
Received: 31 May 2021 Revised: 2 September 2021 Accepted: 26 September 2021

DOI: 10.1002/spe.3041

S P E C I A L I S S U E PA P E R

Using Ginkgo’s memory accessor for improving the
accuracy of memory-bound low precision BLAS

Thomas Grützmacher1 Hartwig Anzt1,2 Enrique S. Quintana-Ortí3

1Steinbuch Centre for Computing,
Karlsruhe Institute of Technology,
Karlsruhe, Germany
2Innovative Computing Lab, University of
Tennessee, Knoxville, Tennessee, USA
3Departamento de Informática de
Sistemas y Computadores, Universitat
Politècnica de València, Valencia, Spain

Correspondence
Hartwig Anzt, Steinbuch Centre for
Computing, Karlsruhe Institute for
Technology, Karlsruhe, Germany.
Email: hartwig.anzt@kit.edu

Funding information
Helmholtz-Gemeinschaft, Grant/Award
Number: VH-NG-1241; US Exascale
Computing Project, Grant/Award
Number: 17-SC-20-SC

Abstract
The roofline model not only provides a powerful tool to relate an application’s
performance with the specific constraints imposed by the target hardware but
also offers a graphic representation of the balance between memory access cost
and compute throughput. In this work, we present a strategy to break up the
tight coupling between the precision format used for arithmetic operations and
the storage format employed for memory operations. (At a high level, this idea
is equivalent to compressing/decompressing the data in registers before/after
invoking store/load memory operations.) In practice, we demonstrate that a
“memory accessor” that hides the data compression behind the memory access,
can virtually push the bandwidth-induced roofline, yielding higher performance
for memory-bound applications using high precision arithmetic that can handle
the numerical effects associated with lossy compression. We also demonstrate
that memory-bound applications operating on low precision data can increase
the accuracy by relying on the memory accessor to perform all arithmetic opera-
tions in high precision. In particular, we demonstrate that memory-bound BLAS
operations (including the sparse matrix-vector product) can be re-engineered
with the memory accessor and that the resulting accessor-enabled BLAS rou-
tines achieve lower rounding errors while delivering the same performance as
the fast low precision BLAS.

K E Y W O R D S

accessor, floating-point formats, high performance, memory-bound algorithms, mixed precision,
roofline model

1 INTRODUCTION

Over the past decades, the arithmetic performance of computer processor architectures has steadily grown at a faster
pace than the memory bandwidth1-4 and, without groundbreaking changes in the chip technology, we can expect this
difference to remain constant or even increase. The gap between processor and memory throughput exerts a severe

Abbreviations: BLAS, Basic Linear Algebra Subprogram; CSR, compressed sparse row; FLOP/s, floating-point operations per second; GEMV,
general dense matrix-vector product; MB, machine balance; SpMV, sparse matrix-vector product; TRSV, triangular matrix-vector solve.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

Softw: Pract Exper. 2021;1–18. wileyonlinelibrary.com/journal/spe 1

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9346-2981
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3041&domain=pdf&date_stamp=2021-10-17

2 GRÜTZMACHER et al.

impact on the practical performance that applications can achieve on current (and future) processor architectures,5 as the
roofline model6 graphically illustrates. This model provides a well-established tool for the performance analysis of appli-
cations, combining two architectural factors—the processor compute arithmetic peak and the memory bandwidth, with
the algorithm’s arithmetic intensity in order to yield an upper bound on the algorithm’s performance. Several efforts have
recently refined the basic formulation of the roofline model by taking into account specific architectural features.7-9 All
these variations of the model though, still distinguish between compute-bound and memory-bound algorithms, depending
on their arithmetic intensity being, respectively, higher or lower than the hardware-specific machine balance (MB). Con-
cretely, the performance of a compute-bound algorithm is limited by the number of arithmetic operations the processor
can execute in a time interval, while the performance of a memory-bound algorithm is constrained by the speed at which
data can be retrieved from the memory into the arithmetic units. (In reality, the situation is significantly more compli-
cated, and many additional factors play a role, such as the arithmetic imbalance of the algorithm, caches, coalesced data
access, etc.)

Generally speaking, on the same hardware architecture, a compute-bound algorithm will achieve higher performance
in terms of floating-point operations per second (FLOP/s) than a memory-bound algorithm. (For brevity, in the following
we will consider only floating-point data and floating-point operations when discussing the performance of an algorith-
m/architecture.) In Figure 1, we visualize this effect for a simple roofline model relating an algorithm’s performance
with its arithmetic intensity and the constraints imposed by the target architecture’s memory bandwidth and arithmetic
peak. For many applications, it is extremely difficult or even impossible to find an algorithm that exhibits high arithmetic
intensity and, therewith, features the “appealing” compute-bound nature. Thus, already today a significant portion of the
scientific applications running on flagship supercomputers are memory-bound.10 Even more alarming: A faster growth
of the arithmetic peak compared with that of the memory bandwidth hints that an algorithm that is compute-bound
on a current processor may eventually become memory-bound on a future hardware architecture. In consequence, the
performance boost that many relevant applications can obtain from newer supercomputers will progressively diminish.

The roofline model presumes a tight coupling between the precision format adopted by the arithmetic operations and
the precision format used in the memory accesses. In Reference 11, the authors proposed to break up this coupling and
allow for more compact precision formats in the memory operations to reduce the pressure on memory while preserv-
ing high precision in the arithmetic operations acting on data in registers. This idea of reducing the volume of the data
retrieved from memory is similar to the techniques exploited in data compression;12-14 however, it differs in that it occurs
at the level of the processor registers and, therefore, it cannot take advantage of data regression techniques for efficient
compression.15 The strategy of simply converting the data to a lower precision format and storing the data in memory
in that compact format yields an attractive and efficient compression strategy if the algorithm properties can cope with
it. The expectation is that, by compressing the data, the bandwidth-induced performance bound in the roofline model is
pushed upwards, increasing the performance of the algorithms while maintaining the arithmetic intensity; see Figure 1.

F I G U R E 1 Roofline model predicting an algorithm’s performance on two hardware systems with different machine balances. The
“MB” mark identifies the threshold from which the algorithm is memory- or compute-bound. For example, Algorithm 1 is compute-bound
on system 1 and memory-bound on system 2. The modular precision ecosystem realizing all data accesses via the memory accessor discussed
in our work virtually pushes the bandwidth-induced performance roofline upwards, allowing the algorithm to achieve higher arithmetic
performance without changing the underlying architecture

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRÜTZMACHER et al. 3

In this article, we take a significant step toward producing a portable modular precision ecosystem that decouples the
memory precision from the arithmetic precision by making the following new contributions:

• Using the ideas proposed in Reference 11, we present a memory accessor realization that induces only a negligible
interface overhead and hides the data conversion details behind the memory operations.

• We assess the performance characteristics of the memory accessor by presenting experimental performance rooflines
for GPUs from AMD and NVIDIA, as well as a CPU from Intel (similar results were obtained for a CPU from AMD).

• We re-engineer the memory-bound Basic Linear Algebra Subprogram (BLAS) operations in order to leverage the mem-
ory accessor for format decoupling, and we elaborate error and performance analyses comparing the accessor-BLAS
to the BLAS routines provided in vendor libraries.

The rest of the document is structured as follows. In Section 2, we motivate the development of a memory accessor
and detail its implementation making heavy use of modern C++ features. After a brief discussion of related work next, in
Section 3, we provide a comprehensive analysis on the performance characteristics and overhead of the memory accessor
implementation on AMD GPUs (Section 3.1), NVIDIA GPUs (Section 3.2), and OpenMP-supporting CPUs (Section 3.3).
In Section 4, we present details on how we use the memory accessor to reimplement memory-bound BLAS operations,
and we elaborate on the error bounds and performance of the accessor-BLAS routines on recent processor architectures.
We conclude in Section 5 with a summary of the findings and an outlook of which problems we plan to tackle using the
accessor-enabled BLAS as building blocks.

1.1 Related work

In the linear algebra domain, attacking the memory wall is a well-known target for many dense and sparse computational
kernels. Consider, for example, a key numerical kernel for the iterative solution of sparse linear systems such as the
sparse matrix-vector product.16 Reducing the pressure on the memory bandwidth for this kernel has been pursued via the
design of specialized data structures for the sparse matrices that reduce the volume of “indexing” information, introduce
blocking to increase the number of cache hits, combine mixed precision with iterative refinement, and so forth. For a
detailed examination of these efforts, see References 17 and 18 and the references therein. All these techniques though
share the principle of maintaining the floating-point values in memory and perform the arithmetic operations in the
floating-point units using the same precision format.

The memory accessor concept proposed in Reference 11 also addresses the memory constraint, but departs from these
other conventional approaches by considering two decoupled precision formats: a “low” precision format to maintain
the data in memory and a “high” precision format for the arithmetic operations. As a result, this approach can be viewed
as maintaining the problem data compressed in memory, similar to the compression techniques for file systems.12-14

(Alternatively, taking the low precision format as a reference point, the memory accessor can also be viewed as preserving
the precision of the original data but performing the arithmetic in an extended precision.)

Lossy compression has been successfully leveraged in various applications with the purpose of storing either the initial
or the final data.19-21 More recently, in Reference 22, the authors examine the flexible GMRES iterative solver, showing
that the vectors spanning the search space can be compressed using a variety of practical strategies. Unfortunately, the
authors validate the numerical results but do not elaborate a high-performance implementation that allows assessing the
performance impact of their approach.

Interestingly, a couple of hardware vendors have recently introduced a technology similar to the memory accessor in
current GPUs: The NVIDIA tensor core23 and the AMD matrix engine24 can use a different precision format in the arith-
metic operations than what they read in from main memory. For example, the first generation tensor cores deployed in
the NVIDIA V100 GPU read in two matrices in fp16, compute their matrix product, accumulate the result with another
matrix in fp32, and write out the result in fp32. The second generation tensor cores deployed in the NVIDIA A100 has
more flexibility, for example, it allows to read only the first 19 bits of a fp32number and compute the product of two
matrices on this truncatedfp32 format (that is denoted as “TF32 format”). The goal in both cases is to accelerate the com-
putation of the dense matrix product as this operation forms the backbone of deep learning training and inference. Thus,
the decoupling of memory precision and arithmetic precision in NVIDIA tensor cores (and AMD matrix engines) is not
motivated by the faster memory access, but by faster computations in low precision. Also, compared to our software-based
memory accessor, the hardware realization allows for much less flexibility in terms of supported kernels and precision
formats.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 GRÜTZMACHER et al.

2 IMPLEMENTATION OF THE MEMORY ACCESSOR

To realize the idea of decoupling the precision format so that the arithmetic calculations are performed in a precision
format that is different from that used for storing and retrieving data from main memory,11 we need a technical realization
of a “memory accessor” that on-the-fly handles the conversion (compression/decompression) between formats. For such
a memory accessor to be useful in practice, it has to combine multiple characteristics. In particular, it has to be:

• general to handle a wide range of floating-point formats and compression strategies;
• flexible to accommodate new precision formats in the future;
• opaque to abstract the user from the implementation details;
• portable across different hardware architectures; and
• efficient to avoid introducing runtime overhead, hiding the conversion costs behind the memory access.

The memory accessor in this work presents all these alluring features. The actual realization is deployed in the
Ginkgo open source library25 (https://ginkgo-project.github.io/), which is written in C++14, but we reduce the depen-
dency on other Ginkgo components, therewith allowing for the easy integration and utilization of the memory accessor in
other software. The memory accessor itself is implemented using static (compile-time) polymorphism, which introduces
negligible overhead and enables full compiler optimizations.

The implementation consists of three layers, which we describe in some detail in the following subsections:

1. The range acts as the common interface for all memory accessors.
2. The memory accessor itself is responsible for translating the index information into read/write accesses.
3. An optional reference class, which is necessary if the memory accessor needs to perform any computations to translate

between the memory format and the arithmetic format.

While these technical details are important to realize a flexible and usable high-performance implementation of the
memory accessor, in Figure 2, we visualize the high-level idea of the memory accessor and its use from a computational
kernel.

2.1 The memory accessor interface: Range

A range can be considered as the front-end or wrapper class for all accessors. Its purpose is to define a simple and
minimal interface for memory accesses. The interface takes an accessor type as a template parameter; and the paren-
thesis operator, used for both read and write operations, is at its core. For example, a read from a two-dimensional

F I G U R E 2 Overall idea of the memory accessor compressing data on-the-fly in memory access (left), and an example of use from a
matrix-vector product (GEMV) kernel using fp32 as memory format and fp64 as arithmetic format (right)

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://ginkgo-project.github.io/

GRÜTZMACHER et al. 5

range mat is performed as in value = mat(2,3), while the write counterpart to the same location is done as
mat(2,3) = value. The implementation of the range is shown in Listing 1. We first look at the parenthesis
operator defined in Line 19. It leverages the C++ perfect forwarding mechanism, which takes an arbitrary number
of arguments, of any type(s), and invokes the accessor’s overloaded parenthesis operator with the same arguments
without modifying them. The output value of the accessor’s parenthesis call is then simply returned by the func-
tion. The purpose of this function is to force the accessor to offer a parenthesis operator. Using this type of tech-
niques, we are able to specify interface requirements for the accessor, so that the range can accept any type of
accessor.

Additionally, all accessors need to define a length member function (according to Line 32) that returns the length
of the given dimension in order to gain access to the size covered by the accessor.

Finally, the range also allows to directly interact with the underlying accessor, in Lines 36 and 42, to offer function-
ality that may be specific to the accessor, for example, changing a scalar value or modifying the compression strategy.
Direct access is important because offering every possible functionality in a single interface is simply impossible.

1 template <typename Accessor>
2 c l a s s range {
3 public:
4 using accessor = Accessor;
5

6 / / The number o f d i m e n s i o n s o f t h e range .
7 s t a t i c constexpr size_type dimensionality = accessor::dimensionality;
8

9
∼range() = default;

10

11 / / C r e a t e s a new range by f o r w a r d i n g t h e arguments t o t h e a c c e s s o r c o n s t r u c t o r
12 template <typename... AccessorParams>
13 GKO_ACC_ATTRIBUTES constexpr e x p l i c i t range(AccessorParams &&... params)
14 : accessor_{std::forward<AccessorParams>(params)...}
15 {}
16

17 / / R e t u r n s a v a l u e (o r a sub−r ange) w i t h t h e s p e c i f i e d i n d e x e s .
18 template <typename... DimensionTypes>
19 GKO_ACC_ATTRIBUTES constexpr auto operator()(DimensionTypes &&... dimensions) const
20 -> decltype(std::declval<accessor>()(std::forward<DimensionTypes>(dimensions)...))
21 {
22 static_assert(s i z e o f...(dimensions) <= dimensionality,
23 "Too many dimensions in range call");
24 return accessor_(std::forward<DimensionTypes>(dimensions)...);
25 }
26

27 range(const range &other) = default;
28

29 / / R e t u r n s t h e l e n g t h o f t h e s p e c i f i e d d i m ens i o n o f t h e range .
30 GKO_ACC_ATTRIBUTES constexpr size_type length(size_type dimension) const
31 {
32 return accessor_.length(dimension);
33 }
34

35 / / R e t u r n s a p o i n t e r t o t h e a c c e s s o r .
36 GKO_ACC_ATTRIBUTES constexpr const accessor *operator->() const noexcept
37 {
38 return &accessor_;
39 }
40

41 / / ‘ R e t u r n s a r e f e r e n c e t o t h e a c c e s s o r .
42 GKO_ACC_ATTRIBUTES constexpr const accessor &get_accessor() const noexcept
43 {
44 return accessor_;
45 }
46

47 private:
48 accessor accessor_;
49 };

Listing 1: Full implementation of the range

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 GRÜTZMACHER et al.

2.2 The accessor functionality: Translating index information into data access

A simple two-dimensional column-major accessor that fulfills all the requirements from range is shown in Listing 2.
The template parameter ValueType specifies the type of the stored data pointer. We define the range class as a friend
class in Line 7, and declare the constructors of the accessor as protected, in Lines 10 and 16, to force its initialization
through the range class. As a bonus, we add bound checks to the parenthesis operator in Line 32 (which we include for
all currently implemented accessors). These improve the debugging capabilities of the code yet do not impair performance
since the checks are only performed in debug mode but not in release mode.

1 template <typename ValueType>
2 c l a s s col_major_2d {
3 public:
4 s t a t i c constexpr size_type dimensionality{2};
5 using value_type = ValueType;
6

7 friend c l a s s range<col_major_2d>; / / A l l o w range t o i n s t a n t i a t e t h i s c l a s s
8

9 protected:
10 GKO_ACC_ATTRIBUTES constexpr col_major_2d(
11 std::array<size_type, dimensionality> size, value_type *data,
12 size_type stride)
13 : size_(size), data_{data}, stride_{stride}
14 {}
15 / / D e f a u l t s t r i d e i s s i z e [0] , so w i t h o u t any padd ing
16 GKO_ACC_ATTRIBUTES constexpr col_major_2d(
17 std::array<size_type, dimensionality> size, value_type *data)
18 : col_major_2d{size, data, size[0]}
19 {}
20

21 public:
22 GKO_ACC_ATTRIBUTES constexpr size_type length(size_type dim) const
23 {
24 return assert(dim < dimensionality), size_[dim];
25 }
26

27 GKO_ACC_ATTRIBUTES constexpr value_type &operator()(size_type x,
28 size_type y) const
29 {
30 / / V a l i d a t e t h a t i n d i c e s a r e i n s i d e t h e s i z e c o n s t r a i n t s when b u i l d i n g
31 / / i n Debug mode . T h i s i s no t r e q u i r e d , bu t easy t o add .
32 return assert(x < size_[0]), assert(y < size_[1]),
33 data_[y * stride_ + x];
34 }
35

36 private:
37 const std::array<size_type, dimensionality> size_;
38 const size_type stride_;
39 value_type *const data_;
40 };

Listing 2: Sample 2D column-major accessor implementation

Thanks to C++ Template Metaprogramming, we support arbitrary dimensionality for the following accessors without
code duplication:

1. row_major: A very simple row-major accessor without separation of memory and arithmetic precision. The imple-
mentation is similar to that in Listing 2 with an additional template parameter specifying the dimensionality.

2. block_col_major: The lowest two dimensions are stored in column-major order, while all other dimensions are
stored in row-major order. This is used to handle two-dimensional blocks stored in column-major order, as in a blocked
compressed sparse row (CSR) format. This accessor uses the same memory and arithmetic precision as well.

3. reduced_row_major: Allows for separate memory and arithmetic precisions, and performs the conversion between
the two for each access.

4. scaled_reduced_row_major: Similar to the reduced_row_major, with the addition of a scalar values used
for scaling the stored values before reads and writes.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRÜTZMACHER et al. 7

2.3 The accessor extensibility: An additional layer for complex accessors

If the accessor needs to perform any arithmetic computations when writing, returning a plain reference in the over-
loaded parenthesis operation is not possible. Instead, a custom reference object is returned, which performs the necessary
computations prior to returning the value/writing to memory.

The reference class used in reduced_row_major is shown in Listing 3. In Line 21, we define a cast operation
to our arithmetic type where we incorporate the computations to perform when reading in memory precision. Here,
the cast is from memory format to arithmetic precision, but it could also be a complex decompression algorithm.
After the computation is done, the transformed value is returned. This reference object can now be treated as a
variable of type arithmetic_type thanks to the C++ implicit conversions feature. If the reference object can-
not be accepted in an operation, but an arithmetic_type value does, the compiler calls the conversion function
implicitly.

Write operations are intercepted by overloading the assignment operator, as shown in Lines 28, 34, and 38 in Listing 3.
The reference class reduced_storage accepts any type that has a static_cast defined between Arithmetic-

Type and StorageType. This includes the IEEE types fp64, fp32, and fp16, which have hardware support (at
least the former two) for these conversions. However, it is also possible to use software types such as the __float128
from gcc.

1 template <typename ArithmeticType, typename StorageType>
2 c l a s s reduced_storage
3 / / T h i s M i x i n d e f i n e s t h e o p e r a t o r s * , / , + , − , *= , /= ,+= , −+
4 : public detail::enable_reference_operators<
5 reduced_storage<ArithmeticType, StorageType>, ArithmeticType> {
6 public:
7 using arithmetic_type = std::remove_cv_t<ArithmeticType>;
8 using storage_type = StorageType;
9

10 reduced_storage() = delete;
11

∼reduced_storage() = default;
12 reduced_storage(reduced_storage &&) = default;
13 / / F o r b i d copy c o n s t r u c t i o n
14 reduced_storage(const reduced_storage &) = delete;
15

16 constexpr e x p l i c i t GKO_ACC_ATTRIBUTES reduced_storage(storage_type *const ptr)
17 : ptr_{ptr}
18 {}
19

20 / / O v e r l o a d c a s t f u n c t i o n t o a r i t h m e t i c _ t y p e f o r r ead s
21 constexpr GKO_ACC_ATTRIBUTES operator arithmetic_type() const {
22 / / I m p o r t a n t t o p r o p e r l y a p p l y t h e _ _ r e s t r i c t _ _ q u a l i f i e r on GPUs
23 const storage_type *const GKO_ACC_RESTRICT r_ptr = ptr_;
24 return s t a t i c _ c a s t<arithmetic_type>(*r_ptr);
25 }
26

27 / / O v e r l o a d a s s i g n m e n t o p e r a t o r f o r w r i t e s
28 constexpr GKO_ACC_ATTRIBUTES arithmetic_type operator=(arithmetic_type val) {
29 storage_type *const GKO_ACC_RESTRICT r_ptr = ptr_;
30 *r_ptr = s t a t i c _ c a s t<storage_type>(val);
31 return val;
32 }
33

34 constexpr GKO_ACC_ATTRIBUTES arithmetic_type operator=(const reduced_storage &ref) {
35 return * t h i s = s t a t i c _ c a s t<arithmetic_type>(ref);
36 }
37

38 constexpr GKO_ACC_ATTRIBUTES arithmetic_type operator=(reduced_storage &&ref) {
39 return * t h i s = s t a t i c _ c a s t<arithmetic_type>(ref);
40 }
41

42 private:
43 storage_type *const ptr_;
44 };

Listing 3: Shortened implementation of the reduced_storage reference class used for reduced_row_major

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 GRÜTZMACHER et al.

3 THE EXPERIMENTAL ROOFLINE OF THE MEMORY ACCESSOR

In this section, we leverage the roofline model to assess the performance overhead of the memory accessor realization on a
variety of recent processor architectures. In contrast with the conventional utilization of the roofline model as a prediction
tool, the experimental roofline model is not based on hardware specifications and modeling, but on experimental results
observed when running algorithms with predefined arithmetic intensity. For this evaluation, we implement a benchmark
with user-defined arithmetic intensity. The test is inspired in the mixbench benchmark (https://openbenchmarking.org/
test/pts/mixbench), from which we develop two variants: one that directly accesses the values in main memory, and
one that relies on the memory accessor to retrieve/store values from/in main memory. For the variant retrieving the
data through the memory accessor, we choose reduced_row_major for the data representation, as that is one of the
most complex accessor configurations. The only difference between the two benchmark implementations lies in the read
and write accesses while the access patterns, the order, floating-point format, and type of computations executed in the
arithmetic units are identical in both cases. We note that, in order to calculate the FLOP/s rates for the variant that uses the
memory accessor, we ignore the FLOPs needed for the additional computations necessary for the on-the-fly conversion
between the precision formats. We consider those as “part of the data access,” and they need to contribute a minor cost if
we want the memory accessor to be competitive.

In summary, the benchmark implementations generate an experimental roofline model, achieving the full bandwidth
for memory-bound computations and the arithmetic peak for compute-bound computations. In particular, for the stan-
dard memory access, the realization generates an experimental roofline that matches the behavior of mixbench. The
variant that retrieves the data via the memory accessor will deliver different results if the memory precision differs from
the arithmetic precision. Therefore, comparing the two benchmark variants in terms of actual compute performance for
a certain arithmetic intensity allows us to identify the cost penalty of the type conversion (if data are compressed) as well
as the overhead of the memory accessor (for all memory accessor uses).

In the experimental evaluation, we consider the following four precision configurations, using either the standard
benchmark variant or its counterpart that employs the accessor for memory accesses:

1. fp64 arithmetic and fp64 memory access for the standard benchmark. This configuration reflects a conventional
fp64 scenario where all data is stored and processed using the standard (IEEE) 64-bit floating-point format.

2. fp64 arithmetic and fp64 memory access for the accessor-based benchmark. This case is conceptually identical to
the standard fp64 scenario, but employs the accessor for the data exchanges with main memory. Technically, the
accessor converts between the fp64 and fp64precision formats.

3. fp32 arithmetic using fp32 memory access for the standard benchmark. This configuration reflects a conventional
fp32 scenario.

4. fp64 arithmetic using fp32 memory access. This can only be realized using the accessor in the
Accessor<fp64,fp32> configuration, working with fp32 values in memory yet performing fp64 arithmetic.

When comparing the performance between the test configurations, the confrontation of 1 and 2 quantifies the over-
head of the memory accessor as, ideally, both configurations should achieve the same compute performance for all
arithmetic intensities. Test 3 provides a reference roofline for fp32 computations. The roofline exhibited by configura-
tion 4 leverages the conceptual advantages of the memory accessor strategy, and should also expose the overheads of the
type conversion plus that of the memory accessor.

In order to assess the performance of the memory accessor on different hardware architectures, we implemented the
benchmarking module in different programming ecosystems: the HIP language for AMD GPUs, the CUDA language for
NVIDIA GPUs, and as a multithreaded OpenMP C++ code for general-purpose CPUs. In the following subsections, we
present the experimental rooflines for the four test configurations on representative processor architectures that we list
along with some key characteristics in Table 1.

3.1 Accessor’s experimental roofline on AMD GPUs

To expose the performance characteristics of the memory accessor on AMD GPUs, we use the HIP version of the
benchmark variants compiled using ROCm version 4.0.

In Figure 3, we visualize the experimental roofline relating the compute performance to the arithmetic intensity in the
[FLOPs/value] metric. In the top of Figure 3, we show the results for the MI100 server line GPU; at the bottom, we report

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://openbenchmarking.org/test/pts/mixbench
https://openbenchmarking.org/test/pts/mixbench

GRÜTZMACHER et al. 9

T A B L E 1 Hardware architectures considered in the experimental evaluation of the memory accessor

Hardware Bandwidth (GB/s) fp64 performance (GFLOP/s) fp32 performance (GFLOP/s)

NVIDIA V100 900 7800 15,700

NVIDIA A100 1555 9746 19,490

AMD Radeon VII 1024 3360 13,440

AMD MI100 1200 11,500 23,100

Intel Xeon Gold 6230 282 Not public Not public

F I G U R E 3 Experimental roofline performance of the memory accessor on an AMD MI100 GPU (top) and an AMD Radeon VII GPU
(bottom)

the results for the Radeon VII consumer line GPU. The dashed lines indicate the (theoretical) arithmetic peaks for fp32
(single precision) and fp64 (double precision), as listed in the technical specifications. We notice that the benchmark
using the standard memory access attains the arithmetic peak for high values of the arithmetic intensity while, in the
memory-bound region, the performance line closely follows the main memory bandwidth. Also, the performance of the
Accessor<fp64,fp64> is almost indistinguishable from the fp64 performance. That indicates the quality of the
accessor implementation as it incurs negligible overhead. As expected, for a fixed arithmetic intensity below the MB,
the fp32configuration achieves higher performance than the fp64 configuration. The key aspect is that, in that region,
the Accessor<fp64,fp32> benchmark also delivers higher performance than the fp64 configuration. The exclusive
reason for this is that the accessor retrieves fp32values from main memory, while still relies on fp64 arithmetic. The
fact that the performance matches that of the fp32 case reveals that the conversion between the two formats can be
efficiently hidden behind the memory access. Once the arithmetic intensity equals the MB, the roofline performance of

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 GRÜTZMACHER et al.

the Accessor<fp64,fp32> asymptotically approaches the compute performance of the fp64 configuration. This was
expected as the arithmetic operations in fp64constrain the performance of the Accessor<fp64,fp32> benchmark
for compute-bound algorithms.

3.2 Accessor’s experimental roofline on NVIDIA GPUs

In the case of NVIDIA GPUs, the performance behavior is exposed using the CUDA version of the benchmarks, compiled
with CUDA version 11.0.

Figure 4 displays the experimental roofline performance for the CUDA realizations of the benchmarks on the NVIDIA
V100 GPU (top) and NVIDIA A100 GPU (bottom), both belonging to the server line from NVIDIA. We also indicate
the theoretical arithmetic peaks for fp64 and fp32 listed in the specifications. Consistently with the AMD results, the
standard fixed precision benchmarks fp32 and fp64 follow the memory bandwidth for arithmetic intensities below the
MB, and respectively, reach the fp64 peak and fp32 peak for arithmetic intensities superior to that. The performance of
Accessor<fp64,fp32> again matches that of fp32 in the memory-bound region, yet is limited by the fp64 peak for
arithmetic intensities above the MB. This reveals that the memory accessor incurs virtually no overhead, and succeeds in
hiding all data conversion behind the memory accesses.

3.3 Accessor’s experimental roofline on CPUs

Implementing the benchmarks for CPUs is significantly more challenging as it has to reflect all aspects of sophisticated
CPU execution: multithreading, vectorization, and compiler optimizations. We compile the benchmarks using g++ 10.2.0.

F I G U R E 4 Experimental roofline performance of the memory accessor on an NVIDIA V100 GPU (top) and an NVIDIA A100 GPU
(bottom)

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRÜTZMACHER et al. 11

By investigating the assembly code of the benchmark implementations for the CPU, we validate that the two bench-
mark variants produce very close assembly codes when using the same precision format for memory access and arithmetic
operations. The main difference between them lies in the function call as one variant uses a structure (the memory acces-
sor itself containing the size, data pointer, and strides), while its counterpart employs a plain data pointer (since the stride
value was inlined). When ignoring register naming, the load, store, and vector operations are identical, but some loop
conditions differ slightly (they are functionally identical, but the codes present some minor differences).

In Figure 5, we visualize the experimental roofline performance we attain with the OpenMP version of the mem-
ory accessor on an Intel Xeon Gold 6230 Processor (codename Cascade Lake). Compared with the GPU performance
results, we note that we are further away from the theoretical peak specified in the technical brief. Consistently with the
GPU results, we do not observe any performance degradation when accessing the values in main memory via the mem-
ory accessor, even though the operation mode of CPUs is fundamentally different from the operating mode of streaming
accelerators. Interestingly, despite the additional format conversion step, the Accessor<fp64,fp32> benchmark out-
performs the fp64 benchmark for arithmetic intensities beyond the MB. The analysis of the assembly code in Figure 6
reveals an additional unrolling performed by the compiler in this case (which may be subject to the specific compiler):
For the selected compiler, every load operation is 256-bit wide. Since we convert from fp32 to fp64, we now have two
256-bit wide vector registers (ymm4 and ymm3 in Figure 6B) compared with only one (ymm2 in Figure 6A). This yields a
more efficient utilization of the vector pipeline, resulting in higher performance. We recall that the additional computa-
tions which are needed for the format conversion are not accounted for in the FLOP count. However, they are negligible
compared with the computational load.

We close this section by noting that analogous results were obtained using the OpenMP-based benchmarks for CPUs
on an AMD EPYC 7742 processor. To avoid repetition, we omit them from the article.

F I G U R E 5 Experimental roofline performance of the memory accessor on an Intel Xeon Gold 6230 processor (codename Cascade
Lake)

(B)(A)

F I G U R E 6 CPU assembly codes generated by the compiler when loading with Accessor<fp64,fp64> or
Accessor<fp64,fp32>, including a small part of the computation

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 GRÜTZMACHER et al.

F I G U R E 7 Analysis of the average relative rounding error of GEMV kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100
GPU (right)

4 ACCESSOR-BLAS

After having evaluated the performance of the memory accessor with a synthetic benchmark, we now turn our atten-
tion to the practical use of the accessor in memory-bound BLAS operations. The goal is to preserve the performance of
low precision (in particular, fp32) BLAS, but to increase the accuracy of the routines by performing all arithmetic and
in-register accumulations in higher precision (fp64). The accuracy improvements can be expected to depend on the input
data, and therefore we detail the value distribution for each experiment. Furthermore, as the specific value distribution
has a significant impact on the error accumulation, we always report the average error results over 10 executions, with
the data for each run being randomly generated using a distinct initial seed. In the experimental evaluation, for brevity,
we refrain from considering all hardware architectures covered in Section 2, and instead focus on the two NVIDIA GPUs
(V100 and A100), which belong to two distinct hardware generations and differ in some hardware parameters (number
of multiprocessors, available registers, etc.). The performance and error characteristics of this analysis can be expected to
be representative for other hardware architectures.

4.1 General matrix-vector product

We start the evaluation with the reimplementation of the general dense matrix-vector product (GEMV).26 We generate
both the input matrix and input vector with random values uniformly distributed in the interval [−1, 1]*and we set the
scaling factors for this operation to 𝛼 = 1.0 and 𝛽 = 0.0. In Figure 7, we compare the relative errors taking the fp64
matrix-vector kernel as reference. The average relative errors for the fixed precision GEMV implementations are 10−7 for
fp32and 10−16 for fp64, respectively, and they slowly grow with the matrix size. These error bounds are conformal
with the unit round-off of the fp32 and fp64 formats. For the accessor-based GEMV, the error is about half an order of
magnitude smaller than the error of the fp32 GEMV. The higher accuracy of the accessor-based GEMV comes from the use
of fp64 in the accumulation of the partial sums in registers. To investigate the performance impact of the use of higher
precision in the arithmetic operations, in Figure 8, we visualize the FLOP/s achieved by the different implementations
of GEMV on the V100 and A100 GPUs. We notice that, on both architectures, the accessor-based GEMV delivers the same
throughput rate as ourfp32GEMV implementation. This reveals the high quality of the memory accessor implementation
and the validity of the approach which adds a value conversion and carries out all arithmetic in fp64. While outside the
goal of this article, we notice that the accessor-based GEMV implementation outperforms the cuBLAS GEMV on the V100
GPU while, for large matrix sizes, it is competitive with the cuBLAS realization of this kernel on the A100 GPU.

4.2 DOT product

Acknowledging that the higher accuracy we observe for the accessor-based GEMV comes from handling the accumulation
in fp64, we can expect the accuracy gains to grow more significantly for longer accumulations. Therefore, we next turn

*We show in the Appendix a more comprehensive accuracy evaluation where we consider a uniform distribution of the values and a normal
distribution of the values.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRÜTZMACHER et al. 13

F I G U R E 8 Performance analysis of GEMV kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right)

F I G U R E 9 Analysis of the average relative rounding error of DOT kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU
(right) using uniform random values in the interval [−1, 1]

F I G U R E 10 Performance analysis of DOT kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right)

to the DOT kernel from BLAS, computing the dot (or scalar) product of two vectors. In Figure 9, we again use input
vectors with random values uniformly distributed in the interval [−1, 1]. We again observe a mild accuracy advantage of
the accessor-based DOT over the fp32 DOT kernels. At the same time, the performance of the DOT kernel does not suffer
from the use of higher precision in the arithmetic operations, achieving almost twice the arithmetic rate of the DOT kernel
using fp64; see Figure 10. We note that the accessor-based DOT is slightly slower than our fp32 DOT kernel on the A100
GPU; however, it still outperforms thefp32 DOT kernel from the cuBLAS library. Thus, using the accessor-basedDOT can
render accuracy improvements while incurring only a small runtime overhead.

4.3 Dense triangular system solve

Next, we turn our attention to the dense triangular matrix-vector solve (TRSV) from BLAS. Accuracy plays a critical
role for this kernel as it is the last component in the direct solution of a linear system of equations via, for example, an
LU factorization,27 and any error introduced in the kernel impacts the accuracy of the solution of the original problem.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 GRÜTZMACHER et al.

F I G U R E 11 Analysis of the average relative rounding error of TRSV kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100
GPU (right)

F I G U R E 12 Performance analysis of TRSV kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right)

Linear system solvers often employ fp64routines, but an iterative refinement method that operates in lower precision
for both the factorization and the triangular solves has shown to be an appealing alternative that can, in many cases,
accelerate the solution process.28,29 Thus, any scheme that improves the accuracy of the fp32 TRSV kernel while main-
taining its performance is highly appreciated by the community. The TRSV kernel we implement largely follows the ideas
presented in Reference 30. For the error analysis, we generate a matrix with random entries uniformly distributed in
the interval [−1, 1]. We then factorize the matrix using the fp64 LU factorization routine from NVIDIA’s cuSOLVER
library. In Figure 11, we visualize the average error bounds that the distinct TRSV kernels achieve for this problem. The
accessor-based TRSV kernel delivers about an order of magnitude higher accuracy than the fp32TRSV kernel. Unfortu-
nately, Figure 12 reveals that this accuracy gain does not come for free in this case: on the NVIDIA V100 GPU (left-hand
side in Figure 12), the accessor-based TRSV kernel achieves about 10 GFLOP/s lower performance than our fp32 TRSV
kernel; however it still outperforms the cuBLAS TRSV and our fp64 TRSV kernel. This can be explained by the design of
our TRSV kernel based on Reference 30. Concretely, the kernel inverts the panel (diagonal block) of the LU factor, using
shared memory and registers for this step. Performing this inversion in fp64 arithmetic doubles the requirements for reg-
isters and shared memory, therewith reducing the GPU occupancy. The kernel still outperforms the fp64 variant due to
the faster memory access. We identify a similar effect on the NVIDIA A100 GPU: the performance of the accessor-based
TRSV is about 20 GFLOPs/s lower than that of the fp32 TRSV. On the A100 GPU, the register-per-core ratio is lower
than on the V100 GPU. Thus, the performance penalty is more significant when compared with the fp64 TRSV. This
reveals that, for BLAS kernels which are not entirely bandwidth-bound but also put pressure on other resources, the
re-engineered BLAS kernels using the memory accessor can mildly suffer from the increased register usage. Nonetheless,
we still augment the accuracy of the TRSV kernel while outperforming the fp64 TRSV kernels.

4.4 Sparse matrix-vector product

We now look back at the matrix-vector multiplication, but shift the focus from dense to sparse matrices. The sparse
matrix-vector product (SpMV) kernel is an important component in scientific computing as it reflects how a discretized
linear operator acts on a vector, and therewith plays the central role in the iterative solution of linear systems and

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GRÜTZMACHER et al. 15

eigenvalue problems.16 Popular methods based on the iterative application of the SpMV kernel include Krylov sub-
space solvers such as conjugate gradient (CG), generalized minimal residual (GMRES), or biconjugate gradient stabilized
method (BiCGSTAB),31 as well as the PageRank algorithm based on the Power Iteration.32 The SpMV kernel is also a key
routine in graph analytics as it can be used there to identify all immediate neighbors of a node or a set of nodes.

To evaluate the accuracy and performance trends of an accessor-based SpMV kernel, we choose the ELL format,33

which explicitly stores the same number of nonzero elements for all rows of the sparse matrix, and accompanies the
explicitly-stored nonzero values with column indices. The motivation for integrating and evaluating the memory accessor
in an ELL -based SpMV kernel is that ELL has been compared to other sparse matrix formats, such as CSR or COO , with a
smaller indexing overhead.34 Thus, the selection of ELL highlights the differences induced by the accessor. The baseline
ELL kernel we leverage for the design of the reference and accessor-based SpMV variants in the following evaluation is
that available in the Ginkgo library.35 For the evaluation of the accessor-based SpMV kernel, we do not rely on artificial
test matrices, but select benchmark matrices from the Suite Sparse Matrix Collection.

Even though we decide to focus on the ELL SpMV kernel to minimize the effect of the indexing, we acknowledge
that the performance differences between fp32 SpMV and fp64 SpMV are much smaller than those observed for the
analogous dense BLAS operation. For clarity, in the performance evaluation in Figure 13, we thus do not report the
FLOP/s rates, but the speedup over the fp64 SpMV. We recognize that the accessor-based SpMV generally achieves
marginally-lower speedups over the fp32 SpMV. This indicates that the accessor does not succeed in completely hid-
ing the cost of the format conversion behind the memory access for irregular memory accesses. The reason is likely
the doubling of the shared memory requirements for the accessor ELL kernel. However, as the performance differences
are negligible for all test cases (lower than 3% on both GPU architectures), we consider this degradation acceptable. In
Figure 14, we visualize the relative error of the different ELL SpMV kernels. As expected, both GPU architectures provide
the same results (despite differences in the architecture and the execution). Finally, the accuracy improvements rendered
by the accessor-SpMV over the fp32 SpMV are very problem-dependent. Although all these sparse matrices contain only

F I G U R E 13 Performance analysis of the ELL SpMV kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right). The
baseline performance is that of fp64 ELL SpMV . The test matrices are taken from the Suite Sparse Matrix Collection

F I G U R E 14 Analysis of the average relative rounding error of ELL SpMV kernels on the NVIDIA V100 GPU (left) and the NVIDIA A100
GPU (right). The test matrices are taken from the Suite Sparse Matrix Collection

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 GRÜTZMACHER et al.

a few nonzero elements per row, which are then accumulated in registers and shared memory, the accessor-SpMV can
increase the accuracy over the fp32 SpMV by up to an order of magnitude. To close this section, we emphasize that the
test matrices in this last experiment are derived from real-world problems, which demonstrates the practical benefits that
the accessor-based SpMV renders over the standard SpMVkernels.

5 SUMMARY AND FUTURE WORK

We have presented a realization for a memory accessor that combines single precision memory access with on-the-fly
conversion to double-precision in registers to enable double-precision arithmetic without degrading the performance
for memory-bound kernels. We have demonstrated that implementations of this memory accessor realization for GPUs
from AMD and NVIDIA, as well as a CPU from Intel, succeed in hiding the value conversion behind the memory access.
We have then re-engineered memory-bound BLAS kernels by using the memory accessor to perform all arithmetic in
double precision while using single precision for all memory operations. The accessor-based BLAS routines provide higher
accuracy than the single precision BLAS routines while incurring at most mild runtime overhead for routines where the
registers are a scarce resource. Future work will look into how the integration of the accessor-based BLAS kernels can
improve the time-to-accuracy performance of mixed precision algorithms such as mixed precision iterative refinement
using low precision BLAS as part of an iterative process.

ACKNOWLEDGMENTS
This work was supported by the “Impuls und Vernetzungsfond” of the Helmholtz Association under grant VH-NG-1241
and the US Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. This work was performed on the HoreKa supercomputer
funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education
and Research. The authors acknowledge support by the state of Baden-Württemberg through bwHPC.

AUTHOR CONTRIBUTION
All authors contributed to this paper equally.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Thomas Grützmacher https://orcid.org/0000-0001-9346-2981

REFERENCES
1. International Technology Roadmap for semiconductors 2.0; 2015. http://www.itrs2.net/itrs-reports.html
2. Wulf WA, McKee SA. Hitting the memory wall: implications of the obvious. SIGARCH Comput Archit News. 1995;23(1):20-24. doi:10.1145/

216585.216588
3. McKee SA, Wisniewski RW. Memory Wall. Springer; 2011:1110-1116.
4. McCalpin JD. Memory bandwidth and machine balance in current high performance computers. IEEE Comput Soc Techn Committee

Computr Arch Newslett. 1995;2:19-25.
5. Dongarra J, Beckman P, Moore T, et al. The international ExaScale software project roadmap. Int J High Perform Comput Appl.

2011;25(1):3–60.
6. Williams S, Waterman A, Patterson D. Roofline: an insightful visual performance model for multicore architectures. Commun ACM.

2009;52(4):65-76. doi:10.1145/1498765.1498785
7. Ofenbeck G, Steinmann R, Caparros V, Spampinato DG, Püschel M. Applying the roofline model. Proceedings of the International

Symposium on Performance Analysis of Systems and Software (ISPASS); 2014:76-85; IEEE.
8. Ilic A, Pratas F, Sousa L. Cache-aware roofline model: upgrading the loft. IEEE Comput Archit Lett. 2014;13(1):21-24. doi:10.1109/L-CA.

2013.6
9. Cabezas VC, Püschel M. Extending the roofline model: bottleneck analysis with microarchitectural constraints. Proceedings of the IEEE

International Symposium on Workload Characterization (IISWC); 2014:222-231; IEEE
10. Diamond J, Burtscher M, McCalpin JD, Kim B, Keckler SW, Browne JC. Evaluation and optimization of multicore performance bottlenecks

in supercomputing applications. Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS); 2011:32-43; IEEE.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9346-2981
https://orcid.org/0000-0001-9346-2981
http://www.itrs2.net/itrs-reports.html
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0

GRÜTZMACHER et al. 17

11. Anzt H, Flegar G, Grützmacher T, Quintana-Ortí ES. Toward a modular precision ecosystem for high-performance computing. The
International Journal of High Performance Computing Applications. 2019;33:(6):1069–1078. https://doi.org/10.1177/1094342019846547

12. Lindstrom P. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Visualization and Computer Graphics.
2014;20:(12):2674–2683. https://doi.org/10.1109/tvcg.2014.2346458

13. Di S, Cappello F. Fast error-bounded lossy HPC data compression with SZ. Proceedings of the 2016 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2016; May 23-27, 2016:730-739; IEEE Computer Society, Chicago, IL.

14. Tao D, Di S, Liang X, Chen Z, Cappello F. Optimizing lossy compression rate-distortion from automatic online selection between SZ and
ZFP; 2019.

15. Venkataramanan R, Sarkar T, Tatikonda S. Lossy Compression via Sparse Linear Regression: Computationally Efficient Encoding and
Decoding. IEEE Transactions on Information Theory. 2014;60:(6):3265–3278. https://doi.org/10.1109/tit.2014.2314676

16. Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. SIAM; 2003.
17. Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J. Optimization of sparse matrix-vector multiplication on emerging multicore

platforms. Proceedings of the 2007 ACM/IEEE Conference on Supercomputing SC ’07; 2007:1-12; IEEE.
18. Higham NJ. Accuracy and Stability of Numerical Algorithms. 2nd ed. Society for Industrial and Applied Mathematics; 2002.
19. Tao D, Di S, Chen Z, Cappello F. Significantly improving lossy compression for scientific data sets based on multidimensional prediction

and error-controlled quantization. Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2017, May 29 - June 2, 2017:1129-1139; IEEE Computer Society, Orlando, FL.

20. Lindstrom P, Isenburg M. Fast and efficient compression of floating-point data. IEEE Trans Vis Comput Graph. 2006;12(5):1245-1250.
doi:10.1109/TVCG.2006.143

21. Calhoun J, Cappello F, Olson LN, Snir M, Gropp WD. Exploring the feasibility of lossy compression for PDE simulations. Int J High Perform
Comput Appl. 2019;33(2):397-410. doi:10.1177/1094342018762036

22. Agullo E, Cappello F, Di S, Giraud L, Liang X, Schenkels N. Exploring variable accuracy storage through lossy compression techniques in
numerical linear algebra: a first application to flexible GMRES. Research report RR-9342, Inria Bordeaux Sud-Ouest; 2020.

23. Markidis S, Chien SWD, Laure E, Peng IB, Vetter JS. NVIDIA tensor core programmability, performance & precision. 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 2018;522–531. https://doi.org/10.1109/IPDPSW.2018.
00091

24. AMD. AMD CDNA architecture; 2020.
25. Anzt H, Cojean T, Flegar G, et al. Ginkgo: a modern linear operator algebra framework for high performance computing; 2020.
26. Blackford LS. An updated set of basic linear algebra subprograms (BLAS). ACM Trans Math Softw. 2002;28(2):135-151. doi:10.1145/567806.

567807
27. Golub GH, Van Loan CF. Matrix Computations. 3rd ed. The Johns Hopkins University Press; 1996.
28. Kurzak J, Dongarra J. Implementation of mixed precision in solving systems of linear equations on the cell processor. Concurr Comput

Pract Exper. 2007;19(10):1371-1385.
29. Abdelfattah A, Anzt H, Dongarra J, et al. Linear algebra software for large-scale accelerated multicore computing. Acta Numer.

2016;25:1-160. doi:10.1017/S0962492916000015
30. Hogg JD. A fast dense triangular solve in CUDA. SIAM J Sci Comput. 2013;35(3):C303-C322. doi:10.1137/12088358X
31. Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput.

1986;7:856-869. doi:10.1137/0907058
32. Grützmacher T, Cojean T, Flegar G, Anzt H, Quintana-Ortí ES. Acceleration of PageRank with customized precision based on mantissa

segmentation. ACM Trans Parallel Comput. 2020;7(1). doi:10.1145/3380934
33. Bell N, Garland M. Efficient sparse matrix-vector multiplication on CUDA; 2008.
34. Anzt H, Cojean T, Yen-Chen C, et al. Load-balancing sparse matrix vector product kernels on GPUs. ACM Trans Parallel Comput. 2020;7(1).

doi:10.1145/3380930
35. Anzt H, Cojean T, Chen YC, et al. Ginkgo: a high performance numerical linear algebra library. J Open Source Softw. 2020. doi:10.21105/

joss.02260

How to cite this article: Grützmacher T, Anzt H, Quintana-Ortí ES. Using Ginkgo’s memory accessor for
improving the accuracy of memory-bound low precision BLAS. Softw Pract Exper. 2021;1-18. doi: 10.1002/spe.3041

APPENDIX

For comprehensiveness, in this appendix, we report accuracy results obtained when using a uniform a normal distribution
a mean of zero and a standard deviation of one. All datapoints presented here are obtained as median over running 10
experiments the respective routines on an NVIDIA V100 GPU. The left-hand side figures replicate the results for the
uniform distribution in the interval [−1, 1] while the right-hand side results present a normal distribution.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1177/1094342019846547
https://doi.org/10.1109/tvcg.2014.2346458
https://doi.org/10.1109/tit.2014.2314676
http://dx.doi.org/0
http://dx.doi.org/0
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0

18 GRÜTZMACHER et al.

F I G U R E A1 Analysis of the average relative rounding error of different kernels on the NVIDIA V100 GPU using either a uniform
distribution for the input values (left) or a normal distribution of the input values (right)

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3041 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

