KIT | KIT-Bibliothek | Impressum | Datenschutz

Feature-based Groundwater Hydrograph Clustering Using Unsupervised Self-Organizing Map-Ensembles

Wunsch, Andreas; Liesch, Tanja; Broda, Stefan

Hydrograph clustering helps to identify dynamic patterns within aquifers systems, an important foundation of characterizing groundwater systems and their influences, which is necessary to effectively manage groundwater resources. We develope an unsupervised modeling approach to characterize and cluster hydrographs on regional scale according to their dynamics. We apply feature-based clustering to improve the exploitation of heterogeneous datasets, explore the usefulness of existing features and propose new features specifically useful to describe groundwater hydrographs. The clustering itself is based on a powerful combination of Self-Organizing Maps with a modified DS2L-Algorithm, which automatically derives the cluster number but also allows to influence the level of detail of the clustering. We further develop a framework that combines these methods with ensemble modeling, internal cluster validation indices, resampling and consensus voting to finally obtain a robust clustering result and remove arbitrariness from the feature selection process. Further we propose a measure to sort hydrographs within clusters, useful for both interpretability and visualization. ... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000139760
Veröffentlicht am 12.11.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0920-4741, 1573-1650
KITopen-ID: 1000139760
Erschienen in Water Resources Management
Verlag Springer
Vorab online veröffentlicht am 28.10.2021
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page