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ABSTRACT Accurate and safe neurosurgical intervention can be affected by intra-operative tissue
deformation, known as brain-shift. In this study, we propose an automatic, fast, and accurate deformable
method, called iRegNet, for registering pre-operative magnetic resonance images to intra-operative ultra-
sound volumes to compensate for brain-shift. iRegNet is a robust end-to-end deep learning approach for
the non-linear registration of MRI-iUS images in the context of image-guided neurosurgery. Pre-operative
MRI (as moving image) and iUS (as fixed image) are first appended to our convolutional neural network,
after which a non-rigid transformation field is estimated. The MRI image is then transformed using the
output displacement field to the iUS coordinate system. Extensive experiments have been conducted on
two multi-location databases, which are the BITE and the RESECT. Quantitatively, iRegNet reduced the
mean landmark errors from pre-registration value of (4.18 + 1.84 and 5.35 4+ 4.19 mm) to the lowest
value of (1.47 &+ 0.61 and 0.84 £ 0.16 mm) for the BITE and RESECT datasets, respectively. Additional
qualitative validation of this study was conducted by two expert neurosurgeons through overlaying MRI-iUS
pairs before and after the deformable registration. Experimental findings show that our proposed iRegNet
is fast and achieves state-of-the-art accuracies outperforming state-of-the-art approaches. Furthermore,
the proposed iRegNet can deliver competitive results, even in the case of non-trained images as proof of
its generality and can therefore be valuable in intra-operative neurosurgical guidance.

INDEX TERMS Brain-Shift, computer-aided diagnosis, medical image registration, neurosurgery, intra-
operative ultrasound.

I. INTRODUCTION

In neurosurgery, inferring the pathological tissue while avoid-
ing damage to other surrounding anatomical structures is
one of the key challenges. This is related to the difficulty
of visually defining these pathologic structures from healthy
tissue since most primary brain tumors grow by infiltration of
healthy parenchyma [1]. Image-guided neurosurgery (IGN),
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the integration of medical imaging modalities with brain
surgery has become an essential tool for assisting neurosur-
geons to overcome the above challenge [2]. However, IGN
systems have a major drawback since all these systems use
pre-operative imaging on which the planning and interven-
tional clinical phases are based. Neurosurgical manipulation,
swelling due to osmotic drugs as well as anesthesia cause
brain movements, known as ‘‘brain-shift”’, which dramati-
cally limits the utility of pre-operative imaging for neurosur-
gical navigation [3]-[5].

147579


https://orcid.org/0000-0002-8630-9046
https://orcid.org/0000-0002-0474-4723
https://orcid.org/0000-0002-3677-8258
https://orcid.org/0000-0001-8358-1813
https://orcid.org/0000-0001-7118-4730
https://orcid.org/0000-0001-5239-5305
https://orcid.org/0000-0002-5048-4141

IEEE Access

R. A. Zeineldin et al.: iRegNet: Non-Rigid Registration of MRI to Interventional US for Brain-Shift Compensation

Hence, IGN systems use a wide range of imaging modali-
ties for measuring brain-shift in the operating room including
intra-operative magnetic resonance images (iMRI) and intra-
operative ultrasound images (iUS) [6]-[8]. In the case of
iMRI, the brain displacement can be corrected by registering
pre-operative MRI images with MRI images acquired during
surgical procedures. Although iMRI offers soft-tissue con-
trast and diffusion-weighted imaging, it requires long scan
times, may be associated with high costs, and the strong
magnetic field can affect electronic systems. iUS is used as
an alternative to iMRI providing inexpensive interventional
imaging in real-time, however, with a reduced imaging qual-
ity compared with the iMRI. The use of three-dimensional
reconstructed iUS is introduced in [9], allowing accurate and
effective navigation.

Therefore, an automatic, fast, robust fusion of
3D-reconstructed iUS data with the pre-operative MRI
images becomes highly important to accomplish the inter-
ventional procedures. However, the registration of misaligned
pre-operative MRI images to the iUS is still a complex and
challenging problem according to the type of information
represented by each modality. Previous studies of medical
image registration can be categorized into classical and
learning-based methods [10]-[12]. Classical MRI to US
image registration approaches include various choices of
similarity metrics such as Correlation Coefficient (CC), and
Correlation Ratio (CR), Mutual Information (MI), Normal-
ized Correlation Coefficient (NCC), Self-Similarity Correla-
tion (SSC), and Linear Correlation of Linear Combination
(LC2) [13]-[27]. One major drawback of the traditional
methods is the high computational cost required to align every
3D MRI and iUS pair even with the efficient implementation
on modern graphical processing units (GPUs).

Recently, deep learning, a subfield of artificial intelli-
gence, has gained increasing popularity because of its out-
standing performance in various computer vision and image
analysis applications including, but not limited to object
detection [28], feature extraction [29], image segmenta-
tion [30], [31], image classification [32], and other medical
applications [33], [34]. This learning process is achieved
through backpropagation, which is a feedback loop for com-
puting the partial derivative of the cost function with respect
to the network weights [35]. Initially, supervised deep learn-
ing methods were proposed [36], [37] to learn similarity
features from the training data using different imaging modal-
ities. Then, deep learning methods have been applied to
solve the challenging multi-modal medical image registra-
tion problem where images from different image sensors are
aligned together [38]-[42]. Further, unsupervised learning
was developed as demand for faster registration procedures
and to eliminate the challenges related to the ground truth data
generation and optimization techniques [43]-[45]. Although
our proposed method, iRegNet, uses an encoder-decoder-
based method similar to [39] and [44], this is, to our best
of knowledge, the first study to use the truth warped images
as the target of the registration rather than the fixed image
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which provides more precise information for the training
process. Unsupervised approaches show promising regis-
tration results; however, it is still difficult to apply them
to multi-modal registration of MRI and iUS applications
since represented information originates from very distinct
physical properties. Lately, CNN learning methods have
been introduced as part of the Correction of Brain-shift
with Intra-Operative Ultrasound challenge (CuRIOUS) [46]
in conjunction with the Medical Image Computing and
Computer-Assisted Intervention (MICCAI) [47], [48]. Over-
all, once the deep learning networks are trained, they can pro-
vide a faster registration than classical optimization methods,
without the need for fine-tuning parameters at the test time,
in addition to being more robust to outliers.

Our preliminary communication of this research work is
presented in [49], where we investigated an initial deep
learning-based method for automatic pre-operative MRI and
interventional US registration based on the mean squared
error (MSE) metric. A primary comparison was reported
with three public classical non-learning methods namely,
ANTs, NiftyReg, and deeds using only a single dataset. Here,
we propose iRegNet, an automated deformable MRI to iUS
registration workflow using deep learning, intending to pro-
vide considerably improved robustness and computational
performance toward brain-shift compensation for assisting
neurosurgeons intra-operatively. The contributions of this
study include the following advancements:

= Presenting the two-step workflow of the proposed iReg-
Net method, which first takes two input volumes: pre-
operative MRI (the moving image) and the iUS (the
fixed image) as input. Then, the deep neural network
generates the corresponding deformation field and cor-
rects the brain-shifted MRI volume using deformable
registration.

» Utilizing the truth warped images as the target of the
registration rather than the fixed image in the conven-
tional registration method, e.g., Voxelmorph [44]. This
provides more accurate guided information for training
iRegNet and, therefore, contributes to the overall accu-
racy of the registration results.

= Carrying out experiments using 36 patients from two
publicly available multi-location databases: BITE and
RESECT using three variations. The first variation
includes training data from the BITE dataset, the sec-
ond variation employs cases from the RESECT dataset,
while a combination of both datasets cases is utilized in
the third variation.

= Comprehensively evaluating the MRI to iUS registration
results using two numerical metrics: the mean target
registration errors (mMTRE) and the computational pro-
cessing time. Notably, almost two 3D MRI-iUS pairs
per second can be registered on the same GPU using the
proposed approaches.

= Competitive registration results when applying our
methods on unseen MRI-iUS cases, which evidences the
general applicability of our methods.
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= A detailed comparison with the state-of-the-art non-
learning- and learning-based registration algorithms
across multi-site volumes.

= Qualitative analysis is performed (by two experienced

neurosurgeons) highlighting the clinical applicability of
our framework in neurosurgical guidance.

The remainder of the paper is structured as follows: The
next section describes briefly medical image registration and
our proposed MRI-iUS registration workflow. In Section III,
experiments and the employed registration procedure are pre-
sented. Finally, experimental results on two datasets in multi-
ple locations are discussed in Section IV, and conclusions are
summarized in Section V.

Il. METHODS

A. DEFORMABLE IMAGE REGISTRATION

Image registration is the process of finding spatial correspon-
dences between two or more images [10], [50], [51]. Within
the medical field, image registration is attractive for providing
more information when the imaging data come from different
sources and/or different modalities. The term deformable
denotes that the images are related through non-linear spa-
tial deformation and the resultant transformation not only
includes rigid operations (such as rotation and translation) but
also non-uniform operations like shearing. Consider two sets
of images: the source or moving image Ij; and the target or
fixed image Ir. Then, the goal of deformable registration is
finding the optimal deformation field ¢ that relates the two
images while optimizing the energy function &:

¢ =SUr,Iu-9) +R(®) ey

where S quantifies the level of similarity between the
Iy and Ir images, and the regularization term R(¢) allows
a smooth transformation aiming to fulfill any user-specific
requirements. In this study, we use the MRI as the moving
image and iUS as the fixed image so that we could update the
MRI to reflect the brain-shift intra-operatively.

B. LEARNING-BASED REGISTRATION FRAMEWORK

In this section, we describe the proposed registration work-
flow (presented in Fig. 1). Section B.1) presents the devel-
oped convolutional neural network (CNN). The loss functions
of the CNN are illustrated in Section B.2), and the global opti-
mization of the deformation field is explained in Section B.3).

1) DEEP NEURAL NETWORK ARCHITECTURE
Fig. 2 depicts the overall architecture of the proposed CNN
utilized in our experiments. The proposed network is based
on the U-Net structure [30], which has been widely utilized
in various medical applications achieving competitive perfor-
mance. 3D version of U-Net is introduced by Cicek et al [52],
in which 3D operations are applied instead of the standard
2D processes. Besides, several studies have demonstrated
enhancements to the original U-Net [12], [31], [45].

Similar to the standard U-Net, our proposed network
has an encoder-decoder architecture with an image analysis
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FIGURE 1. A representative workflow of the proposed MRI-iUS

deformable registration approach, where dashed red arrows indicate the
data flows only required in the training stage.
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FIGURE 2. The enhanced 3D CNN architecture for predicting the
deformation field ¢. The network consists of 3D convolution with batch
normalization layers (blue blocks), maximum pooling (orange arrows),
up-sampling (grey arrows), and concatenate connections (dashed grey
lines). The number of features is doubled in each step of the encoder
part, while halved in the decoder part.

path (left side) and deformation estimation path (right side).
As shown in Fig. 2, the feature analysis is designed as a 3D
CNN with four repetitive down-sampling blocks. The input
to the network is 128 x 128 x 128 voxels with 2 channels
of the MRI and iUS images. Each encoder block consists of
two consecutive 3 x 3 x 3 convolutional layers (unpadded
convolutions) with a stride of 2, each followed by a rectified
linear unit (ReLU) and batch normalization. At each down-
sampling step, the number of feature maps is doubled, while
the spatial dimension is halved using 3D spatial max pooling.
Initialization of all convolutional kernels is done by using
the Glorot or Xavier uniform [53] with default bias set to
zeros. It is worth noting that this contracting architecture is
similar to the classical pyramid image registration scheme.
To restore the original image resolution, four up-sampling
blocks are adopted in the deformation estimation path. Every
step in the up-sampling path is composed of a3 x 3 x 3 trans-
posed convolutional layer (up-convolution) with a stride of 2
followed by a ReLU and batch normalization. Dissimilar to
the encoder, using up-convolution doubles the input spatial
resolution and halves the number of feature maps. The high-
level features in the encoding path are concatenated with the
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corresponding low-level features in the decoding path via skip
connections. As the output layer, a 1 x 1 x 1 convolutional
layer is incorporated to get the output deformation field with
a dimension of 128 x 128 x 128 in x, y, and z directions,
respectively.

2) LOSS FUNCTIONS

The choice of the loss function plays a crucial role in our
network training and contributes to the overall performance
of the CNN. As illustrated in Fig. 1, the overall loss function
Loveran consists of two main elements (refer to Equation (2)).
The similarity measurement between the resultant deformed
image (¢.ly) and the ground truth warped image Iy is
denoted by Ly;y,, while Ly, represents the spatial deforma-
tion gradient error.

Loverali = Lgim + Ldisp )

In our experiments, we employ two distinct similarity
metrics of MSE [54] and the local normalized correlation
coefficient (NCC) [55] as Lgin,. Let Iy (p) and Iy (p) represent
a corresponding patch p in the moving and truth warped
images, respectively. MSE and NCC are calculated as follows:

MSE(Iy, ¢.Ing)

_ _ 2
= ] Dpey (W) = G-I ) 3)
NCC(lw, ¢.Im)
1
- ]V peX

i (w®) —Tw) X (0 In (@) — &I (p))

X
E v - T ) (6-dn ) — 5T )’
@)

where Iy (p) denote the mean pixel intensities for the warped
image. For MRI-iUS registration, it is very important to
choose modality-invariant similarity metrics that can eval-
uate the similarity between MRI and iUS images after the
deformable alignment. The NCC similarity is invariant to
scaling and linear intensity variations, which makes it more
preferable in our application. Similar to traditional registra-
tion approaches, the second loss works as a regularization
term preventing a non-smooth deformation field. Let d denote
the predicted spatial gradient and d;,;; denote the ground
truth gradient. Then, Lg;s, can be calculated as follows:

Laisp =Y, _ Idunp) = dP)] 5)

3) GLOBAL OPTIMIZATION

Traditionally, the optimization of the deformation field has
been formulated as an iterative pair-wise optimization prob-
lem (refer to equation (1)). This is a computationally expen-
sive problem that consumes large processing time and may
last for hours for a single pair depending on the used CPU.
In contrast, deep learning methods recast the classical opti-
mization problem into a problem of cost function estima-
tion [35]. In other words, this formulates the problem to find
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TABLE 1. A detailed description of the two databases used in this study.

BITE RESECT
(a) Imaging Site Montreal St. Olavs University
Neurological Hospital, Trondheim,
Institute, Norway
Montreal, Canada
(b) Study N. of 14 22
Characteristics Patients
Tumor Type LGG (4) LGG (22)
HGG (9)
N. of 355 338
Landmarks
(c) MRI MRI 1.5T General 3T Siemens
Protocol Scanner Electric Signa Magnetom Skyra and
EXCITE 1.5T Siemens
Magnetom Avanto
Date of Avg. 17 days 1 day before surgery
Acquisition before surgery
(1-72 days)
MRI T1w Gd-enhanced ~ Tlw Gd-enhanced
Modalities and T2w fluid-
attenuated inversion
recovery (FLAIR)
MRI 256 x 256 x 256 256 x 256 x 192
Resolution
Voxel Size 1x1x1mm’ 1x1x1mm’
(d)iUS iUS Probe Phased-array 12FLA-L linear
Protocol transducer probe
ius 7-4 MHz 6-12 MHz
Frequencies
iUs 03%x03x0.3 0.14 x0.14 x 0.14
Resolution mm? mm? to

0.24 x0.24 x 0.24
mm?>

a function that takes a pair of MRI-iUS images and directly
computes the output deformation field using backpropaga-
tion, which makes our method optimize over the whole train-
ing set moving away from expensive iterative optimization.

IlIl. EXPERIMENTS
A. DATA
In this study, we tested the proposed method on two
public multi-center databases, which are BITE [56] and
RESECT [57]. BITE is the first online dataset for tracked
3D iUS volumes of the brain alongside pre-operative
MRI images. It contains 14 patients with either low-grade
glioma (LGG) or high-grade glioma (HGG) from the Mon-
treal Neurological Institute, Canada. Nevertheless, the tech-
nology used to collect the iUS in the BITE dataset is no longer
up-to-date and recent US scanners provide improved quality
and higher resolution images. Consequently, the RESECT
was proposed to overcome this problem and help, therefore,
develop image registration techniques for brain-shift com-
pensation. The dataset contains pre-operative MRI and iUS
images from 22 patients with LGG who have received surg-
eries at St. Olavs University Hospital, Norway. Table 1 gives
detailed information on the applied datasets with a wide
variety of (a) data acquiring locations, (b) patient and tumor
details, and (c) applied MRI and US protocols.
Expert-labeled anatomical markers were provided for both
databases, to facilitate the baseline evaluation of MRI to
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FIGURE 3. Our MRI-iUS registration procedure (a) Input MRI; (b) Input
iUS; (c) Cropped MRI; (d) An overlap between iUS and corrected MRI.

iUS registration. The procedure of generating these land-
marks highly depends on the employed datasets. For the BITE
dataset, homologous landmark points were chosen manually
by at least two experts. An average of nine landmarks was
provided in the BITE database for each patient. For the
RESECT dataset, more landmarks were provided which may
lead to better validation of registration accuracy. In both
datasets, the package named ‘register’, included in the MINC
toolkit [58], was used to visualize the 3D MRI-US pairs
and produce the homologous landmarks. It should be noted
that this process was performed only in the training stage,
however, during the inference, no landmarks are utilized to
get the corrected MRI volumes. For each pair in BITE, we
used the homologous landmarks from the first two experts
(D.L.C. and L.M.) without the third expert’s labels since they
tagged only up to patient #6 [59].

B. REGISTRATION PROCEDURE

As listed in Table 1, it is evident that there are several dis-
similarities between the two datasets in terms of imaging
locations, study characteristics, followed MRI and iUS pro-
tocols, and, therefore, a preprocessing step is essential before
performing the MRI-iUS registration. First, the ultrasound
images are resampled to the isotropic 1 x 1 x 1 mm? voxel
size, same as the MRI spatial resolution.

Second, we pad iUS images to 128 x 128 x 128 voxels
to make them suitable for the deep neural network input.
Third, we use the initial alignment of MRI images to iUS
data and then crop the MRI to match the field of view of
the iUS, as shown in Fig. 3. Fourth, z-score normalization
is applied by subtracting the mean value and dividing by the
standard deviation individually for each input volume. Fifth,
an affine MRI to iUS alignment is achieved using the MINC
toolkit [58] to focus on the non-linear misalignment. Finally,
truth deformation fields for all patients were computed using
the software named ‘register’, included in the MINC toolkit
so that the deformation field gradient error Ly, could be
estimated (refer to Section II B.2).

C. EXPERIMENTAL SETUP AND EVALUATION
Our CNN models are built using Keras library with Ten-
sorFlow backend [12]. The experiments were conducted on

VOLUME 9, 2021

an AMD Ryzen 2920X (32M Cache, 3.50 GHz) CPU with
32 GB RAM and a single NVIDIA RTX 2080Ti GPU 11GB
GDDR6. For training our networks, the ADAM optimiza-
tion technique is adopted with an initial learning rate set to
0.0001, and batch size set to 2. All models were trained for
500 epochs, with one epoch being defined as an iteration over
500 mini-batches.

The proposed approach was evaluated using three configu-
rations: The first configuration, referred to as Model BITE or
Model B, involved training on the BITE dataset only. The sec-
ond configuration, referred to as Model RESECT or Model R,
involved training on the RESECT dataset only. The last
configuration, referred to as Model Combined or Model C,
involved training on both BITE and RESECT datasets. It is
important to note that a total of six experiments, which use
affinely aligned MRI-iUS images, were conducted for the
registration of MRI-iUS based on alternating NCC and MSE
as a similarity measurement for training the CNN. For the
training phase, 11, 17, and 28 pairs of MRI and iUS images
are used for the Model B, Model R, and Model C, respectively.
Whereas 3, 5, and 8 pairs of MRI and iUS images are used
for validation in the same order.

The two datasets, BITE and RESECT, provide expert-
annotated landmarks for each corresponding MRI-iUS pair
(as summarized in Table 1). In line with previous stud-
ies [13], [14], [16]-[24], [47], [48], [60], we use the mTRE,
which represents the average pair-wise distance between the
corresponding points in MRI and iUS volumes after regis-
tration. Let m and u denote the expert-labeled corresponding
annotations in the MRI and iUS volumes, respectively. The
mTRE of n corresponding landmarks, following the registra-
tion, is calculated as follows:

| ——
mIRE =~ 3 . llgp(m) — ui] ©)
where ||7|| is the L2 norm of the vector r.

IV. RESULTS AND DISCUSSION

A. QUANTITATIVE REGISTRATION RESULTS

Tables 2 and 3 summarize the mTREs of pre-and post-
registration of the three proposed methods for all the trained
14 BITE and 22 RESECT cases, individually. The last row
of each table denotes a summary of the results over the listed
cases. The results show that the proposed methods provide
a major improvement over the initial alignment. For the
BITE database, our algorithms reduced the initial mTRE from
(4.18 = 1.84 mm) to a range from (1.47 + 0.61 mm) to
(2.00 £ 0.45 mm) based on the applied configuration.
Similarly, average mTRE from (0.84 £ 0.16 mm) to
(2.50 £+ 0.66 mm) was achieved on the RESECT database
starting with an initial mTRE value of (5.35 & 4.19 mm).
Notably, the use of NCC as a similarity metric had a great
impact on the registration accuracy as all NCC-based models
show an improvement over the standard MSE-based methods.
This proves the effectiveness of using NCC for multi-modal
registration as it is intensity and scaling invariant.

147583



IEEE Access

R. A. Zeineldin et al.: iRegNet: Non-Rigid Registration of MRI to Interventional US for Brain-Shift Compensation

TABLE 2. Pre-and post-registration TREs for our proposed models in the BITE dataset. Model B, Model R, and Model C represent our proposed models
trained on the BITE, RESECT, and both datasets, correspondingly. Test cases are shown in bold underlined and the lowest error in each row is highlighted

in bold.
Case INITIAL Model B Model B Model R Model R Model C Model C

MSE NCC MSE NCC MSE NCC
Case01 5.88(2.31) 1.42(0.79) 1.17(0.55) 1.82(0.96) 1.83(0.98) 1.82(0.97) 1.04(0.58)
Case02 6.06(1.61) 1.14(0.67) 1.27(0.77) 1.46(0.83) 1.54(0.82) 1.39(0.80) 0.97(0.45)
Case03 8.91(2.02) 1.57(1.12) 1.39(0.87) 2.24(1.23) 2.19(1.28) 2.11(1.26) 1.22(0.87)
Case04 3.87(1.19) 0.91(0.41) 1.01(0.51) 1.57(0.86) 1.50(0.72) 1.45(0.69) 0.90(0.47)
Case05 2.57(1.61) 1.43(1.09) 1.50(1.00) 2.02(1.51) 2.04(1.50) 2.00(1.51) 1.21(0.80)
Case06 2.24(1.05) 1.21(0.57) 1.24(0.57) 1.57(0.68) 1.52(0.63) 1.50(0.65) 1.08(0.50)
Case07 3.02(1.58) 2.15(0.95) 2.16(0.77) 2.15(0.79) 1.99(0.81) 1.99(0.76) 2.08(0.80)
Case08 3.75(1.97) 1.36(0.67) 1.61(0.81) 2.31(1.11) 2.22(1.06) 2.17(1.03) 1.37(0.69)
Case09 5.08(1.33) 1.60(0.71) 1.87(1.16) 2.43(1.14) 2.48(1.12) 2.39(1.07) 1.49(0.81)
Casel0 2.99(1.34) 1.80(0.82) 1.59(0.79) 1.41(0.69) 1.45(0.73) 1.44(0.73) 1.75(0.88)
Casell 1.51(0.73) 1.60(0.84) 1.47(0.73) 1.34(0.64) 1.32(0.68) 1.32(0.68) 1.48(0.69)
Casel2 3.68(1.85) 3.14(2.60) 2.91(2.45) 2.74(1.75) 2.70(1.77) 2.66(1.74) 3.38(3.28)
Casel3 5.13(2.73) 1.81(1.35) 1.67(1.08) 2.51(1.30) 2.59(1.23) 2.40(1.30) 1.40(0.87)
Casel4 3.78(1.23) 1.34(0.64) 1.42(0.78) 2.44(0.91) 2.31(0.85) 2.24(0.87) 1.18(0.43)
mTRE 4.18(1.84) 1.61(0.52) 1.59(0.46) 2.00(0.45) 1.98(0.44) 1.92(0.42) 1.47(0.61)

TABLE 3. Pre- and post-registration TREs for our proposed models in the RESECT dataset. Model B, Model R, and Model C represent our proposed models
trained on the BITE, RESECT, and both datasets, correspondingly. Test cases are shown in bold underlined and the lowest error in each row is highlighted

in bold.
Case INITIAL Model B Model B Model R Model R Model C Model C

MSE NCC MSE NCC MSE NCC
Case01 1.81(0.84) 3.71(1.30) 2.07(0.87) 1.17(0.74) 1.13(0.58) 1.13(0.58) 1.42(0.76)
Case02 5.70(1.39) 2.79(0.83) 2.67(0.85) 1.05(0.43) 0.72(0.37) 1.15(0.57) 0.86(0.37)
Case03 9.56(0.52) 3.30(0.97) 1.96(0.68) 0.91(0.38) 0.86(0.34) 0.94(0.37) 0.94(0.37)
Case04 2.45(0.67) 0.89(0.39) 1.04(0.40) 1.26(0.46) 1.04(0.40) 1.04(0.40) 1.72(0.61)
Case05 12.03(1.05) 2.73(0.97) 1.77(0.61) 0.79(0.32) 0.73(0.37) 1.00(0.47) 0.82(0.38)
Case06 3.25(0.63) 2.75(0.93) 1.70(0.57) 0.85(0.32) 0.85(0.29) 0.91(0.32) 0.89(0.30)
Case07 1.86(1.06) 2.47(0.90) 2.18(0.66) 0.97(0.41) 0.73(0.32) 1.24(0.56) 0.81(0.37)
Case08 2.65(0.86) 3.14(0.91) 2.10(0.78) 1.29(0.49) 1.28(0.43) 1.21(0.45) 1.60(0.60)
Casel2 19.71(0.72) 3.02(1.14) 1.85(0.78) 0.91(0.30) 0.82(0.29) 0.96(0.30) 0.83(0.35)
Casel3 4.56(1.29) 2.13(0.65) 1.64(0.48) 0.93(0.39) 0.85(0.30) 1.01(0.40) 0.89(0.34)
Casel4 3.02(0.61) 2.63(0.88) 2.55(0.87) 1.11(0.42) 1.05(0.39) 1.05(0.39) 1.17(0.36)
Casel5 3.23(1.28) 2.70(0.76) 2.09(0.61) 0.95(0.51) 0.85(0.45) 1.30(0.55) 1.00(0.46)
Casel6 3.39(0.83) 2.32(0.72) 1.66(0.42) 0.68(0.20) 0.71(0.24) 0.90(0.34) 0.74(0.24)
Casel? 6.37(0.75) 2.48(1.07) 1.63(0.80) 0.73(0.27) 0.69(0.29) 1.02(0.42) 0.73(0.25)
Casel8 3.57(0.93) 2.27(0.90) 1.32(0.40) 0.68(0.25) 0.69(0.28) 0.81(0.31) 0.72(0.30)
Casel9 3.29(1.25) 1.93(1.09) 1.65(0.45) 0.78(0.39) 0.64(0.26) 0.80(0.38) 0.68(0.29)
Case21 4.56(0.71) 2.92(0.90) 1.84(0.62) 0.82(0.28) 0.78(0.20) 1.05(0.47) 0.82(0.27)
Case23 7.02(1.02) 1.75(0.95) 1.68(0.58) 0.65(0.21) 0.70(0.26) 0.71(0.26) 0.70(0.24)
Case24 1.09(0.40) 1.87(0.95) 1.68(0.46) 0.68(0.26) 0.60(0.28) 0.71(0.26) 0.64(0.29)
Case25 10.06(2.27) 1.52(0.72) 1.41(0.53) 1.11(0.43) 0.94(0.45) 0.94(0.45) 1.60(0.54)
Case26 2.82(0.81) 3.58(1.31) 2.68(0.90) 0.77(0.29) 0.84(0.27) 0.97(0.42) 0.83(0.31)
Case27 5.77(0.66) 2.05(0.91) 1.63(0.74) 1.00(0.38) 0.89(0.33) 1.15(0.42) 1.00(0.35)
mTRE 5.35(4.19) 2.50(0.66) 1.85(0.40) 0.91(0.19) 0.84(0.16) 1.00(0.16) 0.97(0.32)

From the BITE results, it is important to note that the
most accurate results were generated by Model C NCC.
This result emphasizes that utilizing more training data in
deep learning often leads to a performance enhancement.
However, this did not have the same effect on the RESECT
dataset wherein Model C NCC ranked third after Model R
versions. This might be due to the difference in the two
databases, refer to Table 1, resulting in a model struggling
to extract common features. Still, Model C NCC improved
significantly the initial mTRE from (5.35 + 4.19 mm) to
(0.84 £ 0.16 mm). Obviously, the results indicated that
that deep learning approach can perform automatic accurate
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deformable MRI to iUS image registration, and thus could be
used in image-guided neurosurgical interventions.

B. GENERALITY EVALUATION

One of our main goals is to build an automated learning
model that can be applied to multi-site data without database-
specific model parameters fine-tuning. To achieve this goal,
we evaluated the three proposed models: Model B, Model R,
and Model C on both utilized databases. For instance,
Model B was trained using the BITE dataset only, therefore,
testing this model on the other dataset of RESECT would give
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FIGURE 4. Processing time analysis for the proposed approaches on two
different multiple sites datasets. (a) Training time in minutes; (b) Test
time in seconds using CPU (in Blue) and GPU (in Red).

us a general idea about how our method may generalize with
other unseen datasets.

Remarkably, Model B and Model B NCC decreased the ini-
tial mTRE from (5.35 &£ 4.19 mm) to only (2.50 £ 0.66 mm)
and (1.85 £ 0.40 mm) experienced on untrained RESECT
dataset. Likewise, the two variations of Model R, trained on
the RESECT dataset only, delivered astonishing results on the
BITE dataset with average mTRE from (2.00 £ 0.45 mm)
to (1.98 4+ 0.44 mm) over the initial (4.18 £+ 1.84 mm).
These findings further strengthened our conviction that deep
learning-based models can deliver competitive MRI to iUS
registration results even if they are not trained on the eval-
uated data, which shows therefore a promise for use during
brain surgery.

C. PROCESSING TIME ANALYSIS

Fig. 4 shows the computation time for the training stage
(Fig. 4 (a)) and the test stage (Fig. 4 (b)). The most remarkable
result is that the first configuration, Model B and Model B
NCC, has the lowest training time of 45 and 55 minutes,
respectively, because they are trained on the BITE dataset
containing only 14 patients. On the other hand, the largest
training times of 172 and 180 minutes are obtained by the
third setup, Model C and Model C NCC, which use a total
of 36 patients from both datasets. It becomes notable that
incorporating the NCC as the similarity measurement leads to
an increase of the training time with 5 to 26% over the MSE
versions, but the test time remains approximately constant.
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FIGURE 5. A comparison of the registration error (nTRE) for our proposed
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FIGURE 6. A comparison of the registration error (nTRE) for our proposed
iRegNet methods and the state-of-the-art methods on the RESECT dataset.

Overall, the three approaches provide similar processing
test times of approximately 0.5 seconds on the GPU and
2.6 seconds on the CPU which provides additional support for
using iRegNet in time-critical image-guided interventions.

D. COMPARISON WITH OTHER MRI-IUS STUDIES
Fig. 5 shows the initial and final landmarks errors for the
proposed iRegNet methods and methodologies found in the
literature for MRI-iUS registration, performed on the BITE
database. To assess our proposed methods, we compare
them against other MRI-iUS registration algorithms pro-
posed for the brain-shift compensation: LCZ [24], SSC [25],
SeSaMI [14], CoCoMI [14], RaPTOR [16], miLBP [17],
Laplacian Comm [26], cDRAMMS [27], and Arena [18].
The results obtained indicate that our methods, highlighted
in orange, outperform other evaluated competing techniques.
In particular, the configuration Model C NCC ranked first
for the BITE with an mTRE (1.47 £+ 0.61 mm) with a
0.61 mm margin smaller than the best performing method
cDRAMMS [27].

Additional comparison of our registration methods against
other approaches using pre-operative MRI and pre-resection
US images from the RESECT database are presented
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FIGURE 7. Alignment of pre-operative MRI (gray color mode) to iUS (green color mode) in three different cases from BITE (cases #6,
#8, and #11). Row designations: pre-operative T2-FLAIR MR, intra-operative US, initial misaligned MRI over iUS before registration,
the final aligned MRI over iUS after registration, and the deformed grids. Yellow arrows indicate expert-labeled landmarks while mTRE

values are shown (bottom right).

in Fig. 6. iRegNet methods are compared to conventional
studies: LC? [19], SSC [20], NiftyReg [22], cDRAMMS [21],
MedICAL [23], Structural Skeleton [60], ARENA [18] as
well as learning studies: FAX [47], CNN + STN [48].
It is important to note that the LC? algorithms applied to
BITE utilized different configurations than the one applied
to RESECT. In [24], the algorithm aligns 2D US to 3D MRI
volumes initialized with a rigid registration and a smaller
patch sizes of 2 to 24, while in [19], a non-linear optimiza-
tion algorithm was initialized with a translation before the
rigid registration and the patch size is larger with 7° voxels.
Similarly, the SSC methods in [25] and [20] are separate from
each other. In [20], the authors set the parameters for the
discrete optimization with a complex 107 degrees of freedom.
On the other hand, the graph is simplified in [25] and contains
no loops leading to a faster and smoother transformation.

As can be seen from Fig. 6, Model R variants rank first
on the RESECT dataset with average mTRE (0.84 £ 0.16 to
0.91 &+ 0.19 mm) followed by the learning-based method
FAX with mTRE of (1.21 & 0.55 mm). Although team FAX
reported comparable results, this method failed to obtain sim-
ilar results on the test dataset of the CuRIOUS challenge [46],
which presumably is due to an overfit over the training
images. In contrast, Model B and Model B NCC enhanced
the initial MTRE of RESECT by 2.85 and 3.50 mm in turn,
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TABLE 4. Statistical assessment of the MRI-iUS alignment of 36 cases by
two expert neurosurgeons.

ASSESSMENT
Neurosurgeon Limited Fair Good Excellent
#1 4 3 13 16
#2 4 6 14 12
Total 8 9 27 28

however, they failed to provide competitive outcomes. This
implies that the accuracy of deep learning approaches does
seem to depend on the size of the available training data.

E. QUALITATIVE ANALYSIS BY NEUROSURGEONS

Two experienced neurosurgeons (Z. A.) and (M. S.) with
eight and five years of clinical practice, respectively, visually
inspected the MRI-iUS registration results individually and
rated the results based on the tumor boundaries and other
brain structures, such as sulci and falx. Table 4 summarizes
their qualitative analysis. It is worth mentioning that only
11% of alignments were classified as ““limited” (no improve-
ments over the initial registration), and 8% or 17%, respec-
tively, of aligned results were ‘“fair”’ (minor improvements),
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36% or 39%, respectively, of alignments were “good” (major
improvements), and 44% or 33%, respectively, of alignments
were “excellent” (little or no visible misalignment).

Fig. 7 and Fig. 8 display the results of aligning MRI
to iUS using our best method, namely Model C NCC, for
six different patients: BITE (cases #6, #8, and #11) and
RESECT (cases #23, #14, and #21), correspondingly. The
cases are selected as best, median, and worst according to
their qualitative evaluation as given in Table 4. In each figure,
rows provide pre-operative MRI, interventional US, initial
alignment of both images before registration, and overlap of
corrected MRI over iUS after applying iRegNet, correspond-
ingly. Similar to other studies, the raters confirm that the
quality of the used US images in the BITE dataset is rather
limited as shown in case #8 in Fig. 7.

The results of this study demonstrated that iRegNet,
Model C NCC, yields better registration results (last row)
than the initial misaligned MRI and iUS pairs (third row).
Although widely accepted, it suffers from a comparable
larger training time of 180 minutes, however, this is only
apparent in the training stage while obtaining a very com-
petitive inference time of about half-second on GPU-based
implementation. Another limitation of this implementation
is that this improvement may be unclear in few cases, such
as Casel2 from the BITE dataset. A popular explanation is
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that the initial alignment has a small brain-shift that makes it
difficult to observe. Overall, this analysis yields an overview
of the potential clinical applicability of our method regarding
the accuracy and quality of the registration outputs.

V. CONCLUSION

We presented iRegNet as an automated fast and robust
deformable method for pre-operative MRI to pre-resection
iUS registration for compensating brain-shift phenomenon.
In six experiments, our proposed method has been suc-
cessfully tested and evaluated on 36 cases from two multi-
location datasets, validating the registration performance
qualitatively and quantitatively. Notably, iRegNet achieved
considerable performance and computational efficiency even
with untrained cases, demonstrating the generality of our
proposed method. Compared with other registration methods,
iRegNet achieved the best accuracy results in terms of the
mean TRE with values of (1.47 4= 0.61 and 0.84 4 0.16 mm)
for the utilized BITE and RESECT datasets, respectively,
as illustrated in Table 2 and Table 3. Furthermore, the quali-
tative results indicate that the registered MRI-iUS pairs have
a significant improvement over their initial alignment. Also,
our proposed iRegNet achieved significant performance on
multi-center data and is therefore a potentially promising
automatic registration algorithm for use with IGN systems.
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Moreover, iRegNet is flexible, modality-, anatomy-invariant,
and therefore could be used in a wide range of medical image
analysis and processing surgical procedures.

Further research should be done to investigate the optimal
cropping radius for MRI images so that the missing data are
as few as possible. Automating this procedure would further
contribute towards rendering iRegNet an end-to-end pipeline.
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