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Abstract The slow dynamics of unbalanced rotors
with a passive self-balancing system are investigated
considering the interaction of the mechanical system
with a limited power engine. The slow dynamics equa-
tions are obtained using the averaging technique for
partially strongly damped systems. Stationary system
configurations, different types of nonstationary solu-
tions while passing through resonance, and areas of
stability and attraction are investigated.

Keywords Self-balancing · Averaging · Nonlinear
resonance · Sommerfeld effect

1 Introduction

Self-balancing systems were invented at the beginning
of the twentieth century [15]; they allow for the com-
plete compensation of unbalance at critical rotor speeds
and can be used in mechanical systems with variable
imbalance, such as washing machines and laboratory
centrifuges. Most analytical studies of self-balancing
systems focus on the existence and stability of compen-
sating solutions, with the rotor speed being assumed
to be constant and the interaction of the mechanical
system without considering the drive ([1,6,12,14]).
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Experimental studies of the dynamics of a simple self-
balancing system were also performed at a given con-
stant rotor drive speed [7]. However, the vibrations of
even simpler mechanical systems can have a strong
influence on drive rotation, causing the system to be
captured into resonance and hindering it from reaching
operating speed (see [2,3]). The existence of nonsyn-
chronous motions in autobalancing systems near the
resonant rotation speed considering the engine charac-
teristic was described in [13]. It was shown that at a
certain speed near resonance, the balancing masses no
longer synchronize with the rotor and remain instead
at a frequency just below the resonance rate. This bal-
ancing mass behavior leads to a strong increase in the
system vibration amplitude and in some cases to a
strong modulation. Similar solutions have also been
mentioned in works by other authors, e.g., when inves-
tigating the effect of damping on the speed of synchro-
nization of balancing masses [5], in studies of bal-
ancing quality by increasing the number of balanc-
ing masses and/or their raceways [8,9], and studies
of self-balancing in a disk mounted on a flexible can-
tilever shaft [11]. In most of these publications, how-
ever, these solutionswere observed assuming a given or
constant rotor speed, which in most cases is not an ade-
quate assumption when studying the passage through
resonance. Thus, these phenomena have not yet been
systematically studied and explained. The objective of
this paper is to consider the slow dynamics of a sim-
ple self-balancing system while passing through res-
onance, considering interactions with limited power
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engines, the study of types of possible solutions, and
the estimation of areas of their existence, stability and
attraction.

The paper is structured as follows. Section 2 presents
a minimal plane model of an unbalanced rotor with a
self-balancing system and its equations of motion. In
Sect. 3, the slow dynamics equations of the consid-
ered system are derived. Stationary solutions of the
system are considered in Sect. 4. Section 5 presents
an overview of the types of transient processes occur-
ring in the system. Section 6 investigates the regions
of attraction of different types of solutions taking into
account the variation in the engine characteristic and
the initial rotor speed. Section 7 is devoted to investi-
gating the stability of the transient resonance solution.
The most important results of this study are summa-
rized in Sect. 8.

2 The simplest model of an unbalanced rotor with
a pendulum-type self-balancing device

Consider the system in Fig. 1a that represents the
simplest model of an unbalanced rotor with a self-
balancing device driven by a limited power engine.

A rotor of mass M and moment of inertia Jr is elas-
tically suspended by a spring-damper element of stiff-
ness c and damping βr . The center of mass of the rotor
has an offset e relative to the axis of rotation. Two pen-
dulum balancers of massm, mass moment of inertia Jp
and length r are mounted coaxially with the main rotor.
There is viscous damping between the main rotor and
the pendulum balancers (damping coefficient βr ). The
rotor is excited by a limited power engine.

Equations of motion and the nondimensional param-
eters The equations of motion for this system can be
written as follows:

(M+2m)ẍ + βr ẋ + cr x = Me(φ̇2 cosφ + φ̈ sin φ)

+ mr
2∑

i=1

(
(φ̇ + ψ̇i )

2 cos (φ + ψi )

+(φ̈ + ψ̈i ) sin (φ + ψi )
)
,

(1)

(Jr + Me2)φ̈ − βφ(ψ̇1 + ψ̇2) = Tmot + Meẍ sin φ,

(2)

(Jp + mr2)(ψ̈i + φ̈i ) + βφψ̇i

= mr ẍ sin (φ + ψi ), i = 1, 2. (3)

Equation (1) describes the displacement of thewhole
system, Eq. (2) describes the rotational angle of the
rotor, andEq. (3) describes the rotation of the pendulum
balancers.

The simplest case of linearized static characteristics
is used to describe the engine torque:

Tmot = U (ω∗ − φ̇). (4)

Here, parameterU is the slope of the engine character-
istic, and parameter ω∗ is the nominal rotation speed
of the engine.

New coordinates are introduced to simplify further
analysis: mean phase shift

ψ = ψ1 + ψ2

2
(5)

and the angle between the pendulums (s. Fig. 1b)

δ = ψ1 − ψ2. (6)

The dimensionless parameters are introduced

M∗ = M + 2m; k2 = cr
M∗ ; τ = kt; ξ = M∗

mr
x;

σ = βc

2kM∗ = O(1);

s = Me

mr
; ε = 1

1 + Jr/Me2
� 1;

br = βrε

kMe2
= O(1); w = mr

M∗e
; λ = ω∗

k
;

u = U

kMe2
; p = 1

1 + Jp/mr2
;

bp = βr p

kmr2
= O(1); μ = p

m

M∗ = O(ε).

(7)

The equations of motion are rewritten in the form:

ξ ′′ + 2σξ ′ + ξ = fξ (φ, φ′, φ′′, ψ,ψ ′, ψ ′′, δ, δ′, δ′′),
(8)

φ′′ − 2brψ
′ = ε fφ(φ, φ′, ξ ′′), (9)

ψ ′′ + (bp + 2br )ψ
′ = ε fψ(ξ ′′, φ, φ′, ψ, δ), (10)

δ′′ + bpδ
′ = ε fδ(ξ

′′, φ, φ′, ψ, δ), (11)

123



Passing through resonance of the unbalanced...

Fig. 1 a Model of a rotor
with a self-balancing
device; b new coordinates

(a) (b)

where

fξ (φ, φ′, φ′′, ψ,ψ ′, ψ ′′, δ, δ′, δ′′)
= s(φ′2 cosφ + φ′′ sin φ)+

+
(

φ′ + ψ ′ + δ′

2

)2

cos

(
φ + ψ + δ

2

)

+
(

φ′′ + ψ ′′ + δ′′

2

)
sin

(
φ + ψ + δ

2

)

+
(

φ′ + ψ ′ − δ′

2

)2

cos

(
φ + ψ − δ

2

)

+
(

φ′′ + ψ ′′ − δ′′

2

)
sin

(
φ + ψ − δ

2

)
,

(12)

ε fφ(φ, φ′, ξ ′′) = ε(wξ ′′ sin φ + u(λ − φ′)), (13)

ε fψ(ξ ′′, φ, φ′, ψ, δ)

= μξ ′′ sin (φ + ψ) cos

(
δ

2

)
− ε fφ, (14)

ε fδ(ξ
′′, φ, φ′, ψ, δ) = 2μξ ′′ sin

(
δ

2

)
cos (φ + ψ).

(15)

It is important to note that all damping coefficientsσ, bp
and br are not small.

3 Asymptotic analysis

To derive equations describing the slow dynamics of
the autobalancing system, the averaging method for
partially strongly damped systems is used. The method
was proposed in [4], and its mathematical motivation is
described in [3] and [2]. The main idea of the method is
to separate strongly and weakly damped variables and

to consider only the slow dynamics of weakly damped
variables. Strongly damped variables are replaced by
their stable stationary or periodic solutions on the slow
manifold.

First, consider Eqs. (9)–(11). The variable transfor-
mation is introduced

ψ̃ = ψ ′ + (bp + 2br )ψ

bp + 2br
, (16)

ψ = ψ̃ + α, (17)

δ̃ = δ′ + bpδ

bp
, (18)

δ = δ̃ + β, (19)

ω = φ′. (20)

The equations can be written in the form

φ′ = ω, (21)

ω′ = ε fφ − 2br (bp + 2br )α, (22)

ψ̃ ′ = ε fψ
bp + 2br

, (23)

α′ = −(bp + 2br )α − ε fψ
bp + 2br

, (24)

δ̃′ = ε fδ
bp

, (25)

β ′ = −bpβ − ε fδ
bp

. (26)

Variables α and β are strongly damped and can be
replaced in the first order approximation by the sta-
tionary solutions of Eqs. (24) and (26) respectively:

α0 = − ε fψ
(bp + 2br )2

, (27)
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β0 = −ε fδ
b2p

. (28)

So in the first-order approximation

ψ = ψ̃ + O(ε), (29)

δ = δ̃ + O(ε). (30)

Then, Eq. (8) can also be rewritten as

ξ ′′ + 2σξ ′ + ξ =ω2

(
s cosφ + cos

(
φ + ψ̃ + δ̃

2

))

+ ω2 cos

(
φ + ψ̃ − δ̃

2

)
+ O(ε).

(31)

Then, the first approximation describing a purely
forced solution can be easily found explicitly:

ξp =ξ̂p(1 − ω2)

(
s cos(φ) + cos

(
φ + ψ̃ + δ̃

2

)

+ cos

(
φ + ψ̃ − δ̃

2

))

+ 2ξ̂pσω

(
s sin(φ) + sin

(
φ + ψ̃ + δ̃

2

)

+ sin

(
φ+ψ̃− δ̃

2

))
, ξ̂p = ω2

(1 − ω2)2 + 4ω4σ 2 .

(32)

Variable transformation

ξ = ξp + ρ sin κτ + ν cos κτ, (33)

ξ ′ = ξ ′
p + ρκ cos κτ − νκ sin κτ

−σ(ρ sin κτ + ν cos κτ), (34)

κ =
√
1 − σ 2, (35)

leads to a system of two differential equations of the
first order with strongly damped variables:

ρ′ = −σρ + O(ε), (36)

ν′ = −σν + O(ε). (37)

Stationary solutions for variablesρ and ν have amagni-
tude order of ε, and they can be ignored in the first-order
approximation. Finally, considering φ as an indepen-
dent variable, the system can be written in a standard
form

dω

dφ
= 1

ω

(
ε fφ + 2brε fψ

bp + 2br

)
, (38)

dψ̃

dφ
= ε fψ

ω(bp + 2br )
, (39)

dδ̃

dφ
= ε fδ

ωbp
. (40)

The averaged equations of the first-order approxima-
tion are

ω̄′ =εbpu(λ − ω̄)

ω̄(bp + 2br )
− ω̄3B(2μbr (1 + cos δ) + εbpsw)

2(bp + 2br )(A2 + B2)

+
ω̄3 cos

(
δ̄
2

) (
A(μbr s − εwbp) sin ψ̄ − B(μbr s + εwbp) cos ψ̄

)

(bp + 2br )(A2 + B2)
,

(41)

ψ̄ ′ = − εu(λ − ω̄)

ω̄(bp + 2br )
− ω̄3B(μbr (1 + cos δ) − εsw)

2(bp + 2br )(A2 + B2)

+
ω̄3 cos

(
δ̄
2

) (
A(μs + 2εw) sin ψ̄ − B(μs − 2εw) cos ψ̄

)

(bp + 2br )(A2 + B2)
,

(42)

δ̄′ =
μω̄3

(
A

(
2 cos

(
δ̄
2

)
+ s cos ψ̄

)
+ Bs sin ψ̄

)
sin

(
δ̄
2

)

bp(A2 + B2)
,

A = ω̄2 − 1, B = 2σ ω̄. (43)
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Fig. 2 Stationary
configurations of the
system)

(a) (b) (c)

Here, ω̄ is the averaged rotor velocity, ψ̄ is the averaged
mean phase shift, and δ̄ is the averaged angle between
the pendulums.

4 Stationary solutions

Equations for determining stationary solutions are
obtained by setting the right-hand sides of Eqs. (41)–
(43) to zero. The system has three types of stationary
solutions, as shown in Fig. 2.

1. Compensating configuration I (see Fig. 2a)

ψ̄ = π, (44)

δ̄ = 2 arccos
( s
2

)
, (45)

ω̄ = λ (46)

With this type of solution, the pendulum balancers
fully compensate for the imbalance in the main
rotor, the effective center of mass of the system
lies on the axis of rotation, and the rotor rotates at
its nominal speed. This solution is always stable.

2. Coinciding configuration I I (see Fig. 2b)

ψ̄ = arctan

⎛

⎝
B

(
2A2 + √

s2(A2 + B2) − 4B2
)

A
(
−4B2 + √

s2(A2 + B2) − 4B2
)

⎞

⎠ ,(47)

δ̄ = 0. (48)

In this configuration, the steady-state rotor speeds
cannot be determined analytically. However, the
equations can be solved, e.g., with respect to the
engine parameter u, as a function of the stationary
rotor speed ω̄:

u = − ω5wσ A2(s2 + 1) + B2(s2 − 1) ± √
A2(A2s2 + B2(s2 − 1))

s(ω̄ − λ)(A2 + B2)2
.

(49)

In this configuration, the pendulum balancers have
the same angular position and, depending on the

rotor speed, can either partially compensate for the
imbalance in themain rotor or intensify it. This type
of solution is identical to the stationary solutions
for the vibration exciter with two coaxial imbal-
ances (see [2]). The only difference is the stability
of the branches of this type of solution. In the case
of the vibration exciter, there are stable branches in
both the undercritical and overcritical speed ranges.
However, only the branch in the undercritical range
is stable for the autobalancing system. Both over-
critical branches of the solution are unstable.

3. Opposing configuration I I I (see Fig. 2c)

ψ̄ = arctan
A

B
, (50)

δ̄ = π. (51)

Similar to the previous configuration, the stationary
rotor speeds are determined indirectly by solving
equations relating to the engine parameter u as a
function of the stationary rotor speed ω̄:

u = ω̄5sσw

(ω̄ − λ)(A2 + B2)
. (52)

In this configuration, the pendulum balancers are
in the counterphase and compensate for each other.
This configuration is always unstable.

Figure 3 shows the dependence of stationary rotor
speeds for all stationary configurations on the parame-
ter u corresponding to the engine power for the system
with the following dimensionless parameters:

s = 1, p = 0.99, w = 0.98,

λ = 1.51, br = 1, bp = 1,

μ = 0.0097, ε = 0.0099, σ = 0.1.

(53)
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Fig. 3 Dependence of stationary rotor speeds on the bifurcation
parameter u proportional to the engine characteristic slope

5 Numeric run-up simulations

Next, the results of the numerical simulations for rotor
acceleration at different engine characteristic slope val-
ues and different initial conditions are considered.

Figure 4 shows the results of the run-up simulation
in the case of a low value of the engine characteris-
tic slope, which corresponds to a low-power engine. If
the angular positions of the pendulums coincide at the
beginning (δ0 = 0, red lines in Fig. 4), this configura-
tion is maintained when the rotor accelerates. The sys-
tem tends to achieve a stable stationary type I I solution
that corresponds to stationary capture into resonance,
also known as the Sommerfeld effect [3].

If the parameter u is increased above the critical
value u∗

1 (see Fig. 5), the stationary solution of type
I I disappears. Instead, there is a periodic solution
characterized by a very slow modulation of the rotor
speed (red line in Fig. 5a). In this case, the pendulums

continue to move together as a unit, but they rotate
slightly slower than the main rotor, resulting in a peri-
odic change in the effective imbalance of the entire
system. The mechanism of the emergence of this type
of solution is discussed in detail in [2].

In both cases considered, the resonant solutions
coexist with the stable compensating solution corre-
sponding to the passage through resonance (see the
green lines in Figs. 4 and 5).

In self-balancing systems, this solution coexistswith
a stable compensating solution (see the green and red
lines in Fig. 5a).

If parameter u is further increased above the critical
value u∗

3, the periodic solution disappears (see Fig. 6).
Thus, in the case of ideal fulfillment of initial condi-
tions δ0 = 0, the system cannot reach the compensating
solution within a finite time, remaining near the unsta-
ble stationary solution of type I I (see the red line in
Fig. 6a). This scenario does not occur in practice. The
slightest deviation from the initial conditions results
in the system leaving the slow manifold δ = 0 and
tends toward a compensatory solution (the blue lines
in Fig. 6).

6 Attraction areas of compensating and resonance
solutions

The coexistence of several stable solutions motivates a
careful analysis of their attraction areas. To geometri-
cally interpret the attraction areas of different types of
solutions, themean phase shift ψ̄ and the angle between
the pendulums δ̄ are converted to the coordinates of the
effective center of mass of the entire system (rotor and

Fig. 4 Evaluation of the
rotor rotation speed ω a and
the angle δ between the
pendulums b for different
values of initial angle δ0
between the pendulums and
the engine characteristics
slope u = 1.5, (σ = 0.1)

(a) (b)
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Fig. 5 Evaluation of the
rotor rotation speed ω a and
the angle δ between the
pendulums b for different
values of initial angle δ0
between the pendulums and
the engine characteristics
slope u = 4, (σ = 0.1)

(a) (b)

Fig. 6 Evaluation of the
rotor rotation speed ω a and
the angle δ between the
pendulums b for different
values of initial angle δ0
between the pendulums and
the engine characteristics
slope u = 9, (σ = 0.1)

(a) (b)

two balancing pendulums) in the corotating coordinate
system:

ξ̄c = s + 2 cos(ψ̄) cos

(
δ̄

2

)
, (54)

η̄c = 2 sin(ψ̄) cos

(
δ̄

2

)
. (55)

The point with coordinates (ξ̄c = 0, η̄c = 0) corre-
sponds to the axis of rotor rotation. If the two balancing
pendulums coincide (δ̄ = 0), the center of mass moves
in a circle whose center is displaced by dimensionless
eccentricity s from the axis of rotation. If the balancing
pendulums are open (δ̄ �= 0), the center of mass lies
not on the circle but inside it.

Considering the rotor speed ω̄ as a third coordinate
provides a three-dimensional phase space filled with
phase trajectories (see Fig. 7) and three-dimensional
areas of attraction (attraction volumes) of different
types of solutions.

(a) (b)

Fig. 7 Phase flow at acceleration from a resting position in cases
of stationary a and periodic b resonance solutions

Figure 8 shows cross sections of the attraction areas
of different solution types for different values of engine
parameter u by planes corresponding to different lev-
els of initial rotor velocity ω̄0. The shaded areas corre-
spond to the attraction area of the compensating solu-
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Fig. 8 Attraction area of
the compensating solution
for different values of the
engine characteristics slope
and different initial rotor
velocities

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)
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Fig. 9 Existence and stability areas of the periodic solution

tion (CS), and the white areas correspond to the attrac-
tion area of the resonance solution (RS).

Three parameter configurations are considered: one
where the stationary resonance solution (RL) exists
(u = 1.5, see the left-hand column of the diagrams) and
two with the periodic resonance solution (u = 5, see
the middle column of the diagrams and u = 7, see the
right-hand column of the diagrams). For small values
of engine parameter u, it is possible to realize a com-
pensating solution while accelerating the rotor from its
rest position only within a small range of initial bal-
ancing pendulum positions (see Fig. 8a). An increase
in parameter value u, corresponding to an increase in
engine power, leads to an extension of the attraction
area of the compensating solution (compare Fig. 8b
and c).

In all three cases considered, increasing the initial
rotor speed in the undercritical region (ω̄0 < 1) does
not significantly extend the region of attraction of the
compensating solution, but the region rotates about
the rotor axis in the direction of the phase flow (see
Figs. 8a–f and 7). When the rotor starts in the super-
critical region (ω̄0 > 1), an increase in the initial rotor
speed leads to a rapid increase in the region of attrac-
tion of the compensating solution. However, even in
the case of an initial rotor speed corresponding to the
nominal engine speed, small areas of attraction of the
resonant solutions remain (see Fig. 8m–o).

7 Periodic resonance solution stability

Unlike the vibration exciter, the periodic resonance
solution in self-balancing systems can become unsta-
ble. To assess the stability of the periodic solution

ω̄ = Ω∗(φ), ψ̄ = Ψ ∗(φ), δ̄ = 0 Eqs. (41)–(43) are
linearized near this periodic solution. The result is a
system of linear differential equations with periodic
coefficients of the following structure:

Δω̄′ = dFω

dω̄

∣∣∣∣
ω̄=ω∗,ψ̄=Ψ ∗,δ̄=0

Δω̄

+dFω

dψ̄

∣∣∣∣
ω̄=ω∗,ψ̄=Ψ ∗,δ̄=0

Δψ̄, (56)

Δψ̄ ′ = dFψ

dψ̄

∣∣∣∣
ω̄=ω∗,ψ̄=Ψ ∗,δ̄=0

Δω̄

+dFψ

dψ̄

∣∣∣∣
ω̄=ω∗,ψ̄=Ψ ∗,δ̄=0

Δψ̄, (57)

Δδ̄′ = dFδ

dδ̄

∣∣∣∣
ω̄=ω∗,ψ̄=Ψ ∗,δ̄=0

Δδ̄, (58)

where Fω, Fψ and Fδ are the right-hand sides of Eqs.
(41), (42) and (43), respectively. It is important to note
that Eq. (58), which describes the angle between the
pendulum balancers near the periodic solution, is com-
pletely decoupled from Eqs. (56) and (57). From the
numerical calculation of the Floquet multipliers, it fol-
lows that the periodic solution stability is determined
alone by the stability of the solution to this equation.
Therefore, only this Floquet multiplier needs to be cal-
culated to estimate the stability. The areas of existence
and system periodic resonance solution stability are
shown in Fig. 9. The area filled in gray corresponds
to the periodic resonant solution stability region. In the
cross shaded area, the periodic resonance solution is
unstable. In the unshaded (white) regions, the periodic
resonance solution does not exist.

The system behavior during acceleration in the case
of an unstable periodic solution is shown in Fig. 10.
A small deviation in the initial conditions from δ0 =
0 leads to an increasing angle between the pendulum
balancers (see the red line in Fig. 10b). The rotor speed
can remain close to the resonance solution for a long
time until the angle between the pendulums reaches a
critical value, after which the system quickly reaches a
stable compensating solution (see the blue line in Fig.
10a).

8 Conclusions

The slow dynamics of self-balancing systems while
passing through resonance were investigated using the
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Fig. 10 Evaluation of the
rotor rotation speed ω (a)
and the angle δ between the
pendulums (b) for different
initial values of angle δ

between the pendulums in
the case of an unstable
periodic solution (u = 8,
σ = 0.2)

(a) (b)

averaging method for partially strongly damped sys-
tems. Thus, the description of the system with four
degrees of freedom was reduced to only three differ-
ential equations of the first order. Both types of capture
into resonance typical for the vibration exciter with
two coaxial imbalances were also found in the self-
balancing system. In contrast to the vibration exciter,
the periodic solution, which corresponds to nonstation-
ary capture into resonance and is characterized by a
very slow modulation of the rotor speed, can become
unstable in self-balancing systems at sufficiently high
values of the engine characteristic slope and damping
in the oscillating part of the system. In the considered
case, both resonant solutions coexist with an overcriti-
cal solution, which provides full compensation for the
system imbalance. Whether the system passes through
or is caught into resonance is highly dependent on the
initial conditions. In the case of lowvalues of the engine
characteristic slope, the attraction area of the compen-
sating solution is negligibly small and increases with
the engine power.

Further investigations will be focused on the exper-
imental verification of the obtained results alongside
with possible generalizations for various exciters [3,10]
including self-synchronization concepts [1].
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