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We analytically compute all four-loop QCD corrections to the photon-quark and Higgs-gluon form
factors involving a closed massless fermion loop. Our calculation of nonplanar vertex integrals confirms a
previous conjecture for the analytical form of the nonfermionic contributions to the collinear anomalous

dimensions of quarks and gluons.
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I. INTRODUCTION

Two of the most important processes which are studied
in great detail at the CERN LHC are the production of
lepton pairs and Higgs bosons. The total cross sections for
Drell-Yan lepton pair production through virtual photons
and Higgs boson production through the dominant gluon
fusion channel are known to next-to-next-to-next-to-
leading order (N?LO) in perturbation theory [1-3] in the
limit of an infinitely heavy top quark. Historically, first the
virtual corrections have been computed and the real
radiation contributions have been added later. In this paper
we take an important step towards the N*LO corrections
and provide analytic results for the fermionic contribution
to the virtual corrections, both to the Drell-Yan and Higgs
boson production processes.

The virtual corrections are conveniently expressed in
terms of form factors of the photon-quark vertex and the
effective gluon-Higgs boson vertex. Let us denote the
corresponding bare vertex functions by I, and I,
respectively. Then the bare form factors are obtained from

1
Fy(q*) = —mTr(%r”ﬁlm)’
2N (‘Il D9 — 91920 — qlﬁqu,ﬂ) ny
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where our overall normalization is such that both form
factors are 1 at leading order. Further, we work in conven-
tional dimensional regularization and use d = 4 — 2¢ for
the space-time dimension. The external momentum of the
photon and Higgs is ¢ = q; + ¢, and ¢, and ¢, are the
incoming momenta of the quark and antiquark in the case
of F, and of the gluons in the case of F,. Some sample
Feynman diagrams contributing to the fermionic part of F
and F, are shown in Fig. 1. We define the perturbative
expansion of F, and F, in terms of the bare strong coupling
constant and write

C(O nAg\ ne /42 ne (n)
F.=1 - — — ) F, (2
N EONC =

n>1

with x € {q, ¢}.

Two-loop corrections to F, have been computed in
Refs. [4-7] and the first two-loop calculation for F, has
been performed in [8]. In the first three-loop calculation of
F, and F, [9] the coefficients of the highest ¢ expansion
terms of three master integrals were only known numeri-
cally. These coefficients have been computed in [10].
The results of [9] have been confirmed in Refs. [11-13].
For the computation of three-loop master integrals we also
refer to [14].

At four-loop order there are only partial results. For F,
the large-N, limit, which only involves planar diagrams,
has been considered in Refs. [15,16], the njzc terms are
available from [17], the complete contribution from color
structure (d4°?)? has been computed in [18] and confirmed
in [19]. For F, and F, all corrections with three or two
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Sample Feynman diagrams contributing to the fermionic corrections to F', and F'; at four-loop order. Straight and curly lines

denote quarks and gluons, respectively. Both planar and nonplanar diagrams contribute.

closed fermion loops were calculated in [20,21], respec-
tively, including also the singlet contributions.

There are a number of works where pole parts of the
form factors have been computed. In fact, from the 1/ €?
pole it is possible to extract the so-called cusp anomalous
dimension. A complete calculation based on the form
factors can be found in Ref. [19]. In that work a basis
of finite integrals has been chosen and expanded only to
lower orders in € in order to obtain the required weight six
information. Reference [19] confirmed the expression
presented in Ref. [22], which is based on a calculation
in A/ = 4 super Yang-Mills, other known QCD results, and
conjectural input for one term in the matter contributions
[23]. Partial contributions to the QCD cusp anomalous
dimension are available from [15-17,20,24-28] and
numerical results are presented in Refs. [29,30].

Recently, the collinear anomalous dimensions have been
computed in Ref. [31] by extracting the 1/¢ poles of the
quark and gluon form factors. All contributions could be
computed analytically except one contribution from a
nonplanar four-loop integral defined in 6 — 2¢ dimensions,
which is parametrized by H (cf. Eq. (10) of [31]),

(6—2¢)
é{ =H+0(0), )

A numerical evaluation of H to 10 significant digits
allowed not only to significantly improve upon the numeri-
cal results of Refs. [32,33]; together with an assumption on
the multiple zeta values present in H, an analytic expres-
sion could be conjectured. Using the results obtained in the
present paper we confirm this expression; details are
presented in the next section where we outline some of
the techniques used for our calculation. Our analytic results
are presented in Sec. III, and Sec. IV contains our
conclusions and an outlook to the full result.

II. CALCULATION

We employ Qgraf [34] to generate the required
Feynman diagrams with closed fermion loops, 2464 dia-
grams for F' (q4) and 18642 diagrams for F' é4>. After applying
the projectors and performing the numerator algebra with

Form 4 [35], we obtain the form factors F, and F|,
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expressed as a linear combination of scalar functions
belonging to properly defined integral families. Each
function has 18 indices where up to twelve correspond
to the different propagators of the diagrams. In addition to
planar diagrams (see, e.g., Refs. [15,16,36]) there are
nonplanar diagrams; it is the latter which pose challenges.
We perform the calculation in a general R gauge and check
explicitly that terms proportional to £ cancel in our results.

From the computational point of view there are two
challenges one has to deal with. The first one is the
integration-by-parts reduction [37,38] of the scalar inte-
grals, which appear in the amplitudes, to so-called master
integrals. For this task, we employ the setup described in
Ref. [19], which is based on the codes Reduze 2 [39] and
Finred, implementing techniques from [40—46].

The second challenge is the computation of the master
integrals as a Laurent series in e¢. Here we have two
approaches at hand. The first one is based on the con-
struction of a basis of finite master integrals [13,47,48],
partly in 6 —2e dimensions. Subsequently the program
HyperInt [49] is used to compute the ¢ expansion of the
master integrals. This approach allowed us to compute all €
coefficients of the master integrals required for the fer-
mionic four-loop corrections except for H. We wish to note,
however, that it remains unclear whether the evaluation of
the constants of transcendental weight eight (or even
higher) of some of the nonplanar twelve-line master
integrals is possible in this approach. In particular, for
the two Feynman integrals corresponding to nonplanar
graphs with twelve edges,

7 ]

it is not known whether a linearly reducible [50,51]
Feynman parametric representation exists.

In this paper, we show that both remaining not linearly
reducible topologies (4) can be solved using a second
method, which is based on differential equations. While the
method of differential equations [52-54] is not directly
applicable to one-scale Feynman integrals, we can intro-
duce an additional scale parameter, as was suggested in
Ref. [55]. On the one hand, we complicate the situation. On
the other hand, we obtain the possibility to apply the full
power of the method of differential equations (see, e.g.,
Refs. [56,57] and Ref. [58] [Sec. E.8]). In the context of

massless four-loop form factors this approach has been
applied successfully in Refs. [15-18]. In a first step one
introduces a second mass scale by imposing a virtuality
g5 # 0 on one of the external partons, which apparently
makes the problem more complicated. However, we are
now in a position to establish differential equations for the
master integrals in the variable x = ¢3/¢* which determine
the connection between the points x = 1 and x = 0. The
boundary conditions are then easy to fix at x = 1 as in this
point our integrals turn into massless propagator integrals
for which analytic results are known at least up to weight
twelve [59,60]. A detailed description of the procedure can
be found in Ref. [18].

In our calculation we employ Fire 6 [61] in combi-
nation with LiteRed [44,62] to compute the reductions
for the differential equations and closely follow the
algorithm of Refs. [63,64] as implemented in Libra
[65] to bring our system in e form. The complexity of
the two topologies (4) is somewhat reflected also in the
properties of the differential equations. First, it appears
that differential equations for these two topologies,
in addition to singularities at x = 0 and 1, have singularities
at x = —1,4,1/4 (at x = 4) for the first (second) topology,
respectively. Among those, the singularity at x = 1/4 is
especially troublesome as it lies inside the segment (0,1)
connecting the points of interest. Moreover, it appears that
in order to reduce the system to e form, we need to

introduce the algebraic extensions x; =+/x, x, = y/x— 1/4,

and x3 = \/1/x — 1/4. Fortunately, for each specific iter-
ated integral which appears in the € expansion of the master

integrals of these two topologies it is possible to find the
rationalizing variable change. As a result, the master
integrals of the two topologies are not directly expressed
via nonalternating multiple zeta values, but rather via
Goncharov polylogarithms with letters in the alphabet
{0, £1, +i\/3, e*7/3, *2i7/3 ¢ *i7/3 /21 Using the PSLQ
algorithm, we were able to express our final result for the
master integrals with two massless legs and their subto-
pologies through to weight nine in terms of regular zeta
values, ¢, (n =2, ...,9), and the multiple zeta value

co m—1 1

L= Y —55~00377076729848.  (5)
mn

m=1 n=1

Our results for the corner integrals of the two nonplanar
topologies through to the finite parts are
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in the conventions of [36]. Combining the integral solutions
obtained by direct integration with the result (6) allows us
to determine

161 5
HZEQ +§§5§2 —§3§2+10C2+210§2
= 2505 = 6030 + 15 Cz + 9¢;. (8)

This value for H agrees w1th the expression conjectured in
[31] and thus confirms the nonfermionic contributions to the
collinear anomalous dimensions in that reference analyti-
cally. Moreover, this result provides the last remaining master
integral coefficient required for the present calculation.

III. RESULTS FOR FORM FACTORS

In this section we present the complete fermionic four-
loop corrections to the form factors F;, and F, in massless

QCD. We express the results in terms of SU(N,.) color
factors and use

N2—1
Cr= ZCN , Cy4=N N,=N2?-1,
Qq’ d%bcd%bc N2 -4
Ne=N. Mar = ’ N, 12N ’
q Qq A c
dgbeddgbed  N}—6NZ+18
Ny,  96N2 °
N, 48 ~

where Q, is the fractional charge of the quark g and n is the
number of active quark flavors. Without loss of generality
we have used for the trace normalization Ty = 1/2.
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The ¢ expansion of the fermionic corrections to both
form factors starts with seventh-order poles in 1/¢, reflect-
ing the fact that fermionic corrections start to contribute
only at two loops. Similarly, four-loop contributions with
more than two closed fermion loops or specific color
factors start even later in the e expansion. The correspond-
ing poles through to order 1/e can be obtained from [19];

229468

C3§2

547270

they consist of zeta values with transcendental weight up
to six.

Here, we calculate the complete finite part of the
fermionic four-loop contributions to F, and F, and obtain
an analytical result in terms of zeta values with transcen-
dental weight up to seven. Our result for the finite part of

F ,(14) reads
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The nj, n}, and ngn, terms agree with the results ACKNOWLEDGMENTS

presented in Refs. [20,21]. Our expression for F 4 Tepro-
duces the result of Ref. [15] in the large-N, limit. The

remaining, subleading color terms for F ((14> and all of the

)

terms linear in ny for Fy~ are new.

IV. CONCLUSIONS

In this paper, we calculated the complete fermionic
corrections to the photon-quark and Higgs-gluon vertices
in massless four-loop QCD. We solved two nonplanar
vertex topologies using the method of differential equations
and found a result in terms of multiple zeta values. This
renders the only two topologies which were not known to
be linearly reducible accessible, such that the main obstacle
for the remaining four-loop corrections has been removed.
Our calculation confirms a previous conjecture for the
analytical solution of one of the integrals in this topology,
which fully establishes the pole terms of all nonfermionic
four-loop corrections analytically.
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