KIT | KIT-Bibliothek | Impressum | Datenschutz

Bounds on eigenvalues of perturbed Lamé operators with complex potentials

Cossetti, Lucrezia 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Several recent papers have focused their attention in proving the correct analogue to the Lieb-Thirring inequalities for non self-adjoint operators and in finding bounds on the distribution of their eigenvalues in the complex plane. This paper provides some improvement in the state of the art in this topic. Precisely, we address the question of finding quantitative bounds on the discrete spectrum of the perturbed Lamé operator of elasticity −Δ∗+V in terms of L$^{p}$-norms of the potential. Original results within the self-adjoint framework are provided too.


Verlagsausgabe §
DOI: 10.5445/IR/1000139725
Veröffentlicht am 12.11.2021
Originalveröffentlichung
DOI: 10.3934/mine.2022037
Scopus
Zitationen: 5
Web of Science
Zitationen: 3
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2640-3501
KITopen-ID: 1000139725
Erschienen in Mathematics In Engineering
Verlag AIMS Press
Band 4
Heft 5
Seiten 1-29
Bemerkung zur Veröffentlichung Special Issue: Calculus of Variations and Nonlinear Analysis: Advances and Applications
Vorab online veröffentlicht am 28.09.2021
Schlagwörter Lamé operators, non self-adjoint operators, spectral theory, eigenvalue bounds, Birman-Schwinger principle
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page