
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Exploring the Robustness of the Natural
Language Inference Capabilties of T5

Bachelor’s Thesis of

Dennis Grötzinger

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr.-Ing. Anne Koziolek (Martens)

Second reviewer: Prof. Dr. Ralf H. Reussner

Advisor: M.Sc. Jan Keim

Second advisor: Univ.-Prof. Dr. Gregor Betz

21. February 2021 – 21. June 2021

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Abstract

Large language models like T5 perform excellently on various NLI benchmarks. However,

it has been shown that even small changes in the structure of these tasks can signi�cantly

reduce accuracy. I build upon this insight and explore how robust the NLI skills of T5

are in three scenarios. First, I show that T5 is robust to some variations in the MNLI

pattern, while others degenerate performance signi�cantly. Second, I observe that some

other patterns that T5 was trained on can be substituted for the MNLI pattern and still

achieve good results. Third, I demonstrate that the MNLI pattern translate well to other

NLI datasets, even improving accuracy by 13% in the case of RTE. All things considered, I

conclude that the robustness of the NLI skills of T5 really depend on which alterations are

applied.

i

Zusammenfassung

Große Sprachmodelle wie T5 schneiden bei vielen NLI-Benchmarks exzellent ab. Es hat

sich jedoch gezeigt, dass schon kleine Änderungen in der Struktur dieser Aufgaben die

Genauigkeit deutlich verringern können. Ich baue auf dieser Erkenntnis auf und untersuche,

wie robust die NLI-Fähigkeiten von T5 in drei Szenarien sind. Erstens zeige ich, dass T5

gegenüber einigen Variationen im MNLI-Muster robust ist, während andere die Leistung

deutlich verschlechtern. Zweitens beobachte ich, dass einige andere Muster, auf die T5

trainiert wurde, das MNLI-Muster ersetzt können und dennoch gute Ergebnisse erzielen.

Drittens zeige ich, dass das MNLI-Muster gut auf andere NLI-Datensätze übertragbar ist

und die Genauigkeit im Fall von RTE sogar um 13% verbessert. Alles in allem komme ich

zu dem Schluss, dass die Robustheit der NLI-Fähigkeiten von T5 stark davon abhängt,

welche Änderungen vorgenommen werden.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Background and RelatedWork 5
2.1 Natural Language Processing . 5

2.2 Natural Language Inference Datasets . 6

2.3 Natural Language Models . 9

2.3.1 Common Concepts. 9

2.3.2 Autoregressive Models . 11

2.3.3 Autoencoding Models . 11

2.3.4 Sequence-To-Sequence Models 12

2.4 T5 . 12

2.5 Decoding Algorithms . 13

2.6 Patterns and Verbalizers . 16

2.7 Statistical Cues . 17

2.8 Related Work . 18

3 Preliminary Results With GPT-2 21
3.1 Initial Goals . 21

3.2 Challenges . 21

3.3 Adapted Goals . 22

4 Experiments With T5 23
4.1 Evaluation Schemes . 23

4.1.1 Terminology . 23

4.1.2 String Comparison . 23

4.1.3 Token Comparison . 24

4.1.4 Most Predictable Token . 24

4.1.5 Normalization . 25

4.1.6 Baseline Evaluation Scheme . 26

4.2 Overview of the Experiments . 26

4.3 Baseline Results . 27

4.4 Experiment 1: Variation in the MNLI Pattern 28

4.4.1 Can Beam Search Improve Accuracy? 28

4.4.2 Is T5 Robust to Omitting Parts of the Prompt? 29

v

Contents

4.4.3 Is T5 Robust to Slight Variations of the Prompt? 29

4.4.4 Is T5 Robust to Adding Tokens to the Prompt? 31

4.4.5 Is T5 Robust to Changing the Order? 31

4.4.6 Conclusion of Experiment 1 . 31

4.5 Experiment 2: Cross-Task-Robustness . 32

4.5.1 CommitmentBank Dataset (CB) 33

4.5.2 The Corpus Of Linguistic Acceptability (CoLA) 35

4.5.3 Recognizing Textual Entailment (RTE) 35

4.5.4 Microsoft Research Paraphrase Corpus (MRPC) 36

4.5.5 Stanford Question Answering Dataset (QNLI) 38

4.5.6 Quora Question Pairs (QQP) . 39

4.5.7 Stanford Sentiment Treebank (SST2) 41

4.5.8 Semantic Textual Similarity Benchmark (STSB) 41

4.5.9 Stanford Question Answering Dataset (SQuAD) 43

4.5.10 Conclusion of Experiment 2 . 46

4.6 Experiment 3: Cross-Dataset-Robustness 46

4.6.1 The Stanford Natural Language Inference (SNLI) Corpus 47

4.6.2 The Adversarial Natural Language Inference (ANLI) Corpus . . . 47

4.6.3 The Recognizing Textual Entailment (RTE) Corpus 48

4.6.4 Conclusion of Experiment 3 . 49

5 Conclusion 51

Bibliography 53

vi

List of Figures

1.1 Model with the highest accuracy on the MNLI validation_matched dataset

over time. [39] . 2

2.1 Illustration of an autoregressive model [27]. 10

2.2 Illustration of an autoencoding model [27]. 11

2.3 Illustration of a sequence-to-sequence model [27]. 12

2.4 A toy example of the output probabilities for individual tokens of a lan-

guage model. 14

2.5 A toy example to illustrate how beam search works. Two time steps are

shown with the probabilities that a language model assigns certain tokens,

given the input before. The blue line demonstrates which result greedy

decoding would choose, while the green line shows the result that beam

search discovers (which has a higher probability than the one from greedy

decoding). 15

2.6 An example of a pattern. The pattern is parametrized with A="The hy-

pothesis:", B=" The premise: " and C= n (n is the empty string). It takes a

premise and a hypothesis as input. 16

2.7 An example of a verbalizer. The verbalizer takes three labels (entailment,

neutral, contradiction) as input and outputs the strings (or tokens) that

correspond to those labels. 17

2.8 An example of how to do few-shot learning for English to French transla-

tion from [7]. 18

4.1 Overview of Experiment 1. I will slightly vary the baseline-pattern and

observe how this impacts the accuracy of T5-base on the MNLI matched

validation set. The verbalizer is always the baseline-verbalizer. 28

4.2 Overview of Experiment 2. I will try the PVP of di�erent task with the

MNLI matched validation set. The goal is either to see if NLI capabilities

transfer across task or to �nd indications of the use of statistical cues. . . 34

4.3 An illustration on how to determine which mnli matched validation in-

stances T5 thinks are equivalent. 37

4.4 Overview of Experiment 3. I will try di�erent NLI datasets with the baseline

PVP and as such determine if the NLI capabilities that T5 learned for MNLI

extend to other NLI datasets. The MNLI verbalizer is not included to

increase readability. 47

vii

List of Tables

2.1 All the datasets that T5 was trained on and a short description of each. . 6

2.2 All the datasets that T5 was trained on with corresponding examples. . . 7

4.1 Accuracy of T5-base on the MNLI matched validation set using the evalu-

ation scheme of string comparison and di�erent decoding schemes. . . . 29

4.2 Accuracy of T5-base on the MNLI matched validation set using the eval-

uation scheme of string comparison (see Subsection 4.1.2) when omitting

part of the prompt. n is the empty string. 30

4.3 Accuracy of T5-base on the MNLI matched validation dataset using the

evaluation scheme of string comparison (see Subsection 4.1.2) when slightly

varying the prompt. 30

4.4 Accuracy of T5-base on the MNLI matched validation dataset using the

evaluation scheme of string comparison (see Subsection 4.1.2) when adding

some tokens. In order to improve clarity, abbreviations are used. con-
sider_pattern = "Consider the following", greek_pattern = "A greek soldier

drank some lemon juice.", mnli_pattern = "multi natural language infer-

ence" and question_pattern = "Should the label be entailment, neutral or

contradiction?". n is the empty string. 31

4.5 Illustration of the pattern that I use for CB with a toy example. "All cars

are black" is the premise and "My car is red." is the hypothesis. 34

4.6 Accuracy of T5-base on the MNLI matched validation dataset using the

evaluation scheme of string comparison (see Subsection 4.1.2) and the

prompt for CB. 34

4.7 Illustration of the pattern that I use for CoLA with a toy example. "All cars

are black" is the premise and "My car is red." is the hypothesis. 35

4.8 Accuracy of T5-base on the MNLI matched validation dataset using the

CoLA pattern. 35

4.9 Illustration of the pattern that I use for RTE with a toy example. "All cars

are black" is the premise and "My car is red." is the hypothesis. 36

4.10 Accuracy of T5 on the MNLI matched validation dataset using the RTE

prompt. 36

4.11 Which fraction of MNLI matched validation instances T5 thinks are equiv-

alent using either the MRPC pattern or the intersection of the normal and

the reversed MNLI pattern with entailment. 38

4.12 Illustration of the pattern that I use for MRPC with a toy example. "All

cars are black" is the premise and "My car is red." is the hypothesis. . . . 38

4.13 Accuracy of T5 on the MNLI matched validation dataset using the prompt

of mrpc and di�erent label mappings. 38

ix

List of Tables

4.14 Illustration of the pattern that I use for QNLI with a toy example. "All cars

are black" is the premise and "My car is red." is the hypothesis. 39

4.15 Accuracy of T5 on the MNLI matched validation dataset using the evalua-

tion scheme of string comparison (see Subsection 4.1.2) with the prompt of

QNLI. 39

4.16 Which fraction of MNLI matched validation instances T5 thinks are equiv-

alent using either the QQP pattern or the intersection of the normal and

the reversed MNLI pattern with entailment. 40

4.17 Illustration of the pattern that I use for QNLI with a toy example. "All cars

are black" is the premise and "My car is red." is the hypothesis. 40

4.18 Accuracy of T5 on the MNLI matched validation dataset using the evalua-

tion scheme of string comparison and the pattern on QQP. 40

4.19 Illustration of the pattern that I use for SST2 with a toy example. "All cars

are black" is the premise and "My car is red." is the hypothesis. 41

4.20 Accuracy of T5-base on the MNLI matched validation dataset using the

evaluation scheme of string comparison and the prompt of SST2. 41

4.21 Illustration of the pattern that I use for SST2 with a toy example. "All cars

are black" is the premise and "My car is red." is the hypothesis. 42

4.22 Averaged and summed prediction score of T5 base using the prompt of

STSB for every instance and corresponding label of MNLI. 42

4.23 Accuracy of T5 on the MNLI matched validation dataset using the eval-

uation scheme of string comparison, the prompt of STSB and di�erent

thresholds for di�erentiating between entailment and contradiction/neutral. 42

4.24 Accuracy of T5 on the MNLI matched validation dataset using the eval-

uation scheme of string comparison, the prompt of STSB and di�erent

thresholds for di�erentiating between entailment and contradiction as

well as between contradiction and neutral. 43

4.25 Illustration of the pattern that I use for SQuAD with a toy example. "All

cars are black" is the premise and "My car is red." is the hypothesis. The

string question is a placeholder for an actual question. 44

4.26 List of all the questions I use with SQuAD and the corresponding abbrevi-

ations that I de�ne. 44

4.27 List of all the contexts I use with SQuAD and the corresponding abbrevia-

tions that I de�ne. [hypothesis] and [premise] stands for the hypothesis

and premise of an actual MNLI instance. 44

4.28 Accuracy of T5 on the MNLI matched validation dataset using the evalua-

tion scheme of string comparison when using the prompt of SQuAD and

di�erent labels. 45

4.29 Accuracy of T5-base on the MNLI matched validation dataset using the

token evaluation scheme with highly predictable tokens. I use the prompt

of SQuAD. 45

4.30 Accuracy of T5-base on the MNLI matched validation dataset using the

baseline evaluation scheme. I use the prompt of SQuAD. 45

x

List of Tables

4.31 Accuracy of T5-base on the SNLI testset for with evaluation schemes string
comparision (see Subsection 4.1.2) Subsection 4.1.2 and baseline prediction

Subsection 4.1.6 (using the SNLI trainset as baseline). 47

4.32 Accuracy of T5-base on the ANLI testset for di�erent rounds. 48

4.33 Accuracy of T5-base on the RTE validation set for with evaluation schemes

string comparison (see Subsection 4.1.2) and the reported RTE accuracy

with the RTE pattern from the paper [43]. 48

xi

1 Introduction

To reason is one of the most fundamental and awe-inspiring capabilities of humankind. It

is perhaps one of the most signi�cant skills that sets us apart from other animals and has

allowed us to establish complex philosophical arguments, develop beautiful mathematical

theories and create marvels of engineering. It is therefore not very surprising that the

concept of reasoning itself is something many of us like to think and ponder about

extensively. And in that line of thought, it is most natural to wonder if we can create

something that can reason as we do and perhaps even surpass our capabilities. While

computers and their internal logic gates can be seen as doing some kind of inference (and

are certainly very fast at those), it is still not the same type of �exible reasoning that we

humans are capable of. In recent years, it has become increasingly prevalent to try to

develop systems that can mimic this kind of reasoning. The �rst attempts began as early

as the 1950s with what we now call symbolic AI [19]. The primary goal was to explicitly

encode handwritten rules into computers to try to distil our abilities. This proved much

more di�cult than originally thought and from the 1990s research shifted to statistical

models. In particular, once computing capacity paved the way for the widespread adoption

of neural networks at the turn of the millennium, they caught on and continue to dominate

the �eld to this day [62].

Although we are probably still far from creating a reasoning machine as �exible and

general as humans are [36], at this stage we do have some proxies for inference, on which

modern neural networks perform quite well. In Natural Language Inference (NLI), a model

is given a premise as well as a hypothesis and is asked to predict whether or not the

hypothesis follows from the premise. NLI is a sub�eld of the much broader area of Natural

language understanding (NLP) [9].

In recent years, one neural network architecture in particular has begun to eclipse all

other methods. It is called Transformer [56] and utilizes a mechanism called attention.

Figure 1.1 shows the accuracy of models on a particular NLI dataset, called Multi NLI [63],

over time. There is a sharp increase in accuracy between the last non-Transformer model

(GenSen [54]) and the �rst Transformer model (Finetuned Transformer LM [41]). Many

networks from that point on were Transformers in NLP [64].

By now there are many variations of the Transformer architecture. In this thesis I will

focus on one particular, called Text-to-Text Transfer Transformer [43] or T5 for short. One

of the main contributions of this architecture is that it casts every NLP task in a text-to-text

format. This means that instead of having di�erent output layers for every task like some

architectures do, T5 outputs a sequence of words for every task. For classi�cation tasks

like Multi NLI, this means that T5 is trained to output a speci�c word for every available

label. For example, given the premise "At the other end of Pennsylvania Avenue, people

began to line up for a White House tour." and the hypothesis "People formed a line at

the end of Pennsylvania Avenue.", T5 would be trained to output the string "entailment".

1

1 Introduction

Figure 1.1: Model with the highest accuracy on the MNLI validation_matched dataset over

time. [39]

However, T5 is not limited to output only one word. Some tasks, such as summarising,

require T5 to output a sequence of words that can be as long as several sentences.

In order for T5 to recognize which task it has to solve, the task instances get embedded

in a pattern ([47],[49]). This simply means that a few words are added which indicates the

task that has to be solved. For the former example, this could mean that T5 is given the

string "mnli hypothesis: People formed a line at the end of Pennsylvania Avenue. premise:

At the other end of Pennsylvania Avenue, people began to line up for a White House tour."

as input.

The tasks T5 was trained on do not each test for a completely unique skill. Instead,

some tasks test for the same or partially overlapping skills. Therefore, it is possible to

use the pattern of one task to test skills for another task. For example, since T5 was also

trained on question answering, one may adapt the example to

"question: Does the hypothesis follow from the premise? context: hypothesis:

People formed a line at the end of Pennsylvania Avenue. premise: At the other

end of Pennsylvania Avenue, people began to line up for a White House tour."

If T5 is able to answer questions and can also solve NLI tasks, it should be able to solve

this combination too.

However, it is still an open research question whether this is the case. For example,

it might be that all instances of the question-answering task that T5 was trained on are

phrased in a particular way (i.e. all questions beginning with "What") and therefore cannot

be generalized to the above combination.

Of course, this is not the only combination one can come up with. Instead, there are

many ways in which one can change patterns, combine task and use di�erent evaluation

2

methods. If T5 can still perform well with such alterations, it would be robust. If not, it

would be brittle and might exploit certain patterns that can serve as unintended shortcuts

[18].

In this thesis, I will explore those questions. By extensive investigation, my goal is to

provide an intuition on the question if and when T5 is robust to various perturbations in

the context of NLI.

The main contributions and �ndings of this thesis are as follows: In Chapter 2 I provide

an extensive overview of the relevant background information for my thesis. With this

in mind, I explore the robustness of T5 in the context of NLI in three main experiments

in Chapter 4. In Section 4.4 I show that T5 is sometimes robust to slight changes in the

MNLI pattern. Then in Section 4.5 I observe that me patterns that T5 was trained on can

also achieve good accuracy with MNLI. Furthermore, I detect that T5 might partially rely

on statistical cues for its MNLI prediction. Finally, in Section 4.5 I show that the MNLI

capabilities of T5 also translate to other NLI datasets, in the case of RTE even improving

accuracy by 13% compared to the RTE pattern.

3

2 Background and RelatedWork

In this chapter, I will provide a foundation of concepts and terminology that I will use

in later chapters. Section 2.1 will explain what natural language processing (NLP) is and

common tasks that are associated with it. In Section 2.2 I will further explain a subdivision

of NLP, natural language inference (NLI), and the most important datasets that come

with it. Section 2.3 will be all about natural language models (NLM) and explain core

concepts. In Section 2.4 I will explain the Input-Ouput format of one speci�c LM, called

T5. Section 2.5 will describe di�erent methods of how text can be generated with LMs.

In Section 2.7 I will de�ne what statistical cues are and how they are relevant for the

following chapters. Section 2.6 will provide some terminology that should help to make

later chapters easier to understand. Finally, Section 2.8 will give an overview of all the

previous work that is related to mine.

2.1 Natural Language Processing

Natural language processing can be de�ned as "a theory-motivated range of computational

techniques for the automatic analysis and representation of human language" [65]. It

is a very broad area of research that ranges from speech recognition to named entity

recognition to machine translation and everything in-between. Due to the nature of the

models I am working with, I will only consider NLP tasks in my analysis that take text as

an input and expect the model to either generate more text (also called natural language

generation [4]) or label the input (also called natural language understanding [65]).

As there are many NLP tasks used in this thesis, I will explain the most important ones

for this thesis here so that it is easier to follow them in the chapters to come. I will also

include some datasets and benchmarks that belong to the di�erent tasks T5 was trained

for. In the next subsection, I will give a detailed overview of all these datasets.

Summarization. Summarization can either be done extractive or abstractive [69]. In

extractive summarization, the goal is to select text fragments from the text that are highly

relevant to describe the core content. In abstractive summarization, the model has to

generate the summary itself. T5 was trained to do abstractive summarization with the

CNN/Daily Mail dataset [50].

Sentiment Analysis. In sentiment analysis, the goal is to determine the sentiment

of a text span, i.e., whether a text span has more positive or more negative connotations.

T5 was trained for this task using the SST-2 dataset [53].

Paraphrasing/Sentence Similarity. The goal here is to either detect whether two text

5

2 Background and Related Work

Dataset Description

CoLA Determine if a sentence is grammatically acceptable

RTE Determine if one sentence entails or contradicts another

MNLI Determine if one sentence entails, contradicts or is neutral to another

MRPC Determine if two sentences are paraphrases of each other

QNLI Determine if a question can be answered given a context

QQP Determine if two questions are duplicates

SST2 Determine if the sentiment of a sentence is positive or negative

STSB Determine how semantically similar two sentences are on a scale from 1 to 5

CB Determine if one sentence entails, contradicts or is neutral to another

SQuAD Determine the answer to a given question and context

Table 2.1: All the datasets that T5 was trained on and a short description of each.

segments are paraphrases of each other or how semantically similar the text segments

are. The paraphrase datasets on which T5 was trained are QQP[15] and MRPC [12]. The

semantic similarity dataset that T5 was trained on is STS-B [8].

Natural Language Inference. NLI is the task I will mainly deal with in this paper.

Given a premise and a hypothesis, the goal of NLI is to determine whether or not the

premise entails the hypothesis. For some datasets, it is also necessary to determine if

neither is the case and the premise and hypothesis are neutral to each other. NLI datasets

on which T5 was trained include MNLI [63], CB [32], and RTE [10]. While RTE only has

the labels entailment and contradiction, MNLI and CB also have the label neutral.

Additionally, I provide two tables which serve as an easy-to-access overview. Table 2.1

shows all the datasets that T5 was trained on and a brief description of each corresponding

task. Furthermore, Table 2.2 shows the same datasets, but this time with a small example

of each.

2.2 Natural Language Inference Datasets

As the investigation in this thesis evolves around testing the robustness of T5 for NLI

tasks, it is worthwhile to present the di�erent NLI datasets that I will be using in more

detail. In the last section I already mentioned MNLI [63], CB [32] and RTE [10]. Those

are the NLI datasets that T5 was likely trained on. There are however more NLI datasets,

T5 likely was not trained on, and that will still be important in my analysis. Since the

T5 model from huggingface [64] that I am using does not specify on which datasets it

was trained on, I will assume that it was trained on the same ones as mentioned in the

T5 paper [43]. I will continue by listing all the NLI datasets used in this thesis and their

corresponding core characteristics.

Multi Natural Language Inference. Multi natural language inference (MNLI) [63]

6

2.2 Natural Language Inference Datasets

Dataset Example Instance Corresponding Label

CoLA "The inspector analyzed the soundness in the building." unacceptable

RTE premise: "The �fth World Social Forum (WSF) has kicked

o� in Porto Alegre, Rio Grande do Sul state, Brazil."

hypothesis: "The WSF takes place in Brazil."

entailment

MNLI premise: "As the organizations became more results-

oriented, they often"

hypothesis: "They wanted to be the very best."

neutral

MRPC sentence1: "The identical rovers will act as robotic geolo-

gists , searching for evidence of past water"

sentence2: "The rovers act as robotic geologists , moving

on six wheels ."

not_equivalent

QNLI question: "The period of time from 1200 to 1000 BCE is

known as what?" context: In the Iron Age

entailment

QQP question1: "Can I block someone from following me on

Quora?"

question2: "How can I block people on Quora?"

duplicate

SST2 "his supple understanding of the role" positive

STSB sentence1: " A man is cutting a potato."

sentence2: "A woman is cutting a tomato."

1.25

CB premise: "B: Yeah. How about Mister Rogers, is he still

around? A: Yes. Yeah. They still show Mister Rogers. I

don’t think he’s making new ones," hypothesis: "Mister

Rogers is making new Mister Rogers"

contradiction

SQuAD question: "What is the term for a task that generally lends

itself to being solved by a computer?"

context: "Computational complexity theory is a branch of

the theory of computation in theoretical computer science

that focuses on classifying computational problems accord-

ing to their inherent di�culty, and relating those classes

to each other. A computational problem is understood to

be a task that is in principle amenable to being solved by a

computer, which is equivalent to stating that the problem

may be solved by mechanical application of mathematical

steps, such as an algorithm."

computational problems

Table 2.2: All the datasets that T5 was trained on with corresponding examples.

7

2 Background and Related Work

is a dataset that provides a set of premises and hypotheses and their corresponding labels.

The labels can be either entailment (in case that the premise entails the hypothesis), neutral

(in case that the premise and the hypothesis are logically independent of each other) and

contradiction (in case the premise contradicts the hypothesis). In addition, the instances

in the dataset all have a speci�c genre. For example, the genre "government" includes only

instances that are related to a government or "travel" where the instance has to be related

to traveling. While the authors of MNLI used ten genres in total, only �ve of them are

present in the training data. This allows for the construction of two validation sets. The

matched validation set contains instances that belong to the same genre as the genres in

the training set. In contrast, the mismatched validation set includes all the genres that are

not in the training set. The model with the best accuracy currently is the largest version

of T5 (T5-11B), with a matched validation accuracy of 92% and a mismatched validation

set accuracy of 91.7% [43].

Stanford Natural Language Inference. Stanford natural language inference (SNLI)

[5] is the predecessor of MNLI. The instances are therefore of the same form. However,

compared to MNLI, SNLI only has one genre, as all the instances were collected from

image captions. This makes SNLI easier than MNLI and the SNLI. The best model with the

best accuracy currently is EFL [59] with a test accuracy of 93.1%.

Recognizing Textual Entailment. Compared to MNLI and SNLI, Recognizing textual

entailment (RTE) [10] only provides the labels entailment and contradiction. Currently,

the best model is DeBERTa-1.5B [20] which achieves a test accuracy of 93.2%.

Commitment Bank. Commitment Bank (CB) [32] has the same objective and the same

labels as SNLI and MNLI. The di�erence is that the instances were deliberately chosen to be

confusing. The authors achieve this by surrounding the premise with entailment canceling

operators such as entailment, but in such a way that they do not change the associated

label. For example, one instance is the premise "Richard Breeden hadn’t noticed that his

new desk had just four telephone lines and one phone ." and the hypothesis "Richard

Breeden’s new desk had just four telephone lines and one phone" with the label entailment.

Here, the "hadn’t noticed" is supposed to confuse the model.

Adversarial Natural Language Inference Modern language models achieve very good

results for all the NLI datasets mentioned above [30] [43] (in the range of human perfor-

mance). However, they might rely on spurious statistical patterns to solve the tasks [33]

instead of actual understanding. To tackle this shortcoming, the authors of [38] propose

to construct adversarial challenge datasets that expose those patterns and eliminate them

from the data. They call this dataset adversarial natural language inference (ANLI). This

is done in an iterative, human-in-the-loop fashion. First, humans create instances that

the current models do not recognize correctly by eliminating certain statistical patterns.

Then the model is �ne-tuned on those new instances. For this model, humans again create

instances that the model labels wrong. This procedure then gets repeated, which results

in both stronger models and more challenging testsets.

8

2.3 Natural Language Models

2.3 Natural Language Models

In this section, I will present di�erent methods that can solve NLP tasks.

In the past, many ways have been proposed to solve problems in NLP. Bag-of-word

models [67] have been used to create sparse representations of text in order to be used

as features for statistical analysis [45]. More recently, dense vector representations of

text that are generated by training on a text corpus has been developed. This enabled the

representations to approximate semantic or syntactic relationships [45]. The most iconic

method for those word embedding probably is word2vec [35] [34] that introduced some

core concepts and made training a lot more e�cient [45].

In 2013 neural networks started to become widespread in NLP. The main architectures

choices were recurrent neural networks (RNNs) [13] and long short-term memory (LSTM)

[21]. Even convolutional neural networks (CNN), which are mostly used in computer

vision, started gaining some traction [25].

In 2015 the concept of Attention got introduced [3]. Attention allows one part of a

network to focus selectively on the most important information of another part of the

network. In 2017 the landmark paper "Attention is all you need" [56] demonstrated that an

architecture that solely relies on Attention can outperform those that only use Attention as

a subcomponent (The blog post [2] provides an excellent explanation of the Transformer).

This purely Attention based architecture was named "Transformer". It sparked a revolution

in NLP, with many variations being developed to this date.

In the following subsections, I will explain some basic concepts around the Transformer

architecture applied to NLP (although some parts are also applicable to other architectures).

As a common subdivision of Transformer language model variations is in autoregressive

models, autoencoding models and sequence-to-sequence models, I will go into more detail

in the respective subsections.

2.3.1 Common Concepts.

Some concepts apply to all Transformer variations. I will list and explain them in this

subsection.

Token/Tokenizer. No neural network can do calculations on words themselves. Instead,

the words have to be represented as numbers so that the model can perform calculations.

Those numbers are called tokens, and the methods to generate the tokens from text are

called tokenizers. There are many tokenizers, all of which have a number of advantages

and disadvantages. Some simply map each word to one token (WordLevel) while others

are trained on a text corpus to map frequently occurring character sequences to one token

(i.e. Byte-Pair-Encoding (BPE) [51]). For example, instead of mapping the word "rainbow"

to one token, BPE might map them to two tokens, one that represents "rain" and one

that represents "bow". The text "rainbow rain bow" could then be represented with only

two tokens, where it would take three when encoding the individual words. For natural

languages, this means that the amount of vectors can be decreased substantially with

methods like BPE compared to word level embeddings.

9

2 Background and Related Work

Figure 2.1: Illustration of an autoregressive model [27].

Vocabulary. The vocabulary of a tokenizer/model is the set of all tokens that the model is

trained on/the tokenizer can encode. A typical cardinality of a vocabulary is in the order

of 10
4
. I will denote) as the symbol for the vocabulary.

Input Format. Every Transformer architecture gets a sequence of tokens as input. The

Transformer then does internal calculations with them. In the best case, those calculations

then lead to a representation of the input that is useful for solving various NLP tasks.

Attention. The attention mechanism is the de�ning feature of the Transformer architec-

ture. It is used in the internal calculations. On a high level, attention means that the part

of the Transformer that corresponds to one token can decide how much information it

wants to get from a part that corresponds to another token. To illustrate, consider the

sentence: "The Lion sleeps on the ground because it is tired". For a human, it is clear that

the word "it" must refer to "the lion" and not to "the ground". However, implementing

which word "it" is referring to algorithmically is rather challenging. Attention tackles

this issue by establishing an association between "it" and "lion", where "it" gets a lot of

information from "lion" and vice versa.

Output Format. In order to solve a speci�c task, Transformers typically have a head on

top of their layers stack. A head most commonly describes a fully connected layer with as

many outputs as there are classes that one wants to di�erentiate. For example, the classes

could be all the token in the vocabulary when trying to generate text or some task speci�c

classes, i.e. entailment, neutral and contradiction for MNLI. It is then possible to calculate

the softmax [6] over the values of all the classes that the model predicts. This enables the

interpretation as class probabilities.

10

2.3 Natural Language Models

Figure 2.2: Illustration of an autoencoding model [27].

2.3.2 Autoregressive Models

Autoregressive or decoder-only models take a sequence of tokens as input and predict the

next token. In Figure 2.1 you can see that the model takes <s> (the start token) and A as

input and predicts B. It is now possible to take the predicted token and append it to the

input. Now the model has <s> A B as input and predicts C. For a more concrete example,

think of A= "The", B="cat" and C="sits". Using this technique, autoregressive models are

very well suited to generate text given an initial prompt.

Since the model always just predicts the last token, each token can only attend to itself

and to previous tokens (masked self-attention). This speeds up training time compared to

the other types of models as it can make many predictions with just one forward pass.

A common example for an autoregressive model is GPT-2[42] or GPT-3 [7].

2.3.3 Autoencoding Models

Autoencoding or encoder-only models are most commonly used to classify/"understand"

text as opposed to generate new one. They are pretrained by corrupting part of the input

(for example masking it) and then trying to reconstruct the full input. For example, in

Figure 2.2 B and D of the input sequence is masked, and the model is asked to predict

those. Concretely, if A = "The", C = "sits" and D = "the roof", the model might be asked to

�ll in the gaps as B = "cat" and D = "on".

After (or during) said pretraining, the model is typically trained on a downstream NLU

task. This can mean that the model gets a new head that only maps to certain classes (i.e.

to entailment, neutral and contradiction for NLI).

Compared to autoregressive models, the attention mechanism is not masked, which

means that every token can attend to every other token in the input.

Some examples of autoencoding models are BERT[11], ALBERT [26] or RoBERTa [30].

11

2 Background and Related Work

Figure 2.3: Illustration of a sequence-to-sequence model [27].

2.3.4 Sequence-To-Sequence Models

Sequence-to-sequence or encoder-decoder models combine the encoder-only and the

decoder-only models. As seen in Figure 2.3 the input gets �rst fed into the encoder and

then the decoder can attend to the output of the encoder.

This type of architecture is most commonly used when transforming the input to another

text. The most prominent examples of that are translation and summarization.

Some famous examples of sequence-to-sequence models are T5 [43], BART [27] or

PEGASUS [66]. In this thesis, I will be using T5.

2.4 T5

T5 is a sequence-to-sequence model released by Google [43]. T5 introduces a uni�ed

text-to-text framework which allowed for a systematic study of various approaches. As I

will be using T5 for the experiments in this thesis, I will dedicate this subsection to outline

some of its important properties.

Text-To-Text Format. One of the key selling points of T5 is its uni�ed text-to-text

framework. This means that T5 always gets text as input and is asked to output some other

text. With this technique, every task that T5 is trained on, be it unsupervised pretraining

or supervised training for downstream tasks, can be represented consistently.

Unsupervised Denoising Training.T5 was pretrained by unsupervised denoising train-

ing. This means that T5 was given text where a part was masked, and the model was asked

to predict the masks. For example, in "The mask1 walks in mask2 park.", the model was

trained to predict mask1 = "cute dog" and mask2 = "the". In the text-to-text framework,

this would be represented as input = "The <extra_id_0> walks in <extra_id_1> park" and

output = "<extra_id_0> cute dog <extra_id_1> the <extra_id_2>". The extra_id token serve

as a mask token. This unsupervised denoising training was done on the colossal clean

crawled corpus(C4).

Colossal Clean Crawled Corpus. To train models like T5, a lot of text is necessary.

12

2.5 Decoding Algorithms

The authors in [43] therefore curate their own dataset called the colossal clean crawled cor-

pus (C4). It consists of massive amounts of text scraped from the internet. To improve the

quality, the authors applied various cleaning strategies like removing code or deduplicating.

Supervised Training. The authors chose to represent the input with task-speci�c pat-

terns for supervised downstream task training. For example, if T5 should translate from

English to German, the input will be input = "translate English to German: The house

is wonderful." and output = "Das Haus ist wunderbar.". For summarization the pattern is

"summarize:" and for english french translation "translate english french:". The complete

list of tasks and corresponding pattern that I will be using in this thesis is shown in Table 2.2.

Multi-Task Training. Originally, the authors of T5 chose to only train T5 for one

downstream task at a time. This means that there needs to be a di�erent T5 model for

every task, but this also achieves very good results. In contrast, the people who trained T5

for the huggingface [64] model used multi-task training. This means that T5 gets trained

on a lot of tasks simultaneously. The results are not as good as with single-task training,

but this means that only one T5 model is needed for every task. I will be using the model

from huggingface for my experiments.

Versions.T5 comes in di�erent version that di�erentiate by the amount of parameters they

have. Generally speaking, the more parameters the model has, the better the performance

of the model. In my experiments, I will be using the T5-base model. T5-base has 220

million parameters in total (in comparison, the largest T5 model available, T5-11B, has 11

billion parameters). T5-base is structured in 12 decoder and 12 encoder blocks, with each

block comprising the self-attention, the feed-forward and the optional encoder-decoder

attention network [43].

2.5 Decoding Algorithms

When the decoder of a model does a prediction, it outputs how likely it is for each token

to follow the given text sequence (see Subsection 2.3.1). Given this probability distribution,

the actual next token in the sequence has to be chosen. While it would be straight-forward

to simply choose the token with the highest probability as the �nal prediction, this has

been proven suboptimal for many applications [23]. In fact, this decoding scheme, also

called greedy-decoding, leads to a degeneration when using it to generate long texts.

Degeneration means that the model repeats one token or a small sequence of tokens over

and over. While it is an open question why greedy-decoding leads to text degeneration

[61], by now there are multiple techniques to combat this issue.

In the following, I will introduce the most common decoding schemes. To further

illustrate which tokens the individual decoding schemes choose, I provide a toy example

of output probabilities in Figure 2.4. In this toy example, there are only �ve tokens that T5

can output the probabilities for.

Greedy Decoding. Greedy decoding always chooses the most probable token for every

13

2 Background and Related Work

Figure 2.4: A toy example of the output probabilities for individual tokens of a language

model.

prediction. This leads to degeneration when generating long text, but is most applicable

when only generating one token. In the toy example in Figure 2.4 greedy decoding would

choose the token corresponding to "nice".

Sampling. Sampling means that the next token gets randomly chosen according to

its probability. In Figure 2.4 this would mean that there is a 5% chance that "dog" will get

picked, a 10% chance for "cat", a 45% chance for "nice", a 30% chance for "insane" and a 10%

chance for banana.

Top-k Sampling. Top-k sampling follows the same principle as sampling, with the

di�erence that only the k most likely token are taken into consideration and the probabil-

ity is spreed between them[14] [22]. For example, when choosing k=2 for the toy example

of Figure 2.4, there would be a 53% chance that "nice" will be the next token and a 47%

chance of the token "insane". All other tokens would have a probability of 0%.

Nucleus/Top-p Sampling. Top-p sampling is the same concept as top-k sampling, but

instead of taking the k most probable choices into account, top-p sampling instead takes

the choices into account that combined have a probability larger than p [23]. For example,

when choosing p = 90% one would only sample between the tokens "cat", "nice", "insane"

and "banana" as they are the smallest amount of tokens with their combined probability

(10% + 45% + 30% + 10% = 95%) being larger than 90%.

Beam Search. If the goal is to �nd the most probable text sequence, greedy decod-

ing can �nd suboptimal solutions, as very likely text sequences can start with a token

that is not the most likely choice. For instance, consider the extension of the toy example,

illustrated in Figure 2.5. It shows the probability that a language model gives to various

tokens, depending on which token was chosen earlier. Instead of only predicting one

14

2.5 Decoding Algorithms

Figure 2.5: A toy example to illustrate how beam search works. Two time steps are shown

with the probabilities that a language model assigns certain tokens, given the

input before. The blue line demonstrates which result greedy decoding would

choose, while the green line shows the result that beam search discovers (which

has a higher probability than the one from greedy decoding).

token, I now consider the case where the goal is to predict two tokens and the input text

of "The". As already discussed, greedy decoding would choose the token corresponding

to "nice" in the �rst step. This means that in the second step, it would be only possible

to choose between "weather" and "Sea". The highest probability of a two token sequence

would therefore be 45%∗10% = 4.5% (shown in blue in the illustration). In contrast, beam

search [16] keeps the most likely number of hypotheses (or beams) at each time step

(shown in green in the illustration). With four beams, this means that after the �rst step

the tokens "cat", "nice", "insane" and "banana" are kept. In the next step, beam search then

analyses the next most likely token for every hypothesis. This means in the toy example

that beam search discovers the token "can" after "cat", which results in the probability of

10%∗90%=9%. This is a sequence resulting in double the probability of the sequence that

greedy decoding found.

While beam search will always �nd a solution that is more or equally probable than the

greedy solution, it is still a greedy algorithm and not guaranteed to �nd the most likely

sequence.

15

2 Background and Related Work

Figure 2.6: An example of a pattern. The pattern is parametrized with A="The hypothesis:",

B=" The premise: " and C= n (n is the empty string). It takes a premise and a

hypothesis as input.

2.6 Patterns and Verbalizers

Since most of my work will be related to adapting the input in di�erent ways, a consistent

notation is necessary. For better comparison, I will use the notation of previous, similar

work [47] [49] [55].

Let � = (-,.) be the trainset of a dataset (typically MNLI for this thesis) with

- being the inputs (for MNLI an input would comprise a premise and a hypothesis,

G8 = (?A4<8B48, ℎ~?>Cℎ4B8B8)∀G8 ∈ -) and . being the labels (for MNLI: ~ ∈ . ⇒ ~ ∈
{4=C08;<4=C, =4DCA0;, 2>=CA0382C8>=}). Furthermore, let " be a language model (typically

T5),) its vocabulary and) ∗ the set of all token sequences.

Pattern. A pattern P is a function % : - →) ∗ that maps dataset inputs to the ac-

tual encoder input. For MNLI this would be % : (ℎ~?>Cℎ4B8B, ?A4<8B4) → � ℎ~?>Cℎ4B8B �

?A4<8B4 � where �, �,� ∈) ∗. Figure 2.6 provides an illustrated example of a pattern.

Verbalizer. A verbalizer E is a function E : . →) ∗ that maps each label to a sequence of

tokens. Figure 2.7 provides an illustrated example of a verbalizer.

Together, a pattern % and a verbalizer E form a ?0CC4A= − E4A10;8I4A − ?08A (PVP).

16

2.7 Statistical Cues

Figure 2.7: An example of a verbalizer. The verbalizer takes three labels (entailment, neu-

tral, contradiction) as input and outputs the strings (or tokens) that correspond

to those labels.

2.7 Statistical Cues

While neural networks nowadays achieve remarkable results in many areas, it is often

unclear how those results should be interpreted. For example, while NLI is a proxy for

actual reasoning and neural networks can achieve a very high accuracy on various NLI

tasks [43], this does not mean that the models have to have actual reasoning capabilities.

Instead, they could solve the task due to the existence of shallow statistical heuristics/cues

in the dataset [33].

A statistical cue is a feature in the dataset which is highly predictive for a certain output,

and thus allows the model to solve a task by relying on this cue. In NLI, an example would

be if for most instances in the dataset that are labeled contradiction, there would be the

word "not" in the hypothesis. If the model then learns to associate the existence of "not"

with the label contradiction, it can achieve a high accuracy.

The problem is that we humans know that the existence of "not" has nothing necessarily

to do with the associated label. And if we construct examples where a "not" in instances

of the label entailment, the models’ accuracy would drop signi�cantly.

That statistical cues are a problem has been shown in many �elds that utilize neural

networks, including NLI [33] [37] [46], image recognition [58] or visual question answering

[1].

17

2 Background and Related Work

Figure 2.8: An example of how to do few-shot learning for English to French translation

from [7].

2.8 RelatedWork

In recent times (and certainly since the introduction of GPT-3 [7]) there has been an

increase in interest of how to construct patterns (or prompts) for neural language models

[68] [24] [17] [28]. GPT-3 [7] introduced the concept of few-shot learning, where the

model is given a few examples of the task in the pattern (see Figure 2.8). In contrast to

regular �ne-tuning, this has the advantage that no parameter updates have to be calculated.

Furthermore, it is possible to use one and the same model to perform various tasks with a

simple natural language interface.

However, recent work showed that the language models are very sensitive to the exact

wording of the pattern [24] [68]. Sometimes even seemingly trivial choices like the order

of the examples in the few-shot pattern made the di�erence between near random or

near state-of-the-art performance [31]. These insights lead to the exploration of two main

directions:

1. Adapting the patterns such that they increase the performance of the language

model.

2. Exposing the brittleness of language models with regard to the patterns and imple-

menting strategies to mitigate them.

By now, there are numerous methods for the �rst point. In [24] the authors use a

mining and paraphrasing based approach to improve the knowledge extraction capabilities

of BERT [11]. The authors of [17] use T5 [43] to automatically generate a variety of

patterns and test each of them to �nd the ones that perform well. While this automates the

generation method, it still has the problem that there are far to many patterns to try them

all. Instead, the authors in [28] [40] and [52] consider the continuous embedded vector

representation of the input and use gradient updates to e�ciently search for good patterns.

Finally, Schick and Schütze use so-called pattern-exploiting training (PET) in [47] [49] [48]

18

2.8 Related Work

to reformulate down-stream tasks as cloze questions. For point two (revealing brittleness)

the authors of [31] note that GPT-3 is very sensitive to the order of the few-shot examples

and use arti�cially generated datasets to �nd good permutations. The authors of [29] �nd

that GTP-3 is very sensitive to the examples used in its few-shot prompt, and search for

semantically similar examples to tackle this issue. Finally, the authors of [68] �nd that

GPT-3 is biased towards examples that are at the end of the pattern, that are frequent in

the pattern, or towards answers that are highly common in the training data. They use a

content-free test input to estimate the bias of GPT-3 for a given pattern and use this for

calibration.

My thesis is related to question two, albeit in a di�erent context. First, I use T5 [43]

which is a sequence-to-sequence model. In contrast, most work mentioned above uses

either autoregressive or autoencoding models. Second, I do not employ automated methods

for pattern generation and instead rely on hand-crafted ones. The reason is that I do not

aim to increase the performance of T5 and instead explore the robustness properties that

a human can comprehend. Third, while the previous work used many tasks to test their

methods, I only explore the NLI capabilities of T5 with particular attention to MNLI (see

Section 2.2). This is because of the limited time resources of my bachelor’s thesis and

the special interest of NLI in my lab. Finally, since T5 was already �ne-tuned to perform

speci�c tasks, there already are patterns that perform well and there is no need to explore

the entire space of possible token sequences like it is the case in GPT-3. Instead, I focus my

analysis on the already given task-speci�c patterns and how combinations or variations of

them a�ect the NLI capabilities of T5.

19

3 Preliminary Results With GPT-2

When �rst starting out with my thesis, I had di�erent goals than what I am now presenting.

In this chapter I want to explain what those goals were, why I could not achieve them and

the rationale behind what I did instead.

3.1 Initial Goals

Choosing which pattern and verbalizer to use is a question that has to be addressed with

any language model, that takes natural language as its input. Some PVPs might lead

to state-of-the-art performance for certain tasks, while others might be no better than

random. Therefore, my original goal was to search for prompts that lead to a good accuracy

on NLI tasks.

While being applicable to all language models, I chose to use GPT-2 for my experiments.

The decision was based on the fact that my lab is doing research mainly on GPT-2 and

therefore results in this thesis might show to be valuable for other projects. Also, the

GPT-2 models available on huggingface [64] are not �ne-tuned on any tasks. Therefore,

there also is no particular pattern that it was trained with (which would limit the variety

of patterns).

While there also is a newer, larger version of GPT-2 available, called GPT-3, this model

is not available for the broad public. Even if it were, it would be too computationally

expensive to handle with my limited resources. Nevertheless, I thought that even in GPT-2

there is a lot of room for exploration.

3.2 Challenges

As it turned out, using GPT-2 came with a major drawback. While GPT-2 is excellent in

natural language generation tasks, performance on natural language understanding which

includes NLI is rather poor in existing literature [42]. In fact, I found no existing literature

that showed that GPT-2 had above random accuracy on any NLI task without �ne-tuning

the model. However, this does not mean that it is impossible for GPT to solve those tasks

without �ne-tuning. In fact, it might just be that it only needs the right PVPs to achieve

good results.

However, after hand-crafting a lot of di�erent PVPs and trying di�erent evaluation

methods, I found none that exceeded a random baseline. With this observation, I can

reasonably conclude that by only using handcrafted PVPs, one is not able to achieve good

results for NLI with a GPT-2 version that is not �ne-tuned.

The options that I saw on how to continue next were either to �ne-tune GPT-2 myself

(as I found no GPT-2 versions online that are �ne-tuned on a NLI dataset), use automated

21

3 Preliminary Results With GPT-2

methods to search for patterns, use a task other than NLI, or switch to a model that already

is �ne-tuned. I decided to go with the last option.

3.3 Adapted Goals

As I did not �nd any other autoregressive models that perform well on NLI, I chose the

next closest architecture which are sequence-to-sequence models (see Section 2.3 as they

still have a decoder, which is totally omitted in autoencoding models). I selected to use

T5-base [43] for my analysis.

However, as the version of T5 that I am using is already �ne-tuned on NLI datasets

using speci�c patterns, this meant that I also had to change my objective. Just trying

hand-crafted patterns that have nothing to do with the patterns that T5 was trained on

was unlikely to achieve good results. Instead, I decided to evaluate the robustness of the

NLI capabilities of T5 to di�erent perturbations and combinations of patterns that it was

already trained on.

22

4 Experiments With T5

In this chapter, I will outline the main contributions of my thesis. First, in Section 4.1, I

will outline di�erent evaluation schemes that I will be working with. The method string
comparison is the one the authors of the T5 paper [43] use. Additionally, I came up with the

methods that utilize the most predictable token, including the baseline evaluation scheme.
In Section 4.2 I will give an overview of all the experiments that I conducted. Section 4.3

will report the baseline results to which I will be comparing my experiments. After that,

my main results will be presented in Section 4.4, Section 4.5 and Section 4.6.

4.1 Evaluation Schemes

While it would be desirable if T5 could solve tasks in real natural language (imagine

having a conversation with T5 in the same way one would have a conversation with

another human) this is far from being a reality. That is why it is necessary to de�ne how

to evaluate the capabilities of T5. While the authors of T5 [43] only used one simple

evaluating method, I developed some more evaluation schemes that are applicable in more

scenarios (although admittedly being less intuitive). I will introduce all those evaluation

schemes in the following subsection.

4.1.1 Terminology

T5 was trained only in a text-to-text fashion, which means it has no speci�c output neurons

that would correspond to certain labels. The only thing T5 can do is, given a sequence of

token for its encoder and a sequence of token for its decoder, predict how likely it is for

each token to follow next. More formally: Given the encoder sequence 0 = (01, 02, ..., 0=),
the decoder sequence 1 = (11, 12, ..., 1<) and a vocabulary of tokens) = {C1, C2, ..., C:},
T5 calculates the vector ? = (?1, ?2, ..., ?:), where ?8 = % (C8 |0, 1), 8 ∈ 1...=, which is the

by T5 assigned conditional probability that the token C8 follows next given the input

0, 1. Typically, the decoder sequence 1 will just be the pad token, which indicates that

generation should start.

4.1.2 String Comparison

String comparison is the evaluation scheme that the authors of the original T5 paper [43]

used. It is only applicable if T5 was trained to output a speci�c set of words given an

instance of a dataset and a certain pattern. In the case of MNLI T5 was trained to either

output the word "contradiction", "neutral" or "entailment". At test time, the output is then

compared to the correct label. If T5 outputs something other than those three words, the

23

4 Experiments With T5

authors count the prediction as wrong. However, they report that this was never the case

for them and I observed the same.

4.1.3 Token Comparison

When extending the analysis to other patterns, I encountered the problem that some

patterns do not restrict the output to a prede�ned set of words. For example, in SQuAD

[44] T5 was trained to freely answer questions given a context with no output restrictions.

In the SQuAD evaluation of the original T5 paper, the authors check if the output is an

exact match with the label (string comparison). Now, if I want to use the SQuAD pattern

(or any pattern where T5 does not output a limited amount of words) to predict the labels

of MNLI, I run into the problem that I might underestimate the NLI capabilities of T5. For it

could be the case that even though T5 outputs none of the strings "entailment", "neutral" or

"contradiction" it might still assign higher probabilities to one string compared to another.

To capture those possible capabilities, I have to compare the probabilities of certain

tokens and not just take the one with the highest probability as is done in the string

comparison evaluation scheme. I then choose the token that has the highest probability

compared to all other observed tokens as the prediction of T5.

To put it more formally in the context of MNLI: Let. = {4=C08;<4=C, =4DCA0;, 2>=CA0382C8>=}
be the labels of MNLI. Let E : . →) (only one token instead of many token compared

to the de�nition in Section 2.6) be the verbalizer with E (4=C08;<4=C) = C4, E (=4DCA0;) =
C=, E (2>=CA0382C8>=) = C2, with 4, =, 2 ∈ {1, ..., :}. Given the encoder inputs 0 and the

decoder inputs 1 I then de�ne the prediction ?A43 of T5 as

?A43 = 0A6<0G (?4, ?=, ?2)

with ?4, ?=, ?2 as de�ned in Subsection 4.1.1

There are many types of verbalizers that one can use. Of course the most obvious one

would be to choose C4 ="entailment", C= ="neutral" and C2 ="contradiction". However, I

could just as well choose something like C4 ="implication" which might achieve better

accuracy. Or I could even choose a verbalizer that makes no sense to a human (like

C4 ="banana") which might nonetheless give the best accuracy. But as this would be too

many combinations to try out, I will stick to token that are sensible to humans for this

evaluation scheme.

4.1.4 Most Predictable Token

As already mentioned in the last subsection, the fundamental problem with the token
comparison evaluation scheme is that I do not know which verbalizer to choose. Even if I

try many, there might still be some verbalizer that has a far greater accuracy. And trying

all possible combinations would be too much to compute (32128
3

possibilities, since 32128

is the vocabulary length and there are three labels). To tackle this issue, I found a way to

systematically choose the verbalizer (and corresponding tokens) that is most predictable

for a label.

The key idea is to �rst determine the average logit score that T5 assigns to every token

for the trainset. For example, T5 might assign the token corresponding to "computer"

24

4.1 Evaluation Schemes

an average logit score of 3 (baseline). Secondly, I again compute the average logits score

that T5 assigns for every token, but this time split for every label. For example, T5 might

assign the token corresponding to computer a logits score of 8 for every entailment

instance, a logit score of 2 for every neutral instance and a logit score of 1 for every

contradiction instance. If I now calculate the di�erences between the total average and the

label speci�c averages, I get the predictability of every token for the labels. In my example

the predictability for entailment would be 8-3 = 5, for neutral 2-3 = -1 and for contradiction

1-3 = -2. This would mean that the token corresponding to "computer" would be highly

predictable for entailment, but not for neutral and contradiction.

To put this procedure more formally: Let CA08= = (8=BC0=241, 8=BC0=242, ..., 8=BC0=24<)
be the trainset of NLI instances of length m, with 8=BC0=248 = (08, 18, ;014;8), where 08 is

the encoder input (in our case the prompt+premise+hypothesis), 18 is the decoder input

(in our case most often just the pad token) and ;014;8 is the corresponding label. For each

token C 9 in the vocabulary, let !(8=BC0=248, C 9) = ;8 9 be the logit score that T5 assigns to

token j for the instance i. I compute the baseline 10B4 9 for every token C 9 as

10B4 9 =
1

<

<∑
8=1

;8 9

After that, I compute the label speci�c predictability 4=C08;<4=C 9 , =4DCA0; 9 and 2>=CA0382C8>= 9
for every token C 9 as

4=C08;<4=C 9 =

<∑
8=1

{
10B4 9 − ;8 9 ;014;8 = 4=C08;<4=C

0 4;B4

and =4DCA0; 9 and 2>=CA0382C8>= 9 are de�ned analogous.

If I now sort the label speci�c baselines in descending order, I get the most predictable

token for every label. Those tokens can then be used in the token comparison scheme. As I

need oracle access to the labels of the instances, I have to use the trainset for calculation.

4.1.5 Normalization

While choosing the prediction as the argmax of the probability of three tokens works well

for many cases, it struggles if the tokens that are used have very di�erent probabilities.

This could be the case when comparing tokens that are more or less prevalent in the

English language (i.e. "do" versus "nippy", see also [68]). Or it could be that T5 assigns

certain tokens a higher probability for every MNLI instance as a function of the way MNLI

instances are constructed.

To tackle this issue I normalize the probabilities ?4, ?= and ?2 before calculating the

argmax by dividing by the average probability that T5 assigns for those tokens for all test

instances.

To put it more formally: Let ?4, ?= and ?2 be the probability of the tokens C4, C= and C2
that the prediction should be mad with. Let 10B4 9 be de�ned as in Subsection 4.1.4. Then

the normalized probabilities ?=4, ?== and ?=2 are calculated as

?=4 =
?4

10B44
, ?== =

?=

10B4=
, ?=2 =

?2

10B42

25

4 Experiments With T5

4.1.6 Baseline Evaluation Scheme

While using the most predictable tokens for evaluation is certainly an improvement over

using random tokens, it is still limited to the information that is available in three of the

output logits. It is likely that there is more information in other logits about what label an

instance has. So it might be desirable to somehow use all outputs of T5 for classi�cation.

In order to explore this hypothesis, I came up with what I call baseline evaluation scheme.
The idea builds up on the most predictable token strategy (see Subsection 4.1.4). I again

calculate the baseline 10B4 9 and the label speci�c predictabilities 4=C08;<4=C 9 , =4DCA0; 9 and

2>=CA0382C8>= 9 for every token C 9 using the trainset. For an instance 8 in the testset and

every token 9 I then calculate

34E80C8>=8 9 = ;8 9 − 10B4 9

This vector captures how much each token deviates from the baseline.

If I now multiply the prediction vector by the deviation vector, the resulting vector

will have large entries if the corresponding token is both highly predictive and deviates

strongly in the positive direction for a given test instance. More formally: For the test

instance 8 and the token 9 I calculate

4=C08;<4=C_A4BD;C8 9 = 34E80C8>=8 9 ∗ 4=C08;<4=C 9

and analogously =4DCA0;_A4BD;C8 9 as well as 2>=CA0382C8>=_A4BD;C8 9 . In practise, it proved

empirically bene�cial to �rst calculate the softmax over the 4=C08;<4=C , =4DCA0; and

2>=CA0382C8>= vectors.

I then sum over the result vectors to achieve the �nal score:

4=C08;<4=C_B2>A48 =

:∑
9=1

4=C08;<4=C_A4BD;C8 9

and analogously for =4DCA0;_B2>A48 and 2>=CA0382C8>=_B2>A48 .

As the last step, I count the prediction ?A438 of T5 for the test instance 8 as

?A438 = 0A6<0G (4=C08;<4=C_B2>A48, =4DCA0;_B2>A48, 2>=CA0382C8>=_B2>A48)

With this method I can use every part of the output of T5 for prediction without having

to choose a speci�c token. This method also does not need normalization as there is no

direct comparison between two token.

4.2 Overview of the Experiments

As explained in Section 2.6, it is in the nature of language models that there are many

PVPs that could be used to solve a particular task. In this bachelor thesis, I want to explore

two major themes:

26

4.3 Baseline Results

1. Cross-PVP-Robustness. If T5 is able to solve a task reasonably well with some

PVP, will there be other PVPs (slightly di�erent or completely new) with T5 can

perform as well? Might there be even some PVP that will enable T5 to get a higher

accuracy?

2. Cross-Dataset-Robustness. T5 was (most likely) only trained on MNLI and RTE.

How can the skills acquired be transferred to other NLI datasets?

With those goals in mind, I will organize my experiments in the following way:

1. Experiment 1: Is T5 robust to slight variations in the MNLI pattern?

2. Experiment 2: Is it possible to achieve a good MNLI accuracy with patterns of other

tasks that T5 was trained on?

3. Experiment 3: Do the NLI capabilities with the MNLI pattern translate to other NLI

datasets?

4.3 Baseline Results

The version of T5 that I am using is a pretrained model from huggingface [64]. It was

trained using unsupervised denoising training (Section 2.4) with the Colossal-Cleaned-

Crawled-Corpus, also known as C4. C4 comprises an enormous amount of cleaned text

from the internet. Furthermore, T5 was trained in a multi-task setting for a variety of tasks.

I found no information on exactly which tasks it was trained on, but I assume that it was

trained on the same datasets as mentioned in the T5 paper [43]. While there are di�erent

T5 model sizes available on huggingface, I use the T5-base model for all my experiments

due to computational constraints.

For most of my experiments, I use the matched validation set of MNLI [63]. See Sec-

tion 2.2 for an explanation of MNLI.

In the original T5 paper [43], the authors report an accuracy of 87.10% on the matched

validation set of MNLI using T5-base. They use the evaluation scheme string comparison
(p.Subsection 4.1.2), using a PVP with the Pattern

% : - →) ∗, % (ℎ~?>Cℎ4B8B, ?A4<8B4) = mnli hypothesis: ℎ~?>Cℎ4B8B premise:

?A4<8B4

and the verbalizer

E : . →)

E (4=C08;<4=C, =4DCA0;, 2>=CA0382C8>=) = (”4=C08;<4=C”, ”=4DCA0;”, ””2>=CA0382C8>=)
I will refer to this PVP as the baseline-PVP from now on. With the same setup, I achieved

an accuracy of 85.62%. I suspect that the slightly worse performance is due to di�erent

training procedures and parameters. Most notably, the authors in the original T5 paper

[43] allow for single-task �ne-tuning, while the model on huggingface was trained in a

multi-task setting (see Section 2.4).

27

4 Experiments With T5

Figure 4.1: Overview of Experiment 1. I will slightly vary the baseline-pattern and observe

how this impacts the accuracy of T5-base on the MNLI matched validation set.

The verbalizer is always the baseline-verbalizer.

4.4 Experiment 1: Variation in the MNLI Pattern

I �rst explore how slight changes in the baseline-PVP a�ect the performance of T5 on

MNLI. I employ the evaluation scheme of string comparison (see Subsection 4.1.2) and use

the matched validation set of the MNLI dataset for evaluation. I will answer the following

questions in this section:

1. Can beam search improve accuracy?

2. Is T5 robust to omitting parts of the baseline-pattern?

3. Is T5 robust to slight variations in the baseline-pattern?

4. Is T5 robust to adding tokens to the baseline-pattern?

5. Is T5 robust to changing the order of the input?

In this section, I will only change the pattern of the baseline-PVP (Section 2.6). As the

pattern for MNLI can be described as % : (ℎ~?>Cℎ4B8B, ?A4<8B4) → �ℎ~?>Cℎ4B8B � ?A4<8B4

� where�, �,� ∈) ∗, I will only say what�, � and� are in the following subsections. If I do

not specify one of those variables, it means that they are the same as the baseline-pattern

(Section 4.3). Figure 4.1 shows an illustrated overview of this section.

4.4.1 Can Beam Search Improve Accuracy?

Although still being a greedy decoding algorithm, beam search (see Section 2.5) keeps

several hypotheses at a time and can therefore �nd sequences that are more likely compared

to greedy decoding.

28

4.4 Experiment 1: Variation in the MNLI Pattern

Decoding Method Accuracy

Greedy (baseline) 85.62%

Beam search, num_beams=2 86.07%

Beam search, num_beams=3 86.02%

Beam search, num_beams=6 86.02%

Table 4.1: Accuracy of T5-base on the MNLI matched validation set using the evaluation

scheme of string comparison and di�erent decoding schemes.

Whereas the label neutral and the label contradiction get tokenized to one token each,

the label entailment gets tokenized to four tokens. Therefore, it is possible that using beam

search compared to greedy decoding can lead to a better accuracy. Indeed, as shown in

Table 4.1, beam search can improve accuracy by 0.45%.

Utilizing those insights, I will be using beam search with two beams for all following

experiments.

4.4.2 Is T5 Robust to Omitting Parts of the Prompt?

One of the most straight-forward ways to change the baseline-pattern is to omit part

of it. In my experiment I omit either the strings "mnli", "hypothesis:" or "premise:" or a

combination.

The results of this experiment are shown in Table 4.2. I observed that omitting each

part of the pattern results in a drop in accuracy. How much the accuracy drops depends

on which part gets omitted. While omitting either "hypothesis:" or "premise:" and still

achieves an accuracy far above the most frequent class baseline, omitting both leads to an

accuracy of 0%. In fact, when omitting both, T5 does not predict any of the labels anymore

and instead defaults to repeating some part of the input. This means that T5 does not

recognize that it has to solve a MNLI task in that case.

For example, given the hypothesis: "Everyone really likes the newest bene�ts" and

the premise = "The new rights are nice enough" (which are part of the MNLI matched

validation set), T5 outputs "<extra_id_0> Everyone really likes the newest bene�ts The

new rights are nice enough The new rights are". The token "<extra_id_0>" is used for the

unsupervised pretraining task, see Section 2.4. Furthermore, T5 does not detect the task

with the pattern only being the string "mnli", as the accuracy is 0% in that case as well.

4.4.3 Is T5 Robust to Slight Variations of the Prompt?

In this section, I will slightly vary some parts of the baseline-pattern. Slightly in the sense

that only a few characters are modi�ed, and it would still be understandable by a human.

For example, this includes changing "mnli" to "nli", leaving away the colons or using "hypo"

and "pre" instead of "hypothesis" and "premise". Note that while those changes seem small

for the human reader, they can result in completely di�erent tokens for T5.

The results are shown in Table 4.3. I observe that omitting the colons has virtually no

e�ect, while changing "hypothesis" to "hypo" results in 0% accuracy. The reason for this

29

4 Experiments With T5

A B Accuracy

mnli hypothesis: premise: 86.07%

mnli premise: 84.30%

mnli hypothesis: n 80.45%

mnli n 0%

hypothesis: premise: 85.94%

n premise: 84.97%

hypothesis: n 73.16%

n n 0%

Table 4.2: Accuracy of T5-base on the MNLI matched validation set using the evaluation

scheme of string comparison (see Subsection 4.1.2) when omitting part of the

prompt. n is the empty string.

A B Accuracy

mnli hypothesis: premise: 86.07%

nli hypothesis: premise: 86.11%

mnli hypothesis premise: 85.95%

mnli hypothesis: premise 86.00%

mnli hypothesis premise 85.85

mnli hypo premise 0.00%

mnli hypothesis: pre 80.45%

mnli hypothesis pre 68.93%

Table 4.3: Accuracy of T5-base on the MNLI matched validation dataset using the evalua-

tion scheme of string comparison (see Subsection 4.1.2) when slightly varying

the prompt.

certainly has to do with the fact that "hypothesis" gets encoded as one token, which means

that any pre�x of "hypothesis" will be a completely di�erent token. However, the same is

true when I change "premise" to "pre" and here I do not observe a complete failure mode.

Compared to Table 4.2 where I completely omit the "hypothesis:" and still achieving

good results, changing it to "hypo" leads to 0% accuracy, demonstrating severe brittleness

to one token. When I change "mnli" to "nli" I get an accuracy that exceeds the baseline

pattern by 0.04%. While it possible to interpret this as a sign that there might be patterns

that can achieve a better MNLI accuracy than the baseline-pattern, in this case the gain is

far from being signi�cant.

To conclude: T5 generally has a higher accuracy the more similar the pattern is to the

baseline-pattern. While some changes a�ect the accuracy next to none, others degrade it

signi�cantly.

30

4.4 Experiment 1: Variation in the MNLI Pattern

A B C Accuracy

mnli hypothesis: premise: "" 86.07%

mnli consider_pattern hypothesis: premise: n 86.00%

mnli_pattern hypothesis: premise: n 69.22%

mnli hypothesis: consider_pattern premise: n 84.89

mnli greek_pattern hypothesis: premise: n 56.94%

mnli hypothesis: greek_pattern premise: n 56.51%

hypothesis: greek_pattern premise: question_pattern 85.65%

mnli conclusion, hypothesis: assumption, premise: n 73.27%

Table 4.4: Accuracy of T5-base on the MNLI matched validation dataset using the eval-

uation scheme of string comparison (see Subsection 4.1.2) when adding some

tokens. In order to improve clarity, abbreviations are used. consider_pattern =

"Consider the following", greek_pattern = "A greek soldier drank some lemon

juice.", mnli_pattern = "multi natural language inference" and question_pattern =

"Should the label be entailment, neutral or contradiction?". n is the empty string.

4.4.4 Is T5 Robust to Adding Tokens to the Prompt?

In this section, I investigate whether the NLI capabilities of T5 are robust to adding a few

tokens to the pattern. I insert either random text ("A greek soldier drank some lemon juice")

or text that would be sensible to a human ("multi natural language inference" instead of

mnli and also "Should the label be entailment, neutral or contradiction?").

Results in Table 4.4 are mixed. Some text seems to matter little ("Consider the following")

while other text degenerates accuracy substantially ("A greek soldier drank some lemon

juice."). In fact, for the latter, I observed that T5 just stops outputting "entailment" all

together.

4.4.5 Is T5 Robust to Changing the Order?

In this subsection, I change the order of the hypothesis and the premise. This means that

the pattern is now % : (ℎ~?>Cℎ4B8B, ?A4<8B4) → � ?A4<8B4 � ℎ~?>Cℎ4B8B � . Note that this

does not change the label of an instance and is logically equivalent to the pattern in normal

order. For evaluation, I use A = "mnli premise: " and B=" hypothesis: " for comparison

with the baseline-PVP.

With this setup, T5 only achieves an accuracy of 59.02%. This demonstrates that the

NLI capabilities of T5 are very brittle to changes in the order. It also supports previous

research [31] which observed brittleness to changes in the order of few-shot patterns in

GPT-3.

4.4.6 Conclusion of Experiment 1

In conclusion, the results of the robustness to slight variations in the baseline-pattern is

mixed. I classify the variations in three di�erent categories:

31

4 Experiments With T5

1. Variations that achieve roughly the same accuracy as the baseline-pattern.

2. Variations that achieve worse accuracy than the baseline-pattern, but still far above

the most frequent class baseline (over 55%).

3. Variations that achieve 0% accuracy because T5 does not recognize that it is a MNLI

task anymore.

Since most variations that I tried fall into the �rst or second category, I conclude that

T5 is at least somewhat robust to variations in the baseline-pattern.

4.5 Experiment 2: Cross-Task-Robustness

T5 was trained in a multi-task fashion (see Section 2.4). That is why there are a lot of

speci�c patterns that correspond to a task. Table 2.2 shows a full list of tasks and patterns

that T5 was trained on and that I am using. This provides the opportunity to cast the NLI

objective to another task.

For example, one task that T5 was trained on is question answering. In this format, T5

gets a question and a context (that has the answer to the question) and T5 has to generate

the correct answer (see Table 2.2).

One way of casting a NLI instance to the question answering format would be to state

the question as "Does the premise entail, contradict or is neutral to the hypothesis?" and

as context the concatenation of the premise and the hypothesis. The whole input for T5

would thus be

"question: Does the premise entail, contradict or is neutral to the hypothesis?

context: hypothesis: hypothesis premise: premise"

If T5 were to understand the question correctly and "apply its NLI skills", I would expect

the same accuracy as with the MNLI pattern.

I call this type of casting logically equivalent, in the sense that the label for a NLI

instance with this casting should be X if and only if the label of that instance with the

baseline-pattern is X.

There are other tasks where it is harder to �nd a mapping to NLI. For example, sentiment

analysis might correlate with NLI (i.e. hypothesis-premise pairs that have a positive

sentiment might be more likely to have the label entailment) but is de�nitely not logically

equivalent.

The third option is when a part of the MNLI labels can be represented logically equivalent,

but not all of them. For example, this is the case with RTE which only has the labels

entailment and not_entailment. If T5 predicts entailment with the RTE pattern, the MNLI

label will be entailment as well. However, if T5 predicts not_entailment, the MNLI label

could be either contradiction or neutral. With this in mind, I will explore three following

questions:

• How robust are the NLI capabilities of T5 when using the pattern of another task,

which is logically equivalent to the NLI task?

32

4.5 Experiment 2: Cross-Task-Robustness

• How robust are the NLI capabilities of T5 when using the pattern of another task,

which can partially logically equivalent represent the NLI labels?

• For tasks which there are no logically equivalent ways to cast a NLI instance to,

are there combinations where T5 still has an accuracy over the most frequent class

baseline?

The �rst and the second question explore the robustness to (partially) logical equivalent

task perturbations. Here, T5 would be robust if it achieves similar accuracy as with the

baseline-pattern. For the third question, the opposite would be true. Accuracy above a

most frequent class baseline would indicate the existence of statistical cues in the dataset

(for example, that T5 uses sentiment in its NLI prediction).

In the following subsections, I will explore di�erent tasks that T5 was trained on, which

all give insight to one of those questions. For tasks which T5 is trained to output a limited

set of tokens, I use the string comparison evaluation method (see Subsection 4.1.2). The

verbalizer has to be adjusted here to match the task speci�c labels. For generative tasks,

where T5 can output any token, I use the token comparison evaluation (see Subsection 4.1.3)

or baseline evaluation scheme (see Subsection 4.1.6).

To illustrate the pattern that each task will use, I will use "All cars are black." as premise

and "My car is red." as hypothesis. While this premise and hypothesis pair is not part of

MNLI, it will serve as a good demonstration to make it easier to replicate my results.

When the labels for the task is not the same as the MNLI labels, a new verbalizer has to

be found. In the following subsections I will use tables to specify the new verbalizer: The

top row will always show the three labels (entailment, neutral and contradiction) while

the other rows will show which tokens the label will get mapped to. This means that each

row is a new verbalizer with the corresponding accuracy. If two labels get mapped to the

same tokens (in case that the speci�c task does not have three labels like MNLI) I count a

classi�cation as correct, if either of the two labels apply when the model predicts those

tokens. For those cases, the most frequent class accuracy is 68.25%.

See Figure 4.2 for an illustrated overview of this experiment.

4.5.1 CommitmentBank Dataset (CB)

CB [32] is a NLI dataset where the goal is to determine if a premise entails, contradicts

or is neutral to a hypothesis. However, compared to MNLI the premises were chosen

deliberately such that they are surrounded by an entailment canceling operator like

negation but without changing the associated label.

The authors of T5 chose to encode this task the same in the text-to-text framework as

MNLI with the only di�erence being that the changed "mnli" to "cb". See Table 4.5 for an

example.

As CB has the same labels as MNLI, I can use the same verbalizer as I do for MNLI. This

also means that I can cast a MNLI instance logically equivalent to the CB pattern and can

investigate the �rst question (see Section 4.5).

Results in Table 4.6 show that the accuracy does not change substantially. I conclude

that the NLI capabilities of T5 are robust for this mapping. However, note that this can

33

4 Experiments With T5

Figure 4.2: Overview of Experiment 2. I will try the PVP of di�erent task with the MNLI

matched validation set. The goal is either to see if NLI capabilities transfer

across task or to �nd indications of the use of statistical cues.

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

CB cb hypothesis: My car is red. premise: All cars are black.

Table 4.5: Illustration of the pattern that I use for CB with a toy example. "All cars are

black" is the premise and "My car is red." is the hypothesis.

A B Accuracy

mnli hypothesis: premise: 86.07%

cb hypothesis: premise: 85.80%

Table 4.6: Accuracy of T5-base on the MNLI matched validation dataset using the eval-

uation scheme of string comparison (see Subsection 4.1.2) and the prompt for

CB.

34

4.5 Experiment 2: Cross-Task-Robustness

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

CoLA cola sentence: My car is red. All cars are black.

Table 4.7: Illustration of the pattern that I use for CoLA with a toy example. "All cars are

black" is the premise and "My car is red." is the hypothesis.

Entailment Neutral Contradiction Accuracy

unacceptable acceptable acceptable 63.39%

acceptable unacceptable acceptable 64.62%

acceptable acceptable unacceptable 64.27%

Table 4.8: Accuracy of T5-base on the MNLI matched validation dataset using the CoLA

pattern.

also be seen as a slight variation of the MNLI pattern (Subsection 4.4.3) which means that

results might have been di�erent if the authors used completely di�erent patterns for

MNLI and CB.

4.5.2 The Corpus Of Linguistic Acceptability (CoLA)

The CoLA [60] task involves determining whether or not a sentence is grammatically

acceptable. The pattern for the CoLA task is shown with a toy example in Table 4.7.

As the T5 was trained to output either "acceptable" or "unacceptable" for CoLA, I have

to adjust the verbalizer. As I did not see a way to cast a MNLI instance logically equivalent

to CoLA, I will use it to investigate the third question (Section 4.5) and look for statistical

cues. The verbalizers and corresponding accuracies I tried are in shown in Table 4.8.

No verbalizer achieved an accuracy which exceeded the most frequent class baseline

of 68.25% signi�cantly. I conclude that T5 does not use any statistical cues for MNLI that

would overlap with any patterns that it uses to solve CoLA.

4.5.3 Recognizing Textual Entailment (RTE)

RTE [10] is a NLI dataset as well. However, instead of having to predict the three labels

"entailment", "neutral" and "contradiction" like in MNLI the goal in RTE is only to predict

"entailment" vs. "not_entailment". This means that it is only possible to represent parts of

the MNLI labels. I will use RTE to investigate question 2 (Section 4.5).

Table 4.9 demonstrated the pattern that is used with RTE.

In Table 4.10 I show the di�erent verbalizers that I tried. If I use the most obvious choice

and map the label entailment to "entailment" and the labels neutral and contradiction to

"not_entailment" I achieve an accuracy of 84.85%. This is signi�cantly higher than the

most frequent class baseline of 68.25% for two labels.

35

4 Experiments With T5

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

RTE rte sentence1: My car is red. sentence2: All cars are black.

Table 4.9: Illustration of the pattern that I use for RTE with a toy example. "All cars are

black" is the premise and "My car is red." is the hypothesis.

Entailment Neutral Contradiction Accuracy

entailment not_entailment not_entailment 84.85%

entailment not_entailment entailment 59.47%

entailment entailment not_entailment 61.04%

Table 4.10: Accuracy of T5 on the MNLI matched validation dataset using the RTE prompt.

I conclude that the way that T5 solves RTE is also somewhat useful to solve MNLI.

In this sense, the NLI capabilities are at least to some degree robust. However, one can

observe that the accuracy for detecting entailment versus contradiction and neutral is still

far beyond that baseline.

4.5.4 Microso� Research Paraphrase Corpus (MRPC)

In MRPC [12] the goal is to determine if two sentences are equivalent or not. The pattern

that is used in MRPC is shown in Table 4.12. Note that it is very similar to the RTE pattern.

As there are once again only two labels, I can only represent part of the MNLI label

and will therefore investigate question 2 Section 4.5. The verbalizers and corresponding

accuracies that I tried are shown in Table 4.13. Logically speaking, the MRPC label

not_equivalent should be verbalized to "contradiction" and "neutral". While two statements

where one entails the other do not necessarily have to be equivalent, there still might be

some signi�cant overlap.

The results in Table 4.13 show all the verbalizers I tried and the corresponding accuracies.

The party logically equivalent mapping does indeed show the best results, far above the

most frequent class baseline.

Since I do not know which entailment instances in the MNLI testset are also equivalent,

it is hard to draw any conclusion. However, it is possible to check the internal consistency

of T5 by measuring how many instances T5 labels as entailment when swapping the

premise and the hypothesis.

Figure 4.3 shows an illustration on how to achieve this. First, I determine all the instances

of the T5 matched validation set where T5 thinks that the premise entails the hypothesis

(called entailment in the diagram) using the baseline pattern. Then I use the pattern

% : - →) ∗, % (ℎ~?>Cℎ4B8B, ?A4<8B4) = "mnli hypothesis: " ?A4<8B4 " premise: " ℎ~?>Cℎ4B8B

to determine all the instances where T5 thinks that the hypothesis entails the premise

(called reversed entailment in the diagram). The instances in the intersection of those two

sets are the instances that T5 thinks are equivalent when using the mnli pattern.

36

4.5 Experiment 2: Cross-Task-Robustness

Figure 4.3: An illustration on how to determine which mnli matched validation instances

T5 thinks are equivalent.

37

4 Experiments With T5

Method To Determine Equivalence Fraction Of Equivalence

MNLI (normal entailment / reversed entailment) 11.04%

MRPC 21.67%

Table 4.11: Which fraction of MNLI matched validation instances T5 thinks are equivalent

using either the MRPC pattern or the intersection of the normal and the reversed

MNLI pattern with entailment.

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

MRPC mrpc sentence1: My car is red. sentence2: All cars are black.

Table 4.12: Illustration of the pattern that I use for MRPC with a toy example. "All cars are

black" is the premise and "My car is red." is the hypothesis.

The result of those calculations is that T5 thinks that 11.03% of all matched validation

instances are equivalent. That is less than a third of how much T5 thinks is just entailment

(34.41%).

I can now compare those results with the MRPC results. Table 4.11 shows which fraction

of the MNLI matched validation set T5 thinks are equivalent using either the MRPC prompt

or combining the normal and reversed prompt of MNLI as described above. With MRPC T5

thinks there are almost double the equivalent instances than with the MNLI combination.

This shows a signi�cant mismatch and shows that T5 is inconstant and not very robust in

its equivalence predictions.

4.5.5 Stanford Question Answering Dataset (QNLI)

The objective of QNLI [44] is to determine whether or not a given context contains the

answer to a given question. The pattern that I use for QNLI is shown in Table 4.14. As

there is no obvious way to cast a premise and a hypothesis to question and context, I

simply use the hypothesis as the question even though there is no question involved.

I could not come up with a way to cast the labels logically equivalent. That is why I use

this task to investigate question 3 (see Section 4.5). If my setup achieves an accuracy of

Entailment Neutral Contradiction Accuracy

equivalent not_equivalent not_equivalent 76.46%

equivalent not_equivalent equivalent 52.07%

equivalent equivalent not_equivalent 61.40%

Table 4.13: Accuracy of T5 on the MNLI matched validation dataset using the prompt of

mrpc and di�erent label mappings.

38

4.5 Experiment 2: Cross-Task-Robustness

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

QNLI qnli question: My car is red. sentence: All cars are black.

Table 4.14: Illustration of the pattern that I use for QNLI with a toy example. "All cars are

black" is the premise and "My car is red." is the hypothesis.

Entailment Neutral Contradiction Accuracy

entailment not_entailment not_entailment 79.34%

entailment not_entailment entailment 61.25%

entailment entailment not_entailment 59.42%

Table 4.15: Accuracy of T5 on the MNLI matched validation dataset using the evaluation

scheme of string comparison (see Subsection 4.1.2) with the prompt of QNLI.

more than the most frequent class baseline, this is an indication that T5 is using spurious

statistical cues.

Table 4.15 shows that it is indeed possible to achieve an accuracy far above the 68.25%

most frequent class baseline. This could be a sign that T5 exploits some kind of pattern in

the two sentences and does not actually answer the question when solving QNLI. However,

if this task is given to humans and their responses are limited to the labels, it could very

well be the case that they provide similar answers as the task is not correctly speci�ed.

4.5.6 Quora Question Pairs (QQP)

QQP [15] is a dataset consisting of pairs of questions. The goal is to determine whether or

not the questions are duplicates in the sense that they are asking for the same thing.

Table 4.17 illustrates the pattern that is used in QQP. The task is very similar to MRPC

although now for questions instead of statements. Of course, neither the premise nor

the hypothesis of MNLI are questions. Still, if T5 learned something more general about

duplicates that goes beyond questions, it might be able to di�erentiate the equivalent

MNLI pairs from the non-equivalent ones.

The results in Table 4.18 show that this setup can achieve accuracy signi�cantly above

the most frequent class baseline. However, as with MRPC it has to be di�erentiated if

T5 �nds instances that are actually equivalent or if it relies on some other pattern. As I

once again do not have the possibility to �nd out which instances in the MNLI matched

validation set really are equivalent, I can only test for consistency (see Subsection 4.5.4).

Table 4.16 shows the result using the same setup as in Table 4.11, only this time with

QQP instead of MRPC. There again is a signi�cant mismatch between which instances

T5 thinks are equivalent using the di�erent methods. I conclude that T5 is also not very

robust in this regard.

39

4 Experiments With T5

Method To Determine Equivalence Fraction Of Equivalence

MNLI (normal entailment / reversed entailment) 11.04%

QQP 26.78%

Table 4.16: Which fraction of MNLI matched validation instances T5 thinks are equivalent

using either the QQP pattern or the intersection of the normal and the reversed

MNLI pattern with entailment.

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

QNLI qqp question1: My car is red. question2: All cars are black.

Table 4.17: Illustration of the pattern that I use for QNLI with a toy example. "All cars are

black" is the premise and "My car is red." is the hypothesis.

Entailment Neutral Contradiction Accuracy

duplicate not_duplicate not_duplicate 76.91%

not_duplicate duplicate not_duplicate 51.67%

duplicate duplicate not_duplicate 55.20%

Table 4.18: Accuracy of T5 on the MNLI matched validation dataset using the evaluation

scheme of string comparison and the pattern on QQP.

40

4.5 Experiment 2: Cross-Task-Robustness

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

SST2 sst2 sentence: My car is red. All cars are black.

Table 4.19: Illustration of the pattern that I use for SST2 with a toy example. "All cars are

black" is the premise and "My car is red." is the hypothesis.

Entailment Neutral Contradiction Accuracy

positive negative negative 59.81%

negative positive negative 53.74%

positive positive negative 60.87%

Table 4.20: Accuracy of T5-base on the MNLI matched validation dataset using the evalua-

tion scheme of string comparison and the prompt of SST2.

4.5.7 Stanford Sentiment Treebank (SST2)

SST2 [53] is a sentiment classi�cation dataset, where the goal is to classify a sentence to

either "positive" or "negative".

Table 4.19 shows the pattern that is used for SST2 and how I combined it with the MNLI

instances.

I explored all label mappings as di�erent verbalizers. As the mappings are not logically

equivalent, my goal is to explore question 3 (see Section 4.5) and look for statistical cues.

For example, it might be conceivable that T5 would give MNLI instances with the label

contradiction lower sentiment as instances with the label entailment.

The results are shown in Table 4.20. No mapping achieves an accuracy of more than the

most frequent class baseline. I conclude that T5 does not use statistical cues that relate to

that particular sentiment analysis in order to solve MNLI.

4.5.8 Semantic Textual Similarity Benchmark (STSB)

In STSB [8] the task is to predict the semantic textual similarity of two sentences as a

score between 0 and 5.

The pattern that is used for STSB is shown in Table 4.21. Given this pattern, T5 was

trained to output a number between 0 and 5 in steps of 0.2. While I could not directly

verbalize labels to a continuous score, I could still look for patterns that T5 applies. To

that end, I �rst calculated the sum of the predictions for every label.

Results in Table 4.22 show that T5 predicts much higher values for MNLI instances

with the label entailment. Using this knowledge, I can make predictions for MNLI by

introducing thresholds for di�erent labels.

Table 4.23 shows the accuracy for di�erent thresholds when trying to di�erentiate

between entailment and neutral/contradiction. Using a threshold of 3.6, it is possible

to predict "entailment" correctly with an accuracy of 78%, which is far above the most

frequent class baseline of 68.25%.

41

4 Experiments With T5

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

STSB stsb sentence1: My car is red. sentence2: All cars are black.

Table 4.21: Illustration of the pattern that I use for SST2 with a toy example. "All cars are

black" is the premise and "My car is red." is the hypothesis.

Label Sum Average By Label

entailment 12192 3.50

neutral 5778 1.85

contradiction 7060 2.20

Table 4.22: Averaged and summed prediction score of T5 base using the prompt of STSB

for every instance and corresponding label of MNLI.

Threshold Accuracy

2.7 73.00%

3 74.43%

3.3 78.28%

3.5 78.35%

3.6 78.35%

3.8 74.89%

3.9 73.52%

4.0 73.52%

Table 4.23: Accuracy of T5 on the MNLI matched validation dataset using the evaluation

scheme of string comparison, the prompt of STSB and di�erent thresholds for

di�erentiating between entailment and contradiction/neutral.

42

4.5 Experiment 2: Cross-Task-Robustness

Threshold Entailment Threshold Contradiction Accuracy

3.6 1.85 42.49%

3.6 1.6 48.01%

3.6 1.5 48.01%

3.6 1.4 47.68%

Table 4.24: Accuracy of T5 on the MNLI matched validation dataset using the evaluation

scheme of string comparison, the prompt of STSB and di�erent thresholds

for di�erentiating between entailment and contradiction as well as between

contradiction and neutral.

Since STSB does not only have two labels, it is possible to use two thresholds to predict

the whole MNLI label set. In Table 4.24 I explored di�erent thresholds. If the prediction

is above the entailment threshold, I predict entailment. If the prediction is between

the entailment threshold and the contradiction threshold, I predict contradiction. If the

prediction is below the contradiction threshold, I predict neutral. Using this scheme, I get

an accuracy of 48.01%, which is far above the most frequent class baseline of 36.5%.

This indicates that there are statistical cues in the dataset, in the sense that T5 can

partly rely on the same methods that it uses to solve STSB. This could be actual semantic

similarity, or it could be some other statistical cue, since there is also no way to guarantee

that T5 solves STSB like humans would do. Furthermore, this does not mean that T5

actually uses those methods with the MNLI pattern, but it is a strong indication for it.

4.5.9 Stanford Question Answering Dataset (SQuAD)

In SQuAD [44] the goal is to answer a question given a context. The answer is not limited

to a prede�ned set of labels, but instead can be any word. This e�ectively makes SQuAD

a generation and not a classi�cation task. For me, this meant that I could not simply

use the string comparison method as before. Instead, I will use token prediction (see

Subsection 4.1.3) and baseline prediction (see Subsection 4.1.6) for the evaluation. Since

the question can be construed arbitrarily, I can logically equivalent cast the MNLI objective

to SQuAD and explore question 1 (see Section 4.5).

Table 4.25 shows the general pattern that I will use in this subsection. The italic question

will be substituted for various actual questions.

There are a lot of di�erent ways to cast the MNLI objective to a question and a context.

For a �rst step, I explore a few di�erent patterns and verbalizers that would be sensible for

a human using the token prediction scheme. Table 4.26 provides a list of all the questions

I came up with and the abbreviations that I gave them to make the following tables clearer.

Table 4.27 shows a list and abbreviations of the corresponding contexts. Note that if I still

use the strings "hypothesis" and "premise", the pattern is actually just a slight variation of

the baseline-pattern, like seen in Section 4.3.

Table 4.28 shows various combinations of patterns and verbalizers (the question and

context get arranged in the same fashion as shown in Table 4.25). It provides the corre-

sponding accuracies and also the normalized accuracies (Subsection 4.1.5). Consistent

43

4 Experiments With T5

Task Toy Example With Task Speci�c Pattern

MNLI mnli hypothesis: My car is red. premise: All cars are black.

SQuAD question: question context: My car is red. All cars are black.

Table 4.25: Illustration of the pattern that I use for SQuAD with a toy example. "All cars

are black" is the premise and "My car is red." is the hypothesis. The string

question is a placeholder for an actual question.

Question Abbreviation

Does the premise entail, contradict or is neutral to the hypothesis? question1
Does the sentence1 entail, contradict or is neutral to the sentence2? question2

Table 4.26: List of all the questions I use with SQuAD and the corresponding abbreviations

that I de�ne.

with the result of Subsection 4.4.4, adding a lot of tokens to the baseline-PVP makes the

accuracy drop substantially, but is still far above the most frequent class baseline. When

changing the question and context in a way such that no token of the original prompt is

available to the model anymore, the accuracy drops to random chance. However, using a

di�erent verbalizer (last three rows in the table) it is possible to achieve an accuracy over

the most frequent class baseline. But that is only possible when using a verbalizer that is

the exact opposite of what a human would �nd sensible (last row in the table). This hints

at the fact that T5 may use spurious statistical cues in this context.

Next, I will follow a more systematic approach. I will �x the pattern and look for verbaliz-

ers (and corresponding tokens) which are highly predictive of a label (see Subsection 4.1.4).

Since the actual labels of the instances are needed to evaluate how predictable they are, I

use the trainset to �nd the highly predictable verbalizers. Using this technique, I was able

to �nd tokens that resulted in higher accuracy on the MNLI matched validation set, see

Table 4.29. For question1 and context1 I could improve accuracy by about 5% compared to

the verbalizers that are sensible for humans. For question2 and context2 I could improve

accuracy by about 9%.

It is notable that the most predictive tokens are completely senseless to a human, some

not even being English words. Since it is possible to improve accuracy signi�cantly with

Context Abbreviation

hypothesis:[hypothesis] premise: [premise] context1
sentence2:[hypothesis] sentence1: [premise] context2

Table 4.27: List of all the contexts I use with SQuAD and the corresponding abbreviations

that I de�ne. [hypothesis] and [premise] stands for the hypothesis and premise

of an actual MNLI instance.

44

4.5 Experiment 2: Cross-Task-Robustness

Question Context Entailment Neutral Contradiction Accuracy Normalized

question1 context1 entailment neutral contradiction 52.96% 57.81%

question2 context2 entailment neutral contradiction 35.46% 38.72%

question1 context1 implication unrelated exclusion 35.45% 30.02%

question2 context2 implication unrelated exclusion 35.45% 25.25%

question2 context2 exclusion implication unrelated 31.82% 43.47%

Table 4.28: Accuracy of T5 on the MNLI matched validation dataset using the evaluation

scheme of string comparison when using the prompt of SQuAD and di�erent

labels.

Question Context Entailment Neutral Contradiction Accuracy Normalized

question1 context1 vin helpful weder 32.02% 62.71%

question1 context1 tôt tinde neither 32.47% 57.80%

question2 context2 égi formează 0.0 32.27% 52.63%

question2 context2 repayment ally 0 33.11% 50.28%

Table 4.29: Accuracy of T5-base on the MNLI matched validation dataset using the token

evaluation scheme with highly predictable tokens. I use the prompt of SQuAD.

those tokens, this is a strong indication that T5 uses some kind of statistical cues which

are incomprehensible to a human reader.

Even though I now used the most predictable verbalizers for prediction, T5 might still

perform better if it were to have access to the prediction qualities of its whole output.

Therefore, I now use the baseline evaluation scheme (see Subsection 4.1.6) which means

that the whole output of T5 gets used for prediction.

The results are shown in Table 4.30. Compared to using the most predictable verbalizer

for classi�cation, I now get an accuracy increase of about 5% for question1 and context1
and an accuracy increase of about 1.5% for question2 as well as context2.

All in all, I conclude that it is possible to use the SQuAD pattern to get a decent accuracy

on MNLI. In this sense, the NLI capabilities of T5 are somewhat robust. However, this is

only possible when using forms of evaluation that are not sensible to a human reader. So

the NLI capabilities are not robust in the sense that T5 would "think" in the same sense

that humans would do.

Question Context Accuracy

question1 context1 67.38%

question2 context2 54.09%

Table 4.30: Accuracy of T5-base on the MNLI matched validation dataset using the baseline
evaluation scheme. I use the prompt of SQuAD.

45

4 Experiments With T5

4.5.10 Conclusion of Experiment 2

To summarize the results of experiment 2, I want to come back to the initial questions that

I asked (see Section 4.5).

The �rst question was how robust the NLI capabilities of T5 are when logically equivalent

casting to a pattern other than the MNLI pattern. This was the case for CB and SQuAD.

The PVP of CB worked as well as the baseline MNLI pattern. So in this case, the NLI

capabilities are robust. However, this is not very surprising as the CB PVP is almost the

same as the MNLI PVP.

How well the PVP of SQuAD works depends on how the question and the context is

constructed. If there still is a part of the MNLI prompt left (i.e. "hypothesis: " and "premise:

") the accuracy is far above the most frequent class baseline. Those results are comparable

to the slight variation of adding tokens to the baseline-pattern (see Subsection 4.4.4), as

the pattern is constructed similarly and also the accuracy that is achieved is similar. When

there is no part of the MNLI pattern left, accuracy drops signi�cantly, but is still above

the most frequent class baseline. So I conclude that the NLI capabilities are also at least

somewhat robust in that regard.

The second question asked about the robustness of the NLI capabilities of T5 when it is

only possible to logically equivalent cast some of the MNLI labels. This was the case for

RTE, MRPC and QQP. With all of those patterns, I was able to achieve an accuracy that

exceeded the most frequent class baseline. However, in the case of MRPC and QQP I also

found that T5 is not consistent in which instances of the MNLI matched validation set it

labels as equivalent.

For the third question, I looked at tasks where there is no (partially) logically equivalent

mapping available. This was the case for CoLA, QNLI, SST2 and STSB. For CoLA and

SST2, I did not �nd a way to achieve an accuracy above the most frequent class baseline,

indicating that T5 does not rely on the same statistical cues for those datasets and MNLI.

For QNLI and for STSB I found ways to achieve an accuracy above the most frequent class

baseline. This shows that T5 partially uses similar patterns to solve QNLI and STSB as it

does to solve MNLI.

4.6 Experiment 3: Cross-Dataset-Robustness

In the last sections, I have carried out all evaluations with the MNLI matched validation

set. However, as described in Section 2.2 this is not the only NLI dataset available. This

section is about how robust the NLI capabilities that T5 learned with MNLI are with those

other datasets.

One issue I ran into is that I found no documentation on which tasks the version of T5

that I am using (from huggingface [64]) was trained on. I assume that the version was

trained on the training set of all the task that are mentioned in the T5 paper [43].

See also Figure 4.4 for an illustrated overview.

46

4.6 Experiment 3: Cross-Dataset-Robustness

Figure 4.4: Overview of Experiment 3. I will try di�erent NLI datasets with the baseline

PVP and as such determine if the NLI capabilities that T5 learned for MNLI

extend to other NLI datasets. The MNLI verbalizer is not included to increase

readability.

Evaluation Scheme Accuracy

String comparison 78.50%

Baseline prediction 77.91%

Table 4.31: Accuracy of T5-base on the SNLI testset for with evaluation schemes string
comparision (see Subsection 4.1.2) Subsection 4.1.2 and baseline prediction

Subsection 4.1.6 (using the SNLI trainset as baseline).

4.6.1 The Stanford Natural Language Inference (SNLI) Corpus

In this subsection, I will test if capabilities that T5 has to solve MNLI also translate to

solving SNLI [5]. To that end, I will use the baseline-PVP (see Section 4.3) for evaluation.

Table 4.31 shows the accuracy of T5-base on the SNLI testset with di�erent evaluation

schemes. T5 achieves an accuracy that is far above a random baseline. I conclude that the

patterns that T5 uses to solve MNLI are also helpful to solve SNLI.

4.6.2 The Adversarial Natural Language Inference (ANLI) Corpus

This subsection will be concerned with the question if the NLI capabilities of T5 with

MNLI also extend to ANLI [38]. ANLI has three di�erent testsets which are also called

rounds. Each round increases in di�culty. Table Subsection 4.6.2 shows the accuracy of

T5 on all rounds using string comparison (see Subsection 4.1.2) and the baseline-PVP (see

Section 4.3). T5 can achieve an accuracy that is very slightly above the random baseline

for the �rst round, but drops to random for round two and three.

47

4 Experiments With T5

ANLI Round Accuracy

1 38.20%

2 30.40%

3 32.08%

Table 4.32: Accuracy of T5-base on the ANLI testset for di�erent rounds.

Pattern RTE Set Accuracy

MNLI validation 79.06%

RTE validation 66.06%

RTE (paper) test 80.10%

Table 4.33: Accuracy of T5-base on the RTE validation set for with evaluation schemes

string comparison (see Subsection 4.1.2) and the reported RTE accuracy with

the RTE pattern from the paper [43].

I conclude that the NLI capabilities of T5 do not generalize well to ANLI. Of course, this

has to do with the fact that ANLI was speci�cally designed to be hard to solve for current

language models [38].

4.6.3 The Recognizing Textual Entailment (RTE) Corpus

This subsection examines whether T5’s NLI capabilities with MNLI also extend to RTE [10].

RTE has only the labels entailment and not_entailment, instead of the three labels of MNLI.

So if T5 outputs either neutral or contradiction, I will count it as not_entailment. Since

RTE is part of the GLUE [57] benchmark, the test set is only available after submitting

a model. Instead, I use the publically available validation set for my analysis. Since T5

was presumably already trained on RTE, the validation set was most likely also used. The

results in this subsection should therefore be taken with a grain of salt.

However, another consequence of T5 being already trained on RTE is that I can compare

my results with the actual RTE pattern. Table 4.33 shows three results. The �rst two show

the accuracy on the RTE validation set when using the MNLI or the RTE pattern (see

Table 2.2 for how the patterns are constructed). The last result is the reported accuracy of

the paper [43] on the testset of RTE using the RTE pattern.

First, the results show that there is a mismatch between what I measure and how it is

reported in the paper. This could again be because the version of T5 that I am using was

trained in a multi-task fashion, whereas the version of T5 from the paper [43] allowed for

individual �ne-tuning. Second, using the MNLI pattern increases the accuracy by 13% for

the validation set compared to the RTE pattern.

This might be a sign that the NLI capabilities of T5 could be improved by careful analysis

and combination of patterns.

48

4.6 Experiment 3: Cross-Dataset-Robustness

4.6.4 Conclusion of Experiment 3

I conclude that T5 with the MNLI pattern is quite robust to new NLI datasets. The

accuracy on SNLI is far above the random baseline, and the accuracy on RTE even increases

compared to the RTE pattern. Only for ANLI the results of T5 with the MNLI pattern are

not impressive (it does not exceed a random baseline). However, this certainly has to do

with the fact that ANLI was speci�cally designed to be hard to solve for models that are

already good on other NLI benchmarks.

49

5 Conclusion

This thesis provides an extensive investigation of the robustness of the NLI capabilities

of T5. In the �rst chapter, I provide an extensive overview of background information

necessary to understand this work.

The main chapter is subdivided in three experiments. Compared to most previous work,

I do not focus on developing methods to increase the accuracy of language models through

patterns. Instead, I focus on hand-crafted variations and combinations of already known

patterns and investigate how those impact NLI performance. Note that the experiments

are neither exhaustive and nor do I strive to make them be. Instead, I should serve as an

explorative endeavor to gain an intuition about the robustness of the NLI capabilities of

T5.

In the �rst experiment, I explored how robust T5 is to slight variations in the MNLI

pattern. I found out that the robustness signi�cantly depends on the type of variations.

Some variations lead to no decrease in accuracy at all, some make the accuracy drop heavily

(though still far above the most frequent class baseline) and some make the accuracy drop

to 0%, as T5 does not recognize that it has to solve a NLI task anymore. For further work,

it might be worthwhile to employ automated methods to induce the slight changes in the

MNLI prompt. This would provide a more complete view of the corresponding e�ects.

In the second experiment, I analyzed how robust the NLI capabilities of T5 are when

using di�erent patterns from tasks that T5 was already trained on. The results again

depended on the pattern. While I was able to achieve an accuracy that exceeded the most

frequent class baseline with all patterns that could be (partially) logically equivalent cast,

that accuracy varied substantially. For the tasks that could not be logically equivalent cast

(and with which T5 should therefore not have good accuracy from a human perspective)

I found mixed results as well. With CoLA and SST2, accuracy did not exceed the most

frequent class baseline. However, for QNLI and STSB, my analysis exceeded this baseline.

This indicates that T5 partially uses statistical cues for its MNLI prediction. In further work,

one could con�rm those results by constructing a NLI dataset that speci�cally controls for

those cues.

In the third experiment, I looked at how the MNLI capabilities of T5 translate to other

NLI datasets. For SNLI and RTE I found that T5 achieves an accuracy that is far above

the most frequent class baseline. For RTE, I even discovered that T5 can achieve better

accuracy with the MNLI pattern instead of the RTE pattern. For ANLI T5 does not exceed

random accuracy. The results indicate that T5 might not have achieved its maximum

performance yet and could be improved by further combining tasks.

All in all, I conclude that the robustness of the NLI skills of T5 depends greatly on which

type of perturbation is applied.

Beyond that, it might be a worthwhile endeavor to extend this analysis to other language

models and to other tasks. Among other things, this might lead to the discovery of even

51

5 Conclusion

more statistical cues and as a result a better understanding of the general capabilities of

large language models.

52

Bibliography

[1] Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. “Analyzing the Behavior of Vi-

sual Question Answering Models”. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin, Texas: Association for Computa-

tional Linguistics, Nov. 2016, pp. 1955–1960. doi: 10.18653/v1/D16- 1203. url:

https://www.aclweb.org/anthology/D16-1203.

[2] Jay Alammar. “The Illustrated Transformer”. In: (2018). url: https://jalammar.

github.io/illustrated-transformer/.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.Neural Machine Translation
by Jointly Learning to Align and Translate. 2016. arXiv: 1409.0473 [cs.CL].

[4] John Bateman and Michael Zock. “Natural Language Generation”. In: The Ox-
ford Handbook of Computational Linguistics (Jan. 2012). doi: 10.1093/oxfordhb/

9780199276349.013.0015.

[5] Samuel R. Bowman et al. “A large annotated corpus for learning natural language

inference”. In: Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Computational Linguistics, 2015.

[6] John S. Bridle. “Probabilistic Interpretation of Feedforward Classi�cation Network

Outputs, with Relationships to Statistical Pattern Recognition”. In: Neurocomputing.

Ed. by Françoise Fogelman Soulié and Jeanny Hérault. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1990, pp. 227–236. isbn: 978-3-642-76153-9.

[7] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165

[cs.CL].

[8] Daniel Cer et al. “SemEval-2017 Task 1: Semantic Textual Similarity Multilingual

and Crosslingual Focused Evaluation”. In: Proceedings of the 11th International Work-
shop on Semantic Evaluation (SemEval-2017). Vancouver, Canada: Association for

Computational Linguistics, Aug. 2017, pp. 1–14. doi: 10.18653/v1/S17-2001. url:

https://www.aclweb.org/anthology/S17-2001.

[9] Gobinda G. Chowdhury. “Natural language processing”. In: Annual Review of In-
formation Science and Technology 37.1 (2003), pp. 51–89. doi: https://doi.org/

10.1002/aris.1440370103. eprint: https://asistdl.onlinelibrary.wiley.com/

doi/pdf/10.1002/aris.1440370103. url: https://asistdl.onlinelibrary.wiley.

com/doi/abs/10.1002/aris.1440370103.

53

Bibliography

[10] Ido Dagan, Oren Glickman, and Bernardo Magnini. “The PASCAL Recognising Tex-

tual Entailment Challenge”. In: Machine Learning Challenges. Evaluating Predictive
Uncertainty, Visual Object Classi�cation, and Recognising Tectual Entailment. Ed. by

Joaquin Quiñonero-Candela et al. Berlin, Heidelberg: Springer Berlin Heidelberg,

2006, pp. 177–190.

[11] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[12] William B. Dolan and Chris Brockett. “Automatically Constructing a Corpus of

Sentential Paraphrases”. In: Proceedings of the Third International Workshop on
Paraphrasing (IWP2005). 2005. url: https://www.aclweb.org/anthology/I05-

5002.

[13] J. Elman. “Finding Structure in Time”. In: Cogn. Sci. 14 (1990), pp. 179–211.

[14] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical Neural Story Generation.

2018. arXiv: 1805.04833 [cs.CL].

[15] First Quora Dataset Release: Question Pairs. url: https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs.

[16] Markus Freitag and Yaser Al-Onaizan. “Beam Search Strategies for Neural Machine

Translation”. In: Proceedings of the First Workshop on Neural Machine Translation
(2017). doi: 10.18653/v1/w17-3207. url: http://dx.doi.org/10.18653/v1/W17-

3207.

[17] Tianyu Gao, Adam Fisch, and Danqi Chen. Making Pre-trained Language Models
Better Few-shot Learners. 2020. arXiv: 2012.15723 [cs.CL].

[18] Robert Geirhos et al. “Shortcut learning in deep neural networks”. In: Nature Machine
Intelligence 2.11 (2020), pp. 665–673. issn: 2522-5839. doi: 10.1038/s42256-020-

00257-z. url: http://dx.doi.org/10.1038/s42256-020-00257-z.

[19] John Haugeland. Arti�cial intelligence: The very idea. MIT press, 1989.

[20] Pengcheng He et al. DeBERTa: Decoding-enhanced BERT with Disentangled Attention.

2021. arXiv: 2006.03654 [cs.CL].

[21] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.

8.1735. url: https://doi.org/10.1162/neco.1997.9.8.1735.

[22] Ari Holtzman et al. Learning to Write with Cooperative Discriminators. 2018. arXiv:

1805.06087 [cs.CL].

[23] Ari Holtzman et al. The Curious Case of Neural Text Degeneration. 2020. arXiv:

1904.09751 [cs.CL].

[24] Zhengbao Jiang et al. How Can We Know What Language Models Know? 2020. arXiv:

1911.12543 [cs.CL].

[25] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A Convolutional Neural
Network for Modelling Sentences. 2014. arXiv: 1404.2188 [cs.CL].

54

[26] Zhenzhong Lan et al. ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations. 2020. arXiv: 1909.11942 [cs.CL].

[27] Mike Lewis et al. BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. 2019. arXiv: 1910.13461

[cs.CL].

[28] Xiang Lisa Li and Percy Liang. Pre�x-Tuning: Optimizing Continuous Prompts for
Generation. 2021. arXiv: 2101.00190 [cs.CL].

[29] Jiachang Liu et al. What Makes Good In-Context Examples for GPT-3? 2021. arXiv:

2101.06804 [cs.CL].

[30] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019.

arXiv: 1907.11692 [cs.CL].

[31] Yao Lu et al. Fantastically Ordered Prompts and Where to Find Them: Overcoming
Few-Shot Prompt Order Sensitivity. 2021. arXiv: 2104.08786 [cs.CL].

[32] Marie-Catherine de Marne�e, M. Simons, and J. Tonhauser. “The CommitmentBank:

Investigating projection in naturally occurring discourse”. In: 2019.

[33] R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the Wrong Reasons: Diag-
nosing Syntactic Heuristics in Natural Language Inference. 2019. arXiv: 1902.01007

[cs.CL].

[34] Tomas Mikolov et al. “Distributed representations of words and phrases and their

compositionality”. In: arXiv preprint arXiv:1310.4546 (2013).

[35] Tomas Mikolov et al. E�cient Estimation of Word Representations in Vector Space.
2013. arXiv: 1301.3781 [cs.CL].

[36] Vincent C. Müller and Nick Bostrom. “Future Progress in Arti�cial Intelligence:

A Survey of Expert Opinion”. In: Fundamental Issues of Arti�cial Intelligence. Ed.

by Vincent C. Müller. Cham: Springer International Publishing, 2016, pp. 555–572.

isbn: 978-3-319-26485-1. doi: 10 . 1007 / 978 - 3 - 319 - 26485 - 1 _ 33. url: https :

//doi.org/10.1007/978-3-319-26485-1_33.

[37] Aakanksha Naik et al. “Stress Test Evaluation for Natural Language Inference”.

In: Proceedings of the 27th International Conference on Computational Linguistics.
Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018,

pp. 2340–2353. url: https://www.aclweb.org/anthology/C18-1198.

[38] Yixin Nie et al. Adversarial NLI: A New Benchmark for Natural Language Understand-
ing. 2020. arXiv: 1910.14599 [cs.CL].

[39] paperswithcode. “Natural Language Inference on MultiNLI Leaderboard”. In: (2003).

url: https://paperswithcode.com/sota/natural- language- inference- on-

multinli.

[40] Guanghui Qin and Jason Eisner. Learning How to Ask: Querying LMs with Mixtures
of Soft Prompts. 2021. arXiv: 2104.06599 [cs.CL].

[41] A. Radford and Karthik Narasimhan. “Improving Language Understanding by Gen-

erative Pre-Training”. In: 2018.

55

Bibliography

[42] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In:

2019.

[43] Colin Ra�el et al. Exploring the Limits of Transfer Learning with a Uni�ed Text-to-Text
Transformer. 2020. arXiv: 1910.10683 [cs.LG].

[44] Pranav Rajpurkar et al. SQuAD: 100,000+ Questions for Machine Comprehension of
Text. 2016. arXiv: 1606.05250 [cs.CL].

[45] Sebastian Ruder. A Review of the Neural History of Natural Language Processing.

http://ruder.io/a-review-of-the-recent-history-of-nlp/. 2018.

[46] Ivan Sanchez, Je� Mitchell, and Sebastian Riedel. “Behavior Analysis of NLI Models:

Uncovering the In�uence of Three Factors on Robustness”. In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,

Louisiana: Association for Computational Linguistics, June 2018, pp. 1975–1985. doi:

10.18653/v1/N18-1179. url: https://www.aclweb.org/anthology/N18-1179.

[47] Timo Schick and Hinrich Schütze. Exploiting Cloze Questions for Few Shot Text
Classi�cation and Natural Language Inference. 2021. arXiv: 2001.07676 [cs.CL].

[48] Timo Schick and Hinrich Schütze. Few-Shot Text Generation with Pattern-Exploiting
Training. 2020. arXiv: 2012.11926 [cs.CL].

[49] Timo Schick and Hinrich Schütze. It’s Not Just Size That Matters: Small Language
Models Are Also Few-Shot Learners. 2021. arXiv: 2009.07118 [cs.CL].

[50] Abigail See, Peter J. Liu, and Christopher D. Manning. “Get To The Point: Summariza-

tion with Pointer-Generator Networks”. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver,

Canada: Association for Computational Linguistics, July 2017, pp. 1073–1083. doi:

10.18653/v1/P17-1099. url: https://www.aclweb.org/anthology/P17-1099.

[51] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of
Rare Words with Subword Units. 2016. arXiv: 1508.07909 [cs.CL].

[52] Taylor Shin et al. AutoPrompt: Eliciting Knowledge from Language Models with
Automatically Generated Prompts. 2020. arXiv: 2010.15980 [cs.CL].

[53] Richard Socher et al. “Recursive Deep Models for Semantic Compositionality Over

a Sentiment Treebank”. In: Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing. Seattle, Washington, USA: Association for Com-

putational Linguistics, Oct. 2013, pp. 1631–1642. url: https://www.aclweb.org/

anthology/D13-1170.

[54] Sandeep Subramanian et al. Learning General Purpose Distributed Sentence Represen-
tations via Large Scale Multi-task Learning. 2018. arXiv: 1804.00079 [cs.CL].

[55] Derek Tam et al. Improving and Simplifying Pattern Exploiting Training. 2021. arXiv:

2103.11955 [cs.CL].

[56] Ashish Vaswani et al. Attention Is All You Need. 2017. url: https://arxiv.org/pdf/

1706.03762.

56

[57] Alex Wang et al. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. 2019. arXiv: 1804.07461 [cs.CL].

[58] Jianyu Wang et al. Visual Concepts and Compositional Voting. 2017. arXiv: 1711.04451

[cs.CV].

[59] Sinong Wang et al. Entailment as Few-Shot Learner. 2021. arXiv: 2104.14690 [cs.CL].

[60] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. “Neural Network Accept-

ability Judgments”. In: arXiv preprint arXiv:1805.12471 (2018).

[61] Sean Welleck et al. Neural Text Generation with Unlikelihood Training. 2019. arXiv:

1908.04319 [cs.LG].

[62] Wikipedia. History of arti�cial intelligence — Wikipedia, The Free Encyclopedia.

http://en.wikipedia.org/w/index.php?title=History%20of%20artificial%

20intelligence&oldid=1026015479. [Online; accessed 02-June-2021]. 2021.

[63] Adina Williams, Nikita Nangia, and Samuel Bowman. “A Broad-Coverage Challenge

Corpus for Sentence Understanding through Inference”. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,

Louisiana: Association for Computational Linguistics, 2018, pp. 1112–1122. url:

http://aclweb.org/anthology/N18-1101.

[64] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. 2020. arXiv: 1910.03771 [cs.CL].

[65] Tom Young et al. Recent Trends in Deep Learning Based Natural Language Processing.

2018. arXiv: 1708.02709 [cs.CL].

[66] Jingqing Zhang et al. PEGASUS: Pre-training with Extracted Gap-sentences for Ab-
stractive Summarization. 2020. arXiv: 1912.08777 [cs.CL].

[67] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. “Understanding bag-of-words model: A

statistical framework”. In: International Journal of Machine Learning and Cybernetics
1 (Dec. 2010), pp. 43–52. doi: 10.1007/s13042-010-0001-0.

[68] Tony Z. Zhao et al. Calibrate Before Use: Improving Few-Shot Performance of Language
Models. 2021. arXiv: 2102.09690 [cs.CL].

[69] Chujie Zheng et al. Topic-Aware Abstractive Text Summarization. 2020. arXiv: 2010.

10323 [cs.CL].

57

	Abstract
	Zusammenfassung
	Introduction
	Background and Related Work
	Natural Language Processing
	Natural Language Inference Datasets
	Natural Language Models
	Common Concepts.
	Autoregressive Models
	Autoencoding Models
	Sequence-To-Sequence Models

	T5
	Decoding Algorithms
	Patterns and Verbalizers
	Statistical Cues
	Related Work

	Preliminary Results With GPT-2
	Initial Goals
	Challenges
	Adapted Goals

	Experiments With T5
	Evaluation Schemes
	Terminology
	String Comparison
	Token Comparison
	Most Predictable Token
	Normalization
	Baseline Evaluation Scheme

	Overview of the Experiments
	Baseline Results
	Experiment 1: Variation in the MNLI Pattern
	Can Beam Search Improve Accuracy?
	Is T5 Robust to Omitting Parts of the Prompt?
	Is T5 Robust to Slight Variations of the Prompt?
	Is T5 Robust to Adding Tokens to the Prompt?
	Is T5 Robust to Changing the Order?
	Conclusion of Experiment 1

	Experiment 2: Cross-Task-Robustness
	CommitmentBank Dataset (CB)
	The Corpus Of Linguistic Acceptability (CoLA)
	Recognizing Textual Entailment (RTE)
	Microsoft Research Paraphrase Corpus (MRPC)
	Stanford Question Answering Dataset (QNLI)
	Quora Question Pairs (QQP)
	Stanford Sentiment Treebank (SST2)
	Semantic Textual Similarity Benchmark (STSB)
	Stanford Question Answering Dataset (SQuAD)
	Conclusion of Experiment 2

	Experiment 3: Cross-Dataset-Robustness
	The Stanford Natural Language Inference (SNLI) Corpus
	The Adversarial Natural Language Inference (ANLI) Corpus
	The Recognizing Textual Entailment (RTE) Corpus
	Conclusion of Experiment 3

	Conclusion
	Bibliography

