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Preface

Robotic automation is a key driver for the advancement of technology. Programmed
by trained engineers and application programmers, industrial manipulators execute fast
and repetitive tasks through highly precise instructions. While this is an established pro-
cess for motion generation with little contact, force-sensitive assembly is still very chal-
lenging to program and automate. Based on constraint formulations, these recipes are
strongly limited in their adaptivity to slight changes in positioning and unforeseen jam-
ming. Human sensing and cognition, on the contrary, are powerful sources of inspiration
but finding technical representations for these skills and translating them into robot con-
trollers is part of ongoing research.

This work presents methods to extract and learn assembly skills from human perfor-
mance and to transfer them into controllers on industrial robots. By combining model-
based and data-driven approaches, the programming is reduced to robot-independent
teleoperation of assembly tasks in a simulation environment. A special form of a recur-
rent neural network mimics this recorded behavior and learns force-sensitive strategies
to handle part jamming and wedging for autonomous execution. This skill is then trans-
ferred to industrial robots with a novel, unifying force controller. The focus of this work
lies on investigating technical realizations of such skills and their programming, and on
the special requirements posed by compliant control for industrial robots. The devel-
oped methods are implemented in software and evaluated both in simulation and on real
robotic manipulators. With this modeling and programming approach, this thesis hopes
to contribute valuable insights towards the goal to endow robots with human skills for
assembly.

Karlsruhe, Stefan Scherzinger
March 2021 FZI Research Center for Information Technology

i



Preface

ii



Zusammenfassung

in German

Automatisierung mit Robotern ist ein fester Bestandteil moderner Fertigungsprozesse
und in vielen Industrienationen ein wichtiger Treiber von Wettbewerbsfähigkeit. Das
Programmieren der Roboter erfordert dabei in der Regel Expertenwissen. In einem typ-
ischen Prozess werden Trajektorien offline erstellt und vor Ort an der Anlage nachjustiert.
Das Ergebnis ist eine hochgenaue Beschreibung von speziellen Anweisungen mit stark
eingeschränkter Anpassungsfähigkeit an kleinsten Positionsänderungen der Werkstücke.
Besonders kraftsensitive Fügevorgänge sind jedoch sehr schwer zu programmieren und
automatisieren. Durch Lokalisierungsfehler werden Unsicherheiten in die Prozessketten
eingebracht, die in Verbindung mit dem geringen Spiel der Bauteile bereits bei gerin-
gen Fluchtungsfehlern zu Verklemmungen und Verkantungen führen. Das Lösen dieser
Aufgaben kann nicht durch das bloße Abspielen von vorprogrammierten Bewegungen
robust erreicht werden und benötigt daher häufig nach wie vor manuelle Montage. Die
Übertragung von menschlichem Geschick in Roboterprogramme scheitert dabei vor allem
an genauen Anweisungen zur Handhabung der Unsicherheiten, die wir eher intuitiv
lösen: Bei manueller Montage lässt sich an der richtigen Stelle etwas drücken, drehen
oder rütteln, diese Strategien sind jedoch technisch schwer zu quantifizieren und nachzu-
bilden.

Die vorliegende Arbeit stellt einen hybriden Ansatz zwischen modellbasierten und
daten-getriebenen Methoden vor, diese Strategien und Fähigkeit (engl. Skills) aus men-
schlichem Vormachen zu extrahieren und durch neu entwickelte Kraftregler auf Industrie-
Roboter zu übertragen.

Der Fokus liegt auf Robotern mit gelenkseitiger Positions- oder Geschwindigkeitsrege-
lung. Diese Systeme sind in industriellen Anlagen weit verbreitet und können über einen
am Roboterflansch montierten Kraft-Momenten-Sensor durch eine äußere Regelungs-
schleife mit Nachgiebigkeit aufgerüstet werden. Eine kraftsensitive Interaktion ist in
diesen Fällen erforderlich um große Reaktionskräfte zwischen Bauteil und Roboter zu
vermeiden. Die Arbeit adressiert Anwendungsfälle, in denen die reale Hardware nicht
für die Programmierung zur Verfügung steht. Systeme im Einsatz können damit durch
ein Software-Update mit den neuen Fähigkeiten umgerüstet werden.

Die vorliegende Arbeit untersucht zunächst vorhandene Ansätze zur Implementierung
von Nachgiebigkeitsregelung für die betrachteten Robotersysteme. Anschließend wer-
den verwandte Arbeiten im Bereich des Skill-Learning in der Robotikforschung mit Fokus
auf Montage-Applikationen analysiert und diskutiert. Eine qualitative Analyse bewertet
die verschiedenen Ansätze unter aufgestellten Gütekriterien und motiviert die Kombi-
nation Modellbasierter mit datengetriebenen Methoden.

Die betrachteten Fügevorgänge werden in einem Simulator nach modelliert und über
Teleoperation mit einem Joystick ausgeführt. Der Einsatz von Simulation stellt im Allge-
meinen hohe Anforderungen an den Realismus physikalischer Effekte um den Trans-
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fer der Lösungsansätze auf die reale Hardware zu garantieren. Die vorliegende Ar-
beit löst dieses Problem indem typische Verkantungen, die bei der späteren Ausführung
mit dem Roboter auftreten können, mit erhöhten Reibwerten bewusst übertrieben wer-
den. Physikalische Ungenauigkeiten im simulierten Kontaktverhalten der Bauteile wer-
den genutzt, um die Montage auf künstliche Weise zu verkomplizieren und verlangen
dadurch beim Vormachen und Lösen der Aufgabe mit dem Joystick robuste Strategien
durch die Bediener.

Durch Aufzeichnung der kommandierten Steuerbefehle und der Relativbewegung der
Bauteile werden Datensätze erhalten, die menschliche Skills implizit in das iterative Zu-
sammenspiel zwischen eigenen Aktionen und beobachteter Auswirkung einbetten.

Basierend auf diesen Datensätzen wird die Modellierung der Skills anschließend als
überwachtes Lern-Problem formuliert. Die Skills werden über spezielle Rekurrente Neu-
ronale Netze modelliert, die reaktives Verhalten aus den aufgezeichneten Daten lernen
und mit probabilistischen Komponenten die Ambivalenz des Hin-und-her-Probierens in
engen Kontakten nachbilden können. Die Eingangs- und Ausgangsdaten der Skills wer-
den dabei in roboterunabhängigen, objektbezogenen Koordinaten formuliert, wodurch
die Skills frei im Arbeitsraum des Manipulators durch eine geeignete kartesische Regelung
angewendet werden können.

Zum Transfer der Skills auf Roboter wird ein neuartiger Regelungsansatz entwickelt,
der das Prinzip der Dynamiksimulation auf die Kraftregelung überträgt. Während der
Ausführung generieren die gelernten Skill-Modelle vom Menschen inspirierte Steuersig-
nale, die mit den Sollgrößen der Robotertrajektorien und den gemessenen Kontaktkräften
des Sensors überlagert werden. Die resultierende Größe wird anschließend als Anre-
gung für ein virtuelles Modell des Roboters verwendet, das die Bewegung für den echten
Roboter vorsimuliert und ihn damit steuert. Über eine einfach anzuwendende Parametri-
sierung des virtuellen Systems kann ein lineares Verhalten im kartesischen Arbeitsraum
des Reglers erreicht werden. Das Problem der Inversen Kinematik in singulären Ge-
lenkkonfigurationen wird auf physikalisch plausible Weise durch den dynamikbasierten
Regler gelöst und bietet damit eine stabile Alternative zu bestehenden Ansätzen.

Die entwickelten Theorien und Methoden werden in Experimenten in Simulation und
auf Hardware evaluiert. Parameterstudien in Simulation untersuchen die Fähigkeit des
vorgestellten Skill-Modells die Datensätze zu lernen und prüfen die Robustheit ihrer
Ausführungen. Der neu entwickelte, dynamikbasierte Ansatz zur Lösung des Inversen
Kinematik Problems wird gegen ausgewählte Referenzmethoden abgeglichen und mit
dem neuen Regler auf verschiedenen Robotersystemen getestet. Ein abschließender Skill-
Transfer von Simulation auf echte Hardware zeigt das Gesamtkonzept anhand zwei aus-
gewählter Anwendungen. Die Methoden und Beiträge der Arbeit werden im Folgenden
im Detail erörtert.
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Notation and Acronyms

This section provides an overview about frequently used symbols and acronyms. We use
bold uppercase to denote matrices, such as J ,H . Exceptions are the vectors of Coriolis
terms C and gravitational components G. Vectors are depicted in bold lowercase, such
as f , q, and are considered column vectors. Skalars have a lowercase normal font, e.g. α,
with the exception of N and T that indicate index limits.

Notation

Ao Coordinate system with global orientation
A Coordinate system for center of mass
B Robot base frame
E Robot end-effector frame
Nc c-variate Gaussian
O Assembly origin, equals the goal pose of the active part

C Vector of Coriolis and centrifugal terms
D Damping matrix
G Vector of gravitational components
H Joint space inertia matrix
Ipe Virtual end-effector’s polar moment of inertia
Ipl Virtual link’s polar moment of inertia
I Identity matrix of suitable dimension
J Manipulator Jacobian
KD Derivative gain matrix
KP Proportional gain matrix
K Stiffness matrix
M Mass matrix
N Sequential memory length of skill models
toRfrom Rotation matrix
T Number of data points in a demonstration
toTfrom Homogeneous transformation matrix
ct Cell state of the LSTM
c Dimension of the final skill model output (= 6)
dlin Linear damping constant
drot Rotary damping constant
f c Control wrench
fd Desired contact wrench
fh Human motor command
fn Netforce in Cartesian space
fx, fy, fz Force components
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f Vector of measurements of a force-torque sensor
ht Hidden state of the LSTM
kd Damping constant
kp Spring constant
k Number of Gaussian kernels
me Virtual end-effector mass
ml Virtual link mass
q Vector of joint positions
q̇ Vector of joint velocities
q̈ Vector of joint accelerations
tx, ty, tz torque components
x Current end-effector pose
ẋ Current end-effector velocity
ẍ Current end-effector acceleration
xc Control signal
xd Desired end-effector pose
ẋd Desired end-effector velocity
xr Cartesian reference pose
ẋr Cartesian reference velocity
x̂t Input feature vector for skill models at time t
ŷt Label for predictions at time t
z Output vector of MDNs

Λ Joint space inertia matrix in operational space
Σ Scale matrix in SVD | covariance matrix
α Damping term in DLS
α Vector of mixing coefficients for MDNs
γ Ratio of end-effector dominance
µ Vector of means for multivariate Gaussian
φi Kernel function
π Policy
σmax Maximal singular value
σmin Minimal singular value
σ Vector of standard deviations for MDNs
θ Vector of learnable parameters in skill models
τ Vector of joint torques
ω Angular velocity
ξi Demonstrations

Acronyms

ABA Articulated Body Algorithm
BC Behavioral Cloning
BPTT Backpropagation Through Time
BP Backpropagation
CAD Computer-Aided Design
CAE Computer-Aided Engineering
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CDF Cumulative Distribution Function
CRBA Composite Rigid Body Algorithm
DLS Damped Least Squares
DMP Dynamic Movement Primitives
FDCC Forward Dynamics Compliance Control
FD Forward Dynamics
FK Forward Kinematics
GMM Gaussian Mixture Models
GMR Gaussian Mixture Regression
HMM Hidden Markov Models
IK Inverse Kinematics
IL Imitation Learning
JI Jacobian Inverse
JT Jacobian Transpose
LSE Least Squares Estimate
LSTM Long Short-Term Memory
LWR Locally Weighted Regression
LfD Learning from Demonstration
MDN Mixture Density Network
PD Proportional-Derivative
PDF Probability Density Function
PI Proportional-Integral
PbD Programming by Demonstration
RCC Remote Center Compliance
RL Reinforcement Learning
RNEA Recursive Newton-Euler Algorithm
RNN Recurrent Neural Network
ROS Robot Operating System
SDLS Selectively Damped Least Squares
SVD Singular Value Decomposition
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1. Introduction

Robotic automation is a strongly growing field and an important driver for current and
future manufacturing processes. Industrial manipulators are used for fast and repetitive
tasks, they enable the handling of heavy and bulky workpieces, or they provide high
precision whenever a perfectly steady hand is required. However, such manipulators
are multi-purpose machines and need to be programmed for specific tasks. This requires
trained engineers and programmers in offline and online cycles for planning and correct-
ing trajectories. The result is a highly accurate description of instructions with strongly
limited adaptivity to even the slightest changes in the workpieces’ positions. Most often,
experts are needed due to the complexity of the programming process, rather than due
to the difficulty of the task itself: For instance, it is intuitive and simple to plug two con-
nectors with our hands, even with closed eyes. However, describing the exact process
quantitatively with sub-millimeter precise instructions for a robot program is compara-
tively hard. This is particularly challenging for force-sensitive assembly where a form
of dexterity is required. In such instances, workers must use the right feeling and their
experience. Finding technical representations for these skills and translating them into
algorithms and robot controllers is an exciting and active field of research.

1.1. Motivation

Industrial robotics has come a long way from its inception and spans over half a century
of research. Early applications of automation relied on force control and on users that
teleoperated robotic manipulators through dangerous tasks remotely to mitigate the risk
of injuries [1]. When in the late 60s and the early 70s computer programs started replac-
ing human operators in these scenarios, they introduced the new problem of formulating
force-motion strategies that humans had utilized naturally within teleoperation. Before
that, human operators took control of task planning and force-motion response intu-
itively by using their vision and force sensing capabilities [1]. Since then, research has
tried to find answers to this problem. Early work used neural networks to learn map-
pings from sensor measurements to corrective motion in the 90s [2], making first steps

Figure 1.1.: Human-inspired compliant controllers for robotic assembly.
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into that direction and predating many of the modern machine learning approaches by
decades.

What makes assembly challenging is when the relative uncertainty between work-
pieces exceeds the task’s clearance. Rigidly following pre-programmed trajectories is
not feasible in these cases and contact forces must be anticipated to avoid damage to
parts and robots. For only small discrepancies in positioning, the robot must apply some
form of online correction during execution. Achieving this skill is crucial on the way to
developing more autonomous systems and overcoming the bottleneck of carefully de-
signed and calibrated environments in industrial settings. Humans are particularly good
at handling these tasks. Using several senses, such as sight and touch, allows us to pro-
cess a high bandwidth of information. In addition, we can draw on a huge amount of
experience in object manipulation. Ever since childhood, humans interact with objects,
toys first and later every kind of tool follows. Fig. 1.1 shows one such classic assembly.
It is intuitive for us where to press, turn and jolt to get two parts mated. Jamming and
wedging are dealt with almost unconsciously. These strategies are fuzzy and difficult to
describe for compliant control. Thus, a key to achieving skill transfer to industrial robots
lies within natural and intuitive programming methods so that the strategies we apply
can manifest themselves through the method. Turning those capabilities into control
strategies to enhance robotic assembly is open research. Much of the initial challenges
remain for automation, and at the core of industrial assembly continues the incentive to
endow manipulators with capabilities that come close to the skills of human workers.

1.2. Problem Statement and Research Questions

Embedded into the setting of offline programming [3], this thesis focuses on the specific
problem of joining two parts through insertion, which, in the taxonomy of assembly falls
into the category of fine motion planning [4]. Using this as the smallest operation, complex
assemblies can be broken down into several such subtasks. The following descriptions
clarify important problems and objectives.

Tight fits For the assembly tasks we consider, motion is highly constrained with low
clearances between the parts. An important corner case includes plug connections where
the parts tightly fit together. Compliant robot end-effectors are required in all cases to
yield reaction forces and we need suitable force control algorithms to balance force and
motion in contact. To scale to industrial use cases, our method should work with complex
shapes and insertion directions and be independent of the dimensions of the workpieces.

Reactive skills Uncertainty is anticipated from perception in unstructured environ-
ments and complicates the previous assembly description: A localization error in combi-
nation with low clearances provokes intermediate part jamming and can cause the robots
to fail drastically even for infinitesimal misalignments. We seek corrective behavior dur-
ing execution that is inspired by human skill to enable more autonomous systems.

Offline programming Task programming without access to the real hardware poses a
substantial challenge for insertion assembly. Contacts and tight fits are difficult to simu-
late realistically, so that using simulation creates the additional challenge of successfully

2



1.3. Concept Overview

Figure 1.2.: Concept overview: From human skills to compliant robot control. Demon-
strators perform the assembly tasks in simulation environments and gener-
ate examples of error-correcting behavior. A special type of neural network
learns strategies from these data, which can be executed through a unifying
force controller on robotic manipulators.

transferring results to real hardware. Furthermore, the formulation of the assembly skills
should be robot-independent to deploy them on different industrial manipulators, for
which suitable robot controllers must provide the interfaces.

Research Questions

Concluding from the problems and objectives, the following research questions shall lead
through the thesis:

Q-I How to design a simple and intuitive method to program robotic skills for force-sensitive
assembly tasks offline?

Q-II How to extract and incorporate human skill and intuition to make robots handle part
jamming and wedging autonomously during execution?

Q-III How to implement controllers to transfer these offline-programmed skills to industrial
manipulators?

1.3. Concept Overview

This thesis takes a hybrid approach between model-based and data-driven components.
The overall concept is to formulate robot-independent assembly skills based on simu-
lated data with techniques from machine learning and to deploy these models through
unifying robot controllers on the real systems. This separation of skill and robot control
enables us to program offline, but puts the challenge of simulation and transfer into the
foreground. Figure 1.2 shows an overview.

At the beginning of this process, there is an assembly task that we wish to program
and automate from a manual baseline. The concept uses toy bricks for illustration. For
practical use cases, the assembly task can comprise many challenges from the previ-
ous section with complex shapes, low clearances during insertion and tight fits at the
end. The intuitiveness of programming plays a decisive role in capturing and using hu-
man skill. To this end, our concept incorporates the Programming by Demonstration
paradigm (PbD) [5] by showing the assembly in a simulator with a joystick-like teach-
device. This part of the concept is model-based and we replicate the task with simulating
contact physics and friction using simplified meshes of the workpieces.

3
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Through recording discrete state space and steering commands during demonstra-
tions, we obtain a dataset that comprises human behavior for this assembly task. Repeti-
tive demonstrations shall collect corrective strategies for challenging configurations. The
idea is to provoke part misalignments in the simulator that are likely to happen during
the real assembly and thus obtain a dataset with valuable solutions to learn from.

The next part of the concept is data-driven and consists of approximating this dataset
with machine learning approaches. We use a combined form of neural network for learn-
ing patterns in sequential-probabilistic data. This model must be capable of capturing
the ambiguity of strategies with much trial and error in tasks with low part clearance. The
goal is to obtain models that predict error-reducing strategies for robot controllers.

Up to this point, the skills are robot-independently formulated with respect to object-
relative coordinate frames. This makes them applicable everywhere in the manipulator’s
workspace through a robot controller that operates in the Cartesian regime. Industrial
robots possess inner control loops, which provide limited interfaces for deploying these
skills directly. Our concept solves this problem by proposing a unifying controller that
relies on dynamics-based simulations and introduces a new way of formulating control
loops for industrial robots. During execution on the real system, the skill guides the robot
during assembly and can handle unforeseen part jamming and wedging with strategies
inspired by human skill.

1.4. Contribution

This thesis proposes a new method for offline programming human-inspired assembly
skills for industrial robots. The primary contributions of this research are:

• A comprehensive literature survey on skill programming and skill learning in robotics
research with a focus on robotic assembly. This collection provides both historic and
latest achievements to give an adequate overview of this diverse field.

• An approach to capture and model human-inspired assembly skills from demon-
strations in simulation. The proposed methods create sequential-probabilistic, robot-
independent models that let robots deploy error-correcting strategies against un-
foreseen part jamming. They can be used in industrial settings to gain more auton-
omy in unstructured environments.

• A unifying compliant controller tailored for industrial manipulators to execute as-
sembly skills. The controller builds on simplified dynamics simulations and pro-
vides a new solution to the inverse kinematics problem for the field of manipulator
control.

Accompanying analysis and experiments investigate and validate the new concepts.
The contributions shall deepen our understanding of human assembly strategies, pro-
vide a possible technical representation, and motivate the usage of simulations both for
demonstration and active compliant control. The implementation of the algorithm for
robot control is available as free and open-source software1.

1https://github.com/fzi-forschungszentrum-informatik/cartesian_controllers
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1.5. Document Outline

1.5. Document Outline

Chapter 2 builds the theoretical background for this thesis on compliant control for in-
dustrial manipulators. Related work is then reviewed with a focus on robotic as-
sembly and associated skill learning in robotics. The chapter closes with a qualita-
tive analysis of the different methods and open potential.

Chapter 3 introduces the concept of human-inspired skills and formulates modeling
them as a supervised learning problem. Assumptions and own definitions are
described along with the simulation environment. The core of this chapter is the
recording and modeling of skills with neural networks. Decisions about network
architecture are based on prior data analysis of exemplary demonstrations. The
chapter closes with an interface to robot control.

Chapter 4 introduces a new simulation-based control paradigm that leads to a new Carte-
sian compliant controller for industrial manipulators. A focus lies on achieving lin-
earity in operational space and the combination with assembly skills as a special
case of application.

Chapter 5 provides an in-depth evaluation of the central propositions of the thesis. The
learning of skills and their performance is considered within parameter studies.
Experiments both in simulation and on real robots evaluate the new controller de-
sign. The chapter closes with proof-of-concept demonstrations for two assembly
use cases.

Chapter 6 summarizes the results by re-iterating the research questions and reconsider-
ing the proposed methods under initial criteria. It highlights achievements, general
implications and gives suggestions for further research.
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2. Theoretic Background and Related Work

At the core of robotic assembly lies force-sensitive interaction. Our focussed industrial
manipulators do not possess this feat by default, and we first collect important theoretic
background on compliant control in Section 2.1. Spanning several decades of research, a
contribution to the field of robotic assembly requires a good knowledge of the different
approaches and associated methods to obtain skills. Section 2.2, therefore, makes a broad
collection that includes both historic and latest achievements. Basing on this overview,
Section 2.3 analyses the advantages and disadvantages of current methods under the
problem statement from Section 1.2 and identifies the open potential that we target with
our contribution.

2.1. Compliant Robot Control

In this thesis, we consider motion-controlled, industrial robots. Their strengths are fast
trajectory execution with high path accuracy and end-effector loads. Leveraging high-
gain position control in their joints, modern variants usually possess repeatable end-
effector accuracy in the range of 0.1 mm to 0.01 mm, which in theory gives them a far
more steady hand when controlling any tool than human workers. Yet, leveraging these
robots for highly constrained tasks, such as insertion assembly poses an important re-
quirement: Even infinitesimal misalignments can, together with the high material stiff-
ness of the work pieces involved, build up high reaction forces and damage parts and
robots. On the way to more system autonomy, visual perception in unstructured envi-
ronments replaces part-specialized fixtures and introduces uncertainty into the process
chain. Assuring safe interaction despite this uncertainty makes compliantly suspended
end-effectors mandatory. There are two dominant approaches of achieving this behav-
ior: Passive, compliant devices [6] that go back to Whitney’s Remote Center Compliance
(RCC) [7], and active compliance by control, whose name was coined by Mason in the
early 80s [8]. Both still being important fields of robotics research, this thesis contributes
to the latter with a new compliant controller (Chapter 4).

To have a sufficient basis for these developments, Section 2.1.1 first lists important
requirements for the industrial manipulators considered in this thesis. Section 2.1.2 and
Section 2.1.3 present current control schemes that are suitable to realize active compliance
by control on these robots. And Section 2.1.4 finally reviews solutions to the Inverse
Kinematics (IK) problem that is at the core of these control schemes.

2.1.1. System Requirements

Active Compliance

Continuous force control started in the early 70s by Groome [9], and Nevins and Whit-
ney [10]. The term active compliance was later coined by Mason [8] and refers to the
mimicking of passive elements through closed-loop force control. Fig. 2.1(a) shows a
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Robot
manipulatorController

Reference
input

Controlled
variable

Control
signal

Figure 2.1.: Interaction with compliance. (a) Schematic illustration of the robots con-
sidered in this thesis: Six-axis, revolute joints with wrist force-torque sen-
sor. (b) General control loop for realizing active compliance via joint posi-
tion/velocity interfaces. We refer to these systems as motion-actuated systems.

schematic manipulator in contact with the environment. A wrist-mounted sensor mea-
sures the six Cartesian axes of forces and torques f that is actively used to compute
joint positions q = (q1, . . . , q6) and velocities q̇ in reaction to those signals. Other than
lightweight robots [11], [12], [13] that use torque sensors in their joints, this add-on is an
effective way of enhancing a big amount of existing robots with compliant behavior.

Since active compliance computes reaction after f occurs, they are inherently bound
to delays and deadtimes of signal processing. Passive devices thus have advantages
over control approaches in terms of physical shock absorption and energy dissipation,
which are impossible to mimic by control on non-backdrivable systems. On position-
controlled systems, this gives rise to the inherent problem of contact stability [14]. Hybrid
devices exist and measure force-torque signals under the macro deformation of flexible
sensors [15]. This, however, can benefit oscillations and requires the calibration of passive
compliance to enable fine manipulation. Identification and usage of the manipulators’
structural compliance can further improve active force control [16]. The strong points
of active compliance and the reason for using this approach in this thesis is the flexibil-
ity of compliance shaping: Especially for motion that is sufficiently slow in contact, the
inclusion of measurements from a wrist force-torque sensor allows to render arbitrary
non-linear behavior that can easily be parameterized for specific tasks. For this thesis,
this approach provides a control interface for complex assembly strategies that use both
motion and force-torque setpoints.

Position/Velocity Joint Control Interfaces

In recent years, the increasingly popular Robot Operating System (ROS) [17] has emerged
as a powerful software framework to support robotics research through a rich set of tools
and algorithms. Its industrial-oriented initiative ROS-Industrial1 has brought software
control interfaces to industrial robot drivers2, among them KUKA, ABB, Motoman, Uni-
versal Robots, and has connected robotics research to the industrial sector. This thesis
focuses on compliant controllers for these systems, supporting a big amount of existing
robots.

1https://rosindustrial.org/, accessed 3.11.2020
2https://github.com/ros-industrial, accessed 3.11.2020
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Velocity
control
law

Force
control
law

Robot
manipulator

Figure 2.2.: Hybrid force/position control on motion-actuated systems.

Research on compliant manipulator control over the last decades, however, often as-
sumes torque-based control interfaces. They require modifications of the industrial robot
controllers but allow for linearization of the robot dynamics that leads to better error
correction in the control laws. This was initially proposed by Shin and Lee [18] who
added force control to pure motion control [19] in the hybrid framework of Raibert and
Craig [20]. The term acceleration-resolved [19] refers to formulating the control problem
based on acceleration terms at the robot hand, meaning that the highest order of error re-
jection in the control law is on the acceleration level [21]. Gravity, Coriolis, and Centrifu-
gal terms sum up with the inertia-multiplied control signal to a net force fn in Cartesian
space, which is then mapped to joint torques τ with

τ = JT (q)fn (2.1)

under the usage of the manipulator’s Jacobian transpose JT . This is also at the core of
Khatib’s operational space formulation [22], [23] which is still widely adopted to derive
robot controllers for compliant interaction.

The challenge for the industrial manipulators considered in this thesis, however, is
that they do not expose τ -based control interfaces. Instead, control engineers are limited
to velocity-resolved approaches [24] and fall back to q, q̇-based control interfaces for the
joints. Fig. 2.1(b) shows a generic control scheme for these systems, in which the robot
manipulator is treated as a black box. In further sections, we will refer to these systems
as motion-actuated systems to underline the available interfaces for controller design. Vil-
lani and De Schutter also denote them as simplified systems [24], because they wrap the
complexity of an inner, dynamics-linearizing control loop from external access. Not hav-
ing access on torque level, the Jacobian inverse J−1 then maps a computed Cartesian
reference velocity ẋr to joint space with

q̇ = J−1(q)ẋr. (2.2)

Targeting motion-actuated robots requires a focused review3 of control approaches that
leverage Eq. (2.2) at the core of their control loops.

2.1.2. Hybrid Force/Position Control

For hybrid force/position approaches, a characteristic feature is the usage of two mutu-
ally different subspaces for separate force and position control. The concept was initially
proposed for torque-actuated robots in the work of Craig and Raibert [27], [20] and is also

3More general reviews of the whole field of force and compliant control are provided by Villani et al [24],
Calanca et al [25] and Schumacher et al [26].

9



2. Theoretic Background and Related Work

credited to Mason’s work [8]. Here we describe the version for motion-actuated systems
in an adapted notation from [24].

The approach computes two separate control signals xc,f c based on the error between
desired end-effector velocity ẋd, desired contact wrench fd of the task, and current mea-
surements ẋ,f , respectively. Both proportional (P) and proportional-integral (PI) gains
are commonly used, e.g. [24]

ẋc = ẋd +KIx

∫ t

0
(ẋd(τ)− ẋ(τ))dτ

f c = fd +KPf (fd − f) +KIf

∫ t

0
(fd(τ)− f(τ))dτ,

(2.3)

with positive semi-definite gain matricesKIx for motion andKPf ,KIf for force control.
The integral gain eliminates steady state errors for setpoint tracking. Simpler velocity
and force controllers can be used and depend on the task’s objective.

Two selection matrices Sx and Sf merge these control signals into a common reference
velocity ẋr according to

ẋr = Sxẋ
c +D−1Sff

c, (2.4)

in which an inverse damping matrixD−1 maps force quantities to velocity space. Fig. 2.2
shows the closed-loop control scheme that uses Eq. (2.2) for joint actuation. Characteristic
for the hybrid approach, the selection matrices satisfy STx Sf = 0 in each configuration
and users specify mutually exclusive components of fd and ẋd for their tasks.

Parallel Force/Position Control

A slightly different version drops the selection matrices of the hybrid approach and is re-
ferred to as parallel force/position control [28], [29], [30]. We use the version of Villani et
al [24] in our notation. One of the drawbacks of the previous approach is that specifying
both Sx, Sf , and setting force and motion setpoints on different axes requires geomet-
ric knowledge about the environment. This becomes especially evolved for changing
frames [24]. The parallel approach circumvents this by overlapping both target force and
target motion in all of the six Cartesian dimensions so that Eq. (2.4) simplifies to

q̇ = J−1(q)(ẋc +D−1f c). (2.5)

The control signals ẋc and f c are those from Eq. (2.3). In a slight variation, Chiaverini et al
used PD gains for the position controller and PI gains for the force controller to preference
the elimination of force errors for the steady state [29]. Setting ẋc ≡ 0 achieves a pure
force controller on motion-actuated systems.

2.1.3. Admittance Control

In contrast to the hybrid and parallel approaches, admittance control [31] along with
impedance control [32] model the end-effector’s behavior with a dynamical system. A
clear distinction is drawn by Hogan’s work on interaction [32], which illustrates an impe-
dance as a conversion from flow to effort and an admittance as a conversion from effort
to flow [32]. In accordance, Ott et al [33] describe impedance control as closing motion
control around inner force control loops, and admittance control as closing force control
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Figure 2.3.: Admittance control with motion-actuated systems.
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Figure 2.4.: Two simplifications of admittance control that do not require numerical inte-
gration: (a) Compliance control and (b) damping control.

around inner motion control loops, respectively. Consider a general spring-damper-mass
relationship as end-effector model with

M∆ẍ+D∆ẋ+K∆x = f , ∆x = xd − x . (2.6)

Impedance control substitutes the time derivatives of the desired trajectory xd(t) and the
current state x(t) into Eq. (2.6) to obtain f , which actuates robot joints with Eq. (2.1). Ad-
mittance control on the other hand treats Eq. (2.6) as a differential equation of the variable
x(t). The desired trajectory xd, ẋd, ẍd in this case takes the role of the system’s rest posi-
tion and ∆x := x − xd. The solution x(t) can be found by solving Eq. (2.6) as an initial
value problem through numerical integration. Using e.g. the forward Euler method re-
quires transforming Eq. (2.6) into a set of 1st order ODEs in state-space representation.
The system’s motion is computed iteratively from initial conditions, using the control cy-
cle’s duration as step width. This leads to (x ẋ)T in state-space representation, of which
the simulated ẋ is taken as Cartesian reference velocity ẋr and mapped with Eq. (2.2) to
joint space. Fig. 2.3 shows the closed-loop scheme of a general admittance controller.

Compliance Control

This simplification goes back to the work of Salisbury [34] and is today considered as a
special case of admittance control without first and second-order dynamics. Error rejec-
tion is proportional to linear and angular displacement [24], leading to

∆q = J−1(q)(∆x−K−1f). (2.7)

Fig. 2.4(a) shows the closed-loop scheme. To be consistent with quantities, joint actuation
is incremental in this scheme with q + ∆q in each control cycle.

Damping Control

Also being considered an admittance control type today, damping control goes back to
the early work of Whitney [35]. Its control loop models the relationship between end-
effector contact wrench and desired velocity [24]. On motion-actuated systems, setting
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∆x,∆ẍ ≡ 0 and ẋ = ẋr simplifies Eq. (2.6) with Eq. (2.2) to

q̇ = J−1(q)(ẋd −D−1f). (2.8)

Fig. 2.4(b) shows the closed-loop scheme. Similar to Fig. 2.3, damping control does not
include motion feedback.

2.1.4. Inverse Kinematics for Compliant Control

In admittance control, numerically integrating Eq. (2.6) can be interpreted as a forward
dynamics simulation, in which x, ẋ form the result in each control step. In contrast to
the other compliant control schemes, having both as reference signals offers two options
for joint actuation: The first one is the classic problem of Inverse Kinematics (IK) and
refers to finding joint positions q for the target pose xr of the manipulator’s end-effector.
Closed-form solutions are among the fastest and can be derived analytically for specific
manipulators [36], [37] 4. Hybrids between sample-based and gradient-based methods
excel at finding solutions for highly redundant systems [38].

The second option and the one used for the other velocity-resolved control schemes
is mapping end-effector velocity to joint space with q̇ = J−1ẋr. However, inverting
the manipulator’s end-effector Jacobian in each control step requires a square, full-rank
matrix.

Redundancy and Singularities

The Jacobian of redundant manipulators is non-square. For these cases, Singular Value
Decomposition (SVD) can compute the Moore-Penrose inverse J+, which minimizes the
squared Euclidean norm ‖Jq̇ − ẋr‖2 [39]. First, the manipulator Jacobian is factorized
according to J = UΣV T , in which U and V T are orthogonal matrices. The diagonal
matrix Σ determines the scale of the mapping from Cartesian to joint space. Its entries
σii ≥ 0 are referred to as singular values. The pseudoinverse is then composed with

J+ = V Σ+UT . (2.9)

The entries of Σ+ are the non-zero, inverted singular values σ+ii = 1/σii. Near singu-
lar configurations, however, J becoming rank-deficient results in vanishing σii and con-
versely exploding σ+ii for J+. This effect causes numerical instability also in the non-
redundant inverse J−1. In both cases, even small ẋr cause huge joint speeds q̇ in the
control loops.

Manipulability and Stability

An effect that strongly correlates with singular configurations is the loss of manipulabil-
ity, for which Yoshikawa’s measure defines

√
det(JJT ) for redundant, and |det(J)| for

non-redundant systems [40]. The manipulator is unable to move instantaneously in all
directions, which is also visible via σmin as the smallest singular value of the mapping ma-
trix from task space to joint space [41]. In combination with the biggest value σmax, both
singular values offer insights on the scaling behavior: When σmin becomes zero, at least

4A popular software framework is ikfast: http://openrave.org/docs/0.8.2/openravepy/ikfast/, accessed
6.11.2020
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Figure 2.5.: Manipulability and stability near singularities. To obtain the plots, we inter-
polated between two singular configurations, indicated with dashed, vertical
lines, and computed σmin and σmax of the mapping matrices JT ,J−1 and DLS
for comparison.

one component of the task space reference velocity ẋr gets lost in joint space. In contrast,
σmax indicates the most sensitive component concerning the impact on joint velocity q̇.
Fig. 2.5 shows both values for different IK approaches near singular configurations. We
used the kinematics of the Universal Robots UR105 for this illustration. The Jacobian trans-
pose JT stays stable but loses manipulability with σmin dropping to zero. J−1 maintains
high manipulability but scales infinitely with σmax towards singularities. A remedy is
limiting high joint velocities q̇ at the expense of degraded accuracy in Cartesian space.

Damped Least Squares (DLS)

The Damped Least Squares (DLS) method is an application of the Levenberg-Marquardt
stabilization to manipulator control [42], [43]. It tries to circumvent instabilities of J−1

near singular configurations by adding a penalty term against excessive joint speeds to
the minimization of the pseudoinverse approach:

‖Jq̇ − ẋr‖2 + α2‖q̇‖2. (2.10)

Using the corresponding normal equation, the solution that minimizes this quantity is
given by [43], [39]

q̇ = (JTJ + α2I)−1JT ẋr. (2.11)

With the damping term α 6= 0, the matrix (JTJ +α2I) is of full rank and thus invertible.
Fig. 2.5 shows how the DLS aims for a trade-off between manipulability and stability. By
setting α = 0 as a lower limit, Eq. (2.11) falls back to the pseudoinverse approach.

A popular enhancement to DLS is the Selectively Damped Least Squares (SDLS) [44].
The method converges faster and circumvents to choose task-specific damping parame-
ters α by adding σii-specific damping terms to Σ. Other methods include the more recent

5https://www.universal-robots.com/products/ur10-robot/, accessed 4.12.2020
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Exponentially Damped Least Squares (EDLS) [45] with easy user-specific parameteriza-
tion and a focus on avoiding typical singular constellations in human-robot interaction.

2.1.5. Discussion

Uncertainty in unstructured environments requires some sort of compliance for safe in-
teractions between workpieces. Active compliance by control offers greater flexibility in
parameterizing suitable behavior over passive devices. In this setting, a wrist-mounted
force-torque sensor allows for designing task space controllers with force-torque and mo-
tion setpoint tracking. Many robots in industrial applications can easily be equipped with
such sensors for active control, but at the same time do not provide access to the inner
torque control loops of their actuators. By focusing on these motion-actuated systems,
we include a big field of robots, but also an additional challenge: Acceleration-resolved
methods that access inner torque-controlled loops are not applicable. Available control
schemes are thus mainly velocity-resolved approaches that compute Cartesian reference
velocities, which ultimately get mapped to joint space with the Jacobian inverse. Us-
ing this inverse as a central element poses stability issues near singular configurations.
Established methods thus find trade-offs between accuracy and stability.

Having focused on motion-actuated robots and available methods for control, the next
Section 2.2 investigates approaches for programming robots in assembly tasks. We open
this investigation beyond motion-actuated systems to sufficiently reflect the broad field
of available research.

2.2. Robotic Assembly

We first illustrate a simple assembly setting in Section 2.2.1 that introduces common prob-
lems and builds a baseline for the investigation of related work. We then review existing
methods for deriving assembly skills. While not all methods specifically target assembly,
they are established for contact-dominated tasks within the wider field of robotic manip-
ulation research and merit consideration. A clear categorization is often difficult because
many approaches use various methods jointly. We nevertheless attempt a clustering ac-
cording to what we believe is at the core of each approach. The following Section 2.2.2
to Section 2.2.7 group the methods into categories, roughly ordered according to how
much engineering thinking is required every time a new task is to be programmed: Sec-
tion 2.2.2 starts with analytical methods that mainly rely on engineering skill and primi-
tives. Section 2.2.3 presents methods that base their task description on the formulation
of constraints. Section 2.2.4 discusses works that tackle assembly within the field of mo-
tion planning. Section 2.2.5 and Section 2.2.6 attempt to parameterize probabilistic and
dynamic models directly from human performance. And finally, Section 2.2.7 presents
methods that use algorithms to obtain assembly skills on their own through learning
from trial and error.

2.2.1. An Introductory Example

In the scenario of assembly, we consider one of the parts to be passive, i.e. fixed with
the environment, or held in place with another manipulator, and given with some un-
certainty. The other part is active, i.e. grasped with a robotic gripper and controlled
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passive
active

active
passive

Figure 2.6.: Two-part assembly examples. Illustration of force closure (a) and form clo-
sure (b) that frequently arise in peg-in-hole problems with uncertainty. And a
toy problem (c) that is hard for robotics due to additional insertion directions.

as the robot’s end-effector. What makes part assembly challenging is when the relative
uncertainty exceeds the task’s clearance, which occurs in modern settings for gaining
autonomy through the use of visual perception systems in unstructured environments.

Fig. 2.6 shows two assemblies that become challenging in such settings: The peg-in-
hole problem on the left is iconic in assembly literature. Slightly varying in shapes and
sizes, this type is often considered a benchmark for applied methods. The second on
the right is a toy that some of us might be familiar with from our childhood days. For
robotics, this is a challenging problem and adds two-step insertion directions, low tol-
erances and fits, and higher geometric complexity that make reasoning difficult against
uncertainty.

During playback of the target motion xd(t) on a real system, some form of end-effector
compliance needs to consider environmental uncertainties. In the scheme of admittance
control from Section 2.1.3, the relationship between target motion xd, actual motion x,
and external forces f can be described with a first-order relationship:

f = K∆x+D∆ẋ

∆x = xd(t)− x(t)
(2.12)

where K and D are user-specified stiffness and damping of the end-effector. In steady
state during replay, contact forces alter the target trajectory by fK−1 = ∆x. For simple
geometry,K−1 takes the role of an accommodation matrix [46] (admittance) that can correct
part misalignments. Depending on the complexity of insertion, however, this is often not
the case. There are two challenging phenomena. The first one is force closure, Fig. 2.6 (a),
in which suitably parameterizing K might align the parts. The second challenge is form
closure, Fig. 2.6 (b), in which xd(t) must actively search to free the parts and start over.

When assembling parts with our hands, we overcome both challenges easily. Meth-
ods tried to reproduce these skills such as Newmann’s horizontal spiral search in the
hybrid force/position paradigm [47]. Today, literature on assembly is extremely rich and
diverse, and branched into a spectrum of approaches that continue to improve the us-
ability and generality of the solutions. The example from Fig. 2.6(a) is a good mental
baseline when reviewing these works. Within each of the following sections, we first
present early approaches that introduced important concepts and terminology and move
on to the most recent works.
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2.2.2. Skills, Primitives and Analytic Approaches

This section reviews methods for deriving assembly skills using mostly hand-crafted so-
lutions. For simple geometry, literature provides some analysis for the problem of force
and form closure of the previous section. We then make a transition to primitives and
skills that target the re-use of once programmed solutions.

Compliance Matrices and Contact States

Shimmels and Peshkin derived analytical solutions for manipulator admittance that could
correct part misalignments with error-reducing motion [46]. They called part combina-
tions on which this was possible force-assemblable, and derived conditions for success.
Later work extended this theoretic analysis to friction [48] and proofed the derivation
of suitable admittance controllers for multi-contact constellations for the planar case [49]
and spatial case [50]. Investigating the contact state space between parts, the work of Xiao
et al provided a symbolic description of part tilting and misalignments [51], [52]. They
proposed algorithms to compute contact formation graphs given the part geometries [52].
A more recent enhancement is tractable for 3d objects [53]. Meeussen et al [54] use this
contact formation graph in their compliant task generator. Automatically deriving hybrid
force/position controllers reduced the programming to user-specified twist and wrench
commands.

Stemmer et al presented an analytical method that relies on spring-damper parameter-
ized compliance of the robot to obtain insertion trajectories for planar parts [55]. Align-
ment strategies exploit part contours, which are given as continuous, differentiable func-
tions. An object localization handles initial part uncertainty and provides starting points
within regions of attraction through shape matching [56]. Recent work indicates that fol-
lowing target motion and setting stiffness to zero in perpendicular axes can be sufficient
for simple insertions [57], such that contact forces guide assemblies.

Skills and Primitives

Strip began composing skills out of task-level primitives in the late 80s [58]. His primi-
tives based on the analysis of contact forces, friction cones, and the clever selection of
target points for force application. They already generalized to object classes, such as
rectangular, triangular, and elliptical pegs.

Onda et al [59] used a robotic manipulator to steer objects in a rudimentary simulation
and extracted force/motion strategies while observing how operators switched between
contact states. Their later work [60] combined this approach with a skill library [61]
that chains primitives such as ’move-to-touch’, ’rotate-to-level’ and ’rotate-to-insert’ for
a hybrid position-force control in Cartesian space. Embracing a wider concept, Morrow
and Khosla proposed a sensorimotor layer to combine sensing and action [62]. Within
this layer, a library of sensorimotor primitives should cover up to twenty possible relative
part motions which should serve as domain-general building blocks in composing task-
specific skills [63]. Later work expanded to complete assembly sequences [64], [65], [66].

More recent work in this field continues this concept: Wahrburg et al formulate tem-
plates for skills with compliant trajectory execution in state machines [67]. Similar to
Morrow and Khosla’s early proposition, the skills are located between high-level task
and low-level control and users parametrize templates explicitly in pose-wrench space.
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Encapsulating some of this complexity, Thomas et al introduced LightRocks, a UML/P-
based language for robot programming [68]. In this framework, skills are coded by do-
main experts and composed by shop floor workers in a state chart-like model [69]. An
even higher grade of automation was introduced recently for generating and executing
assembly plans from CAD files [70], albeit limiting the part mating commands for peg-
in-hole types to Newman’s spiral search.

2.2.3. Constraint-Based Programming

In his early control strategy synthesis [8], Mason presented formal models for describing
compliant motion primitives in form of actuator signals to high-level sensor input with
the help of two pairs of force-velocity constraints: The control strategy synthesis shall
find artificial constraints of the end-effector, such that a goal trajectory is reproduced con-
sistently given the natural constraints of the task. Lozano-Perez et al [71] showed applica-
tions for fine-motion strategies for peg-in-hole assembly. De Schutter et al [72] added the
concept of tracking directions and further developed termination conditions.

Task Frame Formalism (TFF)

Basing on these works, Bruyninckx and De Schutter formulated what is known as the
Task Frame Formalism (TFF) [73]. Strongly embedded into the hybrid force/position con-
trol paradigm from Section 2.1.2, they complete Mason’s approach with a formal defini-
tion of task frames (TF) and contribute to the interface layer between task planning and
force/position control. Their concept builds on the principle of vanishing virtual work:

ωTm+ vTf = 0 , (2.13)

in which the twist of the manipulated object’s instantaneous motion with linear and
angular velocity [v ω]T generates no power against the wrench of forces and moments
[f m]T for the contact situation [73]. In the TF formalism, Eq. (2.13) holds for all contact
situations between rigid bodies, independent of reference frames and part complexity
[73]. Reaction forces f are, however, assumed to be frictionless. Three requirements are
essential in modeling with the TF formalism:

(i) Geometric compatibility: The goal is to find a suitable TF that models the motion
constraints with up to six orthogonal axes.

(ii) Causal compatibility: Programmers specify a task with velocity setpoints for the
velocity-controlled TF directions and force-setpoints for the force-controlled TF di-
rections. This is equivalent to Mason’s artificial constraints.

(iii) Time-invariance: The TF moves and adapts with time to maintain geometric and
causal compatibility. Actions stop upon meeting termination conditions.

Practical use of the TF formalism, however, often requires the relaxations of these re-
quirements. A trade-off between modeling effort and control effort has to be made, such
that slightly incompatible TFs can be beneficial if the control can cope with these errors.
Additionally, the setpoints can also be specified for future contacts instead of the current
ones.

Kröger et al [74] provide general transformation chains for the most general TFF cases:
in the robot hand, with respect to a fixed frame, and with respect to an external frame.
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Their investigations allow to specify several sensor sources in different coordinate sys-
tems and provide the necessary transformations to collect all quantities in the TF for
control. During execution, the TF is moving with the rigid body of interest and main-
tains the geometric compatibility so that the causal compatibility does not change and
setpoints for velocity and force control stay constant. Limitations of the TF formalism
mainly arise when no six axial and polar axes can be found to maintain geometric and
causal compatibility during execution [73], which is a direct consequence of binding the
task to a single TF.

iTaSC and eTaSL

Instantaneous Task Specification and Control (iTaSC) [75], [76] replaces the TFF with mul-
tiple, pair-wise feature frames that allow modeling the task as a composition of individual
constraints. To this end, feature frames are attached to objects and allow for a more de-
tailed focus on where a possible constraint takes action, e.g. surfaces, edges, vertices. A
general constraint involves two feature frames on two distinct objects. Several of these
partial descriptions then form the overall task model. This modeling procedure leads
to a constrained optimization problem, in which a numerical solver minimizes a user-
specified objective function subject to a set of constraints [77]. A loop closure equation
takes geometrical uncertainty into account and inequality constraints allow the inclusion
of joint limits for the control output. The solution is a velocity-resolved control reference
for the robot’s actuators. The optimization problem permits two distinct time horizons:

(i) step-wise, embedded into a reactive control scheme
(ii) or globally, embedded into offline trajectory planning for the full task.

Decre et al [77] add user-specific time horizons through trajectory constraints to offer
trade-offs between computational speed and optimality of the two. Halt et al [78] and
Nägele et al [79] build on the iTaSC framework to compose generalized, elementary sub
skills for assembly and show the snap-mounting of electronic components and the inser-
tion of a car door handle.

Further enhancing the concept of iTaSC, Aertbeliën et al [80] propose the more recent
expression graph-based Task Specification Language (eTaSL). Their corresponding task
controller implementation (eTC) wraps much of iTaSC’s complexity and targets prac-
tical use within common robotics frameworks [17]. Pane et al [81] apply this method
to a rotor assembly, in which users specify constraint types in Computer-Aided Design
(CAD). A reasoning step then infers sensor-based robot skills, using an ontology to trans-
late eTaSL compatible constraints into the optimal control framework of eTC. Vergara et
al [82] bridge the gap to probabilistic imitation learning (cf. Section 2.2.5) by using Prob-
abilistic Principal Component Analysis (PPCA) [83] to capture motion demonstrations
from kinesthetic teachings in a statistical model. The connection to constraint specifica-
tions of eTaSL leads to partially transferable skills to new target positions, in which im-
itation learning covers wider workspace motions and constraint-based optimal control
targets the last centimeters.

2.2.4. Motion Planning

Considering part assembly as a geometric planning problem implies finding collision-
free paths from initial to goal configurations. This, however, becomes challenging for
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low clearances. Instead of sampling collision-free states, Kinodynamic motion planning [84]
samples admissible controls and uses state propagation under dynamic constraints by
numerically solving a differential equation. For each sample, this equation has the form

ṡ = f(s,u) (2.14)

in state-space representation with state space s and control vector u. If f is difficult to
obtain analytically, a physics simulator models and solves Eq. (2.14) numerically [85]. If
the new state fulfills user-specified costs, then the sampled control becomes the new end-
point to the randomly growing roadmap. The planner terminates once s lies within a
pre-defined end-game region. Kinodynamic motion planners include e.g. the extensions
to Rapidly Exploring Random Trees (RRT) [85] and Probabilistic Roadmaps (PRM) [86].

Whether the planned trajectory of controls is successful on the real setup strongly de-
pends on the simulation’s accuracy in modeling important process parameters, such as
friction. Since the trajectories are executed in an open-loop fashion, more robust ap-
proaches incorporate uncertainty during planning [87].

Belief Space Planning

Wirnshofer et al propose Belief Expansive Space Tree (B-EST) [88] as a belief space version
of Kindel et al’s kinodynamic planner [89]. They add Gaussian noise to the grasp trans-
form of the active assembly part and model the belief of poses and twists as a joint dis-
tribution. Approximating this belief state with many particles, they sample random con-
trols in form of piece-wise linear velocities ẋd. Each particle is modeled via an impedance
according to Eq. (2.12) of our introductory example, for which they use the Bullet6 physics
engine. The state propagation for each particle itself is deterministic and is executed in
parallel in the simulator. If each simulated contact wrench does not exceed pre-defined
thresholds, then the particle’s new belief is valid and the mean of all particles forms a new
node in the growing roadmap. The goal is to compute a trajectory of controls ẋd(t) such
that a high portion of the distributed pose beliefs ends close to the assembly’s target pose.
Experiments show a superior success rate in comparison to pure kinodynamic planning
on a puzzle-like assembly, a peg-in-hole problem, and a rail-mounted fuse. Their recent
work [90] includes uncertainty given through elastic parts.

Constrained Motion Planning

Insertion assembly typically reduces the active part’s motion and degrees of freedom
along the process. Formulating motion planning explicitly under such constraints leads
to the alternative of constrained motion planning [91]. Rodriguez et al provide an importance-
based sampling technique for probabilistic planners that consider geometric constraints
and efficiently search sub manifolds of the task space [92]. Users specify these constraints
for every two parts with a relational positioning methodology [93].

Jäkel [94] combines constrained motion planning with the intuitiveness of the Pro-
gramming by Demonstration (PbD) paradigm [95] and provides a hybrid between both
approaches. Through observing human teachers with data gloves and magnetic object
trackers, he automatically deduces constraint sets from demonstration and constructs

6https://github.com/bulletphysics/bullet3, accessed 7.8.2020
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task-specific strategy graphs. He then uses efficient search heuristics and constraint re-
laxation to plan with spatial, force, and temporal constraints in these graphs to generate
motion plans for robots of different morphology. Using human skill and experience is
a powerful source for learning models from demonstration. The following Section 2.2.5
and Section 2.2.6 review important methods under this paradigm that can be used for
assembly.

2.2.5. Probabilistic Skill Learning from Demonstration

Learning from human demonstration is a strong alternative to explicit task modeling
and marks an upwards trend in robotics over the last years [96]. The term Learning from
Demonstration (LfD) in general can be considered a superclass of methods in robotics
with the core idea to learn from the performance of human teachers [96]. Common
synonyms to refer to this approach are Programming by Demonstration (PbD) [5], [95],
which coined the field, Imitation Learning (IL) [97] with a background in physiological
neurosciences, and Behavioral Cloning (BC) [98] from the wider field of machine learn-
ing.

A common incentive among variants is to learn a policy from human-generated data.
This thesis’ focus of insertion assembly requires policies that produce low-level, sub-
symbolic trajectories that robot controllers can execute through force or motion setpoint
tracking. For the variant described in this section, probabilistic models shall learn despite
the variance in human demonstrations.

Gaussian Mixture Models (GMM)

Gaussian Mixture Models (GMM) are a suitable means of representing human recorded
datasets. The recordings typically constitute measurements that rather belong to the in-
put space x or the output space y, respectively. Both form vectors in a multivariate case.
We use the notation of [99] in the setting of the multi-variate case described in [100].
From a probabilistic viewpoint, these signals constitute random variables, and the idea
is to represent the dataset as a joint probability density

p(x,y) =

k∑
i=1

αipi(x,y), (2.15)

with
∑

i αi = 1 as the priors of a mixture of k Gaussians. The individual, c-dimensional
distributions have the form

pi(x,y) = N (µi,Σi) =
1√

(2π)c|Σi|
exp

[
−1

2
(v − µi)TΣ−1i (v − µi)

]
, (2.16)

with the joint vector of variables v = [xTyT ]T ∈ Rc and the corresponding means and
covariances for each kernel

µi =

[
µi,x
µi,y

]
∈ Rc and Σi =

[
Σi,xx Σi,xy

Σi,yx Σi,yy

]
∈ Rc×c. (2.17)

Both can be learned iteratively from the dataset through applying the Expectation Maxi-
mization (EM) algorithm [101], [102], which yields a locally optimized fit of the Gaussian
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kernels to the dataset. The number of kernels needs to be specified beforehand and does
require a certain knowledge of the task.

For regression, using the conditional probability density p(y | x) allows us to compute
an output y for a given input x. Through learning a joint probability, GMMs make no
distinction between input and output, and the strength of the approach is its flexibility
to use arbitrary input-output constellations through conditioning on individual dimen-
sions of x,y [99]. A frequent application is to learn a joint distribution by including time
explicitly as a random variable t and then using p(y | t) to describe trajectories over
time [103].

Gaussian Mixture Regression (GMR)

Gaussian Mixture Regression (GMR) models the conditional probability density p(y |
x) ∼ N (ŷ, Σ̂yy) to obtain a Least Squares Estimate (LSE) for a given input [102]. Using
the previously fitted means and covariances from Eq. (2.17), the estimate and its variance
become (see e.g. [100], [103]):

ŷ =

k∑
i=1

hi(x)
(
µi,y + Σi,yxΣ

−1
i,x (x− µi,x)

)
(2.18)

and

Σ̂yy =
k∑
i=1

h2i (x)
(
Σi,yy −Σi,yx(Σi,xx)−1Σi,xy

)
(2.19)

with

hi(x) =
αiN (x;µi,x,Σi,x)∑k
j=1 αjN (x;µj,x,Σj,x)

. (2.20)

hi denotes the normalized probability of x belonging to each Gaussian [102], such that
hi ∈ [0, 1],

∑
i hi = 1. GMR is often used for trajectory learning in motion and force-based

manipulation [100], [104], [105], [106]. Tang et al [107] use this approach to describe an
admittance controller as a learned probabilistic mapping from sensed contact wrenches
to twist commands. They record the demonstrations of a peg-in-hole experiment with
a specially designed teach device. Note that Eq. (2.18) yields deterministic estimates for
robot control. Kronander et al [108] use sampling from the conditional probability dis-
tributions N (ŷ, Σ̂yy) to introduce randomness in comparison to LSE and thus overcome
deadlocks during assembly.

Hidden Markov Models (HMM)

As an alternative to including time explicitly within the joint probability density of GMM,
Hidden Markov Models (HMM) can be used to feed sequential information into the re-
gression function of GMR. HMMs are temporal probabilistic models and resemble GMMs
in that they model the dataset with joint probability densities. But in addition, they learn
sequential information in the form of state transitions that can be harvested to make tem-
poral predictions.

Using the notation of [104], the HMM is described by λ = (π,A,µ,Σ), in which
π = {πi} denotes the initial state probability vector with 1 ≤ i ≤ k, and A = aij is a
matrix describing the transition probability from state i to state j with 1 ≤ i, j ≤ k. The
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mean µ and covariance Σ represent a set of c-dimensional Gaussians N (µi,Σi), one for
each state i, analog to Eq. (2.17). In the context of HMMs, the recorded dataset consti-
tutes a set of observation sequences O = O1,O2, . . . ,OT , in which Ot is an input-output
pair (xt,yt) at time t. The goal is to adjust the model parameters π,A,µ,Σ to optimize
p(O | λ), i.e. making the HMM best explain the recorded sequences. This step can be
achieved iteratively with the Baum-Welch algorithm or the EM algorithm, see e.g. [109],
and the result is a local best fit of the model to the dataset. Al-Yacoub et al [110] use this
intermediate result to identify generic state transitions during a peg-in-hole assembly
task and cluster force-torque signals to get insights into human skill characteristics.

Having the HMM’s parameters, Calinon et al [104] and Rozo et al [105] use the forward
variable [109] to include temporal context into the regression function of Eq. (2.18) in the
form of

hi,t(x) =

 k∑
j=1

hj,t−1aji

N (x;µi,x,Σi,x). (2.21)

While hi(x) from Eq. (2.20) described the probability of x belonging to each Gaussian,
hi,t(x) from Eq. (2.21) describes the probability of being in state i at time t with including
how likely that is given the previous observations x1,x2, . . . ,xt up to the present.

GMR with this approach encapsulates both spatial and sequential information proba-
bilistically. Stability in these HMM-GMR combinations outside the taught regions can be
achieved with additional attractor methods [104]. The next section reviews established
alternatives using dynamical systems for motion representation with primitives.

Dong et al [111] use a slightly different approach in which they combine an HMM
with Locally Weighted Regression (LWR). In contrast to GMR, LWR is a non-parametric,
memory-based method and requires training data during control applications. LWR per-
forms a regression around a query point of interest by using kernel functions to weigh the
distance to local training data. Their HMM learns discrete contact states of peg-in-hole
assembly from demonstrations in a virtual, haptic simulation environment. Upon de-
tecting such states during task reproduction on a 3-degree-of-freedom mechanism, they
use LWR on a subset of the training data as identified by the HMM for controlling angle
corrections to measured forces and torques.

2.2.6. Imitation Learning with Primitives

Learning skills for regions outside of the human demonstrations requires sufficiently
time and space-independent, parametric models. With the incentive to capture and gen-
eralize motion characteristics the design of dynamical systems for movement imitation
[112] inaugurated an important field for skill learning.

Dynamic Movement Primitives (DMP)

Dynamic Movement Primitives (DMP) [113] are a common method of using dynami-
cal systems for motion representation of coordinated multi-degree of freedom mecha-
nisms. They were first introduced by Ijspeert et al [112] and termed DMPs in the work
of Schaal [114], and have been enhanced in further works [115], [116]. To avoid depen-
dency on robot morphology, a common way is to formulate DMPs in task space and use
end-effector control for the inverse kinematics problem, see e.g. [116]. The generated
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trajectories keep their motion characteristics for different goal positions. We base or fol-
lowing short overview on the notation of [116]. The basic idea is to describe motion of
interest x(t) of a state vector x as a set of ordinary differential equations, in which each
dimension x is defined by an individual spring-damper system

τ2ẍ(t) = K(g − x(t))− τDẋ(t) + (g − x0)f(s(t)) . (2.22)

Stiffness K and damping D are hand-tuned constants, whereas the non-linear pertur-
bation f is to be learned from observation. Eq. (2.22)) is referred to as transformation
system. One of the decisive features of DMPs is the generalization of the learned mo-
tion characteristics for each dimension when using new targets g and the start states x0.
The duration of the playback is adjusted by choosing a specific time scale τ . The motion
characteristics, which is comprised in f depends on a dimensionless phase variable s for
the course of the skill. Common for all transformation systems, s is described by the
following canonical system

τ ṡ(t) = −αs(t) , (2.23)

with the scaling factor τ and a constant α, relating phase and real-time with an expo-
nential decay from 1 to 0. This assures a coordinated, timeless parameterization of the
individual transformation systems, each represented by an instance of Eq. (2.22). Each
non-linear perturbation is modeled by

f(s) =

∑
i ωiψi(s)s∑
i ψi(s)

, (2.24)

with ψi(s) = exp(−hi(s − ci)2) representing an a-priori chosen number of Gaussian ba-
sis functions with constant center ci and constant width hi. Using the DMPs to obtain
motion-based skills boils down to learning the adjustable weights ωi. For this purpose, a
skill-defining trajectory x(t), ẋ(t), ẍ(t) is recorded from human demonstration for a cer-
tain time span. Reformulating Eq. (2.22) leads to a straight-forward computation of dis-
crete samples

fd(s(t)) =
−K(g − x(t)) + τDẋ(t) + τ2ẍ(t)

g − x0
. (2.25)

This step can be interpreted as inverse dynamics computation, in which the desired dis-
turbance fd is fully defined by the observation x(t) over time. The weights of f are then
learned in a supervised manner, such that f(s) best agrees with the data samples fd(s)
observed. Minimizing

∑
s(f

d(s) − f(s))2 can be solved e.g. with multivariate linear re-
gression.

When deploying the DMP, first Eq. (2.23) and then each dimensions’ Eq. (2.22) are nu-
merically integrated with a user-specified τ . Obtaining x(t) corresponds to finding nu-
meric solutions to initial value problems with the initial conditions x(0) = x0, ẋ(0) = ẋ0.
A simple implementation could transfer Eq. (2.22) into a set of first-order ODEs and ob-
tain the state vector [x(t), ẋ(t)]T incrementally with the forward Euler method. The ob-
tained x(t) and ẋ(t) are then passed as reference signals to the controller. When chaining,
the goal states of a DMP initializes the start states of the succeeding DMP.

Combining the DMP approach with probabilistic components allows for capturing of
variance in human demonstrations. Ding et al [117] first use GMR from Section 2.2.5 to
learn concise trajectories from human demonstration and then use DMPs to obtain a para-
metric model for generalization to different start and end positions across the workspace.
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For insertion tasks with more complicated contact dynamics, however, motion alone is
usually not sufficient to model characteristics in human demonstrations. The integration
of force profiles plays a decisive role in increasing robustness.

Learning Force Profiles in DMPs

Pastor et al [118] use an online adaptation of trajectories through an additive term in the
transformation system of Eq. (2.22) that computes an error-proportional disturbance for
target force-torque profiles. They obtain these profiles as recorded sensor traces from
previous executions with the idea of building a growing associative memory for similar
tasks [119]. Another approach is to generalize force-torque profiles in time via the phase
variable s. In contrast to a direct replay of recordings and setpoint tracking, the idea is to
capture the characteristics of the sensor signals analog to the capturing of motion profiles
into a parametric model. Spatial generalization on the other hand is usually achieved
through formulating the DMPs in task space coordinates. This leads to a formulation
similar to Eq. (2.24) for modeling forces f(s) and torques t(s) as linear combinations of
radial basis functions:

f(s) =

∑
i ω

f
i ψi(s)∑
i ψi

, t(s) =

∑
i ω

t
iψi(s)∑
i ψi

. (2.26)

The difference is that they are not embedded into the spring-damper system of Eq. (2.22)
as a perturbation, but instead are directly used as reference profiles in end-effector force
controllers and are tracked in parallel to the motion trajectories, e.g. with a proportional-
integral (PI) controller [120]. For velocity-actuated robots, the force-controlled compo-
nent is usually mapped to motion space with a compliance matrix. Three dimensions of
each f(s) and t(s) are required to capture six-dimensional profiles.

Nemec et al [121] and succeeding works [120], [122], [123], [124] use this mechanism
for peg-in-hole assembly tasks. Kramberger et al [123] use LWR from Section 2.2.5 as
a memory-based learning method around query points of several demonstrations to in-
crease performance.

Abu-Dakka et al [120] and Savarimuthu et al [124] apply a quaternion-based DMP
formulation [125] and use the phase modulation mechanism to slow down the execution
for better adaptation to the target force profiles whenever execution speed is too fast for
setpoint tracking. They additionally apply Iterative Learning Control (ILC) [126] to closer
match the force profiles over repetitive executions. Using teleoperation avoids the task
replay of [123] to obtain unbiased force profiles in the first run.

2.2.7. Reinforcement Learning

Our revision so far ordered the approaches roughly to engineering effort in task mod-
eling. In this last section, works from the field of Reinforcement Learning (RL) [127]
share the same goal of obtaining policies for assembly but do so in a rather different
way. Especially in game-like environments, agents trained with RL can reach a super-
human level through extensive self-play [128], [129]. RL differs substantially from meth-
ods from previous sections in that agents find suitable policies themselves, albeit requir-
ing a hand-engineered reward function to learn through trial and error. Inverse RL in the
context of apprenticeship learning can obtain this reward function from human expert
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demonstration [130], [131], closing the circle of imitation learning. Reinforcement learn-
ing for industrial assembly is not new. Gullapali et al have shown peg-in-hole insertion
in the early 90s, using neural networks of two hidden layers for admittance control-based
strategies [132], [133]. Modern approaches mainly rely on very deep neural networks that
are more powerful, complex function approximators. We briefly highlight how selected,
recent works apply RL for similar or relevant tasks.

Guided Policy Search (GPS)

A classical challenge in RL is the sample inefficiency for high-dimensional state spaces.
Especially for articulated robots, this results in high system interaction time. Levine at
al [134] apply Guided Policy Search (GPS) [135] as a sample-efficient method to these set-
tings. Although not explicitly targeting assembly, their approach is suitable for contact-
rich tasks. They try to learn the parameters of a policy

π(ut | xt) (2.27)

as a probabilistic mapping from robot state xt (joint positions, velocities, target objects)
to low-level actions ut (joint torques). Instead of learning the policy directly with an RL
method, their approach combines two components: The first component is the training
of time-varying, linear Gaussian controllers for trajectory optimization under unknown
dynamics. Basing on iterative Linear Quadratic Regulators (iLQR) [136], which is a com-
mon method in optimal control for trajectory optimization, they additionally need to es-
timate the dynamics iteratively, solving linear-quadratic Gaussian (LQG) problems and
using samples from the previous rollout in each step. A cost based on the Kullback-
Leibler (KL) divergence between succeeding trajectory distributions prevents divergence
into infeasible state spaces. The second component uses GPS to find a non-linear policy
as a combination of several of these controllers. Since Gaussian controllers alone are not
robust to changes of start or target positions, the idea is to obtain a more generalized
representation through parameterizing the deep neural network π from Eq. (2.27) with
supervised learning based on samples from these controllers. Generalization implies a
difference in state distributions in the Gaussian controllers and the final policy. Their ap-
proach thus uses Dual Gradient Descent (DGD) to solve both trajectory re-optimization
of the Gaussian controllers and policy parameter learning jointly in an alternating fashion
to converge to suitable state distributions.

On the tasks presented, this works in roughly 20 to 40 rollouts and can handle the non-
linearities of interaction dynamics. Note, however, that their method needs the manual
specification of intermediate waypoints for tasks where a non-straight motion to the target
is required.

GPS and Motion Planning

Similar to this work, Thomas et al [137] use the iLGQ-based policy search algorithm from
[135] but combine it with motion planning to achieve greater workspace independence
of their policies. As described in Section 2.2.3, geometric motion planning computes a
continuous path from an initial configuration to a goal configuration in the robot’s free
configuration space, using CAD data of assembly parts as obstacles. Their approach
models the cost function in such a way that it motivates to track an initial motion plan as
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a reference trajectory. RL shall learn contact dynamics that are not anticipated by the mo-
tion plan. In the setting of iLQG, the first pass is initialized with a proportional derivative
(PD) controller that tracks this trajectory. During execution, their neural network policy
uses an attention mechanism that selects time windows of normalized trajectory inputs
to compute the directions of the next actions.

Levine et al [134] had the inherent drawback of learning within the highly non-linear
configuration space of the robot, generating the need to train multiple controllers to suffi-
ciently cover the task’s workspace. By including a freshly generated motion plan into the
policy network for each task execution, Thomas et al [137] could remedy this drawback.
An alternative is using RL in part-centered task space directly, whose dimensions are
strongly reduced in comparison to the full robot’s state space that is governed by non-
linearities of kinematics and dynamics. Actuation is then delegated to Cartesian robot
controllers for setpoint tracking.

Deep Q-Learning

Inoue et al [138] use deep Q-learning in such a setting for peg-in-hole with micrometer
clearance. In contrast to policy gradients, Q-learning is often embedded into a Markov
decision process and finds optimality estimates (Q-values) for discretely defined actions,
leading to a policy

π(s) = argmaxaQ(s,a) (2.28)

that chooses the best action a at each state s. They model π as a deep recurrent neural
network to include sequential state observation against control delays and possible signal
noise. The state space is composed of measured force-moment signals and a horizontal
position in a grid. The elementary action space is composed of target forces and rotations
along unit axes, which they apply as setpoints in a hybrid position/force controller. For
each learning episode, an action thread creates a replay buffer with state-action pairs and
rewards during insertion trials, and a learning thread updates the network parameters,
randomly sampling from the replay buffer. Distance and depth are chosen as penalties
during the search phase and insertion phase, and a positive reward motivates a comple-
tion within a minimal number of steps for successful episodes. They apply an ε-greedy
policy for the action thread to balance exploration and exploitation, in which the best
action (with the highest Q-value) is taken with probability 1− ε and the rest is randomly
chosen with probability ε from the complete action set. After precisely calibrating the
setup and determining suitable magnitudes of the force actions, their approach shows
successful insertion with only 20 µm and 10 µm part clearance after 200 training episodes
on the real setup with up to 3 mm translational and 1.6◦ rotatory offset.

Visual Reward Functions

Based in a similar setting of Q-learning, Schoettler et al [139] use a combination of a fixed
hand-specified controller πH(s) and a neural network policy πθ(s) for electronic plug
insertion. The idea is to use RL on top of a conventional controller to increase sample
efficiency and reduce system interaction time. Their approach chooses actions with

a = πH(s) + πθ(s) (2.29)

at 10 Hz, which control the robot’s end-effector pose through inverse kinematics with
joint-space impedance. πH is obtained through demonstrations with a gamepad. The
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neural network parameters are learned with the stochastically exploring Soft Actor Critic
(SAC) algorithm [140]. Considering several combinations, the best working reward func-
tion uses a 32×32 greyscale image of the task with pixel-wise L1 distance to a goal image,
weighing-in divergence from the prior demonstrations. Their results show successful in-
sertion with an uncertainty of up to 1 mm to the ground truth. For simple insertions with
one primary axis, this combination of visual input and prior demonstration can circum-
vent RL’s typical laborious reward shaping. The advance of image processing pipelines
with regional Convolutional Neural Networks (CNN) [141] allows a semantic image an-
notation for tasks that provide sufficient visual characteristics. Ding et al [142] use this
approach to improve their force-based search with hole detection and pose estimation
from images of an RGB-D camera.

2.2.8. Discussion

The last sections showed a broad and diverse field that spans several decades of research.
Individual philosophies branched out and we classified six important directions with
methods close to robotic assembly.

Analytic approaches and hand-designed skills target the reuse of primitives to com-
pose robot programs. They are characterized by a precise knowledge of task geometry
and mostly require an engineer’s background in their parameterization. Using task con-
straints and formalisms led to constraint optimization solvers that can tackle more com-
plicated, albeit explicitly specified tasks. Putting numerical simulation into the focus,
motion planning circumvents some complexity in task set-up but requires realistic pa-
rameters to simulate process dynamics. Characteristic for these approaches is the open-
loop execution once a plan is computed. An alternative is planning in constraint sub-
manifolds, whose constraints can be derived from human observation. This changes the
philosophy to programming by demonstration and enables non-professionals to teach
tasks and provide datasets for machine learning. Probabilistic approaches generalize
better with more demonstrations. Dynamic movement primitives achieve generaliza-
tion through attractor dynamics and learn time and space-invariant trajectories. Forces
profiles are handled as time-coupled overlays and fewer demonstrations are required in
comparison to probabilistic imitation learning. Reinforcement learning contrasts with
these approaches in that algorithms heavily rely on exploring by trial and error. Engi-
neers have less control over convergence and reward shaping is necessary in most cases.

The following analysis sets important goals and evaluates the strengths and drawbacks
of the individual directions.

2.3. Analysis

Previous sections reviewed related works and presented various techniques and direc-
tions for robotic assembly. However, not all of them are directly applicable to our settings
and problem statement and require a high-level reflection concerning the goals of this
thesis. Section 2.3.1 analyses the research directions under specific criteria to highlight
their strengths and drawbacks. Section 2.3.2 draws a conclusion based on this analysis
and sketches this thesis’ approach.
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2.3.1. Goals and Limitations

Three goals are of special importance: The Applicability to robots and control approaches
from Section 2.1 and the example from Section 2.2.1; the suitability for Offline Program-
ming within industrial settings; and low Engineering Effort for task programming as a
quality measure for ease of use. We evaluate the research directions from Section 2.2 un-
der the criteria that we formulate for these goals. This evaluation shall offer a general
overview with the following grading:

+ Generally a strength of this direction and mostly applicable without difficulty
0 Mostly indifferent without positive nor negative tendency
− Rather a weakness of this direction and causing some difficulty for application

Table 2.1 to Table 2.3 summarize the results.

Applicability

(1) Compatibility with motion-actuated systems Section 2.1.1 posed motion-actuated
systems as a requirement for assembly methods. These robots are non-backdrivable in
their joints but become compliant at their end-effectors through imitating active compli-
ance by control. Suitable control schemes build upon specifying motion-force setpoints
either explicitly in Hybrid Force/Position Control Section 2.1.2 or implicitly in Admit-
tance Control Section 2.1.3. Analytical approaches with composing skills out of primi-
tives and constraint-based programming integrate well into these schemes: Parameteriz-
ing setpoints by hand or optimizing them in constraint solvers aligns with the thinking in
force and motion subspaces. Constraint motion planning can search the motion-actuated
joint space of the robot and thus also fits well. Additionally, kinodynamic motion plan-
ning can compute the trajectories of controls in the admittance scheme. The learning
from recorded datasets in DMPs and probabilistic LfD is itself robot-independent. For
active compliance, kinesthetic teaching applies at the robot end-effector. If that is less
suitable, teleoperation can be used as an alternative [143]. For Reinforcement Learning,
active compliance requires measurements to assure controller stability and safety during
the interaction. This slows down task learning and increases system interaction time.

(2) Suitability for low clearances and tight fits Both are characteristic of the assembly
tasks we consider. Analytically derived skills and primitives depend on a good estima-
tion of friction, and favor the separation of motion and force control. In tight fits, the
separation of primary directions for motion and force becomes fuzzy. Human dexterous
manipulation contains much trial and error, leading to a non-trivial parameterization if
converted into hybrid force/motion templates. Constraint solvers also build on a math-
ematical formulation of friction, which must be sufficiently adequate to cover real-world
execution in highly constraint tasks. Since kinodynamic motion planning relies on sim-
ulation, the physics environment must support the modeling of such tight fits, which
closely correlates with numerical contact instability. In contrast, probabilistic imitation
learning appears advantageous, but the models must capture the recorded datasets ade-
quately. GMR e.g. will lose trial-and-error strategies through learning the average. Dy-
namic movement primitives require the learning of force profiles for these tasks, because
motion is barely visible and most of the human intention is measured through contact
forces. In comparison, RL’s exploration is well-suited.
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(3) Suitability for arbitrary masses and dimensions Analytical methods and constrai-
ned-based programming are mostly independent of object masses and dimensions, al-
though use cases tend to focus on handy objects. If masses and moments of inertia be-
come substantial against friction, kinodynamic motion planning requires these as addi-
tional values for simulating state propagation. Heavy and bulky components are in gen-
eral a limitation for learning from demonstration-based techniques. If the robot control
offers load compensation [144], these techniques might still be applicable in some cases.
Heavy loads quickly build up high reaction forces in contact transitions, such that RL is
further limited to very low execution speeds for exploration in these cases.

Table 2.1.: Applicability

(1) (2) (3) Selected works

Skills, Primitives and Analytic Approaches + − + [64], [68], [70]
Constraint-Based Programming + − + [73], [80]
Motion Planning + − 0 [92], [94], [88]
Probabilistic Skill Learning from Demonstration 0 + − [108], [107]
Imitation Learning with Primitives 0 0 − [121], [120], [122]
Reinforcement Learning − + − [134], [138], [139]

Offline Programming

(4) Suitability for simulation and transfer The requirement of offline programming
means having no access to the system during task programming. For analytic approaches,
this is less of a restriction, and the composing of skills out of primitives already relies on
models. Constraint-based programming operates on a similar level of abstraction and
CAD and simulation environments build the setting for task design. Programming by
Demonstration is more restricted: Approaches use real parts or replicas with magnetic
trackers for teleoperated programming and force-based DMPs mainly leverage kines-
thetic teaching.

The important question, apart from whether the approaches can be carried out in sim-
ulation, is how much they depend on accurately modeling the process parameters. In
robotics research, the transfer from simulation to real-world settings is classically referred
to as the reality gap [145], and tight-fitting assembly operations are particularly challeng-
ing in simulation [146]. The realism of contact forces and friction in simulation directly
impacts the success of open-loop approaches, such as motion planning. Sufficiently mod-
eling the real hardware’s physics or learning under uncertainty is of similar importance
for RL.

(5) Handling of process uncertainty, part jamming/wedging Some sort of cognition
must detect and handle deviations online to yield robust executions. Analytic approaches
partially incorporate this in form of contact state transitions and through the parameter-
ization of corrective skills. They however need engineered termination conditions. Con-
straint solvers allow for the inclusion of uncertainty in form of constraint relaxations, but
a problem arises with open-loop control in general: If sensory feedback is not taken into
consideration, then the computed controls strongly depend on the models’ accuracy and
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are sensitive to uncertainty. Open-loop approaches incorrectly assume the end of the task
implicitly after executing their trajectories, and intermediate deadlocks are thus not antic-
ipated. Motion planning does not include sensory feedback besides what is required for
compliant control on a lower level. Planning in belief space adds tolerance to modeling
uncertainty but likewise stays open loop. Probabilistic imitation learning can introduce
randomness into the executions and thus overcome deadlocks through variance. With
DMPs, one of the intrinsic ideas is to couple individual dimensions through a canonical
system, assuring timely consistency during playback. DMPs are, therefore, bound to a
specific duration that the user chooses before the execution starts, and force profiles be-
come open-loop control signals. RL provides advantages by explicitly including sensory
feedback into reactive control policies.

Table 2.2.: Offline Programming

(4) (5) Selected works

Skills, Primitives and Analytic Approaches + 0 [60], [68]
Constraint-based Programming + 0 [77], [82], [81]
Motion Planning 0 − [88]
Probabilistic Skill Learning from Demonstration − + [111]
Imitation Learning with Primitives − − [124]
Reinforcement Learning − + [137], [139]

Engineering Effort

(6) Intuitiveness of programming This can be considered a quality measure for the
different approaches. Being more intuitive means enlarging the group of potential pro-
grammers and increasing the method’s applicability. The less expert thinking is required,
the better. After parameterization by experts, primitives for CAD-based skill composition
are a feasible method to reduce the online programmer’s frequently re-occurring steps.
In constrained-based programming, much complexity can be hidden behind skill frame-
works so that users specify constraint types in CAD. Motion planning offers a likewise
simple usage due to directly specifying goal poses for the assembly tasks. With learn-
ing from recorded performance, task programming simplifies to showing the assembly.
Probabilistic imitation learning and DMPs are thus among the most intuitive ways of
programming. They also solve the problem of parameterization for which hand-crafted
skills and primitives require experts. The solutions obtained with RL are, in compari-
son, more autonomous but less intuitive. Influencing the algorithms’ non-deterministic
convergence requires domain knowledge for reward shaping.

(7) Independence of the task complexity Being a strong approach under this measure
means having a constant engineering effort, independent of complicated workpieces and
multi-directed insertion. Deriving controllers analytically from workpiece geometry e.g.
does not scale well with complexity. Primitives, in contrast, stay atomic, but composing
them into skills becomes more complex. Using databases and ontologies for deriving con-
straint types from CAD alleviates this bottleneck for approaches with constraint solvers.
Similarly, task complexity hardly influences engineering effort for motion planning, and

30



2.3. Analysis

workpiece complexity only increases computational costs for collision checking during
the search. Probabilistic and dynamic imitation learning also have their strengths in this
field: Programming the assembly task through showing and learning from data stays in-
tuitive with increased part complexity. Besides hand-designed intermediate waypoints
for policy search with non-direct insertions, the algorithms behind RL, in general, stay
mainly constant with increasing part complexity, and no significant overhead arises.

Table 2.3.: Engineering Effort

(6) (7) Selected works

Skills, Primitives and Analytic Approaches 0 − [67], [69]
Constraint-based Programming 0 0 [78], [79]
Motion Planning + + [94], [88]
Probabilistic Skill Learning from Demonstration + + [108], [107]
Imitation Learning with Primitives + + [123], [117]
Reinforcement Learning − + [134]

2.3.2. Conclusion

Table 2.4.: Evaluation of assembly directions.
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(1) Compatibility with motion-actuated systems + + + 0 0 −
(2) Suitability for low clearances and tight fits − − − + 0 +
(3) Suitability for arbitrary masses/dimensions + + 0 − − −
(4) Suitability for simulation and transfer + + 0 − − −
(5) Handling of uncertainty/jamming/wedging 0 0 − + − +
(6) Intuitiveness of programming 0 0 + + + −
(7) Independence of the task complexity − 0 + + + +

Table 2.4 shows the final overview of the considered research directions. There is cur-
rently none with strengths under all criteria and the biggest potential lies within com-
binations. The goal of this thesis is to combine the strengths of Skills/Primitives with
probabilistic Learning from Demonstration and contribute to the field of industrial offline
programming for challenging assembly tasks. The concept of skills neatly integrates with
control schemes for motion-actuated systems and supports simulation and transfer. The
usage of the PbD paradigm shall avoid their parameterization with expert knowledge
and instead learn strategies against part jamming/wedging implicitly from demonstra-
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tions in an intuitive manner. Using simulation at the core of the approach requires some
form of teleoperation, and this thesis will need to tackle the reality gap for tight-fitting
insertion and will thrive to circumvent the dependency on realistic and accurate process
parameters.

Chapter 3 first proposes a robot-independent way of learning human-inspired skills
from demonstration in simulation environments and Chapter 4 derives a new compliant
control scheme to transfer these skills to motion-actuated systems.
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Following the PbD paradigm for offline programming, we combine teleoperation with
simulation to provide an intuitive way of demonstrating assembly tasks. The goal is
to extract strategies from these demonstrations and to design suitable models for their
technical representation. This chapter presents the different steps to realize this approach.

Section 3.1 first describes our concept behind skill learning, explains the assumptions
we make, and defines important terms for the remainder of this thesis. Section 3.2 then
derives methods for recording human behavior in simulation environments with a focus
on realizing low-clearance assembly. Data analysis of exemplary demonstrations builds
the basis for modeling the skills in Section 3.3. We describe how to learn patterns in prob-
abilistic sequences with neural networks and how to train and use them for inference.
Section 3.4 combines these skills with trajectory execution and shows how to specify as-
sembly tasks within this approach.

3.1. Concept

The mathematical representation of the strategies will be a combined vector of forces and
torques fh ∈ R6, with which Eq. (2.12) becomes

f = K∆x+D∆ẋ + fh . (3.1)

The superscript h shall indicate that it’s the output of a human-inspired skill. This vec-
tor component takes the role of counterbalancing jamming and wedging between the
parts by dynamically incorporating meaningful corrective measures. In that regard, fh

overrules the controller’s restoring forces K∆x, whenever force and form closure occur
during assembly.

Since fh is to be learned from expert demonstrations, the question arises which sensor
feedback is crucial during assembly and what, other than time, is required to ground
such skills.

Klingbeil et al [147] investigated if humans visit certain contact states during assembly,
which could support the hypothesis, that we build some sort of high-level contact repre-
sentation to which we link specific strategies. They found that apart from some common
positions, which many testers did visit, intermediate behavior was seemingly random.
High variance in how the test group approached the studied problem showed that much
trial and error is involved. Despite this variance, however, the executions were success-
ful, underlining the fact that all user strategies matched concerning hidden but crucial
characteristics.

Insights from physiological studies suggest the existence of forward models [148] for
control and planning through the central nervous system. Miall and Wolpert [149] high-
light forward models as a special type of internal model to mimic the motor system’s
response to outgoing motor commands. These models are assumed to enable the estima-
tion of the sensory consequences of these motor commands in the form of state transi-
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passive
active

goal

Figure 3.1.: A toy assembly will serve as an illustrative example for the concepts of this
chapter. Assuming mental forward models in human control, there is a strong
connection between motor control fh and the differences of mentally ex-
pected and observed states x, ẋ. The idea is to learn strategies from these
variables for robotic assembly.

tions. The difference between estimated states and sensed states could inform the central
nervous system about external events [149].

Motivated by the idea of a sub-conscious forward model behind human strategies,
this thesis focuses on fh as the human-initiated motor command and x, ẋ as the object’s
sensed state as crucial variables during assembly.

Consider the illustration from Fig. 3.1. The toy assembly consists of two parts, which
form a compact block after joining. Although seemingly simple, the plastic parts typically
have low clearance and the geometry requires dexterity for a complete insertion, making
robotic execution extremely challenging. We use this assembly as an illustrative and
representative example for deriving the concepts of later sections. Chapter 5 evaluates
this thesis’ approach to additional real-world applications. The variables x and ẋ denote
the active part’s pose and spatial velocity with respect to the estimated goal pose. fh

is the combined force-torque vector of net forces, applied via the fingers. In the light of
internal models, the idea is to assume that jamming, unexpected tilting, and wedging of
the parts during assembly are perceived as a perturbation of the mental forward model
for this task, which causes us to take counteractive strategies. The goal of this thesis is to
extract and learn these intuitive strategies from the observed data stream fh,x, ẋ.

The next sections formulate this idea as a learning problem and describe two important
design decisions: The usage of simulation and relying only on visual feedback during
demonstrations.

3.1.1. Terms and Definitions

In the recently proposed taxonomy for distinguishing methods in Learning from Demon-
stration [96], and anticipating later sections, this thesis’ approach could be roughly clas-
sified as
Demonstrations: Teleoperation
Learning outcome: Policy
Policy input: State
Policy output: Low-level actions
Policy class: Stochastic - time-dependent
with slight inconsistencies in the wording of policy input and output. As later sec-
tions will detail, our approach builds on methods from general machine learning for
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3.1. Concept

sequence modeling, which does not necessarily fit perfectly into the state-action thinking
of robotics. Industrial assembly is a core discipline of robotics and we nevertheless try
the formulation in this domain.

Our approach builds upon the idea of behavioral cloning [98], which is frequently used
synonymously with Programming by Demonstration [103] and the wider term Imitation
Learning [150]. The goal is to model assembly skills in form of policies π as the solution to
a supervised learning problem from expert demonstrations. Following the mathematical
notation of [151], we consider trajectories {ξ1, ξ2, . . . }, in our case recorded for the assem-
bly tasks. They are composed of state-action pairs ξi = {(s0, a0), (s1, a1), . . . , (sN , aN )},
with si = (xi, ẋi) ∈ S and ai = fhi ∈ A belonging to individual state and action
spaces. Other than intending to learn a conventional mapping from state to action space
S → A, driven by the importance of iterative learning from past action-reaction charac-
teristics, we rather intend to model and imitate the recordings jointly with a mapping
π : S,A → A. During assembly, the obtained policy π shall predict plausible future ac-
tions for difficult situations, which can be passed to the robot control in form of fh in
Eq. (3.1).

Finally, this thesis proposes the following terms and definitions in the context of as-
sembly for further sections:

Definition 1 Human Behavior: Recorded trajectories (st−N , at−N ), . . . , (st, at) during expert
demonstration, composed of both state s = x, ẋ of the active assembly object and action a = fh

as the intended motor command.

Definition 2 Skill: A policy π(x, ẋfh), which models human behavior in form of a learned
mapping (st−N , at−N ), . . . , (st, at) → (at+1) that observes past state-action relations and imi-
tates plausible strategies for the next steps. This mapping is expected to encode error-correcting
behavior against unexpected jamming, part tilting, and wedging with form and force closure.

Definition 3 Strategy: A sequence of actions (at, at+1, . . . , at+N ) from the iteratively gener-
ated output of the skill π for a time horizon of few seconds. These short sequences of motor control
are expected to solve problems of a short time horizon, such as wiggling to exploit stick-slip phe-
nomena between parts in regions with low clearance or seeking haptic orientation through making
controlled contact with edges, corners, faces.

Definition 4 Skill Controller: A controller through which a robotic system, usually an indus-
trial manipulator, can assemble two parts, given an initial, nominal target trajectory xd(t), ẋd(t),
and a final goal pose. The controller deploys an assembly skill π as an additional semantic compo-
nent and uses the generated strategies fht in a Cartesian control law for setpoint tracking.

3.1.2. The Role of Simulation

Behavioral Cloning normally assumes that actions are observable. If that is not the case,
the recent Behavioral Cloning from Observation (BCO) [151] can be used that learns from
state-only trajectories. If the actions can be recorded, however, they provide a substan-
tial source of information for task learning. While during human demonstrations on real
hardware, see again Fig. 3.1, a tracking system could record x, ẋ, the action fh is not
straightforward to measure. Jäkel uses magnetic trackers and data gloves with finger-tip
force sensors in his approach for learning household tasks [94]. This, however, has some
drawbacks for learning assembly skills, conflicting with our requirements for industrial
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3. Human-Inspired Assembly Skills

context: Programming robotic applications is often done offline due to limited access
to the platforms and the economic need to decrease down-times where possible. More-
over, assembly parts might be costly or not available, and making replicas or dummies
means a significant engineering overhead. Instead, this thesis proposes to use simulation
with a joystick-like input device to get access to the action space. Apart from meeting
our requirements, simulation offers various benefits for machine learning, such as script-
based preparation of environments and data collection at scale [152], pathing the way to
a crowd-based generation of skill libraries. In contrast to original parts, Computer-Aided
Design (CAD) data is commonly available for assembly.

Simulation has been used in combination with learning assembly skills from human
performance. It provides the advantage of idealized environments for reproducible ex-
periments and the fast acquisition of numerous trials and demonstrations. For assembly,
early works used simulators to identify how human operators handle contacts and con-
tact state transitions, seeking to derive symbolic programs [59], [60], simple alignment
strategies [153], plan multi-step operations [154] or obtain sub-symbolic trajectory cor-
rection [111].

Aligned with those works, we use simulation as the primary environment for human
skill extraction. In contrast, however, we omit the high-level construct of contact states
and try to ground human assembly strategies directly in the cyclic interaction between
intention fh and outcome x, ẋ. In comparison to early days, simulators and physics
engines have evolved significantly, becoming more and more powerful testing and pro-
totyping environments for robotics research [155], [156].

In this thesis, simulation shall provide a suitable setup for extracting human behavior
during assembly tasks. Interaction should be sufficiently intuitive and offer a game-like
environment for users to play. Assembly in simulation should be easy to model but
realistic enough to obtain concise recordings of human behavior.

3.1.3. The Role of Vision

Through closed-loop control with visual servoing, humans relate their strategies visually
to the progress they make. When force feedback is not available, vision becomes indis-
pensable. But as the only feedback channel, it’s still sufficient for solving complex tasks
in simulation [152]. This is mainly possible due to life-long learning and rich experience
in manipulation, which we transfer across domains.

Imperfect localization on the robotic system and process-dependent issues, such as
part occlusions during insertion, however, make it difficult to link assembly strategies
to vision. In this thesis, we argue that observing the datastream of x, ẋ is the low-level
pendant to humans observing object motion directly and is, therefore, suitable to link as-
sembly strategies to. The assumption is that skill learning can reveal underlying patterns
in the raw signals x, ẋ, that are characteristic enough to generate meaningful strategies
despite offsets in localization on the robot. In this regard, the velocity ẋ is of special im-
portance. In later sections, we investigate and show its significance in an ablation study
for determining its effect on learning success.
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3.2. Skill Recording

3.2. Skill Recording

The core of the concept builds on human-inspired skills and we need suitable methods to
record them from teleoperation. To achieve this goal, Section 3.2.1 and Section 3.2.2 first
describe our requirements for simulation environments and how low-clearance assembly
can be realized with available physics engines. Section 3.2.3 then describes the process
of teleoperating the simulator with a teach device and Section 3.2.4 analyses exemplary
recordings. Insights from this analysis build the basis for the skill modeling of Section 3.3.

3.2.1. Simulation Environments

The primary goal of using a simulation environment in this thesis is to apply fh to the
active assembly parts and simulate the resulting motion x, ẋ. This task is accomplished
with forward dynamics algorithms, of which implementation is a substantial part of any
simulator for rigid multi-body physics. Through trial and error, operators steer the ac-
tive objects towards the final assembly poses, solving friction-induced jamming and part
wedging on the way.

There are usually various simulators available for robotics research. Open source,
community-developed simulators include (non-exhaustive list): Gazebo [157], Klampt
[158], Webbots [159], ARGoS [160], RobWork [146], and V-REP [161]. A more detailed
discussion on frameworks can be found, e.g. in [162]. The increasingly popular be-
coming Mujoco [163] is a commercially available, closed-source simulator. In contrast to
Computer-Aided Engineering (CAE) tools for dimensioning components, such as ADAMS1,
these robotics simulators usually target proof-of-concept implementations in robotics re-
search. A trade-off is often made between speed and accuracy to favor applications in a
real-time context.

For rigid body dynamics, the core of each simulator is a physics engine for numerically
evaluating the equations of motion in a time-discretized manner. Widely used engines
are e.g. ODE2 [164], Bullet3, and Nvidia’s PhysX4,

The following list of features is required to implement our concept of virtual assembly
in simulation:

• Modeling of rigid bodies with mass and inertia

• Support of constrained motion simulation through contacts

• Representation of collision geometry with meshes. If the engine does not support
non-convex polyhedra, an additional post-processing step from CAD to a feasible
collision mesh might be necessary [165].

• Forward dynamics simulation with applying external forces

• Modeling of friction and damping in contact

In all these points, a game-like experience is more important than physical accuracy. Sec-
tion 3.2.3 elaborates on the special case, in which choosing arbitrary, unrealistic masses

1https://www.mscsoftware.com/product/adams, accessed 8.8.2020
2https://www.ode.org/, accessed 7.8.2020
3https://github.com/bulletphysics/bullet3, accessed 7.8.2020
4https://github.com/NVIDIAGameWorks/PhysX, accessed 7.8.2020
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contacts

Figure 3.2.: Bringing the toy assembly into the simulation. From left to right: Real objects,
mesh approximation with primitive shapes, simulated objects in Gazebo.
Note that our approach only models the assembly objects for strategy learn-
ing in the task space. No robots are involved in these simulations. Although
the simulator produces colored renderings, we mainly use grey-scaled im-
ages for improved illustration throughout further sections.

and inertias are tolerated, as long as the active objects move with the right velocity for
people to naturally control the objects.

This thesis uses the Gazebo simulator with ODE as a physics engine. Gazebo has
grown substantially over the years in features and performance. It’s actively maintained
and, through implementing an interface for the Robot Operating System (ROS) [17], [166],
it’s also widely used in the robotics community and connects well to various software
modules, developed in this thesis. Fig. 3.2 shows the exemplary toy assembly’s conver-
sion from real to mesh and simulated objects in Gazebo.

3.2.2. Modeling Low-Clearance Assembly

Two peculiarities need consideration to implement our concept of skill extraction for low-
clearance assembly: Contact stability and friction. The explanations target ODE as the
underlying physics engine in Gazebo. Since ODE is widely used, this applies to various
simulators.

Contact Stability

Numerically stable simulation is crucial for recording human behavior. Low-clearance
assembly, however, is extremely challenging in that regard. One reason lies within the
typical complexity of collision meshes. For non-convex, unstructured triangle meshes,
contact discontinuities, and erroneously computed contact responses may lead to nu-
merical instability, such as oscillations and jitter [158]. This is especially challenging for
non-watertight meshes, but can be mitigated with Boundary Layer Expanded Meshes
(BLEM) [158]. Our approach circumvents non-watertight, overly complex meshes by
proposing to use low-polygon versions from CAD data, which originates from paramet-
ric, solid modeling of the assembly parts.

A more systematic problem lies within the constraint solver and the assembly task itself
and occurs when contacts, constraining the motion of the objects in simulation, become
redundant. We briefly discuss how ODE formulates constraints and how it mitigates this
singularity problem.

We enrich ODE’s explanations [164] with derivations from [167], adapted to the nota-
tion of this thesis. Using the Lagrange-Multiplier method, the constrained Newton-Euler
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Figure 3.3.: Constraint relaxation with a spring-damper approximation through kp and
kd. Tolerating a collision depth between surfaces improves numerical stability
and removes oscillations for low-clearance assembly.

equations for a rigid body with mass matrixM are

Mẍ = JTc λ+ f ex. (3.2)

The net force f ex contains all inertial and Coriolis terms, grouped for simplicity. In com-
bination with the constraint force vector JTc λwith the unknown Lagrange Multipliers λ,
the system must comply with motion constraints, which are formulated on velocity level
as a set of equations of the form Jcẋ = c, using the constraint Jacobian Jc. A peculiarity
in ODE is to add a relaxation term for constraint force mixing through a diagonal, square
matrix CFM to this set:

Jcẋ = c+CFMλ. (3.3)

This allows the constraints c to be violated proportional to λwhich should enforce them.
The effect of this is apparent after two reformulations. Solving Eq. (3.2) for accelerations
and performing one explicit time integration with step width h leads to

ẋ = M−1JTc hλ+M−1f exh, (3.4)

which describes the object’s motion in each cycle. Setting Eq. (3.4) into Eq. (3.3) leads to(
JcM

−1JTc +
1

h
CFM

)
λ =

c

h
− JcM−1f exh, (3.5)

which is solved as a Linear Complementary Problem (LCP) in each step. Having solved
Eq. (3.5) for λ, the object’s motion is given by Eq. (3.4).

Without CFM the problem’s ill-conditioning depends on the rank of Jc. The mass ma-
trixM is positive definite and thus invertible. For low-clearance assembly in simulation,
the meshes collide at various points simultaneously. This is more pronounced, the more
geometry constraints the active object’s motion, which is classically the case towards the
end of the assembly. In these frequent cases, Jc becomes rank-deficient through redun-
dant or conflicting constraints [167], so that JcM−1JTc from Eq. (3.5) becomes singular,
leading to numerical instability. Constraint force mixing avoids this at the cost of allow-
ing mesh interpenetration. For identical spring-damper behavior in all dimensions,CFM
can be built with stiffness kp and damping kd according to [164]:

CFM = diag(
1

hkp + kd
). (3.6)
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Fig. 3.3 illustrates both constants for the exemplary toy assembly. In conclusion, surface
interpenetration needs to be tolerated with a certain margin to obtain numerical stabil-
ity. This degrades realism but avoids jitter in simulation, which would corrupt velocity
measurements ẋ and lead to discontinuous curves in x. For CAD data with low nominal
clearance in the final assembly, e.g. plastic housing components or plug-in connectors,
this modeling technique is indispensable for numerically stable simulation.

Our concept of obtaining assembly strategies with primitives supports this degraded
realism. During the demonstration, steering the active object with fh in this spring-
damper boundary layer appears highly viscous and stiction dominates this contact, hin-
dering the users to advance. Intuitively, the reaction is, therefore, to avoid unnecessary
interpenetration during demonstrations as much as possible. A high stiffness kp will
constantly enforce to work in the nominal clearance.

Friction and Modeling Accuracy

Most physics engines approximate friction with the Coulomb model. We use ODE with
a linearized, pyramidal approximation of the friction cone for improved performance.
More realistic implementations exist, e.g. [168], but our approach does not require this
detail. Friction does indeed affect the strategies that users will apply in simulation. To
better imagine this correlation, consider Fig. 3.4. With little friction, simple goal-directed
pushing is a valid strategy. Higher friction favors force closure, requiring strategies to
contain wiggling. Friction is in general difficult to estimate for assembly tasks offline.
CAD data with material combinations might be accessible for some assembly tasks, but
this thesis’ approach shall also encompass the cases where these parameters are not avail-
able. Hence our overall goal is to obtain robust strategies by overestimating friction. We
thus make simulation notably harder than the real assembly.

Obtaining robust strategies is strongly interconnected with what’s often referred to as
the reality gap. The problem lies in the transferability of skills π to real-world settings, that
are solely learned on synthetic data, generated in simulators. For robotic manipulation
in general and assembly in particular, a multitude of closely-matching parameters are
usually required to assure task success, such as micro-slip friction, stiction, restitution,
non-rigid contact deformations. We tackle this challenge by seeking normed strategies
that make human assembly skills. The idea is to learn what is qualitatively helpful albeit
being created in simulation. What we do need is a later calibration on the real hardware
by globally scaling the learned strategies before sending them as reference setpoints to
robot force control. The hypothesis underlying our approach is that human behavior,
even in this limited environment, is a sufficiently concise source for learning robust as-
sembly strategies. Chapter 5 will evaluate the validity of these assumptions on various
real-world assemblies.

As a conclusion for modeling accuracy, there are some parallels to constrained motion
planning. We also emphasize constraint modeling and contact physics, albeit with lower
details and realism of modeling. Both would be crucial for kinodynamic motion plan-
ning, mainly due to the open-loop execution. In contrast, this thesis’ concept builds on
reactive strategies, learned from a human planner. We are thus able to use simpler simu-
lation environments and bridge the gap of simulative shortcomings with the reactiveness
of human-inspired strategies.
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Figure 3.4.: Illustration of the friction effect on strategies. (a) Low friction supports push-
ing. (b) High friction supports wiggling.

3.2.3. Recording Human Behavior

Coordinate Systems and the Correspondence Problem

When considering skill learning in the context of Learning from Demonstration, the cor-
respondence problem [169] is of particular interest. In robotics, it mostly refers to the chal-
lenge of transferring learned skills from the teacher to the robotic system that should
execute the task. Especially learning from observation techniques are prone to this is-
sue [96]. At the core of the problem lies a non-trivial mapping between different action
spaces of teacher and robot. Jäkel [94] achieves a solution for this mapping through
constrained motion planning. An important step is relaxing constraints that are only as-
sociated with human morphology without offering semantic content for the task. His ap-
proach is mostly independent of the robot morphology, considering basic requirements
regarding the degrees of freedom. In our scenario, the human is likewise involved as
the expert in the demonstration. But through the provided interface to simulation, the
teacher is forced to demonstrate in task space instead of the configuration space of his
own joints. This constitutes an alternative solution to the correspondence problem and
is characteristic of learning in task space via teleoperation [96]. Chapter 4 considers the
actual transfer to robots in detail.

In contrast to many household tasks, such as pouring a drink [94], in assembly, the
exact orientations of the parts do matter. We still achieve workspace independence of
the skills through formulating all quantities of interest with respect to assembly-relative
frames. By our convention, the assembly origin O shall be placed in the passive object
in such a way that it coincides with the active object’s reference frame A after successful
assembly. Fig. 3.5 illustrates this convention. We choose x = [x, y, z, qw, qx, qy, qz]

T ∈ R7

for representing a 3D pose through position components and the orientation quaternion.
After a successful assembly, x = [0, 0, 0, 1, 0, 0, 0]T .
fh is applied to the active object in Ao. Maintaining global orientation for forces and

torques provides a consistent feeling of steering the object in the simulator. The active
object’s pose and velocity x and ẋ are recorded with respect to the assembly origin O.
When setting up a simulation environment for an assembly task, specifying the center
of mass of the active object is a design choice. The other frames are derived from our
convention. In particular, this center of mass need not correspond to the real one. It’s
more a choice of where the objects are most intuitively manipulated through fh. A good
choice is to put this close to where one would normally grasp the active object.

Mass, Inertia and Execution Speed

Modeling assembly in simulation might suggest matching the real hardware parameters
as close as possible. Our concept, however, circumvents this engineering effort. CAD
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Figure 3.5.: Placement of reference frames for assembly tasks in simulation according to
our convention. A is the RGB-colored coordinate system attached to the ac-
tive object and defining its center of mass. O denotes the assembly target,
fixed with the passive object. Ao is linked to A but keeps the global orienta-
tion of O. After successful assembly, all frames must coincide.

data might include estimates of mass and moments of inertia, but they are not required
for our concept. Similar to using a coarse and conservative, i.e. too high estimate of
friction, our concept proposes to use artificial masses and moments of inertia with the
goal of achieving comfort in control, rather than physical consistency. The primary goal
of the assembly simulation is to model adequate responsiveness for users, steering objects
with fh. Towards this end, we use zero-gravity environments, i.e. we set the gravity
constant in the physics engine identically to zero. When fh = 0, everything should stay
in place.

Mass and moment of inertia will determine the object’s acceleration according to Eq. (3.2).
Our concept’s goal is to have a linear response to fh so that it’s easy to steer the active
objects. For this aspect, we combine low apparent inertia with high velocity-proportional
damping according to (

I3×3dlin 0
0 I3×3drot

)
ẋ+ fh = 0 (3.7)

in which ẋ = [ẋ, ẏ, ż, ωx, ωy, ωz, ]
T ∈ R6 is the active part’s vector of linear and angular ve-

locity, dlin, drot are linear and rotary damping constants, and fh = [fx, fy, fz, tx, ty, tz]
T ∈

R6 is the wrench of forces and torques applied by the user via the teach device. We add
both the damping term and fh to the combined vector of external forces and torques f ex

from Eq. (3.2) to achieve the velocity-proportional, linearized control in the simulator.
The overall execution speed, governed by dlin, drot, and the amplitude of fh, is again

a design choice. In contrast, in the real setup, the robot force control sets the speed of
manipulation due to stability requirements. In general, the stiffer the environment and
the lower the closed-loop control rate, the lower the tolerable execution speeds for as-
sembly. Section 3.3 explains how a policy π is learned from this simulated data and how
sequences of discrete states scale to different execution speeds.

The Teach Device

For teleoperation, haptic feedback during demonstrations could lead to a more immer-
sive experience. Our concept doesn’t collide with haptic devices, but it’s general enough
to not require them. Additionally, we propose to focus solely on visual feedback instead,
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Visual
feedback

Strategies

Figure 3.6.: Behavior recording with the simulation environment. An operator steers the
active object to assemble two parts using a 3D controller. This teach device
maps translational and rotary displacements to the 6-dimensional control
command fh. The recorded behavior is stored as a dataset over repetitive
trials.

which we believe has some advantages. If used in our setting, the haptic device would
render the physics engine’s constraint forces JTc λ from Eq. (3.2) for the operator. In the
central nervous system of man, haptic feedback overrules geometric feedback [170]. This,
however, would emphasize the need for the correctness and physical plausibility of these
constraint forces to generate a natural feeling and thus not negatively impact the cogni-
tive skills, associated with geometry. Given the issues of numerical stability during low-
clearance assembly, this appears to be a significant challenge. Unrealistic haptic feedback
could distract during the task. Using only vision helps to prevent operators from learning
the quirks of the simulator instead of objectively solving the assembly task.

Due to repetitive demonstrations, operators themselves perform visuomotor learning
in the simulator. Research in human motor learning indicates that immediate visual feed-
back is crucial for learning tasks with high functional complexity [171]. This underlines
visual feedback as the most powerful modality for extracting the cognitive part behind
assembly skills and motivates its central role in our approach.

Fig. 3.6 shows the recording process of human behavior in the simulator with the teach
device. We use a 3Dconnexion™ 3D controller as a joystick to intuitively command in
six dimensions: three translations and three rotations. Through modeling a linear, six-
dimensional stiffness, we map displacement signals from the resting position of the de-
vice to obtain the combined force-torque vector fh. The exact parameterization is again
a design choice but will determine the nominal magnitude of the strategies, i.e. it will set
the default strength of strategies learned from the recorded data. As an example, for the toy
assembly in the simulator, we initially parameterize fh with its force components being
bounded by ±34 N and the torque components by ±3.4 Nm. By our definition, strategies
are sequences of combined force-torque data points fht ,fht+1, . . . , fht+N . Since they are
vector quantities, we can re-scale the whole sequence in magnitude without losing its
characteristics. This allows an adaptation of the strategies to meet specific requirements
and not exceed thresholds, posed by the real hardware during force control.

The benefits of using a simple joystick-like 3D controller are manifold: Mechanical en-
gineers are used to such devices during development in CAD for intuitive 3D navigation
and inspection of parts on the screen. Online robot programmers are also familiar with
this concept from their robot programming interfaces, which are commonly hand-held
devices with similar joysticks for Cartesian jogging. Although not a scientific focus, us-
ing a 3D controller in our concept thus benefits an integration into industrial applications.
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Figure 3.7.: Challenging start configurations in the simulator for the toy assembly task.

Skill Extraction

Through imagination, humans should be able to transfer their manipulation skills and
experience to virtual tasks. In detail, we are interested in what strategies demonstrators
associate with geometric constellations of the assembly parts. We thus create challenging
configurations in the simulator to trigger these strategies. Fig. 3.7 shows an excerpt of
challenging starting positions. During data acquisition for an assembly task with our
concept, various starting positions are sampled randomly to cover a big range of possible
jamming and tilting effects, so that the strategies recorded provide answers for difficult
deadlocks that might appear during the real assembly.

3.2.4. Data Analysis

The goal of this section is to prepare a basis for algorithmic choices for skill modeling
and learning. We use the toy assembly from previous sections as a representative and
illustrative example of a low-clearance assembly with friction and a multi-axis insertion
process. We directly plot and analyze recordings made in the simulator. To create a
sufficient basis for statistical analysis, we use the data from 100 demonstrations as shown
in Fig. 3.8. The demonstrations started at partially random poses in close proximity of
making the first contact and ended at x, y, z = 0.

For illustration purposes, we use the Euclidean distance to the goal as one-dimensional
reference to illustrate the results in 2d plots. After describing a funnel at the beginning of
insertion, the low clearance of the parts makes this measure sufficiently unique towards
the goal. The Strategies fh are of particular interest since they represent the action space
that we want to learn from human behavior. We additionally analyze the variances of
this action space and illustrate regions of trial and error during manipulation. Finally,
displaying features over time gives insights into sequential characteristics.

Strategies

By our definition, strategies describe the actions fh over time. The goal here is to ana-
lyze how this action space looks from a time-less perspective along the insertion. Fig. 3.9
shows the 100 demonstrations along the distance-to-goal reference. Each band plot shows
the spectrum of recorded forces and torques, bounded by min and max values. The
thicker this band, the greater the ambiguity among individual demonstrations. This is
especially pronounced in the torques tx, tz with an almost constant thickness. In compar-
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Figure 3.8.: Setup for data analysis: (a) The xyz-traces of 100 assembly demonstrations in
simulation with varying start positions. The traces show the active object’s
path until reaching the goal position at x, y, z = 0. (b) One of such start
constellations in the simulator with an overlay of the recorded path. During
each demonstration, the tuple (x, ẋ,fh) was recorded at 100 Hz.

ison, the vertical force fz shows a region between 25 mm and 20 mm to the goal, where
strategies seem to avoid excessive forces. Additionally, a single demonstration reveals
trial and error at difficult spots in the assembly, e.g. at 5 mm to the goal. Note how learn-
ing the mean would completely lose the individual characteristics of these strategies.

Variances

Fig. 3.10 plots the variances of fh along the goal distance. The curves are noisy in general
but expose regions of low and high variance. For example, after one-third of the distance,
fy shows a relatively low variance and indicates that the strategies contained little lateral
control. In comparison, the vertical force component fz reveals high variances at 15 mm
and 5 mm that could hint at difficult spots with random trial and error. In between these
peaks, low variances indicate consistency among demonstrations to some extend. The
torque components tx and tz are characterized by high variance in general. It would be
difficult to learn these strategies using only position information. From a probabilistic
model perspective, the high fluctuations in all subplots require fine-grained distributions
to accurately describe this dataset.

Feature Histograms

Fig. 3.11 shows histograms of fh and ẋ. Darker areas mean an accumulation of recorded
data for specific regions. This gives an impression of where it was difficult to make
progress in the assembly and took longer to advance. Although the spots are task-
specific, the forms of the gradients reveal an inverse learning problem: Using only x, y, z-
positions to learn fh and ẋ equals a multivariate decision problem. This is also the case
for learning behavior in the almost blank spaces in between.
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Figure 3.9.: Band plot of the control wrench fh applied during 100 demonstrations. For
low clearance tasks, the distance to the goal provides a mostly unambiguous,
one-dimensional reference and allows an investigation of different geometric
assembly constellations. We truncate the data after 40 mm of distance to the
goal before which free-motion without contact occurs (right end of the plot).
To obtain the plots, we use statistical data binning to group the continuous
values of all demonstrations into vertical bins for the ordinate axis. We then
compute the min, max, and mean values within those bins and plot them
as continuous curves. In addition, a single demonstration shows exemplary
strategies during assembly.
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Figure 3.10.: Variances of the control wrench fh towards the goal. We obtained the vari-
ances with statistical binning, analog to Fig. 3.9. For this plot, we grouped
the data into 40 bins from start to goal and computed the variance of a nor-
mal distribution for each bin.

Features over Time

Fig. 3.12 shows five of the 100 demonstrations. Each component reveals patterns over
time and the demonstrations are similar, except for scale and offset. Various effects are
visible: The torque tz shows wiggling in form of alternations, which supports assump-
tions on trial-and-error from previous investigations. qz and ωz show the resulting mo-
tion about that axis. Their amplitudes decrease towards the end where clearance is signif-
icantly lower. For this section, the force fz shows pushing profiles, whose characteristics
start at around 8 s for the fastest demonstration and at around 13 s for the slowest demon-
stration. In contrast to assuming purely geometry-related behavior, including sequential
information constitutes a promising base for learning patterns in our dataset.

Conclusions

The exemplary dataset of 100 assembly demonstrations in simulation showed high vari-
ance between individual recordings for our geometric measure. Low clearance and high
friction require repetitive trial and error in specific regions and are representative of chal-
lenging insertion. Averaging this search-like behavior is not feasible, because it loses the
individual strategies. Although seemingly random towards the goal, the recorded be-
havior showed patterns in sequences and thus motivates a temporal probabilistic model
for skill learning.

3.3. Skill Modeling

Deep neural networks [172] are powerful function approximators for data-driven ap-
proaches. In this thesis, we use a specially combined neural network as a regression
model for human-inspired assembly skills. As elaborated in the previous section, two
basic components will be particularly important:

1. A memory component that is capable of making use of past, sequential behavior and
patterns in data.

2. A probabilistic component that learns to reproduce human behavior’s seemingly
random and arbitrary characteristics.
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Figure 3.11.: 2d-histograms of all components of fh and ẋ. The color gradient shows
the qualitative occurrence of discretized values for forces fx, fy, fz , torques
tx, ty, tz , linear velocities ẋ, ẏ, ż and angular velocities ωx, ωy, ωz in a 180×60
grid. Darker colors represent higher occurrences of the ordinate values for
specific regions. The min and max curves of Fig. 3.9 are added for a better
illustration of boundaries.
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Figure 3.12.: Five exemplary demonstrations for a subset of features. These demonstra-
tions had equal starting poses of x = [35 mm, 0, 10 mm, 0, 0, 0, 1] for bet-
ter comparison. The vertical position z illustrates the assembly’s progress.
Reaching zero indicates the end of the assembly. Their durations were
10.0 s, 10.9 s, 13.3 s, 15.1 s, and 16.6 s.
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Section 3.3.1 and Section 3.3.2 describe these components in detail and Section 3.3.3 de-
scribes the combined, final neural network model for learning human-inspired assembly
skills.

3.3.1. Learning Patterns in Sequences

The first component of our skill model has the task of making use of the sequence charac-
ter of assembly behavior. By our definition, we consider behavior as sequences of state-
action pairs (si, ai), whose actions form valuable strategies for assembly. Looking at se-
quences instead of at individual, disjoint states is appealing for a simple reason: Having
observed the evolution of states across time gives us much more semantic background
for our next actions. The data analysis from the previous section implied that recorded
behavior is in itself consistent, but appears random when observed without a timely con-
text.

For sequence learning, the class of Recurrent Neural Networks (RNNs) has gained
enormous popularity. In contrast to feedforward neural networks, the individual units
possess recurrent connections, which make them cyclically working, dynamic systems.
This seemingly minor difference allows information to persist in the network, such that
long-passed inputs can in theory influence any future decisions. For learning correla-
tions in time, this is a crucial feat. One of the biggest, early challenges was solving the
vanishing and exploding gradients problem [173], [174], that limited practical applica-
tions of canonical RNNs to few time steps [175]. This has mainly been solved by Long
Short-Term Memory (LSTM) [176], which has become a powerful and very popular com-
ponent in various sequence-related applications, such as generating hand-written texts
[177] or performing language translation [178]. Other network architectures for sequence
modeling include e.g. the Gated Recurrent Unit (GRU) [179] or time window-based feed-
forward nets [180]. While the first one is a simplification with similar performance, the
second one models the receptive field with dilated causal convolutions instead of with
recurrence. This idea is not new and has been used in earlier work [181]. But being
a feedforward network, an inherent advantage of this approach is simpler training in
comparison to RNNs. A recent study [182] provides an empirical comparison between
canonical LSTMs and such Temporal Convolution Networks (TCN) and suggests recon-
sidering TCPs as the default solution for sequence learning.

There are, however, two reasons why this thesis uses LSTMs for sequence modeling.
The first reason is that TCPs require to pass the raw history of input sequence length to
the network for prediction. In a real-time context, this constitutes an unnecessary perfor-
mance overhead. In contrast, RNNs need only the next input and an internal state in la-
tent space keeps track of the history. The second reason for using recurrence for modeling
assembly skills is that TCPs also require to fix the network’s perceptive field to concrete
sequence lengths. This makes them less flexible during applications, where RNNs can
have adaptive up to theoretically infinite memory. We make use of this flexibility during
the investigation of the effect of memory length for skill learning in Section 5.1.4

Advances continue for LSTMs, e.g. [183], and RNNs in general [184]. This thesis aims
to show that the success of learning human-inspired assembly skills does not depend on
the latest improvements in the method. But rather is already achieved through carefully
chosen, canonical models. We, therefore, use the well-established version from Gers et al
[175] as a central component in this thesis for modeling human behavior during assembly
tasks. Through being a basic, non-specialized component, we expect alternatives, such
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as [179] to work comparatively well with our approach.

Mapping Approaches

Before explaining the details of our LSTM-based network, this paragraph discusses input-
output relations for sequence modeling in general.

One-to-One: (st, at)→ (at+1)
This could be considered a corner case with the input and output sequence length of a
single time step. Used on the recorded data, this model will be problematic: The resulting
policy π models strategies as a static field of forces and torques, with the conflicting goals
of not overfitting while capturing fine-grained patterns. When including probabilistic
components for stochastic learning, such as in Variational Autoencoders (VAEs) [185],
this model assumes that data are independently and identically distributed (i.i.d.), which
is not the case due to correlations in time. It will be difficult for the model to learn this
ambiguity, resulting in a high variance of the distributions. The consequence for robot
control is either uncorrelated, fluctuating draws through sampling or averaged strategies
through least-squares regression.

One-to-Many approach: (st, at)→ (at+1), . . . , (at+N )
This model makes predictions based on a single input. Motivated by an application of
image caption generation [186] and transferred to robotics, we investigated this model in
our earlier work for assembly [187]. Instead of using memory for observing the past, the
sequence-generating LSTM network used memory to predict coherent, future strategies,
which were sent open-loop to the robot control to overcome deadlocks of the one-to-one
model. While this worked reasonably well also with uncertainty for the case considered,
this approach has limits when clearance is considerably smaller and a lot of strategies
are applied in relatively small geometric regions. Low clearance leads to ambiguity of
the recorded behavior, which gets lost in deterministic mappings. As a consequence, the
learned average loses the random-appearing character of strategies and fails in friction-
dominated, stick-slip tasks. Section 3.3.2 describes how this thesis instead tackles this
issue with a probabilistic output layer.

Many-to-Many: (st−N , at−N ), . . . , (st, at)→ (at+1), . . . , (at+N )
This is a common architecture for sequence translation models, such as [178]. The core
idea is to use an encoder for the input sequence and decode an output sequence from this
compact latent space. While this could be a promising model for assembly skills, having
an output sequence like the one-to-many models means dead times on the robot control.
For the time of execution, the strategies are open-loop. For short output sequences, how-
ever, this could still be a feasible solution

Many-to-One approach: (st−N , at−N ), . . . , (st, at)→ (at+1)
Taking the idea of using an encoder for learning a compact representation of input se-
quences into latent space, this model generates an immediate control signal for real-time
robot control.

Basing on own research of all models, this thesis uses the many-to-one type to model
assembly skills. To keep equations in the next sections short, we introduce two abbrevia-
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LSTM
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C

Figure 3.13.: Long Short-Term Memory (LSTM) cell, adapted from [186]. The dashed lines
represent recurrent connections. Characteristic for this cell are three gated,
multiplicative operations that enable to effectively memorize and forget in-
formation stored in the internal cell state ct.

tions:

x̂t = (st, at) =
[
xTt , ẋ

T
t ,f

h
t
T
]T

(3.8)

ŷt = (at+1) =fht+1. (3.9)

The right-hand side represents column vectors for multiplication with weight matrices.
In the terminology of supervised learning, ŷt can be considered as the label, i.e. the correct
output for a given input x̂t. This aspect is used in Section 3.3.2 by formulating the learn-
ing problem of human behavior through learning to estimate high conditional probability
densities for these labels.

Long Short-Term Memory (LSTM)

We use the LSTM to observe and encode patterns in behavioral sequences into a concise
representation. We will later combine this with a probabilistic output layer. Using the
encoded representation from the LSTM, this final layer shall be able to iteratively predict
future strategies with high confidence.

The implementation we use5 [188] bases on [176] and [175]. Fig. 3.13 shows the indi-
vidual LSTM cell. Crucial for memorizing and forgetting are gated operations that can
easily add and subtract information from the cell state ct. In its canonical form [176],

5https://github.com/tensorflow/tensorflow/blob/r2.0/tensorflow/python/keras/layers/recurrent.py
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the LSTM’s cell state had a recurrent self-connection with weight 1.0 that created a "con-
stant error carousel", generating a linear error backflow, protected by input and output
gates [175]. In addition to memorizing by default, however, a practical mechanism for
occasional resetting was required to avoid keeping useless information. By introducing
a forget gate, Gers et al [175] enabled the LSTM to gradually reset the cell state’s obsolete
information. In combination, both the input and forget gate operations learn to keep and
drop valuable information in and from the cell state. For learning human assembly skills,
this enables us to use the data without explicit start-end annotations. For practical appli-
cations, various of these cells are combined into an LSTM-layer, allowing to describe the
information flow in the forward pass with the following matrix-based set of equations
(for m individual LSTM units from Fig. 3.13):

ft = sigmoid(Wf x̂t + bf +Ufht−1)

it = sigmoid(Wix̂t + bi +Uiht−1)

ot = sigmoid(Wox̂t + bo +Uoht−1)

ct = ft ◦ ct−1 + it ◦ tanh(Wcx̂t + bc +Ucht−1)

ht = ot ◦ tanh(ct).

(3.10)

With x̂t ∈ Rc being the input vector to the LSTM layer andht ∈ Rm its output. ft ∈ Rm,
it ∈ Rm, and ot ∈ Rm denote the activation vectors for the forget gates, the input gates
and the output gates respectively. The matrices W ∈ Rm×c are non-recurrent weight
matrices. U ∈ Rm×m are recurrent weight matrices for the previous hidden state ht−1 ∈
Rm in the respective gates. The operator ◦ denotes the element-wise product. Note that
the layer-wide ht−1 is an input for all individual cells, generating recurrent connections
between them in an LSTM layer.

We use an element-wise
sigmoid(x) =

1

1 + e−x
(3.11)

as activation. Input and output squashing is done with the hyperbolic tangent. All
weightsW , b, and U are learnable.

It’s also possible to stack various LSTM layers for more expressive power. This, how-
ever, didn’t improve learning in our assembly scenarios, mainly due to the small data set
sizes in comparison to that of very deep networks. We thus use a single-layered LSTM
and adjust our skill model’s complexity and parameter count with the number of cells m
in that layer.

For an input sequence of consecutive points x̂t−N , . . . , x̂t, Eq. (3.10) computes N + 1
consecutive hidden states and cell states. Note that only for the last output has the LSTM
seen all previous inputs, i.e. the full input sequence. We are only interested in these last
states ht, ct and define

LSTM(x̂t−N , . . . , x̂t) := (ht, ct) (3.12)

as a function to compute an encoding of a given input sequence.
The next section shows how this encoding is then used to model probability densities

for the successor ŷt.

3.3.2. Learning Probabilistic Behavior

The second component of our skill considers modeling humans’ seemingly random trial
and error. If we consider the LSTM model so far, and, adding a suitable output layer,
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we could directly train supervised with minimizing
∑

t(ŷt − yt)2 for all t in our data set
with yt = LSTM(x̂t−n, . . . , x̂t). The problem is that for continuous variables, such as our
wrench vector ŷt, a mean squared error function will implicitly learn the conditional av-
erage of the target data, conditioned on the input [189]. The skill model would, therefore,
learn to imitate the average of the recorded strategies. As the data analysis showed with
Fig. 3.9, this would equal a washing-out of the strategies’ fine-grained characteristics. E.g.
wiggling would become a mere pushing. To counteract this problem, we assume that in
each time step, human strategies ŷt can be modeled as a probability density function
(PDF) with a mixture of c-multivariate Gaussian distributions Nc(µ, σ2).

Recapitulating some of the challenges from previous sections, our data conflict with the
i.i.d assumption. In particular, the joint probability density p(ŷt, x̂t) is time-dependent.
Note that using a Gaussian Mixture Model (GMM) for regression, we could still ap-
proximate a static probability density function for our data to obtain the histogram plot
Fig. 3.11. But it would fail with the sequences from Fig. 3.12 that require local coherence,
once a random starting point is chosen. To assure local coherence during sampling from
these distributions, the previous section introduced the LSTM-based encoding that shall
provide the necessary semantic input for parameterizing our Gaussian mixture at each
step. We use the architecture of Mixture Density Networks (MDN) [189] to connect the
GMM with our LSTM layer.

Alternative approaches in literature without using a sequence encoder jointly encode
spatial and temporal information directly into the GMM. The task’s reproduction is then
computed with Gaussian Mixture Regression (GMR) [102], see Section 2.2.5. While GMR
would be possible in our approach from the parameterized GMM at each step, unbiased
sampling from this distribution has advantages to overcome deadlocks. We discuss this
in Section 3.3.5.

Another alternative is the combination of a Hidden Markov Model (HMM) with GMR,
which we reviewed in Section 2.2.5. Being popular in literature, e.g. [104], [105], we
briefly discuss differences to our approach: The idea is to use the HMM’s temporal prob-
abilistic evolution between state transitions in the computation of GMR. In this setting,
each of the HMM’s states covers a region in trajectory-space with a GMM, learned with
an EM-based algorithm [101]. Specifically, the conventional GMR is adapted to use the
HMM’s forward variable [109] to include transition probabilities into the regression func-
tion [104], [105]. Using a first-order Markov model in these works, the incorporation
of transition probabilities is limited to the last state only. Compared to our setting, this
would be making only use of p(ŷt | x̂t) in our notation, i.e. using a sequence encoder
with length= 1.

Relying on the first-order Markov assumption is partly surprising, given that human
performance generally seems correlated over longer sequences. In combination with a
moderate number of states, this however quickly becomes computationally infeasible,
see e.g. [190]. The trick is that the task’s PDF is modeled to only comprise few states at
specific landmarks during its execution. Then, observing single state transitions in the
first-order Markov assumption covers a sufficient range in trajectory space. Note that
this was mostly shown to work on comparatively unconstrained tasks with non-complex
evolutions of distributions, such as table tennis strokes [104] or steering a rolling ball in
a box through tilting [105].

In order to model assembly skills with high dynamics in force strategies with limited,
in-contact motion, HMMs as temporal probabilistic models would require many states
that parameterize many individual GMMs in order to resolve ambiguity and to model the
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distribution complexity of Fig. 3.10. Whether this proves both computationally feasible
and successful for low-clearance assembly with more complex insertion directions than
peg-in-hole needs further research.

LSTM-based networks in contrast are not bound to a specific number of states, nor to a
first-order Markov assumption to make computing a PDF for the dataset computationally
feasible. Their recurrence can be interpreted as having a very high Markov order by
default, covering hundreds of steps, and their MDN-part can parameterize a GMM at
each prediction step anew. Being deep neural networks, however, they require more data
for training but are almost unbounded in modeling the complexity of huge datasets. Both
might be considered a drawback and an advantage at the same time. As a consequence
of the advantage, the combination of LSTMs and MDNs has been used successfully in
modeling and imitating highly complex human performance, such as authentic human
handwriting from digital text [177] or full-body, freestyle dance motion [191].

Mixture Density Networks (MDN)

Introduced by Bishop [189], they model conditional probability densities of the target
data, conditioned on the input data. Our notation describes this with p(ŷt | ht, ct), in
which the hidden state ht and cell state ct are the encoding of the LSTM input sequence
x̂t−n, n = N . . . 0. To achieve this, MDNs are connected to neural network structures by
feeding the network’s last layer into the parameters of a mixture model that shall repre-
sent this probability density. In our case, we use the LSTM’s encoding from Eq. (3.12) as
input. For our scenario, the probability density should be interpreted as a density that,
after integration over a given interval, yields how likely ŷt follows x̂t−n, n = N . . . 0 in
time across individual sequences of our datasets.

The conditional probability density becomes [189]

p(ŷt | ht, ct) =
k∑
i=1

αiφi(ŷt | ht, ct) , (3.13)

representing a linear combination of k kernel functions φi. We choose multivariate Gaus-
sian distributions Nc(µ, σ2) as c-variate kernel functions with αi, σi ∈ R and ŷt, µ ∈ Rc,
where c = 6 is the dimension of the final output feature vector of our network, such that
the conditional density for the ith kernel becomes

φi(ŷt | µi, σi) =
1

(2π)c/2σci
exp

(
−‖ŷt − µi‖

2

2σ2i

)
. (3.14)

Since the LSTM’s output is used as MDN input, the final output parameter vectorsα,σ,µ
are in fact functions of the encoding (h, c), and thus functions of past sequences for each
time step. During learning, this key feature makes it much easier for the probabilistic
model to find suitable probability density functions that agree with our dataset and re-
solve ambiguity.

Fig. 3.14 illustrates the parametrization of the GMM. The parameters are composed of
the MDN’s output z that is fully connected to the LSTM’s output with linear activation

z = Wz

[
hT , cT

]T
. (3.15)
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model

Figure 3.14.: Mixture Density Network (MDN) layer. The output z is split into individual
vectors zα, zσ, zµ, whose components parameterize the mixing coefficients,
the standard deviations and means of a c-variate Gaussian mixture model
with k basis functions.

Wz ∈ Rk(c+2)×2m is a learnable weight matrix of suitable dimension. For the parameteri-
zation of the Gaussians, z is split into a tuple (zα, zµ, zσ) and the individual components
are used as follows, see [189]: The mixing coefficients sum up to 1 with a softmax

αi =
exp(zαi )∑k
j=1 exp(zαj )

, i = 1 . . . k (3.16)

The centers of each kernel are

µik = zµij , i = 1 . . . k , j = 1 . . . c (3.17)

and the scale parameters are

σi = exp(zσi ), i = 1 . . . k (3.18)

In principle, it’s possible to use full covariance matrices Σ ∈ Rc×c for each of the c-
variate Gaussians Nc instead of the scalar σi. Following Bishop’s considerations [189]
and our own experimentally analysis of learning performance on the toy dataset, we use
the simpler and computationally faster version in our skill model.

Choosing the number k of Gaussian kernels is difficult to derive analytically. Bishop
states that using many kernels does not harm, since the network can switch off redundant
ones by parameterizing low mixing coefficients or overlap kernels by choosing similar µ
and σ [189]. In practice, a conservatively high number of kernels might however be
bound by computation performance requirements, such that a trade-off has to be made.
We achieved good performance for k = 4, 8 in our experiments and recommend those as
default also for more complex assembly tasks.
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Figure 3.15.: Architecture for modeling assembly skills π. This many-to-one mapping is
learned supervised from human behavior, recorded as sequences of state-
action pairs. The model has two modes, indicated by the two output
branches: Training and inference.

3.3.3. Skills as Probabilistic Forward Models

Fig. 3.15 shows the final skill model as the combination of both components: An LSTM-
network for representing past behavior as a compact sequence encoding and an MDN-
network for modeling probability densities of next strategies. Seen on a higher level,
this architecture shall enable to learn human behavior from the recorded datasets and
then imitate its core strategies for challenging assembly skills. Our concept based human
skills on mental forward models in physiological motor control. In analogy, we propose
to think of the technical realization of assembly skills as probabilistic forward models, that
we implement as recursive prediction models from state-action pairs to strategies. Their
output forms promising motor control commands fh that cause part motion x, ẋ, which
is then perceived and reacted upon.

On the implementation side, the skill model from Fig. 3.15 has two output modes:
The left branch describes the training, which makes use of the conditional probability
density and is described in Section 3.3.4. And inference, which uses the mixture model’s
parameters µ,σ,α to obtain concrete wrench vectors as predictions. Several methods
exist for regression and Section 3.3.5 discusses the implications of two important ones:
GMR as a least-squares estimate of the Gaussians’ centers that is frequently used in LfD,
and stochastic sampling that introduces certain randomness at each step.

Training Data Composition

Our concept proposed the recording of human behavior during assembly into individual
demonstrations {ξ0, ξ1, . . . }. These demonstrations are discretized sequences of individ-
ual data points, each represented by the tuple of features [xt, ẋt,f

h
t ]. We used the discrete
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Figure 3.16.: Training data composition. We randomly extract samples as discretized sub-
sequences out of complete assembly demonstrations ξ. Each data point com-
prises the tuple x, ẋ,fh. In each sample, the last data element x̂t+1 holds the
label ŷt (highlighted) for the previous sequence x̂t−n.

index t to refer to a specific instance, with t ∈ [0 . . . T ] and T being the number of data
points in that demonstration. T differs for each demonstration ξ mainly due to vary-
ing human performance for the task and partially due to using random starting poses
of the active assembly objects. This shows that these recordings are in fact not optimal
and reflect our concept of learning human behavior, rather than learning optimal behav-
ior. We investigate the impact of the quality of demonstrations in Section 5.1.6, in which
we cluster the demonstrations for their duration and train our assembly skill network on
individual clusters for comparison.

Before composing actual training data out of demonstrations, we perform standard-
ization on the whole dataset for each feature’s dimension separately. This assures the
features to have a zero mean and a standard deviation of 1 while being all at the same
scale to facilitate learning [192]. We obtain samples from the data set by randomly se-
lecting ξ out of the entirety of assembly demonstrations and t as a random pivot in that
demonstration. The sample is then composed of the input sequence x̂t−N , . . . , x̂t and the
according label ŷt, which is the wrench component of the next x̂t+1. Fig. 3.16 illustrates
this process. This produces randomly extracted, uncorrelated samples of equal length
N + 2, where N is the number of steps that the LSTM-MDN network can use to predict
the corresponding probability density function for the label. During training, this sam-
pling process will be used to form batches of samples for parallel processing. Note that
the samples may partially overlap in these batches and cover the entirety of the training
data stochastically. Our assumption behind this approach is that assembly skills manifest
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Figure 3.17.: Unrolling the skill model for training with Backpropagation Through Time
(BPTT). Arrows show the LSTM layer’s input at each time step and the
dashed arrows indicate the formerly recurrent connections that have become
normal feedforward connections.

themselves already in shorter subsequences (strategies) and do not necessarily require
complete demonstrations to learn human behavior. We investigate N as a hyperparam-
eter for learning performance in Section 5.1.4. In combination with the recording rate in
simulation, we also obtain an estimate of how long a strategy takes on average during
assembly.

The next sections describe the training mechanism in the context of modern machine
learning libraries and how skills make predictions during inference.

3.3.4. Training

For training neural networks, the early backpropagation (BP) algorithm [193] is still
widely used. The algorithm has been re-invented in various domains, see e.g. the work
of Werbos for a discussion [194]. It is a gradient-based, iteratively working optimization
algorithm with four principal steps [192]:

(i) The forward pass computes the network’s prediction for a given input
(ii) The loss function computes an error by measuring the output against a label

(iii) The reverse pass computes each variable’s error contribution as a gradient, using
partial derivatives

(iv) The gradient descent step corrects the learnable weights with a small increment using
the gradient

Recurrent neural networks require an additional step to make them accessible for BP.
The combination is referred to as Backpropagation through time (BPTT): During training,
the skill network is unrolled forN time steps and becomes a deep feedforward network as
illustrated in Fig. 3.17. For our skill model, the LSTM layer’s recurrent connections from
Fig. 3.13 become normal feedforward connections and contribute along with the layer’s
input at each step. The various instances of the LSTM layer from Fig. 3.17 all refer to the
same layer, illustrated at various time steps, with only one set of learnable weights from
Eq. (3.10).
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3. Human-Inspired Assembly Skills

Forward Pass

For the input sequence x̂t−N , . . . , x̂t from one given sample, the network predicts the
conditional probability density p(ŷt | x̂t−N , . . . , x̂t). It does this by using the LSTM-based
encoder with Eq. (3.12) to obtain the sequence encoding ht, ct, followed by the MDN
equations Eq. (3.15) to Eq. (3.18) to obtain the output [zα, zσ, zµ] for parameterization
of the mixture model. And finally by using Eq. (3.14) and Eq. (3.13) to compute the
conditional probability density for the given label ŷt. In this complete pass through the
neural network, all nodes’ values are stored in a bookkeeping process for the summation
of gradients in the reverse pass.

Loss Function

The loss function L is a negative log-likelihood, using the conditional probability densi-
ties p, conditioned on the sample’s input sequence and evaluated for the sample’s label:

L(θ, x̂t−N , . . . , x̂t, ŷt) = −ln (p(ŷt | x̂t−N , . . . , x̂t))→ E(θ). (3.19)

The result is an error E, that also depends on the current choice of learnable weights,
which we denoted with the combined vector θ = [θ1, θ2, . . . , θn]T . These learnable weights
compose the weight matrices for the node connections of our skill network from Eq. (3.10)
and Eq. (3.15).

This loss offers an interpretation of the network’s ability to parametrize a suitable den-
sity around the given label, i.e. around the ground truth. After integration over a given
interval, this density would yield the probability of observing the label. A high loss in-
dicates that the network estimated a low density around the label with a high variance
of the Gaussians. Conversely, a low loss indicates that the network can accurately esti-
mate the label’s distribution for that sequence, and does this with high confidence. Put
in simple terms, using BP to train the network with L can be interpreted as forcing the
network to learn to find the labels and thus the recorded sequences of strategies likely by
predicting distributions that best explain the recorded dataset.

Reverse Pass

After having computed the error, the next step is to compute each parameter’s contri-
bution to that error with partial derivatives, i.e. ∂E/∂θi. In modern machine learning
libraries, computing these derivatives works iteratively, relying on Automatic Differenti-
ation (AD), a scheme that uses the chain rule and is a powerful alternative to numeric dif-
ferentiation in computer programs [195]. This is applicable for programming languages
in general and is leveraged as reverse mode AD in Tensorflow’s C++ core [188], [192],
which we use in this thesis.

For each node’s operation in the network, this scheme needs to know the partial deriva-
tives w.r.t to the node’s predecessors. They are given in [189] for the MDN part and in
[175] for the LSTM part. They must be implemented into a computational graph of basic
functions. AD then computes ∂E/∂θi reversely by concatenation through the complete
computational graph from the network’s output to the input, evaluating the partials for
the current choice of parameters θ, and each node’s value, determined for the current
sample (x̂t−n, ŷt) in the forward pass.
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3.3. Skill Modeling

The combination of the evaluated partial derivatives is the error gradient that will be
used in the gradient descent step for the actual weight update:

∇E(θ) =



∂E(θ)

∂θ1

∂E(θ)

∂θ2
...

∂E(θ)

∂θn
.


(3.20)

We use Mini-Batch Gradient Decent in our supervised learning setting, i.e. we compute
the gradient for a batch of q training samples (x̂t−n, ŷt)q and according weights θq jointly
with

∇Eq(θq) =

q∑
i=1

∇E(θi) (3.21)

for each computation step. The advantage is a trade-off between speed and robustness
of the two corner cases Stochastic Gradient Descent and Batch Gradient Descent, see e.g.
[192]. Qualitative influence of the batch size on learning performance and generalization
is discussed e.g. in [196], [197], of which the latter proposes sizes in the range of 2 to 32
as good defaults. We form the batch of samples in each training step online by obtaining
and gathering samples as explained in Section 3.3.3.

Gradient Descent Step

Having the gradients as the joint vector of partial derivatives for all variables, the final
step is to incrementally upgrade them with

θ = θ − η∇Eq(θq). (3.22)

An optimizer handles setting the learning rate η and other learning hyperparameters (as
function arguments for η). We use Adam [198] and its implementation in Tensorflow.
Learning performance is discussed in Section 5.1.

3.3.5. Inference

In this thesis’ approach, the assembly skill is now fully trained and there is no further
online learning. During inference, the skill model predicts a parameterization for a GMM
that can mimic human strategies. Gaussian mixture regression typically covers several
methods to obtain single estimates from the density, such as least-squares estimates (LSE)
or stochastic sampling [102]. Both are established methods and need a brief discussion
for the tasks considered.

Regression with Least-Squares Estimates

LSE is often used as regression for LfD tasks, e.g. [100], [104], [105]. In this method, an
individual estimate is computed from the Gaussian mixture by computing an average of
conditional expectations. This makes LSE deterministic during predictions and returns
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3. Human-Inspired Assembly Skills

the mean of alternatives for inverse mappings [102]. As elaborated in Section 3.3.2, a
least-squares approximation for regression will, therefore, average and lose important
strategies for our assembly tasks.

Regression with Sampling

In contrast to an LSE, sampling returns random draws from the full distribution. This
randomness can also prove effective against deadlocks for peg-in-hole assembly [108].
Note that conventional GMMs are only suitable in this setting for sampling if the task is
simple enough to tolerate fluctuating control commands. The broad coverage of trajec-
tory space with few Gaussians makes it hard to achieve consistent sequences across sam-
ples. In contrast, through the more expressive power of the LSTM-encoder, our model
can build fine-grained distributions along the trajectories on the fly and provide coherence
despite sampling also for complex insertions.

Sampling from our skill model output can be implemented in a two-step approach:

(i) First, the MDN’s mixture coefficients αi form a categorical distribution. Through
building the cumulative distribution function (CDF) and using uniform sampling
from U(0, 1), the closest number in the CDF to the draw selects an individual Gaus-
sian Nc of the mixture model.

(ii) In the second step, the Box-Muller algorithm [199] is applied for each of the c-
variate Gaussian’s dimensions to obtain fh ∈ Rc. This algorithm turns a random
auxiliary sample a from a uniform distribution a ∼ U(−1, 1) into a sample b from a
normal distribution b ∼ N (0, 1). Re-scaling with bσ + µ reflects the MDN’s parame-
terization for that dimension.

We use the Tensorflow distribution library [200] for this task.

3.4. Assembly Skills

The formulation of assembly skills as probabilistic forward models was robot-independent.
For practical applications of these skills, the robot takes the simulator’s role, i.e. turning
fh into motion and reporting that motion as part-relative feedback. Fig. 3.18 shows the
according control scheme with inputs and outputs. Note that feedback for the skill does
not contain measured force-torque signals from the robot, which was a design decision in
our concept of seeking to implement human-inspired, mental forward models. We also
proposed this as a means to bridge the reality gap by bypassing the simulator’s flaws in
contact force rendering. In each step, we obtain a prediction through sampling that needs
transformation into adequate coordinate systems before being processed as reference set-
points in the robot controller. This is handled in Section 3.4.1. Section 3.4.2 explains how
strategies, i.e. force-torque control commands can be used on top of conventional, com-
pliant trajectory execution.

3.4.1. Assembly Task Specification

Previous sections used formulations in task space, which described the pose x and ve-
locity ẋ of the active assembly object in frame O of the passive assembly object. This
task-relative consideration was robot manipulator-independent and supports applying
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Skill
Robot 
control

Figure 3.18.: Skills as closed-loop controllers for strategies during the assembly process.
The force-torque setpoints neatly integrate with reference trajectories from
other sources, such as DMPs, motion planning, or point-to-point teaching.

Figure 3.19.: Coordinate frames and transformations for an assembly task. The transfor-
mations relate the robot’s base B with the assembly’s origin O, the active
assembly part’s local frames A,Ao, and the robot’s end-effector frame E .

skills disjoint from the robot’s configuration space, providing an alternative approach to
the correspondence problem. For deploying a skill on robotic systems, further coordinate
frames and transformations are required to display the skill’s predictions in a reference
frame suitable for robot controllers, and in turn displaying the robot’s feedback in a frame
where the neural network skill model expects its inputs.

We use homogeneous transformations of the scheme toTfrom to describe transforma-
tions between individual frames. In this scheme, transformations are composed with

toTfrom =

[toRfrom
tor

0T 1

]
∈ R4×4, (3.23)

using the rotation matrix toRfrom between the two frames and the Cartesian vector be-
tween the two frame origins tor, displayed in the target frame. We will extract both
components from their respective homogeneous representation when transforming the
spatial quantities x, ẋ,fh. The inverses of transformations are computed with

(toTfrom)−1 = fromTto =

[toRT
from −toRT

from
tor

0T 1

]
∈ R4×4, (3.24)
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3. Human-Inspired Assembly Skills

Fig. 3.19 shows important frames and coordinate transformations with the following
meaning:

BTO: Describes the passive assembly object’s origin with respect to the robot base. In
an autonomous setting, the robot might acquire this transformation e.g. with visual sen-
sors, including uncertainty. For most use cases, this transformation can be considered
constant throughout the assembly. The concept of using origin-centered skills, however,
also allows for a moving origin, e.g. on conveyor belts.

BTE : This transformation relates the base with the end-effector. The transformation
depends on the joint angle vector q and is continuously computed in robot control with
forward kinematics.

ETA: This constant transformation relates the active object’s pose with respect to the
robot’s end-effector. It is assumed constant throughout the assembly task and initially
given during setup. In practical use cases, robotic grippers will hold the active objects
during assembly, such that these grasps are estimated, albeit usually with higher accu-
racy than BTO.

ETAo : This transformation is dynamically built from the active object’s origin with re-
spect to the robot’s end-effector and the passive object’s rotation, given in end-effector
coordinates.

OTA: The relative pose of the active assembly object w.r.t to the passive target. This
dynamically changing transformation is semantically equivalent to the pose x.

We use the following convention to specify our quantities: Without a leading super-
script, the quantities are assumed to be given within skill-centric frames, i.e. x = Ox, ẋ =
Oẋ and fh = Aofh. This applies to data recorded in the simulator and to the inputs and
outputs of the skill model π. In contrast, a trailing superscript d indicates the desired tar-
get value as a setpoint for robot control in a suitable frame, specifically xd = Bx, ẋd = Bẋ
in the robot’s base frame B and fd = Efh in its end-effector frame E .

Robot Control from Skill Outputs

Using the transformation matrices from Fig. 3.19 and its components, users obtain target
setpoints for robot control from skill predictions as follows: The target wrench for force
tracking is the equivalent wrench of fh, transformed to the robot’s end-effector. We use
spatial transformations according to Murray et al [41] with

fd = Efh =

[ ERAo 0
−ERAo

E r̂ ERAo

]
fh , (3.25)

in which ERAo = ERO = ERBBRO. The components of E r̂ are extracted from ETA, and
the hat operator̂is used to represent the cross product as matrix multiplication [41]:

r̂ =

 0 −rz ry
rz 0 −rx
−ry rx 0

 . (3.26)
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Figure 3.20.: Compliant trajectory execution with strategy overlay. Assembly tasks are
divided into two principal phases: 1© the execution of nominal target trajec-
tories with end-effector impedance and 2©wrench-based strategy overlay to
dynamically adapt to unforeseen jamming and wedging.

Skill Inputs from Robot Control

For obtaining skill inputs from robot control we have:

x = Ox← OTA = OTBBTEETA, (3.27)

in which BTE is computed by a forward kinematics routine. And

ẋ = Oẋ =

[ORB Or̂ ORB
0 ORB

] [
ω̂Br + v
ω

]
with

[
v
ω

]
= Jq̇. (3.28)

J(q) is the manipulator’s Jacobian for the end-effector. ORB and Or are taken from
OTB = (BTO)−1. The vector Br is taken from BTEETA as the origin of A given in the
robot’s base. Note that fh is recurrently connected between skill output and input and
needs no transformation.

3.4.2. Trajectories with Strategy Overlay

Assembly skills are well suited to be integrated on top of other commonly used meth-
ods. One condition is that the application’s robot control can make use of explicit target
wrenches fd. As investigated in Section 2.1, suitable schemes could be based both on
hybrid and parallel force/motion control and admittance control. We consider the last
for illustration purposes.

When applying assembly skills on the robotic platform, we distinguish two principal
control phases: Phase 1© a free space motion towards the assembly’s origin of interest,
and phase 2© the actual insertion after establishing the first contact. Fig. 3.20 illustrates
both phases. In 1©, the robot executes its nominal trajectory xd(t), ẋd(t) without skill
intervention. This thesis’ approach is relatively independent of where these trajectories
come from. Possible options include point-to-point teaching in a calibrated setting, mo-
tion planning in a simulation environment, or generalization with DMPs. In phase 2©, the
skill’s prediction partially overrule restoring forces as described at the beginning of the
chapter’s concept. The computed net force f from Eq. (3.1) can then be transformed into
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3. Human-Inspired Assembly Skills

the end-effector frame with Eq. (3.25) and regulated in a suitable force control law. Ap-
plying the human-inspired strategies for this task alters the nominal trajectory in contact,
as illustrated in Fig. 3.20. The learned skill reacts dynamically, observing both the assem-
bly’s progress and its previous actions to imitate human behavior. Switching from phase
1© to phase 2© and enabling the associated assembly skill can be delayed until e.g. reac-

tion forces exceed defined safety thresholds. Exceeding these limits would indicate that
the robot encountered unexpected resistance during execution and diverges significantly
from its nominal target trajectory, so that recovering without strategies seems unlikely.

Applicability

Using the skill’s predicted target wrenches is widely applicable to existing control schemes,
such as Hybrid Force/Position control from Section 2.1.2 and Admittance Control from
Section 2.1.3. It is also natively applicable to torque-based control schemes of lightweight
robots and thus makes a contribution beyond this thesis’ focus on motion-actuated sys-
tems.

3.5. Summary and Conclusion

So far, this thesis has proposed an intuitive method to model object-centric assembly
skills, whose predictions can solve part jamming/wedging on compliant controllers. On
a higher level of abstraction, this thesis followed the idea of modeling and capturing
skills as human-inspired, mental forward models. The skills shall learn implicit strate-
gies within recorded datasets for tight-fitting assemblies. The usage of simulation sup-
ports offline programming in an industrial context but required trade-offs between real-
ism and numerical stability. The goal was to obtain simulation environments, in which
operators can naturally steer the objects but are forced to apply strategies under arti-
ficially increased friction. This shall bridge the reality gap and enable transfer to real-
world scenarios. Based on data analysis, we proposed a recurrent, probabilistic neural
network architecture for modeling these assembly skills. The skills’ formulation is robot-
independent and object-centric in task space, and the transformation into robot-related
coordinate frames can be embedded into automatic routines. Robot controllers can use
the predicted strategies in form of setpoints and overlay existing methods for compli-
ant trajectory execution with these force profiles. The next chapter continues the skill’s
idea of forward models and simulation and contributes a new control paradigm for skill
execution to the field of admittance control.
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Assembly skills so far learned from data, generated in simulation environments. They
are robot-independent and exist in task space around two assembly objects as sequential-
probabilistic force-torque strategies. Deploying them now requires controllers that exe-
cute these skills on motion-actuated robots. A step that can be interpreted as solving the
correspondence problem from Section 3.2.3 on the control level.

This chapter describes that way from human-inspired skills to robotic skill controllers
on motion-actuated robots. We propose a new mapping paradigm for these systems and
contribute a new compliant controller for assembly skills and beyond: Section 4.1 intro-
duces the overall concept that fundamentally bases on forward dynamics simulations on
a virtual model, which is the core of Section 4.2. Designing and implementing a new
compliant controller under this rationale is derived in Section 4.3. Section 4.4 closes the
big picture with further discussions.

4.1. Concept

The previous Chapter 3 on human-inspired skills made implicit assumptions on robot
control while learning from simulation-based data: The active assembly object was tele-
operated along perfectly decoupled control axes in task space under velocity-proportional
damping. Our approach was to learn the skills in an object-centric and robot-independent
way by delegating control to the simulation’s physics engine. This separation of skill
and robot control was an important part of our concept for tackling the correspondence
problem in PbD in robotics. Executing the skills on a robot now requires a similar perfor-
mance: Robot control must overtake the physics engine’s role with imitating rigid-body
motion due to teleoperated force-torque commands, and measured contact forces at the
robot’s wrist replace the contact simulation of the physics engine. In addition, possible
motion setpoints from trajectory execution must be included.

We briefly reconsider control schemes from Chapter 2 under these requirements and
then propose a new approach, specifically tailored for our skill formulation on motion-
actuated systems.

4.1.1. Options for Robot Control

Section 3.4.1 formulated the skills’ predictions that become setpoints for robot control.
Fig. 4.1 illustrates an example manipulator with relevant quantities. Current control
schemes can partially include these setpoints: Hybrid Force/Position control from Sec-
tion 2.1.2 natively supports reference velocities and target wrenches. However, the need
for precisely describing time-varying selection matrices is a drawback under uncertainty
and makes this option less flexible. Parallel Force/Position control circumvents the need
for orthogonality, but like Hybrid Force/Position control does not support desired refer-
ence poses xd. Both use integral and proportional-integral gains for velocity and force
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Figure 4.1.: Motion-actuated robot in rigid contact. A virtual spring-damper element puts
current state x, ẋ and desired state xd, ẋd into relation with force-torque sen-
sor measurements f and target wrench fd.

tracking, respectively. Admittance control from Section 2.1.3 supports both reference
poses and velocity. Numerical integration of a first-order system in Cartesian coordi-
nates with the excitation f yields the reference velocity ẋr. Like the simpler schemes
of Compliance and Damping control, force control is achieved implicitly and fd is not
directly included as the desired reference. However, adaptations to these schemes could
use ∆f = fd − f instead and provide this option. Table 4.1 shows an overview of the
schemes.

Table 4.1.: Control approaches and inclusion of desired reference setpoints.

Scheme control law xd ẋd fd

Hybrid Force/Position control Eq. (2.4) ẋr = Sxẋ
c +D−1Sff c X X

Parallel Force/Position control Eq. (2.5) ẋr = ẋc +D−1f c X X

Admittance control Eq. (2.6) ẋr
int.←−−D∆ẋ+K∆x = f X X (X)

Compliance control Eq. (2.7) ∆xr = ∆x−K−1f X (X)
Damping control Eq. (2.8) ẋr = ẋd −D−1f X (X)

With slight modifications, all schemes support using the target wrenches fd and make
the assembly strategies widely applicable as an overlay to existing trajectory execution.
Admittance control provides the most flexibility in making use of all setpoints. As a
drawback, however, all approaches require stable alternatives to the plain Jacobian in-
verse to assure stability near singular configurations. This is due to first computing ẋr

in Cartesian space and then depending on the robot’s ability to render this reference
velocity through joint actuation. A strong alternative that has however been largely un-
considered, is extending the numerical integration of the Admittance control scheme to
robot dynamics and circumventing the inherent stability problem of Inverse Kinematics.

4.1.2. A New Mapping Paradigm

Similar to impedance control, we substitute the target setpoints xd, ẋd,fd, the current
end-effector state x, ẋ, and measured contact wrench f into a first order system to obtain
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Figure 4.2.: Schematic illustration of forward dynamics simulation. The net force fn acts
as external load on the end-effector, and the mechanism stays stable even in
singular configurations.

an overall net force fn with

fn := fd − f +K(xd − x) +D(ẋd − ẋ) . (4.1)

Eq. (4.1) holds for both in-contact and free motion. The central idea of our approach is
to simulate the manipulator as an articulated, rigid body system in zero gravity, apply
fn at the end-effector, and compute the robot’s reaction motion. The result serves as the
control signal for the real actuators. Different from numerical integration and IK solving
in admittance control, this method leads to inherently stable mappings from Cartesian
to joint space. Fig. 4.2 illustrates this effect for a special case: Back-drivable gears allow
the simulated manipulator to yield the net force fn as good as possible. To deepen this
thought experiment, we assume the links to be sufficiently lightweight. Constraints of
the kinematic chain naturally limit this motion and the robot’s articulations mechanically
compensate external loads in singularity.

The next step is to mimic the behavior of Fig. 4.2 with forward dynamics algorithms
and design an adequate model for motion-actuated systems.

4.2. Virtual Forward Dynamics Models

Unlike inverse dynamics algorithms, which are established for torque control on robotic
systems, forward dynamics algorithms have more application in rigid body simulation and
are less explored in the literature for manipulator control. The following sections show
how they are particularly suitable for motion-actuated systems in form of direct map-
pings from wrench space to joint accelerations: Section 4.2.1 first introduces basic prin-
ciples and algorithmic options. Section 4.2.2 then derives simplifications that fit them to
our requirements of robot control. A feature of motion-actuated systems is their compen-
sation of load dynamics in the joints, so that outer control loops are not required to com-
pensate for these terms. In combination with forward dynamics simulations, these non-
linear terms are counterproductive if simulated realistically, and require special treat-
ment. Section 4.2.3 presents a new and simple technique to achieve a linearized behavior
in operational space by dynamics-conditioning a virtual model.
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4.2.1. Forward Dynamics Simulation

Forward dynamics simulation seeks to compute accelerations in the system’s degrees of
freedom in response to applied forces, and frequent synonyms are direct dynamics or sim-
ply dynamics [201]. In our scenario, we model robotic manipulators as systems of artic-
ulated, rigid bodies in revolute joint coordinates q. The following set of ODEs describes
the system’s motion

τ + JTfn = H(q)q̈ +C(q, q̇) +G(q) , (4.2)

in which H denotes the mechanism’s positive definite joint space inertia matrix, C de-
notes Coriolis and centrifugal terms, and G holds the gravitational components. The
dependency on q, q̇ in the notation is omitted for brevity. We use Featherstone’s nota-
tion [201] for the symbols but separateG and fn fromC for individual treatment in later
sections. Torques in the robot’s joints, if present, are summarized in the vector τ . Recall
that the considered robots in this thesis do not offer a control interface on torque level
(Section 2.1.1), and we set τ ≡ 0. What we do consider is the joint space effort JTfn,
caused by the net force, encompassing all external loads at the end-effector.

For Inverse Kinematics, Section 2.1.4 highlighted the Jacobian transpose’s inherent sta-
bility near singular configurations in comparison to the Jacobian Inverse. This advantage
is naturally embedded in forward dynamics with Eq. (4.2).

Algorithms for Forward Dynamics

Algorithmic treatments of the equations of motion in computer programs go back to the
mid-seventies [202], and consider the automatic derivation and integration of Eq. (4.2).
Featherstone’s more recent work [201] distinguishes two major categories in the field of
forward dynamics algorithms: propagation methods and inertia matrix methods. The first
category formulates joint accelerations and constraint forces locally, calculates their coef-
ficients, and propagates them to neighboring bodies until local dynamics become solv-
able for each body. The dynamics are then likewise propagated to solve the complete
tree [201]. One of the established algorithms to achieve this is the Articulated Body Al-
gorithm (ABA) [203].

Inertia matrix methods as the second category take a three-step approach [201]:

(i) compute Coriolis terms C and gravity components G jointly as part of an inverse
dynamics routine, such as the Recursive Newton-Euler Algorithm (RNEA) [204] by
setting q̈,fn ≡ 0

(ii) compute the joint space inertia matrix H e.g. with the Composite Rigid Body Al-
gorithm (CRBA) [205], [206]

(iii) solveHq̈ = JTfn −C −G for the accelerations q̈.

Methods from both categories are suitable in our concept and the choice depends pri-
marily on practical considerations. Inertia matrix methods are faster for unbranched
chains of up to eight revolute joints [201] and thus offer a slight performance benefit for
our six-axis control case. After having separated the accelerations, the solution is ob-
tained incrementally by numerical integration, which delivers q(t), q̇(t) for our motion-
actuated robots.
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4.2.2. Simplifications for Control

Closed-loop control requires computing the previous steps in real-time, and simplifica-
tions could enable faster feedback control cycles with better contact stability. To illus-
trate room for improvement, we first recapitulate the importance of dynamics for torque-
actuated systems and then illustrate differences for motion-actuated systems: When the
robot is at rest with q̇, q̈ = 0, the influence of H and C vanishes and gravity alone
accounts for the joint torques. During motion, the additional effect of inertia, Coriolis
and Centrifugal terms gain importance and neglecting them results in high errors in the
pre-computed torques τ to drive the manipulator, which is difficult to compensate with
feedback control [207], [208]. Ideal modeling of manipulator dynamics would lead to
a response of a unit mass along each Cartesian degree of freedom [209]. Using inverse
dynamics and good approximations of H,C and G are thus crucial in achieving high
tracking performance. Including the manipulator dynamics is common in two ways: In
operational space [22], [210] and in joint space with usage of the RNEA for instance [211].

Motion-actuated robots, however, change this setting: Non-backdrivable transmis-
sions in the joint servos realize gravity compensation at steady state, and high-gain feed-
back control compensates non-linear disturbances during fast motion independently for
each joint. This changes the philosophy to using the dynamics of Eq. (4.2) and H,C,G
as parameters for motion generation. This has some resemblance to the DMPs from Sec-
tion 2.2.6, in which a dynamical system is used for motion generation due to a non-linear
disturbance. In this comparison, the net force fn would take that role and drive the sys-
tem, whose response is computed with numerical integration. The design of the dynam-
ics parameters is thus arbitrary, and can actively be used to shape the desired behavioral
characteristics. This supports our concept of using robot control to mimic the simulator’s
behavior we had during skill acquisition, and we propose two simplifications to aim for
this goal:

(i) G(q) ≡ 0: The first simplification is to avoid gravitational drift in steady state.
This assures that the virtual system does not sink to the ground and the net force
has no need to constantly compensate this virtual load throughout varying joint
configurations.

(ii) C(q, q̇) ≡ 0: The second simplification is to discard velocity-related, non-linear
influences on the robot’s motion. The net force’s effect shall be independent of the
robot’s joint velocity.

This reduces the complexity of forward dynamics to the computation and inversion of
the joint space inertia matrixH and we have

q̈ = H−1JTfn (4.3)

as an unbiased forward mapping of the net force to joint space accelerations. The next
step is to decouple the six Cartesian control axes for the net force through conditioning
H with mass and inertia distribution.

4.2.3. Manipulator Dynamics Decoupling

The mapping from task space to joint space with Eq. (4.3) makes use of the Jacobian trans-
pose and thus inherits its beneficial stability. The Jacobian implicitly contains the robot’s
kinematics with the configuration of joint axes, their limits, and the lengths of the links in
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Figure 4.3.: Illustration of the ideal mapping matrix from wrench space to Cartesian ac-
celeration. Λ is a 6×6 matrix for both redundant and non-redundant systems
and should be diagonal for arbitrary joint configurations.

between. While the virtual system will reflect the real robot’s kinematics, the joint space
inertia matrix H is the primary interface for artificially shaping the dynamics of the vir-
tual system. We use the CRBA algorithm [206] for its computation, which determines the
elements Hij based on composite inertias. Parameterizing its link masses and moments
of inertia allows us to influence how the system ultimately accelerates in the direction
pointed to by fn after multiplication.

This response can be formulated in operational space, for which we follow Khatib’s
and Featherstone’s derivation [212]: The time derivative of the end-effector’s spatial ve-
locity ẋ = Jq̇ yields its acceleration with

ẍ = J̇ q̇ + Jq̈ . (4.4)

We focus on instantaneous accelerations and set velocity-dependent terms to zero. Sub-
stituting Eq. (4.3) leads to

ẍ = JH−1JTfn (4.5)

for the Cartesian instantaneous acceleration of the virtual system due to the net force fn.
In contrast to the manipulator Jacobian, the joint space inertia matrix is symmetric and
positive definite, so that its inverse always exists. This leads to a stable mapping near
singular configurations. Using Khatib’s notation for this quantity we obtain

ẍ = Λ−1fn (4.6)

for the mapping with Λ = J−THJ−1 being the joint space inertia matrix in operational
space [22].

The goal of dynamics decoupling is to achieve a nearly constant, diagonal mapping
with Eq. (4.6), independent of the robot’s joint positions. Fig. 4.3 illustrates this desired
behavior as matrix multiplication. Ideally, each component of fn affects motion only in
or along its respective axis. For realistic dynamics, this is however not the case. Since
the robot is an articulated chain of joints and segments, a general motion in arbitrary
Cartesian dimensions will affect several degrees of freedom. Consider the illustration
from Fig. 4.4 (a). The net force causes linear and angular acceleration of the segments
and in turn, perceives the system as composite rigid body inertia at the point of appli-
cation. This overall quantity strongly depends on the joint configuration and introduces
off-diagonal terms in Λ which distort the Cartesian response ẍ. This thesis contributes a
simple design change to mitigate this effect.
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Figure 4.4.: (a) Virtual model for a 6-joint robot. The net force perceives the segments’
moments of inertia as a configuration-dependent, composite rigid body iner-
tia. (b) Making the end-effector’s mass and inertia dominant shall linearize
its dynamics in operational space.

Virtual End-Effector Dominance

The non-linearities are caused by the overall rigid body inertia of the segments’ constel-
lation, which changes dynamically during motion. The net force fn itself will act on the
virtual mechanism’s end-effector as the point of application. This leads to a simple idea:
To keep the composite inertia close to the point of attack for the net force, we can shape
the virtual manipulator dynamics in such a way, that the end-effector’s mass and inertia
outweigh the other segments. If the virtual system’s mass is concentrated in the point of
application, the perceived composite inertia for the net force is mainly constant during
motion and the manipulator would appear close to an idealized unit mass.

Fig. 4.4 (b) shows this concept. The center of mass stays with the end-effector and
the operational space inertia Λ is constant across joint configurations. Other segments
are reduced to kinematic links with insignificant own mass and inertia and thus have a
vanishing influence on the overall dynamics.

We refer to this effect as end-effector dominance and propose

γ =
me

ml
=
Ipe
Ipl

, (4.7)

as a ratio for designing how much the end-effector’s massme and polar moment of inertia
Ipe outweigh the other links’ dynamics ml and Ipl, respectively. Section 5.2.2 of the
validation shows empirically that increasing γ leads to linearized, decoupled behavior
for Cartesian closed-loop control.

4.3. Forward Dynamics Compliance Control

So far, the virtually conditioned model moves with simplified forward dynamics simula-
tion according to an external net force. The next step is to design a closed-loop controller
around this method that can regulate the setpoints of both the skill’s predictions and the
nominal assembly motion: Section 4.3.1 presents the control scheme in form of a gen-
eralized compliant controller. Section 4.3.2 details its algorithmic implementation and
discusses two variants and their implications concerning time integration. Section 4.3.3
highlights two important specializations that cover frequent applications: The tracking
of reference motion in free space, and pure force control, where forces and torques guide
the robot without restoring forces. Finally, Section 4.3.4 summarizes how this type of
controller is combined with the skill models from Chapter 3 to create human-inspired
controllers for robotic assembly tasks.
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Figure 4.5.: Closed-loop compliant control with forward dynamics. Feedback is closed
around a PD-controlled net force that enables motion and force setpoint track-
ing. A linearized, virtual system simulates reference joint motion that be-
comes the control signal for the real robot.

4.3.1. Control Scheme

The net force is the primary interface for control and the goal is to decrease the indi-
vidual components’ error, i.e. finding an equilibrium between the setpoints and current
state. This means (i) decreasing the error between target pose and current end-effector
pose, (ii) matching the target velocity and (iii) tracking the reference force profile when
in contact.

Focussing motion-actuated systems with non-backdrivable inner position control loop
poses the inherent challenge of contact stability. Adding additional control gains adds
partial redundancy to the stiffness and damping parameters. This redundancy, however,
allows to separate quasi-static stiffness from error rejection and introduces an additional
parameter for reactiveness to mitigate contact stability issues.

Control Law

We use a PD regulator in the form of

f c = KPf
n +KDḟ

n (4.8)

with positive semi-definite gain matrices KP and KD. An explicit integral gain is not
required to eliminate steady state errors. The virtual system has an integral part of itself
during forward dynamics simulation from constant f c to joint accelerations q̈ and further
to joint velocities q̇ and positions q, respectively.

Adding gains to the overall net force fn treats the individual errors the same. Like in
Admittance Control and in contrast to Parallel Force/Position control, there is no preva-
lence of the force error over motion error. During control, the real dynamics of the ma-
nipulator, especially configuration-dependent structural stiffness of the inner joint posi-
tion control loop, will have an influence on stability in contact. This structural stiffness
will vary in different joint configurations and we can, therefore, not completely avoid
KP ,KD being partly task and robot dependent. However, the controller contributes the
linearization approach of the virtual system’s dynamics from Section 4.2.3 and benefits
constant control gains while the robot operates in different joint configurations.
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Closed-Loop Control

Fig. 4.5 shows the control law embedded into a closed-loop control scheme. The reference
input comprises xd, ẋd from the nominal trajectory, and fd as the skill’s predicted strate-
gies. Feedback from the real manipulator closes the loop and feeds into the net force as
the superposition of individual errors. A wrist force-torque sensor measures the contact
wrench f and x, ẋ are obtained via suitable Forward Kinematics (FK) routines. In each
iteration, the virtual system accelerates in response to the controlled f c, and delivers, af-
ter time integration, the control signal for the real manipulator, which is the control plant
of the scheme. The virtual model is considered part of the controller. Its role is that of a
forward model, a proxy that computes reference motion, which becomes the control sig-
nal for the real plant. We repeat that this control concept does not require nor use the real
robot’s dynamics model. Instead, the virtual system is dynamically linearized with an
unrealistic mass distribution to effect a linear acceleration response in operational space.

4.3.2. Implementation

Algorithm 1 shows the closed-loop control’s steps. The pseudo-code should be imple-
mented in a performant programming language. Depending on the manipulator used,
the OEM driver for the inner joint control often runs between 100 Hz and 1 KHz and typ-
ically requires control signals q, q̇ under real-time requirements.

Algorithm 1 Forward dynamics compliant control

1: procedure CONTROL LOOP(xd, ẋd,fd, q, q̇,f )
2: x← FK(q)
3: ẋ = Jq̇
4: ∆R = RdR−1

5: [rx, ry, rz]
T ← ∆R

6: ∆x = xd − x = [∆x,∆y,∆z, rx, ry, rz]
T

7: ∆ẋ = ẋd − ẋ = [∆ẋ,∆ẏ,∆ż,∆ωx,∆ωy,∆ωz]
T

8: fn = fd − f +K∆x+D∆ẋ
9: f c = KPf

n +KDḟ
n

10: H ← CRBA[206] with me, Ipe = 1, ml, Ipl = 1/γ
11: q̈ = H−1JTf c

12: q̇ = q̇ + q̈∆t
13: q = q + q̇∆t
14: return q, q̇
15: end procedure

The algorithm assumes q and q̇ via measurements from the manipulator’s joint sen-
sors and f from a wrist-mounted force-torque sensor. It further assumes that a suitable
routine is available for the Forward Kinematics (FK) and that the manipulator Jacobian
J has been freshly computed in each loop.

The computation of the rotation difference is done in step 4, in which Rd,R ∈ R3

are the rotation matrices of the target pose and the current pose, respectively. We de-
rive the Euler-Rodrigues vector components from that difference matrix in step 5. They
represent the difference between target and actual state in axis-angle notation, where
r = [rx, ry, rz]

T sets the rotation axis and its norm ‖r‖ is the rotation angle. Since the
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incrementally running control loop faces small relative rotation differences in each run,
the known axis-angle ambiguities at ±π do not occur. The differences of translational
and angular velocities from step 7 can be computed element-wise.

Note that the joint space inertia matrix H from step 10 requires setting the virtual
link masses and inertias before its computation. After setting these parameters with a
suitable end-effector dominance of e.g. γ = 100,H can be computed according to a fixed
scheme [206]. This needs to be done in each loop due to its explicit dependency on the
joint positions. Its inverse is guaranteed to exist for step 11 due to being positive-definite.
The last steps 12-13 for time integration offer two alternatives which we briefly discuss
in more detail.

Time Integration

One strength of the forward dynamics-based approach is that we obtain control sig-
nals on the acceleration level, i.e. the virtual system responds with joint accelerations.
Depending on the joint control interface of the real robot, we have single-time integra-
tion or double integration, respectively. Since integrators are low-pass filters, they lead
to smooth, delay-free control signals. This contrasts with controllers that generate less
smooth control signals and may require additional filtering.

Note that ∆t can be arbitrarily chosen. It represents a virtual simulation time and is
partially redundant with the control gains. But in comparison to the proportional gains,
its influence is quadratic on the delta of joint positions ∆q between the loops. It is, there-
fore, simpler to set it to a fixed value and not expose it as a control parameter.

Considering position-controlled robot interfaces, we have two options for the time in-
tegration of these signals: (i) accumulating velocity and (ii) starting with instantaneous
accelerations from zero in each loop. While the first approach leads to a discretized, dy-
namical system that is always in motion, the second one can be understood as a gradient-
based solver with a numerical step width. Both have advantages and disadvantages and
are more or less suitable for different use cases. Table 4.2 and Table 4.3 show the different
features.

Table 4.2.: Instantaneous acceleration during time integration

scheme: q̇ = q̈∆t, q̇last ≡ 0

+ No explicit damping required for free space motion
+ No velocity build-up and no overshooting pose targets
− Proximity-to-goal dependent solver convergence
− No crossing of singularities, because inertia is not conserved
− Noisy joint velocity control signals

4.3.3. Control Applications

Forward Dynamics Compliance Control (FDCC) offers a generalized scheme for the in-
clusion of both reference trajectories and reference force-torque profiles. The net force
and its modular superposition of components offer application-dependent specializa-
tions. We highlight two simplifications that cover frequent use cases.
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4.3. Forward Dynamics Compliance Control

Table 4.3.: Accumulating velocity during time integration

scheme: q̇ = q̇last + q̈∆t

+ Double integration leads to smoother signals
+ Smooth joint velocity control signals
+ Inertia can overcome singularities (elbow flip)
− The problem of overshooting pose targets
− Redundant manipulators need additional nullspace damping

Robot
manipulator

Controller / IK solver

FK

Figure 4.6.: Control scheme for the special case of sampled motion tracking.

Sampled Motion Tracking

Consider motion in free space, for which no interaction with the environment is antic-
ipated. These trajectories might move the parts into place before the actual assembly.
High autonomy in this setting demands flexibility of the executions, e.g. by incorporat-
ing dynamic localization of workpieces. Being reactive in operational space requires the
controller to follow ad-hoc targets xd(t) and the reference velocity ẋd(t) is of secondary
interest. FDCC covers this by simplifying the net force to

fn = K(xd − x) . (4.9)

Adding an internal feedback loop for the virtual system allows to transition from a con-
ventional controller to an exact IK solver. Fig. 4.6 shows the according scheme. Robot
control signals are passed to the robot open-loop at the desired rate, as indicated by the
switch.

A requirement on joint control level often demands that the drivers receive continu-
ous control signals. If the targets are sparsely sampled, the controller must adequately
interpolate between them. This is where FDCC benefits from its linearized behavior in
operational space that supports goal-directed motion with an arbitrary granularity of in-
terpolation: The control gains together with the number of internal loops as additional
parameters can be tweaked to adjust behavior between a smoothing controller towards
an exact Inverse Kinematics solver. Section 5.2.7 evaluates this feature.

For underactuated systems, the principle of forward dynamics-based simulation im-
plements a best-effort strategy: Instead of failing with impossible-to-reach targets, the
controller gets as close as possible by simulating a pulling wrench until mechanical lim-
its are reached. This is beneficial for underactuated systems because unfeasible targets
are less intuitive and often arise during a teaching in different morphology such as tele-
operation.
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Figure 4.7.: Skill controllers for robotic assembly tasks.

Free Force Control

As an alternative to motion control, forces and torques can be used to steer the robot’s
end-effector. Contacts with the environment are anticipated in this case. For highly con-
strained tasks, a reference motion in open-loop playback can be counterproductive, such
that restoring forces through virtual springs are dropped for this scenario. For assembly,
the skill’s strategies can freely guide the manipulator within search-like patterns. The
according net force simplifies to

fn = fd − f (4.10)

with a behavior similar to that of the simulator for recording human behavior. Forces and
torques steer the robot’s end-effector and the control gains determine the responsiveness
of the motion. The absence of a damping term requires to use the instantaneous time
integration method, which in combination with the responsiveness mimics a velocity-
proportional damping.

4.3.4. Skill Control

Fig. 4.7 shows the combination of skill models and FDCC into skill controllers. The over-
all control scheme has two cycles: Skill inference on the left and robot control on the right.
The left cycle runs at comparatively low rates, at which the skill model predicts a mixture
of distributions to sample from for control. This model is task-specific and is valid within
the region of trained relative poses of the assembly parts. After coordinate transforma-
tions as described in Section 3.4.1, this prediction is passed to FDCC as one of several
possible inputs. The nominal trajectory during assembly is optional. Whether following
a target with a virtual stiffness is suitable depends on the use case at hand. FDCC from al-
gorithm 1 computes suitable control signals for the robot’s actuators. It abstracts the real
manipulator and mimics the behavior of the simulator in moving the robot in response
to the force-torque setpoints. This second cycle runs at a comparatively high rate, which
is necessary to maintain the contact stability of the robot and its environment. Feedback
of measured joint state signals and from the wrist-mounted force-torque sensor close this
control loop. Forward kinematics and coordinate transformations feed that information
back into the skill model for the next strategy prediction.
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4.4. Summary and Conclusion

Skill controllers fulfill the transfer of assembly skills to different systems. Our concept
continued the idea of forward dynamics simulation from the skill learning environment
in form of a new mapping approach to admittance control. This mapping is particularly
suitable for motion-actuated systems because it enables controllers to link end-effector
wrenches naturally to joint accelerations with the benefit of smooth control signals af-
ter time integration. Another major benefit is the inherent stability near singularities that
contrasts with approaches based on the Jacobian inverse. The designed control law builds
upon integrating individual error components into a common net force, which drives a
virtual model of the manipulator to generate reference motion for the real setup. Further
simplifications to the dynamics of the virtual system and the contribution of end-effector
mass dominance achieve a linearization of the control response in operational space. The
result is a general forward dynamics compliance controller (FDCC) for the different as-
sembly phases: Motion without contact, contact transition, and contact-dominated as-
sembly with human-inspired skills as an overlay. The following chapter provides an
experimental evaluation of the different key concepts and propositions.
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5. Evaluation

Previous chapters described the theory from demonstrating assembly in simulation, learn-
ing human behavior into probabilistic forward models, and providing a way of executing
these skills in form of force-torque strategies through robot control. This chapter now
provides empirical evaluation for important aspects of each contribution: Section 5.1
evaluates the skill models and their architecture and how respective hyperparameters
influence learning performance. These experiments are conducted in the assembly sim-
ulator. Section 5.2 then focuses on the new robot controller and investigates the char-
acteristics of its mapping in comparison to suitable baselines. Some of these aspects
can be evaluated empirically in simulation. Others, such as the different control inter-
faces for practical applications, are evaluated on real robotic manipulators. Section 5.3
finally evaluates the skill transfer to real hardware through the combination of both for
two assembly tasks, providing a proof-of-concept for the methods proposed to program
human-inspired skill controllers for robotic assembly.

5.1. Skill Learning Performance

Section 3 designed skills as neural network models that predict force-torque strategies
for robot control during assembly operations. Input to these models were data streams
of previous commands and object-relative motion, with the two primary components of
sequential memory and ad-hoc modeling of Gaussian distributions. All aspects motivate
further experimental investigations that are covered in the following sections:

• The dataset, used for evaluation. Section 5.1.1
• Tests and simulation setup. Section 5.1.2
• How the number of Gaussian kernels affect performance. Section 5.1.3
• The influence of sequential memory length. Section 5.1.4
• An ablative study for different input feature combinations. Section 5.1.5
• The influence of learning data quality on performance. Section 5.1.6

We use two measures for learning performance: The batch-wise loss function as de-
scribed in Section 3.3.4 over the training iterations, and testing the models’ assembly
performance in simulation. The first shall illustrate the different models’ ability to ap-
proximate the dataset as a whole and the second shall evaluate if the studied effect is also
visible during regression. Using simulation in this regard allows a bigger number of exe-
cutions and adds more statistical significance. Section 5.3 shows assembly skill transition
to real hardware.

5.1.1. Dataset and Training

The assembly skills need data to learn from. Since this thesis introduced several new
concepts for model architecture, handling of input features, and conventions about coor-
dinate systems, there are no common datasets available. We continue the example from
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Figure 5.1.: Dataset for the toy assembly. The sets comprise 1155 and 101 demonstrations
for training and evaluation, respectively. This is equivalent to approximately
7 hours and 10 minutes of performed assembly in the simulator, with the
median at approximately 18 s. The input feature streams were recorded at
100 Hz, yielding an overall data size of 960 MB. The dashed, vertical lines
with Q1 to Q3 indicate the quartiles that separate the datasets into equally
populated quarters.
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Figure 5.2.: Recorded demonstrations, ordered after the time of creation. Growing expe-
rience using the simulator decreases the average duration of assembly.

previous chapters and use a specifically created dataset for the toy assembly. Fig. 5.1
shows the composition into two datasets: The training data are used to update the learn-
able parameters of the skill models in providing inputs and labels for the computation of
the error gradients. The evaluation data are used for the batch loss of the learning curves.
These data are previously unknown to the models during learning and are excluded from
the learnable parameter update. Note that the dataset is intentionally big to enable an
in-depth investigation of the concepts and that a smaller set suffices for practical appli-
cations. The time for training the models was classically between 10 min to 1 hour on a
modern CPU, mostly depending on the number k of Gaussian kernels and the length N
of sequence memory. We did not consider speed improvements with highly parallelized
implementations on GPUs, which can become promising for production. With few ex-
ceptions, trained models had 15.000 ±1 % parameters in the experiments with a size of
150 kB.

As described in Section 3.2.3, our concept includes a simple joystick-like 3D controller
as teach device. Although being mostly intuitive to use, there is also a learning effect
on the side of the teacher as shown in Fig. 5.2. Varying start positions of the assembly
parts add noise, but the tendency shows that experience decreases the average duration
of assembly. This underlines the method’s applicability for industrial programmers and
engineers used to such devices.

5.1.2. Tests in Simulation

Simulation played an essential role in acquiring assembly skills from human behavior.
We now re-use the simulator and let the skill models repetitively solve the assembly
task. Their force-torque predictions steer the active assembly object in the same way as
was done when demonstrating with the teach device. Note that we artificially increased
friction and stiction between the parts to make the simulated task presumably harder
than the real system. A good performance in simulation is, therefore, an early proof-of-
concept for a later transition to real robotic systems. We use the Euclidean distance to the
goal pose ‖x‖ as a measure of progress, which vanishes for successful assemblies. Fig. 5.3
shows one such curve for successful skill execution. Two plateaus indicate challenging
spots for the skills: The first is slightly over 10 mm and the second is around 5 mm to the
goal, respectively. Part jamming occurs everywhere along the path and needs to be taken
care of.

Testing the assembly skills in simulation is bounded by CPU performance. The models
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Figure 5.3.: A successful skill execution in simulation. The Euclidean distance to the goal
shows assembly progress and serves as a criterion for completeness. Plateaus
indicate part jamming that the skill needs to solve.
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currently predict at maximum rates between 12 Hz to 20 Hz, depending on model com-
plexity. We slowed the simulator down to 20 % real-time to replicate similar conditions
as during recording human behavior at 100 Hz. The following experiments use varying
starting poses in the middle of the toy assembly with a focus on intermediate jamming.

5.1.3. Mixture Densities

The data analysis from Section 3.2.4 showed that the skills need to learn distributions
instead of the Mean Squared Error for capturing the dataset’s characteristics, and Sec-
tion 3.3.2 developed a probabilistic output with MDNs for this purpose. This experiment
investigates the number of Gaussian kernels as hyperparameter and their influence on
learning performance. We adjusted the number of nodes in the LSTM component for
each model to obtain an equal amount of trainable parameters despite different numbers
of Gaussian kernels in the output layer and to make the models comparable. We applied
dropout [213] to stabilize training and to prevent the models from overfitting. Two ex-
ceptions were necessary: The models with k = 1 and k = 2 required a higher amount
of trainable parameters to at least partially learn the dataset and finally converge. All
models were trained with a sequence memory of N = 25 steps. Fig. 5.4 (Top) shows the
results. Each iteration of the learning curves is one weight update on the complete mini-
batch. The curves show that more Gaussian kernels improve the models’ ability to learn
the dataset and succeed in resolving possible ambiguity among the labels. A saturation
is visible after k = 8, after which learning does not significantly improve.

Fig. 5.4 (Bottom) shows the results of assembly tests in the simulation. We use the
boxplot statistic to allow a quick overview of the distribution: They group the results
into quarters, with the mean separating the upper and lower 50 %, and the whiskers
representing upper and lower 25 %, respectively. Outliers are marked with the + symbol.
The tests underline that a model with only one Gaussian kernel is not able to predict
meaningful force-torque strategies. Only models with more Gaussian kernels succeed in
the assembly task in simulation. In contrast to what the learning curves indicate, k = 4
performs best on this test. Note, that the given time to solve the task was restricted to
12 s simulated time. The last region for jamming the assembly is around 5 mm to the goal.
Skills that surpass this distance are likely to finish successfully if given more time.

In conclusion, skill models require a mixture of distributions to learn datasets of com-
plex manipulation and to predict successful force-torque strategies in simulation. An
optimum of Gaussian kernels will partially depend on the complexity of each dataset.

5.1.4. Sequence Memory

Memory allows the skill models to learn sequential patterns in data and Section 3.3.1 de-
veloped a sequential model around the LSTM. This experiment investigates the number
of unfolding stepsN in BPTT during training as a hyperparameter and its effect on learn-
ing performance. In contrast to the number of Gaussian kernels in the MDN component,
sequence length in the LSTM does not change the trainable parameter count of the neu-
ral network. We chose k = 8 Gaussian kernels for all models. In combination with the
recorded dataset at 100 Hz, the considered sequence lengths span from 10 ms (N = 1) to
5 s (N = 500), which is the time window the skill models can oversee for making predic-
tions during training. Note that all models had an infinite time horizon during testing in
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Figure 5.4.: Effect of Gaussian kernels on skill learning performance. Top: Learning
curves for the different models with 50 · 103 (k = 1), 30 · 103 (k = 2) and
15 · 103 (k = 4 . . . 32) learnable parameters. All models were trained with a
minibatch size of 128 and a learning rate of 5 · 10−4. Bottom: Results of assem-
bly tests in simulation. The boxplots show the distance to the goal after 12 s
simulation time. Each model was tested 20 times with the start configuration
from Fig. 5.3.
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Figure 5.5.: Effect of sequence memory on skill learning performance. Top: Learning
curves for the different models, each with 15 ·103 parameters. N describes the
number of unfolding steps in BPTT. All models were trained with a minibatch
size of 128 and a learning rate of 5 · 10−4. Bottom: Performance in simulation.
Each model was tested 20 times with the assembly start configuration from
Fig. 5.3.

simulation, i.e. all models continuously updated their cell and hidden state throughout
the complete assembly.

Fig. 5.5 (Top) shows the respective learning curves. A higher sequence length improves
the skill models’ ability to approximate the dataset. This effect, however, is less pro-
nounced after a minimal sequence length is surpassed, and the middle field indicates a
similar performance. An exception occurs withN = 500, whose model provides the low-
est evaluation loss. Fig. 5.5 (Bottom) shows the assembly tests in simulation. The results
confirm that a minimal sequential memory during training is required for the skills to be
partially successful. In accordance with the learning curves, N = 500 performs best on
this test.

In conclusion, skill models must possess the ability to learn from sequential data. Be-
ing less obvious in learning curves alone, a minimum length is required to predict coher-
ent and successful force-torque strategies during inference. Depending on the dataset at
hand, longer sequences can further improve performance.

5.1.5. Input Feature Ablation Study

Basing our concept for assembly skills on mental forward models, Section 3.1 proposed
extracting and learning strategies from the observed data stream fh,x, ẋ. The following
experiment evaluates this proposition and compares the learning performance to that of
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Figure 5.6.: Input features and skill learning performance. Top: Learning curves of the
different models, all trained with k = 4, N = 25, learning rate 5 · 10−4 and
minibatch size 128. Bottom: Assembly performance in simulation. 30 starting
poses of mixed difficulty were evaluated alike for each model. Successful
executions reached the goal within 0.5 mm in 20 s. The overall success rate is
depicted on top of each boxplot and includes outliers.

models with fewer input features during training and inference. The rest of their neural
network architecture with sequential memory and Gaussian mixtures stays unchanged,
and they continue to predict force-torque strategies for control like in previous experi-
ments.

We consider the following input feature combinations and test their ability to ground
assembly skills:

• x : Relative pose to test if quasi-static changes between parts are sufficient
• ẋ : Relative motion to investigate if models can learn without an absolute reference
• x, ẋ: The combination of both to test for synergies
• x, ẋ,fh : The full human behavior to test the effect of including past actions

Fig. 5.6 (Top) shows the learning curves. There is no obvious difference between pose,
velocity, and their combination on their ability to approximate the dataset. In contrast,
having the stream of human behavior as input lets the model predict force-torque out-
puts that agree much better with the dataset, as the lower evaluation loss shows. How-
ever, tests in simulation are required for this case, because this effect could be due to the
model learning to just repeat the last seen action. Fig. 5.6 (Bottom) shows the results of
30 assemblies each. The relative pose is already a good input feature for grounding as-
sembly skills. Interestingly, the model trained on relative velocity ẋ alone also produces
good results. 56 % of the executions are successful. The combination of the two performs
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5.1. Skill Learning Performance

better, as expected, but all models got stuck towards the goal. The model trained on all
three input feature vectors proofs to be more robust against jamming, such that failures
are considered as outliers by the boxplot algorithm.

In conclusion, the skill architecture with sequential memory is capable of learning
strategies also on reduced input features. The best performance is achieved when ground-
ing skills in the interplay between sensed state x, ẋ, and motor command fh.

5.1.6. Demonstration Quality

Data-driven approaches classically depend on the quality of their training data. This ex-
periment investigates if and how the quality of demonstrations influences skill learning
performance. All demonstrations for the datasets were recorded until finishing the as-
sembly in simulation and considered successful examples. We use their duration as a
measure of quality. This implies that the shorter an assembly took during the demonstra-
tion in the simulator, the better is the assumed quality of the recorded labels for strategies.
On average this shall provide a sufficient concise measure despite varying start positions.
We used the quartiles Q1 - Q3 from Fig. 5.1 to separate the training set into quarters and
obtain five datasets to train models for investigation:

• 0→ Q1 : Demonstrations that took up to 14.93 s
• Q1 → Q2 : Demonstrations that took between 14.93 s and 18.74 s
• Q2 → Q3: Demonstrations that took between 18.74 s and 24.32 s
• Q3 →∞ : Demonstrations that took longer than 24.32 s
• 0→∞ : All demonstrations

We further used the first quartile on the evaluation set for computing the batch loss
during training. This includes only demonstrations up to 12.09 s and shall evaluate if
the models predict high-quality labels during training iterations. Fig. 5.7 Top) shows the
learning curves. Most models perform similarly in predicting the high-quality labels of
the evaluation set. The model trained on the last quarter is a little off at the end of the
given training iterations. The results of the simulation test from Fig. 5.7 Bottom) shows
this degraded performance. Note that all tests were cut off at 12 s, marking the upper
bound of the time to completion and equaling failure. The model trained on the complete
dataset has the best performance. Interestingly, the model trained on the second quarter
of the dataset has a similar performance with only 25 % training data. An explanation for
this effect could be that this excerpt from the complete dataset provides a good trade-off
between data quality and the amount of recorded time for training.

In conclusion, the quality of demonstration influences the skills’ ability to learn suc-
cessful force-torque strategies. Shorter and thus more goal-directed demonstrations can
partially replace bigger datasets.

5.1.7. Conclusion

Deep neural network models are usually difficult to evaluate analytically. The previous
sections, therefore, took an experimental approach to evaluate the individual compo-
nents of our assembly skills. We chose the toy assembly as a challenging task, for which
we created a specific dataset that was used to investigate learning curves and assembly
tests in simulation. As a result, assembly skill models require both components of our
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Figure 5.7.: Influence of data quality on skill learning performance. Top: Learning curves
of the different models, all trained with k = 4, N = 25, learning rate 5 · 10−4,
and a minibatch size of 128. Bottom: Assembly performance in simulation. 30
trials with the start pose from Fig. 5.3 were tested for each model. Success-
ful executions reached the goal of 0.5 mm in 12s. The overall success rate is
depicted on top of each boxplot and includes outliers.
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concept for predicting successful force-torque strategies against part jamming and tilt-
ing: An internal short-term memory for processing and reacting to sequential inputs and
a mixture of probability densities to sample from for control. An ablative study further
confirmed that assembly skills are best grounded in the interplay of motor commands
and motion feedback. Finally, skill learning improves with the quality of demonstration
data, which shows the method’s suitability for programmers used to the teach device.

5.2. Robot Controller Performance

The new control concept of Forward Dynamics Compliance Control (FDCC) touched on
several aspects that motivate an in-depth investigation. It builds around virtual forward
models of the robots with a mapping from task-wrench space to joint-acceleration space
as a crucial component. Characteristics of this mapping are investigated with a focus on
linearized behavior in operational space and robustness in singular joint configurations.
Both shall compare the overall performance of the controller’s IK approach to suitable
baselines. These experiments are performed in simulation. The last two experiments
then focus on control performance on real robotic platforms.

Several experiments and results have been published in prior own work [214], [215], [216].
The following sections reiterate these result and embed them along with additional dis-
cussions in the bigger context of this thesis:

• Experimental setup and baselines. Section 5.2.1
• Effectiveness of dynamics linearization in operational space. Section 5.2.2
• Robustness in singular joint configurations. Section 5.2.3
• Comparison in evading ill-conditioning. Section 5.2.4
• Performance trade-off between manipulability and stability. Section 5.2.5
• Computational efficiency in comparison. Section 5.2.6
• Sampled motion tracking with a focus on sparse targets. Section 5.2.7
• Free force control with a focus on singular joint configurations. Section 5.2.8
• Compliance control with force tracking during motion in contact. Section 5.2.9

5.2.1. Experimental Setup

We use three robots during the evaluation in the following sections:

• Universal Robots UR101

• Schunk Powerball LWA4P2

• KUKA KR163

The footnotes indicate drivers and kinematics specifications provided by the ROS frame-
work that we used. All robots are six-axis industrial robots, the UR10 and LWA4P belong
to the lightweight category. The first experiments investigate various characteristics for
the mapping matrix of the controller in theory, and can thus be carried out in simulation.
This allows for rigorous testing of a big number of joint configurations and a better statis-
tical significance. We chose the UR10 for these experiments due to its widespread usage

1https://github.com/ros-industrial/universal_robot
2https://github.com/ipa320/schunk_modular_robotics
3https://github.com/ros-industrial/kuka_experimental
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Figure 5.8.: Mapping matrices for the experiments. The abbreviations stand for Jacobian
inverse (JI), Jacobian transpose (JT), Damped Least Squares (DLS), and For-
ward Dynamics (FD). Two types are investigated: (a) Mappings from Carte-
sian space to joint space and (b) mappings from Cartesian space to Cartesian
space. Caption and image from [214].

both in industry and academia. The last two experiments then use the real platforms - the
LWA4P for free force control, and the UR10 and KR16 for compliance control. Table 5.1
shows the robots’ specifications.

Table 5.1.: Robotic manipulators

Robot Max. payload Weight Reach Repeatability Control frequency
[kg] [kg] [mm] [mm] [Hz]

UR10 10 17 1300 0.1 125
LWA4P 6 15 730 0.15 100
KR16 16 235 1611 0.05 83.3

Mapping Matrices and Baselines

All cartesian controllers must ultimately generate control signals for the robots’ joints. On
the way to achieving this they solve IK, for which Section 2.1.4 reviewed current methods.
The goal is to determine how our new approach compares to these baselines. We thus
evaluate our forward dynamics-based approach (FD) against the Damped Least Squares
(DLS) and against the two edge cases Jacobian inverse (JI) and plain Jacobian transpose
(JT). The last one is of particular interest because our new approach only differs by the
pre-multiplication of the inverse of the conditioned joint space inertia matrixH−1.

Fig. 5.8 lists the different mapping matrices. Depending on the experiment, we are ei-
ther interested in the joint motion or the operational space motion they generate. They
are implemented as displayed in C++ without further performance enhancements. The
algorithms for computing J and H are supported by the Kinematics and Dynamics Li-
brary (KDL)4.

The following values are chosen for the FD mapping:

me = 1 kg, ml =
me

γ
, ipe = 1 kg/m2, ipl =

ipe
γ

(5.1)

4https://github.com/orocos/orocos_kinematics_dynamics
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Figure 5.9.: Analysis of the 6 × 6 mapping matrices from Fig. 5.8 (b) for random joint
configurations. The figures show the mean and standard deviation for the
mappings in form of 2d heat plots, where the Jacobian inverse (JI) represents
ideal behavior. The individual squares show the multiplicative gains from
control wrenches to operational space acceleration for each of the six Carte-
sian dimensions. 100.000 joint configurations were sampled uniformly with
qi ∈ [−π, π] for the statistics. Image from [214].

The ratio of virtual end-effector dominance γ is varied according to the investigation of
each experiment.

5.2.2. Dynamics Linearization

This experiment shall evaluate the effectiveness of linearizing the virtual model dynam-
ics in operational space. The mapping matrices are those of type (b) from Fig. 5.8, i.e. they
compute how the end-effector accelerates with a wrench from the control law. The Jaco-
bian inverse serves as a reference for ideal behavior, it is with JJ−1 equal to the identity
matrix and can assure an ideal decoupling of non-linear, joint configuration-dependent
terms everywhere in the robot’s workspace. At this point, there are no suitable assump-
tions yet about the workspace of the robot, nor about possible or likely postures the robot
might operate in. We thus test the effect of linearization for the controller on average with
a big amount of random joint configurations and standard deviation as a statistic.

Fig. 5.9 shows the results of the analysis. The Jacobian inverse is ideal as expected:
There are no off-diagonal gains that influence the individual Cartesian dimensions for
the mapping and the vanishing standard deviation proofs its significance for the entirety
of sampled joint configurations. Perfect diagonality means for the controller in this case
that each dimension of a control wrench with this mapping only generates an accelera-
tion along or about this axis. The results show that all mean matrices are diagonal. This
underlines that there are no dominant cross-correlations on average between individual
Cartesian dimensions for this robot’s kinematics. However, the standard deviations show
that configuration dependency does occur, especially for the Jacobian transpose. The red
2× 2 square of its plot indicates a strong interdependency for the Cartesian angular x, y-
axes. This mapping is thus suboptimal for the controller. In comparison, the forward
dynamics-based approach achieves better results, even with a virtual end-effector mass
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dominance of γ = 1. This shows that the multiplication of H−1 in the mapping already
has a beneficial effect on decoupling the Cartesian axes for control. The results further
show that with a significant end-effector mass dominance of γ = 10e3, the forward dy-
namics mapping converges to the behavior of the ideal Jacobian inverse, which proofs
the intended effect of linearization.

5.2.3. Singularity Robustness

Robustness to singular joint configurations makes controllers more generally applica-
ble. Although regions with singular configurations can be pre-computed for industrial
settings, singularities may arise ad-hoc during motion that is not planned, e.g. during
teleoperation. The goal of this section is a qualitative investigation of how the forward
dynamics-based mapping behaves near singularities.

Section 2.1.4 described Singular Value Decomposition (SVD) as a suitable method to
investigate the manipulator Jacobian under rank deficiency. In our case, we apply this
method to the mapping matrices from Fig. 5.8 (a), which we factorize according to

mapping = UΣV T , with Σii = σi. (5.2)

The individual σi ≥ 0 of the diagonal matrix Σ are the singular values. In contrast to the
orthogonal matrices U and V T , which constitute rotations, they determine the scale of
the mapping. For our experiments, σmin and σmax are of particular interest. They show
the maximal and minimal scale for this specific joint configuration and illustrate how
the mapping scales the Cartesian control signal to joint space. A vanishing σmin means
that control about some Cartesian axis gets lost during the mapping. Conversely, an
exploding σmax means that some Cartesian axis will cause extreme joint motion.

In this experiment, we drive the robot virtually from one arbitrary singular configura-
tion into another with linear joint space interpolation. The resolution is 1000 steps for the
complete path. In each step, we compute the respective mapping matrix and its singular
values. Fig. 5.10 shows the curves of σmin and σmax between vertical, dashed lines.
J−1 marks the upper line in the top plot. Its σmin is zero only at exactly singularities,

meaning that no Cartesian dimension gets lost in the mapping. But its σmax strongly
increases towards both ends of the path, making controllers with this mapping unstable
with unbounded outputs. The Jacobian transpose in contrast delivers stable, bounded
outputs, but with a strongly degraded σmin towards the singular configurations. The
curves of the forward dynamics-based mappings show how σmax stays in stable ranges,
while at the same time approaching the ideal J−1. This effect is more pronounced with
increasing virtual end-effector dominance γ and shows that a suitable trade-off is possible
between the two corner cases.

5.2.4. Ill-Conditioned Configurations

Featherstone’s investigation of the joint space inertia matrix showed ill-conditioning to
be an inevitable phenomenon of mechanisms in general [217]. It manifests itself with
high sensitivity to changes in inputs and makes it difficult to simulate or control the
mechanisms [217]. He used

κ =
σmax

σmin
(5.3)
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as a measure and showed that high numbers drastically degrade performance. The goal
of this experiment is to investigate the FD mapping under this criterion. We choose the
DLS method in comparison due to being an established alternative to the plain Jacobian
inverse in admittance controllers. Both methods change their behavior with γ and α,
respectively, and allow for a parameter study.

We proceeded as follows: First, we computed a set of 1000 random joint positions by
sampling uniformly from [−π, π] for each joint. We then varied γ and α in discrete steps
in their own parameter spaces and computed σmin, σmax with SVD for their mapping
matrices from Fig. 5.8(b) for the complete set of samples. This set also included near
singular configurations by chance. Since numbers for ill-conditioning become huge near
singularities due to σmin → 0, we used quartiles on the obtained κ and excluded these
cases as outliers. Each point in the curves from Fig. 5.11 thus represents the median κ̃ as
a measure of ill-conditioning.

The result shows that FD has a fast convergence in its own parameter space. Con-
trollers with this mapping can effectively evade ill-conditioning already with approxi-
mately γ = 75. The DLS method converges slower and a suitable controller must operate
with relatively low damping to reach these low values of ill-conditioning.

5.2.5. Stability and Manipulability

This experiment further investigates FD’s performance concerning stability and manip-
ulability and provides an empirical analysis of the workspace in comparison to the DLS
method. Both stability and manipulability are concurrent features for controllers. As dis-
cussed in Fig. 5.10 from Section 5.2.3, the Jacobian Inverse marks the ideal corner case for
manipulability, keeping a non-zero σmin everywhere with a sharp drop to zero at exactly
hitting singular configurations. In contrast, the Jacobian transpose noticeably decreases
already in the neighborhood of singular configurations. Its σmax curve, however, stays
bounded and represents our corner case for ideal stability.

Similar to Fig. 5.11, the goal is a parameter analysis of DLS’ damping term α and FD’s
end-effector dominance γ, but now focusing near-singular as the most challenging con-
figurations. Additionally, we define two criteria,

relative manipulability :=
σmin(. . . )

σmin(J−1)
, (5.4)

which measures how a mapping matrix maintains its manipulability in comparison to
the ideal behavior of the Jacobian inverse, and

relative instability :=
σmax(. . . )

σmax(JT )
, (5.5)

which compares the instability of the mapping to that of the Jacobian transpose.
To find a big amount of suitable configurations, we first sampled random joint posi-

tions as seeds and then used Particle Swarm Optimization (PSO) [218], [219] as a heuristic
search method to converge to singular, and thus configurations of vanishing manipula-
bility. PSO iteratively samples a given function and derives directions for local and global
search. Using Yoshikawa’s manipulability measure |det(J)| for non-redundant mecha-
nisms [40] was faster to compute than searching for vanishing σmin with SVD.
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Figure 5.12.: Relative manipulability for the DLS and FD method in comparison to J−1

as an ideal reference. Each data point evaluates 1000 near-singular joint con-
figurations. The FD method can be tuned to behave like the Jacobian inverse
with increasing end-effector dominance γ. Image from [214].

For creating the diagrams, we discretized α and γ and evaluated the average of Eq. (5.4)
and Eq. (5.5) for the mapping matrices from Fig. 5.8(a) on 1000 previously computed,
near-singular configurations.

Fig. 5.12 shows the results for relative manipulability. Both DLS and FD reach the
manipulability of the Jacobian inverse. This means that both mappings can be tuned
to beware controllers near singular configurations from losing manipulability, i.e. loss
of control for at least one Cartesian dimension. Note that this is the expected behavior
of the DLS method which defaults to the Jacobian inverse for α = 0 as a corner case.
Interestingly, FD shows a strong gain in manipulability already with slightly increasing
the end-effector dominance γ.

Fig. 5.13 shows the results for relative instability and the fundamental difference be-
tween FD and DLS. The latter maintains better relative stability throughout most of the
observed parameter space. However, towards matching the Jacobian inverse for high
manipulability, instability explodes as expected and approaches infinity. FD in contrast
stays bounded and can operate with high manipulability near singular configurations,
making it a safe alternative to DLS.

5.2.6. Computational Efficiency

The analysis so far showed good performance of the FD mapping regarding linearity of
dynamics, stability, manipulability, and the phenomenon of ill-conditioning. Practical
implementations into control schemes need fast execution times of this mapping, which
poses an additional requirement for performance. This experiment shall compare the FD
mapping to alternatives from Fig. 5.8(a). Note that the plain Jacobian transpose is an un-
usual candidate for admittance control. It is nevertheless useful in highlighting the cost
of the additional multiplication with H−1 of the FD method. We also included Selec-
tively Damped Least Squares (SDLS) [44] as an established method for comparison. The
method increases usability over DLS by replacing the parameter α with automatic, σii-
specific damping. This algorithm works component-wise and has no direct formulation
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Figure 5.13.: Relative instability for the DLS and FD method in comparison to JT . Each
data point evaluates 1000 near-singular joint configurations. The FD method
stays bounded when operating at high manipulability. Image from [214].
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Figure 5.14.: Execution times of different mapping approaches on an Intel® Core™ i7-
4900MQ with non-real-time OS. Reproduced from [214].

as a mapping matrix. But it likewise allows measuring the cost of computing a vector of
joint commands from a Cartesian input.

To estimate the cost of each method, we computed the vector of instantaneous joint
accelerations q̈ with a fictitious, constant input f c = 1. The start state q of the robot’s
joints was randomly sampled but kept identical during one test of each method. Fig. 5.14
shows the performance in execution time for 105 tests. Vertical lines indicate the median
of the boxplots, respectively. Fluctuation in execution times is due to the non-real-time
operating system used, the algorithms themselves are deterministic.

The results show that the FD method around virtual forward dynamics simulations is
still computationally tractable: The method ranks in the middle of common approaches.
The execution time of only a few µs underlines its suitability for real-time closed-loop
control.

5.2.7. Motion Tracking

A common task for robot control is to track nominal trajectories before establishing con-
tact with the environment. We consider a special form of task space motion in the fol-
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Figure 5.15.: Analysis of path accuracy during interpolation to the corners of a square.
Both controllers used ∆t = 0.1 s as the virtual time constant and 50 solver
iterations for each step. The traveled end-effector positions are computed
with the robot’s forward kinematics. Reproduced and adapted from [215].

lowing two experiments: Ad-hoc sampled trajectories that are described with discrete
target poses at specific time stamps. Computing IK for these targets and passing the joint
configuration directly to the actuators provokes infeasible jumps. Instead, the controllers
need to interpolate to provide smooth control signals for the inner joint position control
loops of the robot.

Sparse Waypoints

This experiment evaluates FDCC’s special case of pure motion control from Fig. 4.6 and
its ability to provide goal-directed interpolation. Both the FD and the JT mapping are
tested in this controller scheme for comparison.

The experiment consists of interpolating to the four corners of a square in front of
the robot and plotting the traveled end-effector positions via forward kinematics for in-
spection. Fig. 5.15 shows the starting configuration and the results. We computed 1000
intermediate steps towards each next counter-clockwise corner, taking xd as a fixed tar-
get. The JT method leads to distorted paths in Cartesian space and indicates that this
controller requires densely sampled trajectories to not branch out during interpolation.
In contrast, the controller with the FD method shows goal-directed interpolation, which
proofs the effectiveness of the task space linearization of Section 4.2.3 for control applica-
tions.

99



5. Evaluation

0.2 0.3 0.4

y[m]

0.45

0.50

0.55

0.60

0.65

0.70

z[
m

]

kp = 0.5

kp = 1

kp = 2

kp = 5

kp = 50

0.0

0.5

1.0

er
ro

r
[c

m
]

0 1 2 3 4 5 6

time [s]

0.00

0.05

er
ro

r
[d

eg
]

Figure 5.16.: Analysis of tracking performance for a square-moving target of 0.2 m/s. The
family of curves is computed by varying kp in the controller’s gain matrix
Kp = kp · diag([1, 1, 1, 0.1, 0.1, 0.1]). We chose ∆t = 0.1 s as the virtual time
constant for integration and 10 internal solver iterations. Top: The end effec-
tor’s traveled position in the task space. Bottom: The respective translational
and rotational errors to the moving target. Reproduced and adapted from
[215].

Exactness vs Smoothness

The next experiment shows how the controller allows to continuously fade to an IK solver
for exact target tracking. We create a reference motion that follows the square from the
previous experiment corner-by-corner at a constant speed of 0.2 m/s. During the execu-
tion, we sample the moving target with a frequency of 100 Hz.

Fig. 5.16 shows that the controller can transition to an exact IK solver for higher con-
troller gains. Applications may exploit this feature to find good trade-offs between noise
filtering and target following.

5.2.8. Force Control

Assembly skills predict force-torque strategies that guide the robot’s end-effector dur-
ing assembly. This experiment evaluates the free force control component of FDCC with
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Figure 5.17.: Free force control in singularity. Top: The Schunk LWA4P manipulator with a
wrist-mounted force-torque sensor that measures externally applied forces.
A handle is attached to guide the manipulator. The robot is pulled into a sin-
gular joint configuration at reaching its workspace limits. Bottom: Applied
end-effector forces and computed control signals to the LWA4P’s actuators.
The forward dynamics-based controller maintains the robot stable in singu-
lar configurations. Reproduced and adapted from [216].

a focus on behavior in singular joint configurations. The setup consists of the Schunk
LWA4P robot with a wrist-mounted force-torque sensor and an attached handle. Stiff-
ness is set to zero and the robot can be guided freely in task space. Fig. 5.17 (Top) shows
how the robot is pulled to its maximum reach. This test comprises both the singular-
ity of the workspace’s limits and the singularity through the alignment of several joints.
Fig. 5.17 (Bottom) shows the applied end-effector forces and the according joint command
signals: The manipulator behaves stable in the singularity at reaching its workspace lim-
its, which is indicated on the time axis with a vertical, dashed line. After this point, the
commanded velocities are still smooth and bounded, despite external forces continue to
act on the end-effector. This experiment used the accumulating time integration method
from Table 4.3 which allows using momentum to flip the robot’s elbow. The alternative
instantaneous method can be used if this option is not desired in an application.

In conclusion, force control proofs to be stable in singular configurations and thus best
supports assembly skills in guiding the robot.

101



5. Evaluation

0 5 10 15 20 25

time [s]

−20

−10

0

fo
rc

es
[N

]

fx

fy
fz

Figure 5.18.: Compliant control in contact. Top: Setup of the UR10 with wrist force-torque
sensor and steel rod as end-effector. The overlay of several images on the
right illustrates the trace of the end-effector during the sliding motion. Bot-
tom: Measured contact forces during motion with a nominal target force of
fz = 20 N. Reproduced and adapted from [216].

5.2.9. Compliant Control

Compliant control allows tracking force profiles during motion. The first experiment
evaluates force control in surface-normal direction during sliding in contact. The setup
consists of a UR10 robot with a wrist-mounted force-torque sensor, to which we attached
the handle from the previous experiment as end-effector. The control rate of our con-
troller on top of the robot’s inner position control loop was 125 Hz. In combination with
a hard surface of relatively high stiffness, this provides a challenging and thus suitable
setup for force control. The motion in parallel is created through a constant stiffness that
drives the robot from its start position to a distant target. Fig. 5.18 shows the setup and
the measured contact forces. After making the initial contact by setting the force ref-
erence, the sliding starts after approximately 6 s. The control law of FDCC proposed a
common net force, such that target forces can superimpose virtual stiffness. This effect
is visible in the curves in that fz reaches steady state slightly before the reference of 20 N
due to the target being located few centimeters above the surface. Aligned with classic
admittance and impedance control, this joint handling of motion and force subspaces
provides more flexibility and avoids updating task-specific selection matrices. Note how
the friction of the contact is visible during motion in the measured x-component. After
stick-slip phenomena at initiating the sliding motion, force setpoint tracking is smooth.

End-Effector Compliance

The last evaluation of compliance control includes the KR16 robot as a representative of a
typical industrial robot for higher payloads. In contrast to the other lightweight systems,
its repeatable accuracy of 0.05 mm targets high-precision tasks. This accuracy is accompa-
nied by very stiff actuators and mechanics, providing a challenging candidate for adding
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Figure 5.19.: End-effector compliance of the KR16 robot. Top: Setting with a wrist-
mounted force-torque sensor. Bottom: Measured end-effector forces and dis-
placements due to human-robot interaction. The otherwise stiff industrial
robot behaves like a spring-damper system. Reproduced and adapted from
[216].

end-effector compliance with FDCC. Fig. 5.19 shows the robot with human interaction.
As detailed in Section 4.1.2, FDCC superimposes sensor signals to virtual stiffness and
damping and forward computes reaction motion. As a result, the manipulator can be
parameterized to behave like a spring-damper system at its end-effector. Using the ac-
cumulating time integration method from Table 4.3 leads to smooth responses despite
unfiltered and noisy measurements.

In a wider context, FDCC was further evaluated during the European Robotics Chal-
lenges (EuRoC5). In the final use case envisioned, the KR16 robot was used in combina-
tion with end-effector compliance control for mounting flexible polymer sealing strips to
car doors. Fig. 5.20 shows highlights from the application. Following a reference trajec-
tory around the car door, the robot used search-like patterns in force-controlled contact
to set clips of the sealing.

5https://cordis.europa.eu/project/id/608849, accessed 04.03.2021
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Figure 5.20.: Mounting of flexible polymer sealing strips to car doors with active compli-
ance control. Application of the winning team FLAI2R during the European
Robotics Challenges (EuRoC) [220].

5.2.10. Conclusion

The previous sections evaluated the robot controller performance both in simulation and
on real robotic manipulators. Experiments on theoretic aspects, in particular on the for-
ward dynamics-based mapping, confirmed task space linearization and robustness in
singular joint configurations. This mapping performs similarly to the established DLS
method but preserves the inherent stability of the Jacobian transpose. Further experi-
ments tested this approach with FDCC as a controller and showed flexibility for inter-
polating between waypoints and stability with force control in contact and at workspace
limits. The evaluation further showed end-effector compliance to be an easy add-on for
industrial robots with wrist-mounted force-torque sensors. Providing these different con-
trol interfaces, the proposed FDCC is a suitable basis for skill execution during assembly
and manipulator control in general.

5.3. Assembly Use Cases

This last section completes the evaluation of the theory presented in this thesis. Sec-
tion 5.1 evaluated the skills, their composition, and functioning directly in the simulator
and Section 5.2 evaluated various aspects of robot control. We now evaluate the combi-
nation of the two components within the skill controllers. For each concrete task, a new
assembly skill is created with the primary steps of recording a dataset in simulation and
learning this dataset into an instance of the probabilistic forward model. This skill is itself
robot independent and formulated in task space coordinates. The controller in contrast
is the same for all applications and transforms the skill’s predictions into joint control
commands of the robot. The first example is a conceptional application within the con-
text of space robotics for on-orbit satellite servicing and the second example solves the
toy assembly that served throughout this thesis and shows the transfer to a real robotic
system.

5.3.1. Assembly of Satellite Structures

This section evaluates skill controllers on an application for space robotics. The applica-
tion is part of a wider vision, in which using intelligent Building Blocks for On-Orbit
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Figure 5.21.: Setup for satellite component assembly with the UR10e robot. The active
object is one of five cubes with 400 mm edge length that is rigidly mounted
to the end-effector for insertion.

Satellite Servicing and Assembly (iBOSS) [221] shall modularize and thus economize
satellite structures. The key role in this concept take individual components in cube form
that are coupled over standardized interfaces to neighboring blocks for data and energy
transfer. Each block houses flight electronics and custom payload, and a functioning
satellite classically comprises 20 to 30 such cubes. Within this concept, on-orbit mainte-
nance simplifies the exchange of individual cubes, such that a refueling mission, for in-
stance, consists of replacing tank blocks on satellites that adhere to this standard. These
missions require an autonomous, robotic execution with space manipulators. Chapter A
in the appendix provides additional details on the project and the challenges involved
for robotic automation.

Fig. 5.21 shows the simplified setup for the lab demonstrator. It consists of a rack of
five blocks, whose middle component is to be inserted with a robotic manipulator. The
interfaces for coupling the boxes are approximated through round metal plates of 4 mm
thickness on each face of the cubes. All neighboring blocks possess such plates on their
inner sides and they are prone to jam the blocks upon colliding. The clearance of the
setup in its final configuration is 4 mm.

Fig. 5.22 shows an execution of the assembly. The control rates were set to 8 Hz for
skill inference and 500 Hz for robot force control, respectively. The curves of the positions
show plateaus on the way to the goal that indicate internal collisions with the side plates.
Mere pushing will not lead to success in these spots. Accordingly, the force-torque strate-
gies try various re-orientations to search for clearance and to proceed with the insertion.
Note in the fx component how the skill controller mostly pushes only when progress is
made in that direction. We tested the assembly with 100 trials, adding goal uncertainty of
varying linear and angular errors of up to 5 cm and 10 deg, respectively, with an overall
success rate of 75 %.

5.3.2. The Toy Assembly

The toy assembly has accompanied the theory of this thesis as an illustrative but challeng-
ing example with a multi-axes insertion, low clearance, tight fits, and geometry prone to
part jamming. The goal of this last experiment is to test if the skill is portable to real-world
systems through our controller. During demonstrations, the simulator allowed partly un-
realistic mesh interpenetration to stabilize contact physics, which led to the appearance
of higher friction and stiction. This effect was aligned with the concept of making the
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Figure 5.22.: Inserting a satellite module under uncertainty. Top: Snapshots of the assem-
bly with internal collisions during the execution. Bottom: The force-torque
strategies as commanded by the skill model and the cube’s relative pose
during robot control.
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Figure 5.23.: Setup for the toy assembly with the UR10e robot. Left: The passive object
is clamped in a vice and glued to a surface with adhesive tape. Right: A
non-actuated gripper holds the active object in place with glued jaws. The
elasticity of the material adds uncertainty to the system.

assembly more difficult in simulation to favor an easier transfer to real hardware. While
friction is lower on the real setup for this combination of plastic components, the low
clearance and tight fits, especially at the final stage of the assembly, are similar.

Fig. 5.23 shows the setup. We chose a passive gripper for this experiment that holds
the active assembly object in place relative to the robot end-effector. We obtained an ap-
proximate goal pose by teleoperating the robot through the assembly once in free force
control with the teach device and recording the final configuration. During execution, the
skill model’s inference was set at 5 Hz, yielding 200 ms for each setpoint of the predicted
force-torque reference profile. FDCC was running in free force control on the robot at
500 Hz and controlling the UR10e robot over its joint position control interface. Fig. 5.24
shows an execution with intermediate part jamming that the skill controller needed to
solve. After establishing contact, the parts quickly jam, and strategies are needed to ad-
vance. Note how the controller makes various push attempts into the principal forward
direction, as is visible in the negative swings of the fx component. Since this is not im-
mediately successful, different re-orientations follow to search for part clearance. After
searching approximately 90 s in this area, the skill finds the entrance and plugs both parts
together.

Performance is usually decreased for configurations that are strongly different from
those contained in the dataset. There are two local optima, where parts can be plugged
in intermediate configurations, such that the controller struggled and partially failed in
these cases. Once these shortcomings are known, the preparation of more specific demon-
strations for these error cases can increase robustness for practical applications.

The experience from the task allowed us to chose suitable ranges for forces and torques
previously in simulation so that the skill was trained with a nominal intensity. Without
this task knowledge at hand, some form of calibration will be necessary to scale the skill
predictions to suitable ranges. This adaptation is, however, easy due to forces and torques
being vector quantities, and the reference profile can be scaled globally or individually
per axis during execution.
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Figure 5.24.: Successful toy assembly with intermediate part jamming due to uncer-
tainty. Top: An excerpt of recorded snapshots during the execution. Bot-
tom: The skill’s inferred force-torque commands for robot control and the
goal-relative pose of the grasped object during progress.
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5.3.3. Conclusion

Skill controllers provide an effective means to transfer and execute assembly skills that
are trained on demonstrations in simulation. The two applications required each skill to
have its dataset to learn from. A possible transfer of skills between tasks was beyond the
scope of this thesis.

Maintaining contact stability in force control currently demands comparatively low ex-
ecution speeds. This limitation is characteristic of motion-actuated systems and inherent
in admittance control with industrial robots in rigid contacts. Low clearances and highly
constrained objects during assembly emphasize this necessity in general, which in turn
means to slow down the skill inference rate to create similar conditions as was used dur-
ing demonstration. This behavior was anticipated and supported by the skill controllers’
flexibility to scale the force-torque strategies both in time and in intensity.
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The programming of robotic assembly tasks is an important component of manufactur-
ing. Industrial robots are common-place for fast, repetitive, and unergonomic motion but
less established for contact-rich tasks, where the manual baseline is still hard to come by.

This thesis focussed on three associated problem areas: assembling tight-fitting parts
with low clearance, handling uncertainty and offsets in positioning, and providing a suit-
able method to offline program both for industrial settings. The intersection of the three
areas constitutes a major obstacle for automation, and each of these areas has its own
challenges, which are hard to overcome. Low clearances can lead to jamming and wedg-
ing of workpieces, in such a way that an open-loop trajectory execution is not feasible and
even slight offsets must be compensated online with reactive behavior. Although strate-
gies are applied intuitively by human workers, they are not easy to describe analytically
for robot programs. And achieving this offline adds even further limitations.

This thesis proposed teleoperation in simulation as a form of PbD and a technical rep-
resentation of assembly skills with temporal-probabilistic neural networks. The work
derived an intuitive programming method to transfer human-inspired capabilities into
robot controllers, for which Chapter 3 and Chapter 4 developed the theory, and Chap-
ter 5 provided the experimental evaluation.

The following Section 6.1 summarizes important insights in the light of the initial re-
search questions, Section 6.2 then discusses limitations and points to future research, and
Section 6.3 concludes with the contributions of this thesis and provides an outlook.

6.1. Discussion

Q-I How to design a simple and intuitive method to program robotic skills for force-sensitive
assembly tasks offline?

Offline programming poses the challenge of an inaccessible robot and applica-
tion during programming. The PbD paradigm is intuitive and can be realized by
combining teleoperation with simulation. A simple joystick-like teach-device is
sufficient to show the assembly by steering the active object in all six Cartesian
dimensions and thus making use of the implicitly available experience in object
manipulation. The two important challenges of numerical instability and the lack
of precisely known process parameters can be addressed by tolerating unrealis-
tic mesh-interpenetration and artificially increasing friction. The environments
are designed to motivate reactive and robust strategies during the demonstration
that can compensate for this degraded realism on the real setups.

Q-II How to extract and incorporate human skill and intuition to make robots handle part
jamming and wedging autonomously during execution?

This thesis followed a data-driven approach and based skills on the idea to mimic
mental forward models, in which the differences between expected and observed
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state transitions trigger intuitive strategies for correction. By provoking challeng-
ing part constellations with jamming in the simulator, it becomes necessary to
free the parts from intermediate deadlocks during the demonstration. It is pos-
sible to solve the tasks without force feedback by observing the outcome of our
own actions in the simulator. A technical representation of this task-specific skill
can be achieved by learning a policy from these recordings. Suitable models must
be able to capture patterns in ambiguous strategies for tight-fitting workpieces,
which is achieved by the proposed temporal-probabilistic neural networks. Dur-
ing execution, the interplay between initiated motor command and response is
concise enough to solve the tasks without further visual perception of the robotic
systems.

Q-III How to implement controllers to transfer these offline-programmed skills to industrial
manipulators?

A separation of skill and robot control allows for a flexible deployment within
the manipulator’s workspace and requires a force controller that operates within
the Cartesian regime. The skill transfer can be achieved by incorporating forward
dynamics algorithms into robot control and thereby mimicking the simulated be-
havior during demonstrations. This leads to a new control paradigm and a suit-
able alternative to current IK approaches for admittance control in general. The
new controller is applicable for joint position and joint velocity interfaces that are
widely available on industrial robots.

Robotic assembly is a rich and diverse field that spans several decades of research.
Chapter 2 reviewed existing approaches and derived important criteria to identify strengths
and shortcomings in Section 2.3. This thesis proposed the combination of the skill-based
approach with the PbD paradigm over Cartesian manipulator control. We now briefly
discuss our contribution under the initial criteria:

(1) Compatibility with motion-actuated systems The industrial robots considered are
non-backdrivable in their joints and rely on active compliance by control. FDCC is tai-
lored for these systems and implements suitable interfaces for force-motion setpoints
within the Cartesian regime. When combined with assembly skills, the controller trans-
forms force-torque strategies and measurements from wrist-mounted sensors directly
into reference joint motion on the robots.

(2) Suitability for low clearances and tight fits We approximate the contacts between
tightly fitting parts with spring-damper elements. This leads to partially unrealistic
physics during demonstrations, but the recordings are concise enough for learning as-
sembly skills for the real setups. This makes the proposed approach applicable to a wide
range of challenging assembly tasks such as plug-insertions.

(3) Suitability for arbitrary masses/dimensions The proposed method is conception-
ally independent of workpiece dimensions. Masses and inertia parameters are arbitrary
during demonstrations and the focus is on designing a velocity-proportional response to
force-torque commands both during simulation and control.
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(4) Suitability for simulation and transfer The concept builds on simulation both dur-
ing skill demonstration and robot control. But instead of aiming for highly accurate mod-
els and process parameters, it supports the learning of robot-independent skills in these
imperfect environments. The transfer to real robotic manipulators is achieved with FDCC
that mimics the simulator during execution.

(5) Handling of uncertainty/jamming/wedging This aspect was included by provok-
ing challenging configurations in simulation and learning from human behavior. The
trained skill models can compensate for uncertain goal poses to some extent.

(6) Intuitiveness of programming Teleoperation is not as intuitive as showing the as-
sembly directly with our own hands, and using the teach device in the simulator must
be learned. With growing experience, however, neither background in robotics nor engi-
neering is required to program assembly skills with this method.

(7) Independence of the task complexity Our concept is based on using mesh data
from CAD and the process of simulation and demonstration is the same for simple and
complex workpieces. However, the solver’s collision checking and contact simulation
may limit the simulator’s real-time performance. If this becomes a bottleneck, the sim-
ulation may be slowed down accordingly during demonstrations. An alternative is to
reduce the triangle count of the meshes before setting up the simulator.

6.2. Limitations and Further Research

Chapter 5 evaluated the research with experiments and showed the validity of the pro-
posed methods. The following sections discuss limitations and indicate promising next
steps.

6.2.1. Skill Generalization and Fine Tuning

Our concept so far produces task-specific skills. They are demonstrated and learned for a
combination of two workpieces. While this is suitable for special components whose as-
sembly is difficult to program otherwise, there are limitations for assemblies that require
skills for hundreds of components. Using simulation partially alleviates this problem by
enabling more people to demonstrate assembly tasks without requiring actual hardware.
A distributed, crowd-based skill collection could be a promising path [152]. Having more
data available on a variety of different assemblies also motivates to explore the generality
of these strategies. Supervised Learning can provide powerful models to achieve such
a generalization if sufficient data are available. Skill models with massive parameters
might learn general core strategies in huge datasets that can be deployed for new tasks.
A suitable approach could then be to use these pre-trained models and fine-tune them
with few demonstrations on the actual use cases [222].

6.2.2. Elastic Workpieces

Rigid objects formed the baseline assumption about assembly processes throughout this
thesis. An interesting path for future research is to explore our approach for partly elas-
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tic workpieces. With the assumption that elastic deformation is somehow characteristic,
learning part deformation could be achieved implicitly by learning non-linear motion re-
sponse to force-torque commands. This would include the material stiffness of the com-
ponents in jamming scenarios, similar to a geometry-dependent, 6-dimensional spring
that the skills need to learn.

While the concept itself is transparent for both rigid and elastic approximations in sim-
ulation, the latter is more difficult to model. Fewer simulation environments do support
this functionality by default. In addition, collision checking becomes more evolved and
computational performance will currently limit a fast and intuitive demonstration by
slowing-down the simulator. A slight remedy is that our concept does not require high
realism, and course approximations of simulating elastic components could be suitable
for skill extraction.

6.2.3. Robot Control

We focused on motion-actuated robots in this thesis. They are widely in use and currently
without alternatives especially for the handling of heavy components. Providing active
compliance by control, however, directly depends on the control rate of their inner joint
control loops, limiting the FDCC algorithm to relatively slow motion in contact with stiff
environments. At least for small and for medium-sized parts, lightweight robots with
advanced sensors in the wrist, joints, and basis [11] provide powerful capabilities for fast
and sensitive interaction. It would be interesting to test the limits of the skill execution
on these platforms.

6.3. Conclusion and Outlook

This thesis followed the incentive to bring human-inspired skills to compliant robot con-
trol and made the following contributions:

• A literature survey on skill programming and skill learning in robotics research
with a focus on robotic assembly. This collection highlighted characteristics and
qualitatively evaluated strengths and weaknesses.

• An approach to capture human-inspired assembly skills with teleoperation in simu-
lation and to model these skills with sequential-probabilistic neural networks. Used
as a cognitive overlay, robots can deploy these error-correcting strategies against
unforeseen part jamming.

• A unifying compliant controller tailored for industrial manipulators to execute these
assembly skills. The controller builds on simplified dynamics simulations and pro-
vides a new control concept and solution to the inverse kinematics problem for the
field of manipulator control.

The skillful handling of compliant interactions is at the heart of robotic assembly and
a decisive step towards higher grades of autonomy and automation. Exciting challenges
lie ahead towards robots that operate with human-level skills in these settings. The sen-
sor processing and actuation determine how the robots interact with their environments
and which complexity they can technically master. For the assemblies considered, the
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robots would typically have special end-effectors. As long as the robots can apply the
strategies through compliant controllers, more complex gripper morphologies could be
used similarly.

In this direction, anthropomorphic robot hands will provide more degrees of freedom
and support assembly skills through additional dexterity. Likewise, perception, scene
understanding, and high-level reasoning are required to update the simulated models
online and select the skills appropriately. The rich experience of humans in object manip-
ulation is currently unmatched but expanding the skill input to all relevant human senses
and learning from enormous amounts of data will eventually lead to general assembly
strategies that come truly close to those of human workers.
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A. On-Orbit Satellite Assembly

Vision and Application

Numerous key technologies of modern societies depend directly or indirectly on satel-
lites. Their reliability is determined by deterministic and non-deterministic events, such
as running out of fuel or damage through space debris. The on-orbit servicing of space-
craft could effectively mitigate frequent failures [223] but requires a rethinking of the
classic, monolithic design. Fig. A.1 illustrates this concept: A special servicer satellite
is equipped with robotic manipulators for the maintenance and assembly of a client
satellite. The intelligent Building Blocks for On-Orbit Satellite Servicing and Assembly
(iBOSS) [221] envision a fully modular approach. Standardized, box-shaped components
shall economize these spacecraft for the private sector. The components carry flight elec-
tronics and custom payload and are combined in a three-dimensional grid to function
as a distributed system. Fig. A.2 shows the smallest of such building blocks. They are
coupled over the intelligent Space System Interface (iSSI) on their sides, which enables
the transfer of mechanical load, power, heat, and data between neighboring blocks.

The usage of standardized components simplifies the robotic assembly of satellite struc-
tures and their maintenance to the arrangement and replacement of individual blocks.
Once the components are brought into position, a motor-actuated bayonet clutch closes
the connection for each interface. This mechanism comprises both male and female func-
tionality and secures a redundancy against failure. As a consequence, the servicer satel-
lites can manipulate a non-responding and non-cooperating client satellite, such as dur-
ing re-fueling missions.

Challenges for Robotic Manipulation

Similar to industrial applications, the challenge lies within the automation of human
skills during task execution. Human-teleoperated maintenance and assembly through
operators at a ground station are ruled out through insufficient uplink and downlink
data rates for visual or haptic feedback. The uncertainty through localization and the
limited accuracy of current robotic manipulators in space require reactive strategies to
handle colliding iSSIs during the insertion of neighboring blocks. These strategies need
to search carefully for part clearance during insertion to get the components into place.
After programming these skills offline, the servicer satellite needs to execute the tasks
autonomously and robustly with its robotic manipulators.

1Image source:
http://www.iboss-satellites.com/fileadmin/Templates/iBOSS_Satellites/Media/iBOSS_Concept.pdf
accessed 27.3.2021

2Image source:
http://www.iboss-satellites.com/fileadmin/Templates/iBOSS_Satellites/Media/iBLOCK.pdf
accessed 27.3.2021
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Figure A.1.: Schematic rendering of an on-orbit servicing scenario in the iBOSS concept1.

Figure A.2.: The intelligent Building Block (iBLOCK)2.
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The software-side contribution of this thesis builds upon various components that are
developed in different frameworks. Table B.1 shows an overview of the most important
ones. General program logic and additional scripts for the experiments are not displayed
for clarity. The footnotes point to central libraries within the respective framework that
we used for each component.

The column for contributions has the following meaning: Some components are mainly
used and already provide suitable functionality and mechanisms to realize our ideas.
They were parameterized accordingly to be compatible with our requirements. All of
them are free and openly available. Other components needed more customization and
development to connect them to our overall architecture, such as plugins and interfacing
scripts. They are referred to with interfaced. The implemented components were fully de-
veloped in this thesis from the presented theory. FDCC was published in form of a free
and open source software package cartesian_controllers7. More components are planned
to be published in the future.

1http://gazebosim.org/ , accessed 27.3.2021
2https://www.blender.org/ , accessed 27.3.2021
3https://www.ode.org/ , accessed 7.8.2020
4https://github.com/ros-drivers/joystick_drivers/tree/main/spacenav_node
5https://github.com/tensorflow/tensorflow/blob/r2.0/tensorflow/python/keras/layers/recurrent.py
6https://www.tensorflow.org/versions/r2.1/api_docs/python/tf , accessed 27.3.2021
7https://github.com/fzi-forschungszentrum-informatik/cartesian_controllers
8https://github.com/ros-industrial/ur_modern_driver
9https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

10https://github.com/ipa320/schunk_modular_robotics
11https://github.com/ros-industrial/kuka_experimental
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Table B.1.: Software components of this thesis.

Component Theory Framework Contribution Language

Simulator Section 3.2.1 Gazebo1 interfaced -
Meshes Fig. 3.2 Blender2 implemented -
Contact physics Section 3.2.2 ODE3 used -
Teach device Section 3.2.3 ROS4 interfaced Python
Recording Section 3.2.3 ROS implemented Python

LSTM layer Fig. 3.13 Tensorflow5 used Python
MDN layer Fig. 3.14 Tensorflow implemented Python
Skill model Fig. 3.15 Tensorflow implemented Python
Data composition Fig. 3.16 ROS implemented Python
Training Section 3.3.4 Tensorflow6 used Python

FDCC Section 4.3.2 ROS-control implemented7 C++
Skill controller Fig. 4.7 ROS implemented C++, Python

UR10 - driver8,9 used C++
LWA4P - driver10 used C++
KR16 - driver11 used C++
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