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Abstract: Lignin is an underutilized sustainable source of aromatic compounds. To valorize the
low-value lignin monomers, we proposed an efficient strategy, involving enzymatic conversion
from trans-p-hydroxycinnamic acids to generate valued-added canonical and non-canonical aromatic
amino acids. Among them, β-amino acids are recognized as building blocks for bioactive natu-
ral products and pharmaceutical ingredients due to their attractive antitumor properties. Using
computational enzyme design, the (R)-β-selective phenylalanine aminomutase from Taxus chinensis
(TchPAM) was successfully mutated to accept β-tyrosine as the substrate, as well as to generate
the (R)-β-tyrosine with excellent enantiopurity (ee > 99%) as the unique product from trans-p-
hydroxycinnamic acid. Moreover, the kinetic parameters were determined for the reaction of four
Y424 enzyme variants with the synthesis of different phenylalanine and tyrosine enantiomers. In
the ammonia elimination reaction of (R)-β-tyrosine, the variants Y424N and Y424C displayed a
two-fold increased catalytic efficiency of the wild type. In this work, a binding pocket in the active
site, including Y424, K427, I431, and E455, was examined for its influence on the β-enantioselectivity
of this enzyme family. Combining the upstream lignin depolymerization and downstream pro-
duction, a sustainable value chain based on lignin is enabled. In summary, we report a β-tyrosine
synthesis process from a monolignol component, offering a new way for lignin valorization by
biocatalyst modification.

Keywords: β-tyrosine; β-amino acid; phenylalanine aminomutase; lignin valorization; computa-
tional enzyme design; Rosetta enzyme design

1. Introduction
1.1. Lignin Valorization

The consistent depletion of finite petroleum resources has excited the rising eagerness
for new renewable materials in recent years [1]. Lignocellulosic biomass, a low-priced and
abundantly available feedstock, has piqued researchers’ curiosity around the globe on the
development of strategies for the conversion into renewable products [2–4]. The primary
components of lignocellulosic biomass are cellulose, hemicellulose, and lignin. Among
them, cellulose and hemicellulose can be degraded into carbohydrates by hydrolysis and
further converted to ethanol and other fine chemicals [5]. In contrast to the polysaccharides
in lignocellulosic biomass, lignin is formed by cross-linked aromatic monolignol precursors
in a heterogeneous network to provide terrestrial plants with mechanical support, facilitat-
ing the transport of water and nutrients and defense against various pathogen attacks [6].
Because of the complexity of the structure and the recalcitrance to degradation, lignin is
usually released as a waste in the pulp and paper mill effluent or is simply burned for the
production of heat and power. Currently, over 50 million tons of lignin are produced annu-
ally in global paper and bioethanol factories [7]. Numerous studies have been carried out
on the development of lignin valorization to generate aromatic value-added products [8].
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However, lignin is primarily recognized as a macromolecule in valorization strategy based
on the growing mature depolymerization techniques. Although this strategy has been
accomplished with numerous promising examples, such as carbon fibers [9], adhesives [10],
emulsifiers [11,12], binders [13,14], and lignin-based nanoparticles [15], the valorization of
low-molecular-weight and high-value chemicals from lignin with aromatic potential is still
in the initial stage and remains a huge challenge. Only a few industrial-scale examples in
these areas have been reported until now, for instance, ferulic acid and vanillin produc-
tion [8,16,17]. Currently, more rewarding strategies are being developed depending on the
technological advances in lignin valorization, including recovery, depolymerization, and
conversion. The establishment of a sustainable value chain has gained much attention in
the area of lignin valorization [18,19].

The monolignols of lignin, differing in their degree of methoxylation: p-coumaryl-,
coniferyl-, and sinapyl alcohol, are synthesized from the phenylpropanoid pathway, espe-
cially under drought [20], salinity [21], and heat [22] stresses. Besides, another monomer
in the phenolic acid form like p-hydroxycinnamic acid also drives lignin polymerization
and regulates seeding growth and germination [23]. The distribution of these monolig-
nols varies among plant species and tissue types, and development stages and growth
conditions. For instance, p-hydroxycinnamyl alcohol, representing the typical monolignol
in grasses in a small percentage, offers significant potential to form p-hydroxycinnamic
acid, which could also be produced directly from base-catalyzed depolymerized lignin
liquors [24]. Notably, p-hydroxycinnamyl alcohol, comprising around 30% of total lignin,
is one of the dominant compounds in curaua leaf fiber [25].

1.2. β-Amino Acids and Anticancer Drugs

Cancer was responsible for approximately 10 million deaths in 2020, according to
the WHO report [26]. With the increase in mortality rates of cancer and the associated
socioeconomic burden, one of the prime requirements of anticancer drug research is the
establishment of a more economic and effective strategy for their industrial-scale synthesis.

β-amino acids, as building blocks in natural products with an attractive antitumor
feature, have gained considerable interest in the field of oncology drug development over
recent years. As a consequence, numerous bioactive products with high pharmacologi-
cal potency that contain optically pure β-amino acid are already available as anticancer
drugs. For instance, the notable β-amino acid-involved anticancer agent C-1027 chromo-
protein, isolated from Streptomyces globisporus, is assembled by a unique β-amino moiety,
(S)-3-chloro-4,5-dihydroxy-β-phenylalanine [27]. Another example in the treatment of var-
ious types of cancers is paclitaxel (Taxol®), which was initially extracted from the bark of the
Pacific yew tree, Taxus brevifolia. Paclitaxel, as an effective microtubule-stabilizing drug to
induce mitotic arrest of cells, carries a β-phenylalanine-derivative (2R,3S)-phenylisoserine
on the functionally essential C13-side chain [28,29].

Phenylalanine aminomutase (PAM; EC 5.4.3.10), catalyzing the rearrangement of
the (S)-α-phenylalanine and (R)-β-phenylalanine, is the principal enzyme in the com-
mitted step of the N-benzol phenylisoserinoyl side chain in the taxol biosynthesis path-
way, while tyrosine aminomutase (TAM; EC 5.4.3.6) catalyzes the formation of C-1027
from L-tyrosine [27–29]. Both of these enzymes are members of the MIO (3,5-dihydro-5-
methylidene-4H-imidazole-4-one)-dependent aminomutase family. These so-called MIO-
dependent aminomutases recruit an unusual highly electrophilic moiety MIO for catalyzing
the 2,3-amine shift in aromatic amino acids and present outstanding enantioselectivity. The
members from this enzyme family are frequently applied for an asymmetric synthesis route
without cofactor recycling to produce the optically pure β-amino acids [30,31]. On the other
hand, the enzymatic synthesis of optically pure β-amino acids has been considered as an
attractive strategy, compared to the chemical processes, which are limited by low yield or
enantiopurity, and high cost of the waste treatment. Among these MIO-dependent enzymes,
PAM is presumably evolved in ancient gymnosperms from the ancestry with phenylalanine
ammonia-lyase (PAL; EC 4.3.1.24), according to our previous conclusion from phylogenetic
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analysis. Regulating the metabolite accumulation in the phenylpropanoid pathway, PAM
could be employed as a connection point for conversion from monolignol to high-valued
β-amino acids in the enzymatic lignin valorization strategy [32].

Enzyme design efforts relying on the screening of large mutant libraries have had
noteworthy success in the last decades, but they are usually time- and cost-intensive by
using wide-ranging random mutagenesis. Instead, computational methods have been
developed to guide the selection of the target substrate of enzymes in a limited number.
One of the most powerful model tools is PyRosetta, which was broadly used for enzyme
design based on the binding energy calculation of small molecule–protein interaction [33].
Supported by the previous high-resolution X-ray structure analysis and site-directed mu-
tagenesis studies, TchPAM was an enzyme with excellent enantioselectivity. Therefore, it
was chosen for the biosynthesis investigation of β-tyrosine from trans-p-hydroxycinnamic
acid. To avoid screening in the massive mutant libraries, TchPAM is designed using a
computational program instead of random experimental evolution [34,35].

2. Results and Discussion
2.1. Computational Design of TchPAM for the Synthesis of β-tyrosine

Previous mutagenesis studies on MIO-dependent enzymes revealed that the responsi-
ble residues for the substrate selectivity were mainly placed around the aromatic side of
the substrate [33]. The X-ray co-crystal structure of TchPAM with native substrate-bound
(PDB ID: 4C5R) was investigated to identify the other potential residues for acceptance
of β-tyrosine [34]. It was hypothesized that various residues in the active site of TchPAM
orient and stabilize the aromatic ring of the substrate. Previous studies on the substrate
spectrum of TchPAM revealed that this enzyme accepts a range of monosubstituted cin-
namic acid derivatives, especially those with methyl groups at the para-position, such as
4-methoxycinnamic acid. Therefore, β-tyrosine with a 1,4-hydroxyl group is not accepted
by this enzyme because of the electrostatic restriction instead of the steric constraint [36].
Excluding the essential residues for catalysis and stereoselectivity (Asn231, Gln319, Tyr322,
Arg325, Asn355), the other residues were divided into two groups. Group one comprises
residues like Phe86, Leu104, Cys107, Leu108, Leu179, Tyr424, Lys427, Ile431, and Glu455,
which potentially interact with the phenolic side of β-tyrosine via a hydrogen bond. The
second group includes residues, such as Asn458 and Gln459, which form a stable network
with substrates. The former residues were customized to contain polar or electrically
charged side chains, while the latter were randomly mutated in silico without any limita-
tion (Figure 1). In conclusion, a library of variants with multiple mutations was established
using Rosetta enzyme design based on the penalty score of the constraints and visual
structure screening of the designed enzymes.

2.2. Experimental Screening of the Designed TchPAM Mutants

Initially, the single point mutants from the mutant library were selected to explore
the correlation between the phenolic group of β-tyrosine and the residues in the active
site of the enzyme. Unexpectedly, residue Leu107, which was considered as the crucial
position for the selectivity switch between tyrosine- and phenylalanine ammonia-lyase
activity, was excluded in this computational mutant library [36,37]. To determine the
substrate tolerance of the designed mutants, the specific activity in ammonia elimination
reactions of (S)-α-phenylalanine, (R)-β-phenylalanine, (S)-α-tyrosine, and (R)-β-tyrosine
were measured (Figure 2).



Catalysts 2021, 11, 1310 4 of 17
Catalysts 2021, 26, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 1. Schematic representation of the interactions between the natural substrate (S)-α-phenylal-

anine and TchPAM (PDB ID: 4C5R). The color coding corresponds to the position of residues in the 

active site: carboxyl binding pocket (red), aromatic binding pocket (blue), tyrosine towards pocket 

(green), essential functional residues (black), and all other residues without specified function (pur-

ple). The substrate (e.g., (S)-α-phenylalanine) is highlighted by a yellow background. 

2.2. Experimental Screening of the Designed TchPAM Mutants 

Initially, the single point mutants from the mutant library were selected to explore 

the correlation between the phenolic group of β-tyrosine and the residues in the active site 

of the enzyme. Unexpectedly, residue Leu107, which was considered as the crucial posi-

tion for the selectivity switch between tyrosine- and phenylalanine ammonia-lyase activ-

ity, was excluded in this computational mutant library [36,37]. To determine the substrate 

tolerance of the designed mutants, the specific activity in ammonia elimination reactions 

of (S)-α-phenylalanine, (R)-β-phenylalanine, (S)-α-tyrosine, and (R)-β-tyrosine were 

measured (Figure 2).  

Figure 1. Schematic representation of the interactions between the natural substrate (S)-α-
phenylalanine and TchPAM (PDB ID: 4C5R). The color coding corresponds to the position of residues
in the active site: carboxyl binding pocket (red), aromatic binding pocket (blue), tyrosine towards
pocket (green), essential functional residues (black), and all other residues without specified function
(purple). The substrate (e.g., (S)-α-phenylalanine) is highlighted by a yellow background.

Tyr424Asn, the best variant of the library, shows the highest specific activity toward
β-tyrosine and served not only to confer tyrosine acceptance but also to enhance the
phenylalanine ammonia-lyase activity. An analogous outcome was observed in Tyr424Cys,
but with a lesser activity improvement, compared to the wild type and the other variants
(Tyr424Asp and Tyr424Gln). In the wild type, it was hard to form an interaction due to
the distance of above 8 Å between the ring centroids from Tyr424 and the aryl-ring on
the substrates. The mutant Tyr424Cys has a similar but more flexible conformation in
the active site. Although, the partial negatively charged sulfur group on the side chain
could interact with the positive charge on the edge of the aromatic ring within a certain
distance, there are fewer steric effects by cysteine than tyrosine at this position. This
hypothesis is supported by their comparable activity toward the deamination of various
substrates [38]. However, mutation of the residue at position 424 to smaller amino acids
mainly affects the orientation of the neighboring residues, such as Phe86 and Lys427,
during protein folding (Figure 3). Asn or Gln, which were recognized as globally neutral
amino acids, offered a partial positive charge on their formamide group when placed
near the phenolic ring of the substrate and the residue Phe86. Therefore, these residues
could provide an attractive interaction with the ring center (Figure 3B,D) [38–40]. Notably,
their amino groups were closer to the aromatic ring than their carbonyl groups, thereby
increasing the electrostatic contribution. The functional group on position 424 resulted
in a potential variety of conformation and geometrical constraints with its neighboring
residues, especially in the case of Gln with a larger side chain [41]. Unlike the glutamine
at this position, the mutant Tyr424Asn might have less or no influence on the substrate
binding, considering the distance (5.7 Å) between the amide group and the centroid ring.
Replacement of the tyrosine with negatively charged aspartic acid at this position generates
a slightly repulsive force toward the negatively charged ring center in the substrates [42].
Therefore, the docking location of the substrate was likely more distant from this residue
than the wild type (Figure 3). Moreover, the carboxyl group of the residue Tyr424Asp might
interact with the amino group of its neighboring residue Lys427, which was stabilized by
the carboxyl group from the residue Glu455. It might be a possible reason for partial activity
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loss in mutant Tyr424Asp. In addition, both neighboring residues Lys427 and Glu455 were
suggested to be catalytically essential positions in TchPAM, because their variants abolished
the activity by using all four substrates. The other neighboring residue Ile431, however,
seemed to strictly require a hydrophobic group since the variants harboring mutations to
Asn or Glu lost complete activity. Consequently, the residue Tyr424 might influence the
substrate positioning through the interaction of its side chain with the aryl ring on the
aromatic amino acids. Moreover, the neighboring residues in this area play an important
role in substrate positioning.
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Figure 3. The docking structures with bound cinnamic acid as ligand in (A) the wild type, (B) the
mutant Tyr424Asn, and (C) Tyr424Cys, (D) Tyr424Gln, and (E) Tyr424Asp. The residues are located
above the aryl ring.

According to the amino acid sequence analysis, Phe86 was naturally replaced by
tyrosine in the other MIO-dependent enzymes, which could accept tyrosine as substrates.
However, the lack of activity in the Phe86Tyr variant indicated that the aromatic pair
interaction between residue Phe86 and the benzyl or phenolic ring from the substrate
probably induces a π–π interaction. This interaction helps to orient and stabilize the
substrates in the wild type. Usually, this interaction could be observed at a pairing distance
larger than 3.8 Å in slipped face-to-face stacking. The tyrosine variants increased the
interaction by the withdrawing π-electron density from the hydroxyl group, resulting in
a reduction of the electrostatic repulsion and the contact distance between the aromatic
ring of residue Phe86Tyr and substrate [43,44]. As the other high-profile candidate residue
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Leu108, which was considered as the responsible residues for α-tyrosine acceptance in
the enzyme, did not seem to have the equivalent substrate-switching ability toward its
β-isomers [37]. By replacing the residue Leu108, the mutants Leu108Gln and Leu108Ser
were considerably less active toward both phenylalanine and tyrosine. In the former, the
residue glutamine with the large side chain was more sterically hindered than leucine in
the wild type, which could explain the notable activity decrease. On the other hand, the
hydroxyl group on residue serine contributed to the strength of interaction with the sulfur
atom from its nearby neighboring residue Cys107, giving a variant Leu108Ser with much
lower activity.

The Leu104Ser variant was found to be the most efficient enzyme to catalyze the deam-
ination of (S)-α-phenylalanine, giving an impressive 4-fold enhancement of specific activity,
while the Leu104Thr, with a shorter polar uncharged side chain, lost most activity. This
was consistent with the previous structural analysis of Leu104Ala, which was predicted
to have an unfavorable steric strain between the residue and substituted cinnamic acid
derivatives, especially at the meta-position. The same was observed when expanding the
substrate scope of the MIO-dependent PcPAL from Petroselinum crispum [45,46]. It could be
suggested that the residue Leu104 might influence the enzymatic catalysis due not only to
the steric effect but also to the hydrophobic interaction between the residue and aromatic
ring from the substrate.

2.3. Kinetic Analyses of Designed Enzymes

For Tyr424Asn and Tyr424Cys, the variants with enhanced substrate tolerance toward
β-tyrosine, the kinetic parameters in the deamination reaction were determined, compared
to the wild type and the other variants (Tyr424Asp and Tyr424Gln), which were mutated at
the identical position (Table 1).

The kinetic data revealed that both variants with higher activity had an improved
catalytic efficiency with tyrosine and a decreased catalytic efficiency with phenylalanine. Re-
garding β-tyrosine, the catalytic efficiency of Tyr424Cys and Tyr424Asn were 0.281 ± 0.023
and 0.234 ± 0.013 mM−1 s−1, respectively. The variant Tyr424Cys displayed an approx-
imately two-fold decreased KM value but a kcat value similar to that of the wild type.
This is supporting the hypothesis that the replacement of tyrosine with a shorter side
chain of the residue at position 424 could afford additional space for binding the phenolic
ring on the substrate (Figure 3), whereas Tyr424Asn provided a similar binding affinity
(KM) and a superior turnover rate (around two-fold enhancement). This might be due
to the interaction between the phenolic ring from the substrate and the partial positively
charged amino group on the mutated residue when the β-tyrosine entered the catalytic
site. Apart from the variant Tyr424Asp with a five-fold decline in KM for α-phenylalanine,
all four mutations yielded a lower binding affinity for their natural substrates in both
isomers. Especially, Tyr424Asn gave a massive 20-fold higher KM value when using β-
phenylalanine as the substrate. It could be suggested that the residue Tyr424 assisted to
enhance phenylalanine acceptance because of its large enough and negatively charged
side chain. Meanwhile, variants Tyr424Asn and Tyr424Cys with α-tyrosine showed a
huge, approximately 7-fold decrease in KM value compared to the wild type. Therefore,
the Tyr424 residue was confirmed to be a responsible position for conferring tyrosine or
phenylalanine acceptance.
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Table 1. Comparison of the kinetic parameters of wild type and mutants Tyr424Asn, Tyr424Asp,
Tyr424Cys, and Tyr424Gln in ammonia elimination of various substrates.

(S)-α-Phenylalanine

TchPAM KM (mM) kcat (s−1) kcat/KM (mM−1 s−1)

wt 0.032 ± 0.001 0.02 ± 0.001 0.625 ± 0.02
Y424C 0.048 ± 0.006 0.024 ± 0.002 0.506 ± 0.041
Y424D n.d. n.d. n.d.
Y424N 0.075 ± 0.001 0.03 ± 0.002 0.407 ± 0.019
Y424Q 0.006 1 0.003 1 0.608 ± 0.095

(R)-β-Phenylalanine

TchPAM KM (mM) kcat (s−1) kcat/KM (mM−1 s−1)

wt 0.062 ± 0.012 0.026 ± 0.002 0.427 ± 0.078
Y424C 0.110 ± 0.017 0.035 ± 0.004 0.320 ± 0.044
Y424D 0.458 ± 0.091 0.024 ± 0.006 0.053 ± 0.006
Y424N 1.266 ± 0.108 0.138 ± 0.002 0.109 ± 0.01
Y424Q 0.422 ± 0.073 0.022 ± 0.005 0.053 ± 0.006

(S)-α-Tyrosine

TchPAM KM (mM) kcat (s−1) kcat/KM (mM−1 s−1)

wt 2.435 ± 0.160 0.029 ± 0.005 0.011 ± 0.002
Y424C 0.347 ± 0.065 0.01 ± 0.002 0.03 ± 0.004
Y424D n.d. n.d. n.d.
Y424N 0.330 ± 0.024 0.007 1 0.021 ± 0.001
Y424Q n.d. n.d. n.d.

(R)-β-Tyrosine

TchPAM KM (mM) kcat (s−1) kcat/KM (mM−1 s−1)

wt 0.465 ± 0.008 0.06 ± 0.001 0.130 ± 0.01
Y424C 0.299 ± 0.005 0.084 ± 0.007 0.281 ± 0.023
Y424D n.d. n.d. n.d.
Y424N 0.480 ± 0.015 0.112 ± 0.003 0.234 ± 0.013
Y424Q 0.142 ± 0.001 0.014 ± 0.001 0.098 ± 0.008

1 The deviation is smaller as 0.001.

2.4. Enantioselectivity of Designed Enzymes

The wild type of TchPAM can produce (R)-β-phenylalanine with >99% enantiomeric
excess by using trans-cinnamic acid as the substrate. This accounts for around 50%
of the product mixture, where (S)-α-phenylalanine occupies the rest. However, the
trans-p-hydroxycinnamic acid was not accepted by this enzyme [36]. As a rare (R)-selective
phenylalanine aminomutase in nature, TchPAM presents outstanding potential for the
production of enantiopure (R)-β-tyrosine. Until now, comparable enantioselectivity has not
been observed in the wild type of another member from the MIO-dependent enzyme family
in the bacterial kingdom, for instance, the enzyme KedY4 from Streptoalloteichus sp. and the
enzyme CmdF Chondromyces crocatus [47,48]. In contrast, the OsTAM from Oryza sativa, the
only example of (R)-selective tyrosine aminomutase with great enantioselectivity in the
plant, which is the closest relative of TchPAM, is tricky to apply in trans-p-hydroxycinnamic
acid production [49].

The previous X-ray crystal structure analysis and the site-directed mutagenesis studies
in TchPAM gave the proposal of the isomerization mechanism for explaining the amino-
mutase activity, revealing two possible distinct binding modes of the carboxyl group on
substrates. The ammonia 1,4-addition for the production of (S)-α-phenylalanine was car-
ried out by forming a bidentate salt bridge between the carboxylate group on the substrate
and the amino groups from residue Arg325. The Gln319 afforded an extra interaction
with the hydrogen bond and contributes to the orientation of the substrate. In the case
of conversion to the corresponding (R)-configured β-phenylalanine, the carboxyl group
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was stabilized by a network of hydrogen bonds, created by Asn231, Arg325, and Asn355.
During the whole catalytic process, the aryl ring from trans-p-cinnamic acid was locked
in the aromatic binding pocket, which contained the residues Phe86, Leu104, Leu107,
and Leu108, and was identified to play a crucial role in substrate selectivity in previous
studies [33]. From a similar catalytical point of view, two binding conformations could
be postulated, when trans-p-hydroxycinnamic acid entered the active site as a starting
substrate. Compared to the natural substrate trans-cinnamic acid, the ammonia addition of
trans-p-hydroxycinnamic acid was difficult due to the substituted hydroxyl group of the
benzenic ring. More electronegative oxygen atom shifts the electron to itself, stabilized by
the negatively charged electron-withdrawing group, thus leading to the priming for nucle-
ophilic attack at the β-position (Figure 4) [50]. Unlike the aryl ring from trans-cinnamic
acid, which was stabilized in the aromatic binding pocket (Leu104, Leu108, and Leu179)
by London dispersion force, the aryl ring from the trans-p-hydroxycinnamic acid oriented
towards the residues with a polar or charged side chain (Cys107, Tyr424, Lys427, and
Glu455) that could be attributed to its hydroxyl functional group (Figure 5). Of these
two mentioned binding conformations of the carboxylate group on the substrate, only
one would be favored in general. In this situation, the negatively charged carboxylate on
p-hydroxycinnamic acid was preferred to stabilize in the latter binding mode, involving
the hydrogen bonding formed by Asn231, Arg325, and Asn355, leading to the production
of (R)-β-tyrosine. It could be strongly supported by the huge difference in the binding
affinity for (S)-α-tyrosine and (R)-β-tyrosine in the wild type (Figure 5C,D). At this moment,
the substrate backbone is placed closer to the carboxyl binding pocket, compared to the
(S)-α-regioisomer (Figure 5A,B).
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Figure 5. The proposed reaction mechanism for TchPAM during the ammonia addition of
(S)-α-tyrosine and (R)-β-tyrosine in mutant Tyr424Asn as an example. (A) The binding mode I
when trans-p-hydroxycinnamic acid enters the active site as substrate. (B) The ammonia addition on
trans-p-hydroxycinnamic acid in the binding mode I to yield (S)-α-tyrosine. (C) The binding mode II
when trans-p-hydroxycinnamic acid enters the active site as the substrate. (D) The ammonia addition
on trans-p-hydroxycinnamic in the binding mode II to yield (R)-β-tyrosine.

This hypothesis was backed up by the measurement of the conversion and the
enantiomeric excess of the designed enzymes in ammonia addition reaction of trans-p-
hydroxycinnamic acid, monitored by High-performance liquid chromatography (HPLC)
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assays. Both candidate mutants, where the residue was replaced by asparagine or cysteine
with a smaller and different chemical functional side chain in position 424, presented the
tyrosine ammonia-lyase activity (Table 2). Strikingly, the superior mutants Tyr424Asn and
Tyr424Cys were designed for the generation of optically pure (R)-β-tyrosine. The specific ac-
tivities of mutants Tyr424Asn and Tyr424Cys were 0.104 ± 0.002 and 0.141 ± 0.001 U/mg,
respectively. The lack of tyrosine ammonia-lyase activity with the wild type might be
ascribed to the steric clash between the aryl ring on the substrate and the residue Tyr424,
while both β-selective variants provide extra space at this position. Taken together, these
results strongly indicate the significance of the residues in a third binding pocket, including
Tyr424, as well as its neighborhoods Lys427, Ile431, and Glu455, for substrate specificity.

Table 2. Comparison of the specific activity and enantiomeric excess of wild type and mutants
Tyr424Asn and Tyr424Cys in the ammonia addition reaction.

Enzyme Specific Activity eeβR Reference

(S)-α-
Tyrosine

(R)-α-
Tyrosine

(S)-β-
Tyrosine

(R)-β-
Tyrosine

Wt n.d. n.d. n.d. n.d. - [1]
Y424N n.d. n.d. n.d. 0.104 ± 0.002 >99% This work
Y424C n.d. n.d. n.d. 0.141 ± 0.001 >99% This work

3. Conclusions and Perspectives

With excessive consumption of natural petroleum, the option to convert the under-
utilized lignin into high-value products has been recognized, based on its significant
potential as a sustainable source of numerous aromatic compounds. In this paper, we
reported an enzymatic conversion of trans-p-hydroxycinnamic acid into (R)-β-tyrosine with
high enantiopurity as a valuable building block for pharmaceutical ingredients and drug
candidates, such as kedarcidin [51]. However, the synthesis of (R)-β-tyrosine by natural
MIO-dependent enzymes remains considerably challenging because of the low enantios-
electivity of bacterial tyrosine aminomutase, as well as the poor tyrosine acceptance of
the phenylalanine-metabolizing enzymes [47,48]. To form the cornerstone of the whole
strategy, TchPAM was chosen for mutation via computational enzyme design to extend
the substrate scope, according to the previous evidence of its great synthetic potential of
(R)-β-phenylalanine. In conclusion, the variants Tyr424Asn and Tyr424Cys were found
to yield (R)-β-tyrosine with high enantiopurity from trans-p-hydroxycinnamic acid. Us-
ing this variant, efficient and straightforward routes can be demonstrated by developing
high-value chiral β-amino acids, as the building blocks in bioactive natural products, from
lignocellulosic waste, which comprises corresponding aromatic compounds. This could be
achieved through the multi-enzymatic cascade involving the designed TchPAM and the
feruloyl esterases, which are able to release p-hydroxycinnamic acids from lignin, enabling
sequential enzymatic conversion to be performed in a one-pot synthesis method [52]. Com-
bining the enzymatic conversion with the further downstream synthesis of bioderived
anticancer drug based on the enantiopure (R)-β-tyrosine, we pointed out the possibility
of valorization of the underused lignin in a low-molecular-weight value-added product
(Figure 6).
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pretreated lignin.

In summary, this study highlighted a lignin-based β-tyrosine synthesis process, em-
ploying the computational-designed TchPAM. This enzymatic conversion for the pro-
duction of the (R)-β-tyrosine with excellent enantioselectivity and regioselectivity could
connect with the upstream production process of p-hydroxycinnamic acid from lignin,
as well as the drug development downstream in pharmaceutical industries, providing
meaningful opportunities for future research in lignin valorization.

4. Materials and Methods
4.1. Computational Enzyme Design

To determine the appropriate residues to mutate, the computational design of Tch-
PAM was processed by using RosettaScripts, a scripting language interface based on
PyRosetta [53]. The β-tyrosine as the target substrate and the MIO moiety were manip-
ulated by software OpenBabel 2.4 [54] and their transition state geometry optimized in
Gaussian09 [55]. Moreover, the Biology and Chemistry Library Project (BCL) was used
to generate the substrate and moiety conformers [56]. According to the staring coordi-
nates, which are determined by the information of the PDB file, the natural substrate was
replaced with the prepared target substrate in the binding pocket of the relaxed enzyme
(PDB ID: 4C5R). Finally, the best designs were selected based on the calculation of cat-
alytic constraints from PyRosetta by using a high-performance computer and the structure
comparison of natural templates in the visualization system PyMOL [57] and Chimera [58].

4.2. Construction of TchPAM Mutants

According to the protein sequence from Taxus chinensis (NCBI, AAU01182.1), the
pET28a plasmid, containing the codon-optimized pam gene, was synthesized by Pro-
teoGenix (Schiltigheim, France) and used as a template for site-directed mutagenesis with
Q5® High-Fidelity 2X Master Mix (NEB, Ipswich, MA, USA). Apart from the mutation at
residue Tyr424 with KLD Enzyme Mix from NEB (Ipswich, MA, USA), the touch-down
PCR was performed for the rest of the mutants. All primers were ordered from Thermo
Fischer Scientific (Waltham, MA, USA) and are listed in Supplementary Materials Table S1.
The template strand was immediately removed by adding 1 µL of DpnI for 1 h at 37 ◦C.
Subsequently, the PCR reaction mixture was transformed into high-efficiency chemically
T7 express competent E. coli (NEB, USA), according to the manufacturer’s protocol. Mu-
tagenesis success was controlled by Sanger sequencing (GATC, Ebersberg, Germany) of
purified plasmid from the well-isolated colonies.

4.3. Expression, Purification, and Concentration of TchPAM

For the expression of the wild type and the mutants of TchPAM, the cells were incu-
bated in 100 mL of LB-medium with 50 µg/mL kanamycin at 37 ◦C and 120 rpm. Once
the OD600 reached 0.3–0.4, the cultures were induced with 0.1 mM IPTG at 25 ◦C with
shaking at 120 rpm. After 22 h, cells were harvested by centrifugation, washed twice



Catalysts 2021, 11, 1310 14 of 17

with 50 mM Tris-HCl buffer (pH 8.0), and resuspended in 5 mL of binding buffer (50 mM
Tris-HCl, 150 mM NaCl, 10 mM imidazole, pH 8.0). Cell disruption was performed on ice
by sonication (20 s pulse/30 s pause over 10 min, with 40 % amplitude, HD3100, Bandelin
electronic GmbH & Co. KG, Berlin, Germany). Cell debris was removed by centrifugation
(16,000× g, 20 min, 4 ◦C) (Megafuge 40R, Thermo Fisher Scientific Inc., Waltham, MA,
USA). The histidine-tagged enzymes were obtained through purification with His SpinTrap
columns (GE Healthcare Life Sciences, London, UK). The composition of the washing buffer
(pH 8.0) was 50 mM Tris-HCl, 150 mM NaCl, and 20 mM imidazole, while the elution
buffer had the same composition except for a higher concentration of imidazole (300 mM).
Then, the purified enzymes were desalted and concentrated by the protein concentrators
with a 10 K MWCO (Pierce® Concentrator, PES, 0.5 mL, Thermo Fisher Scientific Inc.,
Waltham, MA, USA). Finally, the protein concentrations of the wild type and mutants of
TchPAM were determined by using the EpochTM Multi-volume Spectrophotometer System
(BioTek Instruments, Inc., Winusky, VT, USA) with a Take3Plate (BioTek Instruments, Inc.,
Winusky, VT, USA), based on the BSA protocol. All purified enzyme solutions were diluted
to 0.5 mg/mL as enzyme stock for subsequent activity measurement. The purity of the
desalted enzymes was checked by SDS-PAGE (Supplementary Materials Figure S1).

4.4. TchPAM Activity Assays for Ammonia Elimination Reactions

The substrate solution of 1 mM substrate ((S)-α-phenylalanine, (R)-β-phenylalanine,
(S)-α-tyrosine, or (R)-β-tyrosine) was prepared in Tris-HCl buffer (50 mM, pH 8.8) and
pipetted in 96-well UV-Microplates. Then, 10 µL of purified wild type or mutant TchPAM
enzyme were added to the preheated 100 µL of substrate solution. The ammonia elimina-
tion reactions were carried out in triplicate at 40 ◦C for 30 min, monitoring the product
absorbance for trans-cinnamic acid at 300 nm, as well as for trans-p-hydroxycinnamic acid
at 350 nm. The product absorbance was measured every 3 min by using the EpochTM

Spectrophotometer system (BioTek, Winusky, VT, USA).

4.5. Kinetics Measurements

The above-mentioned protocol was used to determine the kinetic parameters of the
wild type and mutants of TchPAM. The measurements were performed in triplicate in
96-well UV-Microplates, with a varying substrate concentration range between 0.01 and
10 mM, until substrate saturation occurred. The maximal concentration of (S)-α-tyrosine
was 2 mM due to its poor solubility in Tris-HCl buffer (pH 8.8). The kinetic parameters
(KM and Vmax) were determined by employing Michaelis–Menten nonlinear fitting using
Origin (Pro 2019, OriginLab®, Northampton, MA, USA).

4.6. HPLC Analysis in the Ammonia Addition Reaction

Substrate solution with 3 mM trans-p-hydroxycinnamic acids was prepared in ammo-
nium sulfate solution (4 M, pH 10). First, 50 µL of purified enzymes were added to 500 µL
of substrate solution. The reaction was performed at 40 ◦C. After the indicated reaction
time (0, 1, 2, 3, 5, 7, and 24 h), 50 µL of sample were taken from the mixture and heated at
99 ◦C for 5 min. To determine the concentration of all four mentioned aromatic amino acids,
which are possible products of the reaction, the samples were analyzed by HPLC (1200 Se-
ries, Agilent Technologies, Waldbronn, Germany). Then, 0.5 µL of sample were injected in
the HPLC column (C18, 150 × 4.6 mm HyperClone 5 µm, Phenomenex Inc, Aschaffenburg,
Germany) after derivatization with o-phthalaldehyde (OPA) and N-isobutyryl-L-cysteine
(IBLC) in an automatic pre-column according to the protocol by Brucher et al. [59]. The
compounds in the reaction mixture were eluted with 21% sodium phosphate buffer (40 mM,
pH 6.5) and 79 % methanol at a constant flow rate of 1 min/mL. The detector was operated
at 338 nm. The retention times of the produced aromatic amino acids were (S)-α-tyrosine
71.0 min, (R)-α-tyrosine 45.7 min, (S)-β-tyrosine 57.6 min, and (R)-β-tyrosine 42.7 min.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
catal11111310/s1, Supplementary Table S1: The list of primers for site-directed mutagenesis through
touch down method; Supplementary Table S2: The list of primers for site-directed mutagenesis
through KLD (Kinase, Ligase, and DpnI enzymes) method. Supplementary Figure S1: The SDS-PAGE
gel of the crude protein lysate and purified enzymes. The band of TchPAM was observed between 63
and 75 kDa. WT: wild type.
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