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Zusammenfassung

In den letzten Jahren haben Fortschritte in der Hochdurchsatz-Genesequenzierung,
in Verbindung mit dem anhaltenden exponentiellen Wachstum und der Verfiigharkeit
von Rechenressourcen, zu fundamental neuen analytischen Ansétzen in der Biologie
gefithrt. Es ist nun moglich den genetischen Inhalt ganzer Organismengemeinschaf-
ten anhand einzelner Umweltproben umfassend zu sequenzieren. Solche Methoden
sind besonders fiir die Mikrobiologie relevant. Die Mikrobiologie war zuvor weitge-
hend auf die Untersuchung jener Mikroben beschriankt, welche im Labor (d.h., in
vitro) kultiviert werden konnten, was jedoch lediglich einen kleinen Teil der in der
Natur vorkommenden Diversitédt abdeckt. Im Gegensatz dazu ermoglicht die Hoch-
durchsatzsequenzierung nun die direkte Erfassung der genetischen Sequenzen eines
Mikrobioms, wie es in seiner natiirlichen Umgebung vorkommt (d.h., in situ).

Ein typisches Ziel von Mikrobiomstudien besteht in der taxonomischen Klassifizie-
rung der in einer Probe enthaltenen Sequenzen (Querysequenzen). Ublicherweise
werden phylogenetische Methoden eingesetzt, um detaillierte taxonomische Bezie-
hungen zwischen Querysequenzen und vertrauenswiirdigen Referenzsequenzen, die
von bereits klassifizierten Organismen stammen, zu bestimmen. Aufgrund des hohen
Volumens (10° bis 10%) von Querysequenzen, die aus einer Mikrobiom-Probe mittels
Hochdurchsatzsequenzierung generiert werden konnen, ist eine akkurate phylogene-
tische Baumrekonstruktion rechnerisch nicht mehr moglich. Dariiber hinaus erzeugen
derzeit iiblicherweise verwendete Sequenzierungstechnologien vergleichsweise kurze
Sequenzen, die ein begrenztes phylogenetisches Signal aufweisen, was zu einer Insta-
bilitdt bei der Inferenz der Phylogenien aus diesen Sequenzen fiihrt.

Ein weiteres typisches Ziel von Mikrobiomstudien besteht in der Quantifizierung
der Diversitit innerhalb einer Probe, bzw. zwischen mehreren Proben. Auch hier-
fiir werden iiblicherweise phylogenetische Methoden verwendet. Oftmals setzen diese
Methoden die Inferenz eines phylogenetischen Baumes voraus, welcher entweder al-
le Sequenzen, oder eine geclusterte Teilmenge dieser Sequenzen, umfasst. Wie bei
der taxonomischen Identifizierung kénnen Analysen, die auf dieser Art von Bau-
minferenz basieren, zu ungenauen Ergebnissen fithren und/oder rechnerisch nicht
durchfithrbar sein.

Im Gegensatz zu einer umfassenden phylogenetischen Inferenz ist die phylogenetische
Platzierung eine Methode, die den phylogenetischen Kontext einer Querysequenz in-
nerhalb eines etablierten Referenzbaumes bestimmt. Dieses Verfahren betrachtet den
Referenzbaum typischerweise als unverénderlich, d.h. der Referenzbaum wird vor,
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wéhrend oder nach der Platzierung einer Sequenz nicht gedndert. Dies erlaubt die
phylogenetische Platzierung einer Sequenz in linearer Zeit in Bezug auf die Grofie
des Referenzbaums durchzufithren. In Kombination mit taxonomischen Informatio-
nen iiber die Referenzsequenzen ermoglicht die phylogenetische Platzierung somit
die taxonomische Identifizierung einer Sequenz. Dariiber hinaus erlaubt eine phylo-
genetische Platzierung die Anwendung einer Vielzahl zusétzlicher Analyseverfahren,
die beispielsweise die Zuordnung der Zusammensetzungen humaner Mikrobiome zu
klinisch-diagnostischen Eigenschaften ermdoglicht.

In dieser Dissertation présentiere ich meine Arbeit beziiglich des Entwurfs, der Im-
plementierung, und Verbesserung von EPA-NG, einer Hochleistungsimplementie-
rung der phylogenetischen Platzierung anhand des Maximum-Likelihood Modells.
EPA-NG wurde entwickelt um auf Milliarden von Querysequenzen zu skalieren und
auf Tausenden von Kernen in Systemen mit gemeinsamem und verteiltem Speicher
ausgefithrt zu werden. EPA-NG beschleunigt auch die Verarbeitungsgeschwindig-
keit auf einzelnen Kernen um das bis zu 30-fache, im Vergleich zu dessen direkten
Konkurrenzprogrammen. Vor kurzem haben wir eine zusétzliche Methode fiir EPA-
NG eingefiihrt, welche die Platzierung in wesentlich gréfleren Referenzbdumen er-
moglicht. Hierfiir verwenden wir einen aktiven Speicherverwaltungsansatz, bei dem
reduzierter Speicherverbrauch gegen groflere Ausfithrungszeiten eingetauscht wird.

Zusétzlich présentiere ich einen massiv-parallelen Ansatz um die Diversitéit einer
Probe zu quantifizieren, welcher auf den Ergebnissen phylogenetischer Platzierun-
gen basiert. Diese Software, genannt SCRAPP, kombiniert aktuelle Methoden fiir
die Maximum-Likelihood basierte phylogenetische Inferenz mit Methoden zur Ab-
grenzung molekularer Spezien. Daraus resultiert eine Verteilung der Artenanzahl auf
den Kanten eines Referenzbaums fiir eine gegebene Probe. Dariiber hinaus beschrei-
be ich einen neuartigen Ansatz zum Clustering von Platzierungsergebnissen, anhand
dessen der Benutzer den Rechenaufwand reduzieren kann.



Abstract

In recent years, advances in high-throughput genetic sequencing, coupled with the
ongoing exponential growth and availability of computational resources, have en-
abled entirely new approaches in the biological sciences. It is now possible to per-
form broad sequencing of the genetic content of entire communities of organisms from
individual environmental samples. Such methods are particularly relevant to micro-
biology. The field was previously largely constrained to the study of those microbes
that could be cultured in the laboratory (i.e., in wvitro), which represents a small
fraction of the diversity observed in nature. In contrast to this, high-throughput se-
quencing now enables the collection of genetic sequences directly from a microbiome
in its natural environment (i.e., in situ).

A typical goal of microbiome studies is the taxonomic classification of the sequences
contained in a sample (the queries). Phylogenetic methods are commonly used to
determine detailed taxonomic relationships between queries and well-trusted refer-
ence sequences from previously classified organisms. However, due to the high vol-
ume (10° to 10%) of query sequences produced by high-throughput sequencing based
microbiome sampling, accurate phylogenetic tree reconstruction is computationally
infeasible. Moreover, currently used sequencing technologies typically produce short
query sequences that have limited phylogenetic signal, causing instability in the
inference of comprehensive phylogenies.

Another common goal of microbiome studies is to quantify the diversity within a
sample, as well as between multiple samples. Phylogenetic methods are commonly
used for this task as well, typically involving the inference of a phylogenetic tree
comprising all query sequences, or a clustered subset thereof. Again, as with tax-
onomic identification, analyses based on this kind of tree inference may result in
inaccurate results, and/or be computationally prohibitive.

In contrast to comprehensive phylogenetic inference, phylogenetic placement is a
method that identifies the phylogenetic context of a query sequence within a trusted
reference tree. Such methods typically regard the reference tree as immutable, that
is the reference tree is not altered before, during, or after the placement of a query.
This allows for the phylogenetic placement of a query sequence in linear time with
respect to the size of the reference tree. When combined with taxonomic information
for the reference sequences, phylogenetic placement therefore allows to identify a
query. Further, phylogenetic placement enables a wealth of additional post-analysis
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procedures, allowing for example the association of microbiome characteristics with
clinical diagnostic properties.

In this thesis I present my work on designing, implementing, and improving EPA-
NG, a high-performance implementation of maximum likelihood phylogenetic place-
ment. EPA-NG is designed to scale to billions of input query sequences and to
parallelize across thousands of cores in both shared, and distributed memory en-
vironments. It also improves the single-core processing speed by up to 30 times
compared to its closest direct competitors. Recently, we have introduced an op-
tional feature to EPA-NG that allows for placement into substantially larger refer-
ence trees, using an active memory management approach that trades memory for
execution time.

Additionally, I present a massively parallel approach to quantify the diversity of a
sample, based on phylogenetic placement results. the resulting tool, called SCRAPP,
combines state-of-the-art methods for maximum likelihood phylogenetic tree infer-
ence and molecular species delimitation to infer a species count distribution on a
reference tree for a given sample. Furthermore, it employs a novel approach for
clustering placement results, allowing the user to reduce the computational effort.
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1. Introduction

1.1 Motivation and Background

Perhaps the greatest discovery of the last century has been that life operates on in-
formation that is encoded in chains of just four individual molecules. These molec-
ular chains collectively comprise the genetic information of every living cell, and
serve as the blueprint for practically all forms of life we observe. From single celled
microbes to complex multicellular organisms such as ourselves, we find correlative
and causative relationships between genetics and phenomena as disparate as human
psychology [35] and the resilience of plants to drought [33].

It is therefore hard to overstate the significance of the recent emergence of two key
technologies: inexpensive high throughput genetic sequencing, and abundant high-
performance computing. The first, high throughput sequencing, allows us to collect
genetic information in remarkable volumes. For example, the cost of sequencing
the total genetic information (called genome) of an individual human has decreased
dramatically since it was first achieved in 2001 (from ~$95, 000, 000 to ~$700) [113].
Meanwhile, the available computing power, for example as measured by the peak
floating point operations per second that can be performed by the world’s fastest
supercomputer, is still growing exponentially [80]. Taken together, these technolo-
gies promise to help us in answering numerous questions about our health, our
environment, and the impact we have on it.

Of particular relevance for this thesis is the study of the genetic content of entire mi-
crobial communities, or microbiomes. Microbial communities are ubiquitous in the
biosphere, and fulfill a wide variety of functions in their environments. The microbial
community in the human gut, for example, has been shown to be incredibly diverse
[90], and also to perform varied and important functions in the digestive process
[31]. Perhaps unsurprisingly, there are strong associations between the composition
of the human microbiome, and human diseases as well as disorders [13, 105, 119].
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If we broaden our view, we observe a widespread repetition of this pattern of the
presence of microbial communities and their connection to the larger environment.
For instance, a diverse group of microscopic organisms called plankton (from the
ancient Greek word mhayxtdg, meaning “wandering”) form the basis of the marine
food chain [62]. In addition, the planktonic ecosystem constitutes a major carbon
sink [42], and thus monitoring its state is of high relevance to the ongoing efforts to
reduce the atmospheric carbon concentration.

Finally, microbial communities have been found to be an integral part of soil, for
instance in natural forests [70] and agricultural lands [6]. For example, some plants
are able to form symbiotic relationships with nitrogen-fixing microbes, where the
host plant creates an anaerobic environment for the microbes, while benefiting from
the nitrogen the microbes produce [86]. If this symbiosis can be extended to other
plants such as food crops, it may open up a novel path to agriculture that is less
dependent on synthetic fertilizer [85].

Consequently, considerable research effort has been dedicated to catalogue such mi-
crobial communities. For the human body, the Human Microbiome Project com-
prises an extensive database of microbiome samples [47, 111]. For the oceans, the
Tara Oceans expeditions have collected Terabases of genetic information from marine
water samples [54, 107]. More recently, the Plankton Planet project has collected
globally distributed marine microbiome samples using volunteer sailors (affection-
ately dubbed planktonauts) [24].

Common to microbiome studies is that their sample data is compositional, that is a
sample represents a collection of organisms. Thus, a common goal is to determine the
composition of a sample and in doing so, attempt to characterize the environment
that was sampled. In practice, we do so by identifying the relation of each individual
component of a sample (called a query) against a larger set of known organisms
(referred to as the references) using computational methods.

One straight-forward way to assign an identity to a query is through similarity search
against a database of organisms [1]. Such approaches typically do not require much
preprocessing, and yield an answer that is simple to interpret: a percent similarity
measure, and a measure of confidence in the result. A drawback of this methodology
is that it only provides limited indication about the relation of the query to other
organisms, especially if the reference data is incomplete/sparse [58].

In contrast to this, phylogenetic methods allow us to find the closest relatives of a
query from an evolutionary perspective. Phylogenetic trees represent the evolution-
ary history of a group of organisms, based on their (genetic) data. When we add
a query to an existing tree, we do not only gain information about the closest ref-
erence but we also determine its evolutionary relationship with respect to all other
references. Through this, we are able to more confidently assess the identity of a
query and its novelty in relation to the reference data.

One limiting factor of phylogenetic methods is the computational complexity of
searching for the tree topology that best explains the data. In part, this is due to
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the exceedingly high number of possible ways to resolve the branching pattern: for
a tree comprising n organisms there are O(n!) possible topologies [37].

For the specific problem of adding (or placing) a query onto a tree of references
(or reference tree), we can circumvent the need to conduct a full tree search by
keeping the original topology fixed. This allows us to evaluate the possible insertion
locations of a query in O(n) operations, where n is the number of organisms in the
tree. This makes the problem tractable for typical input sizes, which can comprise
millions of individual queries [70]. This approach is called Phylogenetic Placement,
and it is the main focus of the work presented in this thesis.

In addition to query identification, we can use phylogenetic methods to quantify
the diversity of a sample [34]. In other words, the distance between two organisms
in a phylogenetic tree implies a measure of relatedness. If we include multiple
individuals from a single population in the tree, we can expect them to be grouped
closely together, as it is unlikely that substantial genetic variation will be present
among individuals. In contrast, if we include organisms that are highly dissimilar
(such as avians and mammals) we generally expect the distances in the tree to be
large in relation to within-population distances. This reasoning also allows us to
use phylogenetics to determine a boundary between groups of organisms, or species
[41, 118].

1.2 Scientific Contribution

The scientific contributions of this thesis are centered around the concept of Max-
imum Likelihood Phylogenetic Placement: its implementation, its enhancement,
enabling its application to ever larger datasets, and broadening its use to new areas
of study.

During my work I wrote and evaluated the EPA-NG (Evolutionary Placement Al-
gorithm - Next Generation) software (covered in Chapter 3). It combines features
from the previously existing phylogenetic placement softwares EPA [8] and PPLACER
[75], while greatly improving the single-core speed (up to 30 times faster), and for
the first time enabling phylogenetic placement to be natively parallelized on dis-
tributed memory systems, such as supercomputing systems. EPA-NG was written
using the LIBPLL-2 library, which offers highly optimized and efficient core routines
to calculate the phylogenetic likelihood function [40]. During my work I actively
contributed to LIBPLL-2, and whenever possible I abstracted code into the library
so as to increase the re-usability of my efforts.

This was the case with my most recent publication (covered in Chapter 4), which
added an active memory management approach to EPA-NG. Here, I added the
underlying functionality to the LIBPLL-2 library, enabling other users and future
phylogenetic softwares to re-use it. This active memory management enables al-
lows to compute the phylogenetic likelihood of a tree, while using only a fraction
(~log(n)) of the typical memory footprint. For EPA-NG, enabling this function-
ality has implications on the performance of the program, as it creates a trade-off
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between memory savings and execution time. This new functionality will enable
users to perform EPA-NG-based phylogenetic placement analyses in cases where it
was previously not possible, such as when the main memory available to the user is
limited, or when the reference tree is particularly large.

For my third first author publication I have implemented and evaluated SCRAPP
(covered in Chapter 5). SCRAPP is a pipeline that takes results from EPA-NG
and combines them with the phylogenetic tree inference tools PARGENES [82] and
RAXML-NG [60], as well as the molecular species delimitation tool MPTP [53].
Similar to EPA-NG, it can also run in parallel on distributed memory systems. The
output of the pipeline is a detailed statistic of the distribution of species counts on
the reference tree, as well as a novel application of an existing phylogenetic diversity
metric. I present a novel approach to reducing the dimensionality of placement re-
sults, called Placement Space Clustering (PSC), which allows the user of the pipeline
to decrease the computational effort.

More recently, I was the co-first author in a publication that reviewed the difficulties
of inferring reliable phylogenetic trees for the SARS-CoV-2 virus [83]. To this end,
we constructed a number phylogenies using a range of methodological choices, and
evaluated them using statistical methods. We concluded that the data is extremely
challenging and that any phylogeny of this virus should be interpreted with cau-
tion. We also investigated the possibility of rooting the SARS-CoV-2 phylogenies
we generated using Bat and Pangolin sequences via two different methods, one of
which being phylogenetic placement. However we were unable to conclusively do so,
as we did not observe a definitive signal when attempting to place these outgroup
sequences onto our evaluated phylogenies. In addition, we attempted to apply the
MPTP molecular species delimitation method to this phylogeny, again without suc-
cess.

In addition to my first author work, I collaborated on several publications. In [16]
we presented a method which enables the automatic, taxonomy driven construction
of a reference tree. We achieve this by grouping the sequences of a large corpus of
references together, each of which represents a possible subtree. The main reference
tree is then this backbone tree, against which query sequences can be placed. To
more accurately resolve the placement of a query, a multi-level placement can be
performed by recursing into the subtree. The publication also introduces our method
for taxonomic assignment of placement results, and its implementation in our GAPPA
tool.

A subsequent publication covered the GAPPA tool, and its underlying library GEN-
ESIS, in greater detail [17]. The GENESIS C++ library covers functionality that is
highly useful in handling a wide variety of phylogenetic data, with a particular fo-
cus on phylogenetic placement data. The GAPPA tool represents a command line
interface to the most common functionality included in the library, as well as more
advanced use-cases related to data analysis, visualization, data management, and
data generation.
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Another collaboration resulted in a publication that investigated the efficacy of
using long-read metabarcoding sequences to study microbiomes [50]. In particular,
this involved directly comparing phylogenetic placement with fully resolving a tree
that includes both query and reference sequences. Additionally, this study included
another application of the aforementioned taxonomic assignment approach, as well
as a more bespoke version thereof that could be applied to the fully resolved tree
that combined query and reference sequences.

A more recent collaboration is my involvement in the Serratus open science project
[30]. Here the goal was to systematically explore one of the largest raw sequence
databases using methods from sequence assembly and phylogenetic/taxonomic iden-
tification. This was enabled by the use of cloud computing infrastructure, which
allowed us to process ~10 petabases of data and identify ~10° novel RNA viruses,
which expands the total number of known viruses by an order of magnitude.

1.3 Structure of this Thesis

In Chapter 2 I will introduce the foundational concepts and methods that are nec-
essary to understand the remainder of the thesis.

The three following chapters are largely based on the three main first-author publi-
cations that constitute the body of my thesis. The subject of Chapter 3 is the orig-
inal publication that accompanied the release of EPA-NG and comprises a detailed
description of the implementation of the algorithms, the parallelization schemes em-
ployed, as well as the efforts we undertook to evaluate the software. In Chapter 4,
I present my most recent enhancements to the memory management of EPA-NG,
which allows the user to set an upper limit to the memory consumption. I inves-
tigated the impact of this mode on the execution time for a number of datasets,
and investigate its implications on the core parallelization employed in the software.
Chapter 5 introduces SCRAPP, a pipeline that uses phylogenetic tree inference and
phylogenetic species delimitation tools to compute species counts and a measure of
diversity for a given phylogenetic placement result.

Finally, I conclude the thesis with Chapter 6 where I provide a brief summary of
the thesis, and discuss possible future directions of research. In addition, I include
some supporting information in Appendix A which is beyond the scope and format
of the thesis, such as file formats.
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2. Foundations

In this chapter I outline the fundamental concepts and approaches that are relevant
to this thesis. These include background on the data and its initial handling, the
concepts behind phylogenetics and how they relate to phylogenetic placement, and
finally some background on related topics such as quantifying biological diversity
and species delimitation.

2.1 Molecular Sequence Data

We obtain molecular data through the process of sequencing, which reads the ge-
nomic (or proteomic) information of a cell, tissue sample, organism, or microbial
environment. We can then transform this information into a human and/or ma-
chine readable textual representation.

The predominant sequencing technology (dubbed Next Generation Sequencing (NGS))
produces an exceedingly high number (on the order of 10°) of relatively short (50-
400 characters) contiguous strings called reads [68, 74]. Currently, a new generation
of long-read sequencing technologies are emerging that produce orders of magnitude
longer read lengths [3, 49].

More generally, we represent molecular data as a string, or sequence of characters
from a given alphabet. The most common alphabets are the Deoxyribonucleic Acid
(DNA) alphabet (A, C, G, and T), the Ribonucleic Acid (RNA) alphabet (swap T
for U), and the Amino Acid (AA) alphabet (20 characters coding for the standard
amino acids). These alphabets can be extended to include ambiguous characters.
For example, when it is unclear whether a character should be A or G we represent it
as R (Adenine and Guanine are both Purine bases). Thus, in practice we may have
to represent DNA using 16 characters covering all possible ambiguous states.

Due to the large volume of sequences produced by NGS, a common first step is
to perform a dimensionality reduction through sequence clustering. Typically, we
then select one sequence of each cluster as the representative of the cluster. This
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ATGGATATCCCATACAA ATGG|-ATAITCCCATAICAA
ATGGCCACCCTCCCAA ATGGIC-CAC-CCTCCICAA
ATGGCCACTCCAA —>|ATGG|CC-|A|-C--T-C|CAA
ATGGCCACTCCAA ATGGC-CAT-CA-CGICAA
ATGGCCACTCCAA ATGG-ACA-CCCA-ACAA

Figure 2.1: Illustration of Multiple Sequence Alignment process. On the left are
five DNA sequences of similar length. The process of Multiple Sequence Alignment
(MSA) groups similar characters together in columns (shown on the right), with the
goal of a column containing characters that have descended from a common ancestor
(i.e., establishing a relationship of homology). Doing so typically involves adding gap
characters such as ’=’, which represent the insertion or deletion of a character in the
sequence during its evolutionary history. In this example, the highlighted columns
were especially stable, or conserved.

approach is also called Operational Tazonomic Unit (OTU) clustering, as each clus-
ter is expected to represent sequences of either the same, or related organisms. We
use the more abstract term of 'taxonomic unit’, as the level of relatedness in terms
of taxonomy can vary due to a number of factors, such as the clustering param-
eters, and the rate of evolution of the organisms. The most common approaches
to OTU clustering use sequence similarity thresholds [29, 97, 103], although more
sophisticated approaches do exist [71, 72].

2.1.1 Multiple Sequence Alignment

A first step in investigating the possible shared evolutionary history of a set of
sequences is to perform sequence alignment. Specifically, we call the process of
aligning more than two sequences against each other Multiple Sequence Alignment
(MSA). The goal of alignment is to group the characters of the different sequences
together into alignment columns in such a way that a column represents a shared
evolutionary history, such as descent from a common ancestor. We call this similarity
due to shared descent homology [23], and more specifically in this case sequence
homology [57].

Over generations, characters of a sequence may be lost (called a deletion) or added
(called an insertion). The alignment process can account for this by inserting gap
characters (usually denoted by ’-’) into the sequences. Note that, when a column of
an alignment consists entirely of gap characters, it does not convey any meaningful
information and is thus typically ignored by downstream applications.

I illustrate the alignment process using a toy example in Figure 2.1. The resulting
alignment columns can be seen as the components of a character matrix, with each
row representing a sequence/organism.

There are two major approaches to align two sequences with each other (called
pairwise alignment). Global alignment approaches attempt to align every character
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of both sequences, and are best suited for sequences of approximately equal length
and with an expectation of a high number of homologous sites across the entire
width of both sequences.

In contrast to global alignment, a local alignment approach attempts to align a se-
quence to a subregion of the other sequence, flanking the smaller alignment region
with contiguous gap sections. Local alignment is best suited for aligning a substan-
tially shorter sequence against some larger sequence, where the larger sequence often
serves as a reference. One common use of this is sequence similarity search, such as
implemented in BLAST [1], which allows finding similar regions in a substantially
larger reference corpus/database.

We can evaluate a given MSA using the Sum-of-Pairs (SP) score [88]. For a given
site, we first calculate the sum of all pairwise distances between the sequences in
the MSA, using a distance function such as the edit distance [104]. We can then
calculate the overall SP score as the sum of these per-site distances.

Pairwise alignment algorithms have polynomial-time complexity, however computing
an SP-optimal MSA is NP-Complete [112]. Fundamentally, this is because alignment
algorithms rely on Dynamic Programming (DP), where each sequence represents a
dimension of the DP matrix. Extending this basic approach to n sequences would
result in a DP matrix of n dimensions. In practice, greedy algorithms and heuristics
are used to overcome this issue, as it would otherwise yield aligning thousands of
sequences as computationally infeasible [109].

2.1.2 Alignment against a Reference

A more specialized use-case of MSA is aligning a number of sequences against an
already established reference MSA. This scenario is particularly relevant for mi-
crobiome data, as sequences from such studies are typically short, numerous, and
exhibit a relatively high sequencing error rate [102]. Here, we call such sequences
Query Sequences (QSs), as they are typically used to query a larger corpus of data
to answer questions such as “Which known organism does the sequence belong to?”.
In this example, the reference MSA would be a collection of curated, evolutionarily
related sequences that cover the diversity of the microbial environment under study.

Alignment against a reference simplifies the problem of MSA | as the alignment of the
reference sequences remains fixed (i.e., it is not changed by including the QS). For
example, using HMMER  [28] we can build a Hidden Markov Model (HMM) profile
of a set of aligned reference sequences. The resulting profile can be understood as a
single entity, or meta-sequence, against which we can align our QSs.

2.2 Phylogenetic Tree Terminology

Using graph theory, we represent a phylogenetic tree as a Directed Acyclic Graph
(DAG), comprising a set of nodes which are connected via a set of edges. I illustrate
the related terminology in Figure 2.2. We call the edges of this graph the branches
of the tree. The tip or leaf nodes (i.e., nodes with a degree of one) of the graph
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leaf nodes

Figure 2.2: Basic Phylogenetic Tree terminology. Displayed is a tree with 5 leaves
(A through E), connected via branches to 4 internal nodes. The dashed connection
represents the possibility of further nodes in that direction and is purely for the
purpose of demonstration: if we assume that the tree ends there, the figure serves
as an example of a rooted tree (with the root being the node labeled as such).
Otherwise, if the tree continues, the figure is an example of an unrooted tree with
the root node being the arbitrarily chosen wirtual root. Each internal node has 3
connections, one in the direction of the root, and two in in the opposite direction,
also referred to as below the node. The nodes below an internal node represent its
descendants. Thus in its immediate context we call the internal node the parent,
and its two direct descendant nodes its child nodes. Each internal node induces a
subtree, which includes the internal node and all its descendant nodes.
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represent the sampled organisms of the tree. If the tree is rooted, the graph includes
an explicit root node with a degree of two. All other nodes in the graph are called
internal nodes and represent evolutionary events such as speciation or within-species
diversification. If the tree is unrooted, meaning there is no explicitly designated root
node, we may choose any internal node as the virtual root of the tree. If not otherwise
specified, we will henceforth refer to the virtual root of an unrooted tree simply as
its root.

For the purposes of this work we define a phylogenetic tree to be strictly bifurcat-
ing, meaning that each internal node is connected through branches to exactly two
descendant nodes (called its child nodes), as well as being connected to exactly one
ancestor node (called its parent node) in the direction of the root of the tree. This
ancestor /descendant relationship extends from an internal node to all nodes below
(i.e., in the direction away from the root) the internal node.

We call a subset of a tree including an internal node, all its descendant nodes, and
the respective branches, a subtree. The internal node that defines a subtree is called
the root of the subtree, and represents the Lowest Common Ancestor (LCA) of all
nodes in the subtree. We can also interpret a subtree as a lineage of its constituent
organisms.

2.2.1 Tree Traversal

It is often necessary to navigate through a tree via its nodes an edges, usually
visiting them all, in a process called tree traversal. Typically starting from the root,
a number of traversal orders are possible. Most commonly, we use depth-first-type
traversals, as they follow the branching pattern of the tree and can be expressed in
a recursive statement: the traversal of a parent node comprises the full traversal of
the first child node, and subsequently the full traversal of the second child node. If
the current node does not have children (i.e., it is a leaf), the recursion terminates.
We further distinguish traversals by the point in time when a node is considered
to have been visited: the first time the recursion passes the node (making it a pre-
order traversal), or the last time the recursion passes the node (yielding a post-order
traversal). Additionally, we define a traversal to be in-order if it performs a traversal
of one child, then visits the parent node, and finally performs a traversal of the other
child.

2.2.2 Branch Lengths and Ultrametric Trees

The branches of a tree may have a length associated with them. For the methods
used in this work, branch lengths represent the mean expected number of character
substitutions per site in the underlying MSA (also called evolutionary time).

Evolutionary time may differ from actual time as rates of nucleotide substitution
can vary between lineages for a variety of factors, such as differing times between
subsequent generations of the organisms, or increased environmental pressures caus-
ing higher diversification rates. For this reason the distance from the leaves of a tree
to the root will generally not be equal for all leaves.
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When the opposite is true, that is the path lengths from the root to each leaf are
equal, the tree is ultrametric.

2.3 Phylogenetic Likelihood

A phylogenetic tree represents a hypothesis about the evolutionary relationships
of the organisms it comprises, which are themselves represented by (in most cases
molecular) data. The central goal of phylogenetics is to find the tree that best
reflects reality. However, as we only have limited data (i.e., we are, with rare excep-
tions, unable to obtain data from extinct organisms and ancestral species), we hope
to approximate reality by trying to find the tree that yields the best possible expla-
nation, given the data. To do so, we require a function that allows us to calculate a
score for a specified tree.

There are several established approaches that score a tree based on the data. For
example, Mazimum Parsimony (MP) methods sum the required character changes
needed to explain the topology of the tree, given the data. The best possible tree
under the MP criterion is the one that minimizes the score, yielding the simplest
explanation (hence the name Maximum Parsimony).

For the purposes of this work, the relevant scoring method is the Phylogenetic Like-
lihood Function (PLF), which is the basis of Mazimum Likelihood (ML) phylogenetic
inference. It relies on statistical models of evolution, and operates on the tree using
the Felsenstein Pruning Algorithm (FPA). In the following sections I elaborate on
these concepts.

2.3.1 Statistical models of Nucleotide Evolution

Through inheritance, the genetic information of an organism is passed to subsequent
generations. This process relies on the replication of the genome of the organism,
which is an imperfect process that introduces errors. When such incorrectly copied
sites persist, we call them mutations. Mutations can, in the best case, contribute to
the ability of an organism or species to adapt to its environment, and thus selective
environmental pressures will influence the DNA sequence of the organism. For ex-
ample, when competition for food sources is high, an organism that had a mutation
that allowed it to access a new food source will have an advantage. If such a new
trait is passed down to its direct descendants, they too will have an advantage, and
thereby adapt better to the environment. This was most famously observed in the
differentiation of Finch beaks on the Galapagos Islands, allowing them to specialize
to eat different nuts [23]. It is this type of change and diversification over time that
a phylogenetic tree displays.

The rate at which a character in the sequence changes from some state x to some
state y is expressed by the transition rate A\, ,. The A, , rates express all possible
transitions between the states of the alphabet, and thereby form a Markov Chain
(MC). We illustrate this in Figure 2.3 for the DNA alphabet.
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Figure 2.3: The Markov chain process of nucleotide state change. Displayed are the
four states (A, C, G, T) of the DNA alphabet, and the transitions between them. Each
transition between two states  and y has an associated rate A, ,. Here we show the
transitions and their rates as being symmetric, that is the edges are bidirectional
and A\ y = Ay o

Additionally the Markov process requires a prior probability m, of starting in state
x, which we call the stationary or base frequency. The values of 7 must sum to one:

Y om=1 (2.1)

zeX

More commonly, we define the MC by its Q-matrix (in this case for the DNA alpha-
bet)

qa 7Tc/\c,A 7TG)\G,A 7TT/\T,A
Q= 7TA)\A,C qc 7TG)\G,C 7TT/\T,c (2_2)

7TA)\A,G Wc)\qc dc 7TT)\T,G
71'A)\A,T 7Tc)\c;r 7TG)\G,T qr

where we define ¢, such that the row of the matrix sums to 0.

We further assume that this Markov process is time reversible, meaning that m,\; , =
TyAy,z- Notably, using a time reversible model makes the choice of direction of the
ancestral relationship arbitrary, as the transition rates between character states are
symmetric. In other words, the choice of the root of a tree can be arbitrary, at least
from the perspective of the evolutionary model.

Constraining the number of A, , parameters allows to define different models of char-
acter evolution (also called substitution models). For the DNA alphabet, common
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choices include setting all transition rates to the same value [38, 52|, or differentiat-
ing between transitioning between or within nucleotide types (i.e., transitions and
transversions) [43, 56]. Further, a commonly applied constraint is to set the base
frequencies to be uniform (i.e., each to 1) [52, 56]. When we constrain these choices,
we limit the number of free parameters in the model. In contrast, the Generalised
Time Reversible (GTR) model imposes no constraints on A or 7, and therefore allows
for the maximum number of free parameters [108]. Choosing a model for a given
dataset is often done via model selection algorithms [21, 81].

A priori, substitution models make the basic assumption that sites evolve at the
same rate (i.e., they assume rate homogeneity). In reality, rates may vary across
sites due to their relative importance in altering the function or structure of the
resulting protein or RNA molecule [114]. For example, the different sites of a codon,
the triplet of DNA characters that code for an amino acid, affect the resulting amino
acid differently. Multiple nucleotides in the third position may code for the same
amino acid, given that the remaining two positions are unchanged. Thus, a site in
the alignment belonging to the third position of a codon can evolve more freely (i.e.,
at a higher rate).

We can account for rate heterogeneity, while limiting the additional number of free
parameters, by modeling it using a fixed number of rates. Most commonly this is
done using the I' model of rate heterogeneity [114], in which rate variation is modeled
using a I' distribution, from which we obtain a set of j discrete rates 7 = 71, ..., 7;.
The T rates are not part of the substitution model, and instead are applied in the
calculation of the phylogenetic likelihood, which is the subject of the following section.

2.3.2 Phylogenetic Likelihood Function

Recall that our goal is to use the just described models to score a tree, given some
data. The nodes of the tree are connected by branches, which represent the transition
between the possible states at the nodes. Thus, we have to take into account the
branch lengths when calculating probabilities on the tree.

To do so, for a branch length b, we calculate the P-matrix

P(b) = e (2.3)

giving us the transition probabilities p,,(b) (i.e., the entries of the matrix).

We can now formulate the likelihood of a tree. Consider the example tree T" displayed
in Figure 2.4, with a parent node k and its two descendant internal nodes m and [.
In turn, m and [ have descendant leaf nodes, for which we only display the character
states. In this example, we will only consider a single site s; of the underlying
alignment, displayed at each internal node with a possible state z € X, X being the
state alphabet, and at the leaf nodes by the actual state characters. For the sake of
simplicity assume that k is the root of the tree. We can calculate the likelihood as
the sum over all possible values for the different x, and their associated transition
probabilities along the tree:
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A 4 A

. 4 .
Figure 2.4: Subtree illustrating tip and inner node states. Tip nodes (N; =
{A, C, G, T}) are represented by their nucleotide states, inner nodes are labeled

arbitrarily (N; = {k,l,m}). Nodes are connected via edges with some given branch
lengths b;,7 € N; U N;. Possible inner node character states are labeled x;,7 € N;.

Sz‘T Z Z Z Tx, P, l"k pzl T (bl)pA T (bA)pC T (bC)pG x] (bG>pT ] (bT)

zm€E€X x1€EX xpeX

(2.4)

To obtain the likelihood of the tree for the entire alignment, we calculate the product
over the per-site probabilities:

L(T|D) = HP si|T) (2.5)

In practice, P(s;|T) quickly becomes very small. To avoid numerical issues, we
calculate its logarithm log(P(s;|T)), and thus report the log-Likelihood instead

logL(T'|D) = Zlog (s:]T)) (2.6)

2.3.3 Felsenstein Pruning Algorithm

We can rearrange Equation 2.4 to group together computations belonging to an
inner node and its descendants:

P(SllT) = Z (7T$k Z (pxm,xk (bm)pA,:cm (bA)pC,xm (bc)) Z (pﬁt?z,l“k (bl)pc,xz(bG)pT,xl(bT>>>

rrEX Tm€X T €X

(2.7)
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Figure 2.5: The phylogenetic likelihood, as calculated in Equation 2.7, factored
to show its relation to the tree structure. This figure reflects the tree displayed
in Figure 2.4, with inner nodes N; = {k,l,m}. The tree has four unnamed leaf
nodes, each of which observes one of the character states of the state alphabet
X={a, C, G, Th

Doing so allows us to divide up the necessary computations ezxactly along the branch-
ing pattern of the tree. I illustrate this in Figure 2.5. Here again I show the situation
for a single site in the alignment. We denote the per-state probabilities for node k
as p,,, which we calculate based on the per-state probabilities p,, and p,, of its two
direct descendants m and [. In turn, we calculate p,,, and p,, from their respective
direct descendants, which in this case are leaf nodes with distinct state characters.

This approach allows us to compute partial results of the overall tree likelihood
for each subtree, independently. In practice, we store such partial, or conditional,
likelihood results in a Conditional Likelihood Vector (CLV). A CLV at node k stores
ps,, for each state x, € X, for each site in the alignment. This is compounded when
we use the I' model of rate heterogeneity (Section 2.3.1), as such a model requires
us to calculate p,, for each combination of discrete I' rate and possible character
state.

Consequently, the size of a CLV is the number of sites, times the number of states
in the alphabet, times the number of discrete I' rates. In software, we store each
such value using a double precision floating point number (i.e., requiring 8 bytes
each). Consider that, for phylogenetic inference software such as RAXML-NG [60],
we store one CLV at each internal node. Thus, for either large trees (e.g., > 10,000
leaves) and/or wide alignments (e.g., > 10, 000 sites), the memory requirements for
storing CLVs can become a limiting factor.

2.3.4 Branch Length Optimization

The PLF allows us to score a given tree with a given set of branch lengths. In
ML phylogenetic methods, we obtain the values for the branch lengths through the
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process of Branch Length Optimization (BLO), which attempts to find values for the
set of branch lengths that maximize the overall tree likelihood, while keeping the
tree topology fixed. In practice, we perform BLO using the Newton-Raphson (NR)
method [96, 116], which iteratively finds values x for which a function f(z) becomes
successively closer to 0. The iteration is defined as

Tpy1 = Tp — f’(fL’ )
n

(2.8)

In our case, as we want to maximize the likelihood £ of the tree, we are interested
in finding the zero-values of its first derivative £'. Thus, for a branch length b the
NR formulation becomes

L/

I (2.9)

bn+1 = bn -

which we perform until convergence (i.e., the difference between b, and b, falls
below some threshold). We repeat the procedure for every branch in the tree. In ML
phylogenetic inference, we optimize each branch by visiting it via a tree traversal
(typically a post-order traversal), and perform the overall tree traversal multiple
times, as the optimal length of one branch may change depending on the values of the
other branch lengths in the tree. In turn, this tree-wide branch length optimization
converges when the change overall tree likelihood between subsequent tree traversals
falls below some given threshold.

2.4 Phylogenetic Placement

Phylogenetic placement is the main focus of this work. I include a short introduction
of its main concepts and terminology in the following section, and elaborate on
details in later chapters. This section attempts to be sufficiently general such as to
cover the underlying ideas of most phylogenetic placement approaches.

2.4.1 Terminology

In phylogenetic placement, our goal is to determine the branches of a given Reference
Tree (RT) to which a Query Sequence (QS) belongs. Doing so typically involves
extending each branch of the RT by a novel branch leading to the QS. I illustrate
this basic scenario in Figure 2.6. The branch on which we carry out the extension,
called insertion branch, initially comprises two nodes which belong to the reference
tree. We identify these nodes by their relation to the root of the RT, calling the node
that is closer to the root the proximal node and its opposite counterpart the distal
node. To attach the new branch we insert a new node, called the basal node, into
the branch. This segments the branch into two parts, which we call the proximal
and distal branches, again reflecting their relation to the root of the tree. Finally, we
attach a node representing the QS via a branch, called the pendant branch, to the



18 2. Foundations

pendant

Figure 2.6: Illustration of placement terminology. The situation we display is the
placement of a QS onto an existing branch of the Reference Tree (RT), called the
insertion branch. We represent the QS by a new leaf node called the pendant node,
which attaches to the original tree via a new internal node (here shown in the middle)
called the basal node. The basal node connects to two nodes of the underlying RT,
called the prorimal and distal nodes. The naming reflects their relation to the root
of the tree, with the proximal node being the closer one to the root. Dashed lines
show the original branches of the RT.

basal node. For brevity, we will refer to the length of the proximal/distal/pendant
branch as the proximal/distal /pendant length.

In the case of ML phylogenetic placement, we score each branch/QS combination
by calculating the likelihood of the RT extended by the QS at that branch. To
simplify this operation, we assume that the CLVs for the distal and proximal nodes
of the insertion branch have already been calculated. As a CLV summarizes the
rest of the tree under it, it implies that the root is located in the opposite, above
direction. Without loss of generality we can assume that the root is located on the
pendant branch, which means that each placement comprises 1) the calculation of
the CLV at the basal node (i.e., summarizing the pendant and distal CLVs, given
the pendant/distal lengths), 2) setting the tip states according to the QS at the
pendant node, and 3) calculating the overall likelihood of the extended tree at the
pendant branch. We denote the placement likelihood of a QS on a reference tree T’
at a insertion branch b, given the reference MSA D, as L(T,d|D,Q5).

2.4.2 Result Organization

A common misconception is that placement is an iterative process that extends the
RT, QS by QS. Instead, the RT remains fixed, and we evaluate each insertion
of a QS into each RT branch independently. Consequently, placement generates a
large number of intermediate results. Here we call a given set (which may not be
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exhaustive) of scored insertion branches of a QS the Placement Locations of a Query
Sequence (PQS).

The minority of these results will be “interesting”, as a QS will typically tend to fit
well onto a small number of branches. Alternatively the QS might not fit the RT
well enough for any branch to have a high score relative to the others. Thus, filtering
these results constitutes a main component of software implementing phylogenetic
placement.

For ML placement, we filter by normalizing the likelihoods of all z € PQ.S via their
Likelihood Weight Ratios (LWRs):

L(T,z|D,QS)
ZngQS E(Tap’Da QS)

LWR(z) = (2.10)

Based on the LWR, we can identify placement locations of a given QS that are worth
reporting. The simplest selection is to report the highest LWR, sometimes called
the best hit. As this would represent overly aggressive filtering, other approaches
such as reporting the top placement locations whose collective LWR sum to some
threshold are used [5].

We can also interpret the LWRs of a set of PQS as a distribution on the RT. Doing so
can help us to distinguish between some common placement scenarios. For example,
a QS may appear to not fit the RT well due to a low LWR value for the best hit.
Examining the complete distribution may indicate that the LWR is spread across a
subtree, which typically indicates that the RT may contain too many closely related
reference sequences [105].

Across most tools that implement phylogenetic placement, the common output for-
mat is the JPLACE file format [76]. A JPLACE file contains a specification of the
reference tree (using the NEWICK format [39]), as well as a hierarchical list of all
reported placements. For each placed QS, this list contains its corresponding PQS.
Each PQS entry represents the data for an individual placement, containing the
branch ID, the likelihood score, the LWR, the distal length, and the pendant length.
Additionally, the file contains fields to specify metadata, such as the command line
call used to generate the file.

2.4.3 Intersample Distance

We can combine the PQS of multiple QS into a larger result which we call a sample.
If we normalize all LWRs of a sample, we obtain a multimodal distribution on
the tree, called the placement distribution, which characterizes the sample. This
approach is of particular use for analyzing and visualizing environmental microbial

data [17, 70, 105].

In particular, we can compare samples by calculating a distance between their re-
spective distributions on the same underlying RT. A simple approach to compare
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two distributions is the Earth-Movers distance, so called due to its guiding anal-
ogy of representing positive values of the distribution as piles of earth, or mass.
Transforming a distribution in this analogy requires moving the mass along some
distance, thus incurring work. The Earth-Movers distance between two distributions
is defined as the minimum amount of work required to transform one distribution
into the other.

The Phylogenetic Kantorovich-Rubinstein Distance (KRD) [32] extends this ap-
proach to distributions on a tree. When applied to placement distributions, we
view the LWR as the mass, and the RT as the space through which we can move
the mass. Thus, using the KRD, we calculate the distance between two samples as
the minimum work required to equalize their distributions.

Note that when we desire to compare two placement distributions using the KRD,
their underlying trees have to be identical.

2.5 Measuring diversity

One way of using phylogenies is for quantifying the diversity of a set of organisms
(or for a set of tips/leaves in the tree). We distinguish between diversity within a
set of leaves, called the a-diversity, and diversity between sets of leaves, called the
[-diversity.

One example for an a-diversity metric is the Phylogenetic Diversity (PD) [34] (also
called Faith’s PD). For a subset of leaves of a tree, we calculate the PD by first
determining the minimum set of branches that connect all leaves of the subset (called
the minimum spanning tree). We can then calculate the PD as the sum over the
branch lengths of that set.

The PD can be extended to incorporate weights, such as abundance information [7].
McCoy and Matsen [78] build on this and define a one parameter function, called
the Balance Weighted Phylogenetic Diversity (BWPD), which is able to interpolate
between the classical PD and its weighted version. The BWPD is especially relevant
to this thesis as we can directly apply it to phylogenetic placement results.

2.6 Species Delimitation

A related problem to diversity quantification for a set of organisms is their delimi-
tation into individual species. Defining what constitutes a species, and whether two
organisms belong to the same or different species, is the source of some contention
in the literature [22, 77, 92].

Here, we will focus on the phylogenetic species concept, meaning that we broadly
view a species as a group of organisms that share an evolutionary history and a
common ancestor. The phylogenetic species concept allows us to delimit species
by only using a phylogenetic tree. I illustrate the phylogenetic species concept in
Figure 2.7.
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Figure 2.7: Illustration of the phylogenetic species concept. Dashed lines and filled
circles indicate the branching pattern due to inter-specific (or among species) di-
versification. Subtrees drawn using solid lines indicate the branching pattern due
to intra-specific (or within species) diversification, and represent cohesive species
clusters. Nodes drawn as triangles represent the LCA (Section 2.2) of the respective
species clusters. In this example, three distinct species were delimited (A through
C). We observe that species, or lineages, may vary in their rate of diversification
(here most prominently shown between B and C).
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Multiple methodologies to produce phylogenetic species delimitations have been pro-
posed. The General Mized Yule Coalescent (GMYC) [41], for example, explores the
space of possible delimitations of a tree by segmenting it into a between-species part
(typically the deep interior branches) and m subtrees, each of which represents a
species population (i.e., the individuals of a species). To achieve this, the GMYC-
model calculates the likelihood that a given time-point (i.e., an internal node) rep-
resents a transition from the process driving speciation (inter-specific branching),
to the process driving within-species variation (intra-specific branching). Note that
the GMYC-model requires the underlying tree to be time-calibrated (i.e., to be
ultrametric).

Similarly to the GMYC-model, the Poisson Tree Processes (PTP) [118] models both
inter-, and intra-specific branching processes and evaluates their fit to a given tree
using a likelihood model. In contrast to the GMYC-model however, the two pro-
cesses are modeled as two exponential distributions based on the number of sub-
stitutions, and can thus be calculated directly using ML branch length estimates
without requiring the tree to be ultrametric.

Kapli et al. [53] further improve on the PTP by extending it to accommodate mul-
tiple distinct intra-specific branching processes, such that every cluster of species is
modeled at its own rate of diversification. Consequently, their model is called the

Multi-Rate PTP (mPTP).
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P. Barbera, A. Kozlov, L. Czech, B. Morel, D. Darriba, T. Flouri, and
A. Stamatakis. “EPA-ng: Massively Parallel Evolutionary Placement of
Genetic Sequences.” Systematic Biology, 2019, Volume 68, Issue 2, Pages
365-3609.

accessible online at: https://doi.org/10.1093/sysbio/syy054

3.1 Introduction

As stated in Chapter 1, phylogenetic placement is a method for identifying the
phylogenetic context of genetic sequences. The currently most common application
of placement is the characterization of microbial samples, which comprise thousands
to millions of sequences each.

The sheer volume of such metagenomic sequences/samples presented the primary
scalability challenge in phylogenetic placement when I first approached the sub-
ject. The two tools that had previously implemented ML phylogenetic placement,
PPLACER and RAXML-EPA, had substantial throughput and scalability limita-
tions that hindered their applicability to increasingly larger datasets.

To alleviate these scalability challenges, we designed EPA-NG, a re-implementation
of ML phylogenetic placement which combines features from RAXML-EPA and
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PPLACER. EPA-NG builds upon LIBPLL-2 [40], a state-of-the-art library for phylo-
genetic likelihood computations, and achieves a high degree of parallelism by combin-
ing OpenMP and Message Passing Interface (MPI) to efficiently run on distributed
memory systems.

3.2 Methods

As briefly described in Section 2.4, the ML phylogenetic placement procedure de-
termines a set of branches on a RT to which a given QS belongs with the highest
relative likelihoods. We formalize the basic placement algorithm Algorithm 3.1.

Let SQ.S be the set of QSs, and let RT be the reference tree. The LWR is calculated
as defined in Equation 2.10.

Algorithm 3.1 Placement Procedure

for each sequence ¢ € SQS do
for each branch b € RT do
insert the sequence ¢ into branch b
compute the likelihood L of the resulting tree
record £ and the location of ¢ in its PQS
remove sequence ¢ from branch b
end for
calculate the LWR across all PQS entries
end for

Note that, each query sequence is placed into the reference tree independently of
all other query sequences. In part, this is possible due to the way we store partial
likelihood results of the RT. As discussed in Section 2.3.3, partial likelihood results
are stored in so-called CLVs at the internal nodes of the tree, summarizing the
results of the respective subtree rooted by (or below) an internal node. Thus, a CLV
implies a direction toward a root, which must be located somewhere above the given
internal node. However, as described in Section 2.4.1, the ML placement procedure
assumes that the root is located somewhere on the newly inserted pendant branch.
Consequently, we calculate the CLVs for each possible rooting of the RT and store
them in memory, such that for each placement task the relevant CLV buffers can
be accessed independently and concurrently. For a RT with n leaves this results in
3 x (n —2) CLVs that we store in memory.

3.2.1 Heuristics

By default, EPA-NG executes two successive variants of the placement procedure
to save runtime via appropriate heuristics. The first variant, called preplacement,
simply inserts the query sequence into the midpoint of the insertion branch, with a
default length for the branch leading to the new tip. The likelihood of the resulting
tree is then calculated without re-optimizing any branch lengths.
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Figure 3.1: Illustration of the two BLO modes implemented in EPA-NG. The
default BLO mode (subfigure a)), which optimizes the distal branch length d such
that it cannot exceed the original insertion branch length b. The proximal branch
length p directly results from this step and is calculated as p = b — d. Finally, the
pendant branch length ¢ is optimized independently from the other branches.

The second BLO mode (subfigure b)) independently optimizes the branch lengths
d, p, and ¢, without constraints. In a final step, p and d are rescaled such that
p+ d = b. This enables the distal length d to be interpreted as a position along the
original insertion branch.

The second variant, called thorough placement, calculates a more precise maximum
likelihood score. It does so by optimizing the two branch lengths, obtained by split-
ting the insertion branch b in two, as well as the branch length of the newly inserted
sequence. Further, EPA-NG offers two variations of branch length optimization,
which are illustrated in Figure 3.1. By default, the total length of the insertion
branch is considered to be fixed and only the position of the QS branch along this
insertion branch is being optimized. This is analogous to the BLO as implemented in
PPLACER. Alternatively, the user can choose to not constrain the insertion BLO in
this way (using the ——raxml-blo option), which will, in most cases, result in a new
total length of the insertion branch that differs from the original branch length in
the RT. In such a case, the distal length (see Section 2.4.1) as reported in the place-
ment result is nonetheless calculated to be proportional to the insertion location of
the query along the branch.

For obtaining maximum accuracy, one can perform such a thorough placement for
every branch of the RT and every QS. However, as such optimizations, and thus
thorough placements, are very compute-intensive, the two variants are combined into
a heuristic algorithm. Preplacement selects a set of promising candidate branches for
each QS, for which thorough placements are subsequently computed. In the original
implementation [8], this set was determined by simply using the top 2% of branches
(for some user-defined value of x), sorted by their LWRs. By default, EPA-NG uses
a more adaptive heuristic, that adds branches to the set of promising branches until
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a user-specified accumulated LWR threshold (0.99999 by default) is reached. This
heuristic has greater flexibility to accommodate variation in the placement signal of
an individual QS, as placements may be spread across a large portion of the RT, or
be highly concentrated in a specific part of the RT.

Like other phylogenetic placement software, EPA-NG operates in two phases: it
first quickly determines a set of promising candidate branches for each QS (pre-
placement), and subsequently evaluates the maximum placement likelihood of the
QS into this set of candidate branches more thoroughly using numerical optimiza-
tion routines for the branch lengths (thorough placement). The user can choose to
treat every branch of the tree as a candidate branch, however this induces a signif-
icantly higher computational cost. Consequently, by default, EPA-NG dynamically
selects a small subset of the available branches via preplacement. Using preplace-
ment heuristics typically reduces the number of thoroughly evaluated branches from
thousands (depending on the RT size) to often less than ten (depending on the query
and reference data).

To further accelerate the preplacement phase, we make use of the fact that every QS
preplacement is static with regards to the tree, meaning that the distal/proximal
and pendant lengths are the same across all QSs for a given branch. For a given
state alphabet X, we construct |X| + 1 artificial sequences, with each sequence
consisting of m sites of the same state x € X, m being the width of the reference
alignment. Additionally, we construct a sequence which consists entirely of gap
characters. This set of sequences is then placed onto a given branch using the
preplacement approach, and we store the per-site likelihoods in a combined matrix
with dimensions (|X| 4 1) x m which we call the preplacement lookup-table. We
illustrate this lookup-table in Figure 3.2.

Subsequently, when we perform preplacement of a QS, we sum over the per-site
likelihoods in the lookup-table that correspond to each site, and character at that
site, of the QS. Note that these preplacement lookup-tables can incur a significant
memory overhead (sitesx (states+1)xbranchesx8 bytes). However, the substantial
execution time savings justify this design choice (this will be further explored and
discussed in Chapter 4).

EPA-NG also offers a second heuristic called masking that is similar to the pre-
masking feature in PPLACER. It effectively strips the input MSAs of all sites that
are unlikely to contribute substantially to the placement likelihood score. Such sites
consist entirely of gaps either in the reference or in the query alignment. Addition-
ally, for each individual QS, only the core part of the alignment is used to compute
the likelihood of a placement. The core of an aligned QS is the sequence with all
leading, and trailing gaps discarded. Note that PPLACER also discards all gap sites
within an individual sequence, including gaps in the core. We opted not to im-
plement this, as our experiments showed that computing these per-site likelihoods,
instead of omitting these computations, was more efficient in our implementation.
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Figure 3.2: Illustration of a preplacement lookup-table. For a given RT branch,
a preplacement lookup-table L can be constructed by performing preplacement for
a set of sequences that each consist entirely of one of the characters in the given
state alphabet, plus the gap character '-’. We construct each sequence to span
the entirety of the reference alignment with m sites. Each combination of sequence
and branch results in a vector of per-site likelihoods, which comprise the rows of
L. Consequently we can calculate the preplacement likelihood £ of a given QS by
looking up the per-site log-likelihoods for each site in the QS (here illustrated by the
coloring of the cells of L) and calculating the sum over the individual log-likelihoods.
Note that this is a simplified illustration, as we have to account for ambiguous states
in the actual implementation, resulting in 16 rows in the DNA case.
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Figure 3.3: Illustration of the hybrid parallelization scheme implemented in EPA-
NG. a) shows the parallelization strategy at the level of multiple MPI-ranks. In this
case each rank is assigned to a socket of a node. Each MPI-rank processes a distinct
subset of QS from the input file, and does so in chunks of a given size. When a
chunk of QS has been successfully placed the result is written to a global JPLACE
[76] output file, using collective MPI File Input/Output (I/O) write operations. b)
shows the parallelization strategy within each MPI-rank (in this case: one complete
CPU socket). The given subset of the binary input file is read asynchronously by a
dedicated input thread, which allows prefetching of one chunk during computation
of another. All actual placement work is then split across as many OpenMP worker
threads as the user specified (in this case as many as there are physical cores on the
socket). Finally, a dedicated output thread writes the per-chunk results to a file,
which again allows overlapping computation with Input/Output (1/0O).

3.2.2 Parallelization

EPA-NG offers two levels of parallelism: MPI to split the overall work between
the available compute nodes, and OpenMP to parallelize computations within the
compute nodes. Such hybrid parallelization approaches typically reduce MPI related
overheads and yield improved data locality [94].

Figure 3.3 illustrates how EPA-NG utilizes hybrid parallelism. In hybrid mode,
EPA-NG splits the input set of QSs into parts of equal size, such that each MPI-
rank has an equal number of QSs to place on the tree. No synchronization is required
to achieve this, as each rank computes which part of the data it should process from
its rank number and the overall input size.

For within-node parallelization, we use OpenMP. Here, each thread works on a
subset of QS and branches.
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3.2.2.1 File Preparation

To reduce overhead and accelerate parallel Input/Output (1/0), we developed an in-
ternal binary bfast file format that replaces the FASTA format for storing sequences.
Its main feature is its header, which contains information about the total number
of sequences and their individual offsets in the file. Optionally, the header may
include a binary mask, specifying which sites of a sequences should be read. The
sequences are stored in a 4-bit encoded format for each nucleotide, covering all four
DNA bases as well as their ambiguities. Consequently, as of now, this bfast format
is only applicable to DNA data. These features yield a randomly accessible, binary
encoded sequence file that is well suited for use on compute clusters. Additionally,
bfast files only have about half the size of the corresponding FASTA-files.

3.2.2.2 Parallel I/0O

To allow EPA-NG to scale to thousands of cores and compute nodes, efficient par-
allel I/O was of central importance. To this end, we employ two major concepts:
overlapping 1/O with computation, and fully parallelized write operations.

To enable the former, we utilized C++ STL threading to perform I/O operations in
separate, asynchronous, threads. For reading the query sequence input, an explicit
request for the next chunk of sequences returns such a chunk, but also spawns an
asynchronous task that already prefetches the next chunk. After such a chunk has
been fully processed, the placement result data is passed to another asynchronous
task that is responsible for writing the data to a single output file. To guard against
increasing memory utilization in the event that chunk computation is faster than
writing the output, we limit the number of asynchronous tasks for each of these two
phases to one at a time.

To enable fully parallel writing of results, we utilize collective MPI File write op-
erations to write result chunks of known sizes, from each MPI rank, to one global
output file. As this relies on collective MPI operations, each rank must block until
all other ranks are ready to collaborate on its execution. However, this blocking
time is again hidden via the aforementioned use of asynchronous 1/O tasks. Using
these dedicated MPI file I/O methods increased the Parallel Efficiency (PE) in the
fully heuristic test (Section 3.4.5) for 2,048 cores from ~20% to ~60%.

3.2.2.3 Additional Optimizations

We deploy several additional optimizations to further increase parallel efficiency. On
machines that offer multiple hardware threads per physical core (hyper-threading),
these additional hardware threads can be used for executing the asynchronous I/0O
tasks mentioned above.

Further, we observed greatest parallel efficiency when configuring the parallel en-
vironment to spawn one MPI rank per socket instead of one per core or one per
node. This is almost certainly due to better data locality, as data that is shared
between OpenMP threads within a MPI rank will be placed in the same NUMA
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locality domain. Of course, this optimization is only applicable to machines that
have multiple CPU sockets per node.

We additionally observed a modest 2 — 4% increase in PE when executing EPA-
NG with lockless concurrent implementations of MALLOC, such as JEMALLOC. Note
that, this is the only one of the listed optimizations that we did not include in our
PE results.

3.2.2.4 Possible Enhancements

One might need to adapt the parallelization scheme for extremely large RTs as
storing the CLVs of the RT might exceed main memory limits. To address this, the
program could cyclically free branch related data (mainly CLVs) when they are not
needed any more to calculate placements and load branch related data that will be
needed in the near future (i.e., data prefetching). We explore such an approach in
Chapter 4.

3.3 Recent Related Work

Since the release of EPA-NG, multiple competing phylogenetic placement methods
have emerged, which I will describe in this section.

In contrast to ML methods, RAPPAS [66] does not rely on QSs that are aligned
to the reference MSA. Instead, it first calculates a per-branch matrix similar to our
preplacement lookup-table (Section 3.2.1 and Figure 3.2), with the distinction that
the values it calculates are not ML per-site likelihoods, but rather likelihood values
based on ancestral states that are reconstructed for the inner nodes of the RT. Based
on this table, RAPPAS identifies k-mers in the table that have a probability above
some defined threshold, which they call phylogenetically informative k-mers. These
k-mers are subsequently stored in a database, which records the most probable
insertion branches along with the insertion probability, for each k-mer. Finally,
RAPPAS places a set of QSs by splitting each QS into its component k-mers and
performing a lookup in the database for each k-mer. It then forms a consensus over
the results of all k-mers to determine a set of likely placements on the tree. The idea
behind the two-step approach of RAPPAS is to perform the more compute intensive
database construction once. A user can then perform placement of unaligned QSs by
simply using the precomputed database. In their evaluation of RAPPAS, Linard
et al. [66] include EPA-NG in their accuracy and performance comparisons. This
also constitutes an independent verification of EPA-NG.

Another recently developed phylogenetic placement method is APPLES [4]. It uses
the distance-based least-squares tree building method to extend an existing phy-
logeny by a given QS. This method comprises two distance measures: the pairwise
path distances between tips in a tree (also called patristic distance), and the pairwise
sequences distances between the organisms of the tree. The least-squares optimal
tree is defined as the tree that minimizes the squared differences between the two
distance measures. One of the advantages of such an approach is that the sequence
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data does not need to be aligned or even assembled, as the only requirement for the
data is that we can calculate pairwise dissimilarities for it. This applies to both,
the reference and the query data, enabling the use of less conventional data such as
genome skims, which are sequences that result from shallow, random sampling of
genomic DNA [26, 99]. Another advantage of this distance based approach is the
ability to scale to reference trees that exceed 100, 000 organisms, which still presents
a significant challenge to ML based placement methods. EPA-NG is included in the
evaluation of APPLES as well. The authors find that ML placement methods are
the most accurate methods, when applicable (i.e., when the size of the RT is not
too large).

In a very recent preprint, Jiang et al. [51] have combined APPLES with a deep
neural network based sequence distance to perform placement of single-locus data
on a multi-locus species tree. This approach attempts to account for the discordance
between a gene tree (to which a given QS belongs with high confidence) and the
corresponding species tree (which comprises data from multiple gene trees). For
such applications, the authors find that their approach significantly outperforms the
accuracy of ML placement approaches.

The most recent novel approach to placement is APP-SPAM (available as a preprint,
[11]). Like APPLES, App-SPAM is a distance-based approach that does not re-
quire the reference/query data to be aligned or assembled. AppP-SPAM applies
the Leimeister et al. [63] Filtered Spaced-Word Matches distance to the phyloge-
netic placement problem by calculating pairwise distances between a given QS and
all reference sequences. The authors describe multiple approaches to calculate the
placement location for a given QS. The approach that they find to work best is to
assign the QS to the branch leading to the LCA of the two closest references.

Aside from competing placement methods, there has been ongoing work by Linard
et al. [67] to establish an extensible testing framework to compare all major place-
ment tools. Such a framework may facilitate further development by providing a
more standardized accuracy testing and performance benchmarking environment.
We utilize this framework (called PEWO) in Chapter 4.

3.4 Evaluation

3.4.1 Datasets

We used three empirical datasets to evaluate and verify EPA-NG. In the following,
we describe the characteristics of these datasets as well as the pre-processing steps.

3.4.1.1 Neotrop data

This DNA dataset includes a 512 taxa RT and a 16S Ribosomal Ribonucleic Acid
(rRNA) reference MSA with 4,686 sites [70]. The corresponding QSs with which
we worked are one million dereplicated amplicon sequences. We sub-sampled QSs
to perform smaller tests; the exact number of QSs used is specified in the individual
tests. In the following, we will refer to this as the neotrop dataset.
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3.4.1.2 BV data

This DNA dataset consists of a RT with 797 taxa, a 16S rRNA reference MSA with
2,763 sites, and 15,060 QSs [105]. We refer to this as the bv dataset.

3.4.1.3 Tara Oceans data

This DNA dataset consists of a RT with 3,748 taxa, and a 16S rRNA reference
MSA with 3,374 sites [54]. The QS are metagenomic reads, filtered to the 16S
rRNA locus. From this dataset, we sub-sampled 10,000 QS. We refer to this as the
tara dataset.

3.4.2 Test Settings

We compared EPA-NG against PPLACER and RAXML-EPA under different set-
tings: with/without masking (not implemented in RAXML-EPA), with/without
preplacement.

3.4.2.1 preplacement

The preplacement heuristic, as described in Section 3.2.1. To enable preplace-
ment: PPLACER enabled by default (--strike-box 3.0, --max-strikes 6, --
max-pitches 40), EPA-NG enabled by default (--dyn-heur 0.99999), and RAXML-
EPA with -G 0.01. To suppress preplacement: PPLACER with --max-strikes 0,
EPA-NG with --no-heur, and RAXML-EPA with default settings.

3.4.2.2 premasking

The premasking heuristic, as described in Section 3.2.1. Note that RAXML-EPA
does not support premasking.

To enable premasking for PPLACER and EPA-NG, no special arguments are required.
To suppress premasking, both PPLACER and EPA-NG use the flag ——no-pre-mask.

3.4.2.3 thorough mode

This mode disables both previously mentioned heuristics and performs placement
with full BLO on all branches for all sequences.

3.4.3 Verification

In [8], and [75], the authors verify the placement accuracy of their algorithms via
simulation studies and leave-one-out tests on empirical data. As there already exist
two highly similar and well-tested evolutionary placement tools, we compare the
results of EPA-NG to the RAXML-EPA and PPLACER results via the KRD metric
(Section 2.4.3) to verify that our implementation works correctly.

We computed the pairwise median KRD between the the results of the three pro-
grams PPLACER, RAXML-EPA, and EPA-NG, for three distinct datasets in two
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different modes. Both, the bv, and tara datasets were used as described in Sec-
tion 3.4.1, with 15,060 and 10,000 QS respectively. For the neotrop dataset, we
sub-sampled 10,000 QS to roughly match the other two dataset sizes. Sub-sampling
allowed us to directly compare the runtimes of the different modes, as the non-
heuristic settings can increase the runtime by up to three orders of magnitude.

Two different modes were tested: the thorough setting with all heuristics disabled,
and the preplacement setting, with heuristics enabled, but premasking disabled for
better comparability with RAXML-EPA which does not implement premasking.

EPA-ng EPA-ng RAxML

Mode Data to RAXxML to pplacer to pplacer A
preplacement neotrop 0.162 0.045 0.115 1.11
bv 0.009 < 0.001 0.010 2.11
tara 0.064 0.013 0.072 1.87
thorough neotrop 0.113 0.024 0.108 1.57
bv 0.010 0.002 0.011 1.83
tara 0.060 0.013 0.070 1.92

Table 3.1: Median KRD between placement implementations. The ratio by which
the distance between the two older implementations RAXML-EPA and PPLACER
is greater than the average distance between either of them to EPA-NG is denoted
by A.

The results are shown in Table 3.1. They include a measure denoted by A that sum-
marizes the KRD-values for a given dataset and mode. A is the ratio by which the
distance between RAXML-EPA and PPLACER is greater than the average distance
between EPA-NG to either of them. In other words, A quantifies the proximity
of our results to those of RAXML-EPA and PPLACER. We observe an average
A-value of 1.7 for the preplacement mode, and of 1.77 for the thorough mode. This
means, that under comparable settings, EPA-NG produces results that are on av-
erage 70 — 77% closer to RAXML-EPA and PPLACER, than RAXML-EPA and
PPLACER are to each other. Overall, the absolute KRD values are very small. Thus,
we are confident that our implementation is correct and yields qualitatively and
quantitatively highly similar results to existing placement tools.

3.4.4 Sequential Performance

We compared the sequential runtimes of EPA-NG, RAXML-EPA, and PPLACER,
under two settings. Firstly, with or without the preplacement heuristic. Secondly,
with or without the masking heuristic. The combination of these settings results in
four distinct comparisons (see Figure 3.4). We used 50,000 aligned QSs from the
neotrop dataset, as well as the accompanying reference tree and alignment for this
test. The preplacement and masking settings are as specified in Section 3.4.2. Note
that RAXML-EPA does not implement masking and therefore respective results
are missing.
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Figure 3.4: Comparison of sequential runtimes of the three programs EPA-NG,
PPLACER, and RAXML-EPA, under four different configurations. The y-axis rep-
resents the runtime, normalized by the runtime of EPA-NG for each distinct config-
uration (reads as: program was x-times slower than EPA-NG). The absence of data
for RAXML-EPA for the masking setting is due to the absence of such a heuristic
in RAXML-EPA.

Under most configurations, EPA-NG substantially outperforms the competing pro-
grams. The only exception is the case where all heuristics are disabled. In this case
we observe a runtime that is ~30% slower than for PPLACER, while still performing
~3.5-times faster than RAXML-EPA. However, runs with all heuristics disabled do
not represent the typical use case. In the configuration using both heuristics, we
observe a ~30-fold performance improvement for EPA-NG over PPLACER.

The Sequential performance tests were conducted on a machine with a single Intel®
Core ™ 15-6600 Sky Lake CPU, and 16GB of main memory. This CPU supports
Advanced Vector Extensions (AVX) vector instructions, which LIBPLL-2 [40] (used
in our implementation) uses extensively to accelerate likelihood calculations.

3.4.5 Distributed Memory Parallel Performance

We tested the scalability of EPA-NG under three configurations. First, with pre-
placement and masking heuristics disabled (thorough test). Secondly, with only the
preplacement heuristic enabled. Lastly, we tested masking in conjunction with pre-
placement. This corresponds to the default settings (default test). Please note that,
as RAXML-EPA does not support masking, the respective results are missing.

As runs under these configurations exhibit large absolute runtime differences, we
used three distinct input sizes (number of QS) for each of them. The smallest
input size for each configuration was selected, such that a respective sequential run
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terminates within 24 hours. We chose subsequent sizes to be 10, and 100 times,
larger, representing medium and large input sizes for each configuration.

All scalability tests were based on a set of one million (1M) aligned QSs from the
neotrop dataset. To ensure better runtime homogeneity between parts of the 1M set,
the order of the set was randomized. This is needed to ensure better comparability
between runtimes based on subsets of this set. It should be noted that such a ran-
domization also improves overall PE, as higher data-runtime homogeneity typically
makes scheduling of worker threads easier. To obtain the desired input sizes, we
either sub-sampled (10k, 100k) or replicated (10M, 100M, 1B) the original set of 1M
sequences.

Furthermore, we pre-processed all QS files by converting them into our binary bfast-
format with EPA-NG, as this improves 1/O performance.

We executed the scalability tests on a infiniband-connected compute cluster. Each
compute node has two Intel® Xeon® E5-2630 v3 (Haswell) CPUs (16 physical cores,
32 hyper-threads) and 64GB of Random Access Memory (RAM). We assigned two
MPI ranks per node (one per socket), splitting the available physical cores per node
equally between them. We further utilized C++ threading capabilities to asyn-
chronously perform disk and network 1/0O, by oversubscribing some of the physical
cores with more than one thread.

Each individual run (heuristic configuration, size, number of cores) was executed
five times to minimize cluster interferences (e.g., heavy 1/O activity by other users).
We took the respective minima of these series of five runs, as parallel speedup and
efficiency are primarily concerned with the fastest observed time.

We compute the parallel efficiency E(N) as

E(N)z% with S(V) = 7

(3.1)

where N is the number of cores used, S is the parallel speedup, Ty is the execution
time of the program using N cores, and T} is the fastest sequential execution time.

As the parallel speedup and the parallel efficiency are calculated based on the fastest
sequential execution time, we performed a separate run using the sequential version
of EPA-NG (see: Sequential Performance). For each configuration, we performed a
sequential run for the small input volume. As the larger input volumes could not be
analyzed sequentially within reasonable times, we multiplied the sequential runtime
by 10 and 100, for the medium and large input sizes, respectively.

The results are displayed in Figure 3.5. We observe that the thorough test preserves
the single-node efficiency (16 cores, ~80% PE) consistently for all core counts and
input data sizes. The preplace test behaves similarly, but parallel efficiency tends to
decrease with increasing core count. This is because the response times are becoming
so short, that overheads (e.g., MPI initialization and some pre-computations) start
dominating the overall runtime according to Amdahl’s law. This is most pronounced
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Figure 3.5: Weak Scaling Parallel Efficiency plot of EPA-NG on a medium-sized
cluster. Input files with sizes ranging from ten thousand (10K) to one billion (1B)
query sequences. Three different configurations are shown: thorough, meaning no
preplacement of masking heuristic was employed, preplace where only the preplace-
ment heuristic was used, and default where both masking and preplacement were
employed.
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Figure 3.6: Parallel efficiency comparison of the three programs RAXML-EPA,
PPLACER, and EPA-NG. The data used in these tests were 1,000 query sequences
and the reference tree from the neotrop dataset. All heuristics were disabled. The
tests ran on a machine with two Xeon® Gold 6148 (Skylake-SP) CPUs, totaling 40

physical cores.

for the 1M QS / 512 cores data point, where PE noticeably declines. The response
time in this case was only 83 s, compared to 30542 s of the corresponding sequential
run.

These effects become even more prominent in the default run, which shows a PE
of ~60% on 2,048 cores. This is primarily due to the increased processing speed
when using masking that accelerates preplacement by an additional factor of ~7. As
a consequence, operations such as I/O, MPI startup costs, or data pre-processing
functions have a more pronounced impact on PE.

3.4.6 Shared Memory Parallel Performance

We performed an additional test to compare single node parallel efficiency between
the three programs, RAXML-EPA, PPLACER, and EPA-NG. The results can be
seen in Figure 3.6. The tests ran on a machine with two Xeon® Gold 6148 (Skylake-
SP) CPUs, totaling 40 physical cores. We used the neotrop dataset to place 1,000
query sequences against the 512 taxa tree, without the use of any heuristics (called
thorough mode above). Each program and core count combination was run 5 times,
and the data points shown are again the minima of this series of 5. For the sequential
data points based on which the PE was calculated, we restricted the programs to
purely sequential mode (through compilation of sequential executables for RAXML-
EPA and EPA-NG, and through specifying -j 0 when running PPLACER).

We observe that parallel efficiency decreases at a similar rate, although RAXML-
EPA exhibits a somewhat higher PE. It should be noted that the absolute run
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time of RAXML-EPA was consistently ~2.3 — 2.4 times longer than the run time
of EPA-NG. In turn, the run times of EPA-NG were between ~30% — 40% longer
than the run times of PPLACER.

3.4.7 Real-World Showcase

Finally, we performed two tests to showcase the improved throughput of EPA-NG
and to demonstrate how this enables larger analyses in less time.

First, we performed phylogenetic placement of one billion reads (pre-filtered to the
16S rRNA region) against a 3,748 taxa reference tree. Using 2,048 cores (128
compute nodes), we were able to complete this analysis in under 7 hours.

Second, we extrapolated the total reduction in analysis time of [70]. We used a
representative sample of the neotrop dataset to obtain runtimes for both, EPA-
NG, and RAXML-EPA, using the same settings as in the original study. With
this runtime data, we extrapolated the total placement time of the study for both
programs. We find that EPA-NG would have required less than half the overall CPU
time (RAXML-EPA: 2,173 core days, EPA-NG: 864 core days) under the same
heuristic settings (no heuristics). Further, using EPA-NG’s novel heuristics, the
placement could have been completed within ~14 core hours (roughly a 3, 700-fold
runtime reduction).

Our distributed parallelization also improves usability. That is, the user does not
have to manually split up the query data (i.e., split the data into smaller chunks
which can complete within say 24 hours on a single node) for circumventing common
cluster wall time limitations.

3.5 Summary

In this chapter I presented EPA-NG, a highly scalable tool for phylogenetic place-
ment. The evaluation showed that EPA-NG is up to 30 times faster than its
direct competitors when executed sequentially, while yielding qualitatively highly
similar results. EPA-NG includes several performance optimizations to achieve
this, such as utilizing a memoization technique (preplacement lookup-table), and a
more adaptive approach to selecting the top candidate placement branches. EPA-
NG is written in modern C++, and is available as free open-source software at
https://github.com/Pbdas/epa-ng.

Moreover, EPA-NG is the first ML phylogenetic placement implementation that
can natively parallelize over multiple compute nodes of a cluster, thereby enabling
analyses of extremely large query datasets, while achieving high parallel efficiency
and short response times.

In a showcase test, we utilized 2,048 CPU cores to place 1 billion QSs from the
Tara Oceans project, on a RT with 3, 748 taxa, requiring a total runtime of under 7
hours.


https://github.com/Pbdas/epa-ng

4. Efficient Memory Management in
Likelihood-based Phylogenetic
Placement

This chapter is based on the peer-reviewed open-access publication:

P. Barbera, and A. Stamatakis. “Efficient Memory Management in
Likelihood-based Phylogenetic Placement.” HiCOMB 21, 2021, accepted,
m press

4.1 Introduction

In this work so far, optimizing phylogenetic placement focused on scalability and
throughput with regards to the number of QSs. However, depending on the resources
available, the memory requirements for a given analysis can also constitute a limiting
factor. Furthermore, high memory requirements can yield the deployment of hard-
ware accelerators, such as General-Purpose Graphics Processing Units (GPGPUs),
challenging as such devices typically have less RAM available than the host system.
Even when access to high performance computing resources is available, the memory
requirements of specific analyses can still be prohibitive. For example, in the future,
third generation/long-read sequencing (Section 2.1) is expected to further increase
the number of available high length and high quality sequence assemblies, up to and
including whole genomes.

For likelihood-based phylogenetic inference (ML and Bayesian inference), improving
memory efficiency represents a particular challenge due to the way we compute the
likelihood on a phylogenetic tree. At each internal node of the tree, we calculate
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a conditional likelihood for each possible character state (typically DNA or protein
data) of a site in the underlying input MSA and typically store it as a hard-to-
compress floating point value. Realistic models of nucleotide substitution (e.g.,
the I' model of rate heterogeneity [114] or other mixture models) further increase
the memory requirements as we need to calculate and store conditional likelihood
values for several rates of evolution per state, internal node, and MSA site. The
data structure holding these conditional likelihoods at each inner node of the tree is
called Conditional Likelihood Vector (CLV) (see Section 2.3.3).

Apart from general phylogenetic tree inference, memory efficiency becomes even
more performance-critical in the special case of likelihood-based ML phylogenetic
placement as implemented in EPA-NG. To accelerate its computations, EPA-
NG calculates and stores CLVs for all possible directions (i.e., all three outgoing
branches) at each internal node of the tree in memory. Note that most tree search
tools typically only store one CLV per node due to the distinct pattern of likelihood
calculations they conduct. This memory organization in EPA-NG incurs a substan-
tial memory overhead, making placement infeasible for large reference trees [4, 11]
containing on the order of 100, 000 references.

Previous work has shown that the likelihood of a tree with n leaves can be calculated
using a minimum of logs(n) + 2 CLVs [48]. Based on this property, we conceived
strategies to reduce the overall memory requirements of ML likelihood calculations
at the cost of additional computations. However, this approach was never integrated
into our production-level tools.

In this chapter, I show how this memory saving technique can be applied to place-
ment and I outline its integration into our production-level placement software EPA-
NG. More specifically, I describe the necessary adaptations to the parallelization
approach used in EPA-NG. In Section 4.5 we experimentally assess the respective
memory versus inference time trade-offs incured by using this approach.

4.2 Methods

As outlined in Section 2.3.3, we compute the likelihood of a strictly binary tree via a
post order traversal, starting at the leaves of the tree and moving toward the virtual
root via the FPA [36]. The virtual root of the tree can be placed into any position
of any branch of the tree for the sake of defining a traversal order. Its placement
does not alter the likelihood score of the tree as long as the substitution process
is time-reversible, which is the case for all standard statistical models of evolution.
Each step of the FPA operates on a small subset of the overall tree, where the CLV
of a parent node is computed by accessing the CLVs of the two child nodes. The
parent CLV summarizes the data/signal contained in the subtree it roots. When
this recursive algorithm terminates at the virtual root of the tree, the entries of the
CLV(s) at the virtual root are used to calculate the overall likelihood of the tree.
We illustrate one such step in the FPA recursion in Figure 4.1.

In standard phylogenetic likelihood implementations, memory is allocated for all
CLVs visited during the FPA, that is, at all inner nodes of the tree. This memory
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2

Figure 4.1: We illustrate a subtree of the phylogenetic tree during a recursion step
of the FPA. The CLV index number of the nodes is displayed inside the nodes. In
the FPA step shown here, we combine the CLV information from the two nodes
labeled child 1 and child 2 in the parent node. After this step, the two child node
CLVs become obsolete. We repeat this recursion until we reach and calculate the
CLV of the root node (not shown; direction of root indicated by an arrow), that is
subsequently used to calculate the overall likelihood of the tree.
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allocation scheme yields 'good’ computational efficiency, as a large fraction of CLVs
can typically be reused in subsequent likelihood calculations, for instance, when
only a part of the tree topology has changed. However, this comes at the expense
of an increased memory footprint. In general, this trade-off is justified when taking
into account the input data sizes of typical phylogenetic analyses and the increasing
amount of main memory available in modern computers. However, as already men-
tioned, for certain likelihood based tools there is a pressing need to offer alternative
solutions that allow to explicitly limit the amount of memory used by likelihood
calculations. This is particularly the case in EPA-NG which stores 3 % (n — 2)
CLVs, compared to n — 2 CLVs in most standard phylogenetic tree inference pro-
grams. Note that, storing the CLVs clearly dominates the memory requirements of
all likelihood-based phylogenetic inference tools.

A solution to reduce the number of CLVs that need to be concurrently held in
memory is to exploit the recursive structure of the FPA. In particular, once a
parent CLV has been successfully computed from its child CLVs, the data held by
the children is no longer needed (hence the name 'pruning algorithm’) to compute
the overall likelihood of the specific, fixed tree. Thus, the memory allocated to the
children CLVs can be overwritten by CLV entries required at other internal nodes.
Hence, for a given tree topology and (virtual) root, there exists some minimum
required number of CLVs that need to be held in memory. Izquierdo-Carrasco.
et al. [48] have shown that this minimum number of required CLVs is logs(n) + 2
in the worst case for a fully balanced binary tree with n leaves. We will henceforth
refer to this method as the logn approach.

Further, Izquierdo-Carrasco. et al. [48] described a data structure and a CLV man-
agement approach, to dynamically determine which CLVs to overwrite. Central to
this is the concept of a slot, which denotes the allocated memory that stores one
CLV. Different CLVs occupy this set of slots at different stages of the tree traversal
as induced by the FPA. Note that the number of available slots does not need to be
set to the minimum of loga(n) + 2, but can also be set to a larger value. In partic-
ular, it can be set such that the CLV storage space corresponding to the number of
slots matches the amount of memory available on the system. When CLVs can be
reused between applications of the FPA, which is the case for placement, providing
more memory than absolutely necessary reduces the number of CLVs that have to
be recomputed. In other words, the memory versus runtime tradeoff can be tuned
via the number of available slots.

Here, we implement a generalized version of this Actively Managed CLVs (AMC)
mechanism into our free, open source library for ML phylogenetic likelihood calcula-
tions LIBPLL-2 on which EPA-NG relies. By deploying this approach, the user can
now set an approximate explicit limit for the memory footprint in EPA-NG. This
allows for placing sequences on substantially larger reference trees than before.

Recall that in placement, the goal is to find a set of most likely edge(s) from a
given RT that a QS belongs to. When using the maximum likelihood approach to
placement, we calculate the likelihood of a QS placement as the likelihood of the
RT, extended at a given branch by the QS. To save time, EPA-NG pre-calculates
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and stores the CLVs for each possible insertion branch in the RT in memory (see
Section 3.2). This means that the placement of a QS comprises calculating (i) one
CLV summarising the signal from the insertion branch for a specific insertion point
along that branch, (ii) setting the CLV at the newly added leaf, and (iii) using these
two CLVs to compute the placement likelihood.

While the above implementation exhibits good runtime performance and facilitates
parallelization (i.e., offers a high degree of parallelism), it also requires a compara-
tively large amount of main memory as we need to allocate memory for all possible
CLVs in the tree. To address this, we can apply the logn approach to substantially
reduce the peak memory consumption of EPA-NG.

However, this comes at the cost of increased execution times, as for each iteration
over the tree, the per-branch CLVs will have to be re-computed, potentially includ-
ing the re-computation of CLVs in the respective subtrees defined by this branch.
Further, using the logn approach to save memory substantially complicates the par-
allel placement procedure implemented in EPA-NG, as it relies on the assumption
that immediate random access to any desired CLV is given at any time. To address
this, we now split up the parallel placement of QSs into blocks of RT branches. The
CLVs for the next branch block are pre-computed asynchronously, while we work on
placing QSs on the current branch block.

Another challenge with such an active CLV memory management approach is to
minimize the general computational overhead under memory constraints. EPA-NG
utilizes additional memoization techniques, trading additional memory, beyond the
CLVs storage space, for increasing speed. More specifically, we use a lookup table
that contains constant, precomputed placement results for every branch that allow
to rapidly pre-score putative placements (see Section 3.2.1 and Figure 3.2). When
executing EPA-NG in default mode with memory saving disabled, this lookup table
already provides a substantial (~15 fold) speedup. As we will see in Section 4.5,
executing EPA-NG with AMC, using this lookup table improves execution times
by up to ~23 times. The reason for this is straight-forward: when using prescoring
heuristics, the only time every QS is matched against every branch is during this first
phase (see Section 3.2.1). Branch block computation, if done for every branch, has
an extremely high computational cost compared to the rest of the program. Thus,
we can eliminate the vast majority of the computational effort in the AMC case by
using the lookup table, as we will only have to utilize the branch block computation
for the second phase of placement, where each QS only gets matched against a small
set of promising branches.

An additional parameter affecting runtime performance is the number of QSs pro-
cessed per iteration, called the chunk size. EPA-NG processes QSs in chunks (i) to
overlap 1/O with computations and (ii) to limit the impact of the sheer QS data
volume on the overall memory footprint (see Section 3.2.2.2). Note that a com-
prehensive placement based analysis involves on the order of 107 QSs or greater
[70].
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When AMC is enabled, using a larger chunk size decreases the number of times the
CLVs of the tree need to be recomputed, as the CLVs have to be recomputed at
least once per QS block. However, a higher QS block size also means that there
is less memory available for other data structures. This becomes a limiting factor
for large RT's, as there are internal intermediate datastructures that save results for
each combination of RT branch and QS, which can occupy a significant fraction of
the available memory (see Section 4.5). Hence, there is an additional trade-off to
consider here.

4.3 Related Work

The logn approach to performing the FPA was originally implemented as proof-of-
concept option in RAXML-LIGHT, where it enabled phylogenetic inference of trees
comprising more than 100,000 leaves [106]. To our knowledge the only other ML
phylogenetics software that offers AMC is IQ-TREE 2 [81] which also explicitly
uses the logn [48] approach.

With respect to placement software there are, to our knowledge, no other programs
that employ an active memory management strategy. Of those based on ML methods
[5, 8, 75], only PPLACER offers a dedicated option to handle input data sets with large
memory footprints. For large datasets, the user can specify the location of a memory-
mapped file, which will be used for larger memory allocations, thereby reducing the
peak main memory consumption. Consequently, the runtime performance of this
approach depends on the latency and bandwidth of the underlying file system.

As outlined in Section 3.3, there exist several placement tools that do not rely
on ML methods [4, 11]. These programs are characterized by their extremely low
memory consumption, that is typically several orders of magnitude lower than for
ML methods. For example, APPLES [4] is a distance-based approach that uses
least-squares minimization to determine the placement of a QS on a RT. APPLES
was used to perform placement on a tree with 200, 000 leaves, by only using ~4GiB
of main memory.

4.4 Implementation

Our AMC implementation in LIBPLL-2 comprises two major components, which we
illustrate in Figure 4.2. The first component is the mapping of a potentially large
number of global CLVs to a substantially smaller set of physical memory locations
available to hold them, called slots. This can be efficiently implemented by using
two arrays that map the global index of a CLV to its slot index, and vice versa.
When a slot is currently not associated with a CLV index, or when a given CLV
index is not present in memory (not slotted), we use dedicated values to denote
these special states.

The second major component is the mechanism for choosing which slotted CLVs to
overwrite. This slotted CLV overwriting mechanism is in part analogous to cache
line replacement policies, but under additional constraints as we can not overwrite
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Figure 4.2: Illustration of the CLV management and replacement strategy. We
show a snapshot of the CLV management data structures. These include the cost of
each CLV, which we approximate by the number of descendant nodes that the CLV
summarizes (i.e., the nodes in the subtree rooted by the CLV). We also show the
mapping of CLV indexes to their locations in physical memory, called CLV slots. If a
CLV has not been assigned to a slot, it is marked by (-). For each slot, we also record
if it is pinned, meaning that it can not be overwritten. Note that these illustrations
correspond to the tree shown in Figure 4.1. On the left, we show the situation where
CLV x has to be computed and stored, while we have not yet assigned a physical
memory location for x, and all slots are occupied. Thus, we need to invoke the
overwriting strategy to select an appropriate slot among the unpinned slots. The
strategy is to select the slot occupied by the CLV with the smallest recomputation
cost. On the right we show the result of this operation: we assign x to the slot that
previously belonged to the CLV with ID 0. Finally, we also mark this slot as pinned,
as this example is part of an FPA execution where x is a current parent.
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any slotted CLV we wish, due to the tree traversal order that defines the data access
pattern. Hence, designing an appropriate overwriting strategy is not trivial and can
evidently affect runtime performance. It is beneficial to retain slotted CLVs that
are likely to be accessed again in the near future during subsequent likelihood cal-
culations. The overwriting strategy heavily depends on the order of CLV operations
which might be highly program-/algorithm- specific. Thus, we have implemented a
generic replacement strategy interface via a set of callback functions that allow the
developer to fully customize how a slot is chosen/overwritten. As default strategy,
we have implemented an algorithm that chooses which CLV to replace based on its
approximate recomputation cost. We approximate the recomputation cost of a CLV
by the number of descendant leaves the CLV summarizes (i.e., the size of the subtree
it roots).

4.4.1 Pinning

Finally, an additional mechanism for maintaining consistency is required which is
called pinning. As mentioned before, some intermediate CLVs must remain slot-
ted/pinned to the slots during the FPA that traverses the tree in post-order to be
able to compute the likelihood score. We illustrate this mechanism via the tree
shown in Figure 4.1. Let us assume that we have just calculated the CLV of node 2.
Next, the FPA recurses into the subtree rooted by node 3. However, we can not yet
discard the result stored at node 2, and thus need to pin the associated memory slot
as it will be required to compute the CLV at node 4. The pinning mechanism can
also be exploited beyond a single tree traversal in order to retain and re-use CLVs
among successive full tree traversals. However, care has to be taken to not pin too
many slots, as this could cause the FPA to fail if an insufficient number of unpinned
slots is available.

As EPA-NG operates on a static tree (i.e., the underlying RT is fixed and does
not change), we are able to utilize the CLVs pinning mechanism between successive
iterations over the tree to minimize recomputation cost. This is of particular use for
the aforementioned branch block precomputation. Here, we traverse the RT, and
for each branch we visit, we recompute the two CLVs at either end of the branch.
To do so, we first determine on which CLVs in the respective subtree defined by
that branch these depend, and consequently also have to be computed. For the
CLVs in the subtrees, we construct a list of those that are currently slotted, along
with a value reflecting their approximate recomputation cost. From this list we
retrieve the entries with the highest recomputation cost, and subsequently pin the
corresponding CLVs to their slots. We choose the number of slots we pin such
that after this high-cost CLV pinning step, the number of unpinned slots is at least
loga(n) + 2 (Section 4.1), which ensures that we can successfully execute the FPA.

4.4.2 Parallelization

The AMC strategy also has implications on the degree to which we are able to
effectively parallelize the code. Normally, parallelization of placements is straight-
forward: we merely perform the core placement procedure for each QS and branch
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pair to be evaluated via random accesses to the corresponding precomputed CLVs.
However, when the AMC strategy is enabled, the number of these fine-grained place-
ment tasks is limited by the block of branches (subset of branches in the RT) and
corresponding CLVs available to the current iteration.

Further, computing the CLVs of a branch block using the FPA is all but straight-
forward to parallelize efficiently, as the two main options for doing so have severe
limitations. One approach is to parallelize over the width of the alignment, segment-
ing it into one subregion per thread. However, when subregions become too small,
this can actually increase the computation time compared to a single-threaded ap-
proach [59, 61]. Due to the often low-width nature of alignments used in phylogenetic
placement, this situation can arise for even modest number of threads, substantially
limiting the potential for parallel efficiency. Another approach is to utilize the re-
cursive nature of the FPA, calculating independent CLVs concurrently whenever
possible. This approach is complicated by the limitations of CLV availability when
using AMC, as it introduces further dependencies between normally independent
CLVs.

As a consequence, this branch block precomputation for the subsequent branch
block can constitute a bottleneck. This is especially true when we can not deploy
the preplacement lookup table due to memory limitations (Section 4.2). In this case,
the computational effort required to compute the CLVs needed for the branch blocks
dominates the execution time.

4.5 Experimental Setup and Results

We assessed the performance impact of AMC on EPA-NG using 3 representative
empirical datasets with distinct characteristics. We list these datasets in Table 4.1
where we show the number of leaves of the RT, the number of sites in the alignment
of the reference sequences with the QS, the type of the underlying data (NT for
nucleotide, AA for Amino Acid), as well as the reference to the data source.

The neotrop (see also Section 3.4.1.1) dataset covers the QS number/volume di-
mension. This dataset was used to evaluate the microbiome of neotropical soils,
including a reference tree that was tailored to the studied environment [70]. The
corresponding reference alignment and QSs are 16S rRNA nucleotide data, and their
QSs comprise 95,417 sequences.

The serratus dataset aims to cover an increased alignment width/length and result-
ing CLV-size dimension by using a reference alignment with 10, 170 amino acid sites.
This dataset was the result on our work on the Serratus open science project [30]
which uncovered new sequence diversity from the Sequence Read Archive [64]. More
specifically, the reference alignment spans 546 sequences from the Coronaviridae
virus family. Here, the QSs only comprise 136 RARP sequences from assembled
genomes that showed high sequence similarity to the Coronaviridae family.

Lastly, the pro_ref dataset covers the RT-size dimension. This dataset comprises
the largest default RT from the PICRUST2 software, spanning 20,000 reference
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sequences [27]. To this, we added a set of 3,333 16S QSs, sampled from the wild
blueberry rhizosphere [117].

All scripts and datasets used for our experiments are available online at: https:
//github.com/pbdas/memsaver-paper

Table 4.1: Datasets

Name leaves sites | #QSs | type | reference
neotrop 512 | 4,686 | 95,417 | NT [70]
serratus 546 | 10,170 136 | AA [30]
pro_ref | 20,000 | 1,582 | 3,333 | NT | [27, 117]

4.5.1 Execution Time

To assess the memory versus runtime trade-offs of EPA-NG, we used the PEWO
testing framework [67]. Using this framework, we have extended an already available
workflow to measure the runtime and the memory footprint with our new EPA-NG
memory saving mode.

In our tests, we evaluated how constraining the memory available to EPA-NG in-
creases overall execution times. We performed placement on the datasets described
in Table 4.1 for different maximum memory settings (set by —-maxmem) in each run.
Every --maxmem/dataset configuration was executed five times, and the results we
show are calculated as the mean over all five runs, both for the execution time and
memory footprint. Note also that PEWO limits individual executions to one worker
thread per run (i.e., ——threads 1 for EPA-NG). We denote the fastest run using
the default EPA-NG parameters (i.e., whith AMC disabled) as reference run.

The results of these tests are shown in Figure 4.3. In this graph we show the fraction
of memory used, compared to the memory required by the reference run on the x-
axis. On the y-axis we show the execution time slowdown of each run, relative to the
reference run. For legibility we have scaled the y-axis using the binary logarithm.

Additionally, we show absolute execution time and memory footprint values for
these runs in Table 4.2. Here we distinguish between the reference runs which
we denote by O, the runs using AMC to the fullest extent (i.e., with the greatest
memory limitation possible) denoted by F, and an intermediate setting denoted by
I. We chose the intermediate run such that it represents the setting, unique to each
dataset, for which we still observed comparatively low execution times (i.e., before
the execution time rises sharply).

We observe two distinct characteristics.

Firstly, there is a high variance with respect to the lowest possible memory footprint
we can achieve. For the serratus dataset we are able to reduce the memory footprint
to 4% of the reference run. In contrast, for the neotrop dataset we are only able to
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Figure 4.3: Runtime characteristics of varying memory limitation settings (--
maxmem), relative to the fastest execution without active CLV management (reference
execution). The x-axis indicates the memory limitation setting as a percentage of
memory used by the reference execution. The y-axis indicates the slowdown relative
to the reference execution. The sharp sudden decline in execution times occurs when
the set memory limit is large enough to allow using the preplacement lookup table.

Table 4.2: Memory footprint and execution time without (O), with full (F), and
with intermediate (I) AMC

dataset time (s) memory (MiB)

O I F O 1 F
neotrop | 160 | 165 | 3,908 416 319 205
serratus | 18 | 34 370 | 6,344 875 258
pro_ref | 104 | 123 | 5,134 | 8,701 | 7,600 | 3,800
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Figure 4.4: Runtime characteristics of varying memory limitation settings, using a
lower QS chunk size. The tests are identical to those presented in Figure 4.3, with
the exception that the QS —-chunk_size was lowered from the default of 5,000, to
500. This illustrates the improved lowest possible memory footprint, and the impact
of chunk size on the memory footprint, as well as the execution time.

decrease the memory footprint to 48.7% of the reference run. This limitation of the
lowest possible memory setting is in part due to the QS chunk size (see Section 4.2),
which, in this set of experiments, was set to the default value of 5,000 QS per chunk.
A larger chunk size increases the size of intermediate result structures, which EPA-
NG allocates proportionally to the number of QSs in each chunk. Thus, decreasing
the chunk size, that is, reducing the number of QS that are processed in one pass
over the tree allows to further decrease the minimum required memory footprint,
but at the expense of increased execution time. We show this behavior in Figure 4.4.

Secondly, as we approach this minimum possible memory footprint, there is a sharp,
sudden increase in execution time. This effect is caused by not being able to allocate
the lookup table memoization (Section 4.2) any more when the available memory
does not allow for it.

To further showcase the previously mentioned impact of the chunk size on both,
the minimum possible memory footprint, as well as the increase in execution time,
we repeated the above experiment using a chunk size of 500. For this additional
experiment we also repeated the reference runs using the lower chunk size. We show
the results of this test in Figure 4.4. In general, we observe an analogous behavior
as for the initial experiment. As expected, we now also observe a lower minimum
memory footprint of ~25% for both, the neotrop, and pro_ref data. We also observe
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that the increase in execution time for the neotrop data remains largely unaltered.
Both, in this test, and the initial test, we measured a ~23-fold increase in execution
times relative to the respective reference runs. In contrast, for the pro_ref data and
a chunk size of 5,000, we observe a ~49 fold increase in the execution time over the
reference run. For the same data and with a chunk size of 500, we observe a ~90 fold
increase in the execution time over its reference run. To provide some perspective,
this particular run took ~2.4 hours on a single core, which should be acceptable for
most users.

This substantial deviation between the behavior of the neotrop and pro_ref analyses
is due to the large difference in respective RTs sizes (512 versus 20,000 taxa), as
the latter requires an increased number of CLV (re-)computations. The results for
the serratus data remain unchanged, as for both chunk size settings, all QSs fit into
a single chunk. Note also that one pro_ref datapoint shows both, a higher memory
consumption as well as a slightly increased execution time compared to the reference
run. We attribute this behavior to imperfect memory consumption accounting of
our implementation. This accounting is the basis of a memory budgeting based upon
which we determine the amount of resources we are able to spend before exceeding
the limit set by the user. Thus, a flaw in this accounting can lead to a larger than
desired memory footprint. We intend to address this issue in the future.

Finally, as expected, execution times improve with increasing memory available.
Once the memory limit allows allocating the lookup table memoization, the execu-
tion time rapidly approaches the execution time of the reference run. As described in
Section 4.2, computing the lookup table represents a one-time computational over-
head. Subsequently it is used to accelerate all QS pre-placement operations. Thus,
if the QSs of a chunk are pre-placed on a small common subset of RT branches, the
high computational overhead of successive re-computations of reference CLVs is sub-
stantially reduced. Analogously, if there is only one single QS chunk to be processed,
the run time impact of re-computing the CLVs in the RT is less pronounced.

4.5.2 Comparison with pplacer

Next, we showcase the capabilities of EPA-ng when using AMC, compared to the
closest competitor software pplacer [75].

To our knowledge, pplacer is the only other ML phylogenetic placement software
that offers an option to reduce the memory footprint. The pplacer tool does so
by allocating a significant part of the required memory using a memory-mapped
file, effectively extending the available main memory by using disk space. This is
an on/off approach, meaning it does not allow the user to more finely control the
impact on execution time.

For our showcase test, we chose the two datasets that have the highest memory
footprint (serratus and pro_ref). For both datasets, EPA-ng requires more than
4GiB of memory, which is a common main memory size on older personal laptops,
and which we believe to represent a common current constraint for users with limited
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Figure 4.5: Showcase comparison between pplacer and EPA-ng. We show runs for
two different datasets (serratus and pro_ref). We ran each combination of dataset
and placement tool both with and without memory saving techniques enabled. Ar-
rows indicate the change in memory footprint and execution time going from memory
saving disabled to having memory saving enabled.

access to newer hardware. Thus, the goal of this test was to show how limiting the
memory to 4GiB affects the execution times of EPA-ng and pplacer.

We show the results of this test in Fig. 4.5. We ran both softwares using their default
parameters, with the exception of limiting the chunk size of EPA-ng to 500. We ran
each combination of dataset and placement tool both with and without memory
saving techniques enabled. As before, each run was repeated five times, and we
report the mean of the runs. Arrows indicate the change in memory footprint and
execution time going from memory saving disabled to having memory saving enabled.

We observe that, for the same data, EPA-ng performs significantly better than
pplacer with respect to memory consumption and execution time, both for mem-
ory saving disabled and enabled runs. With its memory saving enabled, pplacer
achieves a significant relative reduction in memory consumption at a moderate cost
in execution time. However, when pplacer has memory saving enabled, its memory
consumption is ~2-3 times higher than EPA-ng with its memory saving techniques
(AMC) disabled.

Regarding EPA-ng, as in previous tests, we again observe the significant difference
on the execution time increase of AMC between the serratus and pro_ref datasets.

4.5.3 Parallel Efficiency

Due to our adapted parallelization approach for the memory saving option, we also
re-evaluated the per-node PE of EPA-NG. For each dataset, we evaluated the PE
under three scenarios: limiting the memory as much as possible (full), limiting the
memory such that the maximum number of slots can be allocated (i.e., three CLVs
per inner node), resulting in approximately the same memory footprint as without
memory limitation (maxmem), and not limiting the memory at all, that is, disabling
the memory saving mode (off). Furthermore, we again choose the fastest out of
five runs as representative datapoint. We compare the run time of each parallel
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Figure 4.6: Parallel efficiency, measured across the three test datasets, with varying
memory limitation settings: no Actively Managed CLVs (AMC) (off), minimum
memory AMC (full), and maximum memory AMC (maxmem).

configuration to the fastest serial run under the same configuration. For the serial
runs under each of the above three configuration, we compiled a dedicated version of
EPA-NG under a setting that disables any kind of multithreading (EPA_SERIAL=1
make ...). We performed all tests on a shared memory system with 48 physical
cores (two Intel® Xeon® Platinum 8260 Processors), and 754GB total available
RAM.

The results of the PE test are shown in Figure 4.6. In this graph we show the number
of threads used in each run on the x-axis. Note that, when AMC is enabled, the
asynchronous CLV precomputation means that we are using one additional worker
thread. Thus, results using the full or maxmem setting include one additional thread.
On the y-axis, we show the PE. To calculate the PE, we first calculate the parallel
speedup S(r) of a run r with execution time 7'(r) as

(4.1)

where s denotes the serial run, and 7(s) the execution time of the serial run, re-
spectively. Subsequently we calculate the Parallel Efficiency (PE) E(r) of a run r
as

S(r)

B0 =)

(4.2)

where P(r) denotes the total number of threads/processors utilized in the run.

When AMC is disabled, we observe similar results to our previous evaluation of
EPA-NG (see Section 3.4). Further, we observe that PE improves with an increasing
number of QS.

In contrast, when AMC is enabled, the PE decreases substantially. This is due
to the overhead of CLV recomputations for the branch buffer, which is only par-
allelized insofar as running on a separate, asynchronous thread. The goal of this
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Figure 4.7: Parallel efficiency using an experimental across-site parallelization
scheme to accelerate branch buffer precomputation. We measured the serra-
tus dataset, with varying memory limitation settings: no Actively Managed
CLVs (AMC) (off), minimum memory AMC (full), and maximum memory AMC
(maxmem).

parallelization approach was to overlap the CLV computation for one branch block
with the QS placement computations of another branch block. The key limiting
factor is, that based on our experience with concurrent likelihood calculations, par-
allelizing the CLV recomputation per se on typical reference datasets, is difficult.
Hence, the PE of such an additional parallelization at this level is expected to be
sub-optimal. We nonetheless investigated the impact on PE when using a version
of LIBPLL-2 that parallelizes CLV calculations over individual sites of the reference
alignment. For this, we modified EPA-NG to perform the branch buffer precompu-
tation synchronously. In this version, we first use all available worker threads for
the CLV precomputation of one block and subsequently use all worker threads to
perform the placement operations on this block. We show the results of this test in
Figure 4.7.

Due to time constraints we were only able to obtain data for the serratus dataset,
which also presents the most promising candidate for this type of parallelization
scheme. For this dataset we observe a substantial improvement in PE. When using
32 threads and the full mode, the asynchronous approach showed ~4% PE, whereas
our experimental approach yields ~16%. The mazmem setting performed nearly
identical for 32 threads for both the asynchronous and experimental approaches.
However for the same number of threads and when not using AMC, the asynchronous
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approach had a PE of ~10%, whereas the experimental approach achieved ~8%.
Note however, that the serratus data presents the rather atypical case of a very
wide alignment. Wide alignments with a large number of alignment sites are known
to increase the efficiency of the across-site parallelization approach we deploy.

In contrast, supplying too few sites per thread can be detrimental to the overall
execution time [60]. Our preliminary results for combining the experimental paral-
lelization suggest the same behaviour for the neotrop dataset. With the neotrop data
and the full mode, we observed the run using 32 threads to be ~20% slower than
the serial reference. Thus, we can only recommend an across-site parallelization for
sufficiently wide alignments.

4.5.4 Verification

Both EPA-NG and LIBPLL-2 include regression testing to ensure the validity of any
changes made to the code. Additionally, EPA-NG includes a suite of unit tests.
We executed all available tests for the versions of EPA-NG we evaluated here, and
detected no fault or deviation from previous results.

4.6 Summary

My previous work on EPA-NG focused on runtime performance and scalability with
regards to the number of QS. However, when the goal of the user is to increase the
number of references, the use of EPA-NG can be limited by its comparatively high
memory consumption.

To alleviate this, I have implemented a memory saving approach for likelihood-based
placement which involves active CLV management. By default, this approach does
not require any sort of user intervention as the limit for the amount of available
memory is determined automatically by our program. However, when the user
desires to do so, he/she can explicitly set a specific memory limit via a simple
command line option (--maxmem).

Thereby, this feature enables maximum likelihood based phylogenetic placement on
large scale datasets under resource limitations and/or on extremely large reference
trees. The evaluation shows that, while in some cases, the slowdown of EPA-
NG induced by aggressive memory saving can be substantial, this only occurs for
the most extreme case. In particular, when the allotted memory allows for using
the EPA-NG memoization technique, the memory saving to runtime trade-off is
acceptable and practical. For example, using the most aggressive memory saving
setting, when applied to the pro_ref data, we are able to reduce the memory footprint
by ~77% by increasing the execution time from 1.6 minutes to 2.4 hours. With
the memoization technique enabled, we are able to reduce the execution time to
~6 minutes, while still reducing the memory footprint by ~43%. This holds in
particular for large datasets where otherwise using EPA-NG would merely not have
been possible due to memory limitations.
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As T have generalized and implemented the CLV memory management in the free,
open source phylogenetic maximum likelihood library LIBPLL-2 [40], other likelihood-
based tools such as, for instance, RAXML-NGJ[60] can now also deploy this tech-
nique.



5. SCRAPP: A tool to assess the
diversity of microbial samples from
phylogenetic placements

This chapter is based on the peer-reviewed open-access publication:

P. Barbera, L. Czech, S. Lutteropp, and A. Stamatakis. “SCRAPP: A tool
to assess the diversity of microbial samples from phylogenetic placements.”
Mol Ecol Resour, 2021, Volume 21, Pages 340—349

accessible online at: https://doi.org/10.1111/1755-0998.13255

5.1 Introduction

A drawback of phylogenetic placement is its inability to resolve relationships between
individual QQSs, even when they are placed in close proximity to each other on the
RT. This is sensible as it substantially reduces the computational effort while still
producing highly accurate results, especially for short read sequences with weak
phylogenetic signal. Nonetheless, resolving relationships between QSs constitutes a
desired feature by many users. Furthermore, we expect this feature to become more
important with the increasing adoption of fourth generation sequencing technologies,
which yield substantially longer reads. We have previously demonstrated the value
of resolving between-QS relationships with longer read data [50] and hope that the
methods presented here constitute a step into this direction.

One key goal of molecular studies is to assess the diversity of a sample. As mentioned
in Section 2.5, a number of distinct metrics exist to quantify the diversity within a
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sample (a-diversity), and between samples (S-diversity) [110]. For a subset of these
metrics, phylogenetic information can be used to calculate both « (e.g., PD [34],
and Phylogenetic Species Variability [45]) and 8 (e.g., the UniFrac distance [69])
diversities. A relatively recent approach to quantifying a-diversity using sequence
data is phylogeny-aware molecular species delimitation [41, 53, 115, 118]. These
methods rely on a given phylogenetic tree to identify species boundaries, essentially
resulting in a clustering of the tips into distinct species.

Here, I present a combined approach of phylogenetic placement [5] and species de-
limitation [53, 118] to devise a measure of phylogeny-aware relative a-diversity. Our
SCRAPP (Species Counting on Reference trees viA Phylogenetic Placement) tool,
quantifies diversity by initially grouping QSs by the branch on the reference tree to
which they most likely belong with respect to their phylogenetic likelihood score.
Subsequently, for each such group of QSs placed onto the same reference branch, we
infer a separate phylogenetic tree comprising the QS of that group, optionally in-
cluding an outgroup sequence from the reference tree. We call such a tree a Branch
Query Phylogeny (BQP). Generating such BQPs constitutes a major part of the
analysis (in terms of run time), and is a feature that has, thus far, been missing for
post analyzing phylogenetic placements. Therefore, we include the set of inferred
BQPs in the SCRAPP output.

Finally, we apply MPTP [53] to the BQP to obtain a species count for the corre-
sponding reference branch. The output of SCRAPP is a branch-annotated refer-
ence tree that depicts how species diversity is distributed over the reference tree for
a given sample.

SCRAPP is implemented in Python and relies on MpP14pPY [18-20] for the respective
parallel implementation targeting both, shared, and distributed memory systems.

Some of the concepts used in SCRAPP are based on the difficult to use EPA-PTP
tool, an early attempt to integrate phylogenetic placement with species delimita-
tion [118]. The goal of SCRAPP is thus to quantify diversity for each branch of
the reference tree individually and to improve usability. Further, in contrast to
SCRAPP, EPA-PTP used phylogenetic placement to calculate a single, overall
species delimitation over the entire reference tree extended by all BQPs simultane-
ously.

5.2 Description

An overview of the SCRAPP tool is provided in Figure 5.1. SCRAPP takes
as input a JPLACE [76] file (see Section 2.4.2) containing the placements and the
associated reference tree, as well as the corresponding MSA of the QSs. From
this, we generate per-branch QS MSAs. These include all QSs whose most likely
placement was on the given branch. However, we remove those placements from this
set, whose best LWR is below a given threshold (--min-weight, default 0.5).

If desired, an outgroup from a user specified reference MSA is included in each branch
QS MSA such that the corresponding BQP that is produced in the subsequent step
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can be rooted at this outgroup. We automatically choose the outgroup sequence
for a given BQP as the leaf sequence in the reference tree that is most distant
from the given branch. Note that, MPTP species delimitation operates on rooted
phylogenies. Thus, specifying an outgroup can be beneficial if a more reliable root
for the BQP is desired. If a root is not provided, MPTP will automatically root the
BQP on its longest branch.

If the number of QSs in a given branch QS MSA exceeds a user-specified maximum
(500 by default), we reduce the number of QS to that maximum using a two-stage
clustering method (described in Section 5.2.2). This option is necessary to maintain
BQP tree inference times within reasonable limits. On empirical datasets, specific
reference branches can contain more than 100,000 QSs, hence yielding the inference
of a BQP computationally challenging. We strongly recommend that the QSs are
dereplicated or even OTU-clustered (see Section 2.1) prior to executing SCRAPP,
or, for that matter, prior to performing placement.

Once the query MSAs have been generated for all branches of the reference tree, we
infer a phylogeny for each of them separately using RAXML-NG [60]. As there may
be a large number of trees (potentially as many as there are branches in the reference
tree) with highly variable sizes to infer, we use PARGENES [82] to orchestrate this
tree inference process in a parallel, scalable, and efficient way. The inferred BQPs
are then processed using MPTP to obtain a species delimitation, and corresponding
species count. The information produced by each MPTP run is tracked for each
branch that contains QSs in the reference tree.

We note that the species delimitation itself constitutes a clustering of the QSs, which
may represent a desirable output to the user. Particularly, if the original placement
input data has not already been OTU clustered, the combination of placement with
species delimitation can be regarded as phylogeny-aware OTU clustering. However,
here we focus on the diversity metric aspects of SCRAPP, and consider further
potential applications as future work.

5.2.1 Variance and Output

The set of inferred BQPs can optionally be expanded to calculate species count
variance. Two options are available to calculate this variance: rootings, generates a
tree set on each BQP by enumerating all possible rootings for the unrooted BQP,
or bootstraps, generates a given number (20 by default) of bootstrapped branch QS
MSAs and then re-optimizes the branch lengths on the original BQP for each of the
bootstrapped branch QS MSAs. When using these expanded BQP sets, we calculate
the final species count as median over all per-branch species delimitation results (i.e.,
over all rootings or all bootstrap replicates).

The rootings and bootstraps options constitute two of the three principal operat-
ing modes of SCRAPP. The third operating mode, the outgroup mode, offers the
rooting of the BQPs via inclusion of a reference outgroup (as described above).

Finally, SCRAPP generates two types of output files. Firstly, it outputs an anno-
tated version of the reference tree in the extended NEWICK format, that can easily
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be visualized by a number of tree viewers (e.g., iTOL [65] or Dendroscope [46]).
This is useful for obtaining a high level overview of the diversity, as diversity is
represented by just one species count value per reference tree branch.

To allow users to explore the results more thoroughly, for example, by inspecting
the variance of the median species count, we also produce a comprehensive output
file in a json-based file format that is analogous to the JPLACE format [76]. This
format, called Tree Edge Annotations (TEA), contains the reference tree with enu-
merated branches, as specified in JPLACE, followed by annotation information. The
annotation comprises a list of per-branch values. In SCRAPP this annotation in-
cludes the median species count, and the species count variance, among others. A
full specification and an example of the TEA format is provided in Appendix A.1,
as well as online at https://github.com/pbdas/scrapp/wiki/TEA-format.

5.2.2 Placement Space Clustering

In general, phylogenetic diversity metrics face a fundamental scalability issue, as
they rely on a phylogeny inferred on the QSs. With increasing sequencing vol-
umes, inferring such phylogenies under maximum likelihood becomes prohibitively
expensive. Moreover, as metabarcoding/metagenomic samples typically comprise
short sequences, the available signal for reliable tree inference on thousands or tens
of thousands of taxa is mostly insufficient [10]. This was the key motivation for
the development of phylogenetic placement methods as a scalable and more reliable
alternative.

Nonetheless, SCRAPP faces this same computational issue again at a different level
as a reference branch may contain tens of thousands of QSs. To alleviate this, we
have implemented a two-stage clustering method called Placement Space Clustering
(PSC) in SCRAPP. PSC leverages the fact that the pendant and distal/proximal
lengths of a placement can be interpreted as the coordinates in a two-dimensional
space (hereafter called placement space). When using PSC, we map the set of
placements on a branch into placement space and then perform a standard k-means
clustering on the respective datapoints. Subsequently, we select a small number x of
placements from each cluster as representatives of that cluster, such that k*x equals
the maximum desired number (as specified by the user) of sequences per branch
QS MSA. More specifically, we select the top x := 10 sequences by number of
informative (non-gap or non-undetermined) sites, thereby maximizing the potential
phylogenetic signal for the subsequent tree inference.

5.3 Evaluation

We assessed the accuracy of SCRAPP using both, simulated, and empirical data.

5.3.1 Simulated Data

We generated true species trees using the MSPRIME ([55], v0.7.3) coalescent simu-
lator. We then used SEQ-GEN ([95], v1.3.4) to generate MSAs on those trees. We
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Figure 5.1: Overview of the major components of the SCRAPP pipeline. In green,
we highlight optional components (inclusion of reference sequences for BQPs out-
group rooting, placement space clustering for limiting computational effort, boot-
strapping or re-rooting for delimitation variance assessment).
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Parameter | Value
seq_length | 4000
prune_fract | 0.25
pop_size leb
species 400
mut_rate le-8
sample_size | 50

Table 5.1: Default simulation parameters as used in msprime and Seq-Gen.

generated the trees and MSAs such as to evaluate SCRAPP under a broad range
and combination of simulation parameters. The parameters include: the number of
starting populations (which we call species) (range: 200 — 600), the sequence length
(range: 1000—4000), the number of individuals per population (called sample size by
MSPRIME) (range: 20 —80), the overall MSPRIME population size (range: 10° —107),
and the mutation rate (range: 1077 —107%). In particular, we investigated the influ-
ence on each parameter individually while keeping the remaining parameters fixed
to a set of default values, specified in Table 5.1.

From each simulated true tree and MSA, we first pruned a set of QSs by removing
all but one individual from each starting population. To account for incomplete
reference data with lower taxon sampling density, we subsequently further pruned
a given fraction (denoted as prune_fract, [0.1,0.4]) of leaves uniformly at random
from the trees. We then labeled the branches of the remaining reference tree by the
number of query species (here assumed to be equal to the number of populations)
whose true location is on that given branch.

We then used EPA-NG to place the query data back onto the tree. Next, we eval-
uated these phylogenetic placement results using SCRAPP, yielding an annotated
NEWICK tree. Finally, we compare the reference tree with the inferred species count
annotations (hereafter SCRAPP-tree) to the reference tree with the true species
count annotations.

All scripts used for generating the simulated data can be found in the SCRAPP
repository: https://github.com/Pbdas/scrapp/tree/master/simtest

5.3.2 Empirical Data

In addition to the tests on simulated data, we replicated part of the evaluation of
[78]. McCoy and Matsen [78] evaluated different diversity metrics by the quality of
their fit with clinical metadata, which are known from literature to correlate with
a-diversity.

We chose to replicate and extend the evaluation of the Bacterial Vaginosis dataset [105]
(hereafter called BV), as we already had access to the data (see Section 3.4.1.2) and
the specific dataset has been particularly well studied [15]. The clinical metadata
included in the BV dataset are based on two methodologies indicating the presence
or absence of bacterial vaginosis for a patient: Amsel’s criteria [2], and the Nugent
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score [87]. Amsel’s criteria comprise four distinct criteria, three of which need to be
fulfilled to positively diagnose a patient with bacterial vaginosis. In the BV dataset,
”Amsel” is provided as a binary value indicating whether a patient was diagnosed as
being positive or negative. The Nugent score is a composite score based on gram-
stained vaginal swabs. The score ranges from negative (0 — 3), through intermediate
(4 — 6), to positive (7 — 10).

Unfortunately, due to patient data protection issues, we cannot make the BV dataset
publicly available. Please refer to [105] and [15] for an exhaustive exploration of the
BV dataset, and a detailed description of the phylogenetic placement of the per
sample data, respectively.

Firstly, to obtain the OTU-derived diversity measures used in the evaluation of [78],
we performed OTU clustering using SWARM ([71, 72], v3.0, -d 1 -f), and utiliz-
ing VSEARCH ([97], v2.6.2) for dereplication and filtering. We further analyzed
the resulting OTU table using the R package PHYLOSEQ ([79], v1.22.3, function
estimate_richness) to obtain the Shannon [100], Simpson [101], ACE [12], and
Chaol [14] indices.

Secondly, to assess the placement based methods, we computed a phylogenetic place-
ment of the sample data. Note that, we did not use the reference tree given in the
original publication [105], as we found that the inclusion of multiple strains of the
same bacterial species can produce a very flat likelihood distribution for potential
placements of a single QS across individual branches of the tree [15]. Therefore, we
used an appropriately modified version of the reference tree, as shown in Figure S1
in [15]. This modified reference tree only retains consensus sequences of all reference
strains, such that only one taxon per species remains. The modified reference tree
comprises 198 taxa.

Based on this placement data, we obtained the measures outlined in [78], on a per-
sample basis, using the GUPPY command fpd ([75, 78|, v1.1.alphal9-0-g807{6{3).
Note that, we chose to omit the guppy fpd --include-pendant option to avoid
overestimating diversity. The placement process does not resolve relationships be-
tween individual QS. Thus, the distance of each individual QS to the RT is denoted
by a so-called pendant length. Consequently, if two or more QS are phylogenetically
close to each other, but relatively distant to the RT, the common distance to the
RT may be counted once per QS in the PD calculation. This can lead to potential
overestimation.

Lastly, we applied SCRAPP to the placement data, running the analysis in the
bootstrap operating mode, and limiting the maximum number of taxa per BQP to
1,000. This again yields a SCRAPP-tree (see Section 5.3.1).

In the interest of comparability, we chose to re-implement the BWPD function using
the GENESIS library [17], in a way such that it can be applied to SCRAPP-trees.
The BWPD relies on a one-parameter function family interpolating between clas-
sical PD and an abundance weighted version of the PD. McCoy and Matsen [7§]
chose to implement and evaluate the BWPD on placement results, which consist of
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precise locations and branch lengths of queries on the reference tree. In contrast
to this, SCRAPP-trees comprise assignments of absolute numbers (species counts)
to branches of the tree, without any more specific branch length information. To
remedy this discrepancy, when calculating the BWPD on a SCRAPP-tree, we treat
the species count of a branch as if it were a single placement, located at the middle
of said branch, without a pendant length.

All data handling and analysis scripts used in the empirical data evaluation can be
accessed online at https://github.com/Pbdas/diversity-compare.

5.3.3 Clustering and Showcase
Finally, we include a showcase test and analysis for two additional empirical datasets.

In one set of experiments, we use the neotrop dataset (see Section 3.4.1.1 and Sec-
tion 4.5) to evaluate our PSC methodology (Section 5.2.2). This data is particularly
challenging for phylogenetic placement, as the available reference data is too sparse
to cover the diversity that was sampled. For our purposes, we randomly selected
small subsets of 1,000 QSs from this dataset and placed them on the reference tree
described in [70] (512 reference taxa). We then executed SCRAPP for distinct set-
tings of —-cluster-above, thereby limiting the maximum number of sequences per
branch used in the subsequent BQP tree searches. As the randomly selected 1,000
QSs subsets produced a maximum of 298 QSs placements per branch, a threshold
value of 300 was selected as the benchmark against which all other runs are com-
pared to, since this constitutes the “no clustering” case. For each clustering threshold
setting and each operating mode we performed 5 independent runs of the same data
in order to quantify the variability introduced by the randomization component in
the clustering algorithm. Scripts and data used in this experiment can be found in
the repository at https://github.com/Pbdas/scrapp/tree/master/test.

In a second set of experiments, we used a large dataset from the UniEuk project [9]
as a showcase for deploying SCRAPP on a standard parallel compute cluster. For
this test, we used a phylogenetic placement of 585,050 QSs, which resulted from
an OTU clustering of roughly 300 million sequences, on a reference tree comprising
800 taxa. From this, SCRAPP identified 254, 103 QSs as being placed with a LWR
above the default 0.5 threshold (see Section 5.2). We limited the maximum number
of sequences per branch to 800, and used the bootstrap operating mode, generating
100 bootstrap trees per BQP. This resulted in the inference of 1,070 BQPs, the
largest tree containing 797 taxa. SCRAPP further evaluated each of them via 100
distinct bootstrap MSAs.

5.3.4 Error Metrics

For the simulated data, we calculate two distinct accuracy values. The first is the
absolute difference between the inferred and the true species count on a branch in
the reference tree. This absolute difference is then averaged over all branches of
the reference tree that have non-zero values in either tree. We denote this accuracy
metric as Mean Absolute per-branch Error (hereafter MAE).
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More formally, let S and T be two trees with identical topologies and branch-
associated values s; and t¢; for a given branch index 7, respectively. T" denotes the
true tree, while S denotes the SCRAPP-tree (Section 5.3.1). Let B be the set of
branch indices for which either S or T" have non-zero values. We can now write the
MAE as
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MAE =
|Bi

(5.1)

Our second accuracy metric is based on normalized per-branch species counts. For
a given branch with index k, we calculate this normalized count based on a absolute
species count xj as

xnorm o T
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where k denotes the index of a given branch, and B is as defined above.

(5.2)

Further, instead of calculating the absolute difference, we calculate the relative dif-
ference:

|tk — skl
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rel(ty, sy) =

Again, s, and t;, are the values for a given branch with index k, of two given trees
S and T as defined above. Note that here we compute the relative difference by
normalizing via the arithmetic mean of s, and t;. This ensures that the metric
produces well-defined values in cases where t; = 0. The term rel(ty, sg) is also
known as the Relative Percent Difference. Note that rel(ty, sx) is bounded between
0 and 2.

Finally, we again calculate the average over all relative normalized species count
differences across all branches that have non-zero value, resulting in the Normalized
Mean Relative per-branch Error (NMRE).
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(5.4)

The MAE captures the deviation of the SCRAPP-based species count from the
true species count. The NMRE quantifies the difference between the true and the
inferred diversity distribution over the tree.

The accuracy of the methods used in the empirical evaluation is calculated as in [78].
Here, the primary approach is to assess the correlation of the diversity measures
with the clinical metadata (see Section 5.3.2). To quantify the correlation with the
diagnosis based on Amsel’s criteria, we first use the glm function in R [93] to fit a
generalized linear model to the data. We then calculate the Amsel accuracy as the
proportion of correctly identified datapoints via a leave-one-out cross-validation.
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Just as McCoy and Matsen we perform independent 2-group t-tests between the
Amsel diagnosis and the investigated metrics, using the t.test R function. The
resulting p-value is presented here as the Amsel p-value. For comparing against the
Nugent score, we fit the diversity measures using a linear regression model, via the
1m function in R. The function also returns the R? of the fit, which is the proportion
of the variation that is explained by the model.

5.4 Results

5.4.1 Simulated Data

We performed a total of 270 independent simulation runs, covering all simulation
space dimensions, all of their combinations with the SCRAPP operating modes, and
repeating runs for each individual configuration 5 times. We show high level results
across all runs, and stratified by operating mode, in Table 5.2. We observe a mean
NMRE of 0.508 over all experiments. When stratified by the different operating
modes, we observe the lowest overall NMRE for the rootings mode (0.471 mean

NMRE).

To summarize our exploration of the impact of different simulation parameters, we
find that result accuracy in terms of mean NMRE increases with increasing overall
population size, sample size (number of individuals per population), and sequence
length, as well as decreasing prune_fract (Section 5.3.1). While less pronounced,
there is a trend for the NMRE to improve with increasing total tree size which may
be attributed to improved taxon sampling density [44]. This can be observed in
Figure 5.2, which shows data for those simulation runs where we only varied the
total number of starting populations (here called species).

Further, we observe a general trend for overestimating the species count across all
simulation parameters, as indicated by the high MAE values (Table 5.2). Specifically,
the rootings mode appears to overestimate the species count the most, while the
bootstrap mode performs best in this regard. We therefore recommend that users
deploy the bootstrap mode when the goal is to obtain as accurate as possible estimates
of the absolute species counts. However if, one desires to obtain the most accurate
relative distribution of species counts over the tree, we recommend the rootings
mode, as it consistently showed the lowest NMRE.

Further, we observe a divergent relationship between the MAE and NMRE scores for
the population size, sample size, sequence length, and species parameters. For the
first three parameters this is due to a decrease in the fraction of MPTP delimitation
results that yield the null model. Note that, when MPTP yields the null model,
it cannot distinguish between a delimitation into one or n species, where n is the
number of leaves in the tree (the BQP in our case). As the fraction of null model
results decreases, the relative MPTP accuracy increases, yielding more accurate
results with respect to the NMRE metric. At the same time, this also increases the
average absolute species count, and thereby generates higher MAE values.
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NMRE o2 CV MAE o¢? (GAY

bootstrap | 0.518 0.013 0.221 | 5.69 299 0.304
outgroup | 0.535 0.017 0.241 | 7.71  5.48 0.304
rootings 0.471 0.019 0.289 | 8.15 5.76 0.294
across-all | 0.508 0.016 0.254 | 7.18 5.86 0.337

Table 5.2: We report the mean NMRE and mean MAE, across all runs (last row) and
across all runs of the specific operating modes (middle rows). o2 denotes the variance
of the given means, and CV denotes the coefficient of variation. As a reference, the
mean variance among simulation replicates (identical parameter configurations but
different random number seeds) was 1 x 1072 and 3 x 1072 for the NMRE and the
MAE, respectively.

For the species parameter (the number of populations in the coalescent simulation),
the negative relationship between MAE and NMRE is less pronounced. It can
be explained by the fact that an increase in the species parameter yields a larger
simulated tree, but, at the same time, unlike the other three parameters does not
increase the phylogenetic signal for reconstructing the BQPs. As a consequence, the
fraction of MPTP null model results remains constant over the species parameter
range. Further, as phylogenetic placement is not exact, a larger reference tree with
an increased number of branches also implies a larger potential for misplacing QSs.
This increases the chance of reference tree branches for which the true number of
placed QSs should be 0, to contain misplaced QSs, and thereby yield a minimum
species count of 1. As the delimited species to which a misplaced QSs belongs may
already be accounted for on another branch, the total species count increases. As a
result, the MAE will increase as well.

Finally, Figure 5.3 shows the full exploration of varying individual simulation pa-
rameters, using the MAE and NMRE metrics, as well as the fraction of null model
results.

5.4.2 Empirical Data

The most important results of our evaluation based on the BV dataset are shown
in Table 5.3. We were able to closely replicate the results of [78] (their Table 2),
although we generally observe higher values for the Amsel accuracy and Nugent
R?. The exception to this are the R? values obtained from the ACE and Chaol
measures, that substantially underperform compared to the results of [78]. As ACE
and Chaol are the only tested OTU-based metrics that specifically assign a higher
weight to rare observations (i.e., OTUs observed only once or twice), we speculate
that our data handling approach has reduced the number of rare OTUs. However,
our results confirm the general trend that phylogenetic methods outperform OTU
methods with respect to the aforementioned metrics.

Further, we observe a high level of agreement between metrics directly calculated
from phylogenetic placement results, and metrics derived from SCRAPP results.
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Measure Amsel accuracy Nugent R?> Amsel p-value Mean rank
bwpd_0.25.guppy 0.877 0.777 2.01e-35 2.33
bwpd_0.25.scrapp 0.874 0.785 4.02e-34 2.33
phylo_entropy.scrapp 0.873 0.782 4.70e-34 4.00
bwpd_0.5.guppy 0.873 0.757 1.03e-34 4.33
bwpd_0.5.scrapp 0.872 0.786 1.37e-33 4.67
bwpd_0.scrapp 0.873 0.767 1.49e-33 5.67
quadratic.scrapp 0.869 0.779 1.60e-32 8.33
bwpd_0.75.guppy 0.870 0.725 2.46e-33 9.00
bwpd_0.75.scrapp 0.868 0.772 5.10e-32 10.33
quadratic.guppy 0.869 0.718 7.97e-33 10.33
bwpd_0.guppy 0.872 0.713 2.00e-31 11.17
unrooted_pd.guppy  0.872 0.713 2.00e-31 11.17
phylo_entropy.guppy  0.869 0.716 1.43e-32 11.33
rooted_pd.guppy 0.871 0.701 5.73e-31 13.00
bwpd_1.scrapp 0.861 0.741 1.30e-29 13.67
bwpd_1.guppy 0.867 0.691 8.36e-32 14.33
Shannon 0.826 0.387 5.03e-18 17.00
ACE 0.822 0.242 1.41e-10 18.00
Chaol 0.810 0.213 6.35e-09 19.00
Simpson 0.788 0.168 3.61e-08 20.00

Table 5.3: Correlation and predictive power of SCRAPP in comparison with anal-
ogous approaches on the Bacterial Vaginosis data. Amsel accuracy, Nugent R?,
Amsel p-value, and mean rank are calculated exactly as in [78]. Rows are sorted
by mean rank. Measures suffixed by .guppy are calculated using guppy fpd [75],
whereas measures suffixed by .scrapp were calculated based on results produced by
SCRAPP. Shannon, ACE, Chaol, and Simpson values were calculated based on an
OTU clustering of the same data (see Section 5.3.2).
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Figure 5.2: NMRE (Equation 5.4) for several runs on simulated datasets where
we only varied the total species count of the "true” tree (the number of individual
populations). Error bars denote the first standard deviation from the mean. Data
was stratified by the three different operating modes of SCRAPP (see Section 5.2).

5.4.3 Clustering and Showcase

The results of evaluating PSC with varying clustering thresholds are shown in Fig-
ure 5.4. Both, the bootstrap, and rootings operating modes produced stable results,
that are qualitatively similar to the tests on simulated data. However, the outgroup
operating mode proved to be highly sensitive to the PSC, yielding high species count
deviations starting at a clustering threshold of 200 (a data reduction of ~33%). Due
to the known issues with the eukaryotic soil reference dataset at hand we hypoth-
esize that the cause for this behavior is the sparse taxon sampling in the reference
MSA. This incomplete taxon sampling induces a high branch length value between
the ingroup QSs and the outgroup, as SCRAPP selects the phylogenetically most
distant taxon in the reference tree as outgroup.

As a final showcase for the scalability of SCRAPP on distributed computing clus-
ters, we analyzed a large dataset of 585,050 QSs placed on a 800 taxon reference
tree, utilizing 50 compute nodes comprising a total of 800 cores. Running this anal-
ysis involved handling about 1 million files, of which approximately 8, 500 had to be
retained as intermediate results for further downstream analysis. The total runtime
under this setting was 26.5 hours. We regard this as being fast, since the overall
computational task includes hundreds of tree inferences with up to 797 taxa, and
handling approximately 1 million intermediate files.

5.5 Summary

In this chapter I presented SCRAPP, a highly scalable and fully automated pipeline
for diversity quantification of phylogenetic placement data. The primary goal of
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Figure 5.4: MAE (Equation 5.1) of multiple runs of SCRAPP, using different
thresholds down to which Placement Space Clustering (PSC) reduces the maximum
per-branch data volume. The MAE is calculated with reference to the case of the
threshold being 300, as 300 was the maximum number of QSs that were placed

per-branch. The underlying query and reference data are from the neotrop dataset
(Section 5.3.3, [70]).

SCRAPP is to quantify the diversity distribution of a given sample on the refer-
ence tree. It does so by grouping QSs by their most probable reference tree branches
performing a novel type of dimensionality reduction called Placement Space Cluster-
ing (PSC) if the size of the group exceeds a limit set by the user. Subsequently, we
use the parallel multiple tree search tool PARGENES to infer a ML phylogeny on this
group of sequences. The result of each of these tree inferences is then passed to the
molecular species delimitation tool MPTP, which outputs a clustering of the leaves
of the tree into putative species. Finally, SCRAPP synthesizes the information
generated by MPTP and annotates the original reference tree, generating a species
count distribution on the tree.

The evaluation of SCRAPP shows that, on simulated datasets, the approach yields
phylogenetic diversity distributions with a comparatively low per-branch error rate.
On empirical data, we show that a-diversity metrics calculated on the results ob-
tained from SCRAPP rank among the most accurate of those tested in terms of
predictive power, and correlation with clinical metadata.

Finally, our experiments show that using PSC, our novel clustering method for
placements, SCRAPP is able to to efficiently perform dimensionality reduction of
the branch QSs MSA input data. This enables SCRAPP to tackle the scalability

challenge induced by the overabundance of environmental sequence data.

Like the other tools I have developed in the course of this thesis, SCRAPP is
available as a free open source software at https://github.com/Pbdas/scrapp.
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6. Conclusion and Outlook

6.1 Summary

In this thesis I have described my work on high performance computational software
for Mazimum Likelihood (ML) phylogenetic placement, and its application to a novel
method for quantifying the species diversity of a given sample. ML phylogenetic
placement is a state-of-the-art method for determining the evolutionary context
of a genetic sequence with unknown provenance. ML-based phylogenetic methods
use statistical models of evolution to compute the phylogenetic likelihood which
constitutes the most accurate method for evolutionary tree inference.

In Chapter 3 I described EPA-NG, which combines the features of two previously
published ML phylogenetic placement tools and improves single core execution times
by up to 30 times. Furthermore, EPA-NG is the first ML phylogenetic placement
software that can be executed and scales well on distributed memory systems. These
performance improvements enable EPA-NG to perform placement for datasets with
an extremely high number of query sequences, as shown in a test involving the
placement of 1 billion sequences, using 2,048 cores.

In Chapter 4 I presented the most recentimprovement of EPA-NG, which allows
the user to specify an upper bound for the main memory usage. When the mem-
ory requirements of an analysis necessitate it, EPA-NG deploys an active memory
management strategy that involves an asynchronous recomputation of vital data
structures. Using this mode enables the user to perform ML placement analyses on
larger reference trees than ever before, at the cost of low to moderate increases in
execution time. This is especially relevant for users that only have access to hard-
ware with limited memory resources. This new mode also has implications on the
parallelization scheme employed in EPA-NG, which we explore in the evaluation of
the program.

A common use-case of phylogenetic placement is to characterize the composition
of a microbial community, using genetic sequencing data obtained from an envi-
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ronmental sample. Such studies typically also aim to quantify the diversity of a
sample, and by extension the diversity of the environment the sample was taken
from. Moreover, current methods for environmental sample diversity quantification
often rely on phylogenetic information, such as the popular Phylogenetic Diversity
(PD) metric. Thus, it is beneficial to use results from phylogenetic placement to
quantify the diversity of a sample.

In Chapter 5 I described SCRAPP, a software that takes the results of phylogenetic
placement as input and calculates a distribution of species counts on the reference
tree, which can then be interpreted as a diversity measure. SCRAPP achieves this
by combining state-of-the-art tools for phylogenetic inference and molecular species
delimitation. Furthermore, it employs a novel approach for clustering placement
results, called Placement Space Clustering (PSC) to allow the user to constrain
computational effort.

Outside of my main stream of work, I have collaborated on additional projects,
which I have outlined in Section 1.2. These projects involved the application of phy-
logenetic placement methods to empirical data [30, 50, 83], the further development
of methods and tools for post-analyzing phylogenetic placement data (specifically
involving the GENESIS library and the GAPPA command line tool) [16, 17, 50], as
well as the application of phylogenetic inference methods to empirical data [30, 83].

6.2 Future Work

This final section covers possible future directions of research in the areas of phylo-
genetic placement, and placement post-analysis methods.

6.2.1 Streamlining the creation of Reference Trees

Unfortunately, phylogenetic placement has a comparatively high entry barrier for
new users, as often the first step is to assemble a reference dataset and infer a
reference tree. This step is far from trivial, as it requires highly domain-specific
knowledge. The user has to assemble a set of reference sequences that are suitable
for their studied environment, ensure the validity and quality of the sequences, apply
phylogenetic inference software, and be able to assess the quality of the resulting
tree. Moreover, the choices made in the construction of a reference tree have direct
impact on the process and outcome of ML phylogenetic placement. For example,
a tree containing too many taxa can substantially delay the response time of an
analysis due to increased computational effort. Similarly, if a reference tree contains
highly similar sequences (perhaps multiple strains of a species), placement of a short
sequence may result in multiple placement locations with a low LWR, complicating
the interpretation of the results [105]. The consequence is that users often go through
multiple iterations of building a reference tree, placing their query sequences, eval-
uating the results, and refining the reference tree based on the outcome.

There are several possible directions of work that could help to alleviate this sit-
uation. Firstly, there currently is a lack of tools to assist the tasks of creating a



6.2. Future Work 75

reference tree. For example, the development of specific objective quality criteria
for such trees could allow the user to infer a suitable tree more quickly and consis-
tently.

Secondly, objective quality criteria for reference trees could also form the basis of
an automated pipeline that performs a more specialized tree inference procedure
according to the requirements of the user, perhaps including constraints regarding
taxonomic coverage, or desired taxonomic specificity. Some work in automating
the procedure for generating a reference tree has been conducted, specifically for
generating a reduced set of consensus sequences from a large reference database
[16]. Additional work is required to fully integrate such an approach with existing
tree inference and phylogenetic placement tools, which would enable an automated
iterative procedure that improves the reference tree based on preliminary placement
results.

Thirdly, making available public, curated reference trees that target specific environ-
ments studied by many users should be encouraged. There already exist sequence
databases for specific research communities to allow for analysis of data acquired
from independent research groups [25, 73, 91]. Typically, these databases are the
source of reference sequences and thus would be the ideal platform for sharing and
curating reference trees as well. While some databases projects have made some
effort in this direction [9], and some users have publicly shared their trees in al-
ternative ways [98], this is not a standard procedure yet. Additionally, the use
of established reference trees would allow for substantially improved comparability
between individual studies.

6.2.2 Algorithmic improvements of existing methods

Despite recent advances in the field, ML methods have remained the “gold standard”
in terms of accuracy for phylogenetic placement [4, 11, 66, 67]. However, novel
approaches have improved on execution times and memory footprints, sometimes
by orders of magnitude [4, 11]. While it is likely that ML methods, such as EPA-
NG, have reached a point of diminishing returns for performance improvement on
most types of processing environments, further work is required to enable the use
of co-processors such as GPGPUs, for instance. The work presented in Chapter 4 is
an important advancement in this direction, as the memory constraints of current
GPGPUs present a primary obstacle for their use for ML phylogenetic placement.

6.2.3 Expanding the applicability of ML Phylogenetic Placement

One limitation of ML placement arises from the possible and rather typical incon-
gruence between a species tree and a set of constituent gene trees. A species tree is
typically constructed from multi-locus data (i.e., multiple genes) rather than simply
using a tree inferred on the data from a single gene, as the evolutionary history of a
gene may differ from the species tree due to gene loss, gene duplication, and horizon-
tal gene transfer. As sequencing reads in microbial studies are often extremely short,
and in the case of metabarcoding are targeting a (subregion of) a single gene, phylo-
genetic placement is typically applied to a specific gene tree only. Thus, accounting
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for possible gene tree/species tree incongruence during the placement process would
be beneficial and could increase the accuracy/reliability of the method. In a re-
cent preprint, a possible solution to this problem has been proposed, however for
distance-based placement methods instead of ML phylogenetic placement [51]. It
is currently unclear whether a similar approach can be applied to single-gene ML
placement methods. In addition, the possibility of integrating ML placement meth-
ods with ML species tree inference methods, such as SPECIESRAX [84], warrants
further investigation.

Recent advances in sequencing technology that allow for long-read sequencing may
aid in this effort as such technologies are able to produce contiguous sequences that
span multiple genes [50]. Such sequences could be used to map single reads across
multiple loci, possibly enabling multi-gene placement. A related recent advance
is the emergence of Metagenome-Assembled Genomes (MAGs) [89], which is an
attempt to use sequence assembly methods to reconstruct the genome of a single
species based on metagenomic data. For such MAG data, multi-gene placement
also seems applicable and promising. Such novel types of data can also be expected
to alter the execution time performance of existing programs, possibly warranting
further algorithmic work on existing placement methods.

Finally, there is a need to devise a robust method for identifying placement results
that represent novel groups of organisms. It is likely that the evaluation of novel
candidate taxa will continue to be more involved, for example by applying more
rigorous phylogenetic methods such as comprehensive phylogenetic inference. For
phylogenetic placement results the ability to discriminate between outliers which re-
sult from upstream errors such as misalignment or chimeric sequences, and sequences
that represent valid signal would be highly beneficial.



A. Supporting Information

Parts of this chapter are based on the peer-reviewed open-access publication:

P. Barbera, L. Czech, S. Lutteropp, and A. Stamatakis. “SCRAPP: A tool
to assess the diversity of microbial samples from phylogenetic placements.”
Mol Ecol Resour, 2021, Volume 21, Pages 340—349

accessible online at: https://doi.org/10.1111/1755-0998.13255

A.1 The Tree Edge Annotations Format

A.1.1 Intention

The TEA file format aims to provide the possibility to simply and succinctly assign
an arbitrary number of human and/or machine readable values to edges/branches
in a given phylogenetic tree.

A.1.2 Description

TEA uses the JSON syntax.

A TEA file has two mandatory key-value pairs: the tree, and the list of per-edge
annotations. The edge annotations are also nested within a list of samples. This
allows the user to specify multiple, yet semantically distinct annotations for one
phylogenetic tree in a single file.
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A.1.2.1 “tree”

This key is followed by a single string specifying a single tree in NEWICK format.
The tree must include edge IDs in curly brackets, for each edge/branch. The edge ID
numbering starts from zero and enumerates the edges in post-order starting at the
root of the tree. If the tree is unrooted, the root is set at the top level trifurcation
of the given NEWICK string. We define the order of the post-order traversal as
leftmost-subtree first, from the perspective of the NEWICK string.

A.1.2.2 “views”

This is a key-value set of individual views of the tree, where each key specifies the
name, and its corresponding value is a view on the tree. A view is a container
holding a collection of per-edge annotation values: the "annotation":{...} key-
value pair.

As an example (see example below), a view may be the SCRAPP-based species
count data from the phylogenetic placement post-analysis of a metagenomic sample.

Each view must contain an "annotation":{...} key-value pair.

Additionally, a view may contain the following optional fields: * type: a string
describing the type of the given view. This may be useful for grouping similar views
into one.

“annotation”

This object contains the per-edge annotation information objects. An annotation
information object is not required to be complete. That is, not all edges of the tree
must have an annotation and the order within this collection does not matter.

Each per-edge object is indexed by the edge number (edge ID) the annotation refers
to.

The fields and structure within an annotation object are completely free and can be
specified by the user.

A.1.2.3 “meta”

This is an optional (but highly recommended) field intended to contain information
about the origin of the file. As such it contains an “invocation” field specifying the
command line invocation and arguments that produced the file.

A.1.2.4 “version”

This is a mandatory field specifying which version of the TEA format the file com-
plies with.
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A.1.3 Example

This example shows (in redacted form) how a TEA file as produced by SCRAPP
might look like. The tree is specified, along with two separate metagenomic views
from which the underlying phylogentic placement information was generated. Each
sample contains a list of per-edge annotations comprising the results of the species
delimitation(s) with mptp. Here, “count” refers to the inferred species count.

{

"tree”: "((A:0.2{0},B:0.09{1}):0.7{2},C:0.5{3}){4};"”,

Tviews " {
"leaf_emerging ”: {
Ttype”: 77,
“annotation”: {
0:{
"count_average”: 32.1,
"count_median”: 30.0,

"count_stdev”: 14.9,

"null_score_average ”:

"null_score_stdev ”:
}s
1:{”count_average”: 1,
4:{”count_average”: 2,

}
Iz
"leaf_growth”: {

999

” ” .
type”: ,
7annotation”: {

}
}

L

"meta”: {
2”3 : . 2
invocation”: ”./scrapp.py

} )

"version”: 70.1.07,

748.93,
2.27e—13,

),
e
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