃗𝑥, 𝑡)) with the component 𝑐𝑖 denoting the state of the phase
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3.4. Cahn-Hilliard model for two-phase system

𝑖. Concerning the constraint ∑𝑁
𝑖=1 𝑐𝑖 = 1, there is only 𝑁 − 1 independent component(s). The time

evolution of the compositions for each component follows the so-called model H dynamics [145, 146]:

𝜕𝑐𝑖
𝜕𝑡 + �⃗� ⋅ ∇𝑐𝑖 = ∇ ⋅ [

𝑁
∑
𝑗=1

(𝑀𝑖𝑗∇
𝛿ℱ
𝛿𝑐𝑗

)], 𝑖 = 1, 2, ..., 𝑁. (3.20)

Here, �⃗� is the velocity of convection and the Onsager mobility coefficient 𝑀𝑖𝑗 is expressed as

𝑀𝑖𝑗 =
⎧{
⎨{⎩

𝑀0𝑐𝑖(1 − 𝑐𝑖) if 𝑖 = 𝑗;
−𝑀0𝑐𝑖𝑐𝑗 else,

(3.21)

with 𝑀0 = 𝜖𝐷/𝜎. 𝜎 is a parameter related to the surface energy density and 𝐷 is the diffusion
coefficient. The generalized free energy functional for an 𝑁 -component mixture can be formulated
as [126, 154, 145, 155]:

ℱ = ∫
𝛺

[𝑓(𝑐) − 2𝜎𝜖
𝑁

∑
𝑖,𝑗=1

𝐾𝑖𝑗∇𝑐𝑖∇𝑐𝑗]𝑑𝛺, (3.22)

where 𝐾𝑖𝑗 is gradient energy matrix related to the surface tension between domains with composition
differences. The bulk free energy density 𝑓 reads

𝑓 = 𝜎
𝜖 (

𝑁
∑
𝑖=1

𝑐𝑖 ln 𝑐𝑖 +
𝑁

∑
𝑖,𝑗=1

𝜒𝑖𝑗𝑐𝑖𝑐𝑗). (3.23)

Here, 𝜒𝑖𝑗 indicates the interaction parameter between components 𝑖 and 𝑗. When 𝑖 = 𝑗, 𝜒𝑖𝑗 = 0.
To solve the solution for velocity and order parameter the Navier–Stokes equations must be coupled.
The Navier-Stokes equation reads

𝜌(𝜕�⃗�
𝜕𝑡 + �⃗� ⋅ ∇�⃗�) = −∇𝑝 − ∇ ⋅ ̄�̄� + ∇ ⋅ 𝜇(∇�⃗� + ∇�⃗�𝑇 ). (3.24)

Note that the contribution of capillary forces in this equation is given by the term -∇ ⋅ ̄�̄� with the
Korteweg stress tensor ̄�̄� = ∑𝑁

𝑖=1 𝑐𝑖∇ 𝛿ℱ
𝛿𝑐𝑖

[147, 156, 157, 145, 158]. 𝑝, 𝜌 and 𝜇 indicate pressure, den-
sity and dynamic viscosity, respectively. 𝜌 and 𝜇 can be linearly interpolated by the order parameter
[159]. Together with the incompressibility constraint:

∇ ⋅ �⃗� = 0, (3.25)

and given boundary and initial conditions, the whole system (�⃗�, 𝑝, 𝑐𝑖) can be solved [159].
However, in the diffusive regime with smaller velocity, model H reduces to model B (without

hydrodynamic flow) behavior and the second term in Eq. 3.20 vanishes and there is no need to solve
NS equations. Most recently, Mao et al. have adopted model B to investigate the equilibrium phase
behavior and morphology of 𝑁 -component (𝑁 > 3) liquid mixtures [155, 160].

3.4. Cahn-Hilliardmodel for two-phase system

For a two-phase system with 𝑁 = 2 and 𝑐1 + 𝑐2 = 1 I obtain the Cahn-Hilliard equation for 𝑐1:
𝜕𝑐1
𝜕𝑡 + �⃗� ⋅ ∇𝑐1 = ∇ ⋅ ( 𝜖

𝜎𝐷𝑐1(1 − 𝑐1)∇𝛿ℱ
𝛿𝑐1

) + ∇ ⋅ (− 𝜖
𝜎𝐷𝑐1𝑐2∇𝛿ℱ

𝛿𝑐2
), (3.26)
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By defining 𝑐 =∶ 𝑐1 and substituting 𝑐2 with 1 − 𝑐, I have:
𝜕𝑐
𝜕𝑡 + �⃗� ⋅ ∇𝑐 = ∇ ⋅ ( 𝜖

𝜎𝐷𝑐(1 − 𝑐)∇𝛿ℱ
𝛿𝑐 ), (3.27)

The free energy functional of the system ℱ is written as

ℱ = ∫
𝛺

[𝑓(𝑐) + 2𝜎𝜖(∇𝑐)2]𝑑𝛺. (3.28)

The free energy density 𝑓 reads [161]

𝑓(𝑐) = 𝜎
𝜖 [𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐) + 𝜒𝑐(1 − 𝑐)]. (3.29)

𝜒 indicates an interaction coefficient between the two components. This is a double-well function
with energy mimima (𝑐𝑒1, 𝑓(𝑐𝑒1)) and (𝑐𝑒2, 𝑓(𝑐𝑒2)). The concentrations 𝑐𝑒1 and 𝑐𝑒2 denote the two
equilibrium concentrations with 𝑓 ′(𝑐𝑒1) = 𝑓 ′(𝑐𝑒2) = 0. The advantage of choosing a double-well
potential is that the spinodal decomposition can be captured. While this is not possible by using a
obstacle potential, since there is no inflection point in the obstacle function [162].

Substituting the above two equations into Eq. 3.27, the following equation is obtained:

𝜕𝑐
𝜕𝑡 + �⃗� ⋅ ∇𝑐 = ∇ ⋅ [ 𝜖

𝜎𝐷𝑐(1 − 𝑐)∇(𝜕𝑓
𝜕𝑐 − 4𝜎𝜖∇2𝑐)], (3.30)

The Navier-Stokes equation reads

𝜌(𝜕�⃗�
𝜕𝑡 + �⃗� ⋅ ∇�⃗�) = −∇𝑝 − ∇ ⋅ ̄�̄� + ∇ ⋅ 𝜇(∇�⃗� + ∇�⃗�𝑇 ) + 𝜌 ⃗𝑔. (3.31)

The capillary force is described by the term -∇⋅ ̄�̄� with the stress tensor ̄�̄� = 4𝜎𝜖∇𝑐 ⊗∇𝑐 −(2𝜎𝜖∇𝑐 ⋅
∇𝑐 + 𝑓) ̄̄𝐼 [163, 161]. ̄̄𝐼 is the unit tensor. The formulation of the potential form of the surface tension
forcing can be written as 𝜕𝑓

𝜕𝑐 ∇𝑐 or −𝑐∇𝜕𝑓
𝜕𝑐 , as discussed in the literature [21]. Bonart et al. have found

that nonlinear relation between density and order parameter leads to the loss of total mass [164]. In
this work, 𝜌 and 𝜇 have linear functional relationship with the order parameter 𝑐:

𝜌(𝑐) = 𝜌𝑔 + 𝜌𝑤 − 𝜌𝑔
𝑐𝑒2 − 𝑐𝑒1

(𝑐 − 𝑐𝑒1), (3.32)

𝜇(𝑐) = 𝜇𝑔 + 𝜇𝑤 − 𝜇𝑔
𝑐𝑒2 − 𝑐𝑒1

(𝑐 − 𝑐𝑒1). (3.33)

𝜌𝑔 and 𝜌𝑤 are densities for gas and liquid phases. 𝜇𝑔 and 𝜇𝑤 are dynamic viscosities for gas and liquid
phases. For an incompressible system, the densities for gas and liquid don’t change and I obtain

∇ ⋅ �⃗� = 0. (3.34)

For small density ratio, usually the Boussinesq approximation is used to handle the densities [159].

3.4.1. Non-dimensional calculation

By choosing three parameters namely surface tension of water (𝜎 = 7.28 × 10−2 N/m ), and viscosity
of water (𝜇𝑤 = 1.0 × 10−3 kg/ms) and characteristic length (𝑥∗ = 1 × 10−5 m) as characteristic
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3.4. Cahn-Hilliard model for two-phase system

parameters, the related physical variables can be non-dimensionilzed. The scaling factors is as follows:
velocity 𝑢∗ = 𝜎/𝜇𝑤, time 𝑡∗ = 𝜇𝑤𝑥∗/𝜎, and pressure 𝑝∗ = 𝜇𝑤𝑢∗/𝑥∗. The dimensionless variables
are calculated by these scaling factors such that I obtain �̃� = 𝑢/𝑢∗, ̃𝑡 = 𝑡/𝑡∗, ̃𝑝 = 𝑝/𝑝∗, ̃𝑥 = 𝑥/𝑥∗,

̃𝜇 = 𝜇/𝜇𝑤 and so on. The variables labeled with tilde are dimensionless variables. The dimensionless
CH equation reads

𝜕𝑐
𝜕 ̃𝑡

+ ⃗�̃� ⋅ ∇̃𝑐 = (1/𝑃𝑒)∇̃ ⋅ [𝑐(1 − 𝑐)∇̃(𝜕 ̃𝑓
𝜕𝑐 − 4𝐶𝑛2∇̃2𝑐)], (3.35)

where 𝑃𝑒 = 𝑢∗𝑥∗/𝐷 and 𝐶𝑛 = 𝜖/𝑥∗ are Peclet number and Cahn number, respectively. The dimen-
sionless NS equation is

(𝜌/𝜌𝑤)(𝜕 ⃗�̃�
𝜕 ̃𝑡

+ ⃗�̃� ⋅ ∇̃ ⃗�̃�) = −(1/𝑅𝑒)∇̃ ̃𝑝 (3.36)

+ [1/(𝑊𝑒𝐶𝑛)]∇̃ ⋅ [(𝐶𝑛2∇̃𝑐 ⋅ ∇̃𝑐 + ̃𝑓)𝐼 − 4𝐶𝑛2∇̃𝑐 ⊗ ∇̃𝑐] (3.37)

+ (1/𝑅𝑒)∇̃ ⋅ (𝜇/𝜇𝑤)(∇̃ ⃗�̃� + ∇̃ ⃗�̃�
𝑇

) + (𝐵𝑜/𝑊𝑒)(𝜌/𝛥𝜌) ⃗𝑒𝑧, (3.38)

where 𝑅𝑒 = 𝜌𝑤𝑥∗𝑢∗/𝜇𝑤, 𝐵𝑜 = 𝛥𝜌𝑔(𝑥∗)2/𝜎, 𝑊𝑒 = 𝜌𝑤(𝑢∗)2𝑥∗/𝜎 are Reynolds number, Bond
number, and Weber number respectively. The Reynolds number 𝑅𝑒 describes the ratio between the
inertial and viscous force. The Bond number 𝐵𝑜 expresses the ratio between the buoyancy and the
surface tension force. ⃗𝑒𝑧 is the unit vector in the 𝑧-direction. The Weber number 𝑊𝑒 expresses the
ratio between the inertia and surface tension force. The incompressible constraint:

∇ ⋅ ⃗�̃� = 0. (3.39)

3.4.2. Calculation of surface tension

The surface energy (surface tension between liquid and gas) can be considered as the total grand
chemical potential excess at the interface

𝛾𝑙𝑔 = ∫
+∞

−∞
(𝛥𝑓 + 2𝜎𝜖(𝜕𝑐/𝜕𝑥)2)𝑑𝑥, (3.40)

where 𝛥𝑓 = 𝑓(𝑐) − 𝑓(𝑐𝑒1) or 𝛥𝑓 = 𝑓(𝑐) − 𝑓(𝑐𝑒2). The concentrations 𝑐𝑒1 and 𝑐𝑒2 are the two
equilibrium concentrations with 𝑓 ′(𝑐𝑒1) = 𝑓 ′(𝑐𝑒2) = 0. At equilibrium, 𝛥𝑓 = 2𝜎𝜖(𝜕𝑐/𝜕𝑥)2 and I
obtain

𝛾𝑙𝑔 = ∫
+∞

−∞
4𝜎𝜖(𝜕𝑐/𝜕𝑥)2𝑑𝑥 = ∫

𝑐𝑒2

𝑐𝑒1

4𝜎𝜖(𝜕𝑐/𝜕𝑥)𝑑𝑐 (3.41)

By changing 𝑑𝑥 as 𝑑𝑐:
𝛾𝑙𝑔 = ∫

𝑐𝑒2

𝑐𝑒1

2√2𝜎𝜖𝛥𝑓𝑑𝑐 = 𝜎 ∗ 𝐼 (3.42)

where
𝐼 = 2 ∫

𝑐𝑒2

𝑐𝑒1

√2𝛥 ̃𝑓𝑑𝑐, (3.43)
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3. Phase-field method

Figure 3.1.: The free energy ̃𝑓 as a function of concentration 𝑐: ̃𝑓(𝑐) = 𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐) +
3.78𝑐(1 − 𝑐). The two points (0.0273, -0.0249) and (0.9727, -0.0249) are the free energy
minimum states, corresponding to the gas and liquid bulk phases, respectively.

with 𝛥 ̃𝑓 = 𝜖𝛥𝑓/𝜎. Let the integration 𝐼 = 1, then I have 𝛾𝑙𝑔 = 𝜎. One alternative double-well
function 𝑓(𝑐) is given:

̃𝑓(𝑐) = 𝑐 ln 𝑐 + (1 − 𝑐) ln(1 − 𝑐) + 𝜒𝑐(1 − 𝑐), (3.44)

with 𝜒 = 3.78, 𝑐𝑒1 = 0.0273 and 𝑐𝑒2 = 0.9727. Fig. 3.1 displays the double-well function with two
local minima.

3.4.3. Derivation of the natural boundary condition

At the substrate, the free energy functional reads

ℱ𝑠 = ∫
𝛺

2𝜎𝜖(∇𝑐)2𝑑𝛺 + ∫
𝐴𝑙𝑠

𝑓𝑤(𝑐)𝑑𝐴. (3.45)

Here, 𝑓𝑤(𝑐) = 𝛾𝑙𝑠𝑙(𝑐)+𝛾𝑔𝑠(1−𝑙(𝑐)) with 𝑙(𝑐) = −4.73𝑐3 +7.10𝑐2 −0.38𝑐 denoting an interpolation
function with 𝑙(𝑐𝑒1) = 0, 𝑙(𝑐𝑒2) = 1, and 𝑙′(𝑐𝑒1) = 𝑙′(𝑐𝑒2) = 0. The variational calculation

𝛿ℱ𝑠
𝛿𝑐 = 0, (3.46)

together with the divergence theorem transforming the volume integration to the surface integral
lead to the following boundary condition at the fluid-substrate interface:

4𝜎𝜖∇𝑐 ⋅ �⃗� − (𝛾𝑔𝑠 − 𝛾𝑙𝑠)𝑙′(𝑐) = 0. (3.47)

With 𝛾𝑙𝑔 = 𝜎, the dimensionless equation reads

4𝐶𝑛∇̃𝑐 ⋅ �⃗� − (𝛾𝑔𝑠 − 𝛾𝑙𝑠)
𝛾𝑙𝑔

𝑙′(𝑐) = 0 (3.48)
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3.4. Cahn-Hilliard model for two-phase system

For the dynamic boundary:

𝜏𝑤
𝜕𝑐
𝜕𝑡 = 4𝛾𝑙𝑔𝜖∇𝑐 ⋅ �⃗� − (𝛾𝑔𝑠 − 𝛾𝑙𝑠)𝑙′(𝑐) (3.49)

Here, the parameter 𝜏𝑤 is phenomenological parameter. The dimensionless dynamic boundary:

𝐴𝑔 ̃𝜏𝑤
𝜕𝑐
𝜕 ̃𝑡

= 4𝐶𝑛∇̃𝑐 ⋅ �⃗� − (𝛾𝑔𝑠 − 𝛾𝑙𝑠)
𝛾𝑙𝑔

𝑙′(𝑐) (3.50)

𝐴𝑔 = 𝜇𝑤𝑢∗/𝜎 is a dimensionless number expressing the ratio between the work done by the viscous
force and the energy needed for a molecular site interchange [17].
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Results and discussion: Static or
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4. Single droplet on chemically striped

surfaces: A phase-field investigation

In this chapter, the ACmodel is used to simulate the equilibrium shape of a single droplet with different
sizes deposited on chemically striped patterned surfaces. Additionally, the movements of evaporating
and condensing droplets in quasi-equilibrium and far from equilibrium states are analyzed. The outline
of this chapter is as follows. Firstly, simulation setups are introduced. Next, numerical validations are
carried out to show the validity of theACmodel. Thereafter, the numerical results alongwith a detailed
analysis of the droplet shapes are presented. At last, the whole work in this chapter is summarized
and the vision for future work is given. This chapter was published in Ref. [165].

4.1. Simulation setups

The evolution equations for the order parameter are discretized by the finite difference method with
an explicit Euler time marching scheme. The simulations are performed in 3D geometries by using
an equidistant mesh with a spacing of 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧. The effect of the mesh resolution on the
simulation results is investigated in the following section. The numerical stability of the simulations
is guaranteed by choosing a fine time step 𝛥𝑡 < 𝜏(𝛥𝑥)2/(2 ⋅ dimension ⋅ 2𝛾𝑙𝑔) according to the von
Neumann stability analysis [161].

In the simulations, I set the relaxation parameter 𝜏 = 1. The length 𝑥, time 𝑡, and energy 𝐸
are nondimensionalized by the characteristic length 𝑥∗ = 1 × 10−6 m, the characteristic time 𝑡∗ =
1×10−9 s, and the characteristic energy 𝐸∗ = 1×10−11 J, respectively. In the following, transformed
dimensionless parameters are used.

4.2. Validation of the numerical model

Numerical simulations are performed to show the validity of the phase-field model for simulating
droplet wetting on surfaces with certain equilibrium contact angles. Firstly, the sensitivity study of
the mesh resolution is conducted. Droplets with different values of the Cahn number 𝐶𝑛, which is
defined as the ratio of the interface width 𝜀 to the droplet diameter 𝐷, are simulated. Our simulations
are carried out in a 3D domain with a size of 200 × 200 × 120. The number of cells across the droplet-
gas interface is kept as 10 in all of the simulations. At the beginning, a droplet with a radius of 40
is placed on the top of the surface and the distance between the mass point of the droplet and the
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Figure 4.1.: Snapshots of droplets and sensitivity study depending on the Cahn number: (a) droplet
at initial time, (b) and (c) droplets at equilibrium on two different surfaces, (d) simulation
results on two different surfaces for different values of 𝐶𝑛. The red circles and blue squares
show the simulation results on surfaces with equilibrium contact angles 𝜃e,wet = 41∘ and
𝜃e,dry = 106∘ respectively. The red and blue dashed lines correspond to the two equilibrium
contact angles 𝜃e,wet = 41∘ and 𝜃e,dry = 106∘.

surface is the same as its radius. The initial setup is shown in Figure 4.1(a). In Figure 4.1(b) and
(c), the equilibrium states of a droplet on surfaces with equilibrium contact angles 𝜃e,wet = 41∘ and
𝜃e,dry = 106∘ are presented, respectively. The contact angles of droplets at the final state on the two
surfaces are measured by using a modified marching square algorithm [166, 167] Figure 4.1(d) shows
the simulation results for droplets with Cahn number 𝐶𝑛 varying from 0.03 to 0.2, which is achieved
by varying the resolution 𝛥𝑥 from 0.6 to 4. The red circles and blue squares represent the simulation
results on surfaces with equilibrium contact angles 𝜃e,wet = 41∘ and 𝜃e,dry = 106∘, respectively. The red
and blue dashed lines correspond to the two equilibrium contact angles 𝜃e,wet = 41∘ and 𝜃e,dry = 106∘

according to the Young’s law. It is observed from Figure 4.1(d) that the simulation results on the two
surfaces are convergent to the equilibrium contact angles as the Cahn number 𝐶𝑛 decreases. When
𝐶𝑛 < 0.15, the variation of the results is very small, while for 𝐶𝑛 = 0.2, a relatively big deviation
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Figure 4.2.: The cosine of the equilibrium contact angle versus (𝛾𝑔𝑠 − 𝛾𝑙𝑠)/𝛾𝑙𝑔. Blue squares show
the simulation results and the contact angles of droplets at final states are measured by
using a modified marching square algorithm [166, 167]. The red line corresponds to the
theoretical prediction of Young’s law.

appears. As a compromise of the simulation precise and computational efforts, the Cahn number 𝐶𝑛
is constrained in the range of 𝐶𝑛 ∈ [0.05, 0.15] for the simulations in this work.

After the sensitivity study of the mesh resolution, the approach capturing contact angle is vali-
dated. Droplets deposited on homogeneous surfaces with equilibrium contact angles ranging from 10∘

to 170∘ are simulated. At equilibrium, the contact angles are measured through a modified marching
square algorithm [166, 167]. The cosine of measured data versus (𝛾𝑔𝑠 − 𝛾𝑙𝑠)/𝛾𝑙𝑔 is plotted in Fig-
ure 4.2. The simulation results are shown by the blue squares and the red line depicts the theoretical
prediction of Young’s law. The simulations match the Young’s law very well except when the contact
angle is less than 20∘, i.e., (𝛾𝑔𝑠 − 𝛾𝑙𝑠)/𝛾𝑙𝑔 > 0.94, which is due to the limited numerical resolution of
small contact angles.

Next, the phase-field model for simulating spreading dynamics of a partially wetting droplet on
a flat surface is validated against an exponential power law proposed by Lavi and Marmur [168].
The main purpose is to show the validity of the dynamical contact angle boundary condition and to
study the influence of the phenomenological parameter 𝜏𝑤. The exponential power law of Lavi and
Marmur [168] was empirically derived from experimental data reading

𝐴
𝐴𝑓

= 1 − exp(−𝜆𝑡𝑚) (4.1)
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Figure 4.3.: Validation of the numerical model through comparison with analytical power laws. (a)
Temporal evolution of the dimensionless wetted area of droplets spreading on a surface
(𝜃e = 41∘). 𝐴𝑓 and 𝐴 are final and temporal wetted areas of the droplet, respectively.
Different colored squares indicate the simulation results for different 𝜏𝑤 values. The solid
curves correspond to the fitting curves of the exponential power law proposed by Lavi
and Marmur [168]. (b) Temporal evolution of the dimensionless volume of an evaporating
droplet suspended in vapor without wetting. 𝑉0 and 𝑉 are initial and temporal volumes of
the droplet, respectively. The blue squares show the simulation results and the solid line
indicates the fitting line in accordance with the well-known 𝐷2-law [169]. The insets in
(a) and (b) are the snapshots showing the simulation scenes.

where 𝐴𝑓 and 𝐴 are the final and temporal wetted areas of the droplet, respectively. 𝜆 and 𝑚 denote
non-negative parameters, which are determined by fitting through experimental data. To make a
qualitative comparison with the exponential power law, simulations for droplets spreading on a flat
surface with equilibrium contact angle 𝜃𝑒 = 41∘ are conducted. The droplet with radius 𝑟 = 40 and
Cahn number 𝐶𝑛= 0.05 is considered. The droplet is initially released on the top of the surface and
the distance between the center of mass of the droplet and the surface is the same as its radius. The
evolutions of 𝐴/𝐴𝑓 versus 𝑡 for 𝜏𝑤=1, 10, 20, and 100 are plotted in Figure 4.3(a) with different colored
squares. The solid curves are the fitting curves according to the exponential power law and the fitting
parameter 𝑚 ranges from 0.95 to 1.12. It can be seen that the agreement between the simulation
results and the exponential power law Equation (4.1) is excellent. Additionally, it is found that the
increase of 𝜏𝑤 slows down the kinetics of the contact line movements. This is reasonable, since large
viscosities or strong wall bonds of liquid lead to a slow kinetics.

Afterwards, simulation of the evaporation of a static drop suspended in vapor without wetting is
performed to show the validity of the phase-field model for simulating liquid-vapor phase change. The
result is compared to the well-known 𝐷2-law for the droplet evaporation. According to this law, the
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4.2. Validation of the numerical model

(a)

(b)

Figure 4.4.: Snapshots of droplets deposited on striped patterned surface for different liquid volumes.
(a) Experimental results. Reprintedwith permission fromRef. [170]. Copyright 2012Amer-
ican Chemical Society. (b) Present simulation results. The top rows in (a) and (b) illustrate
the droplet shapes in the direction parallel to the stripes and the bottom rows depict the
droplet shapes in the perpendicular direction. The hydrophilic and hydrophobic stripes in
(a) are 12 and 6 in dimensionless width, respectively. The dimensionless width of the 80 𝑝𝐿
(initial dimensionless diameter 53) droplet in the perpendicular direction is 65. The solid
lines are baselines of the surface and dashed lines show the droplet width in the parallel
direction.

square of the evaporating drop diameter decreases linearly with the time, as 𝐷2/𝐷2
0 = 1 − 𝑘𝑡. Here

𝐷0 and 𝐷 are initial and temporal diameters of the droplet, respectively, and 𝑘 is a rate constant [169].
The simulations are carried out in a 3D domain (200×200×120) with a droplet (radius 𝑟 = 40) located
in the domain center. In Figure 4.3(b), 𝑉 2/3 (effectively 𝐷2 ) as a function of time is plotted for the
simulated evolution as square data points and the solid line refers to the fitting line of the 𝐷2-law. A
good agreement between the numerical results and the 𝐷2-law is obtained.

Simulations of droplets on chemically striped surface are also validated. Firstly, the final droplet
shape on the chemically striped surface is considered. Icompare our simulation results with the ex-
perimental results from Jansen et al. [170], who used droplets with three different sizes (80, 245, and
402 𝑝𝐿 in volume or 53, 78, and 92 in dimensionless diameter) to study the effect of volume to the
anisotropic wetting on chemically striped surface. The hydrophilic (SiO2, 𝜃e,wet = 27∘) and hydropho-
bic (PFDTS, 𝜃e,dry = 106∘) stripes of the surface are 12 and 6 in dimensionless width, respectively. In
the present simulations, the droplet sizes are the same as that in the work of Jansen et al. [170]. The
dimensionless widths of the hydrophilic and hydrophobic stripes are also 12 and 6, respectively. The
equilibrium shapes of droplets for experimental and simulation results are illustrated in Figure 4.4(a)
and (b), respectively. The top rows in (a) and (b) show the droplet shapes in the direction parallel
to the stripes, while the second rows indicate the droplet shapes in the perpendicular direction. As
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Figure 4.5.: Temporal evolution of droplet shape for spreading and evaporation processes: (I) bottom
view of a droplet with constant volume spreading on striped patterned surface, (II) bot-
tom view of a droplet evaporating on striped patterned surface. (a)-(h): Experimental and
LB simulation results. Reprinted with permission from Ref. [171]. Copyright 2013 Ameri-
can Physical Society. (i)-(l): Present simulation results. The hydrophilic and hydrophobic
stripes (𝜃e,wet = 40∘ and 𝜃e,dry = 110∘) are indicated by blue and red stripes in the present
simulations, respectively.

the volume rises, the droplet base radius in both directions increases as well. The elongation for the
80 𝑝𝐿 droplet is the largest and becomes less profound for the 245 𝑝𝐿 droplet, while for the 402 𝑝𝐿
case, the base radius in the perpendicular direction is larger than the one in the parallel direction. On
the one hand, the contact angle in the perpendicular direction changes because of the contact line
pinning and depinning effect, as shown in the second rows in Figure 4.4(a) and (b). On the other
hand, the contact angle in the parallel direction changes only slightly, as indicated in the first rows in
Figure 4.4(a) and (b). The droplet-shapes in the present simulations show a very good agreement with
the experimental results and the simulation can also reproduce the effect of volume to the anisotropic
wetting properties on chemically striped surface.

In order to validate the simulation of droplet-spreading and evaporation processes on chemically
striped surface, simulations are conducted to make a comparison with the work of Jansen et al. [171].
They investigated this phenomenon through lattice Boltzmann (LB) method and experiments. In their
experiments, water droplets are used. The surface is made up of hydrophilic (SiO2, 𝜃e,wet = 40∘) and
hydrophobic (PFDTS, 𝜃e,dry = 110∘) stripes with the stripe width ratio 𝑤𝑃𝐹𝐷𝑇 𝑆/𝑤𝑆𝑖𝑂2

=0.5. In the LB
simulations, a static contact angle boundary condition is adopted. The dimensionless droplet radius
is 99 and the dimensionless stripe widths are 10 and 20 for the hydrophobic and hydrophilic stripes.
The present simulations use a dynamic contact angle model as the boundary condition. Given that the
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4.2. Validation of the numerical model

water droplet viscosity is relatively small, 𝜏𝑤 = 1 is chosen in our simulations. The initial droplet radii
and the widths for hydrophobic and hydrophilic stripes are the same as those in the LB simulations of
Jansen et al. [171]. Figure 4.5(I) and (II) show the bottom view of the evolution of the droplet shape for
droplet-spreading and evaporation processes. (a)-(d), (e)-(h), and (i)-(l) are the experimental results,
LB simulations, and the present simulations, respectively. In droplet-spreading process, the droplet
firstly touches the surface and then spreads over it. Because the droplet spreads preferably parallel to
the stripes, the droplet is eventually elongated in this direction. In the case of evaporation process, the
contact line firstly recedes in the direction parallel to the stripes, while it is pinned perpendicular to
the stripes. The details of the contact line advancing and receding motions and droplet shapes show
significant similarities between the present results and the results of Jansen et al. [171].

(I) (II)

a b

c d

a b

c d

Figure 4.6.: Snapshots of droplet evaporation on striped patterned surface: (I) LB simulation from Yu
et al. Reprinted with permission from Ref. [172]. Copyright 2017 Elsevier. (a) 𝑡 = 105𝛿𝑡,
(b) 𝑡 = 1.35 × 105𝛿𝑡, (c) 𝑡 = 1.4 × 105𝛿𝑡 and (d) 𝑡 = 3.05 × 105𝛿𝑡. 𝛿𝑡 is the time step.
(II) Present simulation. (a) 𝑡 = 0.4 × 103, (b) 𝑡 = 1 × 103, (c) 𝑡 = 1.2 × 103 and (d)
𝑡 = 2.6×103. The equilibrium contact angles for hydrophilic and hydrophobic stripes are
𝜃e,wet = 60∘ and 𝜃e,dry = 120∘, respectively.

To validate the capability of the phase-fieldmodel to investigate the contact line pinning-depinning
mechanism, a further simulation is done to compare with the LB simulation of Yu et al. [172]. In their
study, the evaporation of a droplet with radius 𝑟 = 40 on chemically striped surface is simulated and
the movements of the contact line and contact angle are discussed. The hydrophilic and hydrophobic
stripes of the surface are of the same width 11, and the corresponding static equilibrium contact an-
gles are 𝜃e,wet = 60∘ and 𝜃e,dry = 120∘, respectively. By setting the same conditions with the study
of Yu et al. [172], a phase-field simulation is conducted in this work. Figure 4.6 illustrate the snap-
shots of droplet evaporation for different time steps. (I) and (II) show the results of Yu et al. [172] and
the present phase-field simulation, respectively. In Figure 4.7, the variations of the contact angle and
contact radius (or base radius) in the perpendicular and parallel directions are plotted. (a)-(d) are the
results of Yu et al. [172] and (e)-(h) correspond to the present simulation. 𝑅𝑒 denotes the contact ra-
dius when evaporation begins and 𝛿𝑡 is the time step. From Figure 4.6 and Figure 4.7, I can see that the
droplet evaporates in a different way in the directions parallel and perpendicular to the stripes. In the
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Figure 4.7.: Contact angle and non-dimensional base radius of an evaporating droplet as a function
of time in the perpendicular direction (left) and the parallel direction (right) on striped
patterned surface. 𝛿𝑡 is the time step. (a)-(d) LB simulation from Yu et al. Reproduced
with permission from Ref. [172]. Copyright 2017 Elsevier. The legends are added by the
present authors. (e)-(h) Present simulation.

perpendicular direction, the droplet initially evaporates in the CCR mode. The contact line is pinned
on the stripe boundary while the contact angle decreases, as can be seen in Figure 4.7(a) and (c) from
𝑡 = 2×104𝛿𝑡 to 𝑡 = 1.2×105𝛿𝑡 (or in (e) and (g) from 𝑡 = 0 to 𝑡 = 1000). The droplet then jumps two
times in the following process. In the parallel direction, however, the droplet evaporates almost in
the CCA mode. The contact angle remains unchanged and the contact radius decreases with time, as
shown in Figure 4.7(b) and (d) (or (f) and (h)). The droplet shapes as well as the movements of contact
line and contact angle exhibit pronounced similarities between the present phase-field simulation and
the LB simulation of Yu et al. [172].
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Figure 4.8.: Surface energy evolution and snapshots of droplet spreading. Position 1 is above the center
line of a blue stripe and position 2 is above the center line of a red stripe. The numbers at the
bottom right corner in the snapshots indicate the dimensionless time. (a) 𝑑/𝑉 1/3 = 0.19.
(b) 𝑑/𝑉 1/3 = 0.62.

4.3. Droplet shape analysis

4.3.1. Droplet deposition and condensation in quasi-equilibrium state

In this section, the equilibrium shapes of droplets on chemically striped patterned surfaces, on which
the equilibrium contact angle alternates 𝜃e,wet = 41∘ and 𝜃e,dry = 106∘, are investigated. In the follow-
ing, the blue and red stripes indicate the hydrophilic (𝜃e,wet) and hydrophobic (𝜃e,dry) ones, respectively.
Initially, two droplets with radius 𝑟 = 40 are released on two different positions on the striped pat-
terned surface. The first position is above the center line of a blue stripe, while the second position
is above the center line of a red one. The former and the latter ones are named as position 1 and 2,
respectively.

Driven by the surface energy minimization, the shapes of the droplets evolve with time. The
surface energies as a function of time and snapshots of the droplets spreading are illustrated in Fig-
ure 4.8. Two distinct stripe widths 𝑑 = 12, 40 are considered in (a) and (b). In Figure 4.8(a) (𝑑 = 12,
i.e. 𝑑/𝑉 1/3 = 0.19), despite different initial positions, the final shapes of the droplets are the same,
as shown by the snapshots at the time 𝑡 = 4000. This is clearly evidenced by the fact that the surface
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energies of the two droplets converge to the same value, as can be seen by the red and the blue curves
in Figure 4.8(a). As far as I am aware, this phenomenon has not yet been reported in literature. Con-
trarily, in Figure 4.8(b) (𝑑 = 40, i.e., 𝑑/𝑉 1/3 = 0.62), the final shapes of the droplets are not identical
when droplets are deposited on the positions 1 and 2 (see snapshots at the time 𝑡 = 4000 in (b)). These
two distinct equilibrium shapes correspond to two surface energy minima, as displayed by the curves
in Figure 4.8(b). It is noteworthy that in (a), the final shape of the droplet is the same as the one in
Figure 4.8(a) at 𝑡 = 4000 when a droplet is initially placed between the positions 1 and 2. Whereas,
in (b), two different equilibrium shapes appear when I release a droplet somewhere between the posi-
tions 1 and 2. The equilibrium states depend on the distance to the position 1 and 2 (see refs [173, 174]
for more details). Thus, I conclude that the final shape of the droplet is dependent on two significant
factors, (i) the relative size of the droplet compared with the stripe width and (ii) the initial position
of the droplet, from which the droplet is released.

In order to systematically study the vital factors (i) and (ii), I vary the ratio 𝑑/𝑉 1/3 and release
the droplets on the positions 1 and 2 to scrutinize the final shapes of the droplets. Because of the
computational effort, I here constrain to the consideration that the droplet size is comparable to the
stripe width. The droplet radius is fixed as 𝑟 = 40 and the stripe width varies from 7 to 160. The
droplet aspect ratio 𝜉 (defined as 𝑅1/𝑅2 with 𝑅1 and 𝑅2 representing the base radii parallel and
perpendicular to the stripes, respectively) as a function of 𝑑/𝑉 1/3 is depicted in Figure 4.9(a).

At equilibrium, the droplets cover different number of hydrophilic (blue) stripes, which is indi-
cated by the symbols with varying colors, e.g. blue squares–1 stripe, red circles–2 stripes (the other col-
ored symbols are interpreted in the legend). According to the number of covered hydrophilic stripes,
the diagram is divided into 6 areas: (I) 0.9 < 𝑑/𝑉 1/3 < 3. For a droplet released on the position 1, only
one hydrophilic stripe is wetted, as pictured in the left part of Figure 4.9(c) for 𝑑/𝑉 1/3 = 2.5, 1.4, 1.1.
This scenario is described by the blue squares in the area I and it is observed that as the ratio 𝑑/𝑉 1/3

increases, the aspect ratio 𝜉 decreases. It is noticed that when 𝑑/𝑉 1/3 is large enough, i.e., stripe width
is large compared with the droplet base diameter, the droplet deposits in the sameway as on a homoge-
neous surface and the aspect ratio 𝜉 = 1 keeps constant. When the droplet is released on the position
2, the droplet will stay on the red stripe (e.g. 𝑑/𝑉 1/3 = 2.5) or break up (e.g. 𝑑/𝑉 1/3 = 1.1, 1.4) into
two small droplets with the same size, sited respectively on two blue stripes (see the right part of (c)).
This kind of breakup is out of the scope of the present study and will not be discussed in detail. (II)
0.42 < 𝑑/𝑉 1/3 ≤ 0.9. In this area, for a fixed ratio, e.g. 𝑑/𝑉 1/3 = 0.9, 0.7, 0.5 (see Figure 4.9(d)),
there are two significantly different patterns where one or two blue stripes are wetted. The former and
the latter cases correspond to the droplets initially placed on the positions 1 and 2 and are depicted
by the blue squares and the red circles in the area II, respectively. (III) 0.25 < 𝑑/𝑉 1/3 < 0.42. The
relative droplet size is bigger than the one in the areas I and II and either two or three blue stripes are
wetted. Typical equilibrium shapes are displayed in Figure 4.9(e) and the results are demonstrated by
the red circles and the green triangles in the area III in Figure 4.9(a). (IV)-(VI) 0.1 < 𝑑/𝑉 1/3 < 0.25.
With a further decrease in the ratio of 𝑑/𝑉 1/3, more hydrophilic stripes are wetted due to the rel-
atively large volume of the droplet. It should be noticed, that on the boundary between two areas,
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Figure 4.9.: Morphological diagram: (a) Droplet aspect ratio 𝜉 as a function of 𝑑/𝑉 1/3. Symbols show
the results of droplet deposition from a series of independent simulations with different
ratios of 𝑑/𝑉 1/3. Different colored symbols indicate the equilibrium shapes covering dif-
ferent number of hydrophilic stripes. The black solid lines with circles and with squares
are the first and second condensation lines, respectively, corresponding to the droplets
initially deposited on the positions 1 and 2. The diagram is divided into 6 areas according
to the number 𝑛 of the wetted hydrophilic stripe(s). I: 𝑛 = 1, II: 𝑛 = 1 and 2, III: 𝑛 = 2
and 3, IV: 𝑛 = 3 and 4, V: 𝑛 = 4 and 5, VI: 𝑛 = 5 and 6. (b) Surface energy evolution as a
function of 𝑑/𝑉 1/3 in the area 𝑑/𝑉 1/3 ∈ [0.15, 0.4]. The red solid line and the blue dashed
line correspond to the first and second condensations, respectively. The orange rhombus
and green triangle denote the intersections. (c), (d) and (e) Equilibrium droplet-shapes in
the areas I, II and III, respectively. In the left and right three images of (c), droplets are
released on the positions 1 and 2, respectively. At the top and the bottom pictures in (d)
and (e), droplets are deposited on the positions 1 and 2, respectively.
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4. Single droplet on chemically striped surfaces: A phase-field investigation

e.g. 𝑑/𝑉 1/3=0.19, which is denoted by the orange rhombus in Figure 4.9(a), a unique equilibrium
shape appears in spite of different release positions and this phenomenon has never been reported in
literature.

The contact line movement of a depositing droplet is similar to the one of a condensing droplet,
when the phase transition rate is extremely low, such that at every time step, the droplet obeys the
principle of surface energy minimization. In order to further explore the underlying mechanism of
the relationship between the droplet aspect ratio 𝜉 and the relative size of the droplet, two individual
simulations for the condensations of a droplets on the positions 1 and 2 are performed. The stripe
width of the surface is 30 and 𝜏𝑤 = 1. The results of these two simulations are presented in Figure 4.9(a)
by the black lines with circles (position 1) and squares (position 2). The arrows denote the volume-
increase direction. I observe that all the colored symbols in the areas I-VI perfectly lie in the two
condensation lines. For the first condensation line, the small droplet initially lies in the center of a
hydrophilic stripe and grows through condensation following the direction of the arrow. The increase
in the volume gives rise to a jump from one wetted hydrophilic stripe to three, then five stripes. Each
jump leads to a rapid decrease of the droplet aspect ratio 𝜉 and the reason is discussed in the following.
Similarly, when a droplet is originally placed on a hydrophobic stripe (the second condensation line),
it jumps from two hydrophilic stripes to four and then six stripes. Both condensation lines exhibit a
typical stick-slip-jump” behavior that has been discussed in literature [175] The intersections of the
two condensation lines exactly locate on the boundaries of different areas, as shown in Figure 4.9(a).
These intersections correspond to the situation where there is a unique equilibrium state irrespective
of the initially released positions, which has been exemplarily illustrated in Figure 4.8(a). Within
each area excluding I, two equilibrium states exist for a certain ratio of 𝑑/𝑉 1/3, corresponding to
two different surface energy minima, as aforementioned in Figure 4.8(b). The number of equilibrium
states is corroborated through the following surface energy analysis. Figure 4.9(b) shows the surface
energy evolution for the first and second condensations in the range 𝑑/𝑉 1/3 ∈ [0.15, 0.4], which
is in the areas III, IV and V. The red solid line and the blue dashed line correspond to the first and
second condensations, respectively. These two lines diverge from each other within the three areas
and intersect on the left and right boundaries of the area IV. The intersections are denoted by the
orange rhombus and the green triangle, which exactly coincide with the two intersections on the
two boundaries of the area IV in Figure 4.9(a). Therefore, I conclude that there are either one or two
minima in the surface energy landscape with regard to the droplet deposition on a chemically striped
patterned surface. This finding is also consistent with the analysis of Gea Jódar et al. [176].

It is noteworthy that from I to VI, the droplet aspect ratio 𝜉 demonstrates a periodic oscillation
with a decreasing amplitude. When the ratio of 𝑑/𝑉 1/3 is beyond the area VI, i.e., the droplet size
is much greater than the stripe width, the aspect ratio 𝜉 converges to a certain value. The droplet
behavior in the area beyond I-VI has been studied by Bliznyuk et al. [177] and Jansen et al. [178]. The
periodic oscillation behavior of the droplet aspect ratio 𝜉 has been also observed by David et al. [179],
but due to the narrow varying range of the stripe width in their study, an asymptotic analysis to obtain
the value of the droplet aspect ratio 𝜉 for 𝑑/𝑉 1/3 << 1 is not possible.
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4.3. Droplet shape analysis

The underlying mechanism for the morphological transition shown in Figure 4.9 is elucidated by
analyzing the contact angles parallel and perpendicular to the stripes (𝜃1 and 𝜃2). The contact angle
𝜃1 is described by Cassie-Baxter equation [38]:

𝜃1 = arccos(𝑓1 cos 𝜃e,wet + 𝑓2 cos 𝜃e,dry) (4.2)

where 𝑓1 and 𝑓2 are the area fractions of the hydrophilic and hydrophobic stripes, respectively. The
angle 𝜃2 is measured along the line perpendicular to the stripes and passing through the droplet center.
The variation of 𝜃1 and 𝜃2 during the condensation 1 is represented in Figure 4.10(a). According to
the varying behavior of 𝜃2, the diagram is partitioned into three phases 1-3 and is read from the right
to the left. The morphological evolution in these three phases is shown in Figure 4.10(e). In the phase
1, the droplet contact line sticks to the boundary between the blue and the red stripes, engendering
an increase of 𝜃2 till the maximum value 𝜃e,dry is reached. This phenomenon is known as contact line
pinning effect [180]. However, the contact line spreads easily in the direction parallel to the stripes
and 𝜃1 is slightly increased, which is caused by a subtle increase in the hydrophobic area fraction
𝑓1. As a result, the droplet is elongated parallel to the stripes and the corresponding aspect ratio
𝜉, which is illustrated by the blue line in Figure 4.10(c), keeps rising. In the phase 2, the contact
line slips over the red stripe and 𝜃2 retains unchanged with the maximum value. Because of the slip
movement perpendicular to the stripes in this phase instead of the stick behavior as in the phase 1, the
elongation effect of the droplet is less pronounced. Thus, the aspect ratio 𝜉 decreases. Moreover, since
more hydrophobic area is wetted, 𝜃1 rises. In the phase 3, the droplet jumps to a new blue stripe with
a prompt decrease in 𝜃2, which gives rise to a decline of the droplet aspect ratio 𝜉. This stick-slip-jump
behavior repeats periodically as the droplet gets even larger (small value of 𝑑/𝑉 1/3) and spreads over
more stripes due to the condensation. In Figure 4.10(b), (d) and (f) which are for the condensation 2,
a similar stick-slip-jump phenomenon is observed as well.

In Figure 4.10(c) and (d), our simulation results are compared with the model of Jansen et al. [178]
(red lines), which describes the aspect ratio 𝜉 by using 𝜃1 and 𝜃2:

𝜉 = [ sin 𝜃1
1 − cos 𝜃1

] [1 − cos 𝜃2
sin 𝜃2

] (4.3)

It is observed that there is a good agreement between our simulation results and the model except in
the situation where only one hydrophilic stripe is wetted (phases 1-3 in Figure 4.10(c)). The deviation
is primarily due to the approximation of the model that the droplet profile is fitted with a part of a
circle. This approximation is apparently not accurate when only one hydrophilic stripe is wetted.

4.3.2. Droplet evaporation in quasi-equilibrium state and hysteresis phenomenon

In order to further examine the similarities of droplet deposition and condensation, both of which
can be regarded as advancing contact line dynamics, a receding contact line dynamics, i.e., droplet
evaporation, is now considered. Similar to the simulations of condensation, two individual simulations
for a droplet evaporation on the positions 1 and 2 are conducted. The stripe width of the surface is still
30 and 𝜏𝑤 = 1. Here, I postulate that the phase transition rate is extraordinarily low and the droplet is

41



4. Single droplet on chemically striped surfaces: A phase-field investigation

0

1

2

3

4

5

0.1 1

ξ

d/V1/3

simulation conden. 1
model conden. 1

20

40

60

80

100

120

140

160

0.1 1

θ
[°]

d/V1/3

θ1 conden. 1
θ2 conden. 1

0.1 0.2 0.4 0.8

0.1 0.2 0.4 0.8

123

123

123

123

40

60

80

100

120

140

θ
[°]

d/V1/3

θ1 conden. 2
θ2 conden. 2

(a) (b)

(c) (d)

0

0.5

1

1.5

2

2.5

3
ξ

d/V1/3

simulation conden. 2
model conden. 2

(e) Condensation 1

(f) Condensation 2

phase 1 phase 2 phase 3

phase 1 phase 2 phase 3

Figure 4.10.: (a) and (b) Directional contact angles 𝜃1 and 𝜃2 as a function of 𝑑/𝑉 1/3 for the first and
second condensation. 𝜃1 is described by Cassie-Baxter equation and 𝜃2 is measured along
the line perpendicular to the stripes and passing through the droplet center. (c) and (d)
Droplet aspect ratio 𝜉 as a function of 𝑑/𝑉 1/3 for the first and second condensation,
obtained from simulations (blue lines with squares) and the model of Jansen et al. [178]
(red line with circle points). (e) and (f) Droplet morphological transitions in phases 1-3
for the first and second condensation.
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4.3. Droplet shape analysis

in a state of equilibrium at each time step. The first and second evaporation lines, which correspond
to the simulations with droplets initially on the positions 1 and 2, are illustrated in Figure 4.11(a)
and (b), respectively. The colored symbols and the two condensation lines are directly taken from
Figure 4.9(a). I read the evaporation lines (red lines) from the left to the right sides (𝑑/𝑉 1/3 increases
or 𝑉 decreases) in the diagram and the condensation lines (black lines) in the opposite direction
(𝑑/𝑉 1/3 decreases or 𝑉 increases). A typical hysteresis phenomenon is perceived: Different droplet
aspect ratios 𝜉 are observed in the condensation and the evaporation lines for a fixed value of 𝑑/𝑉 1/3.
In Figure 4.11(a), the evaporation line 1 significantly diverges from the condensation line 1 in the
ranges: 0.18 < 𝑑/𝑉 1/3 < 0.3 and 0.4 < 𝑑/𝑉 1/3 < 1. Distinguishable divergences between the
evaporation line 2 and the condensation line 2 also appear in the ranges: 0.14 < 𝑑/𝑉 1/3 < 0.21 and
0.24 < 𝑑/𝑉 1/3 < 0.45, as can be seen in Figure 4.11(b). In other areas, the evaporation lines coincide
with the condensation lines. The difference between the two curves in the range of 1 < 𝑑/𝑉 1/3 < 3
in Figure 4.11(a) is owing to the small Cahn number 𝐶𝑛 of the droplet, because the droplet diameter
is relatively small in this region.

As a typical example, I analyze the evolution of the equilibrium droplet-shapes in the range
𝑑/𝑉 1/3 ∈ [0.23, 0.5] in Figure 4.11(b), which is highlighted between the two vertical dashed lines. The
black and the red arrows indicate the evolution directions for the condensation and the evaporation,
respectively. The corresponding morphological transitions of the droplets in this range are displayed
in Figure 4.11(d) and (e). In the condensation process, initially, the contact line sticks to the boundary
of the red-blue stripes and stretches outwards parallel to the stripes, leading to an elongation of the
droplet (𝑑/𝑉 1/3 = 0.5 and 0.4 in Figure 4.11(d)). Thereafter, the contact line slips over the red stripe
outwards (𝑑/𝑉 1/3 = 0.3 in Figure 4.11(d)) and jumps to a new red-blue boundary (𝑑/𝑉 1/3 = 0.25
in Figure 4.11(d)). As a consequence, the elongation effect declines and the aspect ratio 𝜉 decreases.
On the contrary, in the evaporation process, at the beginning, the contact line sticks to a red-blue
boundary and retreats parallel to the stripes, as shown in Figure 4.11(e), 𝑑/𝑉 1/3 = 0.23, 0.25 and
0.3. The stick and retreating behavior gives rise to the decrease in the aspect ratio 𝜉. Afterwards,
the contact line slips over the blue stripe inwards then jumps to a new red-blue boundary, resulting
in an increase of 𝜉 (𝑑/𝑉 1/3 = 0.4 and 0.5 in Figure 4.11(e)). Similar morphological transitions for
droplet condensation and evaporation have also been found on surfaces with linear grooves [181,
182]. In summary, the pinning-depinning effect at the red-blue stripe boundary and different moving
directions of the contact line parallel to the stripes contribute to the distinct morphological transitions
for the condensation and the evaporation processes and thus a hysteresis phenomenon is present.

It is noticed that in the hysteresis area, two different droplet-morphologies appear for a fixed
value of 𝑑/𝑉 1/3, as annotated by the red stars in Figure 4.11(d) and (e). While in the regions out
of the hysteresis area, only one equilibrium droplet-shape exists, as shown in Figure 4.11(d) and (e)
for 𝑑/𝑉 1/3 = 0.23 and 0.5. Figure 4.11(c) illustrates the surface energy evolution of a condensing
(black solid line) and an evaporating droplet (red dashed line) in the range 𝑑/𝑉 1/3 ∈ [0.22, 0.6]. The
hysteresis area is highlighted with the green color and in this area the black and the red lines diverge
from each other, whereas the two lines overlap perfectly out of the hysteresis area, which is excellently
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Figure 4.11.: (a) and (b) Droplet aspect ratio 𝜉 as a function of 𝑑/𝑉 1/3 for the condensation and evap-
oration of a droplet on positions 1 and 2. The colored symbols and the two condensation
lines are directly taken from Figure 4.9(a). The red lines with rhombuses and with pen-
tagons are the first and second evaporation lines, respectively. (c) The surface energy
evolution of a condensing (black solid line) and an evaporating droplet (red dashed line)
in the area 𝑑/𝑉 1/3 ∈ [0.22, 0.6]. The hysteresis area is highlighted with the green color.
(d) and (e) Droplet morphological transitions in the condensation and evaporation pro-
cesses. The arrows indicate the corresponding evolution directions and the stars annotate
typical droplet-shapes in the hysteresis area.
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consistent with the evolution of the ratio 𝜉 shown in Figure 4.11(b). The surface energy analysis reveals
that through different moving paths, the droplet may reach different equilibrium states. It is concluded
that the equilibrium shape is dependent not only on the initial state, but also on the moving path, by
which the equilibrium state is achieved.

4.3.3. Influence of perturbations on the morphological transition

I now consider the effect of perturbations on the morphological transition of droplets slowly condens-
ing on chemically striped surface. Initially, three droplets are deposited on the chemically striped
surface and stay at equilibrium. At 𝑡 = 0, perturbations are introduced to the droplets and thereafter
the perturbations are switched off right away. The perturbations obey a Gauss distribution with mean
value 0 and variance 1. The intensity of the perturbations is indicated by the amplitude and here three
values 0.1, 0.3, 0.9 are used.

As can be seen in Figure 4.12, at 𝑡 = 0 the droplets adopt different shapes influenced by pertur-
bations with different intensities. As the perturbations become stronger, asymmetric effect is more
pronounced. In Figure 4.12(a) and (b), the perturbations are soweak that themorphological transitions
of droplets are still symmetric, which allows the droplets to cover 1-3-5 stripes during condensations.
Contrary to the cases in (a) and (b), I find that the large perturbation (amplitude=0.9) promotes a break

Figure 4.12.: Influence of perturbations on the droplet morphological transitions in the condensation
processes. The numbers at the bottom right corner in the snapshots indicate the dimen-
sionless time. Droplets at time 𝑡 = 0 are disturbed by perturbations obeying a Gauss
distribution with different amplitudes (a) amplitude=0.1, (b) amplitude=0.3, (c) ampli-
tude=0.9.
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4. Single droplet on chemically striped surfaces: A phase-field investigation

Figure 4.13.: The dimensionless directional contact radii 𝑅1/𝑑 and 𝑅2/𝑑 as a function of time for the
condensations at position 1 and 2. 𝑅1 and 𝑅2 are measured along the lines parallel and
perpendicular to the stripes, respectively. 𝑑 represents the stripe width. Curves with
different colors indicate the results for different 𝜏𝑤 values. The insets describe the results
for the starting time. (a) and (c) are for the condensations at position 1. (b) and (d) are
for the condensations at position 2.

of symmetry, as shown in (c). The droplet covers 1-2-4 stripes, as the volume increases. This suggests
that large perturbations can lead to different moving paths of droplets. The intensity of the pertur-
bation, which can trigger the broken symmetry, is dependent on droplet sizes, physical properties of
fluids, and stripe widths. Since it is out of the scope of this study, I leave this interesting topic to a
future work.
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4.3. Droplet shape analysis

Figure 4.14.: Snapshots of droplet morphological transitions in condensation processes for different
𝜏𝑤 values. The left parts present the condensations at position 1 while the right parts
correspond to the condensations at position 2. The numbers at the bottom right corner
in the snapshots indicate the dimensionless time. (a)-(c) Top views for 𝜏𝑤=1, 10, 100. (d)
Bottom views for 𝜏𝑤=100.

4.3.4. Droplet phase change in non-equilibrium states

Given that the physical properties of fluids have an impact on the morphological transition of droplet
during condensation and evaporation, I carry out simulations of droplets condensing on chemically
striped surface by using various 𝜏𝑤. As discussed above, 𝜏𝑤 ∼ 𝜌𝜈𝐿 and it is related to the physi-
cal properties such as density and viscosity of the fluid. The stripe width is the same as above, i.e.,
𝑑 = 30. At 𝑡 = 0, tiny droplets at equilibrium states on positions 1 and 2 of the chemically striped
surface begin to condensate. As condensations take place, I track the base radius of the droplets in the
directions parallel and perpendicular to the stripes. The dimensionless directional contact radii 𝑅1/𝑑
and 𝑅2/𝑑 as a function of time are plotted in Figure 4.13, where (a) and (c) are for the condensations
at position 1, and (b) and (d) depict the condensations at position 2. The curves with different colors
represent the results for different 𝜏𝑤 values. The insets describe the results for the starting time from
𝑡 = 1 to 𝑡 = 1000. The condensations result in an extension movements of the contact lines, and
the continuous increase in the base radii in the parallel direction is observed in Figure 4.13(a) and
(b). The fluctuations at 𝑡 = 4000 and 𝑡 = 10000 in (a) and at 𝑡 = 5000 in (b) are caused by the
jump movements of the contact lines in the perpendicular direction. In the direction perpendicular
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to the stripes, the contact lines exhibit a stick-slip-jump” behavior. When the droplet center is at po-
sition 1, the contact line is pinned at the boundary where 𝑅2/𝑑 = 0.5, 2.5, 4.5 and begins to jump at
𝑅2/𝑑 = 1.5 and 𝑅2/𝑑 = 3.5 (see Figure 4.13(c)). When the droplet center is placed at position 2, the
contact line is pinned at the boundary where 𝑅2/𝑑 = 1.5, 3.5 and begins to jump at 𝑅2/𝑑 = 2.5 (see
Figure 4.13(d)). It is noteworthy that as 𝜏𝑤 increases, the movements of contact lines slow down and
the droplets are pushed far from the equilibrium shapes. This is proved by the temporal evolutions of
the droplet-shapes with different 𝜏𝑤, as shown in Figure 4.14. Especially when 𝜏𝑤 = 100, the contact
line moves so slow that the droplet is driven by the condensation far from the equilibrium state, and
the droplet presents a form of sphere. In this condition, the condensation rate is high compared with
the movement of the contact line. This is reasonable, since large viscosity and density slow down the
contact line movements while the driving force for the condensation is kept constant. It is also found
that the curves for 𝜏𝑤 = 0.1 and 𝜏𝑤 = 1 almost coincide with each other, which suggests that the
contact line movements are not sensitive to low values of 𝜏𝑤, since small 𝜏𝑤 describes slow interfacial
phenomena and the processes can be considered as quasi-equilibrium.

Similarly, simulations of droplets evaporating on chemically striped surface using different 𝜏𝑤
are performed. The base radius in the direction parallel to the stripes continuously decreases, while
in the perpendicular direction, stick-slip-jump” behavior appears, as presented in Figure 4.15, where
(a) and (c) describe the evaporations at position 1, and (b) and (d) show the evaporations at position
2. The initial states of the droplets in (c) and (d) are different, which results in distinct morphological
transitions. In (c) the droplet contact line undergoes a slip movement from 𝑡 = 0 to 𝑡 = 1000,
while in (d) the droplet contact line sticks at the stripe boundary from 𝑡 = 0 to 𝑡 = 1000. Again, a
large 𝜏𝑤 leads to slow movements of the contact lines. In Figure 4.15(e) (i)-(iii), the left and right parts
show the droplet shape evolutions for the evaporations at position 1 and 2, respectively, with different
𝜏𝑤. It is observed that the contact lines recede slower for larger 𝜏𝑤. For instance, for the situation
where the droplet center is on position 1, as displayed in Figure 4.15(a), (c), and the left parts of (e), at
𝑡 = 2600, due to the contact pinning, droplets with different 𝜏𝑤 have the same contact radius in the
perpendicular direction (𝑅2). While the contact radius in the parallel direction (𝑅1) increases as 𝜏𝑤
rises. The evaporations on position 2 exhibit the same phenomenon, as displayed in Figure 4.15(b),
(d), and the right parts of (e).

4.4. Summary

In this study, the capability of the phase-field method based on the AC model for simulating the equi-
librium shapes, the spreading dynamics and phase change of droplets are validated and the numerical
model is shown to be highly robust. Then the equilibrium shapes of droplets deposited on chemically
striped patterned surfaces are investigated by using the phase-field model. By changing the droplet
volumes 𝑉 , the widths of the stripes 𝑑 and the initial positions from which the droplets are released, I
obtain a functional relationship between the droplet aspect ratio 𝜉 and the scaled stripe width 𝑑/𝑉 1/3,
which I find is the same as the situation of a slowly condensing droplet on a chemically striped pat-
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Figure 4.15.: (a)-(d) The dimensionless directional contact radii 𝑅1/𝑑 and 𝑅2/𝑑 as a function of time
for the evaporations at position 1 and 2. 𝑅1 and 𝑅2 are measured along the lines parallel
and perpendicular to the stripes, respectively. 𝑑 represents the stripe width. Lines with
different colors present the results for different 𝜏𝑤 values. (a) and (c) are for the evapo-
rations at position 1. (b) and (d) are for the evaporations at position 2. (e) Snapshots of
droplet morphological transitions in evaporation processes for different 𝜏𝑤 values. The
left parts illustrate the evaporations at position 1 while the right parts correspond to the
evaporations at position 2. The numbers at the bottom right corner in the snapshots
indicate the dimensionless time. (i)-(iii) in (e) are top views for 𝜏𝑤=1, 10, 20.
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terned surface. I believe that this is the first work that shows the similarity between the two spreading
processes. According to the number of the wetted hydrophilic stripes, the diagram of 𝜉 versus 𝑑/𝑉 1/3

is divided into six areas. Within each area excluding I, for a fixed value of 𝑑/𝑉 1/3, the droplets have
two different equilibrium shapes, whereas on the boundaries (the intersections of the two condensa-
tion lines), the droplets have a unique equilibrium shape. It can be concluded that there are either one
or two energy minimum states for the droplet-deposition on a chemically striped patterned surface.
This result confirms the study of Gea Jódar et al. [176]. The morphological diagram Figure 4.9(a) re-
veals a relation between the droplet aspect ratio and the scaled stripe width and can be used to predict
the equilibrium shapes of droplets deposited on chemically striped surface.

By studying the stick-slip-jump movement of a condensing droplet, I have explained how the
equilibrium shapes of droplets are affected by the three important factors: 𝑉 , 𝑑 and initially deposited
positions. The change fashion of the droplet aspect ratio 𝜉 is caused by the different energy barriers
parallel and perpendicular to the stripeswhen the droplet spreads over the surface. The stick-slip-jump
movement is described by the different change modes of the contact angles parallel and perpendicular
to the stripes (𝜃1 and 𝜃2). It is demonstrated that the model described by Equation (4.3) remains valid
for the prediction of the equilibrium droplet-shapes on chemically striped surface when the droplet
size is comparable to the stripe width. To further explore the influence of the moving paths to the
equilibrium shapes of droplets, simulations of the droplet evaporation are performed and compared
with condensation processes. A typical hysteresis phenomenon is observed, which is attributed to
the difference of the receding and advancing contact line movements. The surface energy analyses
show that in the hysteresis area, the surface energies of the condensing and evaporating droplets for
a fixed ratio 𝑑/𝑉 1/3 are different. It is proved that through distinct moving paths, the droplets can
reach different states of energy minimum and thus achieve different equilibrium shapes. Moreover,
the influence of perturbations on droplet morphological transition is explored. As expected, large
perturbations can lead to different moving paths of droplets. This suggests that the droplet-shapes can
be manipulated through some perturbations, such as vibration, external electric-field etc. In addition,
the phase change in non-equilibrium states is explored. By modifying the value of 𝜏𝑤 in the dynamic
contact angle boundary condition, it is found that a large 𝜏𝑤 slows down the contact line kinetics. This
inspires us that the droplet-shapes and kinetics time scale can be controlled by changing the physical
properties of droplets, e.g. the density or viscosity. The comprehensive prediction of the droplets
in this work is of significant importance for applications of surface design, fluid control, and smart
microelectronics.

In this work, I concentrate on the situation where the droplet size is comparable to the stripe
width and 1-6 hydrophilic stripes are wetted by the droplets in our simulations (in total maximal 11
hydrophilic and hydrophobic stripes). Our study can be regarded as a supplement to the study of
Jansen et al. [178] and the present results converge to their results as 𝑑/𝑉 1/3 decreases.

It should be emphasized that during the condensation and evaporation processes, I assume that
the rate of phase change is sufficient slow such that the influence of fluid dynamics can be neglected.
However, if the phase change rate is relatively high, to get further insights into the dynamics of the
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contact line or the droplet shape evolution on chemically patterned surfaces, Navier-Stokes equations
must be coupled in our model, which will be discussed in a forthcoming work. In addition, more
complex patterned surfaces with various features such as chessboard-, circle- and star-shaped patterns
will be focused on in a future work.

In summary, I have addressed the following points which have not been discussed in literature:

• I obtain a morphological diagram (Figure 4.9(a)), which reveals the similarity between the
slowly condensing droplets and the droplet deposition. It can be used to predict the equilibrium
droplet shapes.

• I have also found special points where unique equilibrium shape appears. This finding may
have potential application in the fields of inkjet printing, biologics and microfluidics, where a
fine control of droplet shape is necessary.

• The characterization of the drop anisotropies and the stick-slip-jump” behavior can be well de-
scribed by the change fashion of directional contact angles. The validity of the model described
by Equation (4.3) to predict the equilibrium droplet-shapes on chemically striped surface is ex-
tended.

• Through the shape comparisons between slowly condensing and evaporating droplets, a hys-
teresis phenomenon is found. This reveals that I can find more equilibrium droplet-shapes by
manipulating droplets through different moving paths.

• The influence of perturbations on the droplet morphological transition is addressed.

• Phase change in non-equilibrium states is explored.
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5. Single droplet on chemically patterned

surfaces: A combined study through

theoretical and numerical methods

After the investigation of droplet wetting behaviors on chemically striped patterned surfaces, more
complicated patterned surfaces are taken into consideration in this chapter. The different equilibrium
shapes of a single droplet deposited on three typical chemically patterned surfaces are theoretically
and numerically investigated. A simplified analytical model and generalized analytical model are pro-
posed to predict the equilibrium shapes of droplets. Phase-field simulations are accordingly conducted
to confirm the predictions. Sections 5.1-5.2 were published in Ref. [183] and its supplemental docu-
ment. Sections 5.3-5.4 were published in Ref. [184] and its supplemental document. The structures
are slightly adjusted without changing the original contents.
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methods

5.1. Simplified analytical model and simulation setups

5.1.1. The calculation of the total interfacial energy

I consider a sessile droplet on a chemically patterned solid surface surrounded by a gas phase, as
illustrated in Fig. 5.1. The droplet arrives at the equilibrium state by minimizing the total interfacial
energy. The total interfacial energy of a droplet deposited on a chemically patterned surface is given
by

𝐸 = 𝐴𝑙𝑔𝛾𝑙𝑔 + ∫
𝐴𝑙𝑠

(𝛾𝑙𝑠 − 𝛾𝑔𝑠)𝑑𝐴, (5.1)

where 𝐴𝑙𝑔 and 𝐴𝑙𝑠 are the areas of the liquid-gas interface and liquid-solid interface, respectively.
𝛾𝑙𝑔, 𝛾𝑙𝑠, and 𝛾𝑔𝑠 denote the liquid-gas, liquid-solid, and gas-solid interfacial energies, respectively. It
is assumed that the droplet base line (red dashed line) forms an ellipse with semi-axes 𝑎 and 𝑏. The
liquid-gas interface is described with circular arcs (yellow dashed line) passing through the droplet
apex and the contact line. These circular arcs have a varying curvature radius which is formulated as

𝑟𝑐(𝜑) = 𝑟2
𝑏(𝜑) + ℎ2

2ℎ , (5.2)

Figure 5.1.: Schematic illustration of the geometric assumptions of the droplet. (A) The red dashed
ellipse (with center 𝑂1 semi-axes 𝑎 and 𝑏) is the droplet base line. 𝑟𝑏 denotes the base
radius. (B) The top part of the yellow dashed circle (above the black line passing through
𝑂1) refers to the circular arc on the liquid-gas interface with the circle center 𝑂2 and
radius 𝑟𝑐. ℎ is the droplet height. 𝜑 and 𝛽 represent polar angles on the surfaces of the
red dashed ellipse and yellow dashed arc, respectively.
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where 𝑟𝑏 and ℎ are the base radius and droplet height, respectively. 𝜑 represent polar angle of the
base ellipse. The base radius 𝑟𝑏 is given by:

𝑟𝑏(𝜑) = 𝑎𝑏
√𝑎2 sin2(𝜑) + 𝑏2 cos2(𝜑)

. (5.3)

The volume of the droplet 𝑉𝑑 is described as:

𝑉𝑑 = 𝜋
6 ℎ(3𝑎𝑏 + ℎ2). (5.4)

The area of the liquid-gas interface 𝐴𝑙𝑔 can be formulated as

𝐴𝑙𝑔 = ∫
2𝜋

0
𝑟2

𝑐(𝜑)(1 − cos𝛽)𝑑𝜑, (5.5)

where 𝛽 is the polar angle between the rays from 𝑂2 to the apex of the cap (the red line in Fig. 1) and
the base line of the droplet (the red dashed line). 𝛽 is given by

𝛽 = arccos 𝑟𝑐(𝜑) − ℎ
𝑟𝑐(𝜑) . (5.6)

From Eq. (5.2) to Eq. (5.6), for a droplet with certain volume, the area of the liquid-gas interface 𝐴𝑙𝑔
can be determined by the two parameters 𝑎 and 𝑏, thus, the first term of interfacial energy in Eq. (5.1),
𝐴𝑙𝑔𝛾𝑙𝑔 = 𝐴𝑙𝑔(𝑎, 𝑏)𝛾𝑙𝑔 = 𝐸1(𝑎, 𝑏). Here I set 𝛾𝑙𝑔 a dimensionless value 𝛾𝑙𝑔 = 1. The second term of
the interfacial energy in Eq. (5.1) can be calculated through the integration:

𝐸2 = ∫
𝐴𝑙𝑠

(𝛾𝑙𝑠 − 𝛾𝑔𝑠)𝑑𝐴 = ∫
2𝜋

0
∫

𝑟𝑏

0
𝑟𝑓𝑘(𝑟, 𝜑)𝑑𝑟𝑑𝜑. (5.7)

The chemical heterogeneities of the solid surface 𝛾𝑙𝑠 − 𝛾𝑔𝑠 = 𝑓𝑘(𝑟, 𝜑) (𝑘 = 1, 2, 3 denote the striped,
chocolate, and chessboard patterns, respectively) are described as follows

𝛾𝑙𝑠 − 𝛾𝑔𝑠 =

⎧{{
⎨{{⎩

𝑓1(𝑟, 𝜑) = 𝛾𝑚 + 𝛾0 tanh(𝜉 cos 𝛿1) striped pattern

𝑓2(𝑟, 𝜑) = 𝛾𝑚 + 𝛾0 tanh[𝜉(cos 𝛿1 cos 𝛿2 − cos 𝛿1 − cos 𝛿2)] chocolate pattern

𝑓3(𝑟, 𝜑) = 𝛾𝑚 + 𝛾0 tanh(𝜉 cos 𝛿1 cos 𝛿2) chessboard pattern
(5.8)

with 𝛿1 = (𝜋𝑟 sin𝜑 + 𝑖𝜋𝐿)/𝐿 and 𝛿2 = (𝜋𝑟 cos𝜑 + 𝑗𝜋𝐿)/𝐿. 𝛾𝑚 and 𝛾0 are the mean surface energy
difference and the amplitude of the heterogeneity, respectively. Presently, I set 𝛾𝑚 = 0, 𝛾0 = 0.5,
i.e. the static equilibrium contact angles on the hydrophilic and hydrophobic areas are 60∘ and 120∘,
respectively. The characteristic length 𝐿 denotes the width of the stripe for the striped pattern and
the lattice length for the chocolate and chessboard patterns. 𝜉 is a constant parameter controlling the
sharpness of the chemical pattern and 𝑖, 𝑗 = 0, ±1, ±1/2, … are parameters depicting the center point
position of the droplet base line, which will be specified in the following. Considering the importance
of the droplet wetted area near the contact line, I use an average function 𝑓𝑘(𝑟𝑏, 𝜑) to approximate
𝑓𝑘(𝑟, 𝜑) and Eq. 5.7 is simplified as:

𝐸2 = ∫
𝐴𝑙𝑠

(𝛾𝑙𝑠 − 𝛾𝑔𝑠)𝑑𝐴 = ∫
2𝜋

0

1
2𝑟2

𝑏𝑓𝑘(𝑟𝑏, 𝜑)𝑑𝜑. (5.9)
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After the integration, the interfacial energy of the liquid-solid interface has four degrees of freedom,
namely, 𝐸2 = ∫𝐴𝑙𝑠

(𝛾𝑙𝑠 − 𝛾𝑔𝑠)𝑑𝐴 = 𝐸2(𝑎, 𝑏, 𝑖, 𝑗). For a certain patterned surface and droplet position
(i.e. for certain values of 𝑖, 𝑗), 𝐸2 can be described as a function of 𝑎 and 𝑏. The equilibrium droplet
shapes are predicted by minimizing the total interfacial energy 𝐸 in terms of 𝑎 and 𝑏 when 𝑖, 𝑗 are
fixed. A detailed discussion about the influence of 𝑖, 𝑗 for given pamaters 𝑎 and 𝑏 is elucidated in the
subsection 5.1.3.

5.1.2. Simulation setups

The two-phase AC model is applied to simulate equilibrium shapes. The system evolution equations
for the order parameter are discretized by the central finite difference method and the explicit Eu-
ler scheme with Message Passing Interface (MPI) techniques. The simulations are performed in 3D
geometries by using an equidistant mesh with a spacing of 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 1. The simulation
parameters are 𝜏 = 1, 𝜏𝑤 = 1, 𝜀 = 1, and the numerical stability of the simulations is guaranteed
by choosing a fine time step 𝛥𝑡 < 𝜏(𝛥𝑥)2/(12𝛾𝑙𝑔) according to the von Neumann stability analysis.
In the simulations, the length 𝑥, time 𝑡, and energy 𝐸 are nondimensionalized by the characteristic
length 𝑥∗ = 1 × 10−5 m, the characteristic time 𝑡∗ = 1 × 10−9 s, and the characteristic energy
𝐸∗ = 1 × 10−11 J, respectively. In the present work, transformed dimensionless parameters are used.

In the simulations, the droplets initially have a form of cuboid, as shown in the first snapshot
(𝑡 = 𝑡0) in the top and bottom rows of Fig. 5.2(B). Parameters 𝑎 and 𝑏 in the simulations are chosen
near the points 1 and 2 in Fig. 5.2(A), so that the surface energy minima can be reached.
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Figure 5.2.: (A) Surface energy landscape of a droplet on chemically striped patterned surface (The
effective radius of the droplet is 𝑅 = 40, stripe width is 𝐿 = 20 and the droplet base center
is on the hydrophobic stripe). Point 1 and 2 are the two energy minima. (B) Snapshots of
droplet-shape evolution from initial states to equilibrium states. The top and bottom rows
correspond to the points 1 and 2 in (A), respectively.
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5.1.3. Validation of the high symmetry property of equilibrated droplets

Fig. 5.3 – Fig. 5.5 illustrate the total interfacial energy of droplets on the three chemically patterned
surfaces as a function of 𝑖 (and 𝑗). As shown in Fig. 5.3(A), the total interfacial energy changes peri-
odically with 𝑖 and the energy minima are achieved when the droplet base center lies on the center of
hydrophilic (𝑎 = 60, 𝑏 = 50) or hydrophobic stripes (𝑎 = 45, 𝑏 = 70). The coordinate of the droplet
base center position is described in Fig. 5.3(B). The red points (𝑖 = ±1, ±3, …) are on the center of
hydrophilic stripes, while the blue points (𝑖 = 0, ±2, ±4, …) are on the center of hydrophobic ones.

Fig. 5.4(A)-(C) display the surface energy landscape of droplets on chocolate-patterned surfaces
as a function of droplet base center position 𝑖 and 𝑗. (A), (B), and (C) correspond to droplets with
(𝑎 = 50, 𝑏 = 50), (𝑎 = 70, 𝑏 = 50), and (𝑎 = 65, 𝑏 = 65), respectively. The total interfacial energy
envolves periodically with 𝑖 and 𝑗. In (A), energy minima (red color) appear at (𝑗 = 2𝑝, 𝑖 = 2𝑞)
with 𝑝, 𝑞 ∈ ℤ, e.g. 𝑃1. The energy minima in (B) and (C) are at (𝑗 = 2𝑝 + 1, 𝑖 = 2𝑞), e.g. 𝑃2 and
(𝑗 = 2𝑝 + 1, 𝑖 = 2𝑞 − 1), e.g. 𝑃3, respectively. 𝑃1, 𝑃2, and 𝑃3 are high symmetry points on the
chocolate-patterned surface, as displayed in Fig. 5.4(D).

Fig. 5.5(A)-(C) display the surface energy landscape of droplets on chessboard-patterned surfaces
as a function of droplet base center position 𝑖 and 𝑗. (A), (B), and (C) correspond to droplets with
(𝑎 = 52, 𝑏 = 52), (𝑎 = 60, 𝑏 = 60), and (𝑎 = 45, 𝑏 = 57), respectively. The total interfacial energy
also evolves periodically with 𝑖 and 𝑗. In (A), energy minima appear at (𝑗 = 2𝑝, 𝑖 = 2𝑞), e.g. 𝑃1. The
energy minima in (B) and (C) are at (𝑗 = 2𝑝, 𝑖 = 2𝑞 + 1), e.g. 𝑃2 and (𝑗 = 2𝑝 − 1/2, 𝑖 = 2𝑞 + 1/2) or
(𝑗′ =

√
2𝑝, 𝑖′ =

√
2𝑞 + 1/

√
2) in the rotated coordinate system, e.g. 𝑃3, respectively. 𝑃1, 𝑃2, and 𝑃3
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Figure 5.3.: (A) Surface energy of two droplets (𝑎 = 60, 𝑏 = 50 and 𝑎 = 45, 𝑏 = 70, illustrated with
red and blue lines, respectively) on chemically striped patterned surfaces as a function
of droplet base center positions 𝑖 (The effective radius (𝑅 = (3𝑉𝑑/4𝜋)1/3, 𝑉𝑑 is droplet
volume) of the droplets is 𝑅 = 40, stripe width is 𝐿 = 20). The energy minima of the red
and blue lines correspond to the points 1 and 2 in the energy landscapes shown in Fig. 5.6,
respectively. (B) Sketch of the surface topology and the coordinates of droplet base center
positions when energy minima are achieved (grey: hydrophobic, 𝑖 = 0, ±2, ±4, … ;
white: hydrophilic, 𝑖 = ±1, ±3, …).

57



5. Single droplet on chemically patterned surfaces: A combined study through theoretical and numerical

methods

high

low

P1

P2

P3

a=50 b=50 a=70 b=50 a=65 b=651 3 5A B C D

(j=0,i=0)

(j=1,i=0)

(j=1,i=-1)

i

j

Figure 5.4.: (A)-(C) Surface energy landscape of droplets on chocolate-patterned surfaces as a function
of droplet base center positions when 𝑎, 𝑏 varies (The effective radius of the droplet is
𝑅 = 40, lattice width is 𝐿 = 20 and 𝑖 and 𝑗 indicate the coordinate of the droplet base
center). (A): 𝑎 = 50, 𝑏 = 50, (B): 𝑎 = 70, 𝑏 = 50, and (C): 𝑎 = 65, 𝑏 = 65. The energy
minima (red color) in (A), (B), and (C) correspond to the points 1, 3, and 5 in the energy
landscapes shown in Fig. 5.7, respectively. (D) Sketch of the surface topology and the three
typical coordinates of droplet base center positions when energy minima are achieved
(grey: hydrophobic, white: hydrophilic). 𝑃1 ∶ (𝑗 = 0, 𝑖 = 0), 𝑃2 ∶ (𝑗 = 1, 𝑖 = 0), and
𝑃3 ∶ (𝑗 = 1, 𝑖 = −1).
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Figure 5.5.: (A)-(C) Surface energy landscape of droplets on chessboard-patterned surfaces as a func-
tion of droplet base center positions when 𝑎, 𝑏 varies (The effective radius of the droplet
is 𝑅 = 40, lattice width is 𝐿 = 20 and 𝑖 and 𝑗 indicate the coordinate of the droplet base
center). (A): 𝑎 = 52, 𝑏 = 52, (B): 𝑎 = 60, 𝑏 = 60, and (C): 𝑎 = 45, 𝑏 = 57. The energy
minima (red color) in (A), (B), and (C) correspond to the points 1, 7, and 5 in the energy land-
scapes shown in Fig. 5.8, respectively. (D) Sketch of the surface topology and the three
typical coordinates of droplet base center positions when energy minima are achieved
(grey: hydrophobic, white: hydrophilic). 𝑃1 ∶ (𝑗 = 0, 𝑖 = 0), 𝑃2 ∶ (𝑗 = 0, 𝑖 = 1), and
𝑃3 ∶ (𝑗 = −1/2, 𝑖 = 1/2) or (𝑗′ = 0, 𝑖′ = 1/

√
2) in the rotated coordinate system.

are high symmetry points on the chessboard-patterned surface, as displayed in Fig. 5.5(D). In summary,
the center point (𝑗, 𝑖) of the elliptical base is considered in the numerical energy mimimizations,
and multi-stability is found. Moreover, the distribution of the energy minima implies the chemical
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property of the patterned surface. The center point of any local minimum for the three patterned
surfaces is proven to be one out of a set of high symmetry points.

5.2. Droplet shape analysis by using the simplifiedmodel

5.2.1. Striped patterned surfaces

I now present the analytical predictions and simulation results of droplets on chemically striped pat-
terned surface. In Fig. 5.6(a)-(c), I illustrate the surface energy landscapes of droplets in terms of the
parameters 𝑎 and 𝑏 as well as the corresponding snapshots of the equilibrated droplets via PF model.
In the simulations, the droplets with a given volume initially have a form of cuboid with various aspect
ratios in the contact area.

Suitable aspect ratios and initial positions of the droplets are chosen, such that the surface en-
ergy minima predicted by the analytical model can be reached. As shown in the first picture of
Fig. 5.6(a)(III), 𝑎 and 𝑏 are the semi-axes of the elliptic base line of droplets, which are parallel and
perpendicular to the stripes, respectively. The surface energy minima indicated by different numbers
in the energy diagrams correspond to the snapshots labeled with the same number. The effective
droplet radii 𝑅 = (3𝑉𝑑/4𝜋)1/3 in Fig. 5.6(a), (b), and (c) are 40, 50, and 90, respectively. The blue
and red stripes in the snapshots denote the hydrophilic and hydrophobic ones with the same stripe
width 𝐿 = 20. In Fig. 5.6(a)(III), the red dashed ellipses denote the analytical results, corresponding
to the coordinate of the energy minimum points in the energy diagrams. A good agreement is ob-
served between the analytical solution and the numerical simulations and three equilibrated droplets
are found. Similarly, as illustrated in Fig. 5.6(b) and (c), 4 and 5 equilibrium shapes are found for the
droplets with 𝑅 = 50 and 𝑅 = 90, respectively. By using the same methods, I obtain droplet config-
urations for different droplet sizes, as depicted in Fig. 5.6(d), where the ratio 𝑅/𝐿 ranges from 2 to
9. Both the number of the equilibrium shapes and the tendency of the analytical results show a sat-
isfactory agreement with the simulation results. Because of the contact line pinning in the direction
perpendicular to the stripes, the value of 𝑏 is well predicted by the analytical model. However, for
large 𝑎, the analytical predictions of 𝑎 deviate from the simulations, which is caused by the assump-
tion of the analytical model that the liquid-gas interface is described with circular arcs. While this is
obviously not the case when the droplet aspect ratio 𝑎/𝑏 is relatively large and the deformation of the
contact lines takes an important role. From Fig. 5.6(d), I conclude that the number of the equilibrium
droplet-shapes (or the local energy minima) remains constant as the droplet volume increases within
a certain range (e.g. 𝑅/𝐿 = 2, 3, 4), while a further rise of the droplet volume results in an increase
in the number of equilibrium droplets (e.g. from 𝑅/𝐿 = 4 to 𝑅/𝐿 = 5).

5.2.2. Chocolate patterned surfaces

Afterwards, a two-dimensional periodic solid surface pattern, the chocolate pattern, is considered.
In this pattern, the size of the lattices and the distance between them both are set to be 20. The
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Figure 5.6.: (a)-(c) Surface energy landscapes in the 𝑎-𝑏 space and snapshots of sessile droplets on
chemically striped patterned surfaces with different droplet sizes ((a): 𝑅/𝐿 = 2, (b):
𝑅/𝐿 = 5, (c): 𝑅/𝐿 = 9). The chemical heterogeneities are described by 𝑓1(𝑟, 𝜑) in
Eq. (5.8). At equilibrium, the droplet base center stays either on the center of the blue (hy-
drophilic) stripe (namely position 1 and 𝑖 = 1) or on the center of the red (hydrophobic)
one (i.e. position 2 and 𝑖 = 0). The energy landscapes are accordingly calculated when the
droplet base centers are on these two different positions. The contour lines indicate the
energy levels (red for low energy and blue for high energy states) and the color changes
from blue to red illustrate the decrease of the energy. The energy minima are indicated
by different numbers, corresponding to the snapshots labeled with the same number. The
red dashed ellipses in (a)(III) denote the analytical results, which can be read from the cor-
responding energy landscapes. (d) Predicted droplet configurations for different droplet
sizes. The filled and empty symbols describe the simulation and analytical results, respec-
tively. The two dashed lines are guide lines to highlight a trend in the data.

effective droplet radius is 𝑅 = 40. In the simulations, the droplets initially have a cuboid form with
different aspect ratios and then evolve to equilibrium shapes. Fig. 5.7(a)-(c) show the surface energy
landscapes for droplets with the base center points on 𝑃1 (𝑗 = 0, 𝑖 = 0), 𝑃2 (𝑗 = 1, 𝑖 = 0), and
𝑃3 (𝑗 = 1, 𝑖 = −1), respectively (see Fig. 5.7(d)). Fig. 5.7(e) illustrates the simulation results of the
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Figure 5.7.: (a)-(c) Surface energy landscapes for chocolate-patterned surfaces. The chemical hetero-
geneities are described by 𝑓2(𝑟, 𝜑) in Eq. (5.8). The energy minima are indicated by dif-
ferent numbers, corresponding to the snapshots in E labeled with the same number. (d)
Sketch of the surface topology and three base centers of droplets (grey: hydrophobic,
white: hydrophilic). The droplet shapes in (a), (b), and (c) correspond to the positions 𝑃1,
𝑃2, and 𝑃3. (e) Snapshots of equilibrated droplets through PFM (blue: hydrophilic, red:
hydrophobic). The red dashed ellipses denote the analytical results. (f) The number 𝑁 of
equilibrium shapes of droplets as a function of 𝑅/𝐿. The black dashed line is the guide
line.
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equilibrium shapes of droplets. The energy minima indicated by different numbers correspond to the
snapshots in Fig. 5.7(e) labeled with the same number. The red dashed ellipses in Fig. 5.7(e) are the
analytical predictions, which show good agreement with the simulation results. It is found that the
energy diagrams (a) and (c) are symmetric with respect to the line 𝑎 = 𝑏, while in (b) this symmetric
characteristic disappears. This is because the topologies in 𝑎 and 𝑏 directions are the same for the
points 𝑃1 and 𝑃3, while for the point 𝑃2 the topologies vary in the two directions. In comparison
to the droplets with the same size (𝑅 = 40) on the striped patterned, more local energy minima are
found for droplets on the chocolate-patterned surface. Furthermore, by changing the droplet volume,
I have found a functional relation between the number of equilibrium shapes of droplets 𝑁 and the
droplet size 𝑅/𝐿, as illustrated in Fig. 5.7(f). The red points indicate the predicted values of 𝑁 for

Figure 5.8.: (a)-(e) Surface energy landscapes for chessboard-patterned surfaces. (a) and (d) correspond
to the situations when the directions of 𝑎 and 𝑏 are horizontal and vertical, respectively, as
shown in (g)2. The chemical heterogeneities are described by 𝑓3(𝑟, 𝜑) in Eq. (5.8). (b), (c),
and (e) describe the energy landscapes in a rotated coordinate system and the directions
of 𝑎 and 𝑏 are shown in (g)5. In the rotated system, 𝛿1 and 𝛿2 in 𝑓3(𝑟𝑏, 𝜑) are substituted
by 𝛿′

1 and 𝛿′
2, respectively, with 𝛿′

1 = (𝛿1 + 𝛿2)/
√

2 and 𝛿′
2 = (𝛿1 − 𝛿2)/

√
2. The energy

minima are indicated by different numbers, corresponding to the snapshots in (g) labeled
with the same number. (f) Schematic description of the surface topology and three base
center points of equilibrated droplets (grey: hydrophobic, white: hydrophilic). The two
lines indicate two possible directions of the semi-axe 𝑎. (a) & (b), (d) & (e), and (c) corre-
spond to 𝑃1, 𝑃2, and 𝑃3, respectively. (g) Snapshots of equilibrated droplets via PFM (blue:
hydrophilic, red: hydrophobic). The red dashed ellipses denote the analytical results. (h)
The number 𝑁 of equilibrium shapes of droplets as a function of 𝑅/𝐿. The black dashed
line is the guide line.
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different 𝑅/𝐿. The black dashed line highlights the functional tendency, showing that larger droplets
tend to have more equilibrium patterns.

5.2.3. Chessboard patterned surfaces

I further utilize the analytical model and PF model to scrutinize the equilibrated droplets on a more
complex pattern, the chessboard pattern. The effective droplet radius is 𝑅 = 40 and the lattice length
of the chessboard is 𝐿 = 20. Fig. 5.8(a) and (d) show the energy landscapes for droplets deposited on
the positions 𝑃1 (𝑗 = 0, 𝑖 = 0) and 𝑃2 (𝑗 = 0, 𝑖 = 1), respectively. Fig. 5.8(b), (c), and (e), which is
achieved by rotating the coordinate system by 45∘ (the directions of 𝑎 and 𝑏 are shown in Fig. 5.8(g)(5)),
illustrate the energy landscapes corresponding to the positions 𝑃1, 𝑃3 (𝑗 = −1/2, 𝑖 = 1/2) and 𝑃2,
respectively. It is found that the analytical predictions (red dashed ellipses in Fig. 5.8(g)) match very
well with the PF simulations. With the aid of the present model, 11 equilibrated droplet-patterns are
found for the chessboard-patterned surface with the initial setup 𝑅 = 40 and 𝐿 = 20. The number
𝑁 of equilibrium shapes of droplets as a function of the droplet size 𝑅/𝐿 is displayed in Fig. 5.8(h).
The results reveal that the increase in the droplet size leads to more equilibrium shapes of droplets.
Currently, I focus on the equilibrium features of droplets on chemically patterned surface and the
capabilities of the analytical model. Systematic studies of parameters such as contact angles will be
presented in a future work.

5.2.4. Summary and conclusion

Fig. 5.9 illustrates how the complexity of the pattern influences the number of equilibrated droplets.
Here, I introduce a parameter – energy discontinuous line density 𝜌 (see the caption in Fig. 5.9) to
characterize the complexity of the pattern. From striped patterned surface to chocolate-patterned and
chessboard-patterned surface, the density of the energy discontinuous line rises, which increases the
complexity of the energy landscape (e.g. see energy landscapes in Fig. 5.6(a), Fig. 5.7, and Fig. 5.8) and
thus leads to more and more equilibrated droplets. This increase tendency is more pronounced for
larger droplets (𝑅/𝐿=2) than for smaller ones (𝑅/𝐿=1.5 and 0.5). The underlying reason is that more
energy discontinuous lines are covered by the large droplets and therefore more stable states tend to
occur. While for small droplets, the number of covered discontinuous lines is relatively reduced and
the equilibrated states are not as many as that for large droplets.

To conclude, I have presented a strategy for delineating the equilibrated droplet-patterns on pro-
grammable chemically patterned surfaces via calculating the surface energy landscapes. I have applied
and validated the strategy by studying equilibrium shapes of droplets on three selected substrate pat-
terns. Together with numerical simulations, I have found almost all of the the potential existing
energy minima and the corresponding equilibrium droplet-shapes, while this is not possible by the
Cassie-Baxter model. It has been revealed that the increase in the droplet volume or the complexity
of the surface (e.g. by introducing more hydrophilic-hydrophobic boundary lines) most likely gives
rise to more surface energy minima. Hence, numerous droplet patterns can be quantitatively obtained
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Figure 5.9.: The number𝑁 of equilibrium droplet-shapes as a function of the energy discontinuous line
density 𝜌 ∶= 𝑛/(2𝐿)2 for different patterned surfaces, Here, 𝑛 is the total effective number
of pinning lines within a square cell with an area of (2𝐿)2. The three insets indicate how
𝜌 is calculated for different patterned surfaces. The numbers 1” and 0.5” shown in the
cells stand for the effective number of pinning lines. The lines with different colors denote
the results for droplets with different sizes (blue: 𝑅/𝐿 = 0.5, orange: 𝑅/𝐿 = 1.5, red:
𝑅/𝐿 = 2).

by tuning the droplet volume or the morphologies of the surfaces. This new insight paves an alter-
native way to better understand wetting behaviors on chemically patterned surfaces. Our approach
can be straightforwardly extended to study droplets deposited on a variety of chemically patterned
surfaces and offers essential guidelines for a vast range of applications in microfluidics, inkjet print-
ing, and biomedical science [10, 185]. However, on real heterogeneous surfaces, the contact line is
highly non-linear and far more complex than the present approximation of ellipse. In this case, an
infinitely dimensional Fourier series should be adopted to depict the triple line, which gives rise to
an infinitely dimensional energy landscape. To find the complete set of the local energy minima in
such an infinitely dimensional energy landscape is challenging and cannot be achieved by the present
model.
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5.3. Generalized analytical model andmodified CBmodel

In this section, I extend the analytical method, which was depicted in section 5.1. I here apply this
analytical approach to scrutinize wetting of chemically patterned surfaces with various characteris-
tic lengths, contact angles, and ratios of the hydrophilic area to the hydrophobic one, which were
not contemplated in the previous work. In comparison with the model in section 5.1, three major
improvements are recounted here: (i) A new parameter 𝜆 is introduced in the nonlinear functions
depicting the chemical heterogeneities of the substrate. With this new parameter, it is convenient
to manipulate the ratio of the hydrophilic area to the hydrophobic area. (ii) A new parameter 𝜒 is
employed to control the lattice roundness of the chocolate patterned surface. (iii) Most importantly,
a modified Cassie-Baxter model is proposed here for a comparison with the analytical approach.

To address the improvements above, the functions 𝑓𝑘(𝑟, 𝜑) are extended as

⎧{{
⎨{{⎩

𝑓1 = 𝛾𝑚 + 𝛾0 tanh[𝜉(cos 𝛿1 − 𝜆)]
𝑓2 = 𝛾𝑚 + 𝛾0 tanh{𝜉[(cos 𝛿1 − 𝜆)(cos 𝛿2 − 𝜆) − 𝜒(cos 𝛿1 + cos 𝛿2)]}
𝑓3 = 𝛾𝑚 + 𝛾0 tanh[𝜉(cos 𝛿1 − 𝜆)(cos 𝛿2 − 𝜆)]

(5.10)

with 𝛿1 = (2𝜋𝑟 sin𝜑 + 𝑖𝜋𝐿)/𝐿 and 𝛿2 = (2𝜋𝑟 cos𝜑 + 𝑗𝜋𝐿)/𝐿. Here, 𝛾𝑚 and 𝛾0 are the mean
surface energy density difference and the amplitude of the heterogeneity, respectively. For example,
the parameter set (𝛾𝑚 = 0, 𝛾0 = 0.5) corresponds to the situationwhere the static equilibrium contact
angles on the hydrophilic (𝜃1) and hydrophobic (𝜃2) areas are 60∘ and 120∘, respectively. The sharpness
of the chemical pattern is controlled by the parameter 𝜉. The index 𝑖, 𝑗 = 0, ±1, ±1/2, … depicts the
center point position of the droplet base line. Figure 5.10 highlights all the possible coordinates of the
index, with respect to which the equilibrated droplets are symmetric on the three chemically patterned
surfaces. For the striped patterned surface (Figure 5.10(a)), the red points 𝑃1 (𝑖 = ±1, ±3, …) are on

Figure 5.10.: (a)-(c) Sketches of the surface topology for three chemically patterned surfaces: stripe,
chocolate,” and chessboard.” Here, the grey and white areas denote hydrophobic and
hydrophilic surfaces, respectively. The coordinates of the droplet base center positions
at equilibrium are highlighted by 𝑃1, 𝑃2 and 𝑃3. (a) 𝑃1 ∶ 𝑖 = 1, 𝑃2 ∶ 𝑖 = 0. (b) 𝑃1 ∶ (𝑗 =
0, 𝑖 = 0), 𝑃2 ∶ (𝑗 = 1, 𝑖 = 0), and 𝑃3 ∶ (𝑗 = 1, 𝑖 = −1). (c) 𝑃1 ∶ (𝑗 = 0, 𝑖 = 0),
𝑃2 ∶ (𝑗 = 0, 𝑖 = 1), and 𝑃3 ∶ (𝑗 = −1/2, 𝑖 = 1/2) or 𝑃1 ∶ (𝑗′ = 0, 𝑖′ = 0),
𝑃2 ∶ (𝑗′ = 1/

√
2, 𝑖′ = 1/

√
2), and 𝑃3: (𝑗′ = 0, 𝑖′ = 1/

√
2). The indexes with primes

for the last three points are in the rotated coordinate system.
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the center of the hydrophilic stripes (white), while the blue points 𝑃2 (𝑖 = 0, ±2, ±4, …) locate on
the center of the hydrophobic ones (grey). For the chocolate and chessboard patterned surfaces, the
droplet base center points 𝑃1, 𝑃2, and 𝑃3 with the coordinates (𝑗, 𝑖) are indicated in Figure 5.10(b) and
(c), respectively. It should be noticed that 𝑃1, 𝑃2, and 𝑃3 are periodically distributed on the surfaces
and the validation for the high symmetry property of these positions has been fully discussed in
section 5.1. The characteristic length is defined as 𝐿 ∶= 𝐿𝑑𝑟𝑦 + 𝐿𝑤𝑒𝑡, where 𝐿𝑑𝑟𝑦 and 𝐿𝑤𝑒𝑡 are the
respective characteristic length for the hydrophobic and hydrophilic areas. For instance, 𝐿𝑑𝑟𝑦 (𝐿𝑤𝑒𝑡)
stands for the width of a hydrophobic (hydrophilic) stripe for the striped surfaces. For the chocolate
and chessboard patterns, 𝐿𝑑𝑟𝑦 and 𝐿𝑤𝑒𝑡 denote the length of the hydrophobic lattice and the distance
in the direction of 𝑗 or 𝑖 between two neighbouring hydrophobic lattices (Figure 5.10(b) and (c)),
respectively.

I define a parameter 𝜈 ∶= 𝐿𝑤𝑒𝑡/𝐿𝑑𝑟𝑦 to characterize the area ratio of the hydrophilic to the hy-
drophobic regions on the three chemically patterned surfaces. This parameter 𝜈 is manipulated by
varying 𝜆 in the functions 𝑓1, 𝑓2, 𝑓3. Here, I select three typical values of 𝜈 = 1 ∶ 1, 1 ∶ 2, 1 ∶ 3,
corresponding to 𝜆 = cos 90∘, cos 60∘, cos 45∘, respectively. For these three values of 𝜈, the con-
tours 𝑓𝑘(𝑥, 𝑦) of the three chemically patterned surfaces are shown in Figure 5.11(a)-(c), where I have
made the following coordinate transformation: 𝑥 = 𝑟 cos𝜑 and 𝑦 = 𝑟 sin𝜑. It is found that the
three functions with selected parameters perfectly describe the desired heterogeneity of the three typ-
ical chemically patterned surfaces. In particular, the parameter 𝜒 in 𝑓2 is introduced to control the
roundness of the isolated hydrophobic areas (red areas in Figure 5.11(b)).

In the following, I will propose a modified CBmodel to address the equilibrated droplets on chem-
ically patterned surfaces. Firstly, let us revisit the classical CB model, which delineates the average
contact angle 𝜃 of droplets on chemically heterogeneous surfaces:

𝜃 = arccos(𝑥1 cos 𝜃1 + 𝑥2 cos 𝜃2). (5.11)

Here, 𝑥𝑚 represents the area fraction of the surface component with the corresponding equilibrium
contact angle 𝜃𝑚, 𝑚 = 1, 2. In the current work, the area fractions 𝑥𝑚 range from 0.25 to 0.75. The
average angle 𝜃 actually reflects the energy minimum state of droplets and reveals the wettability of
the chemically heterogeneous surface.

I assume that an equilibrated droplet on the chemically patterned surface is delineated by a spher-
ical cap (see Figure 5.12), whose contact angle reads 𝜃. This spherical cap is described by the following
equations

⎧{{
⎨{{⎩

𝑉𝑑 = 𝜋(3𝑟2
𝑏 + ℎ2)/6 volume

ℎ = 𝑟𝑐(1 − sin 𝜃) height

𝑟𝑏 = 𝑟𝑐 sin 𝜃 base radius.

(5.12)

Here, 𝑟𝑐 and 𝑟𝑏 both are constants. When the droplet volume 𝑉𝑑 and 𝜃 are given, 𝑟𝑏 is obtained
via Eq. (5.12), namely, 𝑟𝑏 = 𝑟𝑏(𝑉𝑑, 𝜃). The base line of an equilibrated droplet may deviate from
the circular shape (red circle in Figure 5.12) and exhibits an elliptical morphology as assumed in the
previous section. In this case, I use the contact area 𝐴𝑠𝑙 = 𝜋𝑟2

𝑏 of the circular base area as a reference
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Figure 5.11.: (a)-(c) Contour plot of the functions 𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦), 𝑓3(𝑥, 𝑦) describing the hetero-
geneities of the three chemically patterned surfaces: stripe, chocolate,” and chessboard,”
respectively. Here, 𝑥 = 𝑟 cos𝜑 and 𝑦 = 𝑟 sin𝜑. 𝑟 is the 𝑟 coordinate in polar coordinate
system. The patterns are obtained by setting 𝛾𝑚 = 0, 𝛾0 = 0.5, 𝜉 = 100. The char-
acteristic lengths 𝐿 in (I), (II), (III) are 20, 30, and 40, respectively. The ratios 𝜈 for 1:1,
1:2, and 1:3 correspond to 𝜆 = cos 90∘, cos 60∘, cos 45∘, respectively. In (b)(I), (II), (III),
I set 𝜒 = 0.55, 0.13, 0.10, respectively. The red and blue color show 𝑓𝑘 = −0.5 or 0.5,
corresponding to hydrophilic and hydrophobic area, respectively.

value to appraise the one of the elliptical base area, i.e. 𝜋𝑎𝑏 = 𝛹(𝑉𝑑, 𝜃), where 𝛹 = 𝜋𝑟2
𝑏 . The proposed

modified CB model will be compared with the PF simulations in the following.
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Figure 5.12.: Droplet morphology in a form of spherical cap. The liquid-solid contact area is high-
lighted in the cyan color.

5.4. Droplet shape analysis by using the generalizedmodel

In this section, by using the generalized analytical methods and the two-phase AC model, I study the
influence of droplet sizes, contact angles, and the ratios of the hydrophilic area to the hydrophobic
area upon the equilibrium morphologies. Here, three typical chemically patterned surfaces, namely,
striped, chocolate,” and chessboard” patterned surfaces are considered.

5.4.1. Droplet size

In this part, the contact angles on hydrophilic and hydrophobic areas are set as 60∘ and 120∘, respec-
tively, i.e. 𝜃1 = 60∘, 𝜃2 = 120∘. The characteristic length in Eq. (5.10) is a constant value 𝐿 = 40. With
varying the droplet volume 𝑉𝑑, I use the ratio 𝑅/𝐿 to characterize the effect of the droplet size on the
equilibrium patterns. Here, 𝑅 is the effective radius of the droplet, which is calculated according to
𝑅 = (3𝑉𝑑/4𝜋)1/3.

In Figure 5.13, I present the surface energy landscapes for droplets with different volumes as
well as the corresponding equilibrated states on the chocolate-patterned surface. For the sake of
conciseness, the simulation setups, the energy maps, and the snapshots of the equilibrated droplets on
the other two patterns (striped and chessboard patterned surfaces) are fully described in the Appendix
B. From (I) to (III) in Figure 5.13, the size of the droplets varies from 𝑅/𝐿 = 0.75 to 𝑅/𝐿 = 0.25.
The hydrophobic square lattices (red) have a width of 𝐿𝑑𝑟𝑦 = 𝐿/2 = 20 and the distance between
two neighbouring lattices is 𝐿𝑤𝑒𝑡 = 𝐿/2 = 20. In each panel, the surface energy landscapes in (A),
(B), and (C) are for droplets with base center positions on 𝑃1, 𝑃2, and 𝑃3, respectively. The energy
minima in the deep blue region are sequentially numbered, corresponding to the snapshots of the PF
simulation results labeled with the same number in (D). As an example, I compare the base line (red
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b a

Figure 5.13.: Surface energy landscapes for droplets with different sizes on chocolate patterned sur-
faces and snapshots of equilibrated droplets through PF simulations. (I) 𝑅/𝐿 = 0.75, (II)
𝑅/𝐿 = 0.5, (III) 𝑅/𝐿 = 0.25. The chemical heterogeneities are described by 𝑓2(𝑟, 𝜑) in
Eq. (5.10) with the following parameters: 𝛾𝑚 = 0, 𝛾0 = 0.5, 𝜉 = 100, 𝐿 = 40, 𝜆 = 0,
𝜒 = 0.55. The energy minima are specified by different numbers, corresponding to the
snapshots in (D) labeled with the same number. The surface energy landscapes for (A),
(B), and (C) depict the systems with the droplet base center positions on 𝑃1, 𝑃2, and 𝑃3,
respectively. (D) Snapshots of equilibrated droplets via PF simulations (blue: hydrophilic,
red: hydrophobic).

dashed ellipse) of the droplets from the analytical model with the one from the PF simulations in (I)(D).
The elliptic base line with semi-axes 𝑎, 𝑏 from the analytical model is obtained from the coordinates
of the energy minima in the energy landscapes. It is observed that the analytical predictions of the
energy landscapes have a satisfactory agreement with the simulation results. Actually, the elliptical
base line can be considered as an average approximation for the curved triple line of the droplets.
This model is more accurate when the aspect ratio 𝑎/𝑏 is closer 1. This can be confirmed by the fact
that the first and fourth snapshots from PF simulations in (I)(D) agree excellently with the analytical
model (red dashed lines), while the other snapshots with 𝑎/𝑏 far away from 1 show relatively large
deviations from the analytical predictions.
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Figure 5.14.: The number 𝑁 and the morphologies of the equilibrated droplets on three typical chem-
ically patterned surfaces in dependence of the droplet sizes. (a)&(b), (c)&(d), and (e)&(f)
are for striped, chocolate-patterned, and chessboard-patterned surfaces, respectively. (a),
(c), and (e) depict the relation 𝑁 versus 𝑅/𝐿. (b), (d), and (f) describe the equilibrated
droplet morphologies with different sizes predicted by PF simulations (filled symbols),
in comparison with the energy-map model (hollow symbols) and the modified CB model
(solid curves).
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Through the energy-map method and the PF simulations, I obtain the influence of the droplet
size on the quantity 𝑁 and the morphologies of the equilibrated droplets on the three typical chem-
ically patterned surfaces, as illustrated in Figure 5.14. Here, the top ((a), (b)), medium ((c), (d)), and
bottom ((e), (f)) rows correspond to the striped, chocolate-patterned, and chessboard patterned sur-
faces, respectively. As shown in Figure 5.14 (a), (c), and (e), the equilibrated quantity 𝑁 increases
with the ratio 𝑅/𝐿. This reveals that large droplets tend to have more equilibrium shapes for all the
three patterned surfaces. Moreover, a comparison between Figure 5.14 (a), (c), and (e) shows that for
a fixed ratio 𝑅/𝐿, the number of the equilibrium state increases with an increase in the complexity
of the surface pattern, i.e. striped-patterned surface → chocolate-patterned surfaces → chessboard-
patterned surfaces. The underlying reason for the effect of the droplet volume and the complexity
of the patterned surfaces is as follows. An increase in the droplet volume and the complexity of the
patterned surfaces both gives rise to more covered energy discontinuous lines, which have a pinning
effect for the spreading of the droplets. Due to this pinning effect from the increased amount of the
discontinuous lines, more possible equilibrated droplet shapes are prone to appear.

Figure 5.14(b), (d), and (f) depict the droplet base radii 𝑎 and 𝑏 at equilibrium from PF simulations
(filled symbols) and energy-map model (hollow symbols) in comparison with the modified CB model
(solid curves). The scenarios for droplets with different sizes are distinguished by different colors.
As I can see, for each volume, the simulation results coincide with the one from the energy-map
model. Besides, the coloured solid curves are consistent very well with the same coloured symbols.
Certain deviations of the energy-map model from the PF simulations are due to the strongly curved
contact line of the droplets, which is caused by the pinning effect on the hydrophilic-hydrophobic
discontinuous lines on the surfaces. While in our energy-map model, I have applied an elliptical base
line to averagely describe the triple line. Nevertheless, the good agreement between the simulations,
energy landscapemethod, and the modified CBmodel implies the capability as well as the justifiability
of the proposed approaches. It should be noticed that in the present work, there exists a limit for the
aspect ratio 𝑎/𝑏. When the value 𝑎/𝑏 is beyond the limit, the droplet becomes slender with super
high/low aspect ratio. In this case, interfacial instabilities may take place, leading to the breakup of
the droplets. This topic is out of the scope of the present study and will be addressed in a forthcoming
work.

Until now I have benchmarked the analytical model by studying the number and the shapes of
the equilibrated droplets with various volumes on the three typical chemically patterned surfaces. As
the droplet volume increases, for a certain patterned surface, more equilibrated droplet shapes appear.
In the modified CB model, I assume that the different equilibrated droplets with the same volume on a
certain surface tend to have the same liquid-solid contact area. This hypothesis has been confirmed by
PF simulations. For instance, as shown in Figure 5.14(b), (d), and (f), for each droplet size, the results
from the PF simulations and the energy landscape method (filled and hollow symbols) locate near the
corresponding curve 𝜋𝑎𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This reveals that the equilibrated droplets have approximately
the same contact area 𝐴𝑙𝑠 = 𝜋𝑎𝑏. The slight deviation of the symbols from the solid curves is by dint
of the disparity between the curved contact line in simulations and the postulated elliptical based line
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in the analytical model. Furthermore, the distinct droplet shapes on the chemically patterned surfaces
are attributed to the pinning effect on the hydrophilic/hydrophobic boundaries. Big droplets have
large contact areas and long contact line which crosses more hydrophilic/hydrophobic boundaries,
leading to an increase in the number of the equilibrium shapes.

5.4.2. Contact angle

In this section, I systematically investigate the equilibrated droplet shapes affected by the contact
angles on hydrophilic and hydrophobic areas. The difference between the contact angles𝛥𝜃 ∶= 𝜃2−𝜃1
is divided into three groups: 𝛥𝜃 = 30∘, 45∘, 60∘. As listed in Table 5.1, in each group, four pairs of
contact angles (𝜃1, 𝜃2) are chosen. In the following simulations, the blue and the red areas of the
substrates correspond to the low contact angle (𝜃1) and the high contact angle (𝜃2), respectively. The
characteristic length is constant 𝐿 = 40. Droplets with the same size (𝑅/𝐿 = 1) on three typical
chemically patterned surfaces are focused on.

Table 5.1.: The setup of contact angles
𝛥𝜃 30∘ 45∘ 60∘

(30∘, 60∘) (45∘, 90∘) (30∘, 90∘)
Contact angle pairs (60∘, 90∘) (75∘, 120∘) (60∘, 120∘)

(𝜃1, 𝜃2) (90∘, 120∘) (90∘, 135∘) (90∘, 150∘)
(120∘, 150∘) (135∘, 180∘) (120∘, 180∘)

As three typical examples, Figure 5.15(I), (II), and (III) display the surface energy landscapes and
the snapshots of the simulated equilibrium droplets on the chocolate-patterned surface for contact
angle pairs (30∘, 90∘), (90∘, 150∘), (120∘, 180∘), respectively. The surface energy landscapes (A), (B),
and (C) in each panel correspond to droplets with base centers locating on 𝑃1, 𝑃2, and 𝑃3, respec-
tively. The energy minima in the energy maps are labeled with different numbers, corresponding to
the simulation snapshots indicated by the same number in (D). The geometrical parameters for the
patterned surface are the same as the ones in Figure 5.13. For brevity, the energy landscapes and
the snapshots of the equilibrated droplet shapes for striped and chessboard patterned surfaces are
included in Appendix B.

By using the above mentioned energy landscape model together with PF simulations, I find all
the possible equilibrium droplet shapes on the three chemically patterned surfaces for the contact
angle pairs tabulated in Table 5.1. The number 𝑁 of the equilibrium droplet shapes versus 𝜃 and 𝛥𝜃 is
illustrated in Figure 5.16(a), (d), (g) and Figure 5.16(b), (e), (h), respectively. Here, the first, second, and
last row correspond to the striped, chocolate, and chessboard patterned surfaces, respectively. For the
three patterned surfaces, the following similarities (i)-(ii) and differences (iii) are observed: (i) For all
the three surfaces, 𝑁 decreases with 𝜃 and remains almost a constant when 𝜃 ≳ 100∘. For instance,
for the chocolate-patterned surface (Figure 5.16(d)) and 𝜃 ≥ 100∘, I observe 𝑁 = 3 and these three
states are shown in Figure 5.15 (II) and (III), where the droplet base centers locate at the positions 𝑃1,
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Figure 5.15.: Surface energy landscapes for droplets on chocolate-patterned surfaces with different
contact angles and corresponding snapshots of equilibrated droplets by PF simulations.
(I) 𝜃1 = 30∘, 𝜃2 = 90∘, (II) 𝜃1 = 90∘, 𝜃2 = 150∘, (III) 𝜃1 = 120∘, 𝜃2 = 180∘. The
chemical heterogeneities are depicted by 𝑓1(𝑟, 𝜑) in Eq. (5.10) with 𝜉 = 100, 𝐿 = 40,
𝜆 = 0, 𝜒 = 0.55. The mean value 𝛾𝑚 and the amplitude 𝛾0 of the surface energy
density are set according to the contact angle pairs. The energy minima are shown by
different numbers, corresponding to the snapshots in (C) labeled with the same number.
The surface energy landscapes for (A), (B) and (C) represent the setups where the droplet
base center positions are on 𝑃1, 𝑃2 and 𝑃3, respectively. (D) Snapshots of equilibrated
droplets through PF simulations (blue: hydrophilic, red: hydrophobic).

𝑃2, and 𝑃3, respectively. With a decrease in 𝜃, the energy landscape becomes more intricate (see e.g.
Figure 5.15 (I)), where the quantity of the equilibrium states rises. The underling reason is that with a
decrease in 𝜃, the liquid-solid contact area is enlarged, which leads tomore discontinuous lines covered
by the droplets. Hence, 𝑁 increases with a decrease in 𝜃. (ii) For all the three patterned surfaces, 𝑁
increases with a decrease in 𝛥𝜃 when 𝛥𝜃 < 0. This is because that when 𝛥𝜃 < 0 deviates farther
from 0, on the one hand, the pinning effect is more pronounced, and on the other hand, 𝜃 decreases.
(iii) Different results are observed for distinct patterned surfaces when 𝛥𝜃 > 0. For the striped and
chocolate patterned surfaces, 𝑁 remains a constant, whereas 𝑁 increases with 𝛥𝜃 for the chessboard
patterned surface. The former observation is owing to the relatively small contact area resulting from
a high value of 𝜃 ≥ 100∘. The latter one is as a result of the high density for the discontinuous
lines, which gives rise to more chance for pinning. For the striped and chocolate patterned surfaces,
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Figure 5.16.: The number and themorphologies of the equilibrated droplets on three typical chemically
patterned surfaces in dependence of the contact angles. (a)&(b)&(c), (d)&(e)&(f), and
(g)&(h)&(i) are for striped, chocolate-patterned, and chessboard-patterned surfaces, re-
spectively. (a)&(d)&(g) and (b)&(e)&(g) illustrate 𝑁 versus 𝜃 and 𝛥𝜃, respectively. Here,
𝛥𝜃 varies from −60∘ to 60∘, which is achieved by fixing 𝜃1, (e.g. 𝜃1 = 90∘, 120∘) and
changing 𝜃2. (c), (f), and (i) depict the equilibrated droplet morphologies with different
average contact angles predicted by PF simulations (filled symbols), in comparison with
the energy-map model (hollow symbols) and the modified CB model (solid curves).

although the pinning effect becomes stronger with an increase in 𝛥𝜃 when 𝛥𝜃 > 0, the number of
pinning lines is not as many as the one for the chessboard pattern, when the size of the droplets is
comparable with the characteristic length. In contrast, for the chessboard pattern, the high density of
the discontinuous lines facilitates the occurrence of more equilibrated shapes when the pinning effect
is reinforced with a rise in 𝛥𝜃. From the relations 𝑁 vs. 𝜃 and 𝑁 vs. 𝛥𝜃, I should set low values of 𝜃
as well as high values of |𝛥𝜃| to obtain more equilibrated droplets, and vice versa.
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Figure 5.17.: Surface energy landscapes for droplets on chocolate patterned surfaces with different
area fractions of hydrophilic and hydrophobic areas and corresponding snapshots of
equilibrated droplets through PF simulations. The droplet size is set as 𝑅 = 40. The
chemical heterogeneities are described by 𝑓2(𝑟, 𝜑) in Eq. (5.10) with 𝛾𝑚 = 0, 𝛾0 = 0.5,
𝜉 = 100. The ratios for (I) 𝜈 = 1 ∶ 1, (II) 𝜈 = 1 ∶ 2, (II) 𝜈 = 1 ∶ 3 cor-
respond to (𝐿 = 20, 𝜆 = 0, 𝜒 = 0.55), (𝐿 = 30, 𝜆 = cos 60∘, 𝜒 = 0.13),
(𝐿 = 40, 𝜆 = cos 45∘, 𝜒 = 0.10), respectively. The energy minima are designated
by different numbers, corresponding to the snapshots in (D) indicated with the same
number. The surface energy landscapes for (A), (B) and (C) correspond to the droplet
base center positions 𝑃1, 𝑃2 and 𝑃3, respectively. (D) Snapshots of equilibrated droplets
through PF simulations (blue: hydrophilic, red: hydrophobic).

Figure 5.16(c), (f), and (i) describe the values (𝑎, 𝑏) of equilibrated droplets from the PF simulations
(filled symbols) and the energy landscape model (hollow symbols) for different 𝜃. These results are
compared with the modified CB model (solid curves). As 𝜃 decreases, for droplets with the same size,
the contact area tends to increase and therefore the curve 𝑎𝑏 = 𝛹(𝑉𝑑; 𝜃) from the modified CB model
translates upper right (see Eq. (5.12)).
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Figure 5.18.: (a) The number 𝑁 of the equilibrium droplet shapes on chocolate patterned surfaces as a
function of 𝜃. (b) Equilibrium morphologies of droplets on chocolate patterned surfaces
with different fractions of hydrophilic and hydrophobic areas predicted by PF simulations
(filled symbols) compared with the energy landscape model (hollow symbols) and the
modified CB model (solid curves).

5.4.3. The ratio of the hydrophilic area to the hydrophobic area

Apart from changing 𝜃1 and 𝜃2, the average contact angle 𝜃 can also be adjusted by tuning the area
ratio of the hydrophilic area to the hydrophobic area while fixing the intrinsic contact angles on
these two areas. In this part, I set the contact angles on the hydrophilic and hydrophobic areas as
𝜃1 = 60∘ and 𝜃2 = 120∘, respectively. As aforementioned, the area ratio of the hydrophilic area to
the hydrophobic area is characterized by the parameter 𝜈. For the chocolate patterned surfaces, I set
𝜈 = 1 ∶ 1, 1 ∶ 2, 1 ∶ 3 for the present investigation. To avoid repeated discussion of the similar
wetting behaviors, the striped and chessboard-patterned surfaces will not be further discussed in this
section.

For the chocolate-patterned surfaces with 𝜈 = 1 ∶ 1, 1 ∶ 2, 1 ∶ 3, the surface energy landscapes
and the snapshots of the equilibrated droplets from the PF simulations are shown in Figure 5.17 (I),
(II), and (III), respectively. The number 𝑁 and the coordinate (𝑎, 𝑏) of the local minima in the surface
energy landscapes both are well corroborated by the simulations, as illustrated in Figure 5.18(a) and
(b), respectively. Noteworthily, I have converted the ratio 𝜈 into the average contact angle by using
Eq. (5.11). As 𝜈 decreases, i.e. 𝜃 increases, the equilibrated droplet becomes spherical successively
and 𝑁 decreases. This finding coincides very well with the results in Figure 5.16. The comparison
between the simulation results, the energy landscape model, and the modified CB model is illustrated
in Figure 5.18(b), where sound agreement is obtained.
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Figure 5.19.: Functional relation between 𝑁 and 𝐴𝑙𝑠 for droplets on the chocolate-patterned surface.
The hollow squares and filled circles depict two distinct cases, where 𝐴𝑙𝑠 is changed by
setting different average contact angle 𝜃 and droplet radii 𝑅, respectively. The solid and
dashed lines are the corresponding fitting curves.

5.4.4. Summary and Conclusions

In this study, I have shed light on the equilibrium morphologies of droplets on three typical chemi-
cally patterned surfaces. Because of the contact line pinning effect, the droplets reach different energy
minimum states and thus achieve distinct equilibrium shapes. The number of equilibrated droplets as
well as the equilibrium morphologies both are dependent on the droplet sizes, contact angles, and the
ratios of the hydrophilic area to the hydrophobic area. These influence factors have been systemati-
cally discussed in this work. Our discussion is based on a combination of the surface energy landscape
method with the phase-field simulations. It has been shown that the analytical predictions from the
surface energy landscape approach are well consistent with the PF simulations. Noteworthily, in pure
experiments or simulations, it probably requires a number of tries to find all the equilibrium states
with varying parameters and even likely to miss some equilibrium morphologies if the number of the
experimental samples is not sufficient large. This demonstrates that the energy landscape model may
be used as a guidance table for experiments and simulations without blind attempts.

Furthermore, I have noticed that the number of the equilibrium droplet shapes for all the three
chemically patterned surfaces increases with the droplet volume. This tendency is due to the fact
that an increase in the droplet volume leads to an enlarged contact area between droplets and the
substrates, so that the triple lines cross more energy discontinuous lines. On these discontinuous
lines, the pinning effect occurs, resulting in more equilibrium shapes of droplets. Similarly, I have
varied the contact angles on the hydrophilic and hydrophobic areas while fixing the droplet volume.
I have figured out that as the average contact angle decreases i.e. the substrate is globally relatively
hydrophilic, the contact area between the droplet and substrate increases, which leads to a rise in
the number of the equilibrated states. To sum up, the increase in the volume or the decrease in the
average contact angle engenders more equilibrium shapes of droplets. The average contact angles
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can be controlled either by changing the intrinsic contact angles on the hydrophilic and hydrophobic
areas or the area ratio of these two components. It should be noticed that although both decreasing
average contact angle and increasing volume lead to a large droplet-substrate contact area and thus
facilitate more equilibrium states, a universal behavior for the number of the equilibrium states 𝑁
versus the contact area 𝐴𝑙𝑠 does not exist. In Figure 5.19, I plot the functional relation between 𝑁
and 𝐴𝑙𝑠 for droplets on the chocolate-patterned surface. Here, different 𝐴𝑙𝑠 are obtained by changing
the average contact angle 𝜃 (hollow squares) or droplet radius 𝑅 (filled circles). As 𝐴𝑙𝑠 increases, 𝑁
rises. Although the tendencies are similar between these two curves, the quantities of the equilibrium
states for the same 𝐴𝑙𝑠 are not always the same. This reveals that 𝑁 is not uniquely dependent on 𝐴𝑙𝑠.
Other aspects such as the pinning force, droplet height may also take an important role for the stability
analysis of the droplets. Given the limit of the content, these factors will not be further discussed.

I have further investigated the morphology properties of the equilibrated droplets on different
patterned surfaces. For a certain chemically patterned surface, the surface energy landscape method
in combination with the PF simulations has been adopted to find the possible equilibrium shapes of
droplets. These results have been compared with the modified CB model proposed in this work. It has
been shown that the simulation results coincide with the modified CB model. This demonstrates that
the proposedmodified CBmodel ismore robust and accurate to delineate the droplet shapes, especially
the base area. Therefore, the classical CBmodel has been successfully extended to be able to predict the
equilibrium droplet shapes which are not necessary in a shape of spherical cap. The comprehensive
predictions of the droplet shapes in this work are of significant importance for applications of droplet
manipulation and the findings open a promising avenue for a delicate control of droplet formation as
well as for the design of functional surfaces.

It should be emphasized that our model can be easily further extended to other chemically pat-
terned surfaces whose heterogeneities are symmetric. In the present work, I have assumed that the
droplet has a form of quasi-spherical cap with an elliptical contact base line on the substrate. How-
ever, it is beyond the validity of our model if the chemical pattern is extremely complex, where the
droplet shapes become asymmetric.
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By utilizing the generalized analytical method, the PF model described in the last chapter, and the
experimental method, wetting behaviors of droplets on a chemically patterned surface are further
investigated. Typical anisotropic wetting shapes identified by these three distinct methods are com-
pared. The surface energies of the anisotropic wetting morphologies are quantitatively examined to
address the most energetically stable wetting state. Moreover, a series of non-rotational symmetric
droplet shapes is newly reported. Furthermore, the evolution of anisotropic wetting shapes in a quasi-
equilibrium evaporation process is revealed. This chapter was published in Ref. [186]

6.1. Methods

The equilibrium droplet shapes on chemically patterned substrates are analyzed by using an analytical
model, phase-field simulations, and experiments. The former two methods are described in the last
chapter, which both are based on minimizing the free energy of the system. Here, key information
for the analytical model is provided.

In the analytical model, the chemical heterogeneities in the (𝑥, 𝑦)-plane (𝑥-axis is in the lateral
direction and 𝑦-axis is perpendicular to 𝑥-axis) of the substrate surface are described by the following
expression

𝛾𝑙𝑠 − 𝛾𝑔𝑠 = 𝛾𝑚 + 𝛾0 tanh 𝜉[cos(𝛿1 − 𝜆) cos(𝛿2 − 𝜆) − 𝜒(cos 𝛿1 + cos 𝛿2)]. (6.1)

The parameters 𝛾𝑚 and 𝛾0 indicate the mean surface energy density difference and the amplitude of
the heterogeneity, respectively. The variables 𝛿1 and 𝛿2 are function arguments which are dependent
on the coordinate (𝑥, 𝑦) of droplet base center. The other parameters 𝜉, 𝜆, and 𝜒 control the sharpness,
area ratio, and roundness of the wettability pattern, respectively. A proof for the validity of Eq. (6.1)
and the interpretation for the controlling parameters are provided in Appendix C. In this chapter, the
length𝑥, density 𝜌, surface tension 𝛾 and other variables are non-dimensionalized by the characteristic
parameters, 𝑥∗=1×10−4 m, 𝜌∗ = 998 kg/m3, and 𝛾∗=72.8×10−3 N/m, respectively.

All experiments were conducted with chemically patterned micro-arrays provided by Aquarray
(Eggenstein-Leopoldshafen, Germany) on microscopic slides from Schott Nexterion (Jena, Germany).

79



6. Single droplet on chemically patterned surfaces: theoretical calculation, phase-field simulation, and

experiments

The substrate is a glass slide patterned with hydrophilic (apparent contact angel 𝜃𝑎,𝑤𝑒𝑡 = 0∘) spots
surrounded by (super)hydrophobic (𝜃𝑎,𝑑𝑟𝑦 = 160 ± 10∘) area. The square (Fig. C.2A) and circle (Fig.
C.2B) patterns are used for comparison, as can be found in Appendix C.

Equilibrium shapes of distilled water droplets were recorded by using a Keyence BZ-9000 optical
microscope (Keyence Corporation, Osaka, Japan). All the stable droplet configurations were captured
by deposing the droplet center on different positions. Side-view and diagonal-view pictures of drops
were performed with a DSA 25 contact angle goniometer (Krüss, Hamburg, Germany). The scale is
determined by the device syringe, on which the camera was focused. The heights were determined
by using the image analysis software, ImageJ.

The evaporation experiment was conducted with an initial volume 20 𝜇𝐿 distilled water droplet
sitting on the patterned substrates. The relative humidity and temperature were 20% and 20∘C, respec-
tively. The evaporation images was recorded by a Keyence VHX-7000 optical microscope (Keyence
Corporation, Osaka, Japan).

6.2. Droplet shape analysis

6.2.1. Analysis of top views

Fig. 6.1 illustrates the results for the equilibrium shapes of the droplets from the three different meth-
ods. Two exemplary droplet volumes are considered, 𝑉 = 𝑉0 (Fig. 6.1A) and 𝑉 = 4𝑉0 (Fig. 6.1B).
The images (a), (b), and (c) in the first arrow show the surface free energy landscapes 𝐸𝑣(𝑎, 𝑏) from
the analytical approach for droplets with base center on three different positions: (a) center of four
neighboring hydrophilic lattices, (b) between two adjacent hydrophilic lattices, (c) on a hydrophilic
lattice. The equilibrium shapes of the droplets on these three different positions (a), (b) and (c) from
the simulations are illustrated in (d), (e), and (f), respectively. The numbered surface energy minima,
1, 2 and 3 in (a), (b), and (c) correspond to an equilibrium shape of the droplet. The baseline of the equi-
librated droplet is depicted by the values (𝑎, 𝑏) at the highlighted positions 1-3 in the surface energy
landscape. For comparison, the red dashed lines in (d), (e), and (f) show the baseline of the droplet
from the analytical method, where good agreement is observed. The third rows (g), (h), and (i) dis-
play the experimental results for the equilibrated droplets with the base centers on the positions (a),
(b), and (c), respectively. The experimental results show excellent agreements with the simulations
as well as with the analytical model. Instead of spreading equally in all directions on a flat homoge-
neous surface, the spreading of the drop on the wettability pattern is determined by its initial state
(e.g. initial position and initial shape), which leads to several different equilibrium droplet shapes.
Although the analytical model loses its accuracy in describing the sharp corners of the droplet base, it
can be considered as an average and approximate description of the droplet shapes, which serves as
a guidance to identify different equilibrium droplet shapes and the dependence of droplet positions.
To better address the droplet shapes with sharp corners, I will further develop a modified analytical
model that considers the droplet base as a shape of polygon in a forthcoming work.
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Figure 6.1.: Surface free energy landscapes and equilibrium shapes for droplets on a chemically pat-
terned surface. The energy maps (a), (b), and (c) in the first row are surface free energy
landscapes in the 𝑎 − 𝑏 space when the droplet base center is placed on three symmetric
points of the patterned substrate: (a) in between four neighboring hydrophilic lattices,
(b) between two adjacent hydrophilic lattices, (b) on the hydrophilic lattice. The contour
lines indicate the levels of surface energy, which decreases from red to blue regions. The
energy minima are labeled with numbers 1-3, whose coordinates (𝑎, 𝑏) describe the semi-
axes of the droplet base line. The second and third rows illustrate the equilibrium shapes
of droplets obtained from simulations ((d)-(f)) and experiments ((g)-(i)). In (d)-(f), the hy-
drophilic and hydrophobic areas are highlighted in blue and red color, respectively. The
red dashed ellipses on the simulation snapshots (d)-(f) are theoretical results correspond-
ing to the coordinates (𝑎, 𝑏) of the energy minima indicated in (a)-(c). (A) 𝑉 = 𝑉0=5 𝜇𝐿,
(B) 𝑉 = 4𝑉0=20 𝜇𝐿. Scale bar: 1 mm (or 10 in dimensionless value).

For the convenience of discussion, I name the three typical equilibrium droplet configurations for
each volume as 𝑁𝑥 × 𝑁𝑦 patterns, where 𝑁𝑥 and 𝑁𝑦 denote the number of the covering hydrophilic
lattices in the 𝑥 and 𝑦 dimensions, respectively. For instance, for droplet with 𝑉 = 𝑉0, I have obtained
three patterns, namely, 2×2 (Fig. 6.1A(d)), 1×2 ((Fig. 6.1A(e))), and 1×1 ((Fig. 6.1A(f))) patterns.

I further compare the equilibrium morphologies of droplets from simulation and experiments for
different volumes (Fig. C.3). In Fig. C.3 A-D, the droplet volume varies from 2𝑉0 to 8𝑉0. Overall, the
simulations match very well with the experiments except the droplet states in Fig. C.2A(c) and Fig.
C.2D(a) (Appendix C). Fig. 6.2 addresses the disagreement between the experimental and simulation
results towards these two states. As shown in Fig. 6.2A(a), two local minima are observed in the
surface energy landscape for 𝑉 = 8𝑉0, as indicated by the numbers 1 and 2. The semi-axes of both
energy minima states are equal but the latter one is less than the former one. Two distinct simulations,
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(i) one with gravity and (ii) the other one without gravity, are performed. The equilibrated states for
(i) and (ii) are shown in Fig. 3A(b) and Fig. 6.2A(c), respectively. The red dashed lines depict the results
from the analytical method. The former one was previously shown in Fig. C.3D(a) (Appendix C) and
this state corresponds to the energy minimum 1. The latter one corroborates the experimental result
illustrated in Fig. 6.2A(d) or Fig. C.3D(d) (Appendix C). This equilibrium state is correlated with the
energy minimum state 2, where the base radius 𝑎 = 𝑏 is smaller than the one in Fig. 6.2A(b). On
the other hand, it is very likely that due to the mechanical heterogeneity (or roughness), the pinning
effect in the experiment seems to be stronger than the one in the simulation, since the substrate
is ideally smooth in simulation setups. This relatively stronger pinning force prevents the outward
spreading of the droplet in the experiment. By this way, the gravity induced pressure force cannot
surmount the pinning effect of the surface tension and the energy minimum state 2 with a smaller
semiaxes 𝑎 = 𝑏 is captured by experiments. Feng et al. reported that even nano-sized roughness of
the glass substrate can affect the static and sliding wetting behaviors [187]. However, quantifying the
influence of mechanical heterogeneity (or roughness) of the substrate is very challenging and remains
an open question. In addition, modelling of the roughness is a challenging task because it requires to
resolve rather even smaller scales which is not the objective of the current paper. The inconsistency
of Fig. 6.2A(b) (with gravity) and Fig. 6.2A(d) is probably caused by the difference in the strength
of the pinning force in the experiment and simulation. To further examine the vying relationship
between the pinning force and gravity, I conducted a special simulation with zero gravity (Fig. 6.2A(c)
or simulation (ii)), as mentioned above. The simulated droplet with zero gravity equivalently describes
the situation where gravity is fully compensated by the pinning force, which shows good agreement
with the experimental result Fig. 6.2A(d). The discussion of Fig. 6.2A demonstrates that the two vying
forces, i.e., the pinning force and gravity jointly determine the equilibrium pattern of droplets with
relatively large volumes. Nevertheless, the good agreements for smaller droplets shows the strong
competency of the analytical approach for the capillarity dominant situation.

For volumes 2𝑉0-6𝑉0 shown in Fig. C.2 (Appendix C), the good consistency between the simu-
lation and experimental results indicates the dominant effect of the surface tension over the gravity
for comparatively small volume droplets. On the other hand, due to the uncertainty of the surface
roughness, the pinning effect in the experiment seems to be stronger than the one in the simulation,
which prevents the outward spreading of the droplet. By this way, the gravity induced pressure force
cannot surmount the pinning effect of the surface tension and the energy minimum state 2 with a
smaller semiaxes 𝑎 = 𝑏 is captured by experiments. The satisfactory agreement between the results
in Fig. 6.2A(c) and Fig. 6.2A(d) again demonstrates the strong competency of the analytical approach,
which can be used to effectively guide the experimental design and simulation analysis.

Fig. 6.2B presents typical non-rotational symmetric equilibrium morphologies from experiments
and PF simulations. In the PF simulations for Fig. 6.2B(b) and (d), I initially set up a droplet in the shape
of gengon. In contrast to the initial cuboid covering 3×3 hydrophilic lattices for the simulations in Fig.
S2A(c) and in Fig. 6.1B(f), the base area of the initial gengon does not cover the hydrophilic lattices
1, 2, 3 in Fig. 6.2B(b) and the hydrophilic lattice 4 in Fig. 6.2B(d). Driven by the surface energy mini-
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Figure 6.2.: A. (a) The surface energy landscape 𝐸𝑣(𝑎, 𝑏) for 𝑉 = 8𝑉0 (40 𝜇𝐿) with droplet base center
on the center of four neighboring hydrophilic lattices. (b) and (c) top views for an equili-
brated droplet with and without gravity from the PF simulation. The red dashed lines in
(b) and (c) show the analytical results which correspond to the energy minima 1 and 2 in
(a), respectively. (d) Optical image of the droplet for 𝑉 = 8𝑉0 (40 𝜇𝐿) via experiment.
The droplet centers are shifted away from the patch centers. B. Equilibrium morphologies
with unique symmetric axis. (a) and (b) Experimental and simulation results for 𝑉 = 2𝑉0
(10 𝜇𝐿), respectively. (c) and (d) Experimental and simulation results for 𝑉 = 4𝑉0 (20
𝜇𝐿), respectively. The red dot dashed lines illustrate corresponding symmetric axes. Scale
bar: 1 mm (or 10 in dimensionless value).

mization, the initially filled gengon evolves to the non-rotation-symmetric equilibrium morphologies,
as demonstrated in Fig. 6.2B(b) and (d), which confirm the experiments in Fig. 6.2B(a) and (c), respec-
tively. Noteworthily, these equilibrium morphologies are also axisymmetric and the corresponding
symmetric axes are highlighted with dot dashed lines. In this case, the pining forces in the direction of
the dot dashed line and in the direction perpendicular to the dot dashed line both can be compensated.
However, the analytical prediction towards this kind of geometry is out of the scope of the present
work, and this problem will be tackled in a forthcoming work.

Apart from the square-pattern substrate, a circle-pattern substrate is also considered to examine
the capability of the analytical and numerical models. Fig. 6.3 illustrates the prediction of the energy
mapmethod and compares the experimental and simulation results for the equilibrated droplet shapes
on the circle-pattern substrate. All the simulations coincide with the experiments and all rotationally
symmetric geometries (i.e. (1)-(4) in Fig. 6.3B and C) can be fully predicted by the energy maps. Note-
worthily, in both simulations and experiments, a non-rotationally symmetric pattern is observed, as
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Figure 6.3.: (A) Surface energy landscapes for droplets with 𝑉 = 𝑉0 (5 𝜇𝐿) on a circle-patterned
surface (see more details in Fig. C.2B for the patterned substrate). The three energy maps
correspond to the case when the droplet center is placed on the positions (a), (b), and (c)
described in Fig 6.1. The energy minima are labeled with numbers 1-4, corresponding
to the snapshots in (B) and (C) marked with the same numbers. (B) and (C) Top view
comparison for droplets with a volume of 𝑉 = 𝑉0 (5 𝜇𝐿) on a circle-patterned surface.
Scale bar: 1 mm (or 10 in dimensionless value).

shown by the 5th panel in Fig. 6.3B and C.This droplet pattern and the droplet patterns in Fig. 6.2B(a)(c)
describe the case where droplet centers are shifted away from the three typical symmetric points (a),
(b) and (c). In these cases, the pinning force around the contact line leads to axially symmetric pat-
terns. The phase-field model can be straightforwardly used to simulate the axially symmetric patterns
with appropriate initial filling of the droplet. To analytically address the situation where droplet cen-
ters are shifted away from the symmetric points, one possible way to extend the present analytical
method is to assume that the droplet base line is in a shape of polygon which will be explored in a
forthcoming work. In this work, I mainly focus on the rotationally symmetric droplets and the aim is
to show that the analytical and numerical models are robust to confirm the equilibrium configurations
of droplets.
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Figure 6.4.: Comparison of (a) side lateral and (b) side diagonal views for droplets with 𝑉 = 4𝑉0 (20
𝜇𝐿). The snapshots of droplets via simulations and experiments are normalized to the same
width and then overlapped. The differences of the normalized snapshots are highlighted
in cyan.

6.2.2. Analysis of side views

To investigate more details about the droplet shapes on the square-pattern substrate, I turn to contrast
the side views of the equilibrium shapes. In Fig. 6.4, I compare the droplet side views in two directions,
(a): the lateral direction, and (b): the diagonal direction, which are labeled as side lateral view and
side diagonal view, respectively. As a typical example, I choose the volume 𝑉 =4𝑉0 and analyze the
equilibrium shape with the droplet covering a 2×2 hydrophilic lattice pattern (see also Fig. 6.1B(d)).
Simulation and experimental images are converted to grayscale and binarized using the 0.7-quantile
(value underneath which 70% of all brightness values are) of pixels followed by a morphological
opening and hole-filling. The maximum horizontal extent of the segment is determined, and the
image is accordingly cut and resized, such that the extents in the 𝑥-direction for the experimental
and simulation images are the same. The normalized simulation and experiment segments are then
overlaid, and the differences between them are highlighted in cyan color, as shown by the normalized
yellow droplets next to the experimental snapshots. The deviation is characterized by the ratio of the
number of differing pixels to the whole number of pixels corresponding to the bigger segment. The
comparison of the deviation between the simulation and experiments for different volumes is depicted
in Table 6.1, where satisfactory agreement is observed.

6.2.3. Analysis of droplet height and surface energy

In Fig. 6.5, I study the droplet shapes more quantitatively by scrutinizing the droplet height ℎ and the
total surface energy 𝐸 for different droplet volumes. Fig. 6.5(a), (b), and (c) show the droplet height
versus the volume via theoretical, numerical, and experimental methods, respectively. Fig. 6.5(d) and
(e) present the surface energy versus the volume through theoretical calculation and numerical sim-

Table 6.1.: Deviation rate for the pixels of the experimental and simulation images.
volume side lateral view side diagonal view

𝑉0 5.38% 11.19%
2𝑉0 12.44% 5.23%
4𝑉0 4.04% 1.27%
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Figure 6.5.: Comparison of droplet height and surface energy. (a), (b), and (c) theoretical, simulation,
and experimental results for droplet height, respectively. (d) and (e) theoretical and nu-
merical analysis of surface energies. (f) Snapshots of top views for typical equilibrium
shapes of droplets with volume varying from 2𝑉0 to 6𝑉0. In (a)-(e) the bars colored in
violet, green, and blue correspond to the equilibrated droplets covering the hydrophilic
(blue) lattices patterns of 2×2, 2×3, and 3×3, as exhibited in (f). The pink bars in (b) and
(e) present the 2×2 patterned droplet via PF simulation without gravity, as illustrated in
Fig. 6.2(c). Droplet height ℎ and surface energy 𝐸 are nondimensionlized by 𝑥∗ and 𝛾∗𝑥∗2,
respectively.

ulations, respectively. For each volume, I focus on three typical equilibrium droplet configurations,
i.e. the 2 × 2, 2 × 3, and 3 × 3 patterns, as illustrated in Fig. 6.5(f) and the corresponding data for ℎ
and 𝐸 are depicted by the violet, green, and blue bars in the histograms. The simulation data of the
2×2 pattern for 𝑉 = 8𝑉0 in Fig. 6.5(b) and (e) (pink bars) is based on the simulation results without
gravity (Fig. 6.2(c)), the equilibrium shape of which coincides with the experiments. The simulation
results with zero-gravity equivalently describe the situation where gravity is fully compensated by
the pinning force, similar to the case in the experiment. The experimental data of the 3×3 pattern
for 𝑉 = 2𝑉0 is precluded in Fig. 6.5(c), due to the inconsistency observed in Fig. 6.1(a). Despite of
this inconsistency, the results for the droplet height and the surface energy obtained from theoreti-
cal, numerical, and experiment show a very good agreement with each other. For each pattern, the
droplet height and surface energy increase almost linearly with the volume. For a constant volume,
both the droplet height and the surface energy decrease as the droplet pattern changes from 2×2 to
2×3, and to 3×3, except the surface energy for V=2𝑉0. This observation indicates that for a constant
volume, among all possible equilibrium states, an applanate droplet covering more hydrophilic lattices
is generally more energetically stable than a towering droplet covering less hydrophilic lattices.
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It should be noticed that the surface energies of the 2×3 and 3×3 patterns for V=2𝑉0 are under-
estimated in the analytical method. This underestimation is mainly for calculating the surface energy
of the droplet cap. In fact, the baseline is curved which leads to convex and concave surfaces for the
liquid-gas interface. This fact is overlooked in the theoretical model because of the circular arc as-
sumption. However, the PF simulation is capable of modeling the realistic curved baseline as well as
the convex and concave liquid-gas surface. From the simulation results, the 3×3 pattern has a higher
surface energy than the 2×2 and 2×3 patterns for 𝑉 =2𝑉0. The relatively high energy state of the
3×3 pattern for 𝑉 =2𝑉0 as well as the aforementioned uncertain surface roughness in the experiment
explains why this pattern is hard to be obtained in experiments (Fig. C.3A(c) in Appendix C).

6.2.4. Analysis of droplet evaporation

To further clarify the functional relationships of surface energy 𝐸 and droplet height ℎ versus volume
𝑉 /𝑉0, droplet evaporation via simulations and experiments is carried with an initial volume 𝑉 = 4𝑉0.
In this evaporation study I use the 2×2 pattern for both the experimental and modeling. Fig. 6.6(a)
demonstrates the comparison of simulation and experimental results at different times with different
droplet volumes varying from 𝑉 = 4𝑉0 to 𝑉 = 0.8𝑉0. The simulation results perfectly capture the
morphology of the evaporating droplet observed in experiments.

Fig. 6.6(b) illustrates the height ℎ and the base area 𝐴𝑙𝑠 of the droplet evolving with the volume
from the simulation (dot-dashed lines) and the analytical model (circles). For small volumes (≤ 2𝑉0),
droplet heights from the simulations and the analytical model agree very well with each other. For
large volumes (≥ 2𝑉0), the droplet height ℎ from the simulations is slightly less than the one of the
analytical model. This deviation is because of the consideration of the gravity in the numerical simu-
lation, which plays a vital role for large volume droplets, while the gravitational force is overlooked in
the analytical method. The inset describes the base contact lines of evaporating droplets with volumes
decreasing from 4𝑉0 to 𝑉0. The increment of the droplet volume for any two neighbouring base lines
is uniform, i.e. 𝛥𝑉 = 0.5𝑉0. These contact lines are concentric circles and each of them corresponds
to an energy minimum with 𝑎 = 𝑏 in the surface energy landscape. By using the average radius
̄𝑟 = (𝑟1 + 𝑟4)/2 (𝑟1-base radius for 𝑉 = 𝑉0, 𝑟4-base radius for 𝑉 = 4𝑉0) of the concentric circles and

assuming a spherical cap for the evaporating droplet, the base area and the height of the evaporating
droplet are shown by the blue and red solid lines, respectively. This assumption corresponds to a
reference state with a constant base area (horizontal solid blue line), which is related to the so-called
constant contact radius (CCR) evaporation mode. The base contact area of the evaporating droplet
from the simulation (blue dashed line) decreases with decreasing the volume and the relative change
quantity is about 10% when the volume decreases from 4𝑉0 to 𝑉0. Moreover, the CCR contact area
is almost an average value for that of the simulation results. Furthermore, the droplet height of the
CCR mode (red solid line) matches very well with the analytical results (red circles).

The surface energy versus volume is presented in Fig. 6.6(c). The simulation results (dot-dashed
line) agree very well with the analytical method (blue circles). The inset shows the energy maps for
the highlighted states A, B, and C. For comparison, the surface energy of the CCR model is calculated
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Figure 6.6.: (a) Comparison of droplet morphologies when a droplet evaporates from 4𝑉0 to 0.8𝑉0 (20-4
𝜇𝐿). Top and bottom rows illustrate the simulation and experimental results, respectively.
From left to right, the droplet snapshots in experiment were taken at the time 0, 15, 30, 45,
50, 51.5 min, respectively. (b) Droplet height and liquid-solid contact area as functions of
the droplet volume. The dot-dashed lines, circles, and solid lines represent results from the
PF simulations, the energymapmethod, and the CCR evaporationmodel, respectively. The
inset shows the evolution of the droplet base line via the energymapmethod as the volume
decreases from 4𝑉0 to 𝑉0. In the CCR evaporationmodel, I assume that the droplet is in the
shape of a spherical capwith a constant liquid-substrate contact area𝐴𝑙𝑠 = 𝜋[(𝑟1+𝑟4)/2]2
with 𝑟1 and 𝑟4 denoting the base radii calculated from the energy map method for 𝑉 = 𝑉0
and 𝑉 = 4𝑉0, respectively. (c) Comparison of surface energy evolution as the droplet
evaporates from 4𝑉0 to 0.8𝑉0. Inset in left down side: Energy maps for equilibrium droplet
with 𝑉 /𝑉0=1, 2, 4. The points 𝐴, 𝐵, 𝐶 denote the corresponding energy minima in the
𝑎 − 𝑏 space. (d) Top and middle: Comparison of the surface energy evolution for the
droplet cap and the droplet base. Bottom: Comparison of contact angle evolution obtained
through PF simulation and CCR evaporation model. 𝜃𝑠𝑖𝑚 is calculated through cos 𝜃𝑠𝑖𝑚 =
(cos 𝜃𝑒,𝑤𝑒𝑡𝑥𝑤𝑒𝑡+cos 𝜃𝑒,𝑑𝑟𝑦𝑥𝑑𝑟𝑦)with 𝑥𝑤𝑒𝑡 (𝑥𝑑𝑟𝑦) indicating the hydrophilic (hydrophobic)
area fraction covered by the droplet. 𝜃𝐶𝐶𝑅 is the apparent contact angle for the droplet in
the CCR model. Droplet height ℎ and surface energy 𝐸 are nondimensionlized by 𝑥∗ and
𝛾∗𝑥∗2, respectively. Scale bar: 1 mm (or 10 in dimensionless value).

(red solid line), which is greater than the simulation and analytical results. This is due to an overesti-
mation for the surface energy of the liquid-solid base area in the CCR evaporationmodel, as confirmed
in Fig. 6.6(d). The surface energies of the liquid-gas cap 𝐸𝑙𝑔 and the liquid-solid base area 𝐸𝑙𝑠 versus
volume are presented in the top and middle panels of Fig. 6.6(d), respectively. For the surface en-
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ergy 𝐸𝑙𝑔 (Fig. 6.6(d), top), the simulation results (dot-dashed line), the analytical predictions (circles),
and CCR model (dashed line) coincide with each other. However, as shown in the middle panel of
Fig. 6.6(d), the CCR model overestimates the surface energy 𝐸𝑙𝑠. The surface energy 𝐸𝑙𝑠 in the CCR
model is calculated by using the equation 𝐸𝑙𝑠,𝐶𝐶𝑅 = −𝐴𝑙𝑠,𝐶𝐶𝑅𝛾𝑙𝑔 cos 𝜃𝐶𝐶𝑅. Given the invariant of
𝐴𝑙𝑠,𝐶𝐶𝑅𝛾𝑙𝑔, the decrease of the surface energy 𝐸𝑙𝑠,𝐶𝐶𝑅 with the volume is due to the change of the
apparent contact angle 𝜃𝐶𝐶𝑅, as presented in the bottom figure of Fig. 6.6(d). Here, 𝜃𝐶𝐶𝑅 is calculated
based on a spherical cap for the liquid-gas interface, i.e. 𝜃𝐶𝐶𝑅 = 1 − 2ℎ2/(ℎ2 + ̄𝑟2). Analogously,
in the simulations, I utilize an effective contact angle 𝜃𝑠𝑖𝑚 to describe the surface energy 𝐸𝑙𝑠,𝑠𝑖𝑚, i.e.
𝐸𝑙𝑠,𝑠𝑖𝑚 = −𝐴𝑙𝑠,𝑠𝑖𝑚𝛾𝑙𝑔 cos 𝜃𝑠𝑖𝑚. The contact angle 𝜃𝑠𝑖𝑚 is calculated through the well-known Cassie-
Baxter concept: cos 𝜃𝑠𝑖𝑚 = cos 𝜃𝑒,𝑤𝑒𝑡𝑥𝑤𝑒𝑡+cos 𝜃𝑒,𝑑𝑟𝑦𝑥𝑑𝑟𝑦 with 𝑥𝑤𝑒𝑡 (𝑥𝑑𝑟𝑦) indicating the hydrophilic
(hydrophobic) area fraction covered by the droplet. In summary, the overestimation of the total sur-
face energy in the CCR model is attributed to the exaggerated surface energy 𝐸𝑙𝑠,𝐶𝐶𝑅. The good
agreement between the simulations and the analytical method proves again the strong advantage of
the energy map method in describing the droplet states on chemically patterned surfaces.

6.3. Conclusion

In this work, I have studied the equilibrium shapes of droplets on chemically patterned substrates,
when the droplet size is comparable to the surface heterogeneity. In this case, the classic Cassie’s
equation [37] loses its validity. Instead of investigating the contact angles [45], I quantitatively ad-
dressed this problem by utilizing a combination of an analytical model, numerical simulation, and
experiments. Besides, from the perspective of thermodynamics, I analyzed the surface energies of
the equilibrium droplets to predict different shapes. To the best of our knowledge, this is among the
most pioneering works [188, 189] fully describing equilibrated droplets on patterned substrate in a
quantitative manner. The shapes, heights, and surface energies of the droplets varying with positions
and volumes have been comprehensively studied. All the three methods display an excellent agree-
ment with each other. For a certain-sized droplet, different typical equilibrium states can be identified,
similar to the observation of Brandon et al. [190]. In addition, the most energetically stable state can
be revealed through our method. The identification of different energy minimum states facilitates an
accurate control of droplet shapes at will.

Moreover, on regular patterns, I have observed non-rotationally symmetric droplet shapes, which
was previously merely observed on irregularly patterned surfaces [191]. This is the first report for
these special wetting morphologies on regularly patterned surfaces confirmed both by simulations
and experiments.

Furthermore, I have analyzed the evolution of the droplet geometry and energy states for quasi-
equilibrium evaporating droplets. In comparison with Ref. [192], the present numerical simulation
is capable of capturing the evolution of the droplet shape for continuously decreasing volumes. The
simulation results of the evaporation and energy map predictions match convincingly with the ex-
perimental results. Our analysis demonstrates that although there is a strong pinning effect on the
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boundaries between the superhydrophilic and superhydrophobic areas, the droplet evaporation differs
from the ideal CCR mode since the contact line moves slowly inwards, similar to the observations of
Ramos et al. and Zhang et al. [193, 194]. The proposed energy map method has shown its great poten-
tial to scrutinize not only the equilibrium shape of droplets but also the quasi-equilibrium evaporating
droplets on chemically patterned surfaces.

The present analytical model is, however, constrained to merely describe small droplets with
highly symmetric geometry and the influence of gravity is neglected. It needs to be further extended
to depict more general shapes such as non-rotationally symmetric shapes induced by the strong pin-
ning effect and applanate droplet shapes pressed by gravity. In these cases, I need to introduce ad-
ditional parameters and geometry assumptions to characterize the largely deformed contact lines as
well as the droplet cap. Other important issues remaining to be tackled in the future are the modeling
of fast movement and instability of droplets on a designed surface. Possible endeavors in this direction
might be solving the Cahn-Hilliard-Navier-Stokes equations [195] with well-defined wetting bound-
ary conditions. Nonetheless, the present strategy may shed light on a wide range of applications of
ink-jet printing, coatings, droplet arrays, and droplet-based microfluidics or bio-microfluidics [196].
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heterogeneous surfaces

In chapters 4-6, a single droplet on chemically patterned substrates was considered, and the whole
system is described with a liquid-gas system with wetting boundaries. This chapter investigates
multiphase-droplets on chemically patterned substrates, which is a three-phase system with wetting
boundary conditions. In this chapter, a multi-phase AC model will be adopted to model the whole
system. In section 7.1 a static problem, namely, liquid-liquid confinement is studied. In section 7.2
quasi-static movements of multiphase-droplets driven by surface energy are presented. At last, in
section 7.3, a summary and remarks are given. Section 7.1 was published in Ref. [197].

7.1. Liquid-liquid confinement

Water was used as a barrier to confine low‐surface‐tension liquids (LSTLs) as a liquid analogue of a
solid well (Fig. 7.1(A)). The water barrier itself was confined in a hydrophilic surface area surrounded
by hydrophobic surface areas, in which the hydrophilic area enclosed a hydrophobic area. Then, an
LSTL was deposited to the hydrophobic surface area within the water wall, which spread out and was
confined in the shape predetermined by the shape of the water barrier.

To understand the different shapes obtained at the water–solvent interface and to support the
experimental observations, liquid wells were simulated with a multiphase AC type phase‐field model

Figure 7.1.: (A) Scheme of a liquid contained in a solid vessel (left) and inside liquid water walls, that
is, a liquid well (right). (B) Formation of a circular liquid well. Water forms a ring on the
hydrophilic surface area (dashed line). The organic solvent (1‐nonanol, dyed with Oil Red
O) is then added into the liquid well. Scale bars: 5 mm.
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Figure 7.2.: Phase-field simulation for the confinement of 1-nonanol (red) in a ring of water (blue).
Each simulation (i-vii) is based on a different set of the surface and interfacial tensions
𝛾𝑜𝑎 (organic-air), 𝛾𝑜𝑤 (organic-water), and 𝛾𝑤𝑎 (water-air). The surface and interfacial
tensions (𝛾𝑜𝑎, 𝛾𝑜𝑤, 𝛾𝑤𝑎) were (i) (28.0, 8.8, 72.86) mN/m [198, 199], (ii) (28.0, 8.8, 44) mN/m,
(iii) (28.0, 8.8, 36.43) mN/m, (iv) (28.0, 8.8, 21.86) mN/m, (v) (36.43, 8.8, 44) mN/m, (vi) (44,
8.8, 44) mN/m, and (vii) (51, 8.8, 44) mN/m. The assumed volumes were 100 𝜇𝐿 (1-nonanol)
and 60 𝜇𝐿 (water), respectively. The inner and outer diameters of the hydrophilic surface
area are 14 mm and 18 mm, respectively. The first row shows a top view, the second row
shows a cross section and the third row highlights the cross section at the interface of
1‐nonanol and water.

(Fig. 7.2). Coupling the phase‐field model with an appropriate boundary condition at the wall can
capture the Young’s contact angle as well as the so‐called Neumann’s triangle at a multiple phase
junction via minimizing the total free energy of the system.A detailed description of the multiphase
AC type phase‐field model can be found in chapter 3, or the work from Ben Said et al. [52].

According to Neumann’s triangle rule, the formation of a stable three-phase contact line between
an organic liquid, water, and air, is possible if the sum of the surface tensions 𝛾𝑜𝑎 (organic liquid-air)
and 𝛾𝑜𝑤 (organic liquid-water) is greater than 𝛾𝑤𝑎 (water-air) [198]. It was hypothesized, that the
same requirement ( 𝛾𝑜𝑤 + 𝛾𝑜𝑎 > 𝛾𝑤𝑎) must be fulfilled to confine an organic liquid by a wall of
water. Since the surface tension of the water-air interface is high (𝛾𝑤𝑎 = 72.86 mN/m), this is the case
for n-hexadecane (𝛾𝑜𝑎 = 26.95 mN/m, 𝛾𝑜𝑤 = 55.3 mN/m) but not for 1-nonanol (𝛾𝑜𝑎 = 28.0 mN/m,
𝛾𝑜𝑤 = 8.8 mN/m) [199, 200, 201]. It was concluded that for solvents with low surface and interfacial
tensions such as 1-nonanol no stable contact line with water can be established and therefore the
confinement is not possible (Fig. 7.2(i)). However, if the Gibbs adsorption isotherm, i.e. the change
in surface tensions due to the partial solubility of water in 1-nonanol and vice versa (1.76 mol/L and
1.94 mmol/L, respectively) [202, 203] is considered, the phase-field model is able to predict a stable
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confinement as observed experimentally. According to Lee et al., the equilibrium surface tension for
the water-air interface is reduced from 72.86 to 44 mN/m under the reported experimental conditions
due to the dissolution of 1-nonanol in water [203]. Since the exact amount of 1‐nonanol dissolving
into the liquid wall is unknown and there is a paucity of literature for the Gibbs adsorption of water at
the 1‐nonanol–air interface, I considered a range of plausible values for 𝛾𝑜𝑎 and 𝛾𝑤𝑎 in the simulation.
The interfacial tension 𝛾𝑜𝑤 (1‐nonanol–water) was determined experimentally to be 8.8mN/m andwas
kept constant for all simulations, since it mutually considers the Gibbs adsorption. For 𝛾𝑜𝑤 + 𝛾𝑜𝑎 < 𝛾𝑤𝑎
no stable three-phase contact line can be established and 1-nonanol moves over the water wall (Fig.
7.2 (i) and (ii)). When the value of 𝛾𝑤𝑎 was reduced to 36.43 mN/m (Fig. 7.2 (iii)) and 21.86 mN/m (Fig.
7.2 (iv)), stable contact lines were observed. As the value 𝛾𝑤𝑎 reduces, the 1-nonanolwater interface
tilts inward, which is consistent with the experimental observation (Fig. 7.1B). When the value of
𝛾𝑜𝑎 is increased from 36.43 to 44 and 51 mN/m (Fig. 7.2 (v)-(vii)) while fixing the values of 𝛾𝑤𝑎 and
𝛾𝑜𝑤 (44 and 8.8 mN/m, respectively), stable contact lines also come into being and the 1-nonanol-
water interface is gradually tilted inward as well. The simulations based on the phase‐field model
confirmed the hypothesis, that formation of a stable three‐phase contact line and thus liquid wells are
possible if the condition 𝛾𝑜𝑤 + 𝛾𝑜𝑎 > 𝛾𝑤𝑎 met. When literature values for the surface and interfacial
tension (𝛾𝑜𝑤,𝛾𝑜𝑎) are contemplated, this is the case for n-hexadecane but not for 1-nonanol. However,
a variation in the surface tensions at the liquid-air interfaces because of the partial solubility of 1-
nonanol with water can enable a transition from an instable to a stable liquid well. This explanation
could be applied to other low surface tension liquids, such as toluene or n-octane, which fail to fulfill
the criterion 𝛾𝑜𝑤 + 𝛾𝑜𝑎 > 𝛾𝑤𝑎 but nevertheless can be contained by a water well [201]. Moreover, the
specific set of interfacial tensions (𝛾𝑜𝑤, 𝛾𝑜𝑎,𝛾𝑤𝑎) strongly influences the shape of the organic-water
interface, which is most likely the reason for the experimentally observed difference between the
shapes of the 1-nonanol-water and the n-hexadecane-water interfaces. The sets of surface tensions
(Fig. 7.2, iv) (𝛾𝑜𝑤, 𝛾𝑜𝑎,𝛾𝑤𝑎)=(28, 8.8, 21.86) mN/m and (Fig. 7.2, vii) (𝛾𝑜𝑤, 𝛾𝑜𝑎,𝛾𝑤𝑎)= (51, 8.8, 44) mN/m
are the most likely possible parameters to reproduce the stable triple junctions of water-1-nonanol-air
and water-1-nonanol-substrate, which were observed experimentally (Fig. 7.1B).

The influence of Gibbs adsorption on the interfacial tensions between different phases also ex-
plains the experimental observation that a droplet of 1-nonanol deposited on the water surface formed
a droplet instead of forming a wetting layer. A similar phenomenon was also reported for the forma-
tion of a liquid lens for the benzene-on-water system, where the water-air surface tension is reduced
from 72.8 mN/m to 62.4 mN/m due to the dissolution of benzene in water [204].

7.2. Multiphase droplets manipulation on solid substrate

Using the multiphase AC model, the movements of multiphase droplets (namely, droplets 1 and 2) on
a substrate is investigated. The substrate is designed to show different hydrophobicity for the multi-
phase droplets, as illustrated in Figure 7.3(A). Driven by the gradient of surface energy, the droplets
move from the hydrophobic area to the hydrophilic area. Figure 7.3(B) shows the time evolution of
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Figure 7.3.: (A) (i) and (ii) Schematic of surface hydrophobicity for droplets 1 and 2, respectively. From
yellow to red color, the surface become more and more hydrophilic. The arrays indicate
the direction of the surface energy gradient. (B) (i)-(iii) Time evolution of droplets 1 (bright
green) and 2 (dark green) on the substrate. (i) Initial states. (ii) The two droplets meet with
each other. (iii) Droplet collision and deformation. The interfacial tensions between each
two phases are the same, i.e. 𝛾12=𝛾1𝑎=𝛾2𝑎 (𝑎 stands for air) [205].

the two droplets. Droplet 1 moves along the 𝑦-direction, while droplet 2 moves along the diagonal
direction. The two droplets meet with each other and then collide and deform. This test case is to
show the capibility of the multiphase AC model for modeling the multiphase droplets movements on
a designed substrates, which may have potential applications in the lab on a chip system. Further vali-
dations and developments of this model need to be done to handle the fast movements under complex
conditions.

7.3. Summary and remarks

In this chapter, the Allen-Cahn-type multiphase phase-field model is applied to study the liquid-liquid
confinement and the slowmovement of multiphase droplets on a solid substrate. Similar to the former
chapter, the problems can be considered as an equilibrium or a quasi-equilibrium problem. The driving
force of the multiphase system is the minimizing of the free energy. For the liquid-liquid confinement
problem, I used several combinations for the values of the interfacial tensions to explore the influence
of Gibbs absorption on the change of interfacial tensions. However, to model the real Gibbs absorption
effect, I must introduce diffusion equations to the current model or tend to use amultiphase CHmodel.
This is one potential direction that I could further explore. Since I currently focus on the static states
of the liquid-liquid confinement and the slow movement of droplets on a substrate, it is reasonable to
regardless of the influence of the fluid flow. To further extend the capability of the phase-field model
to address the phenomenon with a strong convection effect, a couple with Navier-Stokes equations is
essential. The couple of two-phase CH equations with NS equations is presented in chapter 3, and the
validation of Cahn-Hilliard-Navier-Stokes (CHNS) equations will be discussed in chapter 9.
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surfaces

In chapters 4-7, chemically patterned substrates were considered, while this chapter investigates
droplets on mechanically heterogeneous surfaces. The aim is to contemplate how the topology of
the substrate influence the droplet wetting behaviors. In section 8.1 the AC model is validated for
modeling droplets in a wedge structure. In section 8.2, the criterion for droplet permeation in a pore
structure is studied in detail. At last, summaries and conclusions are provided in section 8.3. This
chapter has been submitted to Physical Review Letters.

8.1. Validation of the numerical model for droplet in a pore structure

Here, the capability of the model to simulate equilibrium states of droplets in a wedge is validated.
According to [206], regardless of the influence of gravity, the overall equilibrium shape of the droplet
in a wedge under the studied conditions is a truncated sphere, as confirmed by the experimental
snapshots in Fig 8.1b-d, where circular fits to the droplet profile are illustrated. Based on this concept,
the 2D droplet in the wedges with varying open angles and static contact angles is simulated. The
open angle 2𝜑 ranges from 26∘ to 37∘ and contact angle 𝜃 changes from 140∘ to 162∘, similar to the
setups of [206]. The droplet radius is also the same as the one in the paper of [206]. Initially, the
circled droplet is released to the 2D wedge and the droplet evolves to an equilibrium state. In Fig
8.1a, the distance 𝑥0 of the droplet center from the wedge apex as a function of the contact angle
𝜃 is plotted. The colored symbols indicate the simulation results for different setups of (𝜃, 2𝜑). The
dashed lines present the theoretical prediction based on the assumption that the equilibrated droplet
is a part of a circle. The inset illustrates the geometric parameters of the equilibrium state of the
droplet in a wedge. The points labeled by 𝑏, 𝑐, and 𝑑 correspond to the simulation snapshots, where
the droplet shapes also show a great agreement with the dashed circular fits. The good consistency of
the simulation results with the experiments and theoretical predictions reveals the capability of the
numerical model to simulate the wetting behavior in confined geometry. Thereafter the numerical
model is utilized to simulate the droplet movement in a funnel-like pore structure. As shown in Fig
8.2, the circled droplets are initially released in the left part of the pore and the inner wall is tangential
to the droplet profile. The open angle of the left part is 60∘ and the ratio of the initial droplet diameter
to the narrowest pore diameter is 𝐷/𝐿 = 3. Driven by the capillary force, the droplet spreads along
the channel wall and reaches an equilibrium state eventually. In (a) and (b) the contact angle is set as
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Figure 8.1.: Validation of phase-field method for modeling equilibrium state of droplets in a wedge.
(a)The distance 𝑥0 of the droplet center 𝑂 from the wedge apex as a function of contact an-
gle 𝜃. The simulated data points (colored symbols) show 2D-droplets with radius 𝑟 = 0.98
mm (the same size as the 4 𝜇𝐿-droplet in [206]) in three wedges with opening angles 2𝜑
ranging from 26∘ to 37∘. The black dashed lines are theoretical predictions in 2D, modified
from the 3D version in [206] (The 2D model: 𝑥0/𝑟 = √ 𝜋

−𝜋+2𝜃−sin2 𝜃
cos(𝜋−𝜃)

sin𝜑 ). The inset
denotes the schematic equilibrated droplet profile in a wedge with labeling geometric pa-
rameters. (b)-(c) Equilibrium droplet morphologies for open angles 2𝜑 = 37∘ and contact
angles 𝜃 = 140∘, 151∘, 162∘, respectively. Left: Experimental results from [206]; Right:
Present 2D-simulation results. The red dashed lines are circular fits of droplet profiles.

60∘, and 120∘, respectively. It is observed that the droplets in (a) with relative hydrophilic substrate
penetrate the right (narrow pore) part, while the droplet in (b) with hydrophobic substrate shows no
penetration. This reveals that wettability takes an important role in penetration. In the following,
how the wettability together with the other two parameters - the open angle and droplet size affect
the droplet penetration behavior in this confined geometry is comprehensively investigated.

Figure 8.2.: Droplet evolution with time in a funnel-like pore structure for different contact angles 𝜃.
(a) 𝜃 = 60∘, (b) 𝜃 = 120∘. The open angle for the structure are 2𝜑 = 60∘. The ratio of the
droplet diameter to the tunnel diameter 𝐷/𝐿 is set as 3.
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8.2. Analysis of the criterion for droplet permeation in a pore structure

8.2.1. Analytical model

To theoretically determine whether the penetration happen, I need to specify the parameterisation
for the geometry of the droplet, as illustrated in Fig. 8.3. I propose two models to predict the droplet
penetration behavior. Model 1 is a simplified model and it is described with the schematics (a) and
(b). I assume that the critical state of the equilibrium droplet is either a part of circle (situation (a)), or
just a whole circle (situation (b)) with curvature radius 𝑅. In (a), the circle with solid line depicts the
initial state of the droplet. Because of the volume preservation, I have:

𝑆𝐼 − 2𝑆𝐼𝐼 = 𝜋𝐷2/4. (8.1)

Here, 𝑆𝐼 is the area of the dashed circle and 𝑆𝐼𝐼 denotes the area of the arch 𝑀𝑁 confined by the
angle ∠𝑀𝑂𝑁 . Then I have

𝑅2(2𝜃 − 𝑠𝑖𝑛(2𝜃) − 𝜋) = 𝜋𝐷2/4. (8.2)

To meet with the wetting boundary condition in the narrow pore, i.e. 𝑅 = 0.5𝐿/ cos(𝜋 − 𝜃), I obtain

𝐷
𝐿 = √2𝜃 − 𝑠𝑖𝑛(2𝜃) − 𝜋

𝜋 cos2 𝜃 , (8.3)

which is independent of 𝜑. This model is only valid when 𝐷/𝐿 >> 1 with a very small open angle,
otherwise the droplet deviates largely from a part of spherical shape. Actually, this equation precisely
describe the droplet in a straight tube and the equilibrium shape is part of a circle (i.e. 𝜑 = 0 in Fig.
8.3(a)). However, for large open angle (e.g. 𝜑 > 90∘), if I only consider the spreading inside the pore,
I could directly obtain the classic equation for the droplet adsorption criterion, as displayed in Fig.
8.3(b):

𝐷
𝐿 = − 1

cos 𝜃 . (8.4)

The difference between Eq. 8.3 and Eq. 8.4 is due to the influence of the side walls out of the
narrow part of the pore. I ambiguously divide the model 1 into two parts namely, model 1a for 𝜑 ∈
[0,𝜋/2) and model 1b for 𝜑 ∈ [𝜋/2, 𝜋].

In model 2, I propose a more accurate model to address the influence of the open angle, as pre-
sented in Fig. 8.3(c) for 𝜑 ∈ [0,𝜋/2] and (d) for 𝜑 ∈ [𝜋/2, 𝜋], respectively. The green color highlights
the critical droplet shape and the red and blue dashed circles fit the droplet profiles in the two sides,
showing that the droplet has the same curvature in the both sides. The derivation of model 2 is as
follows:

When 𝜑 ∈ (0,𝜋/2] (see Fig. 8.3(c)),

𝑆𝐼𝐼𝐼 + 𝑆𝐼𝑉 + 𝑆𝑉 = 𝜋𝐷2/4. (8.5)

Here, 𝑆𝐼𝐼𝐼 , 𝑆𝐼𝑉 , and 𝑆𝑉 are the surface areas for the arch 𝑀1𝑀2 confined by ∠𝑀1𝑂2𝑀2, the arch
𝑁1𝑁2 confined by ∠𝑁1𝑂1𝑁2, and the trapezoid 𝑀1𝑀2𝑁1𝑁2, respectively. thus I have 𝑆𝐼𝐼𝐼 =
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Figure 8.3.: Schematic of droplet penetration into pore structures. In (a), (c) and (d) the pore has an
open angle 2𝜑 with narrowest pore diameter 𝐿. (a) The circle with black solid line depicts
the initial state and the droplet with fitted red dashed circle approximately corresponds to
a critical state that the droplet cannot totally penetrate into the narrow part. The initial
droplet diameter is 𝐷. Here, I assume 𝐷 >> 𝐿 and 𝜑 is very small. The red fitted circle
centering at 𝑂 has a radius 𝑅 and intersects with the substrate at the points 𝑀 and 𝑁 .
𝑁 is exactly on the funnel throat. The dot dashed line goes through the point 𝑂 and the
open angle apex 𝐴. The black dashed line through 𝑀 is the tangent line of the red circle
and thus 𝜃 represents the contact angle. The line 𝑂𝑃 is normal to the substrate surface.
(b) Regardless of open angle and droplet spreading takes place only inside the pore with
diameter 𝐿. In (c) and (d), the green color indicates exactly the critical droplet shape that
are not able to totally penetrate into the narrow part. The red and blue dashed circles with
radii 𝑅 fit the droplet profiles in the left and right sides, respectively. 𝑀1, 𝑀2, 𝑁1, 𝑁2 are
contact points of the three phases. (c): 𝜑 ∈ (0,𝜋/2]. (d): 𝜑 ∈ [𝜋/2, 𝜋]. 𝜃1 = ∠𝑂1𝑁1𝑁2,
𝜃2 = ∠𝑂2𝑀1𝑀2.
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𝑅2(𝜋/2 − 𝜃1 − sin 𝜃1 cos 𝜃1), 𝑆𝐼𝑉 = 𝑅2(𝜋/2 − 𝜃2 − sin 𝜃2 cos 𝜃2), and 𝑆𝑉 = 0.5(𝐿 + 2𝑅 cos 𝜃2)𝐻 .
Here, 𝐻 = (𝑅 cos 𝜃2 − 0.5𝐿)/ tan(𝜑) is the height of the trapezoid 𝑀1𝑀2𝑁1𝑁2. Then I obtain:

(𝑅/𝐿)2(𝜋 − 𝜃1 − 𝜃2 − 0.5 sin 2𝜃1 − 0.5 sin 2𝜃2 + cos2 𝜃2 cot𝜑) − 0.25 cot𝜑 = 𝜋(𝐷/𝐿)2/4. (8.6)

with 𝑅 = 0.5𝐿/ cos(𝜋 − 𝜃), 𝜃1 = 𝜋 − 𝜃, and 𝜃2 = 𝜋 − 𝜃 − 𝜑, I have at last

𝐷
𝐿 = √−𝜋 + 2𝜃 + 𝜑 + 0.5[sin(2𝜃 + 2𝜑) + sin 2𝜃] + 0.5 cot𝜑[cos(2𝜃 + 2𝜑) − cos 2𝜃]

𝜋 cos2 𝜃 . (8.7)

When 𝜑 ∈ [𝜋/2, 𝜋] (see Fig. 8.3(d)),

𝑆𝐼𝐼𝐼 + 𝑆𝐼𝑉 − 𝑆𝑉 = 𝜋𝐷2/4. (8.8)

In this case, 𝑆𝐼𝐼𝐼 and 𝑆𝑉 have the same formulations as above, while 𝑆𝑉 is expressed as 𝑆𝐼𝑉 =
𝑅2(𝜋/2 + 𝜃2 + sin 𝜃2 cos 𝜃2) with 𝜃2 = −𝜋 + 𝜃 + 𝜑. The height of the trapezoid 𝑀1𝑀2𝑁1𝑁2
becomes 𝐻 = (𝑅 cos 𝜃2 − 0.5𝐿)/ tan(𝜋 − 𝜑). From Eq. 8.8, I could finally obtain:

𝐷
𝐿 = √−𝜋 + 2𝜃 + 𝜑 + 0.5[sin(2𝜃 + 2𝜑) + sin 2𝜃] + 0.5 cot(𝜑)[cos(2𝜃 + 2𝜑) − cos 2𝜃]

𝜋 cos2 𝜃 . (8.9)

which is exactly the same as the situation for 𝜑 ∈ (0,𝜋/2]. In particular, when 𝐷/𝐿 = sin−1(𝜋/2 −
𝜑/2) = cos−1(𝜋 −𝜃), the red and blue dashed circles in Fig. 8.3(c)(d) coincide with each other, i.e. 𝑀𝑖
and 𝑁𝑖 (𝑖 = 1, 2) coincide with each other. This droplet state is also the same as in Fig. 8.3(b). In the
following I call this state as a transition state with (𝜑 = 𝜑𝑡, 𝜃 = 𝜃𝑡). (𝜑𝑡, 𝜃𝑡) obeys the linear relation:

𝜑𝑡/2 + 𝜃𝑡 = 𝜋. (8.10)

Note that Eq. 8.9 is valid for 𝐻 ≥ 0, i.e. 𝜃 ≤ 𝜃𝑡 or 𝜑 ≤ 𝜑𝑡.
Specially, when 𝜑 = 0, the droplet will form a symmetric liquid bridge for each 𝐷/𝐿:

𝐷
𝐿 = √−𝜋 + 2𝜃 + sin(2𝜃) + 4(𝐻/𝐿) cos2 𝜃

𝜋 cos2 𝜃 . (8.11)

when 𝐻 = 𝐿 tan(𝜋 − 𝜃), the droplet is part of a circle, then

𝐷
𝐿 = √−𝜋 + 2𝜃 − sin(2𝜃)

𝜋 cos2 𝜃 , (8.12)

which is exactly the same as model 1b. When 0 < 𝐻 < 𝐿 tan(𝜋 − 𝜃) and 𝐻 > 𝐿 tan(𝜋 − 𝜃), the
droplet shapes are symmetric but not a part of circle. This is out of the scope of the current work and
will not be further discussed.

8.2.2. Analysis of the droplet penetration behavior

In this part, I use the numerical model and analytical model described above to investigate the droplet
penetration behavior in pore structures. I analyze the influence of the open angle, contact angle and
droplet size to the droplet final state. Droplets are initially put on the left part and contact the the
substrate. I systematically change the open angle and contact angle and observe the final states of
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the droplets. Fig. 8.4(a) shows the simulation snapshots for the final states of droplets in the size of
𝐷/𝐿 = 3 for different contact angles and open angles. In Fig. 8.4(b), I plot the penetration states
for the simulations in the range for 𝜑 ∈ [10∘, 150∘] and 𝜃 ∈ [80∘, 140∘]. The squares and triangles
indicate the states of penetration and no penetration, respectively. Additionally, I plot the theoretical
predictions of the critical states of droplets using model 1 and model 2 with dot dashed line and solid

Figure 8.4.: Regime diagrams for the droplet final states in pore structures with varying 𝜑 and 𝜃. (a)
Simulation snapshots for final states of droplets (𝐷/𝐿 = 3) with varying 𝜑 and 𝜃. (b)
Regime diagram for the penetration states of the droplet with 𝐷/𝐿 = 3. Blue squares:
totally penetration into the narrow part; Red triangles: no penetration. I plot the critical
lines predicted by model 1 (dot dashed line divided by the gray dashed line. Top: model
1b; Bottom: model 1a) and model 2 (solid line). In (c), I vary 𝐷/𝐿 from 1 to 5 and plot
the corresponding critical lines (highlighted with different colors) predicted by model 1
and model 2. The colored rhombus points are intersections of model 1 and 2 and the black
dashed line described by Eq. 8.10 going through these points denotes the upper limit
of model 2. The circle points with error bars indicate the simulation confirmed critical
penetration states.
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line, respectively. The model 2 is excellently consistent with the simulation confirmed boundary in
the range for 𝜑 ∈ [10∘, 140∘]. As expected, model 1 shows very good agreement for the range of
𝜑 > 140∘ and 𝜑 < 20∘. It is further observed that, for a certain open angle, large contact angle tend to
prevent the penetration. Whereas for a certain intermediate contact angle, large open angle facilitate
the penetration. Moreover, for the hydrophilic regime with 𝜑 ≤ 96∘ (or the hydrophobic regime with
𝜑 ≥ 110∘) the droplet will always (never) penetrate the narrow part of the pore, independent of the
open angles.

Similar to the Fig. 8.4(b), in Fig. 8.4(c), I very the droplet size from 𝐷/𝐿 = 1 to 𝐷/𝐿 = 5
and draw the corresponding critical lines predicted by model 1 and 2 with dot dashed and solid lines,
respectively. The colored circle points with error bars indicate the simulation confirmed critical states.
The intersections between model 1 and model 2 are illustrated with the rhombus points and the black
dashed line described by Eq. 8.10 going these points divides the whole region into two regimes,
namely the gray zone and the white zone. It is found that the simulation results coincide excellently
with model 1b in the gray zone and the model 2 in the white zone. This implies that the droplets in the
gray zone don’t spread onto the slop surface in the outside of the pore. As can be found in Fig. 8.4(a),
the droplet is of a circular shape for the condition (𝜃 = 120∘, 𝜑 = 150∘), which is rather consistent
with the situation for Fig 8.3(b) but not Fig 8.3(d).

For a certain sized droplet, the critical contact angle increases with the open angle until a certain
value 𝜑𝑡 is achieved. Above this value, the critical contact angle will no longer change. These transi-
tion points (𝜃𝑡,𝜑𝑡) are just the intersections between model 1b and model 2. It is also noted that both
𝜃𝑡 and 𝜑𝑡 increase with the droplet size, showing that large droplets tend to be affected in a wider
range of open angles and narrower range of contact angles than the small droplet. Moreover, the
critical lines become more and more steep as the droplet size enlarged, which reveals that the changes
in open angle have more profound impact on the smaller droplets. Furthermore, it is noted that model
1a shows good agreement for large droplets (e.g. 𝐷/𝐿 =3 or 5) with lower open angles (e.g. 𝜃 < 20∘).
Interestingly, as the droplet size increases, model 1 and model 2 tend to show smaller deviation. It is
to be expected, when 𝐷/𝐿 >> 1, the curvature is not largely affected by the open angle anymore. In
this case, the critical contact angle asymptotically approaches 90∘. This explains the classic conclusion
in the textbook why large droplets cannot spontaneously penetrate non-wetting capillaries.

In Fig. 8.5(a)-(c), I keep the open angle constant (𝜑 = 30∘) and show the combined influence of
the droplet size and contact angle. In (a) and (b) I illustrate the simulation snapshots of the droplet final
states for varying contact angles and droplet sizes, respectively. In Fig. 8.5(c) I display the penetration
states of the simulation results in the range for 𝐷/𝐿 ∈ [1, 4.2] and 𝜃 ∈ [40∘, 150∘]. Moreover, I
plot the theoretical predictions of model 1a and model 2, showing a very good agreement with the
simulated regime boundary. Note that model 2 is more precise and model 1a overestimates the critical
contact angle for small droplet (𝐷/𝐿 < 2). I observe that for a certain sized droplet, smaller contact
angles facilitate the penetration and for a certain hydrophobic contact angle, small droplets are prone
to penetrate the narrow part of the pore. Especially, for the hydrophilic region (𝜑 ≤ 90∘), no matter
how large the droplet is, penetration is inevitable. In Fig. 8.5(d) I draw the model 2 predicted critical
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lines for a series of open angles. All the critical lines show the same tendency, and the critical contact
angle increases with the decreasing droplet size. I find that smaller droplets are more sensitive to the
change in the open angle, while large droplets are more robust to the influence of the open angle.
All the critical lines are asymptotically approaching 90∘ as the droplet become extremely large. It is
found that large open angle drives the critical line upwards, showing that large open angle favors the
penetration of the droplet. In particular, for a very small open angle (e.g 𝜑 = 10∘), the critical line
intersects with the line 𝐷/𝐿 = 1 (dashed line) around 𝜃 = 145∘, revealing that the pore with very low
open angle and superhydrophobic substrate could be able to even prevent the penetration of droplets
with 𝐷/𝐿 < 1 (see the inset in Fig. 8.5(d)). This finding may have potential applications in filter
systems, e.g. surgical mask for preventing tiny droplets.

Figure 8.5.: Regime diagram for droplet final states in pore structures with different 𝐷/𝐿 and 𝜃. The
half open angle is kept constant with 𝜑 = 30∘ in (a)-(c). (a) Droplet final states influenced
by the contact angle 𝜃. (b) Droplet final states influenced by the droplet size 𝐷/𝐿. In (c)
the blue squares and red triangles indicate whether droplet penetration happens or not.
The solid and dot dashed lines describe the theoretical predictions with model 1a and 2,
respectively. In (d) I vary 𝜑 from 10∘ to 150∘ (highlighted with different colors) and plot
the predictions with model 2. The inset displays a zoom of the diagram in the range of
𝜃 ∈ [130∘, 150∘].
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8.3. Summaries and conclusions

The droplet penetration behavior into a pore structure is investigated for a wide range of droplet
sizes, contact angles and open angles by using phase-field simulations and theoretical analysis. Based
on the geometric analysis of droplet shapes and the pore structures, I proposed a simplified model
(model 1a for small 𝜑 and model 1b for large 𝜑) and a precise model (model 2, valid for 𝜑 ≤ 𝜑𝑡).
Through comprehensive simulations, regimemaps on penetration versus no penetration are provided.
The simulated regime boundaries show excellent agreements with the proposed theoretical models.
Overall, for a certain sized droplet, the critical contact angle increases with the open angle. However,
there exists a certain value of the open angle (2𝜑𝑡), above which the critical contact angle keeps
constant. Thus the model 1b is valid for the situation of 𝜑 ≥ 𝜑𝑡. Furthermore, for a certain open
angle, the critical contact angle increases with the decreasing droplet size and smaller droplet tend to
be sensitive to the influence of the open angle. To sumup, our findings demonstrate that the curvatures
outwards and inwards and the wettability of the substrate accurately control the droplet penetration
behavior, in consistency with the Young-Laplace law and the Young’s law. The thorough study of the
combined influence of the open angle, droplet size and contact angle to the droplet penetration paves
a novel way to better understand wetting behaviors in a pore structure. And our observations may
provide essential guidelines for the applications including the design of microfluidcs, filter system for
preventing droplets, drainage system, oil recovery system, and so on.
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9. Droplet dynamics on solid heterogeneous

surfaces

In chapters 4-8, static or quasi-static problems were discussed and as a gradient descent method, the
AC model is very efficient to deal with these problems. However, this chapter focuses on dynamic
problems such as the dewetting and breakup processes. In this case, the naturally conserved model
CH model coupled with NS equations (i.e. CHNS model) should be used. In sections 9.1-9.3 the CHNS
model is validated for modeling the fast spreading of droplets, droplet impacting on mechanically
and chemically heterogeneous substrates. In section 9.4, the CHNS model is applied to address thin
liquid film dewetting on chemically patterned substrates. This chapter has not been submitted to any
peer-reviewed journals.

9.1. Validation of the CHNSmodel for fast spreading on homogeneous

surfaces

In this section, the capability of the CHNS model is validated for simulating the fast spreading of the
droplet on homogeneous surfaces. The simulation setups are according to the experiment work from
Bird et al. [80]. They released water droplets with radius 𝑅 = 0.82mm on four different substrates
(𝜃𝑒𝑞=3∘, 43∘, 117∘, 180∘) to see how the surface chemistry affects the shape of the droplet as it spreads.
The early stages of the droplet spreading were concerned, as illustrated in Fig. 9.1(a) (left part), the
evolution of droplet shapes on the four different substrates are distinguished. Accordingly, I run the
corresponding simulations under the same conditions to reproduce the experimental results (9.1(a)
(right part)). The dynamic contact angle 𝜃𝐷 < 90∘ is immediately formed for the superhydrophilic
surface with 𝜃𝑒𝑞 = 3∘, while it maintains greater than 90∘ (𝜃𝐷 > 90∘) for the case 𝜃𝑒𝑞 = 117∘. For the
case of 𝜃𝑒𝑞 = 43∘, 𝜃𝐷 undergoes a transition to 90∘. As a reference case with 𝜃𝑒𝑞 = 180∘, the droplet
keeps the nonwetting spherical shape all the time. The generation of capillary waves is perfectly
reproduced for the cases of the partial wetting in the simulations. In addition, in 9.1(b), I compare
the time evolution of the droplet base radii for the three partial wetting cases, where the simulation
results (solid lines) agree very well with the experiments (symbols). Note that, in the simulations I
introduce the time relaxation parameter 𝜏𝑤 in the boundary condition to have a better fitting. I choose
the non-dimensional values of 𝜏𝑤 = 1500, 2600, 1, and 1 for the cases (i)-(iv). For the details of the
nondimensionalization, please tend to chapter 3, and here I only list the reference values in Table 9.1.
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Figure 9.1.: Comparison of droplet shape evolution on different substrates. (a) Snapshots of droplet
shapes. Left: Experiments from [80]. Right: Present simulations. From (i) to (iv) the equi-
librium contact angle 𝜃𝑒𝑞=3∘, 43∘, 117∘, 180∘. (b) Comparison of base radius evolution with
time. The symbols and solid lines denote experimental results from [80] and simulation
results, respectively.

The simulation setups for the following two validation cases in sections 9.2 and 9.3 are also according
the reference values listed in table 9.1.

Table 9.1.: Reference values for nondimensionalization.

Reference values Value Unit

Length 𝑥∗ 2 ⋅ 10−5 [m]
Viscosity 𝜈∗ 1.0 ⋅ 10−3 [ 𝑘𝑔

𝑚𝑠 ]
Surface tension 𝜎∗ 7.28 ⋅ 10−2 [ 𝑘𝑔

𝑠2 ]

9.2. Validation of the CHNSmodel for droplet dynamics on

mechanically heterogeneous surfaces

In this section, the CHNS model is further validated to simulate the droplet impacting process on
a flat superhydrophobic substrate with point-like superhydrophobic macrotextures. The point-like
macrotexture makes the impacting droplets rebound as rings, reducing the contact time with the
substrate. Fig. 9.2 shows the comparison of the experimental result (top row) from [207] and the
present simulation result (bottom row). The droplet spreads quickly to form a pancake shape and

108



9.3. Validation of the CHNS model for droplet dynamics on chemically patterned surface

Figure 9.2.: Snapshots of a water droplet with radius 𝑅 = 1.6 mm impacting the point-like defect on a
superhydrophobic substrate at the velocity 𝑢 = 1.2 m/s (centered impact). Top: Experiment
from [207]. Bottom: Present simulation. The contact angle in the simulation is set as
𝜃 = 160∘.

then the droplet center is punctured by the point-like defect. The thin film in the center spreads
outwards and comes across the retreating rim, leading to the rebound of the droplet in a ring shape.
The simulation perfectly reproduces the impacting process and shows great consistency both in the
shape evolution and timescale.

In Fig. 9.3 the high-angle views and cross-sections of the droplet impacting process is displayed
to show the ring formation (at 𝑡 = 3.7 ms), the collision between opposite rims (at 𝑡 = 6.1 ms) and the
rebound (at 𝑡 = 6.7 ms). In this simulation, droplet with radius 𝑅=1.3 mm and impact velocity 𝑢 = 1.28
m/s was considered. The top and bottom panels are the LB simulation from [207] and the present PF
simulation, where excellent agreement is observed.

The excellent consistency between the present PF simulation and the experiment and simulation
of Chantelot et al. [207] demonstrates the robustness and justifiability of the CHNS model.

9.3. Validation of the CHNSmodel for droplet dynamics on chemically

patterned surface

The CHNS model is further validated by comparing the experimental work of Song et al. [208], in
which the water droplet impacting on a superhydrophobic stripe coated hydrophilic surface was con-
sidered. In Fig. 9.4, the droplet impact process and the shape evolution with time are illustrated. The
top panel (a) and (b) are sides and top views for the present simulation. As a reference, the bottom
panel (c) and (d) denote the experimental results from [208]. It is observed that the spreading is inhib-
ited along the direction of the superhydrophobic stripe in the early stage (from 𝑡 = 0 ms to 𝑡 = 4.4
ms), whereas in the last stage, the droplet retracts rapidly on the superhydrophobic stripe. This leads
to the splitting of the droplet into two parts. The PF simulation precisely captures the character of the
droplet evolution and the timescale also shows an excellent agreement.

109



9. Droplet dynamics on solid heterogeneous surfaces

Figure 9.3.: Simulation of a droplet (𝑅 = 1.3 mm) impacting at (𝑢 = 1.28 m/s) a substrate textured by
a sphere with radius 𝑟 = 0.2 mm. Top panel: Lattice-Boltzmann simulation from [207].
Bottom panel: Present phase-field simulation. For each panel high-angle views and cross-
sections are shown in the first and second rows respectively.

9.4. Analysis of thin liquid film dewetting on chemically patterned

surfaces

After the validation of the CHNS model, the model is applied to simulate the thin-film dewetting
process on chemically patterned surfaces.

As illustrated in the Fig. 9.5 (a) and (b), the thin-films are initially placed on a two-lattice-patterned
and a four-lattice-patterned surfaces, respectively. 𝜃𝑝ℎ𝑖 represents the contact angle of the hydrophilic
areas (blue), and it keeps constant as 20∘. 𝜃𝑝ℎ𝑜 denotes the contact angle of the hydrophobic area (red)
and it is changed among the following values: 60∘, 90∘, 120∘, 160∘. 𝐵 represents thewhole width of the
two neighbouring hydrophilic lattices and the hydrophobic area between them, i.e., 𝐵 = 2𝐵𝑝ℎ𝑖+𝐵𝑝ℎ𝑜.
For the two-lattice-patterned surface, 𝐵𝑝ℎ𝑖 = 100 and 𝐵𝑝ℎ𝑜 = 50. 𝐿 = 400 denotes the length of
the hydrophilic pattern. For the four-lattice-patterned surface, 𝐵𝑝ℎ𝑖 = 100 and 𝐵𝑝ℎ𝑜 = 25. 𝐻0 is the
initial height of the thin liquid film.

In the presented study, the influence of two factors on the breakup behavior of the liquid film
is investigated, namely, (i) the difference of the contact angles in the hydrophilic and hydrophobic
areas 𝛥𝜃; (ii) the thickness of the liquid film 𝐻0. Therefore, in the following, these two parameters
are systematically changed.

In Fig. 9.6, I display the evolution of liquid films with varying 𝜃𝑝ℎ𝑜. From (a) to (d), as 𝜃𝑝ℎ𝑜
increases, the thin-film retracts more and more quickly. In (a) 𝜃𝑝ℎ𝑜 or 𝛥𝜃 is not high enough to make
the thin-film breakup, while in (b)-(c), the thin-film breaks up and generates a satellite droplet on the
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Figure 9.4.: Impinging processes of droplets with diameter 3.1 mm on the superhydrophobic stripe
coated hydrophilic surface. The impact velocity is 𝑢=0.97 m/s. The contact angles on
hydrophilic and hydrophobic areas are 𝜃𝑝ℎ𝑖 = 50∘, 𝜃𝑝ℎ𝑜 = 165∘, respectively. (a) and (b)
Side and top views for present simulation. (c) and (d) Side and top views for the experiment
from [208].

hydrophobic area. Interestingly, larger 𝜃𝑝ℎ𝑜 𝛥𝜃 leads to a larger satellite droplet and it is observed in
(d) that the satellite droplet even rebounds from the substrate eventually.

To have better control of the generation of the satellite droplet, I turn to the four-lattice-patterned
surface. In Fig. 9.7(a)-(d), I also change 𝜃𝑝ℎ𝑜 from 60∘ to 160∘, similar to the setups of the two-lattice-
patterned surface discussed above. In (a), low value of 𝜃𝑝ℎ𝑜 cannot generate the satellite droplet,
whereas in (b)-(d), the high value of 𝜃𝑝ℎ𝑜 facilities the formation of the satellite droplet and in (d) it
even causes the rebound of the satellite droplet. What is different from the situation of the two-lattice-
patterned surface is that the size of the satellite droplet is independent of 𝜃𝑝ℎ𝑜. This finding reveals
that the size of the satellite droplet is controllable through an elaborate design of the lattice pattern.

I now take a close look at the detailed dynamic process of the dewetting processes. Fig. 9.8(a) and
(b) present the relative width 𝑊/𝑊0 of the liquid bridges caused by the dewetting on the hydrophobic
area of the two-lattice-patterned and the two-lattice-patterned surfaces, respectively. The insets show
how the width 𝑊 of the liquid bridge is measured, and 𝑊0 is the initial width of the liquid bridge
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Figure 9.5.: Simulation parameters of the liquid film on chemically patterned surfaces. (a) Two-lattice-
patterned substrate. (b) Four-lattice-patterned substrate. 𝜃𝑝ℎ𝑖 represents the contact angle
of the hydrophilic area (blue), and it keeps constant 𝜃𝑝ℎ𝑖 = 20∘. 𝜃𝑝ℎ𝑜 denotes the con-
tact angle of the hydrophobic area (red) and it varies from 60∘ to 160∘. 𝐻0 represents
the initial height of the liquid film. 𝐿 denotes the length of the hydrophilic pattern on
the two-lattice-patterned surface. 𝐵 represents the whole width of the two neighboring
hydrophilic lattices and the hydrophobic area between them, i.e., 𝐵 = 2𝐵𝑝ℎ𝑖 + 𝐵𝑝ℎ𝑜.

in the direction of the measurement (dashed lines in the insets). The colored solid lines represent
the time evolution of 𝑊/𝑊0 for different setups of 𝜃𝑝ℎ𝑜. It is observed that these lines firstly decline
quickly and then they are convergent to certain values except for the green lines (𝜃𝑝ℎ𝑜 = 160∘), which
rapidly go to zero, corresponding to the situation of the rebound of the satellite droplet. The red lines
((𝜃𝑝ℎ𝑜 = 60∘)) are convergent to a high value of 𝑊/𝑊0, since the thin-films don’t break up and form
a stable single large droplet (see Fig. 9.6(a)(iv) and Fig. 9.7(a)(iv)). The black and blue lines in Fig. 9.8(a)
(𝜃𝑝ℎ𝑜 = 90∘, 𝜃𝑝ℎ𝑜 = 120∘) slowly approach zero is because the generated satellite droplets are so small
that the base radii of them are hard to be captured on the hydrophobic area.

Finally, the influence of the initial height of the thin-film on the breakup behavior is investigated.
In Fig. 9.9(a)-(d), I vary the initial height 𝐻0 from 10 to 20, 30, and 40. It is found that the low value
of the initial height 𝐻0 (𝐻0=10, 20) result in the breakup while high values (𝐻0=30, 40) lead to stable
single droplets. Moreover, the thin-films with lower heights tend to generate a satellite droplet during
the breakups. These findings can be confirmed by the diagrams (e) and (f), where I plot the time
evolutions for the relative width 𝑊/𝑊0 and the relative height 𝐻/𝐻0 under different initial heights
𝐻0. The red and blue lines in (e) (𝐻0=10, 20) rapidly go down to zero, showing that the dewetting
causes the breakups. The breakups lead to the generation and rebound of the satellite droplets and
the tiny satellite droplets will disappear because of the curvature effect in the PF model. This explains
why the red and blue lines in (f) increase sharply and then go down promptly. The black and green
lines (𝐻0=30, 40) in (e) and (f) both are convergent to stable values, showing that stable single droplets
come into being.
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Figure 9.6.: Simulation results for the evolution of the liquid film with 𝐻0=10 placed on the stripe
patterned substrate. From (a) to (d) the hydrophobic contact angles 𝜃𝑝ℎ𝑜 are 60∘, 90∘, 120∘,
and 160∘ respectively, while 𝜃𝑝ℎ𝑖 =20∘ keeps constant [209].

9.5. Summary

In this chapter, the CHNSmodel is firstly validated to simulate the fast spreading dynamics of droplets
on homogeneous substrates influenced by the wettability, the droplet impact process on a flat su-
perhydrophobic substrate with point-like superhydrophobic macrotextures, and the droplet splitting
process on a superhydrophobic stripe coated hydrophilic surface. PF simulations show excellent agree-
ments with the results from the literature. After the validations, the model was applied to analyze the
thin-film dewetting process on chemically patterned surfaces. Here, the two-lattice-patterned surface
and four-lattice-patterned surface were considered. I systematically investigated the influence of the
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Figure 9.7.: Simulation results of liquid filmwith𝐻0=10 placed on the lattice patterned substrate. From
(a) to (d) the hydrophobic contact angles 𝜃𝑝ℎ𝑜 are 60∘, 90∘, 120∘, and 160∘ respectively,
while 𝜃𝑝ℎ𝑖 =20∘ keeps constant [209].

Figure 9.8.: The relative width 𝑊/𝑊0 of the liquid bridge as a function of time. 𝑊0 is the initial width
of the liquid film along the measure lines in the insets. (a) On the two-lattice-patterned
substrate, 𝑊0 = 𝐿 = 400. (b) On the four-lattice-patterned substrate, 𝑊0 = 𝐵 = 250.
The colored solid lines denote the simulations with different values of 𝜃𝑝ℎ𝑜. 𝜃𝑝ℎ𝑖 =20∘

keeps constant for all simulations [209].
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Figure 9.9.: (a)- (d) Simulation results for the evolution of the liquid film with 𝐻0=10, 20, 30, 40,
respectively. The liquid films are placed on the stripe patterned substrate with 𝜃𝑝ℎ𝑖 =60∘

and 𝜃𝑝ℎ𝑜 = 160∘. The relative width 𝑊/𝑊0 and relative height 𝐻/𝐻0 of the liquid bridge
as functions of time are shown in (e) and (f), respectively. The colored solid lines denote
the simulations with different initial heights 𝐻0. The insets illustrate how the width and
height are measured [209].

contact angles on the hydrophobic area 𝜃𝑝ℎ𝑜, the initial height 𝐻0 of the thin-film to the breakup
behaviors. Interestingly, I have also found the formation of the satellite droplet caused by the thin-
film breakups, which is closely related to 𝜃𝑝ℎ𝑜 and 𝐻0, and the pattern distribution. However, due
to the limit of contents in the present thesis, some important parameters such as the pattern size and
distance, the physical properties including viscosity, surface tension, etc, have not been examined.
A thorough study of these parameters is essential. Another direction that is worth exploring is the
introduction of complex chemical patterns to have better control of the satellite droplets formation,
which has potential applications in the fields of microfluidics, electronic devices, and smart printing.

115





Part V.

Conclusion and outlook

117





10. Conclusion and outlook

10.1. Conclusion and remarks

In this dissertation, droplet wetting behaviors on chemically and mechanically structured surfaces
have been addressed by using two types of phase-field models, namely the AC model and the CH
model. For the investigation of equilibrium or quasi-equilibrium problems, the ACmodel was utilized.
While for the study of droplet dynamic problems the CH model was adopted. Both of the phase-field
models have been immensely validated against the results from the literature, showing the strong
robustness of the phase-field models.

For the equilibriumor quasi-equilibriumproblems, themorphological transition of a single droplet
on chemically striped substrates was first contemplated. It is found that the droplet shapes and the
number of equilibrium shapes both are enormously influenced by the scaled stripe width and droplet
positions. The validity of a reported analytical model [170] describing the functional relationship be-
tween the droplet aspect ratio and the directional contact angles has been extended to the situation
where the droplet size is comparable to the stripe width. Moreover, it was proved that different droplet
shapes can be obtained via different moving paths, showing a typical hysteresis phenomenon. The
findings may have potential application in the fields of inkjet printing, biologics, and microfluidics,
where a fine control of droplet shape is necessary.

Given the existence of multiple equilibrium shapes for a certain-sized droplet on chemically
patterned surfaces, then here comes an open question: Can we theoretically predict different equi-
librium shapes of droplets on chemically patterned substrates? To answer this question, a concise
mathematical-physical model was established to describe the droplet configurations on three chemi-
cally patterned surfaces. In this analytical model, it is assumed that at equilibrium, the droplet baseline
forms an ellipse with semi-axes 𝑎 and 𝑏 and the liquid-gas interface is described with circular arcs.
Based on this geometric assumption, it can be proved that the surface energy 𝐸 of the droplet on a
certain position has only two degrees of freedom, i.e. 𝐸 = 𝐸(𝑎, 𝑏). By minimizing the surface en-
ergy in terms of 𝑎 and 𝑏, the different equilibrium shapes of droplets can be predicted via the local
energy minima in the energy map 𝐸(𝑎, 𝑏). The proposed energy map method was corroborated by
the phase-field simulations.

Thereafter, the energy map method was further generalized to scrutinize droplets on chemically
patterned surfaces with various characteristic lengths, contact angles, and ratios of the hydrophilic
area to the hydrophobic one. Additionally, amodified Cassie-Baxtermodel was proposed to predict the
equilibrium droplet shapes which are not necessarily in the shape of a spherical cap. The generalized
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energy map method has been confirmed by the phase-field simulations. The proposed energy map
method and modified Cassie-Baxter model are able to address the anisotropic wetting problems where
the droplet size is comparable to the surface heterogeneity, which is beyond the limit of the classic
Cassie-Baxter model [37, 38]. Moreover, the energy landscape model and the modified Cassie-Baxter
model can serve as a guidance table for experiments and simulations without blind attempts.

The energy map method together with the phase-field model was further applied to quantita-
tively analyze the droplet anisotropic wetting morphologies either in a static state or in a quasi-static
evaporation process, which shows excellent consistency with real experiments. Interestingly, non-
rotationally symmetric droplet shapes on the regularly chemical-patterned surfaces have been found
both in phase-field simulations and experiments. The non-rotationally symmetric geometry is, how-
ever, beyond the limit of the current energy map method. Nevertheless, the proposed energy map
method and the finding of the equilibrated non-rotationally symmetric droplet shapes on regular pat-
terns provide essential guidelines for a better understanding of the anisotropic wetting morphologies
of droplets.

The static state and quasi-static movement of multiphase droplets on chemically heterogeneous
surfaces have been simulated by the multi-phase AC model. For the liquid-liquid confinement on a
ring-patterned substrate, several combinations for the values of the interfacial tensions were set to
explore the influence of Gibbs absorption on the interfacial tensions. By comparing the simulation
results with the experimental observations, the interfacial tensions can be estimated, which explains
the liquid lens phenomenon that a droplet of 1-nonanol deposited on the surface of water formed a
droplet instead of spreading over the water surface.

After the study of droplet wetting on chemically patterned substrates, the topology of the sub-
strate was also concerned. Droplet wetting behaviors in a pore structurewere theoretically and numer-
ically investigated. Considering the influence of droplet sizes, contact angles, and open angles of the
substrates, a criterion for droplet permeation in the single pore structure was theoretically predicted
which agrees excellently with the simulations via the AC model. It was found that for a certain-sized
droplet, the critical contact angle increases with the open angle. Furthermore, for a certain open an-
gle, the critical contact angle increases with decreasing the droplet size, and smaller droplets tend to
be more sensitive to the change of the open angle. The findings demonstrated that the curvature dif-
ference and the wettability of the substrate determine the droplet penetration behavior, controlled by
the Young-Laplace law and the Young’s law, respectively. The observations have great significance for
the applications including the design of microfluidcs, filter system for preventing droplets, drainage
system, oil recovery system, and so on.

To address the droplet dynamics on solid substrates, CHNS model was validated against the data
from the literature. Three typical cases including the fast spreading of a droplet, droplet impacting on
mechanically heterogeneous substrate, droplet splitting on the chemically patterned substrate were
presented, where excellent agreements with results from literature were achieved. After the valida-
tion, the CHNS model was utilized to analyze the thin liquid film dewetting process on chemically
patterned surfaces. It was observed that the controllable satellite droplet formation on chemically
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patterned surfaces can be achieved by tunning the contact angles, liquid volume, pattern distribution,
and so on. The strategy and findings may have potential applications in the fields of microfluidics,
electronic devices, and smart printing.

10.2. Future directions

The present dissertation mainly investigated the droplets on regularly chemically patterned substrates
and in the future, some more complicated patterns which are specifically designed [210] or irregularly
distributed can be contemplated in the numerical model and the analytical models. Moreover, for the
investigation of mechanically heterogeneous surfaces, only a single 2D pore structure was considered.
In the next steps, 3D pore structures and other topologically structured substrates should be studied.
The interaction of droplets with rough surfaces [211] and the design of functional surfaces with the
desired hydrophilicity [212] should be further explored. The mechanism for Cassie-Wenzel transition
on these functional surfaces should be revealed [213], which is of great significance for the droplet
manipulation technique applied in a wide range of areas.

Since the CHNSmodel has been successfully validated to simulate droplet dynamics on heteroge-
neous substrates, it can be applied to address the droplet impacting and spreading process on different
substrates. The contact time of impacting droplets on the surface [214], the spreading velocity [94],
the breakup [215], and coalescence [216, 217, 218] of droplets on different heterogeneous substrates
can be further investigated.

Note that the evaporation and condensation studied in the present thesiswere in quasi-equilibrium
states and the AC model with a constant driving force was applied to model the phase change. How-
ever, to accurately describe the phase change where both diffusion and convection are involved, the
CHNS model with well defined free energy function should be established, which can be used to
explore interesting phenomena such as the Leidenfrost effect [219, 220, 221], evaporation induced
attraction-repulsion of droplets [222], and evaporation induced chasing of droplets [222, 223], etc.

The multi-phase droplets wetting problems were modeled by the multi-phase AC method, and
the studied droplets were in static or quasi-static states with constant interfacial tensions. However, to
model the fast movement of the multi-phase droplets on substrates, NS equations should be coupled
in the original model. If a more complicated situation e.g. the non-equilibrium physicochemical
hydrodynamics involvedmulti-phase system is considered, themulti-phase CHNSmodel withwetting
boundary conditions should be developed. Typical phenomena of this kind of system are the well-
known “coffee ring” effect [224], Marangoni bursting [121, 122], and fingering instability [48] on
substrates and others mentioned in chapters 1 and 2.
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A. Calculation of double-well function

The code for calculating the double-well function is presented as follows.

Listing A.1: 𝑓𝑐.m

1 c l e a r a l l ;
2 %f o r c = 0 . 0 1 : 0 . 0 1 : 0 . 9 9
3 %f_ c = T ∗ ( c ∗ l og ( c ) +(1− c ) ∗ l og (1− c ) ) + ch i ∗ c ∗(1− c ) ;
4 %f_c_pr ime = T ∗ ( l og ( c )−l o g (1− c ) ) + ch i ∗ (1 −2∗ c ) ;
5 kappa = 2 ;
6 %kappa=eps ∗ sigma
7 %ch i =3 . 7 8
8 %T=1 ;
9 f o r T = 0 . 5 : 0 . 0 5 : 1 . 5

10 c_e1= f s o l v e (@( x ) T ∗ ( l og ( x )−l o g (1−x ) ) +3 . 7 8 ∗ ( 1 −2 ∗ x ) , 0 . 0 2 ) ;
11 c_e2= f s o l v e (@( x ) T ∗ ( l og ( x )−l o g (1−x ) ) +3 . 7 8 ∗ ( 1 −2 ∗ x ) , 0 . 9 7 ) ;
12 f _ c _ e 1 =T ∗ ( c_e1 ∗ l og ( c_e1 ) +(1− c_e1 ) ∗ l og (1− c_e1 ) ) + 3 . 7 8 ∗ c_e1 ∗(1− c_e1 ) ;
13 sigma=quad (@( x ) 2 ∗ s q r t ( kappa ∗ ( T ∗ ( x ∗ l og ( x ) + (1−x ) ∗ l og (1−x ) ) + 1 ∗ 3 . 7 8 ∗ x

∗(1−x )−f _ c _ e 1 ) ) , c_e1 , c_e2 ) ;
14 f p r i n t f ( ” % f % f % f % f % f \ n ” , T , sigma , c_e1 , c_e2 , f _ c _ e 1 ) ;
15 end fo r
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B. Prediction of droplet shapes

In this section, some more details for the equilibrium droplet shapes on striped and chessboard-
patterned surfaces under the influence of three factors: (a) droplet sizes, (b) contact angles, and (c) the
ratios of the hydrophilic area to the hydrophobic one are discussed. In sections B. 1-B. 3, the results
of the energy landscape methods and the PF simulations for droplets on these two patterned surfaces
are illustrated. In section B. 4, the code for the energy landscape model is provided. The whole section
was published in the supplemental information of Ref. [184].

B.1. Droplet size

In this part, the contact angles on the hydrophilic and hydrophobic areas of the striped and chessboard-
patterned surfaces are set as 60∘ and 120∘, respectively, i.e. 𝜃1 = 60∘, 𝜃2 = 120∘. The characteristic
length is a constant value 𝐿 = 40. With varying the droplet size 𝑅/𝐿, I obtain the corresponding
energy maps and simulation results.

Figure B.1 presents the results from the analytical model and the PF simulation for droplets with
different sizes on the striped patterned surface. From (I) to (III), the ratio 𝑅/𝐿 varies from 1 to 4.5. In
each panel, (A) and (B) depict the surface energy landscapes in terms of 𝑎 and 𝑏 for droplets with base
centers on position 1 and 2, respectively. The energy minima in the deep blue regions are indicated
by different numbers and correspond to the snapshots of the PF simulation results labeled with the
same number in (C). The blue and red stripes in the snapshots depict the hydrophilic and hydrophobic
areas with width 𝐿𝑤𝑒𝑡 = 𝐿𝑑𝑟𝑦 = 𝐿/2 = 20. The red dashed ellipses with semi-axes 𝑎, 𝑏 in (I)(C)
represent the analytical results, which are obtained from the coordinates of the energy minima in the
energy landscapes. It is observed that the analytical predictions of the energy landscapes have a good
agreement with the simulation results. Moreover, as the ratio 𝑅/𝐿 increases from 1 to 4.5, the number
of equilibrated droplets rises from 3 to 5.

Next, I turn to scrutinize the equilibrium shapes of droplets on a more complex pattern, the
chessboard pattern. The surface energy landscapes and the corresponding snapshots of the equili-
brated droplets from the PF simulations are illustrated in Figure B.2 and Figure B.3, respectively. In
this scenario, I vary the droplet size from 𝑅/𝐿 = 0.75 to 𝑅/𝐿 = 0.25. The hydrophobic/hydrophilic
square lattices (red/blue) have a width of 𝐿𝑑𝑟𝑦 = 𝐿𝑤𝑒𝑡 = 𝐿/2 = 20. Because of the high symmetry of
the chessboard pattern, the elliptical base line of droplets may have a symmetric-axis which is rotated
counterclockwise by 45∘ with respect to the horizontal direction, as sketched by the dot dashed line in
Figure 5.10(c). The corresponding surface energy landscapes are calculated in a rotated system with
𝛿′

1 = (𝛿1 + 𝛿2)/
√

2 and 𝛿′
2 = (𝛿1 − 𝛿2)/

√
2 and the results are shown in Figure B.2(B), (D), and (E)
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B. Prediction of droplet shapes

Figure B.1.: Surface energy landscapes for droplets with different sizes on the chemically striped
patterned surfaces and the snapshots of the equilibrated droplets via PF simulations. (I)
𝑅/𝐿 = 1, (II) 𝑅/𝐿 = 2.5, (III) 𝑅/𝐿 = 4.5, The chemical heterogeneities are described by
𝑓1(𝑟𝑏, 𝜑) in Eq. 5.10 with the following parameters: 𝛾𝑚 = 0, 𝛾0 = 0.5, 𝜉 = 100, 𝐿 = 40,
𝜆 = 0. At equilibrium, the droplet base center stays either on 𝑃1(𝑖 = 1) (the center of the
hydrophilic stripes, in blue color) or 𝑃2(𝑖 = 0) (the center of the hydrophobic stripes, in
red color). The energy landscapes are accordingly calculated by using different values of 𝑖.
The contour lines indicate the energy levels (red for high values and blue for low values).
The energy minima are highlighted by different numbers in (A) and (B) in each panel,
corresponding to the snapshots labeled with the same number in (C). The red dashed el-
lipses with semi-axes 𝑎, 𝑏 in (I)(C) show the analytical results from the energy landscape
method. Reproduced with permission from Ref. [183]. Copyright 2019 American Physical
Society.
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Figure B.2.: Surface energy landscapes for droplets with different sizes on the chessboard-patterned
surfaces and the snapshots of the equilibrated droplets through PF simulations (I) 𝑅/𝐿 =
0.75, (II) 𝑅/𝐿 = 0.5, (III) 𝑅/𝐿 = 0.25. The chemical heterogeneities are described by
𝑓3(𝑟, 𝜑) in Eq. 5.10 with 𝛾𝑚 = 0, 𝛾0 = 0.5, 𝜉 = 100, 𝐿 = 40, 𝜆 = 0. The energy minima
are illustrated by different numbers inside the gray circles. The equilibrated states at these
energyminima are sequentially shown in Figure B.3(I)-(III).The surface energy landscapes
for (A)&(B), (C)&(D), and (E) correspond to droplets with base center positions on 𝑃1, 𝑃2,
and 𝑃3, respectively. In each panel, (A) and (C) describe the situation where 𝑎 and 𝑏 are in
the horizontal and vertical directions, respectively. While (B), (D), and (E) depict a system
which is rotated counterclockwise by 45∘. In the rotated system, 𝛿1 and 𝛿2 in 𝑓3(𝑟, 𝜑) are
substituted by 𝛿′

1 and 𝛿′
2, respectively, with 𝛿′

1 = (𝛿1 + 𝛿2)/
√

2 and 𝛿′
2 = (𝛿1 − 𝛿2)/

√
2.
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B. Prediction of droplet shapes

Figure B.3.: Snapshots for the equilibrated droplets with different sizes on the chessboard patterned
surface via PF simulations (blue: hydrophilic, red: hydrophobic) (I) 𝑅/𝐿 = 0.75, (II)
𝑅/𝐿 = 0.5, (III) 𝑅/𝐿 = 0.25.

in each panel. Typical equilibrated droplet morphologies for the energy minima in Figure B.2(I) (B)
are displayed in Figure B.3(I) (2) and (3). It is noteworthy that in Figure B.2 (I) (C) and (D), which
correspond to the non-rotated and rotated systems, respectively, the values of 𝑎 and 𝑏 are the same at
the minimal energy states. These two energy minima actually predict an identical equilibrated shape,
as shown in Figure B.3(I) (4). The similar findings are observed in Figure B.3(II) (1) and (3) as well as
in Figure B.3(III) (1) and (2). Similar to the striped and chocolate patterned surfaces, the increase in
the droplet size leads to more equilibrium shapes.

B.2. Contact angle

In this section, I investigate the equilibrated droplet shapes affected by the contact angles on the
hydrophilic (𝜃1) and hydrophobic (𝜃2) areas. The chosen parameters for 𝜃1 and 𝜃2 are shown in Ta-
ble 5.1. The characteristic length is constant 𝐿 = 40. Droplets with the same size (𝑅/𝐿 = 1) on the
two chemically patterned surfaces are considered.

As three typical examples, Figure B.4(I), (II), and (III) display the surface energy landscapes and
the snapshots of the simulated equilibrium droplets on the striped-patterned surface for contact angle
pairs (30∘, 90∘), (90∘, 150∘), (120∘, 180∘), respectively. From (I) to (III) as 𝜃 increases, the equilibrated
morphologies tend to approach a spherical shape. Moreover, the number of the equilibrium states in
(II) and (III) is less than that in (I).

I further turn to the chessboard pattern. Figure B.5(I), (II), and (III) picture the surface energy
landscapes for droplets on the chessboard patterned surfaces for contact angles (30∘, 90∘), (90∘, 150∘),
and (120∘, 180∘), respectively. In each panel, (A)&(B), (C)&(D), and (E) are for droplets with base
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B.2. Contact angle

Figure B.4.: Surface energy landscapes for droplets on the striped patterned surfaces with different
contact angles and the corresponding snapshots of the equilibrated droplets from the PF
simulations. (I) 𝜃1 = 30∘, 𝜃2 = 90∘, (II) 𝜃1 = 90∘, 𝜃2 = 150∘, (III) 𝜃1 = 120∘, 𝜃2 = 180∘.
The chemical heterogeneities are described by 𝑓1(𝑟, 𝜑) in Eq. 5.10 with 𝜉 = 100, 𝐿 = 40,
𝜆 = 0. The parameters 𝛾𝑚, 𝛾0 are adjusted according to the contact angle pairs. The
energy minima are indicated by different numbers, corresponding to the snapshots in (C)
labeled with the same number. The surface energy landscapes for (A) and (B) delineate
the situation where the droplet base center positions are on 𝑃1 and 𝑃2, respectively. (C)
Snapshots of the equilibrated droplets through PF simulations (blue: hydrophilic, red:
hydrophobic).
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Figure B.5.: Surface energy landscapes for droplet on the chessboard-patterned surfaces with different
contact angles and the corresponding snapshots of the equilibrated droplets through PF
simulations (I) 𝜃1 = 30∘, 𝜃2 = 90∘, (II) 𝜃1 = 90∘, 𝜃2 = 150∘, (III) 𝜃1 = 120∘, 𝜃2 = 180∘.
The chemical heterogeneities are described by 𝑓3(𝑟𝑏, 𝜑) in Eq. 5.10 with 𝜉 = 100, 𝐿 =
40, 𝜆 = 0. The parameters 𝛾𝑚, 𝛾0 are modified according to the contact angle pairs.
The energy minima are indicated by different numbers, corresponding to the snapshots
in Figure B.6(I)-(III) labeled with the same number. The surface energy landscapes for
(A)&(B), (C)&(D), and (E) correspond to the droplet base center positions on 𝑃1, 𝑃2, and
𝑃3, respectively. (A) and (C) describe the situation where 𝑎 and 𝑏 are in the horizontal and
vertical directions, respectively, while (B), (D), and (E) depict a system which is rotated
counterclockwise by 45∘. In the rotated system, 𝛿1 and 𝛿2 in 𝑓3(𝑟, 𝜑) are substituted by
𝛿′

1 and 𝛿′
2, respectively, with 𝛿′

1 = (𝛿1 + 𝛿2)/
√

2 and 𝛿′
2 = (𝛿1 − 𝛿2)/

√
2.

centers on 𝑃1, 𝑃2, and 𝑃3, respectively, among which (B), (D), and (E) are calculated in the rotated
system. Figure B.6 (I), (II), and (III) shows the snapshots of the simulated equilibrium droplet shapes,
corresponding to the sequentially indicated energy minima in Figure B.5 (I), (II), and (III), respectively.
Since the density of the hydrophilic/hydrophobic lines for the chessboard patterned surfaces is higher
than that of the striped and chocolate patterned surfaces, the energy landscapes become much more
complex, which causes a substantial increase in the number of the equilibrated droplet shapes. The
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B.3. The ratio of the hydrophilic area to the hydrophobic area

Figure B.6.: Snapshots of the equilibrated droplets on the chessboard patterned surfaces through PF
simulations (blue: hydrophilic, red: hydrophobic) (I) 𝜃1 = 30∘, 𝜃2 = 90∘, (II) 𝜃1 =
90∘, 𝜃2 = 150∘, (III) 𝜃1 = 120∘, 𝜃2 = 180∘.

tendency that the evolution of the droplet morphologies towards a spherical shape with an increase
in the average contact angle is also observed in this case.

B.3. The ratio of the hydrophilic area to the hydrophobic area

The average contact angle 𝜃 can also be adjusted by tuning the area ratio of the hydrophilic area to the
hydrophobic area while fixing the intrinsic contact angles on these two areas. Here, I set the contact
angles on the hydrophilic and hydrophobic areas as 𝜃1 = 60∘ and 𝜃2 = 120∘, respectively.

The area ratio of the hydrophilic area to the hydrophobic area is characterized by the parameter 𝜈.
For the striped surfaces with 𝜈 = 1 ∶ 1, 1 ∶ 2, 1 ∶ 3, the surface energy landscapes and the snapshots of
the equilibrated droplets from the PF simulations are shown in Figure B.7 (I), (II), and (III), respectively.
A good agreement between the energy landscape model and the PF model is observed. As 𝜈 decreases,
the equilibrated droplet becomes spherical successively and 𝑁 decreases.
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B. Prediction of droplet shapes

Figure B.7.: Surface energy landscapes for droplets on the striped surfaces with different area fractions
of the hydrophilic and hydrophobic areas and the corresponding snapshots of equilibrated
droplets through PF simulations. The ratios for (I) 𝜈 = 1 ∶ 1, (II) 𝜈 = 1 ∶ 2, (III) 𝜈 = 1 ∶ 3
correspond to three different setups with (𝐿 = 20, 𝜆 = 0), (𝐿 = 30, 𝜆 = cos 60∘),
(𝐿 = 40, 𝜆 = cos 45∘), respectively. The droplet size is set as 𝑅 = 40. The chemical
heterogeneities are described by 𝑓1(𝑟, 𝜑) in Eq (7) with 𝛾𝑚 = 0, 𝛾0 = 05, 𝜉 = 100. The
energy minima are marked by different numbers, corresponding to the snapshots in (C)
labeled with the same number. The energy landscapes in (A) and (B) are for the situations
where the droplet base center positions are on 𝑃1 and 𝑃2, respectively. (C) Snapshots of
the equilibrated droplets via simulations (blue: hydrophilic, red: hydrophobic).
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B.4. Code for the energy landscape model

B.4. Code for the energy landscapemodel

In this section, the code for calculating the surface energy landscapes is provided. For different pat-
terned surfaces, the corresponding descriptions of 𝑓𝑘 are used.

Listing B.1: surfaceEnergy.m [184]

1 f u n c t i o n y= f ( ph i )
2 g l o b a l prop ;
3 %(gamma_m , gamma_0 ) −> ( the t a_1 , t h e t a _ 2 ) , here ( p i / 3 , 2 ∗ p i / 3 )
4 gamma_m = 0 ;
5 gamma_0 = 0 . 5 ;
6 L = 4 0 ; %L i s the c h a r a c t e r i s t i c l e ng t h
7

8

9 r = ( prop . a _ f ∗ prop . b_ f ) / s q r t ( prop . a _ f ∗ ∗ 2 ∗ s i n ( ph i ) ∗ ∗ 2
10 +prop . b_ f ∗ ∗ 2 ∗ cos ( ph i ) ∗ ∗ 2 ) ; %r i s here base r a d i u s .
11

12 %g a b _ d i f f e r e n c e i s f_k=gamma_ls − gamma_gs ( k = 1 , 2 , 3 )
13

14 %s t r i p e d −pa t t e rn , here x i =100
15 g a b _ d i f f e r e n c e = gamma_m+gamma_0 ∗ tanh ( 1 0 0 ∗
16 cos ( 2 ∗ p i ∗ r ∗ cos ( ph i ) / L ) ) ;
17

18 %chco l a t e −p a t t e r n
19 %g a b _ d i f f e r e n c e = gamma_m + gamma_0 ∗ tanh ( 1 0 0 ∗ ( cos ( 2 ∗ p i ∗ r ∗ cos ( ph i ) / L )
20 %∗ cos ( 2 ∗ p i ∗ r ∗ s i n ( ph i ) / L )
21 %−cos ( 2 ∗ p i ∗ r ∗ cos ( ph i ) / L )
22 %−cos ( 2 ∗ p i ∗ r ∗ s i n ( ph i ) / L ) ) ) ;
23

24 %chessboard−p a t t e r n no r o t a t i o n
25 %g a b _ d i f f e r e n c e = gamma_m+gamma_0 ∗ tanh ( 1 0 0 ∗
26 %cos ( 2 ∗ p i ∗ r ∗ cos ( ph i ) / L ) ∗
27 %cos ( 2 ∗ p i ∗ r ∗ s i n ( ph i ) / L ) ) ;
28

29 %chessboard−p a t t e r n r o t a t i o n 45 deg
30 %r ∗ cos ( ph i )−−>s q r t ( 0 . 5 ) ∗ r ∗ ( s i n ( ph i ) + cos ( ph i ) )
31 %r ∗ s i n ( ph i )−−>s q r t ( 0 . 5 ) ∗ r ∗ ( s i n ( ph i )−cos ( ph i ) )
32 %g a b _ d i f f e r e n c e = gamma_m + gamma_0 ∗ tanh ( 1 0 0 ∗
33 %cos ( 2 ∗ p i ∗ s q r t ( 0 . 5 ) ∗ r ∗ ( s i n ( ph i ) + cos ( ph i ) ) / L )
34 %∗ cos ( 2 ∗ p i ∗ s q r t ( 0 . 5 ) ∗ r ∗ ( s i n ( ph i )−cos ( ph i ) ) / L ) ) ;
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B. Prediction of droplet shapes

35

36 %y i s to c a l c u l a t e s u r f a c e energy in l i q u i d −s o l i d c o n t a c t a r e a
37 %pa r t ( bottom ) .
38 y = 0 . 5 ∗ r ∗ ∗ 2 ∗ g a b _ d i f f e r e n c e ;
39

40 end func t i on
41

42 f u n c t i o n z=cap ( f a i )
43 g l o b a l prop ;
44

45 r_numera tor = ( prop . a _ f ∗ prop . b_ f ) ;
46 r_denomina tor = s q r t ( prop . a _ f ∗ ∗ 2 ∗ s i n ( f a i ) ∗ ∗ 2+ prop . b_ f ∗ ∗ 2 ∗ cos ( f a i )

∗ ∗ 2 )
47 r = r_numera tor / r_denomina tor ; %r i s base r a d i u s
48 r_ c = ( r ∗ ∗ 2+ prop . h_ f ∗ ∗ 2 ) / ( 2 ∗ prop . h_ f ) ; %r_c i s c u r v a t u r e

r a d i u s .
49 be t a = acos ( ( r_c−prop . h_ f ) / r _ c ) ; %be t a
50 z = r_c ∗ ∗ 2 ∗ ( 1 − cos ( b e t a ) ) ; %z i s to c a l c u l a t e s u r f a c e

energy in l i q u i d −gas i n t e r f a c e
51 %pa r t ( cap ) .
52

53 end func t i on
54

55 R = 4 0 ;
56 V = ( 4 / 3 ) ∗ p i ∗R ∗ ∗ 3 ;
57 L = 4 0 ;
58

59 g l o b a l prop ;
60 fp = fopen ( ” s igma_r40 . da t ” , ’w ’ ) ;
61

62 f o r a = 0 . 5 : 1 : 1 2 0
63 f o r b = 0 . 5 : 1 : 1 2 0
64 prop . a _ f = a ;
65 prop . b_ f . = b ;
66 h = f s o l v e (@( x ) ( p i / 6 ) ∗ x ∗ ( 3 ∗ a ∗ b+x ∗ ∗ 2 )−V , 1 ) ;
67 prop . h_f = h ;
68 su r f a c e_bo t t om = 4 ∗ quad ( ” f ” , 0 , p i / 2 ) ; % s u r f a c e energy in

A_ls
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69 s u r f a c e _ e l l i p s e _ c a p = 4 ∗ quad ( ” cap ” , 0 , p i / 2 ) ; % s u r f a c e energy
in A_lg

70 sigma = su r f a c e_bo t t om + s u r f a c e _ e l l i p s e _ c a p ; %
t o t a l s u r f a c e energy

71 f p r i n t f ( fp , ’% f % f % f \ n ’ , a , b , s igma ) ;
72 end fo r
73 f p r i n t f ( fp , ’ \ n ’ ) ;
74 end fo r
75

76 f c l o s e ( fp ) ;
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C. Supplemental information to chapter 6

C.1. Discussion of the controlling parameters for chemical patterns

The chemical heterogeneities in the (𝑥, 𝑦)-plane of the substrate surface are described by the following
expression

𝛾𝑙𝑠 − 𝛾𝑔𝑠 = 𝛾𝑚 + 𝛾0 tanh 𝜉[cos(𝛿1 − 𝜆) cos(𝛿2 − 𝜆) − 𝜒(cos 𝛿1 + cos 𝛿2)]. (C.1)

I keep the liquid-gas surface tension 𝛾𝑙𝑔 constant (𝛾𝑙𝑔 = 1 in dimensionless value). The parameters 𝛾𝑚
and 𝛾0 jointly determine the difference in the surface tension 𝛾𝑙𝑠 − 𝛾𝑔𝑠 and thereby the static contact
angles on the hydrophilic and hydrophobic areas. As shown in Fig. C.1C(a), I set three pairs of (𝛾𝑚,
𝛾0) to change the surface energy on hydrophilic and hydrophobic areas. For example, (𝛾𝑚 = 0.5,
𝛾0 = 0.5), (𝛾𝑚 = 0, 𝛾0 = 0.5), (𝛾𝑚 = 0, 𝛾0 = 1) correspond to (𝜃𝑒,𝑤𝑒𝑡 = 0∘, 𝜃𝑒,𝑑𝑟𝑦 = 90∘), (𝜃𝑒,𝑤𝑒𝑡 =
60∘, 𝜃𝑒,𝑑𝑟𝑦 = 120∘), (𝜃𝑒,𝑤𝑒𝑡 = 0∘, 𝜃𝑒,𝑑𝑟𝑦 = 180∘), respectively. The variables 𝛿1 and 𝛿2 are function
arguments which are dependent on the coordinate (𝑥, 𝑦) of droplet base center: 𝛿1 = (2𝜋𝑦 +𝑖𝜋𝐿)/𝐿,
𝛿2 = (2𝜋𝑥 + 𝑗𝜋𝐿)/𝐿. The indexes 𝑖 and 𝑗 are used to control the offset of the pattern position.
The length 𝐿 is defined as 𝐿 ∶= 𝐿𝑑𝑟𝑦 + 𝐿𝑤𝑒𝑡, where 𝐿𝑑𝑟𝑦 and 𝐿𝑤𝑒𝑡 are the respective characteristic
lengths for the hydrophobic and hydrophilic areas. In the present work the characteristic length for a
hydrophilic spot is 1 mm and the distance between two neighboring hydrophilic spots is 0.5 mm. So
I have 𝐿𝑑𝑟𝑦 = 5, 𝐿𝑤𝑒𝑡 = 10, and 𝐿 = 15 in dimensionless form.

As illustrated in Fig. C.1A and B, the parameters 𝜒 and 𝜆 control the roundness and area ratio of
the wettability pattern, respectively. Fig. C.1C(b) displays how the sharpness of the pattern is adjusted
by 𝜉.
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Figure C.1.: (A) and (B) Contour plot of the function 𝛾𝑙𝑠 − 𝛾𝑔𝑠 in x-y space for different 𝜒 and 𝜆,
respectively. 𝛾𝑚 = 0, 𝛾0 = 1, 𝐿 = 15, and 𝜉 = 100. (C) (a) and (b) The heterogeneities
𝛾𝑙𝑠 −𝛾𝑔𝑠 as a function of 𝑥 for different pairs of (𝛾𝑚, 𝛾0) and 𝜉 when 𝑦 = 7.5, respectively.
In (C) I set 𝐿 = 15, 𝜆 = 0.5, and 𝜒 = 0.15.

140



C.2. Pattern information

C.2. Pattern information

Figure C.2.: Photos of the glass slides with wettability pattern of (A) square array and (B) circle array
after dipping in the glass with distilled water. The hydrophobic mesh restricts the liquid
in the hydrophilic square and circle spots. The modification is done by two steps UV-light
driven thiol-ene modification through the photomask (A, B: left corner below). The black
parts of the photomask form hydrophobic areas, light grey –hydrophilic pattern.
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C.3. Shape comparison

Figure C.3.: A-D: Top view comparison for droplet with volumes 𝑉 = 2𝑉0, 5𝑉0, 6𝑉0, and 8𝑉0. 𝑉0 =
5𝜇𝐿. Scale bar: 1 mm (or 10 in dimensionless value).
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C.4. Calculation of Bond number

C.4. Calculation of Bond number

The Bond number is defined as 𝐵𝑜 ∶= (𝜌𝑙 − 𝜌𝑔)𝑔𝐿2
𝑐/𝛾𝑙𝑔 = (𝐿𝑐/𝜆𝑐)2, indicating the importance of

the gravitational force compared to the surface tension force. The parameter 𝐿𝑐 is the characteristic
length of a droplet. The parameter 𝜆𝑐 = √𝛾𝑙𝑔/[(𝜌𝑙 − 𝜌𝑔)𝑔] is the capillary length, which is 2.7 mm
for water with normal gravity. Here, I choose the initial radius 𝑅𝑖 of the droplet as the characteristic
length, i.e. 𝐿𝑐 = 𝑅𝑖 = 3√3𝑉 /4𝜋. The calculated Bond numbers for droplets with different volumes
in the present work are listed in Table C.1. According to Ref. [225], when 𝐵𝑜 > 0.6, the influence of
gravity becomes noticeable. In chapter 6, the 40 𝜇𝐿-droplet (𝐵𝑜 = 0.62) also showed the importance
of gravity, as discussed in Fig. 6.2A.

Table C.1.: Calculation of Bond numbers.
volume 𝐵𝑜

𝑉0(5𝜇𝐿) 0.15
2𝑉0(10𝜇𝐿) 0.25
4𝑉0(20𝜇𝐿) 0.39
6𝑉0(30𝜇𝐿) 0.51
8𝑉0(40𝜇𝐿) 0.62
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D. List of Symbols

D. List of Symbols

Symbols Description Unit

𝑎 semiaxe of an ellipse in the 𝑥 direction [m]
𝐴 temporal wetted areas of a droplet [m2]
𝐴𝑓 final wetted areas of a droplet [m2]
𝐴𝑙𝑔 surface area for liquid-gas interface [m2]
𝐴𝑙𝑠 surface area for liquid-solid interface [m2]
𝑏 semiaxe of an ellipse in the 𝑦 direction [m]

𝐵𝑝ℎ𝑖 initial thin-film width on hydrophilic area [m]
𝐵𝑝ℎ𝑜 initial thin-film width on hydrophobic area [m]

𝑐 order parameter in the Cahn-Hilliard model [-]
𝑑 stripe width [m]
𝐷 droplet diameter [m]
𝐷0 initial droplet diameter [m]

⃗𝑒𝑧 unit vector in the 𝑧 direction [m]
𝐸 total surface energy [J]
𝐹 free energy functional [J]

⃗𝑔 gravity acceleration [m/s−2]
ℎ droplet height [m]
𝐻 temporal thin-film height [m]
𝐻0 initial thin-film height [m]

̄̄𝐼 unit tensor [-]
𝐾𝑖𝑗 gradient energy matrix [-]
𝑀 mobility [m3𝑠/𝑘𝑔]
�⃗� normal vector [-]
𝑝 pressure [N/m2]

⃗𝑞 generalized gradient vector [-]
𝑟 radial coordinate [m]
𝑟𝑏 droplet base radius [m]
𝑟𝑐 curvature radius [m]
𝑅 droplet radius [m]
𝑆 liquid-solid boundary [m2]
𝑡 time [s]
�⃗� velocity [m/s]

𝑉 , 𝑉𝑑 droplet volume [m3]
𝑥 x-coordinate [m]
𝑦 y-coordinate [m]
𝑧 z-coordinate [m]
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Symbols Description Unit

𝐵𝑜 Bond number [-]
𝐶𝑛 Cahn number [-]
𝑃𝑒 Peclet number [-]
𝑅𝑒 Reynolds number [-]
𝑊𝑒 Weber number [-]
𝛽 polar angle [°]
𝛾 surface tension [N/m]
𝜖 interface width parameter [m]
𝜃 contact angle [°]

̄�̄� Korteweg stress tensor [J/m3]
𝜆1, 𝜆2 Lagrange multiplier [J/m3]

𝜈 viscosity [kg/ms]
𝜌 density [kg/m3]
𝜎 surface tension coefficient [N/m]
𝜏 relaxation coefficient [J/m4]
𝜉 droplet aspect ratio [-]

𝜒𝑖𝑗 interaction parameter between components 𝑖 and 𝑗 [-]
𝜙 order parameter in the Allen-Cahn model [-]
𝜑 polar angle of the ellipse [°]
𝛺 domain volume [m3]
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E. List of Abbreviations

AC Allen-Cahn
CB Cassie-Baxter
CCA constant contact angle
CCR constant contact radius
CH Cahn-Hilliard

CHNS Cahn-Hilliard-Navier-Stokes equations
NS Navier-Stokes equations
PF phase-field
PDE partial differential equation
LB lattice Boltzmann
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hydrophilic surfaces, respectively. The coordinates of the droplet base center positions
at equilibrium are highlighted by 𝑃1, 𝑃2 and 𝑃3. (a) 𝑃1 ∶ 𝑖 = 1, 𝑃2 ∶ 𝑖 = 0. (b)
𝑃1 ∶ (𝑗 = 0, 𝑖 = 0), 𝑃2 ∶ (𝑗 = 1, 𝑖 = 0), and 𝑃3 ∶ (𝑗 = 1, 𝑖 = −1). (c)
𝑃1 ∶ (𝑗 = 0, 𝑖 = 0), 𝑃2 ∶ (𝑗 = 0, 𝑖 = 1), and 𝑃3 ∶ (𝑗 = −1/2, 𝑖 = 1/2) or
𝑃1 ∶ (𝑗′ = 0, 𝑖′ = 0), 𝑃2 ∶ (𝑗′ = 1/

√
2, 𝑖′ = 1/

√
2), and 𝑃3: (𝑗′ = 0, 𝑖′ = 1/

√
2).

The indexes with primes for the last three points are in the rotated coordinate system. 65

5.11. (a)-(c) Contour plot of the functions 𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦), 𝑓3(𝑥, 𝑦) describing the het-
erogeneities of the three chemically patterned surfaces: stripe, chocolate,” and chess-
board,” respectively. Here, 𝑥 = 𝑟 cos𝜑 and 𝑦 = 𝑟 sin𝜑. 𝑟 is the 𝑟 coordinate in polar
coordinate system. The patterns are obtained by setting 𝛾𝑚 = 0, 𝛾0 = 0.5, 𝜉 = 100.
The characteristic lengths 𝐿 in (I), (II), (III) are 20, 30, and 40, respectively. The ra-
tios 𝜈 for 1:1, 1:2, and 1:3 correspond to 𝜆 = cos 90∘, cos 60∘, cos 45∘, respectively. In
(b)(I), (II), (III), I set 𝜒 = 0.55, 0.13, 0.10, respectively. The red and blue color show
𝑓𝑘 = −0.5 or 0.5, corresponding to hydrophilic and hydrophobic area, respectively. . 67

5.12. Droplet morphology in a form of spherical cap. The liquid-solid contact area is high-
lighted in the cyan color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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5.13. Surface energy landscapes for droplets with different sizes on chocolate patterned sur-
faces and snapshots of equilibrated droplets through PF simulations. (I) 𝑅/𝐿 = 0.75,
(II) 𝑅/𝐿 = 0.5, (III) 𝑅/𝐿 = 0.25. The chemical heterogeneities are described by
𝑓2(𝑟, 𝜑) in Eq. (5.10) with the following parameters: 𝛾𝑚 = 0, 𝛾0 = 0.5, 𝜉 = 100,
𝐿 = 40, 𝜆 = 0, 𝜒 = 0.55. The energy minima are specified by different numbers,
corresponding to the snapshots in (D) labeled with the same number. The surface en-
ergy landscapes for (A), (B), and (C) depict the systems with the droplet base center
positions on 𝑃1, 𝑃2, and 𝑃3, respectively. (D) Snapshots of equilibrated droplets via
PF simulations (blue: hydrophilic, red: hydrophobic). . . . . . . . . . . . . . . . . . . 69

5.14. The number 𝑁 and the morphologies of the equilibrated droplets on three typical
chemically patterned surfaces in dependence of the droplet sizes. (a)&(b), (c)&(d),
and (e)&(f) are for striped, chocolate-patterned, and chessboard-patterned surfaces,
respectively. (a), (c), and (e) depict the relation 𝑁 versus 𝑅/𝐿. (b), (d), and (f) describe
the equilibrated droplet morphologies with different sizes predicted by PF simulations
(filled symbols), in comparison with the energy-map model (hollow symbols) and the
modified CB model (solid curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.15. Surface energy landscapes for droplets on chocolate-patterned surfaces with different
contact angles and corresponding snapshots of equilibrated droplets by PF simula-
tions. (I) 𝜃1 = 30∘, 𝜃2 = 90∘, (II) 𝜃1 = 90∘, 𝜃2 = 150∘, (III) 𝜃1 = 120∘, 𝜃2 = 180∘. The
chemical heterogeneities are depicted by 𝑓1(𝑟, 𝜑) in Eq. (5.10) with 𝜉 = 100, 𝐿 = 40,
𝜆 = 0, 𝜒 = 0.55. The mean value 𝛾𝑚 and the amplitude 𝛾0 of the surface energy
density are set according to the contact angle pairs. The energy minima are shown by
different numbers, corresponding to the snapshots in (C) labeled with the same num-
ber. The surface energy landscapes for (A), (B) and (C) represent the setups where
the droplet base center positions are on 𝑃1, 𝑃2 and 𝑃3, respectively. (D) Snapshots of
equilibrated droplets through PF simulations (blue: hydrophilic, red: hydrophobic). . 73

5.16. The number and the morphologies of the equilibrated droplets on three typical chemi-
cally patterned surfaces in dependence of the contact angles. (a)&(b)&(c), (d)&(e)&(f),
and (g)&(h)&(i) are for striped, chocolate-patterned, and chessboard-patterned sur-
faces, respectively. (a)&(d)&(g) and (b)&(e)&(g) illustrate 𝑁 versus 𝜃 and 𝛥𝜃, re-
spectively. Here, 𝛥𝜃 varies from −60∘ to 60∘, which is achieved by fixing 𝜃1, (e.g.
𝜃1 = 90∘, 120∘) and changing 𝜃2. (c), (f), and (i) depict the equilibrated droplet mor-
phologies with different average contact angles predicted by PF simulations (filled
symbols), in comparison with the energy-map model (hollow symbols) and the modi-
fied CB model (solid curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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5.17. Surface energy landscapes for droplets on chocolate patterned surfaces with differ-
ent area fractions of hydrophilic and hydrophobic areas and corresponding snapshots
of equilibrated droplets through PF simulations. The droplet size is set as 𝑅 = 40.
The chemical heterogeneities are described by 𝑓2(𝑟, 𝜑) in Eq. (5.10) with 𝛾𝑚 = 0,
𝛾0 = 0.5, 𝜉 = 100. The ratios for (I) 𝜈 = 1 ∶ 1, (II) 𝜈 = 1 ∶ 2, (II) 𝜈 = 1 ∶ 3
correspond to (𝐿 = 20, 𝜆 = 0, 𝜒 = 0.55), (𝐿 = 30, 𝜆 = cos 60∘, 𝜒 = 0.13),
(𝐿 = 40, 𝜆 = cos 45∘, 𝜒 = 0.10), respectively. The energy minima are desig-
nated by different numbers, corresponding to the snapshots in (D) indicated with the
same number. The surface energy landscapes for (A), (B) and (C) correspond to the
droplet base center positions𝑃1, 𝑃2 and𝑃3, respectively. (D) Snapshots of equilibrated
droplets through PF simulations (blue: hydrophilic, red: hydrophobic). . . . . . . . . 75

5.18. (a) The number 𝑁 of the equilibrium droplet shapes on chocolate patterned surfaces
as a function of 𝜃. (b) Equilibrium morphologies of droplets on chocolate patterned
surfaces with different fractions of hydrophilic and hydrophobic areas predicted by
PF simulations (filled symbols) compared with the energy landscape model (hollow
symbols) and the modified CB model (solid curves). . . . . . . . . . . . . . . . . . . . 76

5.19. Functional relation between 𝑁 and 𝐴𝑙𝑠 for droplets on the chocolate-patterned sur-
face. The hollow squares and filled circles depict two distinct cases, where 𝐴𝑙𝑠 is
changed by setting different average contact angle 𝜃 and droplet radii 𝑅, respectively.
The solid and dashed lines are the corresponding fitting curves. . . . . . . . . . . . . 77

6.1. Surface free energy landscapes and equilibrium shapes for droplets on a chemically
patterned surface. The energy maps (a), (b), and (c) in the first row are surface free en-
ergy landscapes in the 𝑎−𝑏 space when the droplet base center is placed on three sym-
metric points of the patterned substrate: (a) in between four neighboring hydrophilic
lattices, (b) between two adjacent hydrophilic lattices, (b) on the hydrophilic lattice.
The contour lines indicate the levels of surface energy, which decreases from red to
blue regions. The energy minima are labeled with numbers 1-3, whose coordinates
(𝑎, 𝑏) describe the semi-axes of the droplet base line. The second and third rows illus-
trate the equilibrium shapes of droplets obtained from simulations ((d)-(f)) and experi-
ments ((g)-(i)). In (d)-(f), the hydrophilic and hydrophobic areas are highlighted in blue
and red color, respectively. The red dashed ellipses on the simulation snapshots (d)-(f)
are theoretical results corresponding to the coordinates (𝑎, 𝑏) of the energy minima
indicated in (a)-(c). (A) 𝑉 = 𝑉0=5 𝜇𝐿, (B) 𝑉 = 4𝑉0=20 𝜇𝐿. Scale bar: 1 mm (or 10 in
dimensionless value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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6.2. A. (a) The surface energy landscape 𝐸𝑣(𝑎, 𝑏) for 𝑉 = 8𝑉0 (40 𝜇𝐿) with droplet base
center on the center of four neighboring hydrophilic lattices. (b) and (c) top views
for an equilibrated droplet with and without gravity from the PF simulation. The red
dashed lines in (b) and (c) show the analytical results which correspond to the energy
minima 1 and 2 in (a), respectively. (d) Optical image of the droplet for 𝑉 = 8𝑉0
(40 𝜇𝐿) via experiment. The droplet centers are shifted away from the patch centers.
B. Equilibrium morphologies with unique symmetric axis. (a) and (b) Experimental
and simulation results for 𝑉 = 2𝑉0 (10 𝜇𝐿), respectively. (c) and (d) Experimental
and simulation results for 𝑉 = 4𝑉0 (20 𝜇𝐿), respectively. The red dot dashed lines
illustrate corresponding symmetric axes. Scale bar: 1 mm (or 10 in dimensionless
value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3. (A) Surface energy landscapes for droplets with 𝑉 = 𝑉0 (5 𝜇𝐿) on a circle-patterned
surface (see more details in Fig. C.2B for the patterned substrate). The three energy
maps correspond to the case when the droplet center is placed on the positions (a),
(b), and (c) described in Fig 6.1. The energy minima are labeled with numbers 1-4,
corresponding to the snapshots in (B) and (C) marked with the same numbers. (B) and
(C) Top view comparison for droplets with a volume of 𝑉 = 𝑉0 (5 𝜇𝐿) on a circle-
patterned surface. Scale bar: 1 mm (or 10 in dimensionless value). . . . . . . . . . . . 84

6.4. Comparison of (a) side lateral and (b) side diagonal views for droplets with 𝑉 = 4𝑉0
(20 𝜇𝐿). The snapshots of droplets via simulations and experiments are normalized to
the same width and then overlapped. The differences of the normalized snapshots are
highlighted in cyan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5. Comparison of droplet height and surface energy. (a), (b), and (c) theoretical, simula-
tion, and experimental results for droplet height, respectively. (d) and (e) theoretical
and numerical analysis of surface energies. (f) Snapshots of top views for typical equi-
librium shapes of droplets with volume varying from 2𝑉0 to 6𝑉0. In (a)-(e) the bars
colored in violet, green, and blue correspond to the equilibrated droplets covering the
hydrophilic (blue) lattices patterns of 2×2, 2×3, and 3×3, as exhibited in (f). The pink
bars in (b) and (e) present the 2×2 patterned droplet via PF simulation without gravity,
as illustrated in Fig. 6.2(c). Droplet height ℎ and surface energy 𝐸 are nondimension-
lized by 𝑥∗ and 𝛾∗𝑥∗2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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6.6. (a) Comparison of droplet morphologies when a droplet evaporates from 4𝑉0 to 0.8𝑉0
(20-4 𝜇𝐿). Top and bottom rows illustrate the simulation and experimental results,
respectively. From left to right, the droplet snapshots in experiment were taken at the
time 0, 15, 30, 45, 50, 51.5 min, respectively. (b) Droplet height and liquid-solid con-
tact area as functions of the droplet volume. The dot-dashed lines, circles, and solid
lines represent results from the PF simulations, the energy map method, and the CCR
evaporation model, respectively. The inset shows the evolution of the droplet base
line via the energy map method as the volume decreases from 4𝑉0 to 𝑉0. In the CCR
evaporation model, I assume that the droplet is in the shape of a spherical cap with a
constant liquid-substrate contact area 𝐴𝑙𝑠 = 𝜋[(𝑟1 + 𝑟4)/2]2 with 𝑟1 and 𝑟4 denoting
the base radii calculated from the energy map method for 𝑉 = 𝑉0 and 𝑉 = 4𝑉0,
respectively. (c) Comparison of surface energy evolution as the droplet evaporates
from 4𝑉0 to 0.8𝑉0. Inset in left down side: Energy maps for equilibrium droplet with
𝑉 /𝑉0=1, 2, 4. The points 𝐴, 𝐵, 𝐶 denote the corresponding energy minima in the
𝑎 − 𝑏 space. (d) Top and middle: Comparison of the surface energy evolution for
the droplet cap and the droplet base. Bottom: Comparison of contact angle evolu-
tion obtained through PF simulation and CCR evaporation model. 𝜃𝑠𝑖𝑚 is calculated
through cos 𝜃𝑠𝑖𝑚 = (cos 𝜃𝑒,𝑤𝑒𝑡𝑥𝑤𝑒𝑡 + cos 𝜃𝑒,𝑑𝑟𝑦𝑥𝑑𝑟𝑦) with 𝑥𝑤𝑒𝑡 (𝑥𝑑𝑟𝑦) indicating the
hydrophilic (hydrophobic) area fraction covered by the droplet. 𝜃𝐶𝐶𝑅 is the apparent
contact angle for the droplet in the CCR model. Droplet height ℎ and surface energy
𝐸 are nondimensionlized by 𝑥∗ and 𝛾∗𝑥∗2, respectively. Scale bar: 1 mm (or 10 in
dimensionless value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1. (A) Scheme of a liquid contained in a solid vessel (left) and inside liquid water walls,
that is, a liquid well (right). (B) Formation of a circular liquid well. Water forms a ring
on the hydrophilic surface area (dashed line). The organic solvent (1‐nonanol, dyed
with Oil Red O) is then added into the liquid well. Scale bars: 5 mm. . . . . . . . . . 91

7.2. Phase-field simulation for the confinement of 1-nonanol (red) in a ring of water (blue).
Each simulation (i-vii) is based on a different set of the surface and interfacial tensions
𝛾𝑜𝑎 (organic-air), 𝛾𝑜𝑤 (organic-water), and 𝛾𝑤𝑎 (water-air). The surface and interfacial
tensions (𝛾𝑜𝑎, 𝛾𝑜𝑤, 𝛾𝑤𝑎) were (i) (28.0, 8.8, 72.86) mN/m [198, 199], (ii) (28.0, 8.8, 44)
mN/m, (iii) (28.0, 8.8, 36.43) mN/m, (iv) (28.0, 8.8, 21.86) mN/m, (v) (36.43, 8.8, 44)
mN/m, (vi) (44, 8.8, 44) mN/m, and (vii) (51, 8.8, 44) mN/m. The assumed volumes were
100 𝜇𝐿 (1-nonanol) and 60 𝜇𝐿 (water), respectively. The inner and outer diameters of
the hydrophilic surface area are 14 mm and 18 mm, respectively. The first row shows a
top view, the second row shows a cross section and the third row highlights the cross
section at the interface of 1‐nonanol and water. . . . . . . . . . . . . . . . . . . . . . 92
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7.3. (A) (i) and (ii) Schematic of surface hydrophobicity for droplets 1 and 2, respectively.
From yellow to red color, the surface become more and more hydrophilic. The arrays
indicate the direction of the surface energy gradient. (B) (i)-(iii) Time evolution of
droplets 1 (bright green) and 2 (dark green) on the substrate. (i) Initial states. (ii)
The two droplets meet with each other. (iii) Droplet collision and deformation. The
interfacial tensions between each two phases are the same, i.e. 𝛾12=𝛾1𝑎=𝛾2𝑎 (𝑎 stands
for air) [205]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1. Validation of phase-fieldmethod for modeling equilibrium state of droplets in a wedge.
(a) The distance 𝑥0 of the droplet center 𝑂 from the wedge apex as a function of
contact angle 𝜃. The simulated data points (colored symbols) show 2D-droplets with
radius 𝑟 = 0.98 mm (the same size as the 4 𝜇𝐿-droplet in [206]) in three wedges
with opening angles 2𝜑 ranging from 26∘ to 37∘. The black dashed lines are the-
oretical predictions in 2D, modified from the 3D version in [206] (The 2D model:
𝑥0/𝑟 = √ 𝜋

−𝜋+2𝜃−sin2 𝜃
cos(𝜋−𝜃)

sin𝜑 ). The inset denotes the schematic equilibrated droplet
profile in a wedge with labeling geometric parameters. (b)-(c) Equilibrium droplet
morphologies for open angles 2𝜑 = 37∘ and contact angles 𝜃 = 140∘, 151∘, 162∘,
respectively. Left: Experimental results from [206]; Right: Present 2D-simulation re-
sults. The red dashed lines are circular fits of droplet profiles. . . . . . . . . . . . . . . 96

8.2. Droplet evolution with time in a funnel-like pore structure for different contact angles
𝜃. (a) 𝜃 = 60∘, (b) 𝜃 = 120∘. The open angle for the structure are 2𝜑 = 60∘. The ratio
of the droplet diameter to the tunnel diameter 𝐷/𝐿 is set as 3. . . . . . . . . . . . . . 96

8.3. Schematic of droplet penetration into pore structures. In (a), (c) and (d) the pore has
an open angle 2𝜑 with narrowest pore diameter 𝐿. (a) The circle with black solid line
depicts the initial state and the droplet with fitted red dashed circle approximately cor-
responds to a critical state that the droplet cannot totally penetrate into the narrow
part. The initial droplet diameter is 𝐷. Here, I assume 𝐷 >> 𝐿 and 𝜑 is very small.
The red fitted circle centering at 𝑂 has a radius 𝑅 and intersects with the substrate
at the points 𝑀 and 𝑁 . 𝑁 is exactly on the funnel throat. The dot dashed line goes
through the point 𝑂 and the open angle apex 𝐴. The black dashed line through 𝑀 is
the tangent line of the red circle and thus 𝜃 represents the contact angle. The line 𝑂𝑃
is normal to the substrate surface. (b) Regardless of open angle and droplet spreading
takes place only inside the pore with diameter 𝐿. In (c) and (d), the green color indi-
cates exactly the critical droplet shape that are not able to totally penetrate into the
narrow part. The red and blue dashed circles with radii 𝑅 fit the droplet profiles in
the left and right sides, respectively. 𝑀1, 𝑀2, 𝑁1, 𝑁2 are contact points of the three
phases. (c): 𝜑 ∈ (0,𝜋/2]. (d): 𝜑 ∈ [𝜋/2, 𝜋]. 𝜃1 = ∠𝑂1𝑁1𝑁2, 𝜃2 = ∠𝑂2𝑀1𝑀2. . . . . 98
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8.4. Regime diagrams for the droplet final states in pore structures with varying 𝜑 and 𝜃.
(a) Simulation snapshots for final states of droplets (𝐷/𝐿 = 3) with varying 𝜑 and
𝜃. (b) Regime diagram for the penetration states of the droplet with 𝐷/𝐿 = 3. Blue
squares: totally penetration into the narrow part; Red triangles: no penetration. I plot
the critical lines predicted by model 1 (dot dashed line divided by the gray dashed line.
Top: model 1b; Bottom: model 1a) and model 2 (solid line). In (c), I vary 𝐷/𝐿 from 1 to
5 and plot the corresponding critical lines (highlighted with different colors) predicted
by model 1 and model 2. The colored rhombus points are intersections of model 1 and
2 and the black dashed line described by Eq. 8.10 going through these points denotes
the upper limit of model 2. The circle points with error bars indicate the simulation
confirmed critical penetration states. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.5. Regime diagram for droplet final states in pore structures with different 𝐷/𝐿 and 𝜃.
The half open angle is kept constant with 𝜑 = 30∘ in (a)-(c). (a) Droplet final states
influenced by the contact angle 𝜃. (b) Droplet final states influenced by the droplet size
𝐷/𝐿. In (c) the blue squares and red triangles indicate whether droplet penetration
happens or not. The solid and dot dashed lines describe the theoretical predictions
with model 1a and 2, respectively. In (d) I vary 𝜑 from 10∘ to 150∘ (highlighted with
different colors) and plot the predictions with model 2. The inset displays a zoom of
the diagram in the range of 𝜃 ∈ [130∘, 150∘]. . . . . . . . . . . . . . . . . . . . . . . . 102

9.1. Comparison of droplet shape evolution on different substrates. (a) Snapshots of droplet
shapes. Left: Experiments from [80]. Right: Present simulations. From (i) to (iv)
the equilibrium contact angle 𝜃𝑒𝑞=3∘, 43∘, 117∘, 180∘. (b) Comparison of base radius
evolutionwith time. The symbols and solid lines denote experimental results from [80]
and simulation results, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.2. Snapshots of a water droplet with radius 𝑅 = 1.6 mm impacting the point-like de-
fect on a superhydrophobic substrate at the velocity 𝑢 = 1.2 m/s (centered impact).
Top: Experiment from [207]. Bottom: Present simulation. The contact angle in the
simulation is set as 𝜃 = 160∘. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.3. Simulation of a droplet (𝑅 = 1.3 mm) impacting at (𝑢 = 1.28m/s) a substrate textured by
a sphere with radius 𝑟 = 0.2 mm. Top panel: Lattice-Boltzmann simulation from [207].
Bottom panel: Present phase-field simulation. For each panel high-angle views and
cross-sections are shown in the first and second rows respectively. . . . . . . . . . . . 110

9.4. Impinging processes of droplets with diameter 3.1 mm on the superhydrophobic stripe
coated hydrophilic surface. The impact velocity is 𝑢=0.97 m/s. The contact angles on
hydrophilic and hydrophobic areas are 𝜃𝑝ℎ𝑖 = 50∘, 𝜃𝑝ℎ𝑜 = 165∘, respectively. (a) and
(b) Side and top views for present simulation. (c) and (d) Side and top views for the
experiment from [208]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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9.5. Simulation parameters of the liquid film on chemically patterned surfaces. (a) Two-
lattice-patterned substrate. (b) Four-lattice-patterned substrate. 𝜃𝑝ℎ𝑖 represents the
contact angle of the hydrophilic area (blue), and it keeps constant 𝜃𝑝ℎ𝑖 = 20∘. 𝜃𝑝ℎ𝑜
denotes the contact angle of the hydrophobic area (red) and it varies from 60∘ to 160∘.
𝐻0 represents the initial height of the liquid film. 𝐿 denotes the length of the hy-
drophilic pattern on the two-lattice-patterned surface. 𝐵 represents the whole width
of the two neighboring hydrophilic lattices and the hydrophobic area between them,
i.e., 𝐵 = 2𝐵𝑝ℎ𝑖 + 𝐵𝑝ℎ𝑜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.6. Simulation results for the evolution of the liquid film with 𝐻0=10 placed on the stripe
patterned substrate. From (a) to (d) the hydrophobic contact angles 𝜃𝑝ℎ𝑜 are 60∘, 90∘,
120∘, and 160∘ respectively, while 𝜃𝑝ℎ𝑖 =20∘ keeps constant [209]. . . . . . . . . . . . 113

9.7. Simulation results of liquid film with 𝐻0=10 placed on the lattice patterned substrate.
From (a) to (d) the hydrophobic contact angles 𝜃𝑝ℎ𝑜 are 60∘, 90∘, 120∘, and 160∘ re-
spectively, while 𝜃𝑝ℎ𝑖 =20∘ keeps constant [209]. . . . . . . . . . . . . . . . . . . . . . 114

9.8. The relative width 𝑊/𝑊0 of the liquid bridge as a function of time. 𝑊0 is the initial
width of the liquid film along the measure lines in the insets. (a) On the two-lattice-
patterned substrate, 𝑊0 = 𝐿 = 400. (b) On the four-lattice-patterned substrate,
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