KIT | KIT-Bibliothek | Impressum | Datenschutz

In-Liquid Plasma for Surface Engineering of Cu Electrodes with Incorporated SiO$_{2}$ Nanoparticles: From Micro to Nano

Menezes, P. V.; Elnagar, M. M.; Al-Shakran, M.; Eckl, M. J.; Menezes, P. W.; Kibler, L. A.; Jacob, T. 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

A robust and efficient route to modify the chemical and physical properties of polycrystalline copper (Cu) wires via versatile plasma electrolysis is presented. Silica (SiO$_{2}$) nanoparticles (11 nm) are introduced during the electrolysis to tailor the surface structure of the Cu electrode. The influence of these SiO$_{2}$ nanoparticles on the structure of the Cu electrodes during plasma electrolysis over a wide array of applied voltages and processing time is investigated systematically. Homogeneously distributed 3D coral-like microstructures are observed by scanning electron microscopy on the Cu surface after the in-liquid plasma treatment. These 3D microstructures grow with increasing plasma processing time. Interestingly, the microstructured copper electrode is composed of CuO as a thin outer layer and a significant amount of inner Cu$_{2}$O. Furthermore, the oxide film thickness (between 1 and 70 µm), the surface morphology, and the chemical composition can be tuned by controlling the plasma parameters. Remarkably, the fabricated microstructures can be transformed to nanospheres assembled in coral-like microstructures by a simple electrochemical treatment.


Verlagsausgabe §
DOI: 10.5445/IR/1000139759
Veröffentlicht am 12.11.2021
Originalveröffentlichung
DOI: 10.1002/adfm.202107058
Scopus
Zitationen: 12
Web of Science
Zitationen: 14
Dimensions
Zitationen: 14
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 02.02.2022
Sprache Englisch
Identifikator ISSN: 1616-301X, 1057-9257, 1099-0712, 1616-3028
KITopen-ID: 1000139759
HGF-Programm 38.02.02 (POF IV, LK 01) Components and Cells
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 32
Heft 6
Seiten Art.Nr. 2107058
Vorab online veröffentlicht am 27.10.2021
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page