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Abstract

Quantum information processing bears the alluring promise of tackling certain—otherwise
intractable—problems in fields spanning from chemistry to cryptography. Alas, no fully
fledged quantum processor exists as of yet: the programmable quantum elements imple-
mented at the processor core, so called quantum bits or qubits, are nontrivial to realize in
large numbers, and particularly sensitive to perturbation and errors.

For instance, the prototypical qubits were realized with cold trapped ions. This method
works reasonably well for small processor sizes, but it is hard to imagine efficiently scaling
up in qubit number, given that every ion needs its own laser tone in order to be oper-
ated. Other technologies, such as implementing quantum bits in the spin of electrons, are
promising, yet in their infancy.

Realizing quantum bits with superconducting circuits allows one to isolate a quantum
mechanical state that is macroscopic, owing to the collective nature of the Bardeen-Cooper-
Schrieffer condensate. This makes for sensible simplifications in fabrication and operation,
and an a priori comparatively smoother scaling up.

However, superconducting quantum circuits carry their own set of problems. A promising
flavour of superconducting qubits are those of the fluxonium type, realized with a high
characteristic impedance.

In this regime, superconducting circuits performance is particularly degraded by the
splitting of supercurrent carriers (Cooper pairs) into quasiparticles (QPs). Operation at
dilution temperatures guarantees that the presence of QPs of thermal origin is essentially
null. The observed QPs are thus out of equilibrium, and their origin is an open research
question.

One source of out of equilibrium QPs are shown to be pair breaking athermal phonons in
the device substrate. In turn, a source of such phonons are shown to be high-energy particles
hitting the device substrate. This results in so called QP “bursts”: high-energy phonons
reaching a superconducting circuit generate a large number of QPs in a short time. This
further implies a time correlated error for different circuits on the same chip, particularly
problematic for the current implementation of quantum error correction schemes, which
are based on the assumption of uncorrelated errors.

The central point of this thesis is the implementation of two parallel avenues of quasiparticle
abatement: shielding from phonons, and shielding from radiation.

The efficacy of both approaches is explored by fabricating high impedance resonators, for
which losses and resonant frequency instability are dominated by the effects of quasiparti-
cles, which is the concept behind Microwave Kinetic Inductance Detectors (MKIDs). This is
achieved by employing the properties of granular aluminum (grAl), a composite material
made of aluminum beads in a non-stoichiometric aluminum oxide matrix. The resistivity
of grAl (and thus the kinetic inductance) can be tuned from a value comparable to that of
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aluminum to up to three orders of magnitude larger by controlling the oxygen pressure
during film deposition.

I firstly report on the effect of athermal phonons abatement via the use of so called phonon
traps, which are metalizations with a gap lower than that of the operating circuit, acting as
phonon downconverters. Phonon traps can be effectively used to increase the performance
of MKIDs fabricated with grAl. Specifically, they are shown to reduce the noise equivalent
power, i.e. the radiant power of the source under observation needed to achieve unit signal
to noise ratio in a 1 Hz output bandwidth. Furthermore, they provide an increase of the
internal quality factor of grAl striplines, as well as a suppression of the measured rate of
QP bursts.

The outcome of preventing high-energy radiation from reaching the substrate in the first
place is then reported. High impedance grAl resonators were measured in setups with
increasing radiopurity, achieved by cleaning the assembly and using less radioactive
materials (reducing near sources of radioactivity), and by shielding the cryostat, as well as
the lab itself, i.e. measuring in a deep underground facility (reducing the effect of far sources
of radioactivity). As expected, the increasing radiopurity of the setups reduces the on-chip
ionizing flux, and with it the rate of measurable QP burst. Furthermore, the abatement of
radioactive contamination results in an increase of the internal quality factor, highlighting
radioactivity as a yet to be fully explored source of dissipation in superconducting quantum
circuits.

The quasiparticle abatement methods explored in this thesis are promising. However,
their simplistic realization was merely a proof of concept. Their further study, implemen-
tation, and optimization are expected to add a series of valuable tools in the belt of the
superconducting quantum circuits engineer.
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Part I

Overview and main results

La salute non analizza sé stessa
e neppure si guarda allo specchio.
Solo noi malati sappiamo qualche cosa di noi stessi.

Italo Svevo,
La Coscienza di Zeno





Chapter 1

Quantum information

This thesis deals with superconducting electronics used in quantum in-
formation applications. In this introductory chapter I briefly touch down
on the subject of quantum information processing “By golly it’s a wonderful

problem, because it
doesn’t look so easy.”

Richard Feynman,
Simulating physics with
computers [1]

, give an overview of
the current implementation technologies, and give an argument as to
why superconducting electronics is a particularly attractive implemen-
tation choice.

1.1 Overview and applications: two case studies

IT is somewhat commonplace to start introductions about quantum infor-
mation processing by describing Moore’s law, which predicts transistor
density doubling every two years [2], and throwing in some looming

prediction about its saturation. It is true: there exists a certain small size be-
low which electronic circuit fabrication will be fundamentally impeded by
quantum mechanical effects. This is a fair statement. However, it is possibly
misleading to introduce the topic of quantum information in such a manner,
for the reader may conclude that quantum computers are to heroically come
save the day, allowing one, for instance, to fabricate smaller circuits, somehow
carrying on the torch of classical computers into the realm of the very small.
This is an unfair statement: quantum computers do not set out to replace
classical computers. In fact, no foreseeable quantum computer is thought of as
a general purpose machine. Quite the opposite: the whole game of quantum
information and computing is identifying some highly focused tasks in which
a quantum computer may clearly outdo a classical one, achieving so called
quantum supremacy, or advantage. The popularity of the

name quantum supremacy,
originally put forth by
Preskill [3], is on a steady
decline because of its
alleged eugenic
undertones.

In the following, I report two case studies in
which quantum advantage may be realistically expected.

1.1.1 Analog quantum computing: nitrogen fixation

Studying quantum systems is computationally heavy and most times pro-
hibitively so. The Hamiltonian of the Helium atom already has no closed
analytical solution. The wavefunction of just a hundred spins is a numerically
intractable array of some 2100 ∼ 1030 complex amplitudes: storing the value
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itself with 16 bit precision would require ∼ 1015 Petabytes. For reference, the
the total memory of the Summit supercomputer [4] is around 10 Petabytes.
Fields like the pharmaceutical industry would benefit from the ability of sim-
ulating molecular dynamics with precision, which classical computers can
only carry out at a scale that is often too small for practical applications [5].

A straightforward solution to this problem is the creation of a universal set of
quantum elements that can be reprogrammed to mimic an arbitrary collection
of particles and its properties. This concept was introduced by Manin [6] and
popularized notably by Feynman [1] in the early eighties. A subclass of the
more general concept of quantum computers, it is (correctly) usually referred
to as a quantum simulator. It is equivalently an analog form of computing,
for no real computation takes place: elements do not represent an outcome
as much as they are the outcome, in the same way e.g. the output voltage of
an opamp integrator circuit is the integral of the input voltage, rather than a
representation of it.

A quantum chemistry problem that is a good candidate to be simulated by
such analog quantum computers is that of nitrogen fixation [7]. Molecular
nitrogen (N2) constitutes some 78% of the atmosphere, making it by far its
most abundant element.The word for nitrogen in

some languages, e.g. azote
in french or азот in

russian, comes from the
greek ἀ (privative alpha)

and ζωή, “life”.

This atmospheric, diatomic form is biologically inert:
nitrogen fixation is the process by which molecular nitrogen, tightly bound
together by triple bonds, is split and becomes part of organic compounds.
While nitrogen-based organic compounds are central to the biology of most
living organisms, nitrogen fixation is only carried out by some bacteria and
archaea.

The isolation of nitrogen, mostly in the form of precursors containing a single
nitrogen atom, can be also carried out artificially. The Haber-Bosch process
[8]Fritz Haber developed the

process while a professor
of physical chemistry at no

less than the former
Univeristät Karlsruhe.

is the most widespread industrial method to produce ammonia, which
is in turn preponderantly used to manufacture fertilizers [9]. This process is
carried out at some hundreds of atmospheres of pressure and at a temperature
of 400− 500 Kelvins. This is in stark contrast with nitrogen fixing microorgan-
isms that operate at room temperature and atmospheric pressure: in their case,
this is possible thanks to nitrogenases, enzymes acting as catalysts for nitrogen
fixation. Understanding the underlying mechanisms of such enzymes bears
the promise of developing efficient and green ammonia production methods,
with one important effect being a reduction in the cost of crops thanks to
cheaper fertilizer production.

Roughly put, these enzymes act by providing two sites for each nitrogen
atom, and providing a “pull” that overcomes the covalent bond. Such sites
are complex structures of mostly iron, sulfur, and molybdenum atoms, with
counts in the tens. As a result, simulating the dynamics of a similar structure
on a classical computer is prohibitive. On the other hand, it has been proposed
that a quantum simulator may elucidate the process [10], provided that ∼ 108

two-states programmable quantum elements are operated, with an error rate
of 10−3. The number is reduced to ∼ 106 if the error rate is suppressed to 10−6.
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In the Bloch formalism [11], two state quantum systems live on the surface
of a sphere and are described by an azimuthal and an equatorial angle. Pro-
viding the system with an energy equal to the difference between ground
and excited state flips the azimuthal angle by π. Loss of quantum coherence
comes from losing energy (azimuthal angle becoming small) and dephasing
(equatorial angle becoming undefined). In an infinitely long lived element,
for instance, preparing it in the excited state and applying an even number of
flip operations should leave it in the excited state; the amount of times this
does not happen, due to decoherence, defines the aforementioned error rate
for this flip operation. The worst error rate for all the operations needed by a
quantum processor to perform a given task defines its general error rate.

1.1.2 Digital quantum computing: RSA cryptography

A digital quantum computer, or a quantum computer stricto sensu (thus
henceforth just quantum computer), is one in which the two state quantum
elements supersede classical computer bits as quantum bits, or qubits. The
first proposition of implementing a Turing machine [12] quantum mechani-
cally Note the contrast with the

proposition by Feynman,
in which he states clearly
that he does not envisage
a Turing machine.

was first put forth by Benioff [13]. Such a device will be able to execute
algorithms that exploit the properties of quantum mechanics, such as super-
position. A proposed quantum advantageous task for these processors is in
the field of cryptography.

A widespread cryptographic scheme is the RSA [14], based on private and
public keys. Its workflow is reported in the following.

RSA encryption scheme

1. Pick two primes p, q with p 6= q;

2. Compute n = pq;

3. Compute the least common multiplier φ = lcm(p− 1, q− 1);

4. Pick e ∈]1, φ[ such that e and φ are coprime, i.e. their sole common
divisor is 1;

5. Compute the modular multiplicative inverse d of e and φ, i.e. find d such
that (ed− 1)/φ ∈N;

6. The private key is (n, d) and the public key is (n, e).

The operation of encryption/decryption of a number c ∈N is then ck mod n
where k = e, d gives encryption or decryption respectively. The robustness of
this method is that, if one does not know d, it is very hard to guess it. However,
it becomes trivial if one knows p and q. Breaking RSA cryptography becomes
a matter of efficiently factorizing a large product of two primes.
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This, in turn, can be mapped to an order-finding problem, and then solved on
a quantum computer. This is the core of the much heralded Shor’s algorithm
[15], a hybrid algorithm with a classical flow and a single quantum step
that holds the promise of an exponential speedup over classical algorithms.
The application of Shor’s algorithm is attractive as a testbed for quantum
processors because it can be tested against known solutions for trivial cases:
IBM, for instance, used the first implementation of this algorithm to reach a
sensational milestone in 2001, when they showed that 15 = 3× 5 [16].

The numbers to be factorized in actual cryptography applications are sensibly
larger, with a bit-length of 2048 being the recommended minimum for safe
applications [17]. Proposed implementations of Shor’s algorithm and subse-
quent refinements set the projected time of quantum cracking the 2048 bit key
at some ten hours [18], using ∼ 107 qubits and an error rate of 10−3 (among
other assumptions). Comparing this to the projected time to factor this with a
classical algorithm—some 1019 years on a single 1 GHz processor—makes a
strong argument for the development of quantum processors.

1.1.3 Quantum computers today and tomorrow

Fully operational quantum computers have been “just a couple years away”
for some thirty years now [19]. While impressive advances in the field of
quantum information are constantly being made, the harsh reality is that one
should not hold her or his breath. The previous examples show that quantum
advantageous applications require tens of millions of qubits with error rates
kept at some minimum level. There is a considerable momentum towards
building useful quantum processors, on two parallel avenues: an engineering
feat of efficiently assembling current qubit implementations in a large number,
and the fundamental challenge of improving the performance of single qubits
by fighting decoherence. The two notions are linked together by the concept
of error correction.

Any classical computer requires error correction: bits are no more than switches,
that may get switched randomly and mistakenly. This is countered by redun-
dancy: the same piece of information is encoded on several duplicate bit arrays,
and random bitflips are averaged out by a majority vote. This is fundamen-
tally prohibited for quantum objects by the no-cloning theorem: specific error
correction schemes, aptly named quantum error correction (QEC) schemes,
have been devised [20–23] and realized [24–26]. Perhaps the most recognized
one is the surface code [27], in which a logical qubit is implemented by a
number of physical qubits on a 2D grid: it is the scheme envisaged to perform
error correction in the two examples reported in the previous sections.

The nature of the quantum algorithm defines an acceptable target error rate
for the logical qubit, and the size of the grid to achieve it is dependent on the
error rate of the single physical qubits. Quantum advantage has not yet been
reached because of our inability to make physical qubits with low enough
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error rates, and in a high enough count. In order to gain insight on the present
and especially the future of quantum computation, it is instructive to take
a closer look at the building blocks of quantum processors, and what limits
their performance.

The promise of quantum computers is to provide a fundamental
speedup over classical computers in certain dedicated tasks, such as
chemistry simulations and cryptography.

The current limiting factor in the development of quantum computers
is the stability of their building blocks, so called qubits, against error.

1.2 The building blocks: quantum bits

The building blocks of quantum computers are qubits—programmable quan-
tum elements. Particles such as protons or electrons are certainly quantum
elements. The conditions to be fulfilled in order for them to be usable as qubits,
i.e., make them programmable, were notably summarized by DiVincenzo in
his criteria [28]. Furthermore, any classical object retrieves a quantum nature at
small enough energies. In the following I categorize qubit realizations by these
two conceptual preparation avenues: isolating inherently quantum objects, or
“quantumize” otherwise classical objects.

1.2.1 Bottom-up

The most straightforward way to implement a qubit is to use an elementary
particle; something that is inherently of quantum nature. The difficulty lies in
isolating such a particle from the environment while retaining a significant
ability to control it, as well as restricting its Hilbert space dimensions to two.

There already exists an established technology that deals with two state quan-
tum elements, namely spin 1/2 particles: the medical technique of magnetic
resonance imaging [29], based on nuclear resonance phenomena originally
reported by Rabi and coworkers [30]. The body of the patient contains some
number of isotopes that have a net spin 1/2 magnetic moment, common
examples being H1 and C13 (hydrogen and carbon being ubiquitous in organic
compounds). When a strong static magnetic field is applied, spins align to it in
an either parallel or antiparallel fashion. The parallel alignment is the most en-
ergetically favorable, resulting in a net magnetization along the applied field
at equilibrium. Irradiating the spins with EM radiation at the resulting Larmor
frequency makes them absorb enough energy to nullify or even invert the total
magnetization. The operator then checks how fast the total magnetization
returns to the equilibrium configuration after the irradiating field is turned
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off: the patient is naturally infused with a large number of qubits, and the
obtained images are heatmaps of their averaged decoherence rates, different
tissues having different decoherences rates. The same system can be scaled
down to the point in which each spin can be addressed individually: in the
aforementioned implementation of Shor’s algorithm (Ref. [16]), a particular
molecule was used, in which most sites are either C13 or F19, each having a
different, individually addressable frequency.

Another approach is to use color centers like nitrogen vacancies in diamond
[31]. Pure diamond is a covalent lattice of carbon atoms each having four sp3

bonds. A NV center is a substitutional nitrogen defect with a vacancy defect
on a neighboring site. The nitrogen atom provides 5 electrons, 3 of which
bind covalently to the carbon lattice while the other 2 remain unbound as
a lone pair. The vacancy consists of 3 carbon dangling electrons, 2 of which
form a quasicovalent bond. There is a total of 3 excess electrons, but, due to
the trigonal symmetry of the lattice, the system has a total of one unpaired
electron, and hence spin 1/2.

The two approaches insofar described present clear issues regarding scaling up
in qubit number: realizing arbitrarily complex molecules and creating defects
in an atomic lattice with site by site precision are no easy tasks. Perhaps a
better approach is to start with an otherwise free particle and somehow trap
it. Doing so in 3D with electromagnetic fields amounts to generating some
“funnel shaped” potential acting as a sink, which can not be done via static
electromagnetic fields as per Earnshaw’s theorem [32]. At best, a saddle point
potential may be generated. One then may generate a funnel by making the
saddle spin at some frequency. This is the principle of the Paul trap [33],
which traps ions in a xy plane; at low temperatures, they create a linear,
equally spaced chain along z, which is the heart of quantum processors based
on trapped ions, first proposed by Cirac and Zoller [34]. Each ion is a qubit in
the register: transition between the ground and excited states is achieved with
laser tones.

By removing one spatial degree of freedom, one is allowed to work with DC
fields. Planar single electron transistor allow a discrete number of electrons
to tunnel in and out of a small island, so called quantum dot. For source and
drain having the same chemical potential, applying a gate voltage on the dot
will result in a tunneling conductance only when the displaced discrete level
aligns with source and drain, with the zero conductance regions in between
called a Coulomb blockade regime. Cascading two quantum dots in this
structure with two different gates allows one to tune a double well potential in
which one electron per dot exists either as a singlet or triplet state with ms = 0
(the ms = ±1 states rendered inaccessible by magnetic tuning), defining the
two computational states. This is the idea of the spin qubit quantum processor
put forth by Loss and DiVincenzo [35], recently used to realize a four qubits
processor [36]. I report a small summary of qubit processors realized in the
last ten years in Fig. 1.1.
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Fig. 1.1: Survey of quantum processors over the last decade.

1.2.2 Top-down

Let us now turn our attention towards classical objects, with the goal of
reaching the quantum regime by going to small enough energy scales. For
convenience, let us do so with the well studied harmonic oscillator. In its
fundamental mode with frequency ω0 it has a spectrum with an equal h̄ω0
spacing. Established commercial dilution cryostats can provide operational
temperatures in the tens of milliKelvins. With this restriction, an oscillator in
the microwave regime provides protection against thermal excitations (i.e.,
kBT � h̄ω0).

However, a stripline in the GHz regime, such as a smartphone integrated an-
tenna, at 10 mK will not show any quantum behavior. The reason is due to the
essentially bulk size of the resonator: the excitation spectrum is superimposed
onto the kinetic spectrum of a bulk metal, which is effectively a continuum.
The a priori well defined oscillatory quantum states will readily dissipate into
the continuum via Fermi’s Golden Rule. Some gap in the spectrum of the
material is needed. One may think of a semiconductor: indeed it has forbidden
electron and hole states around the Fermi level. A single impurity may create
well isolated states in the gap, but due to Pauli’s exclusion principle this will
not be populated by a bulk amount of electrons, and this circles back to being
a bottom-up implementation, wherein the qubit is a single particle.

These restrictions on the excitation spectrum are fulfilled by superconductors,
as is summarized in Fig. 1.2. In superconducting resonators made with e.g.
aluminum, the BCS gap opened up around the Fermi level is 2∆ � h̄ω0,
while supercurrent carriers form a condensate at the Fermi level. The gap
protects the superconducting condensate from scattering phenomena that
would otherwise be present in a metal. The condensate occupies a single
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Fig. 1.2: Oscillator spec-
trum compared to nor-
mal and superconducting
levels referenced to the
Fermi energy. Dissipation
due to Fermi’s Golden
Rule (FGR) is suppressed
around the Fermi energy
for a superconductor.

energy level surrounded by a relatively vast forbidden region, making it a
well defined, macroscopic quantum object.

As such, the size of superconducting quantum bits is orders of magnitude
greater than any other qubit implementation: superconducting qubits can be
seen by the naked eye, and can be realized with the same thin film technology
used in the semiconductor industry. This provides a practical advantage
since the machinery employed to design, fabricate, cool down and measure
superconducting qubits is based on mature, heavily market-tested solutions.
When it comes to realizing quantum circuits, superconductors offer the path
of least resistance.Pun intended.

Indeed, since the first proposition of a qubit as a superconducting resonator
with an added Josephson nonlinearity [52], the paradigm has found widespread
applications in several different flavours [53–55], arguably becoming one of
the mainstream choices of qubit implementation in quantum processors (cf.
Fig. 1.1).

Furthermore, the low loss of superconductivity allows one to operate oscil-
lators down the single photon regime with acceptable signal to noise ratios.
In this regime, the interaction between the linear oscillator and a qubit is the
solid state equivalent of the most basic interactions of light and matter: one
photon interacting with one atom. The first implementation of this interaction
[56] spurred the field of solid-state quantum optics, and defined the way
which superconducting qubits are accessed and manipulated, so called circuit
quantum electrodynamics (cQED) [57].

It is worth mentioning qubit systems based on photons as a realization that
lies somewhat in between bottom-up and top-down, which has recently been
experimentally realized to carry out boson sampling, a class of classically
intractable quantum simulations. In such realization, the output of a macro-
scopic interferometer is measured photon by photon by single photon detec-
tors [44].

Finally, note that superconductivity is one of the ingredients in the proposed
realization of the Majorana Zero Mode qubit, wherein the state is encoded
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simultaneously at the two ends of a proximitized semiconducting nanowire,
providing resilience against local errors Preliminary results

spurred great interest in
2018, however they have
been recently retracted by
the authors, claiming
misinterpretation of
experimental artifacts.

[58]. Alas, this exciting proposed
technology has insofar eluded experimental realization.

1.2.3 Qubits as nonlinear superconducting resonators

As discussed in the previous section, a cryogenic superconducting GHz stripline
will very much be a quantum object, per se, but not a two dimensional one.
The last required effort to make a qubit out of it is to add a potential that will
squeeze the two lowest levels within some easily accessed microwave band,
and push the others well above it. Adding a resistor will not qualitatively
change the response of the purely reactive Hamiltonian. Adding inductors
and capacitors can only have two effects: either modify the existing elements
as series or parallel additions, thus modifying the eigenfrequency, or adding
another LC oscillator thus adding an eigenfrequency. With R, L, and C parts
one can at most reparametrize the Hamiltonian, and/or make reparametrized
copies of it, but cannot fundamentally alter the potential by using linear el-
ements: nonlinear systems are needed, the most common choice being the
Josephson junction. Superconducting qubits are no more than nonlinear super-
conducting resonators: as such, superconducting resonators provide practical
testbeds to comprehend and tackle the underlying phenomena causing deco-
herence in superconducting qubits. The remainder of this thesis is devoted
to the study of superconducting resonators, their pros and their cons, their
sickness, and their medicine.

u A quantum bit (qubit) is a two state programmable quantum element.

u The first proof of concept qubits were realized by isolating inherently
quantum elements, such as ions.

u Superconducting qubits exploit the quantum mechanical nature of
macroscopic objects, rendering their fabrication and operation partic-
ularly convenient.

u A superconducting qubit is a superconducting resonator with an
added nonlinear element.

u Superconducting resonators offer a practical testbed for the decoher-
ence effects in superconducting qubits.
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Chapter 2

Superconducting quantum circuits

Superconducting electronics offers a practical avenue for quantum cir-
cuits implementation: in principle, it is sufficient to add some nonlin-
earity to a superconducting resonator to make a qubit. In this chapter I
briefly describe the properties of superconducting resonators, and give
examples on how their nonlinear properties play a role when devising
their applications as quantum circuits.

2.1 Electrodynamics and nonlinearity

I will begin this chapter with a quick review of the electrodynamics of
superconductors. This purely phenomenological description is sufficient
to capture the main physics of superconducting resonators; the interested

reader may refer to Chapter 10 for a bird’s view on the microscopic Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity. The one thing we will
take for granted from BCS for now is that supercurrent carriers are electrons
pairs, so called Cooper pairs (CPs), bound together by some energy (the
superconducting gap), and that supplying them with that or more energy
breaks them into quasiparticles (QPs).

2.1.1 London model and kinetic inductance

The two defining experimental features of superconductivity are the drop of
resistance to a null value and the expulsion of all magnetic field when the
sample is cooled below some critical temperature. Let us start by looking at
the first property: lossless DC flow. In the purely classical Drude model, the
electron momentum p obeys

〈ṗ〉 = qE − 〈p〉
τ

, (2.1)

where q = −e and e is the electron charge, E is the applied electric field, and τ
is the average time for which electrons move without scattering. One obtains
the steady state current density
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nq〈v〉 = J =
nq2τ

m
E ≡ σE, (2.2)

where n is the electron density, and models null resistivity ρ = 1/σ = 0 with
the limit τ → ∞. Applying this constraint back into Eq. 2.1 gives

E =
m

nq2 J̇ . (2.3)

By defining a cross section (giving a current intensity) and a conductor length
(giving a voltage drop) one recovers V = LK İ: the prefactor of Eq. 2.3 has
the form of an inductance up to a multiplicative length. The intuition behind
this is that, now that the scattering time is divergent, an AC drive will have
to overcome a non-negligible carrier inertia, in the same way it would have
to overcome Lenz currents in a coil. In comparison, the scattering time in
common metals is small enough (e.g. order of femtoseconds in aluminum)
that this phenomenon is rendered unobservable: the scattering of electrons
readily convert their kinetic energy into heat—that is the Joule effect. The
kinetic energy of carriers in a superconducting wire of length l and cross
section A is the number of carriers (N = nlA) times the kinetic energy of a
single carrier, and can be seen as energy stored in a kinetic inductance (hence
the subscript K):

nlA
1
2

m
(

J
nq

)2

=
1
2

LK(JA)2 =⇒ LK =
l
A

m
nq2 , (2.4)

which, as mentioned, is the prefactor of Eq. 2.3 up to a length scaling.

The kinetic inductance is the aptitude of a superconductor to oppose a change
in the motion of the condensate, that is, to overcome its inertia. Such aptitude
will be greater for condensates that have smaller inertia, i.e. smaller total mass:
therefore, the kinetic inductances scales with the inverse of the amount of
Cooper pairs, i.e. carriers contributing to the mass of the condensate. Evidently,
this works only for a “well defined” superconducting state—it will not carry
on at the phase transition, because it would imply a divergence rather than
a suppression of kinetic inductance for a normal metal. Equipped with this
knowledge, one writes the time evolving Ampère’s circuital law and take the
curl of both sides to obtain

∂t(∆B − λ−2B) = 0, (2.5)

where Gauss’ and Faraday’s laws have been used, and the London penetration
depth λ ≡ (µ0nq2/m)−1/2 has been defined [59], µ0 ≈ 4π × 10−7 H/m
being the free space magnetic permeability. Eq. (2.5) shows that, in a perfect
conductor, changes in an external magnetic field are attenuated within the
conductor over a characteristic length λ (of the order of 10 nm in aluminum).
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This would mean that, by applying a static magnetic field to a sample of
superconductor material in the normal state, cooling it down below the crit-
ical temperature, and turning off the external field, one could trap the field
inside the sample, for the notion of the magnetic field being turned off could
not travel towards the core of the sample. This is in stark contrast with the
experimental observation of magnetic fields being expelled by the samples at
the onset of superconductivity, as evidenced by an increase of magnetic flux
lines around the surface of the sample. The purely phenomenological solution
to this conundrum put forth by the London brothers is to set the argument of
the time derivative of Eq. (2.5) to zero altogether, leading to “London calling,

yes, I was there, too\
And you know
what they said?
Well, some of it was true.”

The Clash,
London calling

∆B = λ−2B. (2.6)

This highlights the difference between a superconductor and an ideal perfect
conductor: magnetic fields can penetrate a superconductor only over some
length λ. This conclusion can be reached in parallel by the following argument.
A magnetic field can not be suppressed immediately by the superconductor:
It will have to be attenuated over some length Λ, and an exponential decay is
a fair ansatz. Without loss of generality, we can consider the one dimensional
case in which B = (0, 0, B0) = B. This will decrease as B(x) = exp(−x/Λ) for
a superconductor with a surface in the yz plane. From ∇∧B = (0,−∂xB, 0)
one obtains the screening carrier velocity. Writing the total energy as a sum of
magnetic and kinetic energy, and minimizing it with respect to Λ, gives λ as
defined in Eq. (2.5). Note that the kinetic inductance can be expressed as

LK =
l
A

µ0λ2, (2.7)

hence the alternative name surface inductance. The kinetic inductance is a
peculiar property of superconductors and a useful experimental handle link-
ing microscopic parameters with electrical response. And what better way to
probe an inductance than to make a resonator out of it?

2.1.2 Resonator theory

By defining the flux φ(t) =
∫ t
−∞ dt′V(t′) and charge Q(t) =

∫ t
−∞ dt′ I(t′) the

Lagrangian of an LC oscillator can be written as

L(φ̇, φ) = T(φ̇)−V(φ) =
φ̇2

2C
− φ2

2L
, (2.8)

which is in analogy with the mechanical oscillator, with the flux playing
the role of position. Applying Euler-Lagrange equation dt(∂φ̇L) = ∂φL one
obtains the equation of motion

φ̈ + ω2
0φ = 0, (2.9)
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where the fundamental mode frequency is 2π f0 = ω0 = (LC)−1/2.

The inductance is composed by the standard, geometric inductance, and the
aforementioned kinetic inductance: L = LK + LG. The kinetic inductance
scales inversely with the supercarrier density, thus fluctuations in the resonant
frequency obey

δ f0

f0
= −α

2
δLK

LK
=

α

2
δNCP

NCP
= −α

4
δNQP

NCP
≈ −α

4
δNQP

NCP + NQP
= −α

4
δxQP, (2.10)

where α ≡ LK/(LK + LG) is the kinetic inductance fraction, NQP is the number
of broken Cooper pairs, i.e. quasiparticles, δNQP = −2δNCP (breaking a
CP creates two QPs), NCP � NQP, and finally δxQP are fluctuations in the
fractional density of QPs, xQP = NQP/(NCP + NQP). The time evolution of the
relative fluctuations of the resonant frequency of a superconducting resonator
is linearly related with those of the fractional QP density. For a high inductance
(α = 1) aluminum (nCP ∼ 106 µm−3) resonator in the GHz regime with a
volume of 100 µm3 this conveniently amounts to roughly 1 QP per Hertz of
fluctuations.

Applying a Legendre transformation to the Lagrangian one obtains the Hamil-
tonian

H = φ̇(∂φ̇L)−L =
1

2L
φ2 +

1
2C

Q2, (2.11)

which in the quantum regime has the previously mentioned linear spectrum

En = h̄ω0

(
n̂ +

1
2

)
, (2.12)

where n̂ is the particle number operator, defined with the particle creation/an-
nihilation operators n̂ = â† â which in turn obey

â†, â =

√
Cω0

2h̄

(
φ̂± i

Q̂
Cω0

)
. (2.13)

This allows us to compute the fluctuations of both operators:

var(φ̂) = 〈0| φ̂2 |0〉 − 〈0| φ̂ |0〉2 =
h̄Z
2

(2.14)

 var(Q̂) =
h̄

2Z
(2.15)

where Z =
√

L/C is the resonator impedance. Choice of the characteristic
resonator impedance will determine which are the dominant fluctuations.
This is valid for all superconducting quantum circuits: superconducting qubit
flavours such as the fluxonium [55] employ a high impedance to suppresses
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fluctuations of the charge. The rationale behind this is that, due to the absence
of magnetic monopoles, protecting against flux fluctuations is fundamentally
simpler than doing so from microscopic charge noise, since it essentially
amounts to enclosing the setup within sufficiently effective magnetic shielding.
This, however, means an increased sensitivity to quasiparticle poisoning:
fluxonium engineers are certainly a key target audience of the present work.

2.1.3 Kerr and Josephson effects

It is now time to take a look at nonlinear effects in superconducting resonators.
The field of nonlinear science was jumpstarted by the results from Fermi,
Pasta and Ulam [60], when they surprisingly Verbatim quote from the

original report: “For
example, mode 2 decides,
as it were, to increase
rather rapidly at the cost
of all other modes and
become predominant. At
one time, it has more
energy than all the other
modes put together!”

observed quasiperiodic behavior
in numerical simulations of a nonlinear system, in contrast with their expected
behavior, i.e. the system reaching a fully thermalized mode after some time,
with all Fourier components equivalent. Stanisłav Ulam reportedly [61] later
stated that talking about nonlinear science is like talking about nonelephant
zoology. Indeed, that of linearity is a simplification, applicable to a small
subset of physical systems in nature. This is in principle good news: we are
surrounded by nonlinear systems, so it should be easy to find a suitable one
to make superconducting qubits out of superconducting resonators.

From optics to superconductivity: the Kerr effect

A handy choice of nonlinearity is that of some sort of self nonlinearity, i.e. a
phenomenon in which an output stops being a linear function of the input as
an effect of the input alone. An example of this is the saturation of Ohm’s law
in a conductor after the current starts increasing the resistance of the sample
due to Joule heating, or even more simply the passage under mechanical
strain from a Young type deformation to a non-reversible plastic deformation
(and/or breaking of the sample). Yet another, so to speak less destructive
example of such nonlinearity is the so called Kerr effect [62], which is com-
monplace in optics. A photon propagating through a medium is slowed down
according to the refractive index; however, the refractive index is a function
of (among others) the electronic background, which is itself perturbed by the
photon. The refractive index is shown to increase with the square of amplitude
of the incoming wave, scaled by the so called Kerr coefficient—a measure of
nonlinearity.

An analog of the optical Kerr effect is observed in the kinetic inductance
of superconductors. This is due to the presence of a depairing current: if the
kinetic energy of Cooper pairs becomes greater than the condensation energy,
condensation becomes energetically not favorable. The density of Cooper pairs
is thus expected to decrease with the square of their velocity (or equivalently,
the square of their current). The kinetic inductance, which scales with the
inverse of the CP density, will increase with the square of the circulating
current,
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tion response of a superconduct-
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different drive strengths. The res-
onant frequency is f0 = 8.77 GHz.
The linewidth is κ = 116± 5 kHz
averaged over all drives powers,
and the Kerr coefficient is K =
0.11 Hz. The red curve is in the
bifurcated state.

LK = LK,0

(
1 +

I2

I2
∗

)
, (2.16)

where I∗ is some measure of the nonlinearity. A strongly driven supercon-
ducting resonator will experience an increase in the kinetic inductance—and,
as such, a decrease in resonant frequency. Recalling that the flux is φ = LI
and the inductive energy is EL = LI2/2, one sees that the Kerr effect adds a
perturbation to the potential in the Lagrangian that is quartic in flux. Applying
Euler-Lagrange equation, this adds a term to the equation of motion (Eq. (2.9))
that is cubic in flux: the equation of motion of a superconducting resonator
with a visible Kerr nonlinearity and driven with a sinusoidal tone has the form
of a Duffing equation [63], with the caveat of zero damping (well satisfied for
low-loss superconducting resonators).

For this well studied system it is shown [64] that the cubic term sets a threshold
on the drive amplitude for the onset of a bifurcation, i.e. a discontinuous jump
in the resonator response. The limit on the drive amplitude can be expressed
as a limit on the average number of circulating photons in the resonator—a
convenient metric that takes into account resonator coupling and attenuation
on the input line. Eichler and Wallraff showed [65] within the framework of
input-output theory that this critical number of photons can be expressed as

n̄c =
κ√
3K

, (2.17)

where κ is the resonator linewidth and K is the Kerr coefficient of the mode—
how many Hertz of resonant frequency shift every photon induces. This
simple formula describes well the experimental data (cf. Fig 2.1), and offers a
tool for the design of a superconducting resonator, which one may want very
nonlinear to make a qubit (as discussed) or linear for different applications.
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The Josephson junction

The other superconducting nonlinear phenomenon I wish to touch down upon
is the one arising in Josephson junctions [66], henceforth JJs. A JJ is realized by
connecting two superconducting leads by a barrier thin enough to allow for
Cooper pairs to tunnel through. The relevance of this system is evident if one
considers excitation spectrum of a superconductor, with gap ∆ (cf. Fig. 1.2).
In the limit where all energy scales are well below the gap (e.g. microwave
circuits in a dilution cryostat), including the energy needed for tunneling
across the barrier, the system can be fully described by looking at the number
of Cooper pairs that tunneled from one terminal to the other (cf. Fig. 2.2).
Picking a tunneling direction, say from left to right, is equivalent to picking
a convention for the Cooper pair current. The tunneling is coherent and
reversible, in contrast with a metal-metal or superconductor-metal junction,
in which the continuum of energy levels induce a non reversible, hence lossy,
tunneling due to Fermi’s golden rule. As such, allowed states for the system
are fully described by some integer number of tunneled Cooper pairs, m.
Any state |m〉 can be described as a “state electron” in a tight binding one
dimensional monoatomic chain, having “phase number” ϕ, which is the phase
difference of the two condensate wavefunctions across the barrier, and with
the tunneling amplitude playing the role of a hopping integral. As found for
the 1D tight binding model with zero overlapping and non-zero hopping, the
resulting energy will be a cosine in the phase, and a JJ added to the resonator
circuit will add a potential term in the Lagrangian

E(ϕ) = −EJ cos ϕ (2.18)

with EJ being the height of the barrier. Deriving the energy with respect to the
“phase number” gives an expression for the current across the JJ,

I(ϕ) =
2e
h̄

EJ sin ϕ, (2.19)

while a voltage applied across the JJ will result in

V(ϕ) =
h̄
2e

ϕ̇. (2.20)

Combining Eqs. (2.19) and (2.20), known as the first and second Josephson
equations, gives

L(ϕ) =
LJ

cos ϕ
(2.21)

where LJ = h̄/(2eIc) and Ic is the maximum tunneling current through the
barrier: the Josephson junction is a nonlinear inductor.
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Fig. 2.2: Excitation spectrum of
two SC leads divided by a bar-
rier. The barrier is thin and ren-
ders CP tunneling possible and
favorable with respect to QP ex-
citations, i.e. EJ � ∆. The full
system may be described by a
1D tight binding model (bottom
panel) with hopping integral EJ ,
and the state is fully defined by
the number m of CP that have
tunneled in the direction chosen
as current standard. Adapted
from Ref. [67].

The JJ has found widespread applications such as in metrology [68] and
sensing [69]. The first implementation of superconducting qubits were based
on introducing nonlinearity to superconducting resonators by using a JJ:
using it to substitute the inductor gives a Cooper pair box (CPB), which
is turn dubbed a charge [53] or transmon [54] qubit according to capacitor
size, or using it to shunt the LC circuit, making a flux [70] or fluxonium [55]
qubit according to inductor size. Josephson junction arrays have been used to
implement high impedance elements, exploiting the cumulative inductance
of the JJs [55]; as such, these arrays are dubbed superinductors.

u Superconductivity entails the existence of a kinetic inductance, that
scales inversely with the supercarrier density.

u Superconducting resonators with a high enough kinetic inductance
possess a Kerr nonlinearity which sets a threshold on their drive
power, beyond which their frequency response bifurcates.

u Two superconducting leads separated by a thin insulating barrier
form a so called Josephson junction, which acts as a nonlinear induc-
tor.

u Prototypical superconducting qubits exploit the Josephson nonlinear-
ity to isolate the two lowest quantum states.

u Arrays of Josephson junctions can be used to realize high impedance
elements.
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2.2 Granular aluminum: Kerr, by Josephson

The superconducting circuits described in this thesis are superconducting
resonators. What I now wish to further highlight is that they are also all
made with the same material: granular aluminum. In the following, I describe
how the two previously mentioned nonlinear phenomena find place in this
intriguing material, and why this makes it such a compelling material choice
for superconducting quantum circuits.

2.2.1 Properties and phenomenology

Deposition of aluminum in a controlled oxygen atmosphere results in a com-
posite material made of nanometric aluminum beads embedded in a non-
stoichiometric aluminum oxide matrix. This material has been studied for
decades [71], and to this day its peculiar properties puzzle solid state physi-
cists. I review this material in Chapter 7, and give a brief summary of its
phenomenology in the following.

u The resistivity of the deposited thin film can be tuned by controlling
the oxygen flow, obtaining values from aluminum-like up to some
104 µΩ cm, beyond which the material undergoes a superconductor to
insulator transition, suggested to be of Mott type [72].

u The superconducting gap and critical temperature show a peculiar dome
shape as a function of the resistivity, with a maximum at some hundreds
µΩ cm. The entire dome can be offset vertically, e.g. the maximum
for room temperature deposition is around 2 K whereas deposition on
substrates cooled with liquid helium can give maxima of up to 3 K [73].

u Independent monitoring of ∆ and Tc show a breakdown of the BCS
relation at resistivities above the dome, with the BCS factor jumping
rather abruptly from the usual 1.76 to above 2 [74].

u The internal quality factor is comparable to that of pure aluminum, with
single photon values around 105 [75] and in the millions at strong drives
[76].

u Recently, it has been shown that superconducting resonators made of
grAl can withstand in plane magnetic fields up to 1 Tesla [77, 78].

2.2.2 Microscopic model

A strip (length � width � thickness) of grAl can be modeled as a one di-
mensional chain of Josephson junctions: a single grain is a lead and the oxide
shell surrounding it is the tunneling barrier [79]. The strip itself can be a
distributed resonator or the inductive meander of a lumped element resonator.
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This seemingly rough approximation is shown to reproduce experimental
data within an order of magnitude. A strip of grAl is thus equivalent to the
aforementioned JJ arrays used as superinductors, which have JJ counts usually
in the hundreds and can be tricky to fabricate, rendering grAl an attractive
choice for high impedance quantum circuits.“How about a 99%

discount?” was Ioan Pop’s
catchphrase when

popularizing grAl as a
superinductor in 2018.

In the framework of this effective
JJ array model, the self Kerr coefficient of the fundamental mode is estimated
to be

K = Cπea
ω2

0
jcV

, (2.22)

where C is a geometry dependent prefactor of order unity, e is electron charge,
a is the grain size, ω0 is the fundamental mode frequency, jc is the critical
current density of the intergrain coupling, and V is the volume of the strip. By
further considering the Ambegaokar-Baratoff relation [80]

Ic =
π∆

2eRn
, (2.23)

where Rn is the normal state sheet resistance, tuned by the oxygen flow, the
attractive nature of grAl arises naturally: both the inductance and the linearity
can be tuned independently by means of the oxygen flow and geometry
choice, rendering it suitable for a vast array of quantum circuits.

2.2.3 Examples of grAl quantum circuits

The rest of this chapter is dedicated to examples of superconducting quantum
circuits exploiting the versatile properties of grAl.

Transmon: high nonlinearity, high inductance

A small volume of grAl can be used to realize a highly nonlinear element to
be added to a resonator, thus making a qubit. This was the rationale behind
Ref. [77], in which a lumped element resonator has its inductor interrupted by
a small (0.5× 0.2× 0.01 µm3) volume of highly oxidized (LK ≈ 1 nH/�) grAl:
the resulting nonlinearity is such that n̄c ≈ 1 (cf. Eq. (2.17)), i.e. a single photon
is able to induce excitation and stimulated emission, and Rabi oscillations are
observed.

Fluxonium: low nonlinearity, high inductance

We reported the implementation of the first fluxonium with a grAl superin-
ductance in Ref. [81]. The qubit nonlinearity is provided by a “standard” JJ:
here, in contrast with Ref. [77], grAl nonlinearity is to be kept at a mini-
mum since the purpose is the realization of a standard inductance. This is
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obtained by depositing a larger volume (300× 0.2× 0.04 µm3) of grAl with
LK ≈ 0.1 nH/�. Qubit coherence times reached 30 µs, comparable with previ-
ous implementation with JJ arrays [82] and superinductors made with other
disordered superconductors such as NbN [83], TiN [84], and NbTiN [85]. Un-
der the assumption of grAl being dominated by QP losses, as argued in [75],
the extracted QP density in the superinductor is xQP ∼ 5× 10−7, two orders
of magnitude above the JJ array superinductor reported Ref. [86]. Indeed,
Ref. [86] derives a model which correctly predicts the losses, and explains how
their system is able to achieve energy relaxation times in the excess of 1 ms,
not observed in the grAl superinductor fluxonium: this model correctly ne-
glects superinductor losses, whereas they seem to be an important dissipative
channel for fluxonia with grAl superinductors. Understanding the source(s)
of this vast amount of nonequilibrium QPs and subsequently suppressing the
QP density is an outstanding task for grAl fluxonium development. Finally,
I wish to point out that we recently showed that the same grAl fluxonium
implementation can be robustly read out by strong (n̄ ∼ 102) drives, allowing
to reach high preparation fidelities (99% and 93% in the ground and excited
state respectively) without the use of a parametric amplifier [87].

u Granular aluminum (grAl) is a composite material made of aluminum
beads in an aluminum oxide matrix, obtained by depositing alu-
minum in a controlled oxygen atmosphere.

u The properties of grAl include tunability of resistivity, which in turn
entails tunability of the superconducting gap, tunable nonlinearity,
low loss, and resilience to magnetic fields.

u We have demonstrated successful implementation of grAl based
qubits of both the transmon and fluxonium type.

u A current roadblock for the implementation of quantum circuits based
on grAl is posed by nonequilibrium quasiparticles.

2.3 Microwave kinetic inductance detectors

I wish to end this chapter by spending a couple words on what is certainly
a flagship application of superconducting resonators, namely Microwave
Kinetic Inductance Detectors (MKIDs) [88]. It turns out that grAl is a viable
material choice for these circuits, too.

2.3.1 New MKIDs on the block: implementation with grAl

Microwave kinetic inductance detectors are superconducting detectors used
to image millimeter wave radiation. Incoming radiation above the spectral
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gap (hν > 2∆) is able to break Cooper pairs and induce a shift in the resonant
frequency via a shift in kinetic inductance. The detector responsivity is then
defined

R =
|δ f0|

δPabsorbed
: (2.24)

shifts in resonant frequency are used to probe shifts in the power of a radiant
source under observation. Since their proof of concept almost 20 years ago,
they have found widespread application in radio astronomy (in both ground
based observations [89–94], and projected spaceborne missions [95–98]) as
well as particle detection [99–103] and even security applications [104], given
their ability to image through fabric that is otherwise opaque in both the
visible and infrared regimes.

Recalling Eq. (2.10), the shift in resonant frequency for a given amount of gen-
erated QPs scales linearly with the kinetic inductance fraction, α. Commonly
observed values, e.g. for thin film aluminum, are of the order of α = 0.1. The
tunability of granular aluminum renders it possible to reach the α = 1 regime,
allowing for the fabrication of highly sensitive MKIDs.

2.3.2 Interplay between kinetic inductance and nonlinearity

The higher sensitivity of MKIDs made with highly oxidized grAl is accompa-
nied by an increased nonlinearity resulting in a lowered bifurcation threshold
(cf. Eqs. (2.17) and (2.22)). The readout of MKIDs is performed at the max-
imum available power before bifurcation in order to maximize the signal
to noise ratio (SNR). We therefore seek an optimum condition in which the
responsivity is high, but the onset of bifurcation still allows a drive power
that results in an acceptable SNR. We encode this interplay by defining the
voltage responsivity RV as the product of the kinetic inductance fraction and
the square root of the critical number of drive photons, since the responsivity
relates to a voltage, while the photon number scales with the drive power. For
high-impedance, low-loss (Qi � QC) grAl MKIDs, it is shown that nc in turn
scales inversely with the kinetic inductance (cf. Eq. (6.15)), leading to

RV ≡ α
√

nc ∼
L3/4

K
LK + LG

: (2.25)

the voltage responsivity has a maximum at α = 3/4, and decays slowly after
that, making grAl a suitable material for the realization of MKIDs with very
high inductance. The parameter choice now sought is a balance of kinetic
inductance and nonlinearity.
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2.3.3 Performance and the noise equivalent power

Detectors are instruments that relate a shift in a gauge quantity to a shift in a
source quantity. Fluctuations in the gauge quantity unrelated to the values
of the source quantity constitute noise. Longer averaging is then used to
cancel out, or bring down to an acceptable level, such noise. For any detector
measuring a given quantity, the Noise Equivalent is a compact metric taking
into account all of the above: how well the gauge responds to the source, over
which integration time scale. MKIDs observe shifts in radiant and power, and
therefore the Noise Equivalent Power is defined. The gauge is the resonant
frequency. The first ingredient is the detector responsivity, i.e. how much the
resonant frequency will change with respect to a change in radiant power, as
defined in Eq. (2.24). The quantity that encodes the stability of the gauge is the
noise spectral density of the resonant frequency (cf. Section 3.2 and Eq. (3.7)),
allowing one to write

NEP( f ) =
S( f )
R

, (2.26)

expressed in power per square root of frequency.

The NEP is the radiant power shift that results in a unit SNR in a 1 Hz
output bandwidth (i.e. 0.5 seconds of integration). Note that the generic
Noise Equivalent 〈Quantity〉 will be expressed in 〈Quantity〉 per square root
frequency. In short, lower NEP means a better MKID. When trying to make the
best grAl MKID, the responsivity is fixed in place by the α = 3/4 constraint;
it may be increased by increasing the optical coupling to the observed source,
but this can not be done arbitrarily, since a too high QP background would
suppress the quality factor so much that the resonance becomes not visible.
The remaining avenue for NEP improvement is that of noise reduction, which
is one of the central themes of the following chapter.

u Microwave kinetic inductance detectors (MKIDs) are superconduct-
ing resonators used for imaging in the high microwave regime, the
lowest detectable frequency being set by the spectral gap (e.g. order
of 100 GHz for aluminum resonators)

u Their ease of fabrication and operation resulted in widespread appli-
cation in radio astronomy, particle physics, and security.

u We have demonstrated that grAl is a viable material for the implemen-
tation of MKIDs, allowing us to engineer an optimum compromise
between high sensitivity and nonlinear response.
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Chapter 3

Loss and noise
in superconducting resonators

Superconductors have zero DC losses, but non-zero reactive losses. In
the high impedance circuits employed in this work, the preponderant
loss comes from dissipative motion of the condensate, due to excess
quasiparticles, “The noiseless channel

is an ill fated dogma
Destroy expectations
Join avant garde of glitch
The exoskeleton of
progress

Become a new filter
Speak glitch speak
Study glitch studies”

Glitch Studies Manifesto
[105]

and fluctuations in the quasiparticle background induce
instability in the resonant frequency. In this chapter I give an overview
of loss and noise mechanisms, and report the experimental evidence
of QPs being the dominant source, making high impedance supercon-
ducting resonators efficient testbeds for the diagnostics of quasiparticle
poisoning.

3.1 Dissipation

THE condition of resonance is achieved when a resonator is driven by
a tone at its resonant frequency. At that point, its input impedance
is purely imaginary, and an equal partition of electric and magnetic

energy is distributed across the capacitor and inductor. The “efficiency” of the
resonator is then the ratio of the power supplied by the drive and the power
lost by the resonator. The power supplied by the drive is equivalently the
energy stored at each cycle, ω0Ē. By expressing the energy via de Broglie’s
relation, the quality factor The variable was named Q

because “all other letters
were taken” [106], and the
term quality factor was
stitched to it later on.
Indeed it is not an
absolute measure of the
quality of a resonator, e.g.
a very high Q resonator is
not of high quality for an
application requiring a
finite linewidth.

is defined

Q = ω0
n̄h̄ω0

(−dtn̄)h̄ω0
, (3.1)

from which the decay rate is

dtn̄ = −κn̄, (3.2)

where κ ≡ ω0/Q is the linewidth of the Lorentzian of the input impedance,
1/κ being the decay rate of the resonator. The quality factor Q therefore defines
the sharpness of the frequency response of the resonator around resonance.
Equivalently, a resonator excited by a step input will see its oscillation decay
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exponentially: the factor 2πQ is the number of oscillation before the envelope
reaches the 1/e point, i.e., a measure of how fast the resonator loses ≈ 37% of
the stored energy after the drive tone is turned off.

The quality factor is defined by the compounded loss mechanism in the
resonator. In particular, one writes

1
Q

=
1

Qi
+

1
Qc

, (3.3)

where Qi and Qc are the internal and external (also “coupling”) quality factors,
related to losses that are intrinsic to the resonator and radiative loss into the
drive port(s). As detailed in Chapter 6, these two separate quantities can
be estimated algebraically by the resonator response in the complex plane.
The coupling is somewhat trivial, since it can be engineered. The intrinsic
internal quality factor, however, is influenced by many processes both within
the resonator and its surroundings, and studying these loss mechanisms is
an active field. The internal quality factor is linked to the energy relaxation
time T1 of qubits: both metrics indicate how well the system stores energy.
This implies that, given a protocol improving the Qi of a resonator, one may
reasonably expect that same protocol to improve the T1 of a qubit implemented
with comparable parameters.

In principle, one could measure Qi as a function of time to monitor the dynam-
ics of the QP background. In reality, this is nontrivial to achieve: as mentioned,
the Qi is extracted by acquiring several points of the resonator in order to fit
them—a process much slower compared to the sampling rate. Often several
averages are required to obtaine a suitable SNR for the response curve, which
is particularly true for measuring Qi at a single photon drive, a metric of
interest for quantum information applications. For all intents and purposes,
the dissipation figures that I report in the following are a static measures of the
loss mechanisms—as it will turn out, a static measure of the QP background.

3.1.1 Quality factors and participation ratios

The internal quality factor of a resonator obeys

1
Qi

= ∑
x

px
1

Qi,x
, (3.4)

where 1/Qi,x is the x-th channel loss with participation ratio px. Note that not
all losses may be described in this fashion: for instance, during operation of
a certain mode the leakage of a photon to a different mode will effectively
counts as loss, yet it will not be possible to model it as a loss that concerns the
whole resonating structure.
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3.1.2 Dielectric loss

Engineering different participation ratios is a powerful diagnostic tool for res-
onator dissipation. If the total Qi measured for several samples with different
participation ratios of a certain dissipative channel decays as a power law
with decreasing px, one has proof that the loss channel under test is domi-
nating over other losses. In this sense, it is instructive to look at the review
of Wang and coworkers [107], wherein by using this approach they showed
that several superconducting qubits made of Al and TiN were dominated by
dielectric loss. Dielectric loss comes from the drive wave not only exciting
the superconducting condensate, but also losing energy by polarizing some
dipoles in its vicinity. The internal quality factor for dielectric loss is

1
Qi,ε

= pε tan δ, (3.5)

where the subscript ε denotes “dielectric” and the loss tangent tan δ is a
material property accounting for the loss in the material. In this case, the
participation ratio will be the part of the active drive volume mode in the
impurity rich region, scaled by the total mode volume. The participation ratio
of the substrate itself is large (p ≈ 0.9), but commonly used substrates such
as sapphire and silicon have very low intrinsic dielectric loss, i.e. tan δ <
10−6 [108, 109]. On the other hand, adsorbed residues in regions such as
the metal-air and substrate-air interfaces, as well as residues trapped in the
metal-substrate interface, have smaller participation ratios but may have
significantly higher loss, up to tan δ ∼ 10−2 − 10−3 [110, 111]. Water itself has
rotational modes in the microwave regime, making most organic compounds
sensitive to dielectric heating at GHz frequencies. This is the working

principle of microwave
ovens, which operate at
frequencies very close to
those used in thin film
superconducting
resonators for cQED
(2− 3 GHz): dielectric loss
amounts to the readout
tone microwaving gunk
somewhere close to the
circuit.

In particular, the review of
results in Ref. [107] shows that the dominant source of dielectric losses are
located at the metal-substrate interface.

Al

pMS

Q
i

tan δ =
2.4×

10−
3 xQP = 5× 106

10−2 10−3 10−4
104

105

106 44 µm3

800 µm3

120 µm3

Volume:

Fig. 3.1: Internal quality factor at
single photon drive for several
grAl resonators as a function of
their metal-substrate participation
ratio. Adapted from Ref. [75].
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3.1.3 Quasiparticle loss

The same analysis was carried out by Grünhaupt [75] for a set of high
impedance granular aluminum circuits with metal-substrate participation
ratios covering the 10−2 − 10−4 range (cf. Fig 3.1). The expected linear be-
havior saturates to a plateau at around pε = 10−3: once dielectric losses are
suppressed enough, another loss mechanism becomes dominating, whereas
aluminum resonators continue on the upwards slope for another order of
magnitude increase in Qi. Due to microstructure of grAl, rich in oxide, it
would be fair to assume dielectric loss within the resonator to also be a non-
negligible dissipative channel. However, this would imply a scaling with the
total resonator volume, which is not observed for resonators with the lowest
pMS and volumes spanning more than an order of magnitude.

Note that, increasing the drive power, one eventually saturates the dielectric
loss, i.e., the power wasted exciting defects (e.g. organic residues, two level
systems [112] or microscopic charged fluctuators [113]) becomes negligible
compared to the total drive power. It is thus expected, and observed, that Qi
increases with the drive power for resonators limited by dielectric loss. Inter-
estingly, this dependence was observed even for those samples which were
not dielectric limited, suggesting that the lossy physics under observation also
responds positively to stronger drives. Grünhaupt and coworkers put forth
a dynamical model for which the proposed source of loss are quasiparticles.
Given the peculiar microstructure of grAl, at low drives QPs are localized
within grains, whereas higher drives promote the extraction of QPs from a
grain and subsequent activation of intergrain recombination, decreasing the
QP background and increasing the Qi. The assumption of QPs dominating
the loss is also robust considering that the high impedance regime is achieved
by high kinetic inductance LK � LG: the kinetic inductance fraction, α, acting
as the participation ratio for quasiparticle losses, is essentially unity,

1
Qi,QP

= αxQP ≈ xQP. (3.6)

Under the assumption of Qi being fully dominated by quasiparticle loss, the
fractional QP density is estimated to be of the order of 5× 10−6, comparable
with previously measured values [114–118].

The effect of QPs on the internal quality factor of resonators is experimentally
accessible even for low inductance resonators: the participation ratio is low,
but one simply has to increase the magnitude of the QP loss, i.e. the QP density.
This is precisely what happens in MKIDs, in which enough pair breaking
optical loading is coupled to the resonator to achieve a visible modulation of
the response in both amplitude and frequency.

This mechanism is shown in Fig. 3.2, adapted from Ref. [119]. The transmis-
sion spectrum of a grAl MKID changes as a function of the optical loading.
Experimentally, this is achieved by measuring the sample in a cryostat having
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Fig. 3.2: Transmission amplitude of
an MKID optically loaded by a black
body source. The frequency response
changes as a function of the two differ-
ent temperatures of the black body, due
to induced changes in the quasiparticle
background. Adapted from Ref. [119].

a window at the mixing chamber stage, and coupling radiation from a black
body into it. The black body (a high density polyethylene disk) is cooled down
with a pulse tube cryocooler down to 60 K. A layer of Eccosorb [120] sponge
can be interposed between the blackbody and the optical aperture of the
cryostat, absorbing and remitting the radiation at room temperature (300 K).
Small metal beads suspended by wires can be interposed as well, playing the
role of planets on the cold celestial background, allowing to aptly monitor
the imaging capabilities of large MKID arrays—this setup being evocatively
dubbed a sky simulator [121]. “Quando sei qui

vicino a me\
Questo soffitto viola\
No, non esiste più\
Io vedo il cielo sopra noi.”

Gino Paoli,
Il cielo in una stanza

When the radiation is (re)emitted by the room temperature blackbody source,
the increased QP background shifts the resonance frequency to a lower value,
and renders the Lorentzian more shallow. This is because, even when illu-
minated by the colder black body, the total quality factor is dominated by
Qi � Qc, since Qi is kept at a low level (Qi ∼ 104) by the optical loading.
Note that, while pair breaking radiation is usually above the gap, in Ref. [119],
from which the picture is adapted, the blackbody radiation is filtered to be
below the grAl gap, yet an induced modulation both in amplitude and phase
is still observed. The existence of such subgap states is one of the aforemen-
tioned peculiar properties of grAl, and in Ref. [119] it is exploited to increase
the dynamic range of a grAl MKID.

u Algebraic fits to the resonator response give access to the internal
quality factor, a metric for the intrinsic resonator losses.

u For the high impedance grAl resonators used in this work, the inter-
nal quality factor is dominated by quasiparticle losses, making it an
effective measure of the QP background.
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3.2 Resonant frequency instability

The resonant frequency of superconducting resonators observably fluctuates
over time. The capacitance and the self inductance of the wires are compara-
tively much more stable than the kinetic inductance, since the latter depends
upon the number of carriers. In the following, and particularly in Chapter 4,
it will become apparent that such fluctuations are dominated by fluctuations
in the QP background. In contrast with the previously discussed Qi, this met-
ric can be acquired with a fast measurement: it is sufficient to monitor time
fluctuations of only the point at resonance instead of the full response, and
this can be done at a high drive, rendering the process fast enough to track
sub-millisecond time fluctuations of the QP background.

3.2.1 Noise spectral density

Following Eq. (2.10), in a high impedance superconducting resonator, the
relative shift of the resonant frequency over time informs quantitatively on the
dynamics of the quasiparticle background. Computing the spectral density of
fluctuations

S( f ) =
|F{δ f0(t)}|

B
, (3.7)

Eq. (3.8)

S(
f)

(H
z/
√

H
z)

1 10 102 103

f (Hz)

10

102

103

104

Fig. 3.3: Noise spectral density of
two high impedance grAl resonators,
shown in blue and green, with fits to
Eq. (3.8) in black.

where B = 1/
√

2t′ and t′ is the integration time, is a way to quantify the
dynamical degrading effect of QPs. Typically, the spectra are composed by an
initial 1/ f portion followed by white noise at higher frequency.

In Fig. 3.3 I report spectra measured for two different high impedance grAl
resonators (samples 0A and 2A in Section 6.3, in green and blue, respectively).
The resonator reported in blue shows lower 1/ f noise, attributed to a reduced
quasiparticle background achieved via phonon trapping (cf. Chapter 4 and

30



CHAPTER 3. LOSS AND NOISE IN SUPERCONDUCTING RESONATORS

Subsection 6.3.2), and visibility of the 50 Hz power grid harmonics, possi-
bly due to its higher coupling (Qc ≈ 7× 103, compared to 16× 103 for the
resonator reported in green).

Spectra can be fitted with the phenomenological model

S( f ) =
S1/ f

( f /1 Hz)a + S0 (3.8)

taking into account an amplitude S1/ f (low frequency component) and noise
“color” a, usually of order unity. Quasiparticle abatement measures suppress
both values (cf. Subsection 6.3.2); this is particularly visible in the 1/ f noise
amplitude, showing up to an order of magnitude reduction. The origin of the

ubiquitous 1/ f noise is
likely manifold and a topic
of research in several
fields. However, it is clear
that it is a form of
“collection” noise, or, even
more generally, it just
means that if you wait
long enough, something
bad will happen.

The qubit metric
equivalent to the noise spectral density is the rate at which the Bloch vector
spreads over the equatorial plane, i.e. the inverse of the dephasing time Tϕ.

3.2.2 QP bursts

Besides small fluctuations, the resonant frequency over time experiences
sudden drops, followed by a relaxation to unperturbed values, as shown in
Fig. 3.4. This has been independently observed by different groups [75, 115,
122]. The natural explanation is that this is due to phonon-mediated, high-
energy impacts in the substrates. Particularly, Ref. [122] reports time correlated
bursts across different resonators on the same chip, and proposed a proof
of concept implementation of a way to reconstruct the position of the initial
particle impact by trilaterating the arrival time for same chip resonators (under
the assumption of isotropic propagation for the phonons). Furthermore, the
rate of such events is comparable for different groups using similar chip sizes.
This suggests that the radiation source is either non-local (i.e. of cosmic origin)
or some radio impure contaminant, which is commonplace in standard labs.

Quasiparticle abatement techniques should aim at getting rids of these bursts,
which are particular degrading for quantum error correction schemes such
as the surface code [27], which is based on the assumption of random, un-
correlated errors. Quasiparticle bursts that can not be resolved above the
baseline may be a contribution to the 1/ f spectra previously shown: longer
waiting times for a given substrate size mean acquiring more bursts. The
relaxation time is particularly long in grAl, of the order of a second. This is
likely due to the microstructure rendering it difficult for the QPs to recombine.
The model put forth in Ref. [75], in which higher drives should activate the
recombination of QPs, is corroborated by an observation of faster relaxation
times both at higher drives, and higher temperatures (showing a monotonic
decrease of two orders of magnitude from dilution temperatures up to∼ 0.3 K
[124]). Interestingly, the relaxation times for grAl are reduced by an order of
magnitude when the magnetic shielding of the sample is reduced, possibly
hinting at the formation of Abrikosov vortexes acting as QP attractors and
hence recombination centers.
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Fig. 3.4: Examples of a sin-
gle quasiparticle burst in
a high impedance grAl
stripline (top, adapted
from Ref. [123]) and mul-
tiplexed readout of con-
comitant bursts in five
aluminum MKIDs (bot-
tom, adapted from Ref.
[122]). Note the difference
in relaxation times, or-
ders of magnitude slower
for grAl.

In light of this experimental evidence, two paths for the abatement of out of
equilibrium quasiparticle density arise: preventing phonons from reaching
the resonators, and preventing radiation from reaching the substrate. The rest
of this thesis is dedicated to the exploration of the effect of these two methods
on high impedance granular aluminum resonators.

u Fluctuations in the resonant frequency of high impedance supercon-
ducting resonators inform on the time evolution of the QP back-
ground.

u Small fluctuations of the resonant frequency are used to compute the
noise spectral density.

u The resonant frequency of high impedance superconducting res-
onators shows stochastic, abrupt drops, dubbed quasiparticle bursts.

u Quasiparticle bursts are time correlated for resonators on the same
chip, hinting that athermal phonons generated by high-energy parti-
cle impacts in the chip are a source of nonequilibrium QPs.

u These considerations lead to two possible complementary path of QP
abatement: getting rid of phonons, and getting rid of radiation.

32



Chapter 4

Phonon trapping

There is robust experimental evidence suggesting phonon mediated
high-energy particle impacts as a source of out of equilibrium quasipar-
ticles. In this chapter I show how getting rid of high-energy phonons via
so called phonon traps “It’s a trap!”

Admiral Ackbar,
Return of the Jedi

is a viable strategy for quasiparticle abatement.

4.1 Definition and model

IN the case of a thin film superconducting circuit, one calls a phonon trap
a metalization with a comparatively lower gap that and connected to the
circuit mechanically, but not galvanically. If the connection is galvanic,

some performance increase is also observed, and in the literature they are
referred to as quasiparticle traps [125, 126]. Note that in principle a normal
metal could also act as a phonon trap, for a metal can be thought of as having
zero gap.

4.1.1 Rothwarf-Taylor rate equations

In the following, I present the model that we developed to describe phonon
trapping, also summarized in Fig. 4.1. I simply report equations; their deriva-
tion can be found in Chapter 8. The basis for the model are rate equations of
the Rothwarf-Taylor [127] type, of the form

ṄC = −2rCN2
C + 2bCNP (4.1)

ṄT = −2rT N2
T + 2bT NP − sT NT (4.2)

ṄP = gP − bT NP + rT N2
T − bCNP + rCN2

C − ePNP, (4.3)

where C and T subscript denote the circuit and the trap while P denotes
phonons, r, b and s are rates of recombination, breaking and scattering respec-
tively, and gP is a phonon generation term (possibly related to high-energy
radiation, but in principle arbitrary). The process of phonon trapping is sum-
marized as follows: phonons with frequency above the spectral gap may break
CPs in the circuit (C), creating two QPs at or above the gap edge. These, in
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Fig. 4.1: Summary of the
dynamics modeled by
Eqs. (4.1) to (4.3). Solid
black arrows are excita-
tions, dashed gray arrows
are relaxations. Wiggly ar-
rows represent phonons.

turn, can recombine into a CP by emitting a phonon with the frequency of the
spectral gap. This cyclic creation-recombination process is one of the driving
forces behind the CP density fluctuations explored in Section 3.2, giving rise to
instability in the resonant frequency. In the presence of a trap (T), having lower
gap, the same high-energy phonon may break a CP and excite QPs above the
gap; however, the recombination phonon recirculated in the substrate in this
case now lacks the sufficient energy to break a CP in the circuit. Two parallel
avenues towards making an efficient phonon traps arise: engineer a high gap
difference between circuit and trap, and cover as much as substrate surface as
possible with phonon traps. I describe them in the following.

4.1.2 Increasing the gap difference

I will start by covering the beneficial effect of phonon trapping on the afor-
mentioned grAl MKIDs. Following Refs. [128, 129], one sees that for a super-
conducting resonator the noise equivalent power follows

NEP = 2∆C

√
NC

τC
, (4.4)

where ∆, N and τ are the superconducting gap, number of QPs, and QP
lifetime, respectively. The system of Eqs. (4.1) to (4.3) can be solved and
combined with Eq. (4.4) to obtain

NEP ∝ ∆2
C

(
∆T

∆C − ∆T

)7/2 1
∆C + 7∆T

: (4.5)

the noise equivalent power is expected to decrease monotonically with the
difference between the gaps of the circuit (∆C) and of the trap (∆T).
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4.1.3 Increasing the surface coverage

For a given difference between circuit and trap gap the phonon trapping effi-
ciency scales with the amount of phonon trapping material. The total internal
quality factor is computed by taking into account both QP and dielectric losses
as

1
Qi

=
1

QQP,0

√
1 + (βF)2 − βF

√
2 + (βF)2 + pε tan δ, (4.6)

where β is a phenomenological constant which accounts for the rates of
phonon generation, scattering, and thermalization. The internal quality fac-
tor is expected to increase monotonically with the phonon trap coverage F.
Furthermore, the QP burst is reduced as

ΓB = Γ0
Λ

F + Λ
, (4.7)

where Γ0 is the burst rate with no phonon traps and Λ is the ratio between
the rates of phonon thermalization to the sample holder and phonon being
downconverted by the traps. A monotone decrease of the QP burst rate is
expected.

u For a superconducting circuit, a phonon trap is a different supercon-
ducting film on the same chip and with a lower gap.

u Phonon traps are galvanically disconnected from the circuit; metal-
izations with a lower gap and galvanically connected to the circuit
are called quasiparticle traps (not explored in the present work).

u We developed a phenomenological model of phonon trapping based
on rate equations of the Rothwarf-Taylor type.

u Within the framework of our model we expect that increasing the gap
difference between circuit and trap should improve the performance
of the circuit; in particular, we show it should reduce the NEP of
phonon trapped MKIDs.

u We further show that fixing the gap of both circuit and trap and
increasing the phonon trap surface coverage should increase the
internal quality factor, and reduce the number of measured QP bursts.

35



CHAPTER 4. PHONON TRAPPING
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Fig. 4.2: Photograph of the transmission sample holder and zoomed
in false-colored micrograph of a grAl MKID with its relative circuit
diagram.

4.2 Results for planar MKIDs

We use granular aluminum MKIDs as a testbed for the efficiency of phonon
traps, and the prevision of our model for reducing the NEP by increasing the
gap difference. This is described in Ref. [76], and summarized in the following.

4.2.1 The ground plane as a phonon trap

The implementation of grAl MKIDs is shown in Fig. 4.2. The “hanger” notch
type geometry allows several (22 in this case) resonators to load the same
feedline, with the possibility of reading them out with a single microwave line
(further allowing for frequency multiplexing). The coupling to the feedline
can be done either capacitively (shown in the figure) or inductively (with the
resonator flipped vertically, the inductive meander close to the feedline). The
shape of the meander is a Hilbert curve [130], chosen for its space filling prop-
erties and its sensitivity to two light polarizations at once. The comparatively
much larger ground plane, made of aluminum (∆ = 220 µeV) acts as a phonon
trap with respect to circuits realized with grAl (∆ > 300 µeV). We fabricated
a total of six samples, named A to F, which span a vast range of resistivities,
from 40 to 1600 µΩ cm, and the whole dome shape of the superconducting
grAl gap with it, allowing for different values of the circuit-trap gap difference
to be analysed.

4.2.2 NEP scaling and improvement

The different resistivities of samples A to F imply that they each have a
different impedance matching to the incoming millimeter wave radiation, and
this effect must be normalized out in order to allow for a fair performance
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comparison across the different samples. The resonators are patterned on
a sapphire substrate and are back illuminated, meaning that the millimeter
waves reach them by passing through the sapphire chip. Hence, the relevant
impedance matching is that between the Hilbert shaped meander and the
sapphire chip. The meander is an approximately equal distribution of stripes
having width w and length s. We can look at the coupling of a single stripe:
the normal state sheet resistance per square that matches the circuit to the
incoming wave through sapphire is

Rn,match =
w
s

Z0√
εs

, (4.8)

where Z0 ≈ 377 Ω is the vacuum impedance and εs ≈ 10 is the relative
permittivity of sapphire. By calculating the impedance mismatch the sheet
absorptance is defined as This is an errata for Eq. A2

in Ref. [76], for which a
reflectance is erroneously
reported in lieu of an
absorptance.

A = 1− |Rn,match − Rn|
Rn,match + Rn

. (4.9)

This quantity is used to scale the radiant power incoming onto the resonator
to an effectively absorbed radiant power, Pabs = δPinA, thereby scaling the
responsivity as per Eq. (2.24).
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Fig. 4.3: Noise spectral
density (S( f ), top) and
noise equivalent power
(NEP, bottom), both eval-
uated at 10 Hz, as a func-
tion of the grAl gap for
samples A-F. The noise
spectral density is also
measured in a standard
dilution cryostat with
no optical opening, and
hence a much lower effec-
tive mixing chamber tem-
perature (data shown in a
lighter shade).

The measured values of the scaled NEP are reported in Fig. 4.3, together
with values for the noise spectral density lone, both evaluated at 10 Hz. Both
quantities show an anticorrelation with the grAl gap. Such anticorrelation is
particularly clear for samples A-D. Samples E and F are higher in resistivity,
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and enter a regime in which the BCS factor jumps abruptly from 1.76 to
2.1− 2.2 [74]. The underlying physics is still not yet fully understood and may
escape the scope of our very simple phonon trapping model.

u We fabricated MKIDs using grAl, for a total of six samples spanning
resistivities in the 40 to 1600 µΩ cm range.

u The gap changes with the resistivity, following a dome shape of values
in the 300− 350 µeV range.

u The expected anticorrelation between gap difference and NEP is
observed for samples with low resistivity.

u Samples with high resistivity stray away from the model, possibly
due to the appearance of new phenomena at higher oxidation that
are yet to be fully understood.

4.3 Results for striplines in a 3D waveguide

We can now explore the effect of fixing the gap and changing the surface
coverage of phonon traps. The full reports on results can be found in Ref. [131].
MKIDs are operated under illumination, which makes them QP dominated. In
order to put resonators in a fully QP dominated in a standard dilution cryostat,
we measure grAl stripline in a 3D copper waveguide (cf. Fig. 4.4) providing
a very low dielectric loss environment [132], and we further maximize the
sensitivity to QPs by pushing the kinetic inductance up to to 2 nH/� (close to
the superconductor to insulator transition of grAl), essentially giving α = 1.
The grAl gap being fixed, we now seek to sweep the amount of phonon traps
and see the resulting effect.

4.3.1 Phonon traps lattice

We realized the phonon traps by patterning a square lattice of 10× 10 µm2,
60 nm thick aluminum squares. We fabricated four samples in total, sweeping
the lattice parameter, d to 5, 10 and 20 µm, as well as fabricating a sample
without phonon traps, acting as a witness. The witness sample is nominally
identical to the one measured in Ref. [75]. This results in a surface filling factor
F for the circuit side of the sapphire chip of 0, 8.5%, 19% and 34%. In principle,
this could have been achieved by simply changing the surface of a single
metalization, comparable to the MKID ground plane of Section 4.2. However,
the lattice approach offers several advantages. Firstly, changing the size of a
single ungrounded metalization would amount to changing its extension, e.g.
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Fig. 4.4: Photograph of the copper waveguide sample holder, with
zoomed in false-colored micrograph of the three grAl striplines and
the lattice of phonon traps.

by putting closer or further from the resonators (possibly coupling electro-
magnetically to them) of closer or further from the chip sides (possibly closing
and opening surface paths for ballistic phonons). The lattice approach allows
one to preserve both the footprint and the position of the phonon trap, while
only changing the coverage, minimizing possible unknown side effects. The
size of the single aluminum islands ensures that their self resonances are way
above our microwave range of interest. Furthermore, the small size of the
squares prevents the formation of Abrikosov vortexes in them, which would
add an unwanted extra variable to the system.

It is worth to point out that the lattice is possibly acting as a phononic crys-
tal. However, the wavelength for pair breaking phonons in the sapphire
(cs ∼ 10 km/s [133]) substrate is of the order of 100 nm, two orders of magni-
tudes smaller than the lattice parameter and cell size. Engineering a phononic
crystal with such characteristic size, which is not possible with our current
lithographic techniques, would possibly have a further beneficial effect by
opening a gap in the dispersion relation and preventing phonons from reach-
ing the circuit altogether, as was shown for instance for optomechanical
resonators sensitive to GHz frequency phonons [134].

4.3.2 Effect on dissipation and burst rate

The internal quality factor Qi is plotted in Fig. 4.5 as a function of the phonon
trap filling factor for all resonators. The measured data is fitted to Eq. (4.6)
with β = 9 as a fixed parameter for all resonators. With this, one can extrapo-
late that in the fully trapped regime F → 1 the internal quality factor at single
photon may be increased by up to an order of magnitude with respect to the
case for no phonon traps. We extract an average tan δ = 6.6× 10−3 for res-
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onators A and B, comparable to values reported in [75, 107]. The much higher
tan δ = 10−1 for resonators C may imply the presence of optical photoresist
residues for some of them [135].

The burst rate ΓB is plotted in Fig. 4.6 as a function of the phonon trap filling
factor for all resonators. The burst rate is obtained by counting sudden drops
with δxQP > 50× 10−6. The only exception is resonator C with F = 34%,
having much higher white noise due its frequency lying outside of our readout
band. In this case the threshold is set at δxQP = 150 × 10−6, three times
higher. The measured data, with the exception of C with F = 34%, is fitted
to Eq. (4.7) with Λ = 0.18 as a fixed parameter for all resonators. In this case,
we extrapolate that the limit F → 1 should provide a factor six reduction
in the burst rate. Note that an abatement of 1/ f noise is also achieved with
phonon trapping (as reported in Fig. 6.14), possibly hinting at small QP bursts
constituting a significant portion of the 1/ f noise.

Both the Qi and ΓB differences between the resonators A, B and C types may
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Fig. 4.6: Measured quasiparticle burst rate
ΓB as a function of the phonon trap filling
factor F, together with fits to Eq. (4.7).
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be due to their position with respect to the standing wave patterns of the
substrate phonons. For example, Ref. [136] reports a higher phonon mode
density in the substrate center (albeit for a square sample), which would
explain the lowest Qi and highest ΓB of resonators B. However, this same
argument would then imply that the symmetrically positioned resonators A
and C should show comparable dissipation, which is not observed. It is also
worth to note that three resonators with no phonon traps are nominally the
same setup measured in Ref. [75], for which the single photon Qi is very close
for the three resonators. The reason behind differences across resonator types
is an open question.

u We fabricated four samples with three very high impedance grAl
striplines and varying phonon traps surface coverage.

u The internal quality factor measured at a single photon drive increases
with the phonon traps coverage. Fits to our phonon trapping model
predict an order of magnitude improvement for maximal phonon
trap coverage.

u The measured quasiparticle burst rate decreases with the phonon
traps coverage. Fits to our phonon trapping model predict a factor six
reduction for maximal phonon trap coverage.
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Chapter 5

Radiation shielding

The previous chapter showed how dampening athermal phonons in the
substrate is an effective way to reduce the out of equilibrium quasipar-
ticle density in superconducting quantum circuits. A possible source
of such phonons are high-energy particles hitting the substrate, i.e. ra-
dioactivity. “3.6 Röntgen...

not great, not terrible”

Anatoli Djatlow, in HBO’s
Chernobyl—an example of
radioactivity
underestimation.

In this chapter, I describe radiation shielding as an effective
complementary quasiparticle abatement strategy.

5.1 Radioactivity sources and measurement setups

THE superconducting quantum circuits community has been reporting
quasiparticle bursts for more than a decade. Observations on the rate,
time correlation, and ubiquity of these phenomena lead to an increasing

consensus towards the cause being high-energy particles, i.e. radioactivity,
which has been recently shown to have a negative effect on superconducting
qubits [137]. Radioactivity sources may be ideally divided into two categories.
The ones coming from radio impure materials close to the sample and sample
holder can be categorized as “near” sources. Sources from e.g. concrete in the
lab walls and coming from outer space are then “far” sources. As we detail in
Ref. [123], we performed measurements on the witness sample (i.e, with no
phonon traps) from Section 4.3 in a total of three different setups, summarized
in Fig. 5.1. The setups are located in Karlsruhe (K), Rome (R), and the Gran
Sasso National Labs (G), carved under the Gran Sasso massif in central Italy.

Gran Sasso literally means
“big rock” in italian.

The similarities with the
SPECTRE supervillain
base in the James Bond
movie You only live twice
are astounding.

The three setups K, R and G are respectively a control setup, one in which care
has been taken to reduce the influence of near sources, and one in which all
possible countermeasures have been taken both against near and far sources.
In the following I give a summary of the setups.

5.1.1 Near sources and sample cleaning

We performed sample cleaning routines on the chip and sample holder as-
sembly thanks to knowledge developed by coworkers in experiments on rare
event search, such as CUORE [138]. Before the operations in R and G, we acted
on the chip enclosure to suppress its radioactive contamination, following
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Fig. 5.1: Summary of radiation abatement setups.
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some common techniques developed in particle physics. In particular, within
the framework of the CUORE experiment it is shown that the a priori ra-
diopure copper actually has non-negligible surface contaminations, including
organic residues coming from handling, heavy atoms from tool tips being
embedded in the soft copper during machining, and even simple air exposure
(more details can be found in studies performed by the CUORE experiments
in the struggle to reduce its surface contaminations, described in Ref. [139]
and references therein).

Since we did not need the extreme radiopurity of CUORE, we applied a
simplified version of the cleaning treatment described in Ref. [140]. We cleaned
copper in an ultrasonic bath using ultrapure water and Sigma Aldrich Micro
90 soap to remove grease and dust. The soap was removed and we repeated
the ultrasonic bath with a mixture of ultrapure water, citric acid and hydrogen
peroxide for 15 minutes. The sample was dried in a vacuum oven oven for
one hour. We removed all the potentially contaminated materials close to
the detectors. The thin indium wire used to ensure better contact between
the waveguide and the cap was removed. The blob of lead solder acting as
glue on the waveguide post was replaced with araldite epoxy resin. The chip,
originally attached to the copper holder using silver paste, was reattached
after sample holder cleaning using more radiopure cryogenic vacuum grease
[141].

5.1.2 Far sources and sample shielding

Both the K (control) and R (cleaned) setups are located above ground, and as
such there is an expected non-negligible contribution to the burst rate coming
from cosmic muons (and their secondary products), which we estimate to
be 0.6 mHz, depositing an average energy of 0.8 MeV and up to a few MeV.
The G setup is located under the 1.4 km granite layer, corresponding to a 3.6
km water equivalent. The rock overburden reduces the cosmic ray flux by
six orders of magnitude and thus to a completely negligible rate in the chip.
Furthermore, the facilities themselves are designed with radiopurity in mind,
and the cryostat used to measure the samples is surrounded with a wall of
lead bricks for further protection.

u Radioactivity is expected to reduce the performance of superconduct-
ing quantum circuits by generating athermal phonons in the chip
vicinity.

u Radioactive sources can be divided into “near” (coming from within
the cryostat) and “far” (coming from the environment, including
cosmic rays).

u We compare measurements in a standard setup (K) with measure-
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ments in a setup in which near sources are abated (R) and one in
which both near and far sources are abated (G).

5.2 Results
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Fig. 5.2: Burst rate ΓB
(top) and internal quality
factor Qi evaluated at a
single photon drive (bot-
tom) for all resonators
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“I feel it in my bones\
enough to make

my systems blow (...)
I’m radioactive,

radioactive”

Imagine Dragons,
Radioactive

The two figures of merit we report for this measurements are the QP burst
rate ΓB and the internal quality factor Qi. As I will detail in the following, we
observe a suppression of ΓB and an improvement of Qi. It should be noted
that observations of reduction in the burst rate are not novel: setups like the
Gran Sasso labs are specifically designed with such an abatement in mind.
In a way, it is a sanity check, and a useful metric for the ionizing flux. The
observation of improvement of the internal quality factor as a result of this
is instead non trivial, showing the sensitivity of superconducting circuit to
ionizing radiation.

5.2.1 Effect on QP burst rate

The burst rate and the internal quality factors measured for all resonators
in the three sites are shown in Fig. 5.2. We measured the environmental
radioactivity with a NaI commercial scintillation spectrometer, and simulated
the interaction between radiation and matter using the Geant-4 toolkit [142].
As detailed in Chapter 9, this allows us to predict QP burst rate values of ΓB of
16± 4 mHz in K, 48± 11 mHz in R and 4± 1 mHz in G, which further reduces
to 0.5± 0.1 mHz with the lead bricks present, showing that environmental
radioactivity plays a significant role in all setups.
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Measurements in K give ΓB ≈ 76 ± 1 mHz (averaged over the three res-
onators). The factor four larger burst rate compared to the expected value may
be attributed to residual radioactive contamination of the sample holder and
its immediate environment, since the K setup is the only one not used by a
group usually striving for high radiopurity.

Measurements in G give a burst rate of 6.6± 0.7 mHz and 2.6± 0.6 mHz with
and without the lead bricks respectively, showing a small residual contribu-
tion unaccounted for by the simulation. Nevertheless, the strong suppression
(factor thirty) with respect to above ground is observed as expected. This fur-
ther shows that, while the muon rate itself is essentially null underground, the
gamma showers generated by cosmic rays (hard to suppress above ground)
also have a non-negligible effect underground, which can be effectively mit-
igated by using a lead shield. Finally, adding a small ThO2 emitter in the
vicinity of the cryostat increases the rate beyond above ground levels, further
confirming the radioactive origin of the bursts.

The cleaned assembly is finally measured above ground in the R setup, show-
ing as expected intermediate values of ionizing flux with respect to the un-
cleaned K and the cleaned and shielded G. This measurement is carried out
twice by using both silver paste and vacuum grease to glue the sample to
the waveguide, with resulting measured rates 52± 4 mHz and 44± 5 mHz
respectively, showing an excess activity for silver paste, as expected.

5.2.2 Effect on dissipation

The measured dissipation reproduces almost fully the trend observed by the
burst rate, as evidenced by the anticorrelation between ΓB and Qi. Measuring
Qi consists of averaging several frequency traces in order to improve the
SNR: during this time, the resonator is averaging over QP induced losses.
This makes it a more sensitive figure of merit: QP bursts small enough that
are not detected by our readout measurement, and as such not counted,
still contribute to increase the QP background, and this effect is in principle
absorbed by the measurement of Qi. Measurements in the G setup show up
to a fourfold increase in Qi.

The anticorrelation is purely qualitative, and the burst rate is not simply a
proxy for the quality factor: notice, for instance, that adding the ThO2 source
increases the burst rate by two orders of magnitude, going beyond above
ground levels, but only decreases Qi by ∼ 20%. This is due to the different
energy distribution of the ThO2 source alone and the full spectrum of envi-
ronmental radioactivity above ground, with tails much higher in energy (cf.
Chapter 9). Our measure of ΓB is simply counting the amount of bursts above
a common threshold; a quantity that we would expect to show a more quanti-
tative anticorrelation with Qi would be the integral of the energy distribution
of bursts, with the bursts acquired by a detector having a dynamic range large
enough to cover the whole spectrum of high-energy impacts.
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u Abating both near and far sources of radioactivity results in a sup-
pression of the quasiparticle bursts rate.

u The suppression of the burst rate is correlated (qualitatively) with
an improvement of the internal quality factor at single photon drive,
highlighting the sensitivity of superconducting electronics to radioac-
tivity induced dissipation.
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Chapter 6

Resonator characterization

The stars of this work are superconducting resonators with frequencies
in the microwave regime. In this chapter I go over the theory behind
their response, the details about their implementation, and the experi-
mental protocols employed to characterize them.

SUPERCONDUCTING qubits are operated in a cryogenic environment in
order to ensure that the thermal energy is much less than the splitting
energy, thus avoiding thermally mixing the computational states. Stan-

dard dilution cryostats reach temperatures of the order of 10 mK, resulting in
superconducting qubits being typically operated in the 1− 10 GHz In the following section I

will use the electrical
engineering notation for
the imaginary unit,
j ≡
√
−1.

regime.
The resonators measured in this work, used as testbed for qubit physics,
have resonant frequencies in the same band. I will thus start off with a brief
refresher on microwave electronics.

6.1 Primer on microwave electronics

Compare this with e.g.
digital audio: the standard
sampling frequency at
44.1 kHz corresponds to a
wavelength of some
kilometers, allowing iPods
to be used with DC lines
rather than coaxial cables.

An electric signal oscillating at 5 GHz has a free space wavelength of 6 cm.
This renders it unavoidable to describe our electronics, composed of wirings
with a total length exceeding a meter, within the framework of distributed
elements: equivalently put, spatial variations of the electrical phase along the
circuit cannot be neglected. One then uses the telegrapher’s equations

dzV(z) = −(R + jwL)I(z) (6.1)
dz I(z) = −(G + jwC)V(z) (6.2)

to describe the voltage (current) at a point z along a line connected with two
terminals to a load, wherein ohmic loss, interline self inductance, interline
capacitance, and dielectric loss are accounted for. From these equations one
sees that the Helmholtz equation d2

z = γ2 f is satisfied, for f being either
voltage or current and wavenumber γ ≡ α + jβ =

√
(R + jωL)(G + jωC),

called propagation constant. Voltage (current) travels in waves, with e.g.
voltage being

V(z) = V+
0 e−jγz + V−0 ejγz (6.3)
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with +,− indicating waves to/from the load. The line is described with a spa-
tially constant characteristic impedance Z0 = V(z)/I(z). For some arbitrary
load impedance ZL the voltage-current ratio must satisfy Z0 = ZL in order to
transfer all the electric power to the load; the line is then said to be impedance
matched. By writing the ratio of incoming and outgoing waves one obtains
the reflection coefficient

Γ =
ZL − Z0

ZL + Z0
, (6.4)

giving the ratio of electric power reflected towards the source in the case
ZL 6= Z0, i.e. of an impedance mismatch. Generally, for an arbitrary number
of ports one may define the impedance matrix as

Zij =
Vi

Ij

∣∣∣∣
Ik=0 for k 6=j.

(6.5)

The scattering parameters are defined via the port impedances as

Sij =
Vi

Vj

∣∣∣∣
Vk=0 for k 6=j.

(6.6)

Scattering parameters are dimensionless complex numbers that describe ratios
of input and output voltages. As such, they are our main operational interest,
since they are what is measured by a Vector Network Analyzer (VNA).

6.1.1 Analytical model of the resonance

We perform our measurements with a standard, commercial VNA having
one output port and one input port. Thus, in practice we restrict our interest
to two scattering topologies: circuits with either one or two ports. Single
port measurements are reflection measurements, and the relevant scattering
parameters is S11, or equivalently the reflection coefficient of Eq. (6.4)—the
pedices are admittedly redundant but are usually kept for consistency. The
other scattering parameter that we can access is the transmission through a
shunt impedance to ground, S21. In transmission, the impedance matrix is
Zij = ZL for all i, j. Thus,

S11 =
ZL − Z0

ZL + Z0
= Eq. (6.4) (6.7)

S21 =
1

1 + Z0/(2ZL)
. (6.8)

For a resonator, the load impedance can be usually modeled as some effec-
tive RLC circuit plus the coupling to the transmission line. The total input
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impedance of the system will be a sum of the coupling and uncoupled res-
onator impedance, i.e. ZL = ZC + ZRLC. Plugging the definitions together one
arrives at a compact notation for the formula of the resonator response,

Sk1(x) = 1− (2/k)Q/Qc

1 + 2jQx
, (6.9)

where k is the number of ports, either 1 or 2 for reflection/transmission, and
x = (ω−ω0)/ω0, where ω0 = 1/

√
LC is the resonant frequency, and Q and

Qc are total and coupling quality factors. The details on the algebra can be
found in [143] and [144]. Note that, in this case, “transmission” refers to a notch
type resonator, i.e. a shunt to ground to the feedline that is always a through
when off resonance, or in other words, a bandstop filter. The bandpass topology,
i.e. the transmission through an impedance interrupting the line, is tricky to
work with because one never gets the response of a perfect through (ideally
it is obtained only for an infinite Q, and for a single point), making it not
possible to meaningfully estimate the quality factors, since their quantitative
meaning is encoded into how much they load the unloaded line. In this work
I use the word transmission freely but I am always referring to a bandstop
topology. Note that, between reflection and notch types, the notch type is the
most generic; a notch resonator with a perfectly reflective port (i.e. open, since
ZL → ∞ and thus |Γ| → 1 on the outgoing port) is effectively a reflection
topology.

It is instructive to picture resonators as two partially reflective mirrors sepa-
rated by some distance (the principle of a Fabry-Pérot cavity). Incident waves
with a wavelength that is half the separation distance are either reflected or
transmitted after a number of internal round trips. The number is even (case
of reflection) or odd (case of transmission), and as such the induced phase
delay is 2π for reflection and π for transmission. Hence, the complex ratio of
incoming and outgoing voltages, i.e. S11 and S21, spans all quadrants of the
Argand-Gauss plane, or only two, respectively. As such, a perfect (Q → ∞)
reflection means that the amplitude of the reflected signal is unchanged: the
radius of the circle is kept at 1. The amplitude response in frequency |S11|( f )
is thus flat. On the contrary, a perfect transmission means that the amplitude
reaches 0, because the radius of the circle, limited to half the complex plane,
passes through the origin when maximally extended. The amplitude response
in frequency |S21|( f ) is a Dirac delta centered at the resonant frequency f0. For
finite Q, i.e. non-zero loss, the delta spreads into a Lorentzian. This is valid for
the reflection case as well: losses will suppress the amplitude, creating a dip
around f0 in the otherwise flat line. To conclude the above example, the finite-
ness of Q may be pictured as stemming from roughness in the mirror We can agree that a very

rough and opaque mirror
is not of very high quality.

surfaces,
allowing for frequencies in the vicinity of f0 to resonate as well, and to some
mirror opacity, reducing the amplitude of outgoing waves. Furthermore, the
mirror reflectances must be finite, otherwise it would not be possible to inject
the waves from outside into the cavity: this necessary upper bound to the
reflectance is the concept of the coupling quality factor, Qc, i.e., operating a
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resonator necessarily means adding some “loss” to it since photons must be
extracted from it in order to read it out.

6.1.2 Photon number calibration

When microwave superconducting resonators are cooled to cryogenic temper-
atures they enter a quantum regime in the sense that the separation of their
levels is below thermal energy. However, we are operating them by sending a
classical tone, i.e. a coherent drive that is well defined in phase, and as such
undefined in photon number: we operate resonators in coherent states rather
than Fock states with well defined integer numbers of photons.

As such, classically driven superconducting resonators do not allow us to
study single photon phenomena. However, since we are interested in the
study of losses, we can look at the average number of photons circulating
in the resonator; the n = 1 and n̄ = 1 states are both at the same energy
scale, and the average number of circulating photons can be established with
straightforward power transfer calibration.

Recalling Eq. (3.1), the internal quality factor is defined as the average energy
stored in the resonator scaled with the power loss. In turn, the power loss
comes from losing photons either in reflection or transmission, thus

n̄ =
Pin − Prefl − Ptrans

h̄ω2
0

Qi =
Pin(1− |S11|2 − |S21|2)

h̄ω2
0

Qi. (6.10)

For a reflection resonator Ptrans = 0 and thus S21 = 0, while for a transmission
resonator S11 = S21 − 1. The total number of photons as a function of the
drive power evaluated at resonance is [145, 146]

n̄ =
4
k

Q2

Qch̄ω2
0

Pin, (6.11)

where k is the number of ports, and Pin is the cold power, estimated by
subtracting the attenuation on the input line from the nominal probe power
of the signal generated at room temperature. Uncertainties in the estimation
of the total attenuation make it so that the photon number calibration is to be
assumed with an error of magnitude uncertainty.

In Fig. 6.1 I report scattering data of resonators in both reflection (resonator
A with F = 8.5%, cf. Section 4.3) and transmission (one resonator from sam-
ple F, cf. Section 4.2) used in this work, together with fits to the analytical
model. The data is normalized to the sample holder response, or equivalently,
the baseline of the amplitude response is referenced to zero, whereas in the
experiment is some arbitrary offset given by the discrepancy of the attenua-
tion on the line down in the cryostat, and amplification on the line up. Two
datasets are reported, corresponding to circulating number of photons n̄ ∼ 1
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Fig. 6.1: Complex plane, amplitude and phase scattering raw data normalized to
the sample holder response (circles) and fits (solid lines) to Eq. (6.9) for resonators
measured in our work, both in reflection (k = 1) and transmission (k = 2). Two
different data sets are shown, measured at two different drive powers, resulting in
n̄ ∼ 1 (blue) and ∼ 103 (red).

and 103, respectively. As discussed in Chapter 3, higher n̄ means higher Qi.
Indeed, the resonators in the figure show Qi = 2× 105 → 3× 105 (reflection)
and 4× 105 → 1.1× 106 (transmission), with constant Qc ∼ 104 and 2× 105,
respectively. Higher Qi results in a larger circle in the complex plane, and a
shallower (reflection) and deeper (transmission) amplitude dip, respectively.
The improvement is more visible in the transmission resonator: this is not
intrinsic to the resonator topology, but related to the different loss mecha-
nisms (planar transmission resonators used in this work have more significant
dielectric loss, resulting in a Qi more sharply dependent on the increase of the
drive.

Equations (6.9) and (6.11) endow us with tools to characterize losses in res-
onators. Furthermore, the analytical fit allows us to obtain time traces of the
resonant frequency (cf. Subsection 12.1.1) used to measure quasiparticle bursts.
In the following I use this machinery to characterize the fabricated resonators.
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n = 1 n = 3n = 2

s

w

Fig. 6.2: First three itera-
tions of a Hilbert curve
fractal.

6.2 Two ports: planar Notch-type

The resonators we reported in Ref. [76] are lumped element kinetic inductance
detectors, measured in transmission. The design is inherited by the NIKA
project [147]; kinetic inductance detectors used in vast arrays are routinely
designed as lumped element circuits because this allows one to fine tune their
resonance frequency by changing the length of the interdigitated capacitor
fingers, maintaining the same footprint and aspect ratios, which is important
in applications with thousands of such “pixels”. Original implementations
had “square wave” shaped meanders, and FEM simulations confirmed their
lumped nature by showing current density localized in the inductor, and
charge buildup in the fingers of the interdigitated capacitor [148].

The design that we employed sports a meander shaped as a Hilbert curve
[130], with a fractal degree of either 2 or 3 (cf. in Fig. 6.2). The two geometries
employed in this work have n = 2, s = 40 µm, w = 12 µm (dubbed H2) and
n = 3, s = 100 µm, w = 2 µm (dubbed H3). This provides a space filling
topology that is sensitive to two light polarizations at once, while allowing to
fabricate compact circuits in the microwave band (a detailed description is
given in Ref. [149]).

I report a sketch of a resonator, mounted in its transmission sample holder,
in Fig. 6.3. The sapphire chip (A) hosts 22 resonators, with one of the H3

12 µm
2 µm

20 µm

10
0
µ

m

1 cm

H

G
F

A

J

I

B D
E

C

Fig. 6.3: Technical draw-
ing of the aluminum
sample holder, with an
inset showing a micro-
graph of single H3 res-
onator.
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type shown in the inset (B). The interdigitated capacitor (C) and meandered
inductor (D) are visible. The drive tone is transmitted to and from the resonator
via a coplanar waveguide feedline (E). Test stripes (F) on the chip are used for
DC measurements of the sheet resistance at room temperature. More stripes
are spread out on the whole wafer in order to be able to measure any spurious
oxidation gradient of the film. Wire bonding is used to connect the feedline
to printed circuit boards (G) that couple to coaxial connectors (H), to ensure
impedance matching. The sample holder is closed with a solid aluminum
lid (I). The bottom of the sample holder has an aperture on the backside (J)
allowing for millimeter wave illumination.

We fabricate a total of six samples, with per square sheet resistances R� = 20,
40, 80, 110, 450 and 800 Ω, which we label A to F. Samples A to D are fabricated
in a H3 geometry, while samples E and F are in a H2 geometry. The meander
width is 2 µm for H3 and 12 µm for H2, resulting in a length of roughly 1250
and 100 squares, respectively. As such, we employ H2 geometries for higher
oxidation films, in order to ensure that their resonant frequencies do not get
below our readout band. The interdigitated capacitor length can be varied to
obtain a span in the 40− 60 fF range, obtained independently with Sonnet
simulations and experimental data. For resonators in the 2− 6 GHz range this
amounts to spans of the orders of half a GHz, allowing to easily host the 22
resonators (all with sub-MHz linewidths) within our readout band.

6.2.1 Dissipation

I report the measured internal quality factor, as obtained from fit to the ana-
lytical model, as a function of the average number of circulating photons, in
Fig. 6.4.

Every sample contains nominally 22 resonators. Not all fabricated resonators
are visible, for they may have resonances outside the readout band, or not
resonate at all because of e.g. defects interrupting the thin meandered inductor.
I report traces for all observable and well fittable resonators. The samples
under test are particularly sensitive to increased drive power, showing up to
two orders of magnitude improvement in Qi from single photon to bifurcation.

We attribute this to the combined effect of QP recombination activation and
dielectric loss saturation. The different meander area for H2 (1.2× 103 µm2)
and H3 (5× 103 µm2) suggests that H3 types are likely more sensitive to
dielectric loss: the interface between metal and surface (cf. [75, 107]) is larger
and with it the relevant participation ratio. In Ref. [75] it is calculated pMS =
10−3 for H2, and it is shown that they possess a non-negligible dielectric
contribution to resonator loss. We expect the participation ratio to be higher for
H3: hence, all resonators of both families are expected to have non-negligible
loss contribution from dielectric loss.

The coupling quality factor is (2.4± 1.6)× 105 for all resonators. Note that
resonators in sample B, which is the only one coupled inductively rather
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Fig. 6.4: Internal quality factors as a function of average circulating photon number
for each fabricated sample.

than capactively to the feedline (cf. Fig. 4.2), are the least coupled, with Qc =
(4.1± 2)× 105.

6.2.2 Voltage responsivity

As mentioned, we expect a non-negligible participation ratio of dielectric
losses for the fabricated resonators; the other participation ratio that we are
after is that of the quasiparticle losses. This is given by the kinetic inductance
fraction α = Lkinetic/(Lkinetic + Lgeometric). By knowing the geometry and
normal state resistance of the samples this can be estimated by using formulæ
for the kinetic [150]

LK =
0.18h̄
kBTC

l
w

Rn, (6.12)
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and geometric [76, 151] inductance

LG = 2× 10−7 × l log
(

2
l
w

)
(6.13)

of a thin strip, where l is the length, w is the width, and Rn is the normal state
sheet resistance per square, and under the assumption of l � w� t, t being
the thickness.

The analytical prediction of α can be compared to the number obtained by
experiments. The following equation [152]

δ f0(T) ≡
f0(T)− f0(T → 0)

f0(T → 0)
= −3.32α

√
Tc

T
exp(−1.76Tc/T) (6.14)

relates the shift in resonant frequency with the shift in temperature of the
condensate. We reliably control the mixing chamber temperature by feeding
an amperage to a resistor with a PID controller.
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)
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Eq. (6.14)
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Fig. 6.5: Resonant fre-
quency shift as a func-
tion of mixing cham-
ber for resonators A to
F, together with fits to
Eq. (6.14).

Fits to the experimental data, reported in Fig. 6.5, allow to extract α and
Tc, and with it the superconducting gap ∆ under the assumption of a BCS
superconductor. The fits are obtained by averaging the temperature response
of each available resonator in each sample and performing a single fit on the
averaged raw data. All resonators have kinetic inductance fractions in the
0.9− 1 range, and as such they are expected to be sensitive to QP loss.

By using the expression of the self Kerr coefficient reported in Ref. [79], based
on microscopic parameters, and Eq. (2.17), we can further compute the pro-
jected critical number of photons as

nc =
4l2h̄
√

C
3
√

3Qc(πea)2
√

LK
, (6.15)
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Fig. 6.6: Kinetic inductance fraction (green), maximum number of photons estimated
at a fixed Qc = 105 and a = 5 nm (red) and voltage responsivity (blue). Analytical
formulæ are plotted as solid lines for H3 and dashed lines for H2. Measured values
are shown as square (H3) or circular (H2) markers. Shaded regions cover the range of
estimated capacitances.

under the assumption of Qi � Qc and α → 1. The experimental evaluation
of nc is straightforward: the frequency response of a resonator is inspected at
different drive powers, corresponding to different circulating photon number.
The breaking point is evaluated from visual inspection. There is a certain
arbitrarity to this: in this case I consider a resonator bifurcated, or broken, the
moment its complex plane circle shows a segment. Errors in this evaluation
come from human error, as well as possible lack of sufficiently fine granularity
in the sweep of probe powers at which the response is evaluated.

Equations (6.12), (6.13) and (6.15) allow us to compute voltage responsivity
as per Eq. (2.25). This is shown in Fig. 6.6. The participation ratio of QP losses,
α, effectively acts as detector sensitivity. However, increasing it via higher
oxidation results in a lower number of maximum number of drive photons.
The resulting interplay puts the optimum operation condition at α = 3/4,
i.e. at the maximum of what we defined as voltage responsivity (Eq. (2.25)). I
wish to stress that the numerical value giving this optimum is only valid for
this particular MKID breed, made with high resistance and high Qi grAl, but
the method can be generally applied for other materials.
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6.3 One port: striplines in a waveguide

The design of the striplines resonator that we report in Ref. [131] is inherited
from Ref. [75], in turn inspired from Ref. [132]. A schematic drawing of the
waveguide assembly supporting the stripline resonators is shown in Fig. 6.7.
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Fig. 6.7: Technical
drawing of the waveg-
uide sample holder,
with an inset showing
a micrograph of a
sapphire chip sup-
porting the striplines
resonators. The am-
plitude profile of the
TE10 mode is plotted
in blue.

The solid copper waveguide has a hollow cavity resulting in a cutoff frequency
at ∼ 6 GHz, with the second propagating mode above 8 GHz. The microwave
signal is fed into the waveguide by a standard coaxial cable screwed to an
SMA connector (A) attached to the input flange (B). The center pin is flared
into a cylinder (C) that irradiates into the cavity as a TE10 mode. The copper
cap (D) shorts the waveguide at a ≈ 1 cm (≈ λ/4 @ 7 GHz) distance from
the sapphire chip (E), reflecting the propagating mode towards the input port.
The mode amplitude profile, plotted in blue, shows that the electric dipole
of the resonators, aligned along the short side of the cavity, couples stronger
the closer they are to the center. An indium wire, ∼ 0.1 mm in diameter, can
be interposed between the cap and the waveguide to ensure better electrical
contact. The sapphire chip, hosting the three resonators (F), is glued onto the
ridge with silver paste (G) or vacuum grease (not shown). The phonon traps
lattice, when present, sits on the edge of the chip (H). A second input port is
present (I), used in the case of qubit measurements requiring two separate
tones.
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The 3D waveguide setup abates dielectric loss [132], and, together with the us-
age of highly oxidized grAl, close to the superconductor to insulator transition
(cf. Chapter 7) and with essentially α = 1, ensures maximum sensitivity to
QP loss. The three striplines resonators have different aspect ratios to change
both their resonant frequencies and their coupling to the electric field.

We fabricate four different samples with three resonators each and different
phonon traps filling factor F. We distinguish which spectroscopic response
belongs to which resonator by looking at the spectroscopic data. Samples are
labeled 0 to 3 to represent phonon trap coverage of F = 0, 8.5, 19 and 34%
respectively. We measure a total of 11 resonators out of 12, possibly due to the
missing resonator (3B) lying outside the waveguide band.

We perform finite element simulations using Ansys HFSS to predict the fre-
quency values of the geometries. The simulation results in eigenmodes at
6.3, 6.0 and 6.8 GHz for the 600× 10 µm2, 1000× 40 µm2 and 420× 5 µm2

metalizations, in good agreement with experimental data from Grünhaupt
and coworkers. Equivalently stated, the simulation suggests that these are
λ/2 striplines with an effective speed of light in grAl that is roughly 1% of
the vacuum value.

7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5
f0 (GHz)

1A0B 0C 1C0A 2A 2B 2C1B 3C3A

1A0B 0C1C 0A2A2B 2C1B 3C 3A

103 104

Qc

Fig. 6.8: Resonant frequencies and coupling quality factors of the 11 resonators over 4
samples.

Lithographic imprecision and fluctuations of the granular aluminum oxida-
tion may perturb the soundness of the resonant frequency analysis. We make
our resonator determination more robust by also looking at the coupling of
the resonators; resonant frequencies and coupling quality factors are listed
in Fig. 6.8. Since the resonator at the center is also the one with the highest
dipole, it will be the one with the strongest coupling to the the electric field. In-
deed, the fitted resonances always show one Qc ∼ 103 and two Qc ∼ 104: we
unambiguously link the former to the resonator in the center, which we dub
resonator B. Then, the identification protocol amounts to assigning resonance
A to the lowest of the remaining two resonances, and C to the highest.

The value of this parallel approach is that, it turns out, the resonators at the
center of the chip always have the middle value frequency wise, rather the
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lowest, as would be expected from their length being the greatest of the three
(and from the FEM simulations). This effect is not present in the work of
Grünhaupt: in that work, the resonators reproduce the simulation very well,
and the highly coupled resonator is also the one with the lowest frequency.
It should be noted that, in the referenced work, resonators were patterned
with e-beam lithography, whereas in this work they were patterned with
optical lithography (cf. Chapter 11). We attribute this error to imprecision in
the chromium pattern on the optical mask, which leads to a systematic error
since the same mask is used to fabricate the four samples reported in this
work.

The result of our assignment protocol is that assigning the resonators amounts
to calling resonator A, B and C in order of increasing resonance frequency. To
avoid confusion, note that our name for resonators A and C are swapped with
respect to the work of Grünhaupt and coworkers.

By looking at the resonant frequencies of all measured resonators we notice a
further trend, which is an increase in the resonant frequency with the amount
of phonon traps. However, if anything the added metalization should load
the mode and lower the resonant frequency. The observed trend is due to
a gradient in the sheet resistance. All the four samples are fabricated side
by side on the same sapphire chip. Going from 0 to 3, there is a gradient
of the sheet resistance per square going from 3.1 to 2.2 kΩ/�, as obtained
by room temperature measurements on control DC stripes distributed on
the wafer. Recalling Eq. (2.10) and (6.12) we see that δ f0/ f0 = −0.5δRn/Rn,
implying that resonators of type 3 would have roughly a 15% higher frequency
with respect to their (nominally identical) type 0 counterparts, which is in
acceptable agreement with the observed values.

Note that, assuming a linear and uniform gradient, this amounts to some
20 pH/mm. This is equivalent to a frequency shift of the order of 1 MHz across
same chip resonators, two orders of magnitude smaller than the frequency
spacing between the three resonators for each sample. Thus, the effect is too
small to invalidate our resonator assignation protocol.

6.3.1 Dissipation

The internal quality factor the resonators as a function of the average photon
number is reported in Fig. 6.9.

Interestingly, the three resonator families seem to react in somewhat different
ways to the drive power. Resonators A reproduce the expected behavior of
increasing Qi, possibly due to the activation of intergrain QP recombination.
The increase is monotonic, but with different slopes, with the untrapped
samples reaching the highest value before bifurcation, up to 106. Resonators
B show an essentially flat response, and a comparatively lower Qi. This is
in agreement with what is observed in Ref. [75]. Furthermore, they show a
very clear effect of the phonon traps. These observations may hint at their
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Fig. 6.9: Internal quality factor of the resonators as a function of the average circulating
photon number.

position being in a hot spot for phonon standing waves. This is in agreement
with simulations reported in [136], wherein the maximum phonon density is
peaked at the substrate centroid (albeit for a square chip). Finally, resonators
of type 3C (F = 34%) show a peculiar inversion, with Qi decreasing with the
readout drive. It should be noted that resonator 3C has the highest frequency
and lies very close to the edge of the readout band. This results in higher
white noise and possibly less reliable data overall.

6.3.2 Resonant frequency stability

The measurement of the time evolution of the resonant frequency is performed
by measuring the fluctuations of the complex frequency response at resonance
over time, and inverting the fit on the full frequency response (cf. Subsec-
tion 12.1.1). The time evolution of the resonant frequency can be further recast
as time evolution of the quasiparticle density via Eq. (2.10).

The most evident feature of these time traces are QP bursts, appearing as an ini-
tial steep drop in resonant frequency, followed by fast non exponential decay,
an exponential part, and finally a slow relaxation towards unperturbed values.
We measure time traces by setting the intermediate frequency bandwidth
(IFBW, i.e. the inverse of the per tone averaging time) to 10 kHz, resulting in
a sampling time of 0.2 ms, which provides a good compromise between the
resulting time resolution and SNR. This resolution is not sufficient to resolve
the initial drop, which appears to be instantaneous. Note that increasing the
IFBW further can push the time resolution down to ∼ 10 µs before saturating
due to the speed of the internal electronics. In the resulting time traces the
initial drop in frequency is still unresolved, seemingly instantaneous. Drop
times for aluminum as reported in Ref. [122] are still an order of magnitude
faster than this resolution. While no data exists for grAl, it is reasonable to
assume the times to be comparable.
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Under these conditions, QP bursts can be detected by computing the time
derivative ∂tδ f0[i] = δ f0[i]− δ f0[i− 1] and triggering when the value is above
a threshold. This is shown in Fig. 6.10.
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Fig. 6.10: Size distribution of
the resonant frequency insta-
bilities of resonator 1A. The
total acquisition time is ∼ 2×
103 seconds and the binning
is 1 kHz. The threshold for
the derivative filter (1 MHz)
is shown as a red vertical line.

The size distribution of the derivative shows the expected Gaussian bell due
the white noise component of the fluctuations, together with non Gaussian
“shoulders”. For a fine enough binning, bursts appear as blips well away from
the symmetrical distribution. Since the initial fast drop is followed by an
initial relaxation that is also fast, both sides of the Gaussian show blips, albeit
skewed towards the negative values since the initial drop is always the largest.
The derivative filter threshold is tuned individually for each resonator. The
size of the QP bursts registered with this method are reported in Fig. 6.11.

At this point, a second threshold is applied: the derivative filter is purposely
undershot in order to make sure all bursts are detected. However, this cre-
ates a number of false positives, i.e. large baseline fluctuations erroneously
registered as bursts. These are particularly evident when looking at the size
distribution: at very small sizes the distributions behave erratically, whereas
beyond a certain point they retrieve a common shape. Visual inspection of
the distribution is used to establish a common threshold for selecting what
are indeed real QP bursts. The value is set at δxQP = 50× 10−6 for all res-
onators, with the exception of δxQP = 150× 10−6 for resonators 3C, due to its
higher white noise levels. This is corroborated by visual inspection of the time
traces themselves: most “bursts” below the common threshold are indeed
false positives.

We expect QPs burst to be time correlated for same chip resonators, as ini-
tially reported by Swenson and coworkers [122]. However, we lack dedicated
electronics for time multiplexed acquisition of time traces. We are able to
measure correlation for two resonators at a time using a VNA, albeit with a
time resolution limited to ∼ 0.3 s (cf. Section 12.2).

I report an example of correlated data in Fig. 6.12, consisting of frequency
shifts of resonator B (upward triangles) and C (downward triangles) versus
the frequency shift of resonator A measured over a ∼ 1500 s interval in the G
setup with the ThO2 source present. Colored markers correspond to values
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Fig. 6.11: Size distribution of the QP bursts for the 11 measured resonators. Vertical
red lines show the common threshold value δxQP = 50× 10−6, with the exception of
resonator 3C, for which it is δxQP = 150× 10−6 due to the higher white noise levels.
Common binning is δxQP = 100× 10−6 (cf. Subsection 9.1.1).
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Fig. 6.12: Correlated QP bursts be-
tween resonators A-B and A-C,
measured in the G setup with the
ThO2 source present.

above two standard deviations of the baseline fluctuations, and depict a time
correlated QP burst between resonators A–B (orange) and A–C (green). Note
that, due to the coarse time granularity, all burst sizes are underestimates: the
highest measured correlated bursts are of the order of 200 kHz or equivalently
δxQP ≈ 100× 10−6, well below the maximum size measured with “standard”
time traces with high resolution (cf. Fig. 6.11).
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We perform an analysis of the relaxation times of the selected QP bursts. This
is done with the method pioneered in [116], I am indebted to Dennis

Rieger for developing a
particularly efficient
algorithm to perform this
analysis.

consisting of aligning the burst
tails to minimize overlap, averaging them, and fitting the exponential region
to extract the relaxation time. This is summarized in Fig. 6.13.
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Fig. 6.13: Aligned QP bursts for
resonator 0B (grey) with initial
portion cropped (one uncropped
trace is shown in dark grey for
clarity). The average QP burst is
shown as a black line. The ex-
ponential fit is performed on the
(manually selected) exponential
region as is shown as a red line.
The resulting relaxation time is
τQP ≈ 430 ms.

The analysis is carried out for all 11 resonators, measured in Karlsruhe, giving
a consistent τQP = 0.5± 0.1 s. Interestingly, measurement in Rome and Gran
Sasso show relaxation times an order of magnitude smaller, τQP = 60± 20 ms
(further contributing to the QP burst size underestimation of correlated bursts
reported in Fig. 6.12).

The longer τQP in K might be explained by the superior magnetic shielding at
the mixing chamber stage: in R and G, vortexes due to stray magnetic fields
can act as quasiparticle traps [116, 153]. The magnetic shielding in K, similarly
to Refs. [75, 154], is realized by placing the waveguide inside a double walled,
enclosed Cu-Al barrel. The Al is on the outside of the barrel, and, once it is
cooled below the superconducting transition temperature of 1.2 K, it acts as a
magnetic shield thanks to the Meissner effect. The double walled Cu-Al barrel
is surrounded by an additional enclosed cryogenic µ-metal barrel. Cryogenic
µ-metal is a large-grained alloy designed to have high magnetic permeability,
acting as a shunt for magnetic field lines. This entire magnetic shielding assem-
bly is thermally anchored to the mixing chamber of the dilution refrigerator.
From measurements of the frequency shift of fluxonium qubits [81, 86] we
estimate that the residual magnetic field is below 50 nT, a factor 103 reduction
compared to the Earth’s magnetic field. This quasiparticle trapping hypothesis
is corroborated by measurements in K without magnetic shielding, resulting
in relaxation times of tens of milliseconds (measured in the framework of
Ref. [78], albeit unpublished).

Finally, I report results of noise analysis (cf. Subsection 3.2.1) performed on
time traces not containing QP bursts in Fig. 6.14. The values are obtained by
fitting tens of noise spectra computed with Eq. (3.8). Resonator 3C is yet again
excluded from the analysis because its frequency lies outside the readout
band, resulting in higher white noise levels. Error bars represent one standard
deviation.
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Fig. 6.14: Noise amplitude and color for the measured resonators as a function of the
filling factor of phonon traps.

The visible decrease in noise amplitude for resonators A and B is qualitatively
comparable to the increase of internal quality factor reported in Fig. 4.5, with
resonators of type C again not showing a clear trend. Interestingly, while the
employed radiation abatement protocols (cf. Chapter 9) do increase Qi, no
clear trend is present for the noise spectral density.

We attribute this to the fact that the employed radiopurity protocols only get
rid of the higher energy impacts, without giving an appreciable reduction in
lower energy impacts that are expected to induce 1/ f fluctuations.
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Chapter 7

Granular aluminum

This chapter provides insight on the physics of granular aluminum. I
will go over the properties of its microstructure, “We’ll find the speck

of truth in each riddle\
Hold the first grain
of love in our hands.”

Jethro Tull, The Whistler

and how they define its
peculiar properties such as the superconducting gap dome.

THE circuits used in this work are fabricated as diagnostics tools for quasi-
particle dependent loss. Hence, two requirements need to be satisfied:
high impedance, i.e. heightened sensitivity to QP loss, and low sensitiv-

ity to other loss channels (mostly dielectric loss) in order for the QP loss to be
observable and discernible. Granular aluminum resonators, particularly in the
waveguide sample holder setup (cf. Section 6.3), satisfy both requirements.

Granular aluminum has been studied in the framework of superconducting
thin films starting in the late sixties [71, 73, 155] and has recently been proven
to be a low-loss material suitable for superconducting quantum circuits [75,
76, 79, 81, 150]. I will start off the following brief review with a description of
its microstructure and the resulting transport properties.

7.1 Microstructure and transport properties

Simultaneous deposition of two different elements on a substrate results in
a granular microstructure if and only if crystallization criteria are met for
only one of the two. “In the case of all things

which have several parts
and in which the totality is
not, as it were, a mere
heap, but the whole is
something besides the
parts, there is a cause.”

Aristoteles,
Metaphysics, Book VIII

Injecting an oxygen flow into a standard aluminum thin
film deposition naturally results in aluminum crystallizing, while amorphous
aluminum oxide forms. In that case, i.e. that of grAl, growth of the aluminum
crystallites pushes the amorphous dielectric towards the boundary. Once
the crystallite, or grain, is fully enveloped by dielectric, growth stops. The
dynamics behind this stochastic process are driven purely by the ratio of
aluminum and oxygen in the mixture. Indeed, the grain size is spatially
constant over a film fabricated with a given oxidation [73]. Ref. [156] reports
that the grain size is dependent on the fractional dielectric volume in the film
(in the case of dielectric being either non -stoichiometric AlOx or germanium,
with the grains being aluminum); it is further shown that increasing the
amount of dielectric firstly decreases the grain size, then grain size saturates,
and shell thickness starts increasing instead.
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From an operational point of view, this means that, at least in some regime,
increasing the oxygen flow will result in smaller grains, while, for some given
oxygen flow, the grain size will be further dependent upon the substrate tem-
perature, making the crystallization of aluminum more or less favorable. Both
effects are experimentally observed: the grain size decreases with increasing
oxygen flow, saturating at around 3 nm for room temperature substrates [73],
and smaller grains can be achieved with cooling down the substrate, e.g. to
2 nm at liquid nitrogen temperature [155]. The oxygen flow during deposition
increases exponentially the resulting normal state resistivity of the sample,
and, at some ρ ∼ mΩ cm, a superconductor to insulator transition (SIT) is
observed. The kinetic inductance scales linearly with the normal state resis-
tivity: the oxygen flow, and resulting resistivity, is the tuning knob of interest
for operators wishing to realize high impedance quantum circuits. In order to
gain insight into the nature of the SIT, effectively limiting the tuning range
of interest for high impedance circuits, it is instructive to look closer at the
microstructure of grAl.

A film of grAl can be described as a 3D network of quantum dots, i.e. each
metallic grain has a small enough size that the level splitting

∆E =
e2

C
, (7.1)

where e is electron charge and C is the grain capacitance, is appreciable com-
parable to all other energy scales. The energy necessary to add an electron to
a grain is ∆E, and the electron will stay in that specific grain for an average
time τ = RC, where R is the intergrain resistance (assumed equal for all
neighboring grains). The condition for which this Coulomb blockaded regime
becomes apparent, and the SIT is expected, is thus ∆E > h/τ. Equivalently,
the condition is R > R0 where R0 ≡ h/e2 is the resistance quantum. For
simplicity, imagine a chain of N identical cubic grains with side d and contact
resistance R. The resistivity will be

ρ =
NR
Nd

d2 : (7.2)

under the assumption of all grains and all contacts being the same, the bulk re-
sistivity is just Rd and the above condition for metallicity sets the SIT threshold
at

ρSIT =
hd
e2 , (7.3)

giving around 5 and 8 mΩ cm for d = 2 and 3 nm respectively. One may argue
that in the superconducting state the relevant tunneling is that of CPs, and as
such the e → 2e substitution scales the reported threshold resistivities by a
factor four, giving 1− 2 mΩ cm. This reproduces the experimental data with
acceptable agreement, considering the crudeness of the model.
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This is in accordance with the observations of [157], in which the London
penetration depth is reported to increase from bulk values to two orders of
magnitude higher up to the transition. Recalling Eq. (2.5), this is equivalently
a factor 104 suppression in supercarrier density: note that a 3 nm sized alu-
minum grain contains an order of 104 electrons, meaning that the SIT happens
concomitantly with the average number of electrons per grain becoming less
than one, further strengthening the Coulomb blockade picture.

What follows naturally is that, close to the SIT, applying a voltage bias to a
grain would result in a charge buildup. This is precisely one of the results
reported in Ref. [158]: scanning tunneling microscopy centered on a grain in
a mΩ cm grAl film, with voltage bias much larger than the gap (V � ∆/e),
shows a comb of peaks with spacing in the ±70 − ±300 mV range. The
corresponding charging energies indicate spherical self-capacitive structures
with radii in the 5− 20 nm range, in reasonable agreement with experimental
values: the same work reports topographic STM data showing clustering of
grains, which accounts for the higher size of said structures with respect to
the single grains. Furthermore, note that an order of magnitude upwards
correction in grain size rescales the previously predicted transition resistivity
to 10− 20 mΩ cm, bringing it closer to experimental values.

7.2 The superconducting dome

The increasing resistivity for grAl films with increasing oxygen pressure is
accompanied by a peculiar “dome” shape of the critical temperature, with
the critical temperature reaching a maximum at around 500 µΩ cm. “Straight off the top

of my dome.”

Bomfunk MCs, Freestyler

Several
independent measurements have been performed, drawing a well defined
phase diagram of grAl: I report a brief literature survey in Fig. 7.1.

I show critical temperatures, either as directly measured, or obtained by the
spectral gap with the BCS relation (cf. Eq. (10.3)). In the case of publications
reporting independent measurements of critical temperature and spectral gap,
I report the spectral gap converted to a temperature with the standard BCS
relation, and plot the actual BCS factor resulting from comparing the two mea-
sured quantities in the bottom panel. Interestingly, the BCS factor shows an
abrupt increase right above the dome maximum. Full markers represent films
deposited on room temperature substrates, while empty markers represent
substrates cooled to liquid nitrogen temperatures.

For clarity, the reported resistivities are indiscriminately measured at different
temperatures, from room temperature to that of liquid Helium; their spread is
on average only 6%, with a maximum of 30% at the SIT edge [161].

While several groups performed experiments that populated the phase dia-
gram of grAl, a full explanation of the what drive its peculiar shape is still an
outstanding question in the granular superconductivity community. Perhaps
the most interesting observation was made by Deutscher [73]: the initial in-
crease in critical temperature is concomitant with the decrease in grain size.
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Fig. 7.1: Survey of the grAl phase diagram, together with the BCS factor (when
available).

In the decreasing Tc region, on the other hand, the grain size stays constant
while the oxide shell thickness increases. It is then reasonable to expect the
Tc enhancement being the result of intragrain properties (say, an increased
electron-phonon interaction), and the Tc abatement at high resistivity being
the result of intergrain physics, e.g. some Josephson-like decoupling. I con-
clude this brief chapter by reporting a proposed mechanism for both. Given
that no consensus has been reached, the following is but an example, and its
choice hinges mostly on personal taste. For a broader look at proposed theo-
ries I address the avid reader to the review in the dissertation of Grünhaupt
[164].
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7.2.1 Critical temperature enhancement at low resistivities

In the framework of BCS theory, the superconducting gap is a function of
solely the density of states at the Fermi energy, the attractive potential, and
the Debye frequency (cf. Eq. (10.22)).

In Ref. [165], Parmenter develops a modified BCS theory in which the uniform
integration over impulse space is corrected with a periodization in a lattice
with finite lattice parameter. The limit of infinite lattice parameter is the
standard BCS theory. The finiteness of the lattice parameter adds a correction
to the attractive potential. For this, it is shown that an improvement x =
∆(a)/∆(a→ ∞) is expected, depending on the grain size a as

x log(x) =
π

2

(
L
a

)3

, (7.4)

where L3 = λ2
Fξ0, where λF is the Fermi wavelength and ξ0 is the coher-

ence length at zero temperature. In aluminum L = 6.2 nm and the expected
improvement of the superconducting gap is of order two for grains in the
2 − 3 nm range, in acceptable agreement with observations, and possibly
providing a piece of the puzzle as to why thin films of aluminum show an
increased Tc [166] (at least in the case of films with thicknesses down to the
nanometric scale).

7.2.2 Critical temperature suppression at high resistivities

It is trivial to imagine that, beyond some value of the thickness of the oxide
shells, the superconductivity of a macroscopic grAl sample will be suppressed
via the suppression of intergrain tunneling. However, one may expect a con-
stant gap, which is then suppressed, rather than the smooth, monotonic
decrease that is experimentally observed.

The description needs now be macroscopic, rather than the purely microscopic
BCS one of Subsection 7.2.1: in a somewhat dual approach, this effect can
be better understood in the framework of the GL theory, by writing the free
energy for a collection of superconducting grains,

Fs − Fn = ∑
i

A|∆i|2 + ∑
i

B
2
|∆i|4 + C ∑

ij
|∆i − ∆j|2 (7.5)

= ∑
i
(A + 2C)|∆i|2 + ∑

i

B
2
|∆i|4 − 2C ∑

ij
cos(θi − θj), (7.6)

where ∆i is the pair potential of a given grain, and ij runs over nearest neighbor
grains.

In the case of a granular structures, there are two limiting cases of interest.
Firstly, if the phases of all grains are completely random, the cosine of the
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Josephson term averages to zero. The condition for intragrain superconduc-
tivity is then a correction to the bulk condition, i.e. A + 2C < 0 & B > 0; this
(re)defines the regular, bulk critical temperature, Tb.

In the case of fully coherent connections between grains, the cosine averages
to 1 instead, giving a different temperature Tm: this is the temperature at
which coherence is established across grains, i.e. the temperature below which
the intergrain superconductivity is established. The subscript m indicates that
this is, in a way, the melting temperature of the Cooper pair lattice.

By generalizing the Josephson term of Eq. (7.6) in the presence of a vector
potential it can be calculated [167] that

Tm =
Φ2

0
15π3

ξ0

λ2 , (7.7)

where Φ0 is the superconducting flux quantum, ξ0 is the coherence length and
λ is the penetration depth. In low resistivity granular structures, Tm � Tb, and
is as such irrelevant. However, for increasing λ (which is an effect of increasing
resistivity [157]) it can be suppressed down to a point where the two quantities
become comparable. When Tm < Tb, it becomes the relevant condition for
superconductivity. For the highest reported penetration depth in Ref. [157],
λ = 5 µm, we expect Tm ≈ 1 K, in agreement with experimental observation.
This would imply that the macroscopic sample stops being superconducting,
but superconductivity is retained within single grains.

It is instructive to look at observations from Sacépé, Doubouchet and cowork-
ers [168, 169], wherein amorphous indium oxide is reported to undergo a
two-step superconducting transition, with Cooper pairs “preforming” locally
before achieving macroscopic coherence. Carrying out measurements in the
same spirit for grAl, which is granular rather than disordered and percolative,
is an experimental challenge, since it would amount to probing the presence
of superconductivity in single, isolated grains; confirming (or confuting) the
presence of single grain superconductivity is an outstanding task for grAl
scientists.

The above can be recast as an observation of energy scales, by looking at the
competition between the superfluid stiffness J and the superconducting gap:
the limits 〈cos〉 = 1 and = 0 correspond to a divergence and a collapse of
the superfluid stiffness. In Refs. [74] and [162], independent measurements
of J, from both room temperature resistance and kinetic inductance from
microwave measurement, show J ∝ 1/ρ, with J → ∆ towards the top of
the dome: once J < ∆, further decrease in J drives the smooth, monotonic
suppression of the macroscopic Tc.

Note that values reported in [162], obtained by DC transport, indeed show
an initial smooth decrease, which is however followed by an abrupt drop to
the insulating state beyond ρ = 104 µΩ cm. Compare this with tunneling
measurements in Ref. [160], wherein an uninterrupted, continuous suppres-
sion of Tc, reaching sub-aluminum values at ρ = 105 µΩ cm, is reported. This
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highlights a limitation of transport measurements: tunneling measurements
allow one to quantitatively address the broadening of the superconducting
DOS with resistivity, while keeping a notion of Tc. This broadening, however,
pushes a tail of allowed states towards the Fermi level, resulting in a non-zero
resistance below Tc, and as such a result that is qualified as “insulating” in a
transport measurement.
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Chapter 8

Phonon trapping model

In this chapter “Un’altra volta,
Un’altra onda! (. . . )
Quanto resisterai?”

Piotta, La Grande Onda

I describe the model we developed to account for the
effect of phonon trapping, and which we use to project the estimated
beneficial effect of an optimized phonon traps implementation.

THE mathematical model of phonon trapping used in this work is based
on simplifying the system under consideration into three main parts:
the circuit, the trap, and the substrate. All parts are described with a

single quantity: the number of QPs in the metalizations, and the number of
phonons in the substrate. We neglect phonons in the metalizations, under the
assumption that they immediately break a CP upon arrival; we effectively
account for a phonon number via a QP number. Furthermore, we disregard
thermal phonons, since the operational temperature is two orders of magni-
tude lower than the critical temperature of the superconductors: we restrict
our attention to “hot” athermal phonons such as those generated by high
radiation impacts. I can not proceed any

further in this chapter
without acknowledging
the invaluable help I
received from Gianluigi
Catelani and recognizing
the phonon trapping
model as a whole as his
brainchild.

8.1 Rothwarf-Taylor model

To describe the dynamics of the system, we take inspiration from the work
of Rothwarf and Taylor [127], wherein a model is derived for a single metal-
ization, and the perturbation to the system comes from the injection of out of
equilibrium quasiparticles. The governing description is a model of two rate
equations, for the number of QPs and phonons respectively. Our modification
amounts to add another metalization, which is coupled mechanically to, but
galvanically disconnected from, the first one: i.e., their interaction is purely
phononic. As such, the system is governed by the following rate equations:

ṄC = −2rCN2
C + 2bCNP (8.1)

ṄT = −2rT N2
T + 2bT NP − sT NT (8.2)

ṄP = gP − bT NP + rT N2
T − bCNP + rCN2

C − ePNP. (8.3)

Subscripts C and T indicate quasiparticle species in the circuit and trap, while
NP is the number of substrate phonons in the whole system. There are three
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main processes taking place. The source of perturbation is the generic phonon
source rate gP: this includes, but is not limited to, the athermal phonons
generated by ionizing impacts (cf. Chapter 9). The phonons undergo a cyclic
process of breaking CPs (equivalently, generating QPs), and being generated
by the recombination of QPs. These two processes happen in both the circuit
and the trap. In the i−th metalization, phonons break CPs with a breaking
rate bi (generating 2 QPs), and are generated with a recombination rate ri. The
latter is a two body process and as such related to the square of the relevant
QP species.

This would be the full story for two metalizations having the same gap. The ef-
fect of phonon trapping, i.e. making one of the two metalizations with a lower
gap, is to break the symmetry of this cycle. The gap difference introduces
yet another process taking place in the trap, i.e. the metalization with the
lower gap: here, quasiparticles excited by phonons at or above the circuit gap
can scatter before recombination with rate sT, and recombine once the excess
energy (the difference between circuit and trap gap) is lost. The recombina-
tion phonon is deprived of the necessary energy to break a CP in the circuit:
the scattering process in the trap is, so to speak, the “engine” of the phonon
trapping process. I wish to highlight that phonons do not get “trapped” any-
where: it is their energy that gets trapped below the trap gap, and it would
be more fitting, yet less catchy, to dub such lower gap metalizations phonon
downconverters.

We solve the system of rate equations in two different cases, reflecting the
two different experimental setups. Namely, two tuning knobs are present:
both increasing the gap difference between circuit and trap and increasing the
surface coverage of phonon trapping material are expected to give an increase
in phonon trapping efficiency. In the experimental setup investigating the first
case (cf. Section 4.2) we can fix the phonon trap coverage to essentially all the
chip (cf. Fig. 4.2), effectively suppressing the escape term −ePNP in Eq. (8.3):
the phonon trapping area is so vast that we neglect phonons making it past it
and to the sample holder. I firstly present the solution of the system in this
simplified form.

8.1.1 Full coverage solution

The quantity we are after is the number of QPs in the circuit, NC. The steady
state solution of Eq. (8.1) reads

NC =

√
bCNP

rC
: (8.4)

trivially, it is null in the absence of phonons and/or for a vanishing rate of
breaking CPs in the circuit, as well as for divergingly efficient QP recombi-
nation rate in the circuit. Subsitution into the rate equation for the phonon
number leads to the reduced steady state system,
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0 = −2rT N2
T + 2bT NP − sT NT (8.5)

0 = gP − bT NP + rT N2
T (8.6)

which can then be solved to obtain

NP =
gP

bT

(
1 +

4rTgP

s2
T

)
. (8.7)

To proceed, we have to consider the size of the second term in the parenthe-
ses. As mentioned, the central operational quantity is the scattering in the
traps, sT, i.e. the rate at which QPs in the trap and above the gap lose enough
energy to recombine emitting a phonon at the trap gap frequency. It is thus
instructive to express conditions on this quantity. Two possible cases arise:
the strong scattering case sT � 2

√
rTgP means that, for some fixed phonon

generation rate, the scattering dominates over the recombination process. In
principle strong scattering is good, but in this case it just means that the cyclic
generation-recombination process is stalling: the downconverted phonons
being recirculated into the system are too few to render the phonon down-
conversion effect appreciable. As such, the total number of phonons is simply
gP/bT, unaffected by the scattering process. The sole effect of the phonon
traps in this case is the suppression of phonons with the breaking rate bT, i.e.,
phonons are “lost” to breaking CPs in the trap, but their recombination is
unhindered: this is not a relevant case for our study. On the contrary, in the
weak scattering case sT � 2

√
rTgP the number of phonons is dependent on

the scattering rate in the trap sT, and reads

NP ≈
4rTg2

P
bTs2

T
, (8.8)

which can be plugged into Eq. (8.4) to obtain

NC = 2
gP

sT

√
bC

bT

rT

rC
. (8.9)

8.1.2 Partial coverage solution

I now describe the general solution of the Rothwarf-Taylor system, i.e. the one
in which the phonon escape term of Eq. (8.3) can not be neglected. The steady
state solution gives the same expression for the QP number in the circuit as in
Eq. (8.4), and evidently, the reduced system is the same of Eqs. (8.5) and (8.6)
with the −ePNP term being added to the latter. Now, Eq. (8.5) can be solved
to obtain
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NT =

√(
sT

4rT

)2

+
bT

rT
NP −

sT

4rT
, (8.10)

and substitution into Eq. (8.6) gives

0 = gP − ePNP +
s2

T
8rT

(
1−

√
1 +

16rTbT

s2
T

NP

)
. (8.11)

We get an approximate solution for the phonon number

NP =
gP

eP

1 +
s2

T
8gPrT

bT

eP
−

√√√√2
s2

T
8gPrT

bT

eP
+

(
s2

T
8gPrT

bT

eP

)2
 (8.12)

under the following conditions:

s2
T

8gPrT
� 1, � bT

eP
. (8.13)

The first condition is the same weak scattering condition of Subsection 8.1.1.

The second condition states that, for a given set of phonon trap parameters, the
rate of phonon escape to the sample holder must be kept small, lest phonon
traps would have no appreciable effect. Evidently, this is only valid in this
particular context of phonon traps used as a diagnostic tool; when designing
a circuit one should strive to achieve the largest phonon escape rate possible,
for a divergence of eP would entail no phonons in the circuit in the first place,
since they would all get readily lost to the sample holder (and make phonon
traps unnecessary).

Conversely, in the absence of phonon traps (bT → 0), Eq. (8.12) simplifies to
NP = gP/eP: the only hope of getting rid of phonons is their thermalization
to the sample holder.

To proceed, we rewrite the system in terms of areal densities, i.e. xi = Ni/Ai
for the i-th metalization, rather than their pure number. The areal rate param-
eters, indicated by a tilde, are defined as follows:

gP = g̃P AP, bi = b̃i
Ai

AP
, ri =

r̃i

Ai
, sT = s̃T, eP = ẽP. (8.14)

The total phonon generation rate is a product of an intrinsic phonon generation
rate and the area where phonons live, which is the whole circuit. For example,
under the assumption of high-energy phonons being generated uniquely
by ionizing radiation, the ionizing flux defines g̃P, and the total number of
phonons will then be scaled by the size of the chip AP, i.e. the “absorber” size.
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The scattering in the trap and the phonon escape to substrate are intrinsic
properties of the trapping material and the mounting to the sample holder,
and as such are not influenced by chip nor metalization sizes. The rate at
which Cooper pairs get broken in the i-th metalization is dependent on the
ratio of metalization area and total chip area, which gives the concentration
of pair breaking phonons in the metalization. Similarly, the rate at which
recombination takes place in the i-th metalization scales inversely with the
i-th metalization area, since a larger area means it is harder for a set number
of QPs to meet and recombine.

With this knowledge, the areal phonon density may be expressed as

NP

AP
=

g̃P

ẽP

[
1 + (βF)2 −

√
2(βF)2 + (βF)4

]
, (8.15)

where β2 ≡ (s̃2
T b̃T)/(8g̃Pr̃T ẽP), and the phonon trap surface coverage, or

filling factor, is defined as F ≡ AT/AP. For the case of no phonon traps, the
areal phonon density is the ratio of phonon generation and phonon escape.
For non-zero phonon trapping, the density is decreased monotonically with
the product of the phonon trap filling factor and the phonon trapping “weight”
β, which depends solely on intrinsic materials parameters: for a given setup
in which the only parameter under test is the filling factor, β is fixed.

8.2 Varying the gap

With solutions for the Rothwarf-Taylor model at hand, we can link the number
of excess QPs to experimentally accessible metrics, and explore their varia-
tion as the phonon trapping parameters are changed. I will firstly describe
how changing the gap difference between circuit and traps in MKIDs has a
beneficial effect on the noise equivalent power.

8.2.1 Noise equivalent power

Owen and Scalapino [170] proposed that the effect of incoming pair breaking
radiation onto a superconductor can be modeled as a shift in the chemical
potential of the quasiparticles. This is motivated by the observation that the
time that it takes for quasiparticle to recombine is much larger than the time
it takes for a quasiparticle to thermalize. Equivalently put, the quasiparticle
lifetime is long compared to the phonon lifetime, e.g. τQP ∼ µs and τph ∼ ns
as calculated by Kaplan [171] for aluminum. This amounts to saying that vast
numbers of unpaired electrons persist after a pair breaking event, albeit their
distribution is that of the same temperature of the unperturbed system; as
they put it, the two species are in thermal equilibrium, but not in chemical
equilibrium. Inspired by this simple picture, Sergeev and coworkers calculated
this correction to the chemical potential as [128, 129]
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µ =
kBT

2
log
(

1 +
2rP0τQP

hνnQP

)
, (8.16)

where P0 is the incoming radiation power per unit volume of superconductor,
ν is the radiation frequency and nQP is the QP density. The factor r is described
as a QP multiplication term, and its definition changes by the conditions of
the system. If phonons are readily lost, say to the sample holder, r = hν/∆
is simply the number of generated QPs. However, if phonons persist in the
system, a cascaded effect is to be taken into account, wherein recombination
phonons have the ability to break a pair themselves. Since we expect a case
that is very well phonon trapped, we are in the first case. By plugging the
correct definition of r in Eq. (8.17) and multiplying the second term in the
logarithm by V/V we can write

µ =
kBT

2
log
(

1 + 2
δNqp

Nqp

τQP

τtrans

)
, (8.17)

where δNQP = hν/∆ is the number of QPs generated by radiation, NQP is
the total number of QPs in the system, and I defined τtrans = hν/(VP0),
which is the time required to deliver enough energy to the system to generate
one QP. In this form it is clear to see that the correction to the chemical
potential is appreciable if and only if two conditions are satisfied: QPs must
live longer than the time it takes to generate them, and the induced shift in
QP number must be non-negligible with respect to the total number of QPs.
Both conditions are satisfied in high oxidation grAl MKIDs (cf. Fig. 3.2), since
it is a material with long QP relaxation times and a high kinetic inductance
(which essentially translates to high sensitivity to QPs).

Recalling the definition of the noise equivalent power (cf. Subsection 2.3.3),
the chemical potential is the gauge quantity of the system: Ref. [128] reports
calculations of the QP dominated NEP obtained by calculating the responsivity
(chemical potential as a function of incoming radiative power) and chemical
potential fluctuations, leading to the result

NEP = 2∆C

√
NC

τC
. (8.18)

Note that this is only valid under the assumption of T � Tc and that the
fluctuations of QPs are fully dominating other noise sources, which is a valid
assumption for our high impedance systems at dilution temperatures (tens of
milliKelvins).

Linearizing Eq. (8.1) around the steady state gives the QP relaxation time
τC = 1/(4rcNc); plugging this value and Eq. (8.9) into Eq. (8.18) leads to

NEP = 8gP

√
bCrT

bT

∆C

sT
. (8.19)
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The assumption is that the only parameter that will be affected by changing the
gap difference between circuit and trap is the scattering rate, sT. An expression
for such quantity is reported in [171], reading

sT =
1

τ0,T∆3
T

∫ ε

0
ω2 ∆T + ε−ω√

(∆T + ε−ω)2 − ∆2
T

×
[

1− ∆T

(∆T + ε)(∆T + ε−ω)

]
dω. (8.20)

The prefactor 1/τ0,T is a measure of the electron-phonon interaction; we
can disregard it since we are simply interested in the generic shape of the
scattering rate as a function of the trap gap. The equation has the approximate
solution

sT ∝
(

ε

∆T

)7/2 1 + ε/(8∆T)

1 + ε/∆T
(8.21)

valid for ε . ∆T, which is satisfied since ε ≈ ∆C − ∆T ≈ ∆T. Plugging into
Eq. (8.19) one arrives at

NEP ∝ ∆2
C

(
∆T

∆C − ∆T

)
1

∆C + 7∆T
(8.22)

(i.e. Eq. (4.5)), which predicts a monotonic decrease in NEP when the trap gap
is decreased with respect to the circuit gap. The equation is valid provided
that the metalization with the lower gap has a clear phonon trapping effect,
i.e. ∆C − ∆T � 1.76kBT, lest an unphysical NEP divergence is observed for
circuit and trap having equal gap.

8.3 Varying the coverage

In the following I describe the effect of varying the phonon trap filling factor
for circuit and gap having fixed gaps, on two separate QP poisoning metrics:
the internal quality factor and the amount of QP burst in the resonators.

8.3.1 Internal quality factor

For our circuit, QP losses will be related to the areal density of QPs in the film
as

1
QQP

= c
NC

AC
, (8.23)
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where c is some phenomenological scaling factor. Using the steady state num-
ber of QPs in the circuit (Eq. (8.4)) and the areal expression of rate parameters
(Eq. (8.14)) this can be recast as

1
QQP

= c

√
b̃CNP

r̃C AP
, (8.24)

wherein the number of phonon expressed via Eq. (8.15) leads to

1
QQP

=
1

QQP,0

√
1 + (βF)2 − βF

√
2 + (βF)2, (8.25)

where the trapless QP loss 1/QQP,0 ≡ c
√

b̃C g̃P/r̃G ẽP is defined. The equation
for the total internal quality factor (i.e. Eq. (4.6)) is Eq. (8.25) with the addition
of dielectric loss.

8.3.2 Quasiparticle bursts

When developing the model for the quality factor, one of the assumption
that are made is that there is some baseline population of athermal phonons
that is stable in time and uniform in space enough that it can be relevantly
described with a single steady state distribution. A further assumption is that
the energy of the phonons is slightly above that of the gap (ε ≈ ∆C − ∆T, cf.
Subsection 8.2.1). Quasiparticle bursts, on the other hand, are somewhat the
opposite case: they happen stochastically and on a timescale that is essentially
infinite compared to the internal dynamics of the system, with energies or-
ders of magnitude above the gap (a single burst easily generates more than
a million QPs). In the following I use the superscript H to indicate dynami-
cal parameters related to this very high-energy phonons (which will likely
different from their counterparts right above the gap).

Given the stochastic nature of this process, we seek to describe it with a
probability approach rather than a steady state number approach. As such,
the time evolving probability of having one such high-energy phonon in the
whole system is

ṖH(t) = −(eH
P + bH

T + bH
C )PH(t). (8.26)

Then the phonon will die away either by breaking CPs in the circuit or the trap,
or by escaping to the mounting assembly. We neglect the unlikely possibility
of QPs recombining right away. Setting the generation to happen at t = 0 (i.e.
PH(t = 0) = 1) we get the exponential solution

PH(t) = e−(e
H
P +bH

T +bH
C )t. (8.27)
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The high-energy phonon is absorbed by the circuit, i.e. generates a burst, with
a rate bH

C . Hence the probability of a burst being generated over time is

ṖB(t) = bH
C PH(t), (8.28)

with PB(t = 0) = 0. The probability of observing a burst averaged over time
is then

〈PB〉 = lim
T→∞

1
T

∫ T

0
dtPB(t) =

bH
C

eH
P + bH

T + bH
C

. (8.29)

We introduce now the generation rate of high-energy phonons (i.e., the rate of
high-energy impacts on the substrate), gH

P . Then, the quasiparticle burst rate
measured in the experiment is

ΓB = gH
P 〈PB〉 =

gH
P

1 + b̃T AP
b̃H

C AC

(
F +

ẽH
P

b̃H
T

) . (8.30)

where I again used the expression for areal dynamical parameters. This ex-
pression can be simplified with some assumptions. Since AP ∼ 1 cm2 and
AC < 10−3 cm2, and we expect comparable areal breaking rates in the circuit
and trap (under the assumption of them being made with comparable mate-
rials), we can neglect the 1 in the denominator if and only if ẽH

P /b̃H
T � 10−3.

Equivalently put, this sets a lower bound on the relevance that the phonon
escape rate has with respect to the CP breaking efficiency within the trap.
This is irrelevant for the case of no phonon trapping, since it relates to the
intrinsic ease of breaking CPs in the trap, but it means that, when a phonon
trap is present, the contribution of thermalization of the sample in the whole
process of getting rid of phonons needs to be kept at some minimum in order
for the phonon traps to have an appreciable effect; note that, as mentioned in
Subsection 8.1.2, in an actual, non diagnostic application one should strive to
obtain a phonon escape rate as high as possible. Under these assumptions, we
write

ΓB ≈
gH

P b̃H
C AC/b̃H

T AP

F + ẽH
P /b̃H

T
≡ Γ0

Λ
F + Λ

, (8.31)

where the phonon escape ratio Λ ≡ ẽH
P /b̃H

T has been defined: it is the geometry
independent ratio at which phonons escape to the substrate over the rate at
which they break CPs in the trap. It is a measure of how much the system is
able to get rid of phonon itself without the “help” of phonon traps: indeed,
if Λ � 1 the QP burst rate is the same regardless of the amount of phonon
trapping surface added to the system. The experimental data can be fitted
with Λ = 0.24 for all resonators, satisfying the condition Λ� 10−3 prescribed
above.
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The model developed for the burst rate deals with phonons having energies
several orders of magnitude above the gap, in principle arbitrarily above
it. As described in Subsection 6.3.2 we “declare” a QP burst when the reso-
nant frequency fluctuations trigger a derivative filter above a threshold. It
is reasonable to expect that there are several QP bursts that, while avoiding
detection with this simple scheme, still contribute to degrade the performance
of superconducting resonators. Their effect would still be an induced shift
in resonant frequency, but it would be drowned in the fluctuations of the
resonant frequency induced by non QP related phenomena, the SNR of the
readout scheme, etc. Thus, while eluding time domain detection filters, these
smaller bursts would be in principle accessible by performing spectral analy-
sis on the time traces of the resonance frequency, where they would introduce
an extra 1/ f component. Indeed we observe a reduction in the 1/ f noise
as a function of phonon trapping, albeit not accounted for by the presented
phonon trapping model. The decrease is reported in Fig. 6.14, showing a
reduction of up to one order of magnitude. We interpret this as a reduction of
the rate of “undetectable” QP bursts.
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Chapter 9

Environmental radiation assessment

This chapter describes the effort towards quantifying the radiation
coming from environment, and comparing it to the experimental data.

THE quasiparticle bursts observed in superconducting resonators are
convincingly radioactive in nature, i.e., caused by high-energy impacts.
However, this is a rather broad definition, as many sources can provide

radiation. In the following I detail how we bridged QP bursts measurements
with measurements of environmental radioactivity, in order to shed more
light on the origin of the QP bursts. The contents of this

chapter are knowledge
that I acquired through
our joint experiments with
members of the CUORE
collaboration, particularly
in the person of Laura
Cardani, whom I wish to
acknowledge as a
fundamental player in this
work, and to thank dearly.

9.1 Quasiparticle burst energy

In Subsection 6.3.2, esp. Fig. 6.11, I have reported the size distribution of QP
burst rate in unit of fractional quasiparticle density. In order to take a closer
look at the effect of radioactivity it is instructive to recast the same distribution
in energy units using

δE = δxQP∆nCPV, (9.1)

where ∆ ' 300 µeV is the superconducting gap of grAl, V is the resonator
volume, and nCP = 4× 10−6 µm−3 is the Cooper pair density of aluminum,
assumed to be equal to that of grAl.

9.1.1 Picking a bin size

The size distribution of bursts in quasiparticle density units is comparable for
all resonators. However, the three resonators under test have volumes that
differ by more than an order of magnitude, thereby spreading the burst size
distribution in energy units over a broad range, and making the choice of bin
size nontrivial. The goal here is to find the smallest bin size ∆E that is larger
than the uncertainty corresponding to the uncertainty of the measured VNA
response. We are dealing with high quality resonators measured in reflection:
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as such, we can restrict our interest to the phase of the complex frequency
response, which reads

ϕ( f ) = arctan
(

2Ql
f0 − f

f0

)
, (9.2)

where f0 is the resonant frequency and Ql is the loaded quality factor, and
task ourselves with determining its uncertainty ∆ϕ.

The phase response around f0 + δ f0 is linear for δ f0 → 0 and asymptotic to
±π for δ f0 → ∓∞: greater shifts in δ f0, which correspond to large QP bursts,
mean greater frequency uncertainty corresponding to ∆ϕ. Thus, we can only
quantitatively trust shifts δ f0 up to the point where the phase uncertainty ∆ϕ
corresponds to a frequency difference smaller than the bin size in frequency
units, ∆ f0. This places the following constraints:

|ϕ( f0 + δ f0)− ϕ( f0 + ∆ f0 + δ f0)| < ∆ϕ

⇐⇒
∣∣∣∣ϕ( f0 + δE

f0

4V∆0nCP

)
− ϕ

(
f0 + ∆E

f0

4V∆0nCP
+ δE

f0

4V∆0nCP

)∣∣∣∣ < ∆ϕ,

(9.3)

where ∆ f0 and ∆E are the bin sizes in frequency and energy units respectively,
δE is the burst size in energy units (cf. Eq. (9.1)) and δxQP is the burst in
fractional QP density units (cf. Eq. (2.10)).
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Fig. 9.1: Left panel: phase response of resonator B in the K setup (orange) with fits the
arctangent response (magenta). Right panel: size distribution of the phase response
unbiased by subtracting the arctangent fit. The estimated phase response uncertainty
is shown with vertical red lines.

The estimation of the phase uncertainty ∆ϕ, is summarized in Fig. 9.1: the
fitted arctangent dependence of Eq. (9.2) is subtracted from the measured
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arg{S11}, and the nearest point difference (i.e, derivative with respect to fre-
quency) ϕ′[i] = ϕ[i]− ϕ[i− 1] of the now unbiased raw scattering data is com-
puted. The uncertainty is defined as ∆ϕ = 2 stdev(ϕ′), giving ∆ϕ . 10 milli-
radians for all resonators.

Using ∆E = 5 eV, the constraint of Eq. 9.3 is satisfied for ∆ϕ = 10 milliradians
and for all measured QP burst in all resonators. In quasiparticle density units,
this results in δxQP = 33× 10−6, 5× 10−6 and 94× 10−6 for resonators A, B,
and C, respectively, and the common bin size 100× 10−6 is thus chosen (cf.
Fig. 6.11).

9.1.2 Size distribution and absorption efficiency
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Fig. 9.2: Distribution of QP burst size in energy units across all setups with common
bin size ∆E = 5 eV.

The burst distribution in energy terms is reported in Fig. 9.2. The x-axis offset
for each resonator is given by their volume. The energy reported is the energy
efficiently absorbed by the resonators, since it is obtained by counting the
number of broken CPs. In order to gain insight about the energy of the particle
impacts on the substrate, it is instructive to look at the energy distribution for
the G setup with the ThO2 source present, for in such case the radioactivity
landscape is dominated by a single, well defined source. We perform Geant-4
simulations I am indebted to Luca

Gironi from INFN Milan
for this simulation.

to estimate the energy deposited on-chip by the ThO2 source.
The result is reported in Fig. 9.3.
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Fig. 9.3: Geant-4 simulated
distribution of on-chip im-
pacts generated by a ThO2
source. Binning is 5 keV and
the average deposited energy
is 150 keV.

Resonators A, B and C absorbed on average 20, 160 and 10 eV. Comparing
with the average deposited energy 150 keV we obtain an absorption efficiency
of 10−4, 10−3, and 0.5× 10−4. Note that this efficiency is the product of at least
two separate efficiencies: the phonon transmittance efficiency of the substrate,
including the acoustic mismatch between sapphire and grAl, and the CP
breaking efficiency of the phonons entering the resonators.

The resulting total efficiency is small compared to those reported in previous
work [103, 172, 173]. It should be noted that previous reported data is for
aluminum films deposited on sapphire; no data about grAl on sapphire is
available.

In order to fill this gap and asses the efficiency of grAl on sapphire we per-
formed a separate experiment in the R setup. We measured a sample con-
sisting of a 60 nm thick lumped element MKID made of grAl, deposited on
on a 2×2 cm2, 330 µm thick sapphire substrate. The design is similar to that
reported in Ref. [103], with an active surface of 2 mm2. The chip was assem-
bled in a copper holder hosting a 55Fe X-ray source, emitting characteristic
X-rays at 5.9 and 6.4 keV with a rate of ∼100 mHz. The X-rays are completely
absorbed in the substrate due to their low energy. This type of source has
the disadvantage that, being permanently exposed to the sample, prevents
the achievement of low radioactivity levels. On the other hand, it produces
events of well defined energy, in contrast to the broad spectrum emitted by
the removable ThO2 source. This allows us to obtain a precise measurement
of the efficiency. Following the methods outlined in Refs. [103, 174] we can
write the grAl MKID efficiency ε as:

ε =
N0V∆2

0
αS2(ω, T)Q

δφ

Enom
(9.4)

where N0 is the density of states at the Fermi level (assumed to be equal to
that of pure aluminum), V is the resonator volume, ∆0 is the grAl gap, α is the
kinetic inductance fraction, Q is the loaded quality factor, S2(ω, T) = 2.27 is a
slow function of the resonant frequency and of the effective temperature [152]
and δφ is the phase variation induce by a deposit of energy at the 55Fe peak.
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Substituting these measured values into the previous formula we obtain a
grAl MKID efficiency of 3.2× 10−3. The efficiency is improved with respect
to the stripline resonator, e.g. by a factor 3 with respect to resonator B; in this
case, however, the volume is increased by more than two orders of magnitude.
In general, the efficiency improvement does not scale linearly with the (much
different) resonator volumes.

This could possibly hint at the fact that the grAl MKID, having a large 2×
2 mm2 footprint, essentially saturates the phonon transmittance efficiency
from substrate to films, and the total efficiency is then bottlenecked by other
multiplicative terms that do not scale with volume and/or contact surface (e.g.
phonon CP breaking efficiency within the film, likely dictated by microscopic
rather than geometrical parameters). As such, we interpret the calibrated grAl
KID efficiency of 3.2× 10−3 as an upper bound to the efficiency for resonators
A to C.

9.2 Laboratory radioactivity estimation

As discussed, reducing the impact of near radioactive sources amounts to
implementing radiopurity protocols throughout the whole experimental chain,
from picking the correct material to cleaning the sample holders properly;
even dusting the cryostat has a positive effect. This implies that there is a
great variance of the effect of near sources across different labs, samples,
cooldowns, and operators. A comparative survey of the effect of near sources
across different setups can not be meaningfully carried out. What can be done is e.g.

surveying the
radioactivity of any given
material used in the whole
cryogenic setup; while this
approach goes beyond the
scope of this work, it
represents a relatively
unexplored avenue for
dissipation abatement in
the superconducting
quantum information
community.

Far sources, on the contrary, ought be sensibly more non-local, and it makes
sense to investigate their nature across different setups. Far sources themselves
may be divided into cosmic, i.e. from cosmic rays, and environmental. Primary
cosmic rays are protons and alpha particles coming from the sun and the
galaxies. They interact with the Earth’s atmosphere to produce a vast array of
particles, so called secondary cosmic rays, or “showers”. Most of the generated
particles are short lived and do not reach sea level with an appreciable flux.
The notable exceptions are muons, which are energetic enough to reach the
ground.

The non-local nature of the cosmic muon flux means that the tabulated energy
distribution and the absolute flux and are a valid reference in any part of the
world: in our work, we use data reported in Ref. [175]. The reported energy
distribution is a decaying power law in the 1− 103 GeV range, with a flux of
the order of 10−1 cm−2 s−1.

We use this data as input for a Geant-4 simulation. Since muons come from
the sky, we generate them with the tabulated parameters from a uniform
disk situated above the cryostat. This allows us to estimate the rate of energy
impact, both direct and secondary, hitting the sample substrate. A simulation
of 107 events lead to an estimated 0.6 mHz impact rate on the chip. I am indebted to Claudia

Tomei and Giulia
D’Imperio from INFN
Rome for carrying out this
simulation.

Note that
this rate is completely suppressed in the underground facility G thanks to the
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granite overburden. This leads to the conclusion that muons do not dominate
through direct interaction the measured QP burst rate in any of the setups
used in this work.

The environmental radiation is composed by decay products of a priori un-
known isotopes. In principle, it is composed of alpha, beta and gamma rays.
We are interested in which radiation can eventually reach the sample through
the successive metal shielding of the cryostat; only gamma sources possess
the necessary penetrating power. Our analysis of environmental radiation
simplifies to an analysis of the gamma rays background in our laboratory.
This can be carried out with a scintillator counter, i.e. a device that couples
a scintillating crystal, emitting light as a result of ionizing radiation, with a
photomultiplier. We use a commercial NaI scintillator to measure gamma rays
background in the labs. The results are reported in Fig. 9.4.
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Fig. 9.4: Scintillator spectra measured in the K, R and G setups, the latter both with and
without the Pb shielding. The binning is 6.2 keV, obtained by dividing the dynamic
range by the number of scintillator channels (1024).

We measured the three setups used in this work, K, R and G, the latter both
with and without the lead shield. The radioactivity curves all show the same
shape, indicating commonplace isotopes, particularly those of potassium
and thallium. This is a sanity check that no spurious radioactive contami-
nant is present: the value of this measurement is in the vertical offset of the
curves rather than any of their features. As expected, measurements in the
underground, radiopure facilities, and the further addition of lead shielding,
contribute to abate the typical above ground levels, measured in K. Note that
the measurements in R are above commonly measured levels: this is due, in
part, to the walls of the facilities being made of tuff, a rock made of volcanic
ash known to have higher activity than standard construction materials [176].

At this point we have half the knowledge that we need: we obtained, or rather
confirmed, the shape of the energy curve, and the gamma rays flux in the
scintillator. We are left to determine the flux of gamma rays on the sapphire
chip, and the expected QP burst rate with it. Recall that the (conservative)
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Table 9.1: Simulated and measured burst rates. All values are reported in mHz.

R K G G, lead off

Simulated 48± 11 16± 4 4± 1 0.5± 0.1

Measured
44± 5 (vacuum grease)

52± 4 (Ag paste)
76± 1 6.6± 0.7 2.6± 0.6

threshold for registering a QP burst is δxQP = 50× 10−6 for all resonators,
resulting in 7, 50 and 3 eV for resonators A, B and C respectively. By taking
into account the phonon transmittance efficiency (cf. Subsection 9.1.2) this
results in a threshold for the on-chip impact of 60± 10 keV, comparable to
the lower bound of the dynamic range of the scintillator: thus, we make the
assumption that any impact measured by the scintillator will result in an
observable QP burst in the chip.

In order to estimate the on-chip gamma flux we decompose the curves re-
ported in Fig. 9.4 as a sum of the spectral lines of the main participating
isotopes. The resulting weights are used to calibrate yet another Geant-4 sim-
ulation in which the same isotopes, for which all relevant data is tabulated,
contribute with the correct weight.

With the exception of the the K setup, we observe a systematic excess activity
of 1.5± 1.1 mHz between the observed and simulated burst rates, possibly
due to radiation outside of the dynamic range of the scintillator, or limitations
in the Geant-4 simulation. However, a relevant underestimation is present for
the K setup, in which the measured rate is four times higher than predicted.
We attribute this to the lack of radiopurity measures in the K setup: it may
be worth to stress the fact that, while R and G setups are routinely used by
particle physics group and as such designed with radiopurity in mind, the K
setup is but a standard superconducting electronics setup. This hints at the fact
that, possibly, the reason of this vast excess is to be found in the contamination
coming from near sources, and would highlight the dire need, for the super-
conducting quantum information community, to consider undergoing serious
radiopurity surveys, the implementation of effective cleaning protocols, and
the choice of new materials and cryogenics solutions.
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Conclusions and outlook

This thesis starred superconducting resonators of many shapes and sizes, from large
lumped element resonators read out by a feedline to thin striplines in a three dimensional
waveguide. The one thing they had in common is the material used to realized them,
granular Aluminum (grAl), a composite material made of aluminum beads in an aluminum
oxide matrix.

Tuning the oxygen rate during grAl deposition tunes the resulting kinetic inductance,
allowing for the fabrication of high impedance circuits. As such, the other thing that the
resonators in this thesis had in common is a relatively high impedance, which made them
sensitive to quasiparticle poisoning. They provided a practical testbed for the diagnostic
and the abatement of the nefarious effects of quasiparticles in superconducting quantum
circuits.

Particularly, quasiparticles are ascertained to be non-thermal in the regime of operation, and
one of their origins is high-energy radiation on the substrate chip, generating a wavefront
of high-energy athermal phonons, resulting in so called quasiparticle bursts. The two
main efforts presented in this thesis are the abatement of both the phonon density and the
incoming radiation.

The former was achieved with so called phonon traps, metalizations with a gap lower than
that of the circuit, acting as downconverters for the phonon frequency: the phonon density
is unaltered, but the frequency of possibly pair breaking phonons is brought down below
the gap, suppressing their pair breaking ability.

This approach is divided into two ways of increasing the phonon trapping efficiency:
increasing the gap difference between the circuit and the trap, and increasing the phonon
trap coverage. We developed a mathematical model to take both effects into account.

We fabricated microwave kinetic inductance detectors made of grAl. Another property of
grAl is that the superconducting gap changes as a function of the resistivity, following a
dome shape with values in the 1.5− 3 K range, above that of thin film aluminum (1.2 K). Our
model predicts a reduction of the noise equivalent power (i.e. a performance improvement)
with the increase of the difference between circuit and trap gap, which was confirmed by
experimental results.

A further prediction of our model is the increase of the internal quality factor and the
decrease of the measured quasiparticle burst rate when increasing the surface coverage of
phonon traps. We explored this by fabricating four samples with increasing phonon trap
coverage, including a witness sample with no phonon traps. The experimental data fits the
predictions of the model, allowing us to extrapolate an order of magnitude improvement
in Qi and a factor six suppression in QP burst rate in the limit case of maximal phonon trap
coverage.

The remaining avenue is to go at the root of the problem and prevent radiation from gener-
ating athermal phonons in the substrate in the first place. We achieved this by measuring
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the witness sample from the previous experiment in different experimental setups with
increasing protection against radiation. The two radiation abatement protocols consisted in
cleaning the sample and its vicinity to get rid of near sources of radioactivity, and to shield
the setup to get rid of far sources of radioactivity.

We reported a suppression of the QP bursts rate that follows unambiguously the imple-
mentation of radiopurity protocols. Even more interestingly, this has a correlation with
an improvement of the internal quality factors, showing that a source of dissipation are
deposits of energy of varying size that get averaged together when measuring the internal
quality factor. The correlation is only qualitative; simply observing the rate is a limiting
metric because it does not carry information about the energy distribution of the impacts.

The results reported in this thesis are encouraging, yet far from their possible best im-
plementation. Phonon trapping is a particularly attractive avenue because it is easily
implemented and has a very small influence on the circuit itself due to galvanic discon-
nection and distance from the circuit. A series of improvements can be easily imagined,
such as high gap circuits (e.g. made with niobium) with low gap traps (e.g. made with
titanium), and maximized coverage, which includes the side of the chip with no circuits.
The topology of the traps may be used to create a phononic crystal that prevents phonons
in the pair breaking band to reach the circuit.

Radiation abatement is an avenue even more rife with possibilities. Our results point
towards the conclusion that pretty much every implemented radiopurity protocol had
a positive effect on resonator performance. This means that a series of surveys on the
radiopurity of materials should be taken by the superconducting quantum circuits commu-
nity, possibly leading to significant changes in how cryostats, sample holders, and their
surroundings are designed, as well as incorporating shielding material such as lead in
the cryostat structure. Looking more forward, it may turn out that superconducting quan-
tum processors will benefit from being installed in underground facilities and operated
remotely.
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Part III

Further information

You can’t argue with the little things.
It’s the little things that make up life.

Hank Scorpio,
The Simpsons





Chapter 10

BCS review

In this chapter I present a light summary of the Bardeen-Cooper-
Schrieffer (BCS) theory. The main goal is to give a good definition of
what a quasiparticle is, given “If you know

your enemies
and know yourself,
you will not be imperiled
in a hundred battles.”

Sun Tzu, The Art of War

that it is the main bad guy in the story
narrated in this thesis.

THE first experimental evidence of superconductivity was made by Onnes
[177] in 1911. The first fruitful attempt to describe the phenomena via
a microscopic model was put forth by Bardeen, Cooper and Schrieffer

[178] in 1957. In the following I embark in the daunting challenge of summa-
rizing this elegant and somewhat counterintuitive theory that eluded solid
state physicists for half a century.

This chapter is based on notes of the lectures that I gave in March 2021 in
the internal “quantum academy” in the group of Ioan Pop in KIT. My main
motivation in giving that small class was the hope of providing a friendly
reference for an unfriendly subject, and it is the same purpose that drove me
to write this as supplementary material for this thesis. “There are, therefore, no

fundamentally new
results.”

Richard Feynman,
Space-time approach to
relativistic quantum
mechanics [179]

Granted, it is the sole
part of this work wherein I certainly do not add anything new to existing
knowledge in the community; yet, I believe that there may be value to be
found even in restating what is known. I will begin with a quick review of the
mathematical machinery involved, and conclude with a friendly graphical
summary.

10.1 Overview of theory

The onset of superconductivity is a second order phase transition, and was
phenomenologically described as such by Ginzburg and Landau [180] with
success. This would hint at the presence of long range correlation. But what
kind of correlation can exist in a electrical conductor? Furthermore, the tem-
perature is the control parameter: but what is the effective order parameter?
In the GL theory it is “some” macroscopic wavefunction, but what exactly
is the meaning of this? It was later proven by Gor’kov that the BCS theory
and GL theory are mutually compatible [181], hence the results of BCS should
harmonize together with those of GL, and give some answers to the previous
questions; so will the following sections.
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The BCS theory builds on the fact that an isotope effect is observed [182], i.e.
the transition temperature is dependent on the mass number in elemental
conductors. This lead to the initial intuition of Cooper, that a micromechan-
ical effect is the core of superconductivity, and that electronic correlation is
achieved via electron-phonon interactions. I begin by describing the phe-
nomenon in which electrons pair due to phononic interactions into so called
Cooper pairs.

10.1.1 Two electrons: Cooper pairs

Two electrons repel each other because of their charge being the same. In
a cold enough lattice, i.e. made of ions that are not too thermally excited,
the movement of an electron attracts core ions enough to create a positively
charged trail, to which another electron, which moves significantly faster than
the ions trying to return to their equilibrium positions, may be attracted to.
Equivalently stated, we may expect a phonon mediated long range attraction
between electrons to arise in cold enough samples.

The Schrödinger equation of two electrons interacting via some potential V
referenced to centermass coordinates reads[

− h̄2∇2
R

4m
− h̄2∇2

r

m
+ V(r)

]
Ψ(r,R) = EΨ(r,R), (10.1)

where we can separate the wavefunction as Ψ(r,R) = ψ(r)eiK·R: an interac-
tion part referred to the relative displacement and a displacement part referred
to centermass, allowing us to write[

− h̄2∇2
r

m
+ V(r)

]
ψ(r) =

(
E− h̄2K2

4m

)
ψ(r). (10.2)

We interest ourselves in the case of lowest energy for a given eigenvalue,
K = 0: i.e., the two electrons having opposite momenta. Since we wish to
study the interacting phenomena between electrons, we have to liberty of
picking an arbitrary state of displacement. In this case, the two electrons have
the same energy, further requiring them to have opposite spins to satisfy
Pauli’s exclusion principle. We take the Fourier transform of Eq. (10.2) to
obtain ∫ d3k′

(2π)3 V(k− k′)ψ̃(k′) = (E− 2εk)ψ̃(k) (10.3)

by using F{ f × g} = f̃ ∗ g̃, with εk ≡ h̄2k2/2m. The simplest way to expect
the aforementioned phonon mediated interaction is to define a net attrac-
tive potential that is −V0 for free electrons above εF and up to the Debye
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frequency h̄ωD, and null otherwise. If the interaction is truly long range, it
will be felt equally by all electrons, thus we seek for a solution of the type
ψ̃(k) = ψ (equivalently ψ(r) = ψ); the resulting spatial homogeneity implies
that, to keep the total wavefunction compliant to fermionic antisymmetry, the
(opposite) spins must form a singlet state, hence the name “s-wave supercon-
ductivity”. The s-wave nomenclature

is relevant when
compared to post BCS
theories in which different
interaction mechanisms
are expected.

Thus Eq. (10.3) simplifies to

ψ = V0ψ
∫ d3k

(2π)3
1

E− 2εk

1 = V0

∫
dε
∫ d3k

(2π)3 δ(ε− εk)
1

E− 2ε

= V0

∫
ρ(ε)dε

1
E− 2ε

= V0ρF

∫
dε

1
E− 2ε

, (10.4)

where the electronic density of states allows us to pass to an integration over
all energies, and is approximated to its value at Fermi energy (ρ(ε) ≈ ρF),
under the expectation that only a small amount of electrons in the vicinity of
the Fermi energy will be subjected to the interaction.

Equation (10.4) can be solved to obtain

2
V0ρF

= ln
(

2εF − E + 2h̄ωD

2εF − E

)
, (10.5)

from which, provided 2εF ' E, we obtain

2εF − E = 2h̄ωDe
− 2

V0ρF : (10.6)

a two electron bound state is always favorable with respect to the energy of
the free electrons. Even for a vanishingly small potential, V0 → 0, we have
2εF = E: the energy of the bound state is exactly twice the Fermi energy, but
the electrons come from above the Fermi energy.

10.1.2 Many electrons: the BCS Hamiltonian

Even a small attractive interaction between electrons will cause them to create
bound states with opposite spin and momentum. The ground state of a system
where this interaction takes place will be populated by bound states of electron
pairs, i.e. Cooper pairs. The Hamiltonian of the full system of paired and
unpaired electrons reads

H = Hband + Hinteraction

= ∑
kσ

ξkc†
kσckσ +

1
N ∑

kk′
Vkk′b†

kbk′ (10.7)
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where ξk = εk − µ is the kinetic energy of an electron referenced to the Fermi
level, σ is either ↑ or ↓ spin, c’s are electron creation/annihilation operators
and b’s are Cooper pairs creation/annihilations operators (b†

k = c†
k↑c

†
−k↓

and bk = (b†
k)

†). Any operator can be written as a sum of its mean value
and fluctuations around its mean value, A = 〈A〉+ A′. The product of two
operators is thus 〈A〉B + A〈B〉 − 〈A〉〈B〉, under the assumption of small
fluctuations, A′B′ = 0. This mean field approach is justified by the fact that a
metal becomes a superconductor via a second order phase transition, and can
be described by the same exact phenomenological setup of e.g. the Ising model.
Rewriting the Cooper pair operators product term as such, and defining

∆k ≡ −
1
N ∑

k′
Vkk′〈bk′〉, (10.8)

the interaction part of the Hamiltonian reads

Hinteraction = −∑
k

(
∆kb†

k + ∆∗kbk
)
+ ∑

k

∆k〈b†
k〉. (10.9)

We seek to solve the Hamiltonian by introducing the so called Bogoliubov γ
operators, defined as ck↑

c†
−k↓

 =

 u∗k vk

−v∗k uk

 γ†
k↑

γ−k↓

 (10.10)

with the constraint |uk|2 + |vk|2 = 1 to ensure fermionic commutativity. A
Bogoliubov operator creates (annihilates) an electron and a hole with am-
plitudes |vk|2 and |uk|2, respectively: this species is called a Bogoliubon, or
quasiparticle. The Hamiltonian in terms of Bogoliubov operators reads

H =∑
k

[
2ξk |vk|2 − ∆kukv∗k − ∆∗ku∗kvk + ∆k〈b†

k〉
]

+∑
k

[
ξk

(
|uk|2 − |vk|2

)
+ ∆kukv∗k + ∆∗ku∗kvk

] (
γ†
k↑γk↑ + γ†

−k↓γ−k↓

)
+∑

k

[(
2ξkukvk − ∆ku2

k + ∆∗kv2
k

)
γ†
k↑γ

†
−k↓ + Herm. conj.

]
. (10.11)

The three terms are respectively a constant, a term depending on Bogoliubon
number operators, and a term with mixed γ†γ† and γγ products. If we can
get rid of the third term we manage to recast the Hamiltonian into a purely
band like Hamiltonian in which the quasiparticle nature encodes the electron-
phonon pairing. We thus seek to set the third term of Eq. (10.11) to zero. The
solution of the resulting quadratic equations is
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vk
uk

=

√
ξ2
k + |∆k|2 − ξk

∆∗k
. (10.12)

The solution with the negative square root is the relevant one since it is the
one that minimizes the energy. One then finds expressions for the Bogoliubov
amplitudes,

|uk|2, |vk|2 =
1
2

(
1± ξk

Ek

)
, (10.13)

Ek =
√

ξ2
k + |∆k|2. (10.14)

where Ek is the excitation energy of a quasiparticle. The reason for this nomen-
clature is apparent if the BCS Hamiltonian is rewritten by plugging the previ-
ous results:

H = ∑
kσ

Ekγ†
kσγkσ + ∑

k

(
ξk − Ek + ∆k〈b†

k〉
)

. (10.15)

The ground state of the BCS Hamiltonian is the vacuum of quasiparticles.
This, I believe, is a very effective way to frame QPs as the bad guys: supercon-
ductivity in the BCS framework is defined by their absence.

10.1.3 The superconducting gap

The excitation energies of quasiparticles differ from those of electrons and
holes by the addition of ∆

k
: an energy excess, or gap. A closer look at this

quantity is thus in order. Equation (10.8) can be recast in Bogoliubons terms
to obtain

∆k = − 1
N ∑

k′
Vkk′u∗k′vk′

(
〈γ−k′↓γ

†
−k′↓〉 − 〈〈γ†

k′↑γk′↑〉
)

. (10.16)

Recall once again that γ operators are fermionic, and thus obey the Fermi-
Dirac distribution with energy Ek:

〈γ†
k′↑γk′↑〉 = 〈γ†

−k′↓γ−k′↓〉 =
1

eβEk′ + 1
, (10.17)

which together with Eq. (10.13) allows us to recast Eq. (10.16) as

∆k = − 1
N ∑

k′

Vkk′∆k′

2Ek′
tanh

(
Ek′

2kBT

)
. (10.18)

As before, the solution is sought for the case of a constant, attractive, phonon
mediated potential for electrons around the Fermi level, thus Vkk′ = −V0 for
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|ξk|, |ξk′ | < h̄ωD where ωD is the Debye frequency. We assume again that
∆k = ∆. This simplifies Eq. (10.18) to

1 =
V0

N ∑
k<kD

1
2Ek

tanh
(

Ek

2kBT

)
. (10.19)

The density of states ρ(ε) = N−1 ∑k δ(ε− εk) can be used as a measure to
recast the summation over wavevectors to an integration over energies:

1 = V0ρF

∫ h̄ωD

0

dε√
ε2 + ∆2

tanh

(√
ε2 + ∆2

2kBT

)
(10.20)

again approximating the DOS at its Fermi energy value, ρ(ε) ≈ ρF, and
writing

∫ h̄ωD
−h̄ωD

dε f (ε) = 2
∫ h̄ωD

0 dε f (ε) thanks to the parity of the integrand.
In the case of T → 0 the hyperbolic tangent term is dropped and the integral
can be solved to give

1
V0ρF

= arcinsh
(

h̄ωD

∆0

)
, (10.21)

where ∆(T = 0) = ∆0. The argument of the hyperbolic arcsine is much
greater than one, e.g. for aluminum h̄ωD ∼ eV and ∆0 ∼meV. One can then
approximate arcsinh(x) ≈ log(2x) and solve to obtain

∆0 = 2h̄ωDe−
1

V0ρF : (10.22)

even a small interaction at zero temperature gives rise to a finite gap. The
gap appears at the critical temperature of superconductivity: how are the two
quantities exactly related? Setting ∆→ 0 in Eq. (10.20) leads to

1
V0ρF

=
∫ C

0
dx

tanh(x)
x

, C ≡ h̄ωD

2kBTc
. (10.23)

Solving the integral gives an expression of the transition temperature,

Tc =
2eγE

π

h̄ωD

kB
e−

1
V0ρF , (10.24)

where γE = 0.577 is the Euler-Mascheroni constant. Combining the T → 0
and ∆→ 0 approximate solutions of Eq. (10.20) gives the BCS ratio

∆0

kBTc
≈ 1.76. (10.25)

The complete form of Eq. (10.20) can be solved numerically to obtain the
behavior of ∆ as a function of T. The superconducting gap is the order pa-
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rameter of superconductivity, representing the onset of long range phononic
correlations responsible for the experimental features of superconductivity.

The portion of momentum space that is relevant for superconductivity is

EF − ∆0 <
p2

2m
< EF + ∆0 (10.26)

which for each axis i ∈ (x, y, z) corresponds to a momentum spread

δpi = δp = pF

(√
1 +

2m∆0

p2
F
−
√

1− 2m∆0

p2
F

)
≈ 2∆0

vF
, (10.27)

where the Taylor expansions holds since p2
F � m∆0, and vF = pF/m is

the Fermi velocity. A wavepacket with this uncertainty has spatial spread
δx ≈ h̄/δp, leading to a coherence length More detailed calculations

give a π correction term in
the denominator, which is
irrelevant for the order of
magnitude argument I
wish to make.

ξ0 =
h̄vF

∆0
, (10.28)

which can be calculated with Eq. (10.25), giving e.g. an order of a microm-
eter for aluminum: superconductivity truly is a long range interaction. In
the Ginzburg-Landau phenomenological theory, the coherence length is the
characteristic length of variation of the order parameter, and a physical quan-
tity that stems naturally from this consideration is that it is the diameter of
Abrikosov vortices penetrating the sample for type II materials; in the BCS
framework, yet another physical interpretation of the coherence length is that
it is the average physical size of a Cooper pair.

10.1.4 Density of states

The quasiparticle density of states can be written using Eq. (10.14) as

ρQP(ε) =
1
N ∑

k

δ

(
ε−

√
ξ2
k + |∆k|2

)
. (10.29)

Using the same assumptions as before (constant electronic DOS around the
Fermi energy and constant gap) we get

ρQP(ε) = ρF

∫
R

dξδ

(
ε−

√
ξ2 + ∆2

)
. (10.30)

The Dirac distribution can be rewritten to extract the integration variable from
the square root using

δ( f (x)) = ∑
i

δ(x− xi)

| ∂ f
∂x (xi)|

(10.31)
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where f (xi) = 0 ∀i, thus obtaining

ρQP(ε) = ρF
ε√

ε2 − ∆2
0

×


∫

R
δ

(
ξ −

√
ε2 − ∆2

0

)
dξ︸ ︷︷ ︸

=1

+
∫

R
δ
(

ξ +
√

ε2 − ∆2
)

dξ︸ ︷︷ ︸
=1

 , (10.32)

leading to the compact result

ρQP(ε)

ρF
=

2ε√
ε2 − ∆2

0

: (10.33)

the QP DOS is divergent above the gap, null below it, and tends asymptot-
ically to the electronic DOS at high-energy. When the gap is null, i.e. the
superconductor is a normal metal, the QP DOS is twice the electronic DOS,
since ε is an excitation energy relative to the Fermi sea, with both electron and
holes contributing to the density of states. Different derivations lead to the
factor 2 vanishing from the numerator of the right hand side of Eq. (10.33),
e.g. in the classic Tinkham textbook on superconductivity [59]. This is not
problematic since what is sought is a qualitative description. Furthermore,
in the framework of an actual experiment both factors 1 and 2 are relevant
descriptions depending on the envisioned probing method, e.g. factor 1 is
relevant for selective transport measurements (such as scanning tunneling
microscopy), whereas factor 2 is relevant for dissipative measurements.

10.2 The BCS plots

The experimentalist’s take home message from the previous calculations,
I believe, can be aptly summarized in four plots, which further renders it
convenient to compare to experimental results. I will go over them in the
following.

10.2.1 Bogoliubov amplitudes

Equation (10.13) is plotted in Fig. 10.1. Quasiparticles are a superposition of
electrons and holes. Very well below the Fermi energy they are mostly electron
like, while they are hole like well above. The shape is qualitatively reminiscent
of the Fermi-Dirac distribution, although that describes a probability with no
underlying notion of a superposition. It is tempting to equate quasiparticles
to electrons/holes, and it is hard to differentiate between the two: if one could
measure the charge of QPs, they would populate a distribution in the [−e, e]
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Fig. 10.1: Squared Bogoliubon amplitudes
|uk|2 and |vk|2 in blue and pink, represent-
ing the electron and hole weight of the
Bogoliubon states, shown at T = 0 with-
out loss of generality. As a comparison, the
Fermi-Dirac distribution at T = 0 is shown
as a gray line.

interval, which is not fundamentally different from measuring a current with a
multimeter. The nature of QPs does not emerge on a classical basis: insights on
the nature of QPs must pass through analysis of their wavefunction properties.

This has been achieved only in recent times, with implementations of Joseph-
son junctions. The existence of two separate superconducting wavefunctions
leads to the existence of two quasiparticle wavefunctions as well, which are
flux tunable. A flux tuning that ensures destructive interference with the wave-
function of QPs tunneling both ways across the JJ is shown to suppress the
QP tunneling. Experimental features of this quasiparticle interference effect is
observed as the suppression of a heat channel [183] and the divergence of the
QP dominated relaxation time in a fluxonium qubit [86].

10.2.2 Quasiparticle dispersion

kF
k

0

∆

E k
−

E
F

e− h+

0

Fig. 10.2: Quasiparticle dispersion rela-
tion (purple) compared to that of electrons
(blue) and holes (pink). Note the QP for-
bidden region around the Fermi energy,
shaded in gray.

Equation (10.14) is plotted in Fig. 10.2. Comparing the dispersion relation of
QPs to those of electrons and holes is a visually powerful way to grasp the
nature of superconductivity. The existence of a superconducting gap around
the Fermi energy make it so that there is a minimum of energy that needs to
be supplied to the condensate in order to excite it. The scattering of electrons
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Fig. 10.3: Numerical solution of Eq. (10.20),
together with its analytical solution at zero
temperature, Eq. (10.25).

coming from interaction with the lattice, giving rise to electrical resistance,
has characteristic energy kBT, which is not sufficient to overcome the pairing
energy in superconductors.

10.2.3 Phase diagram

Equation (10.20) can be numerically solved to obtain an expression of the
superconducting gap as a function of temperature, plotted in Fig. 10.3. This re-
sult was particularly succesful because it complemented the work of Ginzburg
and Landau, in which some order parameter is simply postulated. The BCS
theory gives it a very well defined physical meaning: it is the binding en-
ergy of the superconducting condensate. The analytical curve shows a very
good agreement with the experimental data, as reported e.g. via ultrasonic
attenuation [184] or tunneling experiments [185].

10.2.4 Density of states
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P
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Fig. 10.4: Quasiparticle DOS with respect
to electronic DOS. Note the diverging DOS
just above the gap. The DOS of Cooper
pairs (not shown) is a Dirac delta at the
origin.
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Tunneling experiments are an effective way of probing the superconducting
gap. Even moreso, they are a way to probe the full density of state picture, as
is seen by plotting Eq. (10.33) in Fig. 10.4.

An applied voltage relates to an induced kinetic energy in carriers, and the
differential conductance of a sample where carriers tunnel from a tip is related
to its density of states. Scanning tunneling microscopy, e.g. reported for grAl
in Ref. [158], reproduces the shape reported in the above figure. The diverging
DOS above the gap gives a hint as to why QP burst are slow to relax: if a
QP is excited to just above the gap, there are several other state where a
recombination partner may be found, but this is not true when it is excited
with a large amount of energy.
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Chapter 11

Fabrication recipes

In this brief chapter I describe the cleanroom recipes that I used to
fabricate the circuits reported in this work.

THE thin films reported in this thesis are made with either granular alu-
minum or aluminum. Both materials were deposited using an electron
beam evaporator: a crucible containing pellets of high purity aluminum

is hit by an electron gun, creating an aluminum atmosphere. To fabricate grAl,
an oxygen pressure is obtained by injecting oxygen into the chamber and
tuning its flow with an additional input of inert gas (argon).

The substrates of choice were 2”, 330 µm thick c-plane sapphire wafers. Sap-
phire was chosen because of its high bulk quality factors [109]; furthermore, it
is vital to use a transparent substrate when realizing back illuminated MKIDs.
Liftoff lithography is used because of its robustness and simplicity.

11.1 MKIDs with Al ground plane

The fabrication of MKIDs circuits in this work consists of two steps: first, the
circuit itself is patterned with e-beam lithography. This is needed to reliably
produce small features (down to 2 µm). This fabrication routine employs a
double layer stack of photoresist, in order to prevent the formation of fences,
i.e. raised film borders shown to induce losses in microwave circuits [111].
Then, the vast aluminum ground plane is added with optical lithography. The
fabrication steps are as follows, and summarized in Fig. 11.1.

1. The sapphire wafers are submerged into so called piranha solution, a
highly oxidizing mixture of three parts sulfuric acid (H2SO4) and one
part hydrogen peroxide (H2O2), in order to remove organic matter.

2. The first layer of the double stack resist is realized by spin coating EL-13
resist at 2000 rpm for 100 seconds, followed by 5 minutes of baking at
200 degrees Celsius.

3. The same procedure is repeated with A4 resist.
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Fig. 11.1: Fabrication process diagram for the planar grAl MKIDs.

4. A layer of gold is added using a tabletop sputter coater, which oper-
ates via magnetron sputtering. The pattern will be drawn by a focused
electron beam: the gold layer acts as a ground to prevent charge accu-
mulation on the wafer during patterning (for conducting wafers such as
silicon, this is achieved by grounding the wafer).

5. The gold coated double layer stack is patterned with electron beam
lithography. The lower resist is more sensitive, resulting in a larger
activated area—an undercut. This is contrast with what would happen
in a single layer stack, wherein the top part would be overexposed.

6. The gold layer is dissolved by putting the wafer in a 15% acqueous
solution of Lugol (I3K) for about 10 seconds.

7. The wafer is developed in a 3:1 isopropanol and water solution kept
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at 6 degree Celsius for 60 seconds. The process dissolves the patterned
photoresist stack, more markedly in the lower layer.

8. Granular aluminum is deposited using a shadow evaporator. The oxy-
gen flow relates exponentially to the resulting normal state resistivity (a
calibration curve is usually sketched beforehand via test runs on diced
10× 1 mm2 sapphire stripes).

9. The liftoff process begins with heating the substrate submerged in N-
Ethyl-2-Pyrrolidone at 90 degree Celsius, and completed by low power
ultrasonication until all unpatterned metal flakes are removed. The
undercut ensures that the film deposited atop the resist and the one
deposited on the substrate have no point of contact, preventing the
formation of fences and allowing for crisp liftoff. In the opposite case of
a stack that is more developed at the top, the uninterrupted metal film
will be harder to litfoff, resulting in fences at the edges of the patterned
film.

10. A single layer stack is realized with S1805 resist (same parameters of
Items 2 and 3). This prepares the wafer for optical lithography.

11. The resist stack is patterned by aligning an optical mask over the wafer.
The mask is transparent with a layer of chromium on top: the desired
geometry is patterned as a region with no chromium. Ultraviolet light
(365 nm) is shone at 13 mW/cm2 through the mask for for 3 seconds.
The resist is activated by the light passing through the patterned region
of the otherwise not transparent chromium layer.

12. The wafer is developed in a MF-319 bath for 30 seconds, dissolving the
exposed photoresist, and followed by a water stopbath.

13. The shadow evaporation technique is again used, this time for the de-
position of pure aluminum, to create the ground plane and the CPW
feedlines.

14. The liftoff process is repeated, completing the wafer fabrication.

11.2 Striplines with phonon traps lattice

The striplines resonator and the phonon traps lattice were fabricated entirely
with optical lithography. In this case, the formation of fences is prevented
by employing a reverse lithography routine. The process is summarized in
Fig. 11.2.

1. Piranha cleaning is performed as in Item 1 in Section 11.1.

2. A monoatomic layer of HMDS primer is deposited in via condensation
in a pressurized chamber, in order to create sticking layer for the resist.
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Fig. 11.2: Fabrication process diagram for grAl stripline resonators.

3. A single layer of AZ 5124E resist is deposited by spin coating at 6000
rpm for 60 seconds, followed by baking at 110 degree Celsius for 50
seconds.

4. Optical lithography is performed with the same parameters of Item 11
in Section 11.1. However, the mask is now patterned with chromium
on the areas that will correspond to a metalization on the sample. The
exposed, activated resist shows a negative of the circuit to be patterned.

5. The exposure is inverted by baking at 120 degree Celsius for 60 seconds
and by exposing the full sample (no filtering mask) under UV light with
the same parameters as the previous step.

6. The wafer is developed in MIF 726 developer for 20 seconds, followed
by a water stopbath. This dissolves both activated resist and primer.

7. Evaporation of either grAl or Al is performed as in Item 13 in Sec-
tion 11.1.

8. Liftoff is performed as in Item 14 in Section 11.1.
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Chapter 12

Code snippets

In this chapter I report examples -It’s a new world up here!
-But how are you flying?
-I just typed
import antigravity

-That’s it?
-...I also sampled
everything in the medicine
cabinet for comparison.
But I think this is the
Python.

XKCD, Python

of the data analysis workflow used
to assess the two main figures of merit explored in this thesis, i.e. the
internal quality factor and the resonant frequency stability.

IN the following I report python snippets showing the nitty-gritty of the
performed numerical analysis. The central engine is the resonator fitting
module. This has its roots in the python module for algebraic and nonitera-

tive circle fitting of notch type resonances developed by Probst and coworkers
[186]. I am indebted to Dennis Rieger for extending the module to include
reflection type resonators. The complete module is now available as the de
facto standard circle fit routine in the Qkit framework [187] as circle_fit_2019.

12.1 Resonance circle fit

The circle_fit_2019 module contains the notch and reflection subclasses.
They inherit the same methods with the sole difference being a change in
the k parameters, i.e. the number of ports (cf. Eq. (6.9)): the inner workings
are identical. If e.g. the raw data for reflection is obtained from the VNA as
amplitude and phase arrays A and P, and the frequency points are loaded in
the array f_data, the fitting procedure is simply

import circuit_fit_2019 as circuit

import numpy as np

port1 = circuit.reflection_port(f_data = f_data, z_data_raw =

A*np.exp(1j*P))

port1.autofit()

I have insofar used f0 to
describe the resonant
frequency. In this section I
will use fr since it is the
preferred nomenclature in
the circle fit routine.

The autofit method rotates the circle to align the resonance point on the real
axis in the negative half plane, normalizes the raw data, and performs the
fit. The plotall method shows the fits superimposed onto the raw data in the
complex plane, as well as the amplitude and phase frequency responses. After
the autofit method is invoked, fit coefficients together with their errors are
stored in the fitresults dictionary, e.g.
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fr = port1.fitresults[’fr’]

Qi = port1.fitresults[’Qi’]

The fitting function used is Eq. (6.9), with the addition of a prefactor that
accounts for the effect of the environment [186]:

Sk1 = aeiαe−2πi f τ

[
1− (2/k)(Ql/|Qc|)eiφ

1 + 2iQl( f / fr − 1)

]
≡ E

[
1− A

1 + Bx

]
(12.1)

where x = ( f − fr)/ fr.

12.1.1 Inverting the fit
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Fig. 12.1: Left panel: raw complex scattering data (blue) with analytical fit (orange).
The green portion of the circle contains the widest QP burst (red) observed in a given
batch of time traces (total time ∼ 2× 103 s). Right panel: frequency span obtained
from the inverted circle fit (blue). The x = x line is plotted in orange as a comparison.
The region delimited by green vertical lines (resp. green circle portion in the left
panel) shows a good agreement with the calculated and expected frequency.

The circle fit can be inverted in order to obtain a function giving the frequency
span when complex scattering data is given an input:

def sk1_from_f(f_data,fr,Ql,Qc,phi,a,alpha,delay,k):

E = a*np.exp(1j*alpha)*np.exp(-2j*np.pi*f_data*delay)

A = (2/k)*(Ql/Qc)*np.exp(1j*phi)

B = 2j*Ql

x = (f_data-fr)/fr
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sk1 = E*(1-A/(1+B*x))

return sk1

def f_from_sk1(sk1_data,f_data,fr,Ql,Qc,phi,a,alpha,delay,k):

E = a*np.exp(1j*alpha) * np.exp(-2j*np.pi*f_data*delay)

A = (2/k)*(Ql/Qc)*np.exp(1j*phi)

B = 2j*Ql

x = np.real((1/B)*((E*A/(E-sk1_data))-1))

ff = fr*(x+1)

return ff

An example for a reflection resonator is shown in Fig. 12.1. The raw data is
shown in blue and the fit is shown in orange. On the left hand side, the data
is fitted to the full frequency response. The timetrace with the largest burst
in scattering units in a batch of timetraces is shown in red, with a clear jump
on the circle. The green region of the circle is chosen to contain with some
margin the excursion of the largest time trace. Note that the raw scattering
data is unnormalized: the diameter of the circle exceeds unity, because the
amplification on the lineup exceeded the attenuation on the line down.

The right hand side shows the frequency range obtained with the inverted
function, f_from_sk1. Note that this is a just a sanity check since the actual
frequency span is known and actually used as input in the calculation (it is
the f in the prefactor of Eq. (12.1)). The relevance of this inversion is to be
found in the case of time traces, where the full frequency response is known,
and used to map a time trace of scattering parameters evaluated at resonance
to a time trace of the resonant frequency.

12.1.2 Fourier transform and scaling

Definitions of noise and noise spectral density, how to calculate it, and how
to interpret it have been constant topic of discussions among peers. I have
decided to add this section as a tentative reference for such kinds of discus-
sions in the future. I make no claim regarding the absolute correctness of the
following definitions: my claim is simply that these are the ones I used, and
comparisons with spectra evaluated differently should be taken with a grain
of salt.

The Fourier transform (FT) of any time series (even purely real) is a complex
number. The spectral content of relevance is then encoded in the amplitude;
the phase data may be relevant when analysing a time series of different
signals wherein relative delays are of significance. Hence, the first ingredient
to compute the noise spectral density is to compute the absolute value of a FT,
using e.g. the FFT package provided by scipy. Since we are dealing with real
data we can crop the axis for positive frequencies only:
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import scipy

def compute_ft(time_array,signal):

time_array = np.asarray(time_array)

signal = np.asarray(signal)

N = len(time_array)

T = time_array[1]-time_array[0]

xf = np.linspace(0.0, 1.0/(2.0*T), N/2)

yf = scipy.fftpack.fft(signal)

yf = 2.0/N*abs(yf[:N//2])

return xf,yf

def compute_nsd(time_array,signal):

xf,yf = compute_ft(time_array,signal)

tmax = time_array[-1]-time_array[0]

BW = 1/(2*tmax)

nsd = yf/np.sqrt(BW)

return xf,nsd

However, the absolute value of the FT of a time series will depend on its length.
The purpose of reporting the NSD instead of the FT is that it provides the
necessary scaling by dividing the FT by the square root of the output bandwidth,
i.e. one over twice the integration time. Note that the power spectral density
(PSD) would be the squared FT amplitude over bandwidth; the NSD, reported
in the community e.g. in the definition of the NEP, is the square root of the
PSD, hence the somewhat unusual

√
Hz term appearing in the NSD and NEP.

I show comparisons of FT and NSD in Fig. 12.2: the FT of time traces with
different length results in spectra with different values, which is not the case
for the NSD spectra thanks to the output bandwidth scaling.

12.2 Time correlation with a VNA

As described in Subsection 6.3.2 we obtain time traces of a single point in
the frequency response of resonator by employing the “zero span” capability
of the VNA, allowing to reach sub-millisecond time resolutions. Alas, the
same capability is not available for a number of points higher than one. We
track time correlations between two resonators by measuring a “standard” fre-
quency response on the VNA. This is achieved by measuring a span composed
of only two points, spaced in such a way that they fall on the two resonant
points. As such, it is not possible to do this for more than two resonators, ex-
cept in the unlikely scenario of several resonators having exact same spacing
in the frequency band, since the VNA only measures equally spaced points.
To do so, we setup Qkit:

130



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t (s)

-1000

0

1000

δ
f 0
(t
)

(H
z)

10 103

f (Hz)

1

10

102

FT
(H

z)

f (Hz)

N
SD

(H
z/
√

H
z)

10 1031

10

102
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original time trace (in gray), and three others on an eighth, a quarter and a half of it
(blue, orange and green endpoints and spectra, respectively.)

#vna_model, vna_address are appropriate strings

import qkit

qkit.start()

vna = qkit.instruments.create("vna", vna_model, address=vna_address)

from qkit.measure.spectroscopy import spectrum

m = spectrum(vna=vna)

The vna object contains methods that convert python commands to instructions
for the instrument, such as setting the probe power or the center frequency.
The m object is a set of spectroscopic measurements setups.

The major drawback of this VNA correlation technique is that, once a full
span (two points) is acquired, it needs to be transmitted to the measurement
PC, as it is not possible to accumulate arrays of traces in the VNA memory.
Hence, the time resolution is limited to the total time of transferring the data
to the measurement PC, on the order of 0.3 seconds.
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import time

def empty(_): pass

f01 = 7.2e9

f02 = 7.4e9

d = abs(f01-f02)

pts = 4

vna.set_nop(pts)

vna.set_startfreq(f01-d)

vna.set_stopfreq(f02+d)

N = 500

m.set_x_parameters(range(N), ’t’, empty, x_unit = ’num’)

start = time.time()

m.measure_2D()

stop = time.time()

dt = (stop-start)/N #roughly 0.3 seconds

The measure_2D method instructs the VNA to compute several traces and accu-
mulate them on the measurement PC side (i.e., offline). It expects an iterator
function, to e.g. change the VNA power and stack frequencies response at
different powers, which then creates a stacking axis with all different set
powers from an array of different powers (used e.q. to acquire the response at
different probe different probe powers reported in Subsection 6.2.1 and Sub-
section 6.3.1). In this case, no iterative action is required, and a dummy array

0

1

ar
g{

S 1
1(

π
)}

fA fC
f

0
500

1000
1500

ti
m

e
(s

)

0 500 1000 1500
time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

ϕ
−

ϕ
(t

=
0)

,
f A

-0.80.1
ϕ− ϕ(t = 0)

-0.0

-0.2

-0.4

-0.6

-0.8

ϕ
−

ϕ
(t

=
0)

,
f C

Fig. 12.3: Example of measuring correlated bursts with a VNA. Two points of a
frequency span are set on resonances (top left panel, blue and green). The Qkit
measure_2D method stacks the time traces. The resulting “heatmap” is shown in the
left bottom panel (the two off resonance points are omitted for clarity). The raw time
traces of the phase, plotted in the right panel, show the expected correlations: dashed
lines connect bursts that have been registered simultaneously in both resonators (the
threshold for the trigger is shown as a horizontal line).
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and function are passed. Note that, in the reported case, the full frequency
trace is composed by 4 points instead of 2: the two inner points are set on the
target resonators. The off resonance outer points provide a fixed reference,
which is particularly useful when looking “live” at the VNA screen, lest the
screen span would strongly jitter with the fluctuations of the two points on
resonance.

I report an example of time correlated frequency response in Fig. 12.3, between
resonators A and C measured in the G setup, with the ThO2 source added to
achieve the highest possible QP burst rate. Most bursts appear to be correlated
within the sampling time window. Note that, due to the coarse time resolution,
a number of bursts go undetected, leading to an apparent smaller rate with
respect to that measured with “proper” time traces, and an underestimation
of the number of bursts being effectively correlated. The development of
dedicated electronics for efficient acquisition of correlated time traces, in the
spirit of [122], is a current effort in our group.
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After all we’ve been through.

Everything that I’ve done...

It can’t be for nothing.

Ellie, The Last of Us
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