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Abstract. For more than two decades, researchers have been developing
methods to predict HPC job run times. The methods vary from simple
rule-based solutions to modern methods using machine and deep learning
libraries. These studies are often developed for scientific publications and
the sustainability after publication is often neglected. It is also often dif-
ficult to compare a solution with previously published, because the focus
can be slightly different and missing the availability of source code. With
this work, we want to start a collection of different wall time prediction
methods to better compare new solutions and to promote sustainabil-
ity. Therefore, this paper is submitted as a Open Scheduling Problem.
The collection of source codes and results are going to be published on
GitHub: https://hpc-job-scheduling-repo.github.io
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1 Introduction

For the execution of applications on HPC systems, a so-called job is created and
submitted to a queue [1]. A job describes the application, needed resources, and
requested wall time. A HPC Job Scheduler manages the queue and orders the
jobs for efficient use of the resources. To plan the future usage of resources, job
schedulers typically use a wall time that corresponds to the maximum execution
time for each job. This wall time, also known as estimated job run time or wall
(clock) time, is crucial for accurate planning. Nevertheless, users tend to request
more time to prevent jobs being canceled too early. Accurate estimates of job
wall time are important for many purposes, such as making better predictions
about when waiting jobs will start. In addition, this information is needed when
data should be staged in advance on the compute nodes [2]. There is also a
online prediction system available for the XSEDE (3] ressources - KARNAK [4].
Karnak uses machine learning to provide a prediction for users either when their
job will start, or how long a hypothetical job would wait before being started.
Without accurate job wall time estimation, it is almost impossible to make
any preparation of the system for future job requirements. This challenge is
more important if the HPC systems become larger. For future exascale systems,
this can help to improve the overall efficiency significantly. For these reasons,
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there are always attempts to predict the wall time more accurately. There are
many different approaches and solutions. With this work we would like to start
a collection of these solutions. The source code and the results will be made
available on a website as a repository. Thereby, we want to ensure sustainability
and if needed, the results can be reproduced by other scientists. Moreover, a
better comparison of the own solution with the existing ones is easier. This
repository is initially for job wall time prediction, but can be extended for other
problem cases.

The remainder of this paper is structured as follows: In Section 2] we give a
brief introduction to the background of job wall time predictions. We show in
Section [3] what is needed to make the solutions better comparable. In Section [4]
we finish with a conclusion and outlook on future work.

2 Background

The background of this work covers two areas. On the one hand, the approaches
to predict job wall times and on the other hand, historical job workload logs. As
a source for historical job workloads, the Parallel Workload Archive (PWA) is
well established [5}/6]. However, it happens from time to time that logs are used
for publications which are not publicly available. The reasons for this can be
manifold, e.g., to show how privacy sensitive data like directories and job names
can be used for better predictability |7]. Unfortunately, this complicates the
ability to compare different approaches or reproduce the work. Therefore, only
a comparable and reproducible solution should be accepted into the collection.

There are several approaches to improve wall time estimates, and we can only
give a brief overview in this section. The different methods can be divided into 2
different areas. One is the traditional methods and the “new” ones with the use
of machine or deep learning libraries. As representatives for traditional methods,
the solutions of Gibbons [8,|9] and Downey [10] or also the built-in functionality
of the ALEA Scheduling simulator [11]. Gibbons and Downey used historical
workloads to predict job wall times. The prediction was performed based on
templates. Previously collected metadata was analyzed and grouped according
to similarities. Alea determines the deviation between the user estimated wall
time and the used wall time is determined and applied to new jobs. It is working
on a per-user basis. A new run-time estimation for a new job is computed using
information about previous jobs of that user.

In recent years, new methods like machine and deep learning methods
were used to predict resource consumption in studies [8|12H15]. As an example,
Smith [16] is using genetic and greedy search methods to estimate job run times
and queue wait times. This solution is used by XSEDE to predict queue wait
time [3]. Other popular methods are using linear regression for predictions |17}
18], Nearest Neighbors [19420], Regression Trees [21], or Instance Learning 16122}
23]. Matsunga [24] used a combination of multiple machine learning methods to
predict the execution time of two bioinformatics applications: BLAST [25] and
RAxXML [26]. These methods rely on domain experts in the machine learning
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discipline to preprocess the input data and to select the correct model including
the optimization of parameters. Therefore, in the recent time, automatizing the
the machine learning process also gained attraction for predicting walltimes [7].

The examples given here show that there are many approaches and solu-
tions. There are repeatedly publications in this area, but there is often a lack of
comparisons with the corresponding metrics.

3 Predictions

For a sustainable and reproducible collection of tools, several conditions must
be met. A source for job workloads as test data is needed. Different metrics
and conditions should be specified to better compare the different solutions.
Of course, the different solutions with their results should be available in a
repository.

3.1 Job Workloads and Metadata

The Parallel Workload Archive offers job workload logs in SWF format [27]. Tt
contains detailed workload logs collected from large-scale parallel systems. Every
job in these data sets are represented by a sequence of lines (one job per line)

containing 18 columns (job metadata). Available job metadata is listed below
and Table [1f show all 40 available logs.

Job Number — Unique job identifier, also called JobID.

Submit Time — seconds starting from workload log time.

Wait Time — difference between Submit Time and Start Time in seconds.

Run Time — the actual time in seconds the job was running

Number of Allocated Processors — integer value of allocated cores or CPU,

depends on configuration

Average CPU Time Used — both user and system, in seconds.

Used Memory — average used memory per core in kilobytes.

Requested Number of Processors

Requested Time — Wall time requested for job

Requested Memory — requested memory per processor in kilobytes

Status — a number indicating the reason why job has finished. 1 = job was

completed normal, 0 = failed, and 5 = canceled. If this field can not be

provided it is -1.

12. User ID — a number identifying a user.

13. Group ID — a number identifying a group.

14. Executable (Application) Number — a number to identify the application. If
not available then -1.

15. Queue Number — a number identifying configured queues. It is suggested to
use 0 for interactive jobs.

16. Partition Number — a number identifying configured partitions.

17. Preceding Job Number — a previous Job Number (JobID) which is the job is

waiting to finish. With this a dependency between jobs can be established.
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Table 1. Selected workloads and available metadata.* (Req. Number of Processors equals Allocated Number of Processors.)

Job  Submit Wait Run # of Alloc. Average CPU Used Req. # of Req. Req. User Group Exe. Queue Partition Preceding Think Time

Status
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Number Time time Time Processors Time Used Memory Processors Time Memory ID ID Number Number Number Job Number Preceding Job

ANL-Intrepid-2009-1 Y Y Y Y Y n.A. n.A. * Y nA. nA. Y nA nA Y n.A. n.A. n.A.
CEA-Curie-2011-2 Y Y Y Y Y n.A. n.A. * Y n.A. Y Y Y n.A. n.A. Y n.A. n.A.
CIEMAT-Euler-2008-1 Y Y Y Y Y Y Y * Y n.A. Y Y Y Y Y Y n.A. n.A.
CTC-SP2-1995-2 Y Y Y Y Y Y n.A. n.A. n.A. Y Y Y nA. Y Y n.A. n.A. n.A.
CTC-SP2-1996-3 Y Y Y Y Y Y n.A. n.A. Y n.A. Y Y nA. Y Y n.A. n.A. n.A.
DAS2-£s0-2003-1 Y Y Y Y Y Y n.A. * Y n.A. Y Y Y Y Y n.A. n.A. n.A.
DAS2-£s1-2003-1 Y Y Y Y Y Y Y * Y n.A. Y Y Y Y Y n.A. n.A. n.A.
DAS2-fs2-2003-1 Y Y Y Y Y Y Y * Y n.A. Y Y Y Y Y n.A. n.A. n.A.
DAS2-s3-2003-1 Y Y Y Y Y Y Y * Y n.A. Y Y Y Y Y n.A. n.A. n.A.
DAS2-s4-2003-1 Y Y Y Y Y Y Y * Y n.A. Y Y Y Y Y n.A. n.A. n.A.
HPC2N-2002-2 Y Y Y Y Y Y n.A. * Y n.A. Y Y Y n.A. n.A. Y n.A. n.A.
Intel-NetbatchA-2012-1 Y Y Y Y Y Y Y n.A. nA. nA. Y Y Y Y n.A. n.A. Y Y

Intel-NetbatchB-2012-1 Y Y Y Y Y Y Y n.A. nA.  nA. Y Y Y Y n.A. n.A. Y Y

Intel-NetbatchC-2012-1 Y Y Y Y Y Y Y n.A. nA. nA. Y Y Y Y n.A. n.A. Y Y

Intel-NetbatchD-2012-1 Y Y Y Y Y Y Y n.A. nA. nA. Y Y Y Y n.A. n.A. Y Y

KIT-FH2-2016-1 Y Y Y Y Y n.A. n.A. * Y n.A. Y Y Y n.A. Y Y n.A. n.A.
KTH-SP2-1996-2 Y Y Y Y Y n.A. n.A. * Y n.A. Y Y Y n.A. n.A. n.A. n.A. n.A.
LANL-CM5-1994-4 Y Y Y Y Y Y Y * Y Y Y Y Y Y Y n.A. n.A. n.A.
LANL-0O2K-1999-2 Y Y Y Y Y Y Y * nA. nA. Y Y Y Y Y n.A. n.A. n.A.
LCG-2005-1 Y Y nA Y Y n.A. n.A. n.A. nA. nA. nA Y Y n.A. n.A. Y n.A. n.A.
LLNL-Atlas-2006-2 Y Y nA Y n.A. n.A. n.A. n.A. nA. nA. Y Y nA. Y n.A. Y n.A. n.A.
LLNL-T3D-1996-2 Y Y nA Y Y n.A. n.A. n.A. nA. nA. Y Y nA. Y n.A. n.A. n.A. n.A.
LLNL-Thunder-2007-1 Y Y nA Y Y n.A. n.A. * nA. nA. Y Y nA. Y n.A. Y n.A. n.A.
LLNL-uBGL-2006-2 Y Y nA. Y n.A. n.A. n.A. n.A. n.A.  nA. Y Y n.A. n.A. n.A. n.A. n.A. n.A.
LPC-EGEE-2004-1 Y Y nA Y Y Y n.A. * Y n.A. Y Y Y n.A. Y Y n.A. n.A.
METACENTRUM-2009-2 Y Y Y Y Y n.A. Y n.A. nA. nA. Y Y nA.  nA. Y Y n.A. n.A.
METACENTRUM-2013-3 Y Y Y Y Y n.A. n.A. * Y Y nA. Y nA. nA. Y Y n.A. n.A.
NASA-iPSC-1993-3 Y Y nA Y Y n.A. n.A. n.A. nA. nA. nA Y Y Y n.A. n.A. n.A. n.A.
OSC-Clust-2000-3 Y Y Y Y Y Y n.A. * nA.  nA. Y Y Y n.A. n.A. n.A. n.A. n.A.
PIK-IPLEX-2009-1 Y Y Y Y Y Y Y n.A. nA. nA. Y Y Y Y Y n.A. n.A. n.A.
RICC-2010-2 Y Y Y Y Y n.A. n.A. * Y Y Y Y Y n.A. Y n.A. n.A. n.A.
Sandia-Ross-2001-1 Y Y Y Y Y Y Y * Y n.A. Y Y Y Y Y Y n.A. n.A.
SDSC-BLUE-2000-4 Y Y Y Y Y Y n.A. * Y n.A. Y Y nA  nA Y n.A. n.A. n.A.
SDSC-DS-2004-2 Y Y Y Y Y Y n.A. * Y n.A. Y Y Y n.A. Y Y n.A. n.A.
SDSC-Par-1995-3 Y Y Y Y Y Y n.A. n.A. n.A.  nA. Y Y nA. nA. Y Y n.A. n.A.
SDSC-Par-1996-3 Y Y Y Y Y n.A. n.A. n.A. nA. nA. Y Y nA. nA. Y Y n.A. n.A.
SDSC-SP2-1998-4 Y Y Y Y Y Y n.A. * Y n.A. Y Y Y Y Y n.A. n.A. n.A.
SHARCNET-2005-2 Y Y Y Y Y Y Y n.A. nA. nA. Y Y nA. Y n.A. Y n.A. n.A.
SHARCNET-Whale-2006-2 Y Y Y Y Y Y Y n.A. nA. nA. Y Y nA. Y n.A. n.A. n.A. n.A.
UniLu-Gaia-2014-2 Y Y Y Y Y Y Y * Y n.A. Y Y Y Y Y n.A. n.A. n.A.
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18. Think Time from Preceding Job — a value indicating how long a job has to
wait after a preceding job has finished before the job is started.

If more metadata is available then defined by the SWF format, these additional
metadata could be published as a additional log. As an example for such a log,

the historical log for the Gaia system offers a companion log with accumulated
I/O for each job [28].

3.2 Metrics

To better compare the solutions, the same metrics should be used. The metrics
proposed here should rather be seen as initial metrics and could change after
discussion with the community. The Sci-kit library offers many different metrics
to compare the quality of predictions. Thereby, the real used wall time (y) and
the predicted wall time (g) is passed to the corresponding function. Sci-kit offers
several metrics and the metrics below are a selection of them, which might change
in the future.

The mean absolute error (MAE) and the median absolute error (MedAE)
measure the difference between predicted and used wall time [29}|30]. MAE is
the mean over all pairs of predicted and used wall times,

s s —1
R 1 Nsamples A
MAE(y,§) = —— > |vi —4il; (1)
Nsamples i—0

where y; is the real used walltime and g; is the predicted value of the i-th sample,
and MedAE is the median value of these pairs,

MedAE(y,9) = median(|y1 — g1l - - -, |Yn — Unl)- (2)

In contrast to MAE, MedAE is robust against outliers. These metrics are widely
used and easy to understand. The result indicates the deviation in seconds and
are therefore very well suited to compare solutions with each other. Another
suitable metric could be the Mean absolute percentage error (MAPE) which ex-
presses the accuracy as a ratio and therefore its very intuitive interpretation [31]

Yi — Ui
Yi

o 100% &
MAPE(y,§) = — = > (3)

i=1

Besides the accuracy of wall time predictions, there are other aspects that
should be considered.

— Number of over- and under-estimates - An underestimation would be fatal
in real scenarios, as the scheduler would cancel the job in these cases.

— Processing/Training time - In the case where methods are used to train a
model, it should of course be recorded how much time is needed for the
training.
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— Training type - is a partial fit possible or does the model need to be trained
from beginning.

— Cold start - what approach is used for the cold start.

— Prediction type - is the prediction done on a per-user basis.

Nevertheless, there are many points that impact the accuracy. However, a
comparison becomes difficult if not the same dataset or metrics are used. There-
fore, the data sets and metrics proposed here serve only as a starting point.

3.3 Repository

Only solutions that can be reproduced with published material should be in-
cluded in the repository. This means also that solutions should be available
under a free license. The solution can also be published on own pages, but it
should be public so that the results can be reproduced. Preliminary repositories
can be found on GitHub: https://hpc-job-scheduling-repo.github.io

4 Conclusion and Outlook

In this work, we propose a repository for HPC job wall time prediction ap-
proaches. This work shall serve as a starting point to collect scheduler predic-
tions and metrics. With this, a comparison of the different solutions, approaches,
and ideas should be possible. At the same time, sustainability is achieved by cre-
ating a repository for the approaches. The proposed metrics can change through
feedback from the community. It is also conceivable to add further problem cases
to the repository. The parallel workload archive and workload logs are a good
source of HPC job workloads, but it shows that most workloads are very old
and not all metadata are available. Here it might be useful to encourage the
community to publish newer workloads to the archives.
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