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Kurzfassung

In dieser Arbeit werden verschiedene Aspekte, die sich durch Zwangsbedingungen in der Phasen-
feldmodellierung ergeben, untersucht.
Zum einen wird, im Rahmen eines reinen Phasenfeldmodells, der Einfluss des häufig verwen-
deten Hindernispotentials in Bezug auf die Diskretisierung und algorithmische Gesichtspunkte
der Verwendung von Projektions-basierten Algorithmen in nicht-gewichteten und gewichteten
Mobilitätsformulierungen betrachtet.
Zum anderen werden “Grandchem”-artige Modelle in einem chemischen, mechanischen und chemo-
mechanischem Kontext diskutiert, in denen eine gegebene phasenunabhängige Größe inner-
halb von Mehrphasenbereichen als gewichtetes Mittel der entsprechenden Größen innerhalb der
Einzelphasen aufgefasst wird. Die so eingeführten zusätzlichen Freiheitsgrade ermöglichen durch
eine geschickte Festlegung der phasenspezifischen Werte in Abhängigkeit der restlichen Param-
eter eine verbesserte Modellbildung, durch welche sich der Einfluss der Breite der Übergangs-
bereiche auf die Ergebnisse deutlich reduzieren lässt. In vielen Fällen lässt sich die meistens
direkt physikalisch motivierte Festlegung der phasenspezifischen Größen zugleich als die Lösung
eines parametrisierten Minimierungs- oder Maximierungsproblems unter der Nebenbedingung
des vorgegebenen Mittelwerts interpretieren. Hier wird untersucht, welche Konsequenzen sich aus
dieser Interpretation ergeben und weshalb das Zusammenspiel dieses lokalen Extremalproblems
mit dem globalen variationellen Ansatz des Phasenfeldmodells von entscheidender Bedeutung
ist.
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Abstract

In this work, several aspects resulting from constraints in phasefield models are investigated.
On the one hand, within the framework of a pure phasefield model, the influence of the com-
monly used obstacle potential is considered, both with respect to the discretization and to some
algorithmic implications for projection-based algorithms using nonweighted and weighted mobil-
ity formulations.
On the other hand, “grandchem”-type models, which are based upon interpreting a given pha-
seindependent quantity within the multiphase regions as a weighted average of the corresponding
quantity within the individual phases, are disussed within a chemical, mechanical and chemome-
chanical context. The additional degrees of freedom introduced by these phasespecific quantities
lead, if fixed in an clever manner in terms of the remaining parameters, to improved models
with a significantly reduced dependence upon the width of the diffuse interface. In many cases,
this typically physically motivated specification of the phasespecific quantities can also be in-
terpreted as the solution of a paramterized minimization or maximization problem under the
constraint of maintaining the correct average. Here, the investigation focuses on consequences
of this interpretation and the importance of the interplay of this local extremum problem with
the global variational Ansatz of the phasefield model.
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Chapter 1

Introduction

Over the course of the last decades, the phasefield method has evolved from a popular model
in material science problems, in particular for solidification problems in which surface tensions
play a major role, to a more widely used computational method for a large class of multi-
physics interface and free discontinuity problems. Its primary advantage in problems involving
moving interfaces is that, whereas sharp interface approaches typically require some relatively
expensive interface tracking, the phasefield method is in many cases capable of reproducing the
essential physical effects associated with the interfaces without requiring an explicit identification
of their location. This is primarily achieved by approximating the sharp interface with a diffuse
transition region with a small but finite width. Within this region, the underlying physics are
then approximated through appropriate interpolation procedures, which, if done properly, leads
to an approximating the solution of the original sharp interface problem. As the interpolation
procedures do not require explicitly identifying the precise location of any surfaces, the phasefield
method is often referred to as an interface capturing rather than an interface tracking approach.

There is a price to be paid though, as the diffuse interface approximation introduces an
additional lengthscale in the form of the width of the interfaces. In order to provide accurate
approximations to the solution of sharp interface problems, it is usually necessary to choose an
interface width which is significantly smaller than the other lengthscales of the problem. This
in turn requires a discretization which is, at least locally, sufficiently fine to faithfully solve the
underlying equations and can thus give rise to relatively large and potentially expensive prob-
lems. Whether or not the phasefield approach is competitive is thus clearly a question of both
how well the physics are approximated in the diffuse setting and of the efficiency with which the
numerical problems can be solved.
Two major developments in this context have been the increasingly widespread use of obstacle-
based potentials and an improved modeling approach for the physics within the transition region.
In contrast to well-based potentials, obstacle-based potentials in principle allow to significantly
decrease the computational cost as they ensure that the computationally expensive interfaces
are strictly contained within a small region of width O(ε). Their only disadvantage is that this
requires introducing inequality constraints on the phasefield values, which leads to some addi-
tional complications in both the equations and various questions related to their solution. Some
primarily practical aspects related to this will be discussed in Chapter 6.
A somewhat similar observation can be made for the improved modeling approach first proposed
in the chemically driven context by [42]. Its basic idea is that, considering the interface region
as a mixture of different phases, the values of any further physically relevant quantity such as
e.g. the concentration, temperature or mechanical strains, can also be considered as the average
of the respective quantity over all phases present at this point, i.e. to introduce phase-specific
versions of these quantities which need to average to the total ones. As there are of course many
ways to redistribute a given quantity onto several phase-specific ones, their precise specification

4



introduces an additional degree of freedom into the model, which can be used to include more
of the underlying physics. Even though this is an intuitively appealing idea, it is also clear that
this introduces additional complexities into the model as there is now a “submodel” for deriving
the phase-specific quantities from the remaining parameters of the problem. Besides a higher
computational difficulty of such models, the additional unknowns further leads to some questions
regarding the interpretation and consistency with respect to the standard variational approach
underlying the phasefield method. These questions, in particular in relation with various models
extending the one in [42] to a mechanical setting, will be the focus of Chapter 7.
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Chapter 2

A Quick Sketch of the Phasefield
Method

In its most basic form, the phasefield method provides a means of approximating the surface, or,
more generally, a surface energy associated with subsets ofRn. If Ω is such a (sufficiently smooth)
subset, its surface area is given by ∣∂Ω∣ = ∫∂Ω ds with ds denoting the surface measure on ∂Ω. In
addition, if one assumes that to the surface one can associate a surface energy density γ, [γ] = J

m2 ,
this surface can, in the simplest case, be associated with a surface energy of Es(Ω) = γ∣∂Ω∣. More
generally, γ may depend on x and other parameters such as the temperature, leading to the
expression

E(Ω) = ∫

∂Ω

γ(x, ...)ds. (2.1)

An alternative formulation for the surface energy (2.1) may be obtained by introducing the
characteristic function

χΩ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1 ,x ∈ Ω,

0 , else

of Ω. Even though χ is discontinuous on ∂Ω, one can define its distributional derivative DχΩ,
whose total variation can be identified with the surface measure on ∂Ω. Formally, one thus has
∣∂Ω∣ = ∫Rn ∣DχΩ∣ for the surface area, and, by again using the surface energy density γ,

E(Ω) = ∫ γ(x, ...)∣DχΩ∣. (2.2)

While the rigorous form of this this approach in terms of functions of bounded variation turns
out to be very fruitful from a theoretical point of view (see e.g. [2] and [6] for an introduction to
this topic), it is clear that the use of Equation (2.2) in numerical approximations is somewhat
difficult due to the lack of smoothness.
A first remedy would be to replace the discontinuous indicator function by a smooth approxima-
tion obtained e.g. by convolution with an appropriate smoothing kernel, χεΩ = ψε ∗ χΩ. As the
approximation χεΩ is smooth, its distributional derivative reduces to its classical gradient, and
thus (2.2) could be approximated by

Eε(Ω) = ∫ γ(x, ...)∣∇χεΩ∣dx. (2.3)

While this provides a useful approximation of the surface energy given an appropriate subset Ω,
it is still not particularly convenient for the purpose of actually finding subsets with minimal sur-
faces. On the one hand, it is not obvious how one can integrate the “constraint” of corresponding
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to a regularized characteristic function into the problem of minimizing the approximated surface
energy (2.3). On the other hand, the integrand in (2.3) is still not differentiable due to the kink
in the mapping ζ ↦ ∣ζ∣.

The solution to this dilemma in the phasefield approach is also based on using an approxima-
tion φ to an indicator function, but by approximating the surface energy through a combination
of two competing terms. The first contribution is given by the gradient energy density
εa(∇φ) acting as a (smooth) penalization of gradients. The second contribution is by the bulk
potential 1

ε
w(φ) penalizing values different from 0 and 1. By a proper choice of a and w, the

approximation to the minimal surface energy problem in the phasefield setting can then be put
as that of minimizing the energy functional

Eε(φ) ∶= ∫
Ω

εa(∇φ) +
1

ε
w(φ)dx (2.4)

over an appropriate set of admissible functions.
It is clear that any minimizer of the w-term alone would take only the values 0 and 1, and

that this term thus forces φ towards some indicator function. In contrast, the contribution from
the a-term enforces some spatial regularity of φ, and has the purpose of “smoothing” the mini-
mizers that would result from w alone, leading to the desired smooth approximation of χΩ. The
different scalings in ε in Equation (2.4) provide a means of regulating the balance between the
two terms, with decreasing values of ε increasingly favoring the w-contribution, therefore lead-
ing to a stronger similarity of the minimizers with actual characteristic functions (i.e. smaller
transition regions between the two “phases”). As ε tends to zero, this approach can further be
shown to converge to the desired sharp-interface limit in the appropriate sense1.

As one now disposes of a formulation for (approximately) describing minimization problems
involving surface energies, it is natural to extend the approach to more general problems involv-
ing additional competing energy contributions as these can easily be integrated by modifying the
energy functional (2.4). A simple such example is obtained by considering melting/solidification
processes involving a liquid and a solid phase where, depending on the temperature, it is energet-
ically favorable for the substance to be either in its solid or liquid form. This leads, besides the
surface energy associated with liquid-solid interfaces, to an additional energy contribution. By
identifying for example φ with an approximation of the indicator function for the liquid region,
this effect can be included into the approach above by considering the modified energy functional

Ẽε(φ,T ) ∶= ∫

Ω

εa(∇φ) +
1

ε
w(φ) + f(φ,T )dx. (2.5)

Here T is the temperature (for the moment assumed to be fixed) and f represents a suitable
approximation of the energy associated with being liquid instead of solid for a given tempera-
ture, for example expressed in the form ∆f ls(T )h(φ), where ∆f ls(T ) is the energy required for
changing from the solid to the liquid state at the given temperature and h is a suitable interpo-
lation function.

It is clear that similar ideas can in principle be applied to a relatively large class of problems2.
The primary use of the phasefield method within the material sciences is for the description

1This is usually done in terms of de Giorgi’s Γ-convergence, see [50] and [45] for some early works in this
direction within the phasefield setting and e.g. [15] or [47] for a general introduction to Γ-convergence. That this
limit procedure requires some slightly more complex definition of convergence is of course to be expected, since
the desired limit is not part of the original function space and the functional (more specifically the quadratic
gradient energy density) is ill-defined on this limit.

2If any additional parameters such as T in the functionals are not fixed, the situation becomes somewhat more
delicate, a point which will discussed in more detail in Section 3.2.
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of dynamic processes involving phase-transformations and/or moving interfaces. In these, the
process itself is typically considerered to play an important role, and one can not content oneself
with a “steady-state” analysis based solely on any actual minimizers of some functionals such
as in (2.4) or (2.5). While an appropriately chosen thermodynamic potential (e.g. the entropy
or free energy) can serve as a guideline and motivation for the description, these potentials are
inherently related to equilibrium thermodynamics, i.e. purely spatial. Therefore, by themselves,
they do not provide any direct information on the dynamic behavior of the system.
Nevertheless, the standard approach within the phasefield setting is a variationally motivated
one, i.e. one chooses a suitable thermodynamic potential and then postulates that the dynamics
of the independent variables are proportional to the gradient of that functional. For example,
when considering the pure surface minimization problem corresponding to (2.4) without any
additional constraint, one postulates that the phasefield evolution is governed by

⎧⎪⎪
⎨
⎪⎪⎩

∂φ
∂t

∼ ε∇ ⋅ ∂a
∂∇φ −

1
ε
w′(φ) in Ω,

∂φ
∂n

= 0 on ∂Ω,
(2.6)

i.e. a steepest-descent-type flow. When considering problems where the physically problem is
that of maximizing an entropy S(φ) instead of minimizing an energy, one would similarly pos-
tulate a gradient-ascent-type flow based on S.

This approach has a number of advantages. Firstly, for a reasonable choice of the proportion-
ality, once any potential steady-state is reached, this state will also be a (local) minimizer of the
chosen potential, and will therefore be compatible with the equilibrium formulation. Secondly,
it still leaves a large flexibility in the actual description - and therefore the parameterization -
of the dynamics, which can be adjusted to fit a large class of problems. Thirdly, the approach
is conceptually easy, and, due to the presence of an underlying functional, allows for a relatively
simple analysis of the resulting equations. Finally, again due to its close relation with mini-
mization/maximation problems, there is a number of potentially attractive algorithms which,
possibly after minor modifications, suggest themselves for the numerical solution at the discrete
level.

Despite these advantages, there are also a number of good reasons for deviating from the
purely variational setting.
The most obvious is that many physical effects can simply not be properly described based
on equilibrium constructs such as a free energy or entropy functional alone. This includes in
particular inertial effects, i.e. a resistance to change in time, and therefore a concept which is
meaningless for “steady-state” functionals3.
A different (and less obvious) reason within the phasefield approach is that adding “artificial”
dynamic effects into the evolution equations can help to better match some experimental or
sharp-interface results. A particularly popular example of such a modification is given by anti-
trapping currents in the context of solidification problems.

After this short summary of the basic idea underlying the phasefield method, the following
chapter will outline a number of selected applications in order to clarify some of the typical
settings (and the unavoidable challenges) associated with them.

3Even though the dynamics of many of the classical physical equations can be related to other variational
principles based on e.g. space-time integral over some action (see e.g. [44]), this need not be the case and
in addition need not be well-suited for what one is trying to achieve. Others, such as e.g. the Navier-Stokes
equations, do not derive from a classical variational principle.
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Chapter 3

An Outline of the Topics Considered

3.1 Pure Phasefield Problems
Even though the ability to capture the effect of surface energies through a smooth description
as in Equation (2.4) is theoretically interesting and does already have a number of useful appli-
cations, in particular in its multiphase generalization, this by itself is not the primary reason for
the increasing popularity of the phasefield method. Instead, it is, as indicated above, the relative
ease with which additional effects intervening in combination with surface energy (or entropy)
effects can be included into the basic model.

In the simplest cases, this can be achieved by adding e.g. an additional energy contribution
f(φ, ...) depending only, besides the phasefield values, on a number of fixed external param-
eters. One such example is given by the energy minimization given a fixed undercooling as
outlined above in the discussion preceding Equation (2.5). Physically, this corresponds to the
case when the solidification is slow enough such that one is able to maintain the material at
a constant undercooling, e.g. when one assumes that the material is in contact with an outer
thermal reservoir and the heat-conduction within the material happens at a much faster rate
than the phase-transformation itself. In this case, an initial solid nucleus will grow, provided
that the curvature of its surface is sufficiently low, such that the solidification of the material
can liberate enough latent heat to counterbalance the associated increase in the surface energy1.
There are a large number of other physical effects which can be included in much the same man-
ner. These range from in principle relatively simple ones, as for example the influence of gravity
for studying the deformations this induces in droplets on a surface, to significantly more com-
plex ones such as the effect of (measured) stored elastic energy contributions on recrystallization
processes [78].

Remark 1. Without this ability to include additional “driving forces”, the phasefield method
would essentially be reduced to a numerical tool for treating minimal surface problems. This
can, even for two phases only, be of some practical interest when considering such problems within
geometrically complex regions. There are also a number of more complex questions which can
be adressed when one is able to model the interaction of a larger number of phases, as this
allows studying e.g. energetically favorable arrangements of bubbles such as in the honeycomb
conjecture. Nevertheless, it is clear that this type of problem only accounts for a fraction of the
large number of questions being investigated by the phasefield method. ◇

A big advantage of this type of energy contributions through some interpolation of fixed bulk
1The increase in volume upon an outwards movement, and therefore the rate of energy transformed from a

latent to a thermal form during the solidificatiton, is proportional to the surface area ∼ R2, whereas the growth
in the surface and the associated energy is proportional to the curvature ∼ 1

R
. Due to this difference in scalings,

the volume increase dominates for a large radius whereas the surface energy dominates when R is small.
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energy contributions is that the phasefield is the only actual unknown, and one does therefore
not have to consider any of the additional complexities associated with coupled problems, some
of which will be outlined in Sections 3.2.1 and 3.2.2. Despite the seeming simplicity, these prob-
lems already contain, as far as the phasefield itself is concerned, essentially all the “prototypical
ingredients” and challenges also arising in the more complex coupled case.
This will be made use of in Chapter 6 for discussing some of the generic practical issues as-
sociated with the numerical treatment of phasefield problems, which are primarily due to the
interplay of a and w alone and do not really depend on the precise structure of f . A particular
focus there will be on some practical consequenes of the use of the obstacle potential for w and
the associated constraint of lying within the Gibbs-simplex this imposes on the phasefield values.

This should certainly not be misunderstood in the sense that the choice of f is not important.
In fact, one of the major challenges for phasefield models is that large driving forces as com-
pared to the contributions by the basic phasefield term a and w can lead to significant deviations
with respect to the expected sharp interface limits, and the majority of Chapter 7 is concerned
with more accurate models for the additional energetic contributions to concentration- and/or
elasticity-based effects.
This is essentially a question of how one can better model the physics of these additional fields
in the presence of diffuse interfaces, and not on how the phasefield should react to them. From
the point of view of the evolution equation for the phasefield, this is still a problem of precisely
the same form, i.e. two contributions due to the bulk and gradient energy (or entropy) densities
and some additional driving force - regardless of a potentially increased “internal” complexity -
and the primary challenges from a numerical point of view are due to the surface energy contri-
butions and not f .

Remark 2. A different but also very interesting class of problems is obtained when the energy
functional (2.4) is not (or not exclusively) supplemented by an additional volumetric contribution
but by an additional energy contribution associated with the boundary ∂Ω. In this case, one
can consider a part ΓS of ∂Ω, corresponding to a substrate S, on which wetting phenomena take
place. These can be included into the model by adding a contribution of the form ([49] and [9])

∫

ΓS

∆γSh(φ)ds, (3.1)

where ∆γS corresponds to the difference of the surface energies between the two phases and the
substrate, and h is a suitable interpolation function.
This, together with a gravity term, for example allows studying equilibrium shapes obtained
through capillary rise problems within complex geometrical settings but will not be discussed in
detail here. ◇

3.2 Coupled Problems
Assuming a fixed undercooling for the energy functional in Equation (2.5) represents a major
simplification. Even though the functional does then depend on the temperature, this tempera-
ture is assumed to be given and uniform und is thus essentially just an additional parameter for
controling the energy differences through the amount of undercooling without “actively” partici-
pating in the minimization problem. In many cases though, this simplifying assumption cannot
be made. In this example, the solidification of the material will lead to a local increase in tem-
perature. If the heat conduction takes place on a time-scale which is comparable with the phase
transformation itself or if the material is well-isolated from its surroundings, this cannot (or at
least not immediately) be counteracted by giving off heat to the environment, thus invalidating
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the assumption of a constant temperature. In order to obtain a physically meaningful model,
it therefore becomes necessary to change the role of the temperature to that of an additional
unknown.

More generally, a phase transformation process may, besides the temperature, depend on
a large number of additional parameters. For more complex solidification problems, it is for
example necessary to include additional effects depending on the concentration, which, in most
cases, leads to the introduction of an additional unknown. In other processes such as solid-solid
transformations, even if performed sufficiently slow to allow for the approximation of a constant
temperature, the phase transformation will induce additional stresses within the material, which
in turn may significantly influence the transformation process itself (see e.g. [35], [66], [4] and
[5] for some recent application-oriented works within the phasefield context). From a modeling
point of view, it is again often possible to incorporate these additional effects by complementing
the basic phasefield functional with additional mechanical contributions such as the strain energy
and an appropriate set of equations for determining the displacement and strains.

3.2.1 Solidification Problems
The Basic Model

As the simplest extension of the situation considered in Section 2, one can consider a setting in
which the solidification process is driven solely by an undercooling below the melting temperature
of the material under consideration, but where the heat-conduction itself is not fast enough to
allow for the approximation of a fixed (external) temperature. In order to capture the dynamics
of the temperature field T in a physically meaningful manner, it is necessary to introduce an
evolution equation based on the conservation of energy. In the simplest case, this energy can be
expressed as a function on φ and T alone as e = e(φ,T ), and one postulates

∂e

∂t
= ∇ ⋅ q, (3.2)

where the heat-flux q is usually specified in terms of the material parameters and the tempera-
ture.

Alternatively, and in a generalized setting, one may also consider solidification problems
which, besides the temperature, also depend on the concentration of one or several chemical
components. One such model, with the additional ability to describe an arbitrary number of
phases, is proposed in [52] (see also [71]). In this model, the underlying functional is given in
terms of the entropy functional

S(φ,c, e) = ∫
Ω

s(φ,c, e) − (εa(φ,∇φ) +
1

ε
w(φ))dx (3.3)

where the vectorial functions φ ∶ Ω → RN and c ∶ Ω → RK describe the different phases and
components and a and w represent suitable entropy-based generalizations of the surface and
bulk energy densities to the multiphase setting. In addition, φ and c are locally subject to the
constraint ∑Nα=1 φ

α = 1 and ∑Ki=1 ci = 1, and it is postulated that, based on the conservation of
energy and mass and with an appropriate choice of the interaction matrix L = (Lij)0≤i≤K,0≤j≤K ,
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the energy and concentration follow the evolution equations

∂e

∂t
= −∇ ⋅

⎛

⎝
L00∇(

1

T
) +

K

∑
j=1

L0j∇( −
µj

T
)
⎞

⎠
,

∂ci
∂t

= −∇ ⋅
⎛

⎝
Li0∇(

1

T
) +

K

∑
j=1

Lij∇( −
µj

T
)
⎞

⎠
,

where the chemical potential µ is given by µ =
∂f
∂c

. In order to be consistent with the
maximization of the entropy functional (3.3), the phasefield is subject to the evolution equation2

τε
∂φα

∂t
= ε(∇ ⋅

∂a

∂∇φα
−
∂a

∂φα
) −

1

ε

∂w

∂φα
−

1

T

∂f

∂φα
−Λ,

where Λ is a suitable Lagrange multiplier for the sum-constraint ∑Nα=1 φ
α = 1.

Quantitative Phasefield Models

While early phasefield models for purely temperature-driven problems have been quite successfull
in matching experimental results, it has been observed that the results based on an influence of
a concentration vector c - while qualitatively correct - are plagued by a number of artefacts if
the interface width is, for numerical reasons, chosen much larger than the physical one ([41], [56]
and [19]).

In particular for isothermal solidification problems, a more advanced modeling approach
through so-called quantitative phasefield models has had, besides a simple increase in com-
putational power, a very significant impact on the ability of phasefield models to more accurately
describe the physics of phase transformations. The central idea, initiated by [42], is that the
conditions determining the steady-state are based on an equilibration of the temperature and
chemical potentials. Whereas models based on simple interpolation procedures of the phase-
specific free energy contributions such as f(φ,c, T ) = ∑

N
α=1 f

α(c, T )hα(φ) are, with respect to
the temperature, therefore expressed in terms of a quantity which is “naturally” expected to
be equal between different phases, the same is not true for the additional dependence on the
common concentration and leads to excess energy contributions within the interface regions.

A way to significantly reduce these artefacts is, instead of using a single “averaged” concen-
tration field, to introduce an additional internal degree of freedom into the model by “splitting”
the given concentration into contributions from each of the coexistent phases, i.e. by introducing
phase-specific concentrations cα for each phase α, which, weighted by a suitable interpo-
lation function hα, satisfy ∑Nα=1 c

αhα(φ) = c. This clearly increases the number of unknowns,
and therefore requires introducing additional equations for their specification. As shown in [42],
postulating that these phase-specifc concentrations cα are such that the associated chemical
potentials corresponding to the fα are equal allows for a siginificant improvement of the model.
This model has further been analyzed and extended to the multiphase and multicomponent set-
ting by various authors.
In particular, it was realized relatively early by Eiken et al. [25] that this model can also be
elegantly interpreted as one where the free energy density is defined as the minimal averaged
one ∑Nα=1 f

α(cα, T )hα(φ) that can be achieved subject to the constraint of the cα averaging to
the total one c. Later works by e.g. [56] and [19] in contrast have primarily focused on a direct
description in terms of the chemical potential itself and a very efficient but slightly misleading
derivation based on the use of a grand chemical potential approach instead of a free-energy based
one. In addition, they replace the evolution equation for c through an in principle equivalent one
for µ, which is constructed such that the corresponding evolution of the average concentration

2See the discussion of Equation (3.5) below for an explanation of the term 1
T

∂f
∂φα

.
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as a function of the phasefield and chemical potential matches the standard one through Fick’s
law.
The focus in Section 7.1 will be on some primarily practical implications of this type of model.
As will be seen there, even though the description in terms of µ can be a very efficient one for
some simple (but practically quite relevant) cases, it is unfortunately much less so in the general
case, a point which will again be seen in Section 7.1. In particular, after outlining the model in
the spirit of [25] and discussing its relation with the approach in [56] and [19], some practical
aspects involved in its actual numerical evaluation - and potential pitfalls - will be discussed.
Furthermore, it will be seen that the model generalizes in a straightforward manner to the non-
isothermal setting based on a similar definition in terms of an entropy-functional of the form in
Equation 3.3, and that these different definitions are consistently linked through the “standard”
thermodynamic transforms.
Remark 3. Note that the coupled problems with an increased number of unknown fields and
different ways to parameterize the problem give rise to a somewhat delicate question.

As pointed out above, the evolution equation for the phasefield is usually obtained by postu-
lating a gradient-type flow with respect to some functional. This functional is written down in
terms of a number of “natural” parameters such as e.g. the phasefield, concentrations, energy or
temperature and elastic strains. In order to determine these additional parameters, the evolu-
tion equation for φ needs to be supplemented with physically appropriate evolution laws for the
relevant remaining unknowns (i.e. those which are considered as the independent variables) of
the problem. Almost always, there will be interdependencies between the various parameters of
the phasefield-functional and the unknowns, either directly by construction (the simpler case),
or implicitly. In fact, as noted in e.g. [41] in the solidification context, the steady-state solutions
are not truly independent. The question therefore arises how the approach using independent
unknowns differs from a reduced formulation, where e.g., such as in [41], c is treated as a
function of φ (and possibly other parameters) in terms of the steady-state equation it satifies
and whether or not the final result is actually related to a local maximizer or minimizer of the
functional.

In the thermodynamic setting, this issue of interrelations between various functions, thermo-
dynamic potentials and parameters is of course well known and in principle also well understood.
In particular when adhering to the standard physicist notation of identifying functions and their
values, one can easily forget about any possible - then hidden - dependencies. That this notation
is nevertheless very useful and does not, at least in many of the more classical situations, cause
any serious issues relies fundamentally on an underlying variational structure between the various
thermodynamic potentials. This entails that, despite the ubiquitious changes between various
interrelated variables, any hidden dependencies have a tendency of simply “dropping out”.
As a simple illustration, consider the example of determining the derivative of an entropy density
s(φ,c, e) such as in [52] with respect to φ. As working directly with the entropy and its (natural)
dependence on e can be cumbersome, it is often advantageous to instead rely on a description
in terms of the free energy f(φ,c, T ), in terms of which one has ∂s

∂φ
= − 1

T
∂f
∂φ

.
Formally, this is easily obtained from a partial derivative (i.e. while keeping e constant) of the
well-known equality s = e−f

T
with respect to φ. While this seems logical at first sight, at a closer

look this calculation actually raises some questions. Firstly, if f is a function of φ, c and T ,
then defining s through e−f(φ,c,T )

T
would make the entropy a function of φ, c, e and T . That

this is of course not the case is due to the fact that T and e are not independent in this relation.
Instead, given (φ,c, e), there is, under natural assumptions on f , a single T > 0 for which the
values of s(φ,c, e) and e−f(φ,c,T )

T
coincide. Based on this, one could define T - now as a function

of (φ,c, e) - such that this relation always holds, i.e. such that one has

s(φ,c, e) =
e − f(φ,c, T (φ,c, e))

T (φ,c, e)
. (3.4)
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This returns the parameters of s to the original ones, but would seem to invalidate the simple
formal differentiation above, as, again under natural assumptions, one a priori actually has

∂s

∂φ
(φ,c, e) = −

1

T (φ,c, e)

∂f

∂φ
(φ,c, T (φ,c, e)) +

∂

∂T
(
e − f(φ,c, T )

T
)(φ,c, T (φ,c, e))

∂T

∂φ
. (3.5)

That the second term actually drops out is due to the fact that s and f are not arbitrary functions
but are actually related to one another through a variational property, namely given φ, c and
e, s and T (φ,c, e) satisfy3

s(φ,c, e) = inf
T

{
e − f(φ,c, T )

T
} and T (φ,c, e) = argminθ {

e − f(φ,c, θ)

θ
},

i.e. T (φ,c, e) is precisely the T minimizing e−f(φ,c,T )
T

. It is then clear (at least formally) that
T is characterized by the Euler-Lagrange equation ∂

∂T
e−f(φ,c,T )

T
= 0, and therefore the rela-

tion ∂s
∂φ

(φ,c, e) = − 1
T
∂f
∂φ

(φ,c, T ) does indeed hold where T is the temperature corresponding to
(φ,c, e).

This has of course been known in a similar form for more than a century (that the derivative
is with respect to φ instead of e.g. the more classical case of the concentration plays no real role
here), but it highlights the fundamental importance that variational interrelations can play for
treating potentially interdependent variables as independent4.
The same basic principle also provides the answer to the two questions posed above: The for-
mulations in terms of independent variables and in a reduced form are compatible with each
other5, and the final state will be a local maximizer/minimizer if (and essentially only then!)
the steady-state equations allow for an appropriate variational interpretation in terms of the
functional. Otherwise, while one can impose independent evolution or steady-state equations on
some of the variables, one then either has to explicitly take their dependence on the other param-
eters into account - a potentially arduous and expensive task - or one looses the relation of the
final solution with any constrained (local) maximizer or minimizer of the given functional. ◇

3.2.2 Solid-Solid Phase Transformation Problems
In recent years, often based on a similar reasoning, a number of quantitative phasefield models
have also been proposed for more complex physical models involving - instead of (or in addi-
tion to) the concentration fields - the influence of additional elastic energy contributions due
to mechanical interactions on phase transformation processes with several solid phases. These
additional energy contributions may for example arise from either a prestress of the material,
or stresses induced at interfaces due to different crystal structures and/or orientations between
different phases and can have a significant influence on the phase-transformation process.
Whereas elastic effects within the bulk-phases are relatively well understood, their modeling
within an - often artificially large - diffuse interface region in terms of the phasefield approach

3This is similar to the more standard Legendre-Fenchel transform and will be discussed in more detail in
Section 5.

4In this context, it is important to stress that this is not a consequence of (3.4) by itself, which is simply
a definition of T for two given functions s and f . If s and f are “well-behaved”, one can e.g. invoke an
implicit function theorem to obtain information on the derivatives of T based on those of s and f . However,

Equation (3.4) does not a priori imply anything particular about ∂
∂T

( e−f(φ,c,T)
T

) and could in principle be used
for relatively arbitrary functions f and s, provided one can find a function T (φ,c, e) such that the equality
holds. In particular, it is (obviously) not sufficient to write down an equation similar to (3.4) which “looks like”
a Legendre-transformation and then to proclaim independence.

5In the sense that, while both approaches might lead to different dynamics and therefore potentially different
local minimizers, each will accept the steady-state solution of the other.

14



has faced similar challenges as the models underlying solidification processes.

Remaining within the small-strain setting, one of the earlier models was based on the use of
a single average strain-field ε and a “suitable” interpolation of the stiffness-tensor C(φ) as e.g.
C(φ) = ∑

n
α=1C

αhα(φ) of the indivual stiffness-tensors Cα with some interpolation function hα.
Using these two quantities, one can naturally define (assuming for simplicity the absence of any
prestresses or eigenstrains) a volumetric free energy contribution fel(φ, ε) = 1

2
ε ∶C(φ) ∶ε and the

resulting stress tensor σ(φ, ε) = C(φ) ∶ ε = ∂fel(φ,ε)
∂ε

.
While this provides a seemingly reasonable interpolation scheme, it was soon realized that its
use led to similar artefacts as the ones encountered in the earlier, simpler solidification models.
Given the success of the models based on the use of a common chemical potential of all phases
instead of the common concentration and based on the analogous roles of σ and µ with respect
to the underlying energies, Seinbach and Apel proposed a different scheme in [69] relying on the
equality of the stresses instead of that of the strains.

Unfortunately, it has been observed that (see [23]), that, depending on the mechnical set-
ting, both models suffer from excess energy effects within the interface. Durga et al. further
observed that these deviations for both models can primarily be attributed to the fact that one
does in general neither expect a full equilibration of the strains nor of the stresses. Instead,
the corresponding continuity conditions within a sharp interface setting are given by an equality
of the normal stresses and an equality of the tangential strains. Based on this, they proposed
a model using a “mixed” interpolation approach mimicking this expected behavior within the
diffuse interface region, showing a significant improvement in the modeling results. The model
was then, within a two-phase setting, further developed and extended in [51], [24] and [64].
In constrast to the simpler mechanical models and the solidification models from Section 3.2.1,
these mechanical models, while very elegant in the two-phase case, are unfortunately very diffi-
cult to generalize to a multiphase setting. Even though different extensions to the multiphase
case have been proposed in e.g. [61], [74], [63] and [62], none of them can be considered fully
satisfactory since they either have to rely on a physically undesirable “geometric” simpliciation
through a common normal vector between all phase-pairings, or will suffer from a violation of the
jump conditions for at least parts of the phases. These difficulties are not unexpected since the
multiphase regions in the mechanical model correspond to the intersection of several interfaces
in the sharp interface setting - and thus points which are generally associated with singularities
in the behavior of the mechanical fields - but it is important to be aware of the limitations and
relative advantages and disadvantages associated with each of them. Since the differences in
the models are primarily inherited from the particular description chosen in the simpler two-
phase case (where, except for the model of [23] and [24], the models coincide) and the chosen
description in addition has a significant influence on the computational cost and implementation
effort, Section 7.2 will start by summarizing and comparing the various descriptions, both in
terms of the formulation itself and in terms of some computational aspects. Subsection 7.2.4
then contains an outline of the different extensions to the multiphase case and some of the issues
associated with those. The remainder of Section 7.2 is then devoted to a discussion of some
aspects concerning coupled mechanical and chemical calculations, in particular in combination
with the jump-condition based mechanical model and the more advanced free energy model from
Section 7.1.
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Part II

Background
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The outline in Chapter 3 clearly indicates the importance of the variational structure and
the constraints underlying the phasefield approach in general as well as for the description of
the more quantitative models for both the solidification and solid-solid transformations. For this
reason, before returning to a more detailed discussion of the applications introduced above, this
section will provide some mathematical background on such problems and the closely associated
topic of Lagrange multipliers. As this is a topic of both high practical importance and indepen-
dent mathematical interest, it has been studied in great detail and the literature on the subject
is vast. The purpose here is thus not to provide an in-depth discussion, but just to outline some
basics which will be used in the sequel. This will be complemented by numerous literature ref-
erences where a more detailed presentation and related but more advanced results may be found.

The central difference between constrained minimization problems and their unconstrained
counterparts is that both the characterization of and the search for (local) minima is made more
difficult by the fact that, in the former case, it is not sufficient to focus just on some differential
information of the objective function alone. Instead, it is obvious that the constraints must also
be a part of the formulation of any necessary and/or sufficient condition describing minima and
of any algorithm aiming at their determination. As a first step, the following Chapter 4 contains
a discussion of equality and inequality-constrained problems. In both cases, the focus is on the
description of first-order necessary conditions for local minimizers, which naturally leads to the
notion of Lagrange-multipliers.
The results obtained for both the equality- and inequality constrained settings can be conve-
niently summarized using the concept of Lagrange-functionals, which will be discussed in Sec-
tion 5.1. These on the one hand allow for a simple formal derivation of first-order necessary and
second-order necessary resp. sufficient conditions for constrained local minimizers. On the other
hand, they are also the basis for both the design and the analysis of a number of algorithms
for the numerical treatment of such problems. Section 5.2 then gives some background on an a
priori different topic, namely the Legendre-Fenchel transform, which has a fundamental role in
thermodynamics.
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Chapter 4

Equality and Inequality Constrained
Problems

4.1 Linear and Nonlinear Equality Constraints - the Finite-
Dimensional Case

Linear Equality Constraints The simplest setting for constrained minimization problems is
that of minimizing a smooth (e.g. C2) function f defined on Rn subject to m ≤ n linear equality
constraints

⎧⎪⎪
⎨
⎪⎪⎩

minimize f(x)

subject to bi ⋅x = ci, i = 1, ...,m.
(4.1)

The question to be answered is then under what conditions one can assert that a point x̄ is a
(local) minimizer for the problem (4.1).

The first obvious point is that x̄ needs to satisfy bi ⋅ x̄ = bTi x̄ = ci for i = 1, ...,m (and thus
in particular the constraints need to be consistent). In order for such a point x̄ to be local
minimizer, the value f(x̄) has to be no larger than those of f(x) with x in a neighborhood
of x̄ which, in addition, also satisfy bi ⋅ x = ci, i = 1, ...,m. Due to this restriction and the
linearity of the constraints, any admissible variation δx of x̄ has to satisfy bi ⋅ δx = 0, i = 1, ...,m.
Combining the equality-constraints into a vector-equation by inserting the vectors bi row-wise
into the matrix

B =

⎛
⎜
⎜
⎜
⎜
⎝

bT1
bT2
...

bTm

⎞
⎟
⎟
⎟
⎟
⎠

,

this can be written in a more compact form as B ⋅ δx = 0 or δx ∈ Ker(B). As all admissi-
ble points are of the form x̄ + δx with δx ∈ Ker(B), the optimality condition is thus given by
f(x̄ + δx) ≥ f(x̄) for all sufficiently small δx ∈ Ker(B).

It remains to convert this into a differential characterization. Given any δx ∈ Ker(B), the
vector x = x̄ + tδx clearly satisfies Bx = c provided x̄ does so, i.e. is admissible, and, since x̄ is
assumed to be a local minimizer, will satisfy f(x) ≥ f(x̄) or

0 ≤
f(x) − f(x̄)

t
=
f(x̄ + tδx) − f(x̄)

t
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for sufficiently small t. Letting t → 0 and since f is assumed smooth1, it then follows that any
minimizer x̄ has to satisfy the first-order necessary condition (FONC)

∇f(x̄) ⋅ δx ≥ 0 ∀δx ∈ Ker(B). (4.2)

As Ker(B) is a linear subspace of Rn, this condition can be further simplified to the equality 2

∇f(x̄) ⋅ δx = 0 ∀δx ∈ Ker(B). (4.3)

In contrast to the unconstrained case where δx can be chosen arbitrarily, this does not imply
∇f(x̄) = 0. Instead, condition (4.3) only states that ∇f(x̄) lies in the orthogonal complement
of the kernel of B,

∇f(x̄) ∈ Ker(B)
⊥.

In order to obtain a more explicit condition on ∇f(x̄), it is thus sufficient to give a character-
ization of Ker(B)⊥. Each of the equations bi ⋅ δx = 0 characterizing the kernel of B is nothing
but the description of a hyperplane with the vector bi acting as the normal vector. In the
case of a single constraint, it is geometrically obvious that Ker(bTi )

⊥ = Span(bi) (see Figure
4.1), or, equivalently, if bi is considered as the linear mapping bi ∶ R ∋ λ → λbi ∈ R

n, that
Ker(bTi )

⊥ = Range(bi).
More generally, the kernel ofB is just the intersection of such hyperplanes, Ker(B) = ∩iKer(bTi ).
As ∩mi=1 Ker(bTi ) ⊂ Ker(bTi ) and A ⊂ B implies A⊥ ⊃ B⊥ for any subsets A,B of Rn, it is clear
that Ker(B)⊥ ⊃ Ker(bTi )

⊥, i = 1, ...,m, and thus also3

Ker(B)
⊥
⊃ Span ({Ker(bTi )

⊥
}1≤i≤m) = Span({bi}1≤i≤m) = Range(BT

).

A restatement of the converse conclusion Ker(B)⊥ ⊂ Range(BT
) is simply that any vector which

is not in Range(BT
) is not orthogonal to Ker(B). In fact, any vector x ∉ Range(BT

) can be
written in the form x = y +∑

m
i=1 αibi where

4 y ≠ 0 is orthogonal to Range(BT
) (apply e.g. a

Gram-Schmidt orthogonalization procedure using x and the {bi}1≤i≤m). This means precisely
that y ⊥ bi, i = 1, ...,m or y ∈ Ker(B), and thus y ⋅x = ∥y∥2 ≠ 0 shows that x ∉ Ker(B)⊥.
In combination with the same argument applied to Ker(BT

) and Range(B), this implies the
following fundamental theorem:

Theorem 1. (Fundamental theorem of linear algebra)
Let B ∶Rn →Rm, m,n ≥ 1 be any real matrix. Then the orthogonal decompositions

R
n
= Ker(B)⊕Range(BT

) (4.4)

and
R
m
= Ker(BT

)⊕Range(B)

hold.

Using this result, ∇f(x̄) ∈ Ker(B)⊥ is thus equivalent to ∇f(x̄) ∈ Range(BT
), i.e. there

exists a vector λ ∈Rm of Lagrange-multipliers such that5

−∇f(x̄) =BTλ. (4.5)

1Clearly, Gâteaux-differentiability is sufficient here.
2In fact, otherwise assuming that δx is a variation such that ∇f(x̄) ⋅δx > 0, −δx is necessarily also a legitimate

variation, but, with ∇f(x̄) ⋅ (−δx) = −∇f(x̄) ⋅ δx < 0, contradicting the optimality of x̄.
3This is again intuitively clear in Rn, as this simply expresses that any linear combination of the vectors

{bi}1≤i≤m is orthogonal to all vectors which are orthogonal to all of the {bi}1≤i≤m.
4As will be seen below, the analogue of this seemingly simple statement in Rn in terms of a separation theorem

is the major source of difficulty for an analogous result in the infinite-dimensional setting. The basic difficulty
in the latter case is that, while the range of any continuous linear operator is always a subspace, this subspace
(contrary to the situation in Rn) need not be closed. An element x not in the range of the operator might thus
lie in its closure and can therefore be approximated arbitrarily close by elements in the range.

5Note that using −∇f instead of ∇f is simply a matter of convenience here as one could just as well change
the sign of λ.
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bi

0Ker(bTi ) = {x ∶ bi ⋅x = 0}

Ker(bTi )
⊥ = {x ∶ bi ⋅ y = 0∀y ∈ Ker(bTi )}

Figure 4.1: Relationship between Ker(bTi ) and Ker(bTi )
⊥

Remark 4. Despite its simplicity, the result above is, as the name suggests, fundamental for finite-
dimensional linear problems (constrained or not) as it gives a very convenient decomposition of
the domain and image spaces of any linear operator.
Among the many consequences, one should mention the well-known Fredholm alternative:
The equationAx = b is solvable iff b is orhogonal to all solutions y of the homogenoeus transposed
equation ATy = 0, which is just a reformulation of the second statement Range(A) = Ker(AT

)⊥

above.
In particular, the operator A ∶ Rn → Rm is surjective iff Ker(AT

) = {0}, i.e. AT is injective.
As all (if any) solutions of an equation Ax = b only differ by elements lying in Ker(A), a
similar conclusion is that a linear operator A ∶Rm →Rn is injective (or Ker(A) = {0}) iff AT is
surjective (i.e. Range(AT

) =Rm) as the first statement then shows that Rm = Ker(A)⊕Rm. ◇
Remark 5. The preceding arguments are prototypical for the more difficult situations considered
below.
First of all, under mild assumptions, they can be applied essentially without change in the
nonlinear case considered in the next paragraph after a simple linearization.
In addition, these result can in many cases of practical interest be extended to the infinite-
dimensional setting where the matrix B above is replaced by a suitable linear operator acting
between two Banach spaces X → Y . The only fundamental change here (at least for smooth
functionals F ∶ X → R) is that this requires some additional topological assumptions, under
which the decisive Theorem 1 can be generalized in the form of the closed range theorem (see
Thm. 2 below).
Finally, the treatment of inequality constrained problems of the form Bx ≤ c for some given
matrix B and a vector c also runs much along the same lines. A major difference in this case is
that, while the Euler-Lagrange equation characterizing any local minimizers could be simplified
to an equality in the setting above, this is no longer possible when inequalities are present. This
leads to the requirement of replacing the subspace defining the kernel ofB through an intersection
of the hyperplanes by a cone defined through a suitable intersection of half-spaces. ◇
Nonlinear Equality Constraints While most of the equality constraints arising in the ap-
plications considered in this thesis are indeed linear, this is of course not always the case. For-
tunately, under relatively mild additional hypothesis on the equality constraints, the FONC for
the more general case where x is subject to m ≤ n nonlinear equality constraints

hi(x) = ci, i = 1, ...,m (4.6)

can be deduced from the previous consideration after a simple linearization of the hi, i = 1, ..,m.
More precisely, one would like to replace the admissible variations δx ∈ Ker(B) at a feasible
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point x̄ from the FONC of the previous section with the vectors δx ∈ Ker(h(x̄)′), where h is
the (column) vector composed of the hi(x), h(x) = ( h1(x) h2(x) ... hm(x) )

T
. Provided

this is legitimate, one can apply the theory from the linear case to deduce the existence of a (not
necessarily unique) Lagrange multiplier λ ∈Rm such that any local minimizer satisfies

∇f(x̄) = (h′(x̄))Tλ = ∇h(x̄)λ.

Before entering into a more detailed discussion, it is instructive to consider a simple coun-
terexample in R2 which shows that this is not always possible. Consider a smooth function f(x)
with x constrained to lie in the admissible set consisting of all points on the vertical axis, but
with this (in its most natural form) linear constraint artificially made nonlinear by rewriting this
set using the constraint h(x) = x2 = 0. It is clear from the discussion in the previous section

that at any minimizer, there will be a λ ∈R such that ∇f = λ(
1
0

), i.e. the only non-vanishing

component of the gradient is along the x-direction.
Linearizing h though, any admissible point with x = 0 will satisfy

∇h(x) = h′(x)T = (
x
0

)

T

= 0.

It is obvious that this vector is useless for expressing the FONC above.
Remark 6. Roughly speaking, one can see that the difficulty in the above example arises as there
are two different “linearizations” involved, which in this case do not lead to the same conclusions.
One linearization is the more geometric one based on the admissible set A (in this case the y-axis)
itself and the translated tangent space TA(x) to this set obtained by considering the tangents to
all smooth curves lying in A and passing through x (in this case again the y-axis). The other one
is a more algebraic one based on the linearization of the function h describing the admissible set
and the set of directions lying in Ker(h′(x)). As seen in the example above, this set corresponds
to the y-axis for the choice h(x) = x and to the whole of R2 (i.e. a significantly larger set) for
the choice h(x) = x2. In constrast to TA(x), this set thus depends on the particular expression
chosen for h and may or may not coincide with the former.
While it is intuitively to be expected that one is interested in the first set for the constrained
problems considered here, it is also clear that the second one is much easier to deal with.
The principal question to be answered is therefore under which conditions both subsets coincide.
These so-called constraint qualificiation conditions appear generally in constrained opti-
mization problems where the definition of the admissible set A involves systems of equalities and
inequalities. The difficulty is always due to the above dichotomy, where one has, on the one hand,
a purely geometrically defined tangent set to A which appears naturally in the Euler-Lagrange
equation characterizing the minimizer, and, on the other hand, an appropriate linearization of
the constraint equations which one would like to combine with Lagrange multipliers in order to
obtain a more explicit representation of this set. ◇

As for the linearly constrained case, the FONCs at any purported local minimizer x̄ are again
based on considering nearby points also satisfying the inequality constraints. For all such points
sufficiently close to x̄, one has, by the assumption on x̄, that f(x)−f(x̄) ≥ 0. In order to obtain
a first-order necessary condition based on directional derivatives, one would now like to divide
by t and take the limit of t → 0 for points of the form x̄ + tδx with an admissible direction δx.
There is a slight difficulty with this approach, as, due to the potential curvature of the admissible
set, it is in general not possible to approach x̄ along a straight line while remaining within the
admissible set A, i.e. it is not exactly legitimate to compare the values of f(x) along a line of the
type above with those of x̄. Instead, one has to compare the value of x̄ with points lying “almost”
on such a straight line, i.e. points x ∈ A which can be written in the form x = x̄ + tδx + o(t)
for some direction δx. In fact, provided f is sufficiently smooth and there is some sequence tn
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tending to 0 such that an associated sequence xn = x̄ + tnδx + o(tn) lying in A exists, one then
has

0 ≤
f(xn) − f(x̄)

tn
=
f(x̄) + t∇f(x̄) ⋅ δx + o(tn) − f(x̄)

tn
= ∇f(x̄) ⋅ δx + o(1)

and thus, in the limit, ∇f(x̄) ⋅ δx ≥ 0.
Denoting the “convergence in A” with xn →∈A

x̄, i.e. all points xn (and x̄) lie in A, the set of
directions for which this construction is possible is given by the tangential set

TA(x̄) = {δx ∈R
n
∶ ∃tn → 0,xn →∈A

x̄ such that δx = lim
tn→0

xn − x̄

tn
} (4.7)

called the sequential/Bouligand cone. With this set, the FONC in this more general case is
given by

∇f(x̄) ⋅ δx ≥ 0 ∀δx ∈ TA(x̄). (4.8)

According to the preceding discussion, in order to obtain a description in terms of Lagrange
multipliers as outlined above, one now needs to ensure that TA(x̄) is in fact a subspace (allowing
to simplify the inequality into an equality) and that this subspace is given by the kernel of h′(x̄)
in order to conclude that ∇f(x̄) ∈ Ker(h′)⊥ = Range ((h′(x̄))T ) and thus that

−∇f(x̄) = (h′(x̄))
T
λ = ∇h(x̄)λ (4.9)

for some λ ∈Rm.

A first observation in this sense (also recall the example above) is that, if h is smooth, e.g.
h ∈ C1(Rn), then TA(x̄) ⊂ Ker (h′(x̄)) as, for any direction δx ∈ TA(x̄) and the associated
sequences xn and tn, one has

0 =
h(xn) − c

tn
=
h(x̄ + tnδx + o(tn)) − c

tn
=
h(x̄) + tn∇h

′
(x̄)δx + o(tn) − c

tn
= h′(x)δx + o(1)

and thus in the limit δx ∈ Ker(h′(x̄)).
All that can a priori be said about vectors δx ∈ Ker (h′(x̄)) is that

h(x̄ + tδx) = h(x̄) + th′(x̄)δx + o(t) = c + o(t), (4.10)

i.e. they satisfy the equality constraint up to an error of o(t). What is required in order to
show that δx lies in TA though is not that the equation defining A is satisfied up to an order
of o(t), but that there is a point x within a distance of o(t) to x̄ + tδx actually satisfying the
equation. This conclusion based on Equation (4.10) requires a stability result ensuring that the
o(t)-error in the defining equation for A can be compensated by an equal-order correction to
the point x̄ + tδx. In other words, one has to ensure that h is a local homeomorphism at x̄, i.e.
a continuous mapping with a continuous inverse. This is a classical question though, for which
it is known (see e.g. [27]) that this is the case iff h′(x̄ + tnδx) is surjective, which is in turn
guaranteed by h′(x̄) being surjective.
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4.2 Linear and Nonlinear Equality Constraints - the Infinite-
Dimensional Case

Even though the setting considered in the previous section already contains the essential ideas
underlying the Lagrange multiplier approach for equality-constrained problems, it is not strictly
speaking applicable to the applications outlined above. Instead, one has to consider a more
general situation in which the domain of the function(al) to be minimized is given by an appro-
priate subset of a function space and thus generally infinite-dimensional. In addition, while it
may happen - as in the case of the minimization with a prescribed volume - that there is only
a finite number of equality constraints, there are other situations in which this need not be the
case anymore6.

Both aspects entail some additional difficulties absent from the considerations in the previous
section. Even though the discretization of any of the examples considered in this section ulti-
mately reduces the situation to the previous finite-dimensional one, the underlying continuous
description should not be completely forgotten.

Remark 7. This is not just a matter of theoretical interest but also has implications from a
“practical” point of view.
On the one hand, despite the ultimately discrete nature of the computational problems, a con-
tinuous description almost always leads to significantly shorter calculations as compared to an
analogous one at the discrete level, and is in particular also heavily made use of when deriving
e.g. the phasefield equation and other related ones from the underlying functional. Even though
the engineering community enjoys some additional liberties in this respect as compared to the
mathematical one (which will also be taken here), it can still be helpful to have an idea of which
calculations are potentially problematic and which are not. In particular, it is clear that the
continuous description will become increasingly important as one increases the resolution in the
discrete case, and an ill-defined description at the continuous level is then likely to cause issues
at the discrete one.
On the other hand, a basic understanding of some important relations at the continuous level
- such as e.g. the gradient and negative divergence being related in a “tranpose-like” fashion -
allows for a relatively simple intuitive interpretation of some a priori quite complex questions at
the discrete level. ◇

The remainder of this section will therefore provide a quick sketch of how and to what degree
the arguments from Section 4.1 can be carried over to the function space setting. The central
result replacing the use of the fundamental theorem of linear algebra in the previous section is
a very similar characterization of the decomposition of the domain and range space through the
closed range theorem 2 below, with the role of the matrix B and its transpose BT in Theorem
1 being replaced by the opertator B defining the constraints and its adjoint B∗. Provided the
conditions of the theorem are satisfied, one can use this characterization to derive, based on
essentially identical arguments as in the finite-dimensional case, the existence of an appropriate
Lagrange multiplier for the constraint and the way it enters into the first-order necessary codition
through B∗.

Remark 8. The closed range theorem is a fundamental theorem of functional analysis and can
therefore be found in essentially any introductory text on this topic. The outline below mostly
borrows from [16], [48],[80] and [20], to which the reader is referred for more details. More
in-depth descriptions and generalizations can be found in e.g. [14], [37] and [57]. ◇

6A particularly important example is given by the incompressibility condition ∇ ⋅ u = 0 encountered when
dealing with fluid flow problems.

23



Linear equality constraints Consider first the case when F ∶X →R is a (smooth) functional
defined on some Banach or Hilbert space7 X and the equality constraints are specified through
a (possibly unbounded8) linear operator B ∶ Dom(B) ⊂X → Y ,

Bx = y,

where Y is a second Banach space.

Remark 9. The simplest case is the one where Y is finite-dimensional, corresponding to a finite
number of (linear) equality constraints, specified throughm continuous linear functionals b∗i ∈X

∗,

⟨b∗i , x⟩X∗,X = ci, i = 1, ...,m.

For the phasefield, one may for example have X =H1(Ω)∩L∞(Ω), F = Eε and ∫Ω φdx = V . For
the (Navier-)Stokes equation one instead has to consider the more general case where X may
e.g. be a subspace of H1(Ω) and Y equal to L2(Ω). ◇

As in the previous section, standard differential calculus implies that the derivative F ′(x̄) of
F (as an element of X∗) at any minimizer x̄ must satisfy

⟨F
′
(x̄), δx⟩X∗,X ≥ 0 ∀δx ∈ Ker(B),

and then again, as Ker(B) is a linear subspace of X,

⟨F
′
(x̄), δx⟩X∗,X = 0 ∀δx ∈ Ker(B). (4.11)

Defining 9the annihilatorMa of a subset ofM as the set of all x∗ ∈X∗ such that ⟨x∗, x⟩X∗,X for
all x ∈M , one thus has F ′(x̄) ∈ Ker(B)a. As in the case of Rn, one would now like to, whenever
this is possible, provide a more explicit representation of Ker(B)a. This requires introducing, in
analogy to the transposed matrix, the adjoint operator B∗ ∶ Dom(B∗) ⊂ Y ∗ →X∗:

Definition 1. (Adjoint operator, see e.g. [16], p. 43f)
Let B ∶ Dom(B) ⊂ X → Y be a linear operator which is densely defined10. The domain of B∗ is
defined to be the set of y∗ ∈ Y ∗ such that there exists a constant c such that

∣⟨y∗,B(x)⟩Y ∗,Y ∣ ≤ c∥x∥X ∀x ∈ Dom(B),

i.e. Dom(B∗) is the (linear) subspace of Y ∗ for which the linear mapping D(B) ∋ x ↦ g(x) =
⟨y∗,Bx⟩ is uniformly bounded. As Dom(B) is by assumption dense in X, g can be extended by
continuity to a unique bounded linear operator on all of X, allowing to identify g with an element
of X∗. This association in turn defines a linear mapping associating with each y∗ ∈ Dom(B∗) an
element of X∗, which will be denoted by B∗y∗ and by definition satisfies

⟨y,Bx⟩Y ∗,Y = ⟨B
∗y∗, x⟩X∗,X ∀y∗ ∈ Dom(B

∗
), x ∈ Dom(B). (4.12)

7I.e. a complete normed vector space, resp. one where the norm can additionally be derived from an inner
product.

8Meaning that B need not be continuous on the whole space. Typical examples for such operators are differ-
entiation operators between various spaces, which need not be bounded on the whole space but are so on a dense
subset of sufficiently smooth functions.

9The reason for introducing a slightly “modified version” of the orthogonal complement here is that in the
more general Banach space setting, not every linear subspace admits an orthogonal complement. When X is a
Hilbert space, this is the case though for every closed subspace. As the kernel of every linear continuous operator
is always closed, in this case one can thus always replace Ker(B)a with Ker(B)⊥ since both notions coincide then
(see e.g. [16]).

10Meaning its definition is such that it “makes sense” on a dense subset of functions in X.
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The adjoint operator is thus constructed such as to extend the defining property of the
transposed matrix BT

∶Rm →Rn with respect to the Euclidian scalar product in Rm resp. Rn,

y ⋅ (Bx) = (BTy) ⋅x,

to the more general setting given by the duality product between the spaces above. The hope
is of course to obtain an analogue of the fundamental theorem of linear algebra for this case.
Unfortunately, this is not possible without some additional topological assumptions, which hold
in many cases of practical interest though.

Their statement requires another definition (see e.g. [16], p. 43):

Definition 2. (Graphs and closed maps)
The graph graph(B) of a map (linear or not) B ∶X → Y is the subset of X × Y given by

graph(B) = {(x, y) ∈X × Y ∶ y = B(x)}.

B is closed if graph(B) is a closed subset of X × Y (equipped with the standard product
topolgy)11.

With this definition, the fundamental result for the characterization of Ker(B)a is contained
in the following (see e.g. thm. 2.16 [16], thm. 2.13 [48], §7.5 [79])

Theorem 2. (Closed range theorem)
Let B ∶ Dom(B) ⊂ X → Y be an unbounded linear operator which is densely defined and closed.
Then the following are equivalent:

1. Range(B) is closed.

2. Range(B∗) is closed.

3. Range(B) = Ker(B∗)a.

4. Range(B∗) = Ker(B)a.

Remark 10. Note that there are two different notions of “closedness” involved in this theorem.
The first one - that of being a closed map - depends on the simultaneous convergence of a
sequence of points (xn) in X and its image sequence (yn) = Bxn in Y and requires that, if both
converge, the limit in Y is the image of the limit in X. The second one - that of having a closed
range - is more concerned with the image space, i.e. given an arbitrary sequence (yn) in Y which
converges in Y , the limit has to lie in Im(B), meaning there only has to be some point in X
such that y = Bx (but which, a priori, need not be related to any particular sequence in X). ◇

Assuming that the conditions of this theorem are satisfied for B, one can finally conclude
from (4.11) that at a local minimizer x̄,

−F
′
(x̄) ∈ Ker(B)a = Range(B∗),

or, more explicitly, that there exists a Lagrange multiplier λ ∈ Y ∗ such that

−F
′
(x̄) = B∗λ. (4.13)

Remark 11. An important example for the use of this theorem is e.g. the role of the press-
sure gradient in relation with the divergence-free constraint in fluid dynamics. If one considers
a sufficiently smooth domain Ω and the (negative) divergence operator −div as an operator
from H1

0(Ω) = (H1
0(Ω))

n
into L2(Ω), then it is actually a continuous operator between these

11Here this reduces to: For any sequence xn ∈ D(B) such that xn → x ∈ X and yn ∶= Bxn → y ∈ Y , it must hold
that x ∈ D(B) and y = Bx
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spaces (since ∣∑
N
i=1

∂u
∂xi

∣2 ≤ n∑
N
i=1 ∣ ∂u

∂xi
∣2 and thus ∥ − div(u)∥L2(Ω) ≤

√
n∥u∥H1

0 (Ω)) and there-
fore defined on all of H1

0(Ω). By Schwarz’s inequality, one futher has ∥ − div(u)q∥L2(Ω) ≤

∥−div(u)∥L2(Ω)∥q∥L2(Ω) and thus the mapping u↦ ∫Ω −div(u)q dx is uniformly bounded for all
q in L2(Ω) with constant c =

√
n∥q∥L2(Ω). The domain of its adjoint −grad ∶ L2(Ω)→H−1

(Ω) =

H−1
(Ω), where H−1

(Ω) = (H−1(Ω))
n
is the dual of H1

0(Ω), will therefore be all of L2(Ω). For
smooth functions, Green’s formula shows that

∫

Ω

−div(u)q dx = ∫

Ω

u ⋅ ∇q dx − ∫
∂Ω

qu ⋅nds = ∫
Ω

u ⋅ ∇q dx

since u vanishes on the boundary and the adjoint is therefore an extension of the standard
gradient operator12. It further follows that the “Green-type” formula

⟨grad q,u⟩H−1(Ω),H1
0 (Ω) = ∫

Ω

(−divu)q dx

holds, regardless of whether the duality pairing on the left may be written as an integral and
whether an integration by parts may be justified or not.
The assumption for Theorem 2 can be shown to hold (see e.g. [73]) and thus Ker(div)a =

Range(−grad) = Range(grad). The crucial implication in this case is that any functional f ∈

H−1
(Ω) which vanishes on all divergence-free functions in H1

0(Ω) can be written as the gradient
of a scalar function p ∈ H1

0(Ω), i.e. ⟨f ,v⟩H−1,H1
0(Ω) = 0 for all v ∈ H1

0(Ω) implies that f = ∇p,
p ∈ L2(Ω).

◇
Remark 12. The definition of the adjoint and Theorem 2 are also, similar to Remark 4, the
central “ingredients” for e.g. the very useful Fredholm alternative (see e.g. theorem 2.27 in
[48]). ◇
Nonlinear Equality Constraints As in the finite-dimensional case, the theory developed
for the case of linear equality constraints carries over to nonlinear equality constraints provided
some regularity condition holds. This is summarized in the following result:

Theorem 3. (Tangents and normals to a level set (Graves-Lyusternik theorem), thm. 5.35
[20])
Let X and Y be Banach spaces and let A be given by

A = {u ∈X ∶ h(x) = 0},

where the map h ∶ X → Y is continuously differentiable near x ∈ A. If h′(x) is surjective, then
TA(x) and NA(x) are the linear subspaces given by

TA(x) = {δx ∈X ∶ ⟨h′(x), δx⟩ = 0}, NA(x) = (h′(x))
∗
Y ∗

and TA(x) = NA(x)a, NA(x) = TA(x)a.

This is essentially the same conclusion as in the finite-dimensional case, i.e. if the derivative of
the nonlinear mapping is surjective (recall the counterexample in Remark 6), the only admissible
variations are the ones on which the linearization of the constraint vanishes, and the derivative
of the function(al) vanishing on all these directions then implies that there is some multiplier
such that

F
′
(x) + (h′(x))

∗
λ = 0.

12More precisely, even though the expression grad q above does not a priori make “classical” sense for q ∈ L2(Ω),
the image of q under the gradient operator is, by the construction of the adjoint, simply defined as the unique
element in g ∈H−1(Ω) satisfying ⟨g,u⟩H−1(Ω),H1

0
(Ω) = ∫Ω q( − div(u))dx∀u ∈H1

0(Ω).
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Remark 13. Note that the surjectivity assumption in Theorem 3 implicitly subsumes what is
required for Theorem 2. In fact, by the assumption that h is C1, h′ is defined everywhere on
X (and not just densely). Furthermore, since h′(x) is assumed surjective, the graph of h′(x) is
simply the product space X×Y , and therefore obviously a closed subset of X×Y (its complement
being the empty set, which is always open). Similarly, Range(h′(x)) equals the whole space Y
and is therefore again closed, from which the remaining conclusions follow immediately. ◇

4.3 Linear and Nonlinear Inequality Constraints
In many applications, one not only has to deal with equality constraints but with possible
additional inequality constraints. The primary example in the phasefield context is of course
the box-constraints 0 ≤ φ ≤ 1 that may be imposed on the phasefield, or, in combination with
an equality constraint in the multi-phase case, the restriction to the Gibbs-simplex, 0 ≤ φα ≤ 1,
∑
N
α=1 φ

α = 1. Another physically important example is given by elasto-plastic applications,
in which the admissible stresses are assumed to be restricted by a yield criterion of the form
f(σ) ≤ σy, with σy possibly depending on additional internal parameters.

In contrast to the equality constrained case, which leads to first-order optimality conditions
in terms of orthogonality to certain linear subspaces as in Equations (4.3) and (4.11), the Euler-
Lagrange equations for inequality constrained problems lead to first-order conditions in the form
of inequalities. This in turn leads to a characterization involving cones instead of subspaces. For
this reason, it is necessary to find a suitable replacement for the fundamental theorem of linear
algebra (resp. the closed graph theorem), here primarily in the form of Farka’s lemma.

As for the equality constraints, the first case considered will be the finite-dimensional one
in combination with linear inequality constraints, a setting which already contains the essential
ideas. It will then shorty be sketched how these can be extended to some more complex situations.

Linear Inequality Constraints in the Finite-Dimensional Case Consider again the min-
imization of a smooth objective function f defined on Rn, but now subjected to m ≤ n linear
inequality constraints:

⎧⎪⎪
⎨
⎪⎪⎩

minimize f(x)

subject to bi ⋅x ≤ ci, i = 1, ...,m.
(4.14)

Just as for the equality constrained case, the FONC for a local minimizer x̄ satisfying the
constraints is given by the Euler-Lagrange equation

∇f(x̄) ⋅ δx ≥ 0 (4.15)

with δx ranging over the “admissible” directions. The fundamental difference with respect to
the previous situation lies precisely in the form of this set, which is now not simply given by
the kernel of the matrix B composed of the bi. Instead, it is clear that there is actually more
freedom in choosing the δx as Ker(B) is now only a subset of the admissible variations13. In
fact, for each inequality constraint one has to distinguish two possible situations:

1. x̄ satisfies bi ⋅ x̄ < ci, i.e. the i-th constraint is inactive. By continuity, the same will
hold for any x sufficiently close to x̄ or equivalently for any x̄ + δx with ∣δx∣ sufficiently
small. In this case, at least locally, the constraint effectively does not impose any actual
restriction on the problem and can be disregarded.

2. x̄ satisfies bi ⋅ x̄ = ci, i.e. the i-th constraint is active or saturated. In this case, the only
admissible variations are such that bi ⋅δx ≤ 0, which, instead of a hyperplane, now specifies
an entire half-space.

13If x̄ satisfies Bx̄ ≤ c, x̄ + δx obviously also satisfies B(x̄ + δx) =Bx̄ +Bδx =Bx̄ ≤ c for any δx ∈ Ker(B).
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Partitioning the constraints into the inactive ones,

II(x̄) = {i ∈ 1, ..., n ∶ bi ⋅ x̄ < ci} (4.16)

and the active ones,
IA(x̄) = {i ∈ 1, ..., n ∶ bi ⋅ x̄ = ci}, (4.17)

the set of admissible variations is therefore given by the set TK(x̄) of δx such that

TK(x̄) = {δx ∈R
n
∶ bi ⋅ δx ≤ 0 ∀i ∈ IA(x̄)},

i.e. an intersection of (closed) half-spaces.

Definition 3. (Cones and polar cones)

• A cone (also sometimes called a pointed cone) is any subset C such that, if x ∈ C, then
αx ∈ C for all α ≥ 0.

• Given any subset M of Rn, the (negative) polar cone M− is the set of vectors y such
that

y ⋅x ≤ 0 ∀x ∈M.

Similarly, its negative, the dual cone (or positive polar cone) is the set M+ = −M−

defined by
y ⋅x ≥ 0 ∀x ∈M.

With this definition, it is clear14 that the admissible variations TK(x̄) form a cone.
The optimality condition (4.15) corresponds, by the very definitions, to f ′(x̄) ∈ T +K or, using

the more common notation, to
−∇f(x̄) ∈ T −K(x̄), (4.18)

which is thus the conclusion replacing ∇f(x̄) ∈ Ker(B)⊥ from the equality-constrained case. In
order to obtain a more explicit formulation, it remains to replace the characterization Ker(B)⊥ =
Range(BT

) by an analogous statement describing T −K(x̄). This is the purpose of the following

Lemma 1. (Farka’s lemma, cor. 2.29 [58])
Let B be an m × n-matrix and let

K = {x ∈R
n
∶Bx ≤ 0}.

Then (see also Figure 4.2a)

K−
= {y ∈R

n
∶ y =BTµ, µ ∈R

m, µ ≥ 0}. (4.19)

Proof. As for the fundamental theorem of linear algebra, one implications is a simple consequence
of the definition of the transposed matrix15. In fact, denoting the set on the right-hand side of
(4.19) by K̃, one has

(x,BTµ)Rm = (Bx,µ)Rn ≤ 0 ∀x ∈K,y ∈ K̃,

as Bx has only non-positve and µ only non-negative entries by the definitions of K and K̃, i.e.
K̃ ⊂K−. For the other implication, observe that K̃ is a closed convex cone. If there is a z ∈K−

14Either by “geometrical insight” or by noting that the defining condition bi ⋅δx ≤ 0 is stable under multiplication
by non-negative scalars.

15 There it is the conclusion that Range(BT )µ ⊂ Ker(B)⊥, as for any x ∈ Ker(B) x ⋅BTµ = Bx ⋅ µ = 0. In
contrast, the analoguous statement to the other conclusion Ker(B)⊥ ⊂ Range(BT ) is trickier as it requires a
separation property similar to the one used here.
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such that z ∉ K̃, z can therefore be strictly separated from K̃, i.e. there is some vector l ∈ Rn

such that
l ⋅ z > α ≥ l ⋅ y ∀y ∈ K̃.

As each y ∈ K̃ is of the form BTµ with µ ≥ 0, one thus has

Bl ⋅µ ≤ α ∀µ ≥ 0,

which is only possible if Bl ≤ 0 (otherwise just let the entry in µ corresponding to a positive
entry in Bl tend to +∞). In addition, as µ = 0 is admissible, this implies α ≥ 0. Since Bl ≤ 0
is just the same as saying l ∈ K, one would therefore have z ⋅ l > α ≥ 0, but this contradicts
z ∈K−.

Remark 14. While the proof of Lemma 1 may seem somewhat technical through the use of a
separation theorem, the geometric idea is actually rather simple. The separation theorem and
the first part of the theorem imply that there is a half-space containing K̃ ⊂K− and, in addition,
the existence of a vector in the other half-space, which, just as all elements of K̃, forms an
angle of at least 90○ with any vector in K. As K̃ always contains the vectors bi, i.e. the ones
which are precisely orthogonal to one of the subspaces defining K, there is no way of arranging
a half-plane such that it contains both K̃ and that a vector on the other side does not make an
acute angle with K (see Figure 4.2b). ◇

K = {x ∶Bx ≤ 0}
b1

b2

K−

(a)

K̃
l

z

(b)

Figure 4.2: The (negative) polar cone in Farkas lemma (a) and the geometrical idea underlying
its proof (b).

Applying the lemma to −∇f(x̄) with the matrix BIA(x̄) constructed (row-wise) from the
vectors bTi with i ∈ IA(x̄) replacing B leads to

−∇f(x̄) =BT
IA(x̄)µIA(x̄) = ∑

i∈IA(x̄)
µibi,

where each of the µi appearing above has to be non-negative, µi ≥ 0, i ∈ IA(x̄).
As the notation involving the index set IA(x̄) is somewhat cumbersome and only meaningful

in the discrete case, it is common to use an equivalent formulation which is obtained by noting
that BT

IA(x̄)µIA(x̄) = B
Tµ, with B the analogue of BIA(x̄) but containing all the vectors bi,

provided all µi, i ∈ II(x̄) are set to zero. These are precisely the indices though for which
ci−bi ⋅x̄ ≥ 0, whereas the indices in IA(x̄), i.e. the set where the µi may be non-zero, are given by
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ci−bi ⋅x̄ = 0. Both conditions can compactly be combined by introducing the complementarity
conditions µi(ci − bi ⋅ x̄) = 0, i = 1, ...,m. Finally, as both µi and ci − bi ⋅ x̄ are required to be
non-negative and thus the sum ∑mi=1 µi(ci − bi ⋅ x̄) can only vanish if all terms are zero, the
characterization of ∇f(x̄) can equivalently be expressed by

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∇f(x̄) =BTµ,

c −Bx̄ ≥ 0,

µ ≥ 0,

µ ⋅ (c −Bx̄) = 0.

(4.20)

Nonlinear Inequality Constraints in the Finite-Dimensional Case As for the equality-
constrained case, the conclusions for the linear inequalites can be carried over to the nonlinear
case through a simple linearization of the (active) constraints provided some constraint qual-
ification conditions hold. More precisely, for a constraint-set A = {x ∶ gi(x) ≤ 0, i = 1, ...,m}

prescribed through m ≤ n inequality constraint, the first-order necessary condition is, as in
Equation (4.8), that ∇f(x̄) ⋅ δx ≥ 0 for all δx ∈ TA i.e. −∇f(x̄) ∈ TA(x̄)− where the Boulignand
cone TA(x̄) is defined as in Equation (4.7). What one would like to conclude from this is that
any minimizer x̄ subject to g(x) ≤ 0 is of the form

−∇f(x̄) = ∑
i∈IA(x̄)

µi∇gi(x̄) (4.21)

with µi ≥ 0, where IA(x̄) denotes the set of active constraints, i.e. the indices for with gi(x̄) = 0.
All this requires is to show that the Bouligand cone appearing in the characterization of ∇f(x̄)
for any local minimizer is the same as the linearizing cone

L(x̄,K) ∶= {δx ∶ ∇gi(x̄) ⋅ δx ≤ 0, i ∈ IA}

consisting of those directions which, in first order, do not lead to an increase in the values of the
gi which are at their maximal admissible value 0 at x̄. If such is the case, the conclusion follows
immediately from Farka’s lemma, as one then has TA(x̄) = {δx ∶Bδx ≤ 0} withB = (∇gIA(x̄))

T

and by Lemma 1 TA(x̄)− = {y ∶ y =BTµ,µ ≥ 0} = {y ∶ y = ∇gIA(x̄)µ,µ ≥ 0} and thus together
with the first order necessary condition in Equation (4.21).
Linking the two cones is again a question of being able to ensure that, any δx in L(x̄,K) can
actually be obtained as the limit of the directions showing towards points actually lying in A.
This will hold if for any for any δx such that ∇gi(x̄) ⋅ δx ≤ 0 for all i ∈ IA, one can find an
actually admissible point x in A such that δx = x− x̄+o(∥δx∥) and is therefore again a question
of stability.
There are a variety of different conditions ensuring this (see e.g. [58], [13] or [27] for a more
detailed discussion). A relatively strong condition ensuring this is the linear independence con-
straint qualification condition, requiring that the gradients ∇gi(x̄) for i ∈ IA(x̄) be linearly
independent. A weaker condition also based on the gradients themselves is the Mangasarian-
Fromovitz constraint qualification condition, requiring that there be some vector d such that
∇gi(x̄) ⋅ δx < 0 for all i ∈ IA(x̄). Another popular condition, which in addition applies even
when the gi are not necessarily differentiable, is Slater’s constraint qualification condition, which
requires for the gi, i ∈ IA(x̄) to be convex functions together with the existence of some point y
such that gIA(x̄)(y) < 0.
Remark 15. Note that, with respect to any active constraint i, this is not an issue for a direction
δx such that ∇gi(x̄) ⋅δx < 0 as the differentiability of gi automatically implies that gi(x̄+tδx) < 0
for t sufficiently small, i.e. the constraint will definitely be satisfied as x̄ is approached along this
direction. The only potential difficulties therefore arises for those δx for which ∇gi(x̄) ⋅ δx = 0.
As for such directions, one always has (regardless of any qualification condition) gi(x̄ + tδx) =
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gi(x̄) + t∇gi(x̄) ⋅ δx + o(t) = o(t), one can ensure feasibility of the a very nearby (i.e. o(t) close)
point by a “tiny nudge” in any direction such that ∇gi(x̄) ⋅d < 0, provided this does not lead to a
violation of the remaining active inequality constraints. The basic idea underlying the conditions
above is to ensure the existence of a direction d such that this is always possible. ◇
Remark 16. The results above can be generalized quite significantly in various directions. Firstly,
one can replace the condition g(x) ≤ 0 with more abstract conditions. Secondly, many of
the ideas also carry over to the infinite-dimensional setting under some additional topological
assumptions, with the adjoint again replacing the transpose matrix. This will not be discussed
in detail here, and the reader is referred to e.g. [37] and [14] for a discussion in relation with
Lagrange multipliers or e.g. [22] for some discussion on generalization of Farka’s lemma above.
A very well-written introduction to some closely related background can also be found in [7], in
particular concerning various extensions of classical results from functional analysis to situations
involving convex cones instead of the entire spaces.

◇
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Chapter 5

Lagrange Functions and
Legendre-Fenchel Duality

5.1 Lagrange Functions
The results for the minimization of f(x) subject to the equality-constraint h(x) = c and g(x) ≤ 0
from Section 4.1 can conveniently be combined and summarized by introducing the Lagrange-
function or Lagrangian

L(x,λ,µ) = f(x) +λ ⋅ (h(x) − c) +µ ⋅ g(x). (5.1)

In fact, it can be observed that, provided one restrict µ to be non-negative, simply imposing
that the gradient ∇x of L with respect to x should vanish,

∇xL(x,λ,µ) = ∇f(x) +∇h(x)λ +∇g(x)µ
!
= 0, (5.2)

one recovers the same form of relation between the gradient of f and the multipliers which was
obtained in the previous chapter. In addition, again demanding that the gradient of L with
respect to λ should vanish,

∇λL(x,λ,µ) = h(x) − c
!
= 0, (5.3)

one recovers the equality constraint. Finally, imposing that the ∇µL should be non-positive
leads to

∇µL(x,λ,µ) = g(x)
!
≤ 0 (5.4)

and therefore the original inequality constraint on g(x).
Even though this has, up to this point, no deeper meaning, it is obvious that provided that this
is a very convenient “mnemonic” for obtaining the correct structure of the first-order optimality
conditions derived to a relatively lengthy argument based on orthogonaly relations resp. relations
between cones and their polar cones in the previous section. As will be sketched below, there is
in fact a close relation between Lagrangian and the original constrained optimization problem
and the usefulness of the Lagrangian goes far beyond providing a simple means of “guessing” the
correct optimality conditions.

The basis for this approach is contained in the following observations: Whenever the equality
constraint is satisfied for some x, the term in λ vanishes. Since L does then not depend on
λ for such an x and taking the supremum over all λ thus has no effect, supλ∈Rm L(x,λ,µ) =
f(x) + µ ⋅ g(x). Secondly, a similar argument can be done in terms of µ and g(x). If x is
such that g(x) ≤ 0, the term µ ⋅ g(x) is necessarily less than or equal to zero. If some entry
gi(x) is strictly negative, the supremum over all µi ≥ 0 is obviously achieved for µi = 0. In
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constrast, if gi(x) = 0, L does not depend on µi and any µi will therefore do for achieving the
supremum supµi≥0L(x,λ,µ). Both cases together therefore show that if x satisfies the inequality
constraint, taking the supremum over the µ ≥ 0 selects µ such that the second part µ ⋅ g(x) = 0
of the complementarity conditions holds and, if this is the case, also eliminates the last term of
the Lagrangain in Equation (5.1).
Whenever x satisfies both constraints, one therefore has

sup
{(λ,µ)∶µ≥0}

L(x,λ,µ) = f(x). (5.5)

In contrast, when the equality constraint is not satisfied and thus h(x)−c ≠ 0 there exists some
λ ∈Rm such that λ ⋅ (h(x)−c) > 0, and thus by “scaling” λ∗, one has supλ∈Rm L(x,λ,µ) = +∞.
Similarly, if any entry of g(x) is greater than 0, it suffices to let the corresponding component
µi tend to +∞ to show that supµ≥0L(x,λ,µ) is then also +∞.
In summary, taking the supremum in λ and µ ≥ 0 to define the primal function LP (x), this
function satisfies

LP (x) ∶= sup
{(λ,µ)∶µ≥0}

L(x,λ,µ) =

⎧⎪⎪
⎨
⎪⎪⎩

f(x) h(x) − c = 0,g(x) ≤ 0,

+∞ else,
(5.6)

and, since the infinite values are obviously of no interest with respect to a minimization, it follows
further that the original problem of minimizing f(x) subject to the constraints can equivalenty
be expressed in terms of the primal problem

inf
x∈Rn

LP (x) = inf
x∈Rn

sup
{(λ,µ)∶µ≥0}

L(x,λ,µ). (5.7)

While this minimization problem is now in principle a free minimization problem in x, this
is an essentially formal difference, which, in this form, is hard to put to any practical use. The
idea is instead to look at an - a priori different - problem obtained by exchanging the order of
the inf and sup, i.e. by instead considering the dual problem

sup
{(λ,µ)∶µ≥0}

inf
x∈Rn

L(x,λ,µ) = sup
{(λ,µ)∶µ≥0}

LD(λ,µ) (5.8)

where the dual function is defined by

LD(λ,µ) ∶= inf
x∈Rn

L(x,λ,µ) = inf
x∈Rn

{f(x) +λ ⋅ (h(x) − c) +µ ⋅ g(x)}. (5.9)

Remark 17. A first point to be noted is that the dual problem, while still a problem potentially
subject to the constraint µ ≥ 0 has, at least in terms of LD(λ,µ), a significantly simpler structure
than the original minimization problem for f(x). In fact, whereas x is potentially subject two
both a nonlinear equality constraint and a nonlinear inequality constraint, there is no constraint
on λ and µ is solely subject to the simple constraint µ ≥ 0.
The latter observation is of course only really advantageous if the inequality constraints on the
original variable x are of a more complex form. This is for example not the case for the restriction
of the phasefield to the Gibbs-simplex which will be discussed in more detail in Chapter 6, since
the inequality restrictions on the primal unknown are also of the form φ ≥ 0. Nevertheless, the
practical difficulty of the restriction to the Gibbs-simplex is not primarily due to the inequality
constraints themselves (this could be handled using a simple truncation), but their coupling
through an additional sum-constraint, an aspect which never occurs in a dual problem. ◇

A further indication why the dual problem may be useful is given by the following two simple
observations, which do not require any assumptions on f(x), h(x) or g(x):
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Lemma 2. (see e.g. chapter 4 [58])
The dual function is concave and one always has

sup
{(λ,µ)∶µ≥0}

LD(λ,µ) ≤ inf
x∈Rn

LP (x). (5.10)

Proof. Firstly, f(x)+λ ⋅ (h(x)− c)+µ ⋅ g(x) is linear and thus also (even though “border-line”)
concave in both λ and µ. As the infimum of an arbitrary family of concave functions is concave,
the first claim follows.
By the definition of the supremum, it is also clear that

LP (x) = sup
{(λ̃,µ̃)∶µ̃≥0}

{f(x) + λ̃ ⋅ (h(x) − c) + µ̃ ⋅ g(x)} ≥ f(x) +λ ⋅ (h(x) − c) +µ ⋅ g(x)

regardless of the choice of x ∈ Rn, λ and µ ≥ 0. Taking the infimum on both sides then shows
that

inf
x∈Rn

LP (x) ≥ inf
x∈Rn

{f(x) +λ ⋅ (h(x) − c) +µ ⋅ g(x)} = LD(λ,µ),

for every λ and µ ≥ 0, and thus also infx∈Rn LD(x) ≥ sup{(λ̃,µ̃)∶µ̃≥0}LD(λ,µ).

Remark 18. Provided one is able to derive an expression for LD, one is therefore in the very
favorable setting of having to maximize a concave function subject to at most a simple non-
negativity constraint. In addition, even if equality does not hold in (5.10), the solution of the
dual problem does always provide a lower bound for that of the primal one. ◇
Remark 19. Assuming there is an actual relation with the primal problem, the dual problem also
provides an intuitive explanation for the relevance of the three conditions in Equations (5.2),
(5.3) and (5.4). Since the definition of LD(λ,µ) = infx∈Rn L(x,λ,µ) in Equation (5.9) is based
on a free minimization of x given λ and µ, the derivative with respect to x should vanish.
Similarly, as there is no restriction on λ in the dual problem (5.8), one might expect for the
analogous condition to hold for λ. Finally, with µ being restricted to be non-negative, realizing
the maximum of LD with respect to µ does not necessarily require for ∇µL(x,λ,µ) = g(x) to
be zero, but should there be any positive entry gi(x), one could hope to further increase L by
increasing µi.
It should be kept in mind though that, despite its intuitive appeal at first sight, this simple
argument hides a critical point, namely that even though the inner minimization in x is indeed a
free one, the value of the minimizer will depend on the paramters (λ,µ), i.e. the maximization
of the dual function LD with respect to λ and µ is in fact based on the function

LD(λ,µ) = L(x(λ,µ),λ,µ).

That it still makes sense requires a reasoning similarly to Remark 3, namely that despite the
dependence of x on the parameters, the optimality satisfied by x ensures that L itself is in
first order not affected by this dependence as the contributions ∂L

∂x
∂x
∂λ

and ∂L
∂x

∂x
∂µ

arising in the
derivatives with respect to the multipliers drop out by the optimality condition on x.
The fact that a “blind” differentiation of the Lagrangian - i.e. ignoring any potential interplay
between the various variables - is therefore still expected to deliver the correct results is clearly
a major simplification, and likely one of the main reasons of its popularity in the engineering
community. The same type of underlying “variational consistency” is, as in Remark 3, also
fundamental to the ubiquitous changes of unknowns in thermodynamics1. ◇

Even thought the lower bound in Lemma 2 can by itself be quite useful, the most desirable
case is of course when both values actually do coincide. This motivates the following

1The phasefield method owing much of its early success to its successful application in a thermodynamically
based setting where such dependencies can legitimately be “ignored”, this is a point which unfortunaly seems to
be partially forgotten in the phasefield community.
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Definition 4. (Saddle point)
A pair (x̄, λ̄, µ̄) is called a saddle point of the function L(x,λ) if one has

L(x̄,λ,µ) ≤ L(x̄, λ̄, µ̄) ≤ L(x, λ̄, µ̄). (5.11)

for all x ∈Rn and λ, µ ≥ 0.

The next result is then a simple consequence of the Inequality (5.10):

Theorem 4. (thms. 4.8 and 4.9 [58])
If the Lagrangian L(x,λ,µ) has a saddle point (x̄, λ̄, µ̄), then x̄ is a solution of the primal
problem, (λ̄, µ̄) is a solution of the dual problem, and one has

max
{(λ,µ)∶µ≥0}

LD(λ,µ) = min
x∈Rn

LP (x).

Conversely, assume that this relation holds true with finite values on both sides. Then, for every
solution x̄ of the primal problem and every solution (λ̄, µ̄) of the dual problem, the point (x̄, λ̄, µ̄)
is a saddle point of the Lagrangian.

Proof. If (x̄, λ̄, µ̄) is a saddle point of L, it follows from Equation (5.11) that one has

LP (x̄) = sup
{(λ,µ)∶µ≥0}

L(x̄,λ,µ) ≤ L(x̄, λ̄, µ̄) ≤ inf
x∈Rn

L(x, λ̄, µ̄) = LD(λ̄, µ̄)

and thus also

inf
x∈Rn

LP (x) ≤ LP (x̄) ≤ L(x̄, λ̄, µ̄) ≤ LD(λ̄, µ̄) ≤ sup
{(λ,µ)∶µ≥0}

LD(λ,µ).

As the opposite inequality infx∈Rn LP (x) ≥ sup{(λ,µ)∶µ≥0}LD(λ,µ) always holds as seen above,
the inequalities necessarily hold as equalities,

inf
x∈Rn

LP (x) = LP (x̄) = L(x̄, λ̄, µ̄) = LD(λ̄, µ̄) = sup
{(λ,µ)∶µ≥0}

LD(λ,µ). (5.12)

Thus both the primal and dual problem do admit at least one solution x̄ and (λ̄, µ̄) and their
values coincide, proving the first claim.

Conversely, if one has sup{(λ,µ)∶µ≥0}LD(λ,µ) = infx∈Rn LP (x) and x̄ resp. (λ̄, µ̄) are solu-
tions to the primal resp. dual problem, one clearly has

L(x̄,λ,µ) ≤ sup
{(λ,µ)∶µ≥0}

L(x̄,λ,µ) = LP (x̄) = LD(λ̄, µ̄) = inf
x∈Rn

L(x, λ̄, µ̄) ≤ L(x, λ̄, µ̄)

for all x ∈ Rn and (λ,µ) with µ ≥ 0. Inserting (λ̄, µ̄) into the left-most expression and x̄ into
the right-most one, it follows in addition that LP (x̄) = LD(λ̄, µ̄) = L(x̄, λ̄, µ̄).

Remark 20. Note that this theorem does not assert the existence of a saddle point2. Often,
conditions assuring this are examined sligthly more indirectly in terms of the duality gap, i.e.
the difference between the inf and the sup obtained from the primal and dual problem3 or in
relation with the Legendre-Fenchel transform introduced in the next section (see e.g. [26] and
[14] for some links between the two approaches to duality). ◇

2A fairly general existence theorem is e.g. given in [26].
3This of course amounts to the same as there being a saddle point is then clearly the same thing as this

difference vanishing.
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Nevertheless, it indicates one reason for the usefulness of the Lagrangian. Whereas the primal
problem is by construction equivalent to the original minimization problem, this reformulation
essentially has no practical use by itself. More precisely, if the constraints are satisfied for some
x, the values of the multipliers are, beyond the complementarity conditions for µ essentially
arbitrary. If the constraints are not satisfied, the inner supremum results in the value +∞, which
one does certainly not want to achieve in any practical minimization algorithm. It may thus not
seem like a very reasonable idea to move the multipliers into the corresponding direction. In
contrast, the statement implies that if there is a saddle point and one can find a solution (λ̄, µ̄) of
the dual problem, one has, at least, made the solution of the primal problem significantly simpler
since it then reduces to a free minimization of L(x, λ̄, µ̄) for the given values of the multipliers.
In addition, provided this calculation can be justified through a sufficiently smooth dependce of
the minimizer x(λ,µ) given some current estimate (λ,µ) in the definition of the dual function
LD in Equation (5.9), one has ∂L

∂x
= 0 (as x is a free minimizer for the given multipliers), and

the total derivatives of L with respect to λ and µ therefore reduce to the partial ones despite
this implicit dependence. It follows that

∇λL(x(λ,µ),λ,µ) = h(x) − c and ∇µL(x(λ,µ),λ,µ) = g(x).

This motivates for example various alternative descent/ascent methods in terms of the two sets
of unknowns x and (λ,µ), since, provided x is at least an approximate minimizer for the given
multipliers, adjusting them such as to increase L “as if” x were fixed therefore does indeed make
sense.

Remark 21. Even though often not primarily motivated by such considerations, the Lagrangian
point of view also provides additional insight into e.g. some popular projection-based algoritms
such as e.g. fractional-step algorithms in fluid dynamics and the return mapping algorithm
in elasto-plasticity. In addition, the Lagrangian is also a very helpful ingredient for Newton-
type schemes for constrained problems and the analysis of second-order necessary conditions for
constrained optimization problems (see e.g [58], [13] and [46] for a more detailed discussion). ◇
Remark 22. It should be noted that the discussion above is for the most part completely indepen-
dent of whether the underlying spaces are finite-dimensional or not. In particular, the definitions
and lemmas can essentially be applied verbatim to the case when function spaces are involved,
since e.g. the proofs of the concavity and the inequalities in Equation (5.10) in Lemma 2 as
well as in Theorem 4 are all based purely on relations implied by the inf- and sup-operation (for
Lemma 2 combined with the concavity of linear operators), which are completely indepedendent
of any particularly favorable properties of Rn and neither rely on any particular structure of
the sets involved in the inf-sup-operations. For the corresponding definitions and proofs in this
more general setting, a classical and very readable reference is [26]. ◇
Remark 23. The dual function LD(λ,µ) is an example of a more general kind of function
frequently arising in parametric optimization involving a function ϕ(x,u) of the variable x and
the “parameter” u. Based on ϕ(x,u), one can introduce the (optimal) value function v(u) ∶=
infx∈Rn ϕ(x,u) corresponding to a minimizer (if any) of ϕ given the value of the parameter
u. More generally, one might also restrict the domain of x in the minimization process just
to subsets the underlying space, i.e. by setting v(u) ∶= infx∈X ϕ(x,u), or even to subset X(u)
depending themselves on the parameter.
It is clear that the study of the behavior of v(u) in terms of u (e.g. regularity or differentiability
properties), has an inherent interest beyond the Lagrangian setting above, but is in this particular
setting also very instructive in terms of an additional interpretation of the Lagrange-multipliers
as “sensitivities” of the objective functions with respect to the constraints. For further discussions
in the finite-dimensional setting, the reader is e.g. referred to [46], [13], [58] and [27]. For the
infinite-dimensional setting in function spaces, the reader may consult [26] or for a more detailed
but also more technical discussion in a quite general setting [14]. ◇
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5.2 The Legendre-Transform
An a priori somewhat different but in fact closely related approach to duality theory is provided
through the Legendre-transform, which is in particular heavily relied upon in the thermo-
dynamic setting. In its most basic form, the Legendre transform (or conjugate) of a function
f ∶R→ (−∞,+∞] is a second function f∗ ∶R→ (−∞,+∞] defined as4

f∗(x∗) ∶= sup
x∈R

{x∗x − f(x)}, (5.13)

i.e. the function f∗ which, for an arbitrary “slope” x∗, assign to f the maximal difference between
the line y(x) = x∗x and the graph of f . One can reiterate this procedure on f∗(x∗) by defining
the bi-conjugate (bi-dual) function

f∗∗(x) ∶= sup
x∗∈R

{x∗x − f∗(x∗)}, (5.14)

x∗x

−f∗(x∗) + x∗x
f∗(x∗)

−f∗(x∗)

f(x)

x

Figure 5.1: Illustration of the Legendre transform

The motivation for these definition is illustrated in Figure 5.1: f∗(x∗) being the largest
difference between y(x) = x∗x and y = f(x), the line y(x) = −f∗(x∗) + x∗x necessarily passes
below the graph (in the sense y(x) ≤ f(x) for all x). In addition, for the particular point chosen
in Figure 5.1, this line is actually exact at x, meaning that f(x) = −f∗(x∗) + x∗x, with a slope
given precisely by f ′(x) as it would otherwise cut the graph. The Legendre transform can
therefore be interpreted as implicitly constructing tangent lines to the graph of a function for
each given slope, at least provided this is possible without cutting the graph.

In addition, comparing the graphs of −f∗(x∗)+x∗x for various values of x∗ in Figure 5.2, this
translated line actually is the one achieving the maximum value for the given value of x as in
the definition of f∗∗ since, by the very definition of f∗, all other lines −f∗(x∗)+ x∗x necessarily

4Note that the value +∞ is explicitly admissible here for f . One could in principle also think about admitting
−∞, but excluding this value on the one hand simplifies certain statements and on the other hand does not really
eliminate any interesting functions, since a convex function which is −∞ at some point can at most be finite at a
single point before jumping to +∞ as convexity enforces an infinite slope (similar to the jump to infinity in the
right of Figure 5.1).
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x

y
f(x)

−f∗(x∗) + x∗x

Figure 5.2: Illustration of the inverse Legendre transform

pass below the point (x, f(x)). This shows that that one can, at least in certain situations5,
recover the value f(x) through f∗(x∗).
As it turns out, the arguments underlying the theory for this type of transform have virtually
nothing to do with f being defined on R. More generally, the same procedure can be applied for
a multivariate function f ∶ Rn → (−∞,+∞] by replacing the line (x,x∗x) with the hyperplane
(x,x∗ ⋅x) in Rn+1, f∗(x∗) = supx∈Rn{x

∗ ⋅x − f(x)}, or, if X is e.g. a Banach space6 with dual
X∗, and f ∶X → (−∞,+∞] a given functional, one can similarly define

f∗(x∗) ∶= sup
x∈X

{⟨x∗, x⟩ − f(x)}, (5.15)

where ⟨x∗, x⟩ denotes the natural pairing between X and X∗. Note in particular the important
relation

x∗ ⋅ x ≤ f(x) + f∗(x∗), (5.16)

valid for arbitrary x ∈ X and x∗ ∈ X∗. One can reiterate the procedure - but by again using X
instead of (X∗)∗ =X∗∗ - by defining the bi-dual function7

f∗∗(x) ∶= sup
x∗∈X∗

{⟨x∗, x⟩ − f∗(x∗)}, (5.17)

whose primary motivation stems from the following remarkable property:

Theorem 5. (Fenchel-Moreau, thm. 1.11 [16])
Assume that f ∶ X → (−∞,+∞] is convex, lower semicontinuous and not identically equal to
+∞. Then f∗∗ = f .

5This will be made more precise below. As might be guessed from Figure 5.1 and the discussion thus far,
it turns out that the crucial condition is that there is in fact a line passing below the graph of f whose value
coincides with f(x), i.e. a so-called subgradient (see in particular Props. 2 and 3 below).

6Note that the norm of X is not directly used in any of the results below, i.e. one can consider, as in e.g. [26]
or [14], even more general spaces.

7The distinction between X∗∗ and X is of course irrelevant if X is reflexive, i.e. in particular in Rn or the
Hilbert-space setting. It is only when the inclusion of X in X∗∗ is strict that this restriction to X becomes
important, as one is primarily interested in the relation between f∗∗ and f , the latter one a priori only being
defined on X.

38



Even if the assumptions above do not hold, one always has the following fundamental esti-
mate:

Lemma 3. Let f ∶X → (−∞,+∞] be arbitrary. Then f∗∗(x) ≤ f(x).

Proof. This is a direct consequence of taking the supremum over the Equality (5.16) in the form
⟨x∗, x⟩ − f∗(x∗) ≤ f(x) ∀x ∈X,x∗ ∈X∗.

Remark 24. Before stating any further properties leading up to and/or derived from the Fenchel-
Moreau-theorem, it is important to note that, besides the standard mathematical definition
above, there are, in particular in the physical setting, various alternative definitions of Legendre-
type transformations. A very similar one to (5.15) (again primarily useful if f is convex, see
below) is given by

f̂(x∗) = inf
x∈X

{f(x) − ⟨x∗, x⟩} = − sup
x∈X

{⟨x∗, x⟩ − f(x)} = −f∗(x∗) (5.18)

enjoying similar properties, but with f̂ now being a concave function (as in infimum of linear
and thus concave functions in x∗). Under the same assumptions on f as in Thm. 5, the inversion
formula (5.17) above can be rewritten as

f(x) = f∗∗(x) = sup
x∗∈X∗

{⟨x,x∗⟩ − f∗(x∗)} = sup
x∗∈X∗

{⟨x∗, x⟩ + f̂(x∗)}. (5.19)

If f itself is concave instead of convex, a more useful definiton is obtained by setting e.g.

f̃(x∗) = sup
x∈X

{⟨x∗, x⟩ + f(x)} = sup
x∈X

{⟨x∗, x⟩ − (−f)(x)} = (−f)∗(x∗), (5.20)

leading again to a convex function (note that (−f)∗ ≠ −f∗, which would be concave!). Again
based on the conversion formula (5.17), under the appropriate assumptions, one has

f(x) = −((−f)∗)∗ = − sup
x∗∈X∗

{⟨x∗, x⟩ − (−f)∗(x∗)} = inf
x∗∈X∗

{(−f)∗(x∗) − ⟨x∗, x⟩}. (5.21)

Similar modifications are clearly also possible when reverting the signs of e.g. x∗ in (5.15) or
(5.18) as this just applies a change in sign of the respective arguments.

◇
At first sight, the definitions above differ from the usual procedure in the physical literature

(here for simplicity again in the one-dimensional setting) of introducing the variable x∗ by setting
x∗ ∶= df

dx and then "defining" the Legrendre transform of f e.g. as

f∗(x∗) ∶= x∗x − f(x), (5.22)

where the sole dependence of g on x∗ is justified by remarking that ∂
∂x

(x∗x−f(x)) = x∗ − df
dx = 0

as x∗ = df
dx . An “inversion formula” is then recovered by simply rearranging Equation (5.22) to

f(x) = x∗x − f∗(x∗), where, by a simple differentiation of (5.22), x in addition satisfies x = df∗

dx∗ .
This is a somewhat tricky argument though, as x∗, if defined as df

dx , is clearly a function of
x, x∗ = x∗(x), and f∗ therefore in fact still an explicit function of x instead of x∗, f∗ = f∗(x),
meaning that the argument above is only valid if one chooses to “forget” this (explicit) depen-
dence.
The definition (5.15) on the one hand avoids this pitfall as f∗ is evidently truly independent of
x as the original variable is eliminiated through the supremum operation, and is, on the other
hand, more general as it does not require any differentiability of f .
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If f is strictly convex and smooth, one can easily establish a link between the two approaches
though. In fact, under this assumption, the supremum in (5.15) will be taking in a single point
x, which is characterized through the Euler-Lagrange equation ∂

∂x
(x∗x− f(x)) = x∗ − ∂f

∂x
(x) = 0,

i.e. the relation x∗ = ∂f
∂x

above. The subtle but important difference in interpretation here is that
this does not define x∗ - which is given - as a function of x, but rather the point x realizing the
supremum as an implicit function of x∗. A more proper way of writing (5.22) would therefore
be as

f∗(x∗) = x∗x(x∗) − f(x(x∗)),

which is then obviously a function of x∗ alone. Assuming the dependence of x on x∗ is in addition
differentiable, g satisfies

df∗

dx∗
= x(x∗) + (x∗ −

df
dx

(x(x∗))) ⋅
dx
dx∗

.

As the last term drops out due to x(x∗) satisfying x∗ = df
dx(x(x

∗)), one thus recovers the previous
relation x(x∗) = ∂f∗

∂x∗
, now as an explicit relation in terms of f∗.

Similarly, assuming that f∗ is also strictly convex and smooth, the supremum in (5.17) will also
be achieved in a single point x, whose Euler-Lagrange equation is given by (note x is again just
an arbitrary given slope here) ∂

∂x∗
(x∗x− f∗(x∗)) = x− ∂f∗

∂x∗
(x∗) = 0, which then defines x∗ as an

implicit function of x. Using this and the fact that under the given assumptions f∗∗ = f , one has
f(x) = f∗∗(x) = x∗(x)x − f∗(x∗(x)), and, if the mapping x ↦ x∗(x) is actually differentiable,
df
dx(x) = x

∗(x)+ (x− df∗

dx∗ (x
∗(x)))dx∗

dx . The last term again drops out by the definition of x∗(x),

i.e. one recovers the formula x∗(x) = df
dx(x).

This type of differential relation can be substantially generalized to situations where f in-
volving less smoothness8 This requires replacing the classical derivative of f with an appropriate
generalized notion of differentiability, which, in the convex (resp. concave) setting is given by
the following

Definition 5. (Subdifferential)
Let f ∶X → (−∞,+∞]. f is said to be subdifferentiable (in the sense of convex analysis) at a
point x in X if f(x) is finite and there is some x∗ in X∗ such that the relation

f(y) ≥ f(x) + ⟨x∗, y − x⟩ (5.23)

holds for all y ∈X, i.e. if the hyperplane (x, ⟨x∗, x⟩) in X ×R with slope x∗ passing through the
point (x, f(x)) lies below the graph of f . The set of all (if any) such slopes at a given point x
is called the (convex) subdifferential ∂f of f at x. If f(x) is not finite, ∂f is defined to be
empty, i.e.

∂f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

∅ if f(x) is not finite ,
{x∗ ∈X∗ ∶ f(y) ≥ f(x) + ⟨x∗, y − x⟩ ∀y ∈X} else,

and f is thus subdifferentiable at x iff ∂f(x) ≠ ∅.
Similarly, the concave subdifferential ∂∩f of f is obtained by reversing the sign of the inequal-
ity in Equation (5.23), and therefore corresponds to the slopes of all hyperplanes lying above the
graph of f and passing through (x, f(x)).

For convex functions, an important relation with the more basic notion of Gâteaux-differentiability
is given by the following

8Even though it is well-known that the convexity itself actually does imply a certain degree of regularity, at
least within the interior of the domain of f .
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Proposition 1. (Subdifferentiability and Gâteaux-differentiability, prop. I.5.3 [26])
Let f ∶ X → (−∞,+∞] be convex. If f is Gâteaux-differentiable at x, it is subdifferentiable
at x. Conversely, if f is continuous and finite at x and has only one subgradient, then f is
Gâteaux-differentiable at x. In both cases, the relation ∂f(x) = {f ′(x)} holds.

With this definition at hand, the generalization of the relation x∗ = ∂f
∂x

above is contained in
the following

Proposition 2. (see e.g. prop. 5.1. [26])
Let f be a function of X → (−∞,+∞] and f∗ its conjugate, and further assume that f is not
identically equal to +∞. Then x∗ ∈ ∂f(x) iff

f(x) + f∗(x∗) = ⟨x∗, x⟩. (5.24)

Proof. Assume that (5.24) holds. The first - somewhat technical - observation is that this implies
that both f(x) and f∗(x∗) are finite. In fact, as ⟨x∗, x⟩ is always finite9 and f has by assumption
at least one point where it is finite, f∗ is never equal to −∞. The sum of f(x) and f∗(x∗) being
finite and opposite infinities not being possible, both need to be finite. If the relation (5.24)
holds, the hyperplane (x,−f∗(x∗) + ⟨x∗, y⟩) passes through (x, f(x)) (i.e. is exact at x). As
Equation (5.24) together with the inequality (5.16) imply that x in fact realizes the supremum
in the definition of f∗, it holds that, for any y ∈ X, f∗(x∗) = ⟨x∗, x⟩ − f(x) ≥ ⟨x∗, y⟩ − f(y), and
thus by rearrangement both f(y) ≥ −f∗(x∗) + ⟨x∗, y⟩ ∀y ∈ X (i.e. the graph of f lies entirely
above this hyperplane) and f(y) ≥ f(x) + ⟨x∗, y − x⟩ ∀y ∈ X (i.e. the defining inequality (5.23)
for a subgradient holds).
Conversely, if x∗ ∈ ∂f(x), by the same inequality (5.24), one has ⟨x∗, x⟩ − f(x) ≥ ⟨x∗, y⟩ − f(y)
for all y ∈X. Taking the supremum over y shows that

⟨x∗, x⟩ − f(x) = sup
y∈X

{⟨x∗, y⟩ − f(y)} = f∗(x∗).

Despite the suggestive arrangement of the duality relation (5.24), it is not quite symmetric
in f and f∗, as f∗ is the transform of f , but f need not be the one of f∗ unless the inversion
formula (5.17) holds. In fact, applying Proposition 2 starting from f∗ instead of f a priori only
shows that

x ∈ ∂f∗(x∗)⇔ f∗(x∗) + f∗∗(x) = ⟨x∗, x⟩. (5.25)

Whether or not a “symmetric” version of Proposition 2 holds thus clearly depends on the relation
between f and f∗∗. This is clarified in the following

Proposition 3. (Cor. 5.2 [26], Prop. 2.118 [14])
Let f ∶X → (−∞,+∞] be a (possibly non-convex) function. Then the following holds:

1. If x∗ ∈ ∂f(x), then x ∈ ∂f∗(x∗).

2. If f is subdifferentiable at x, then f∗∗(x) = f(x).

3. If f∗∗(x) = f(x), then ∂f(x) = ∂f∗∗(x) (which is empty if both are equal to ±∞) and the
stronger statement

x∗ ∈ ∂f(x)⇔ f(x) + f∗(x∗) = ⟨x∗, x⟩⇔ x ∈ ∂f∗(x∗), (5.26)

i.e. the statement of 5.24 togehter with its “dual” (instead of 1), holds. In addition, if the
common value f∗∗(x) = f∗(x) is finite, the variational characterizations

∂f(x) = argmaxx∗∈X∗{⟨x∗, x⟩ − f∗(x∗)}. (5.27)
9By assumption, x∗ ∈ X∗ and is thus a continuous linear functional.
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and
∂f∗(x∗) = argmaxx∈X{⟨x∗, x⟩ − f(x)}. (5.28)

hold for the subgradients of f and f∗.

Proof. The proof is mostly a variation of the arguments in the proof of Proposition 2 combined
with Lemma 3.
As shown above, x∗ ∈ ∂f(x) iff Equation (5.24) holds, in which case f(x∗) is necessarily finite,
and the hyperplane −f(x)+⟨x∗, x⟩ is exact for f∗ at x∗. That the graph of f∗(x∗) lies above this
hyperplane now follows from Equation (5.16) since ⟨x∗, x⟩− f(x) ≤ f∗(x∗) holds for all x∗ ∈X∗.
As to the second point, if ∂f ≠ ∅, by Prop. 2, there exists some x∗ ∈X∗ such that

f(x) = ⟨x∗, x⟩ − f∗(x∗) ≤ sup
x∈X

{⟨x∗, x⟩ − f∗(x∗)} = f∗∗(x),

whereas the reverse equality always holds by Lemma 3. Finally, as x∗ ∈ ∂f(x) iff f(x) =

⟨x∗, x⟩ − f∗(x∗) and x∗ ∈ ∂f∗∗(x) iff f∗∗(x) = ⟨x∗, x⟩ − f∗(x∗), f(x) = f∗∗(x) finite implies that
both conditions necessarily hold at the same time. Due to the equality of f(x) and f∗∗(x) as
well as ∂f(x) and ∂f∗∗(x), Equation (5.26) follows directly from Proposition 2. As already seen
in the proof of this proposition, x∗ ∈ ∂f(x) iff x realizes the supremum in the definition of f∗,
which, by the symmetry in the case above, happens iff x ∈ ∂f∗(x), which in turn happens iff x∗

realizes the supremum in the definition of f∗∗(x) = f(x).

Remark 25. Note that, more generally, if, for some x ∈ X, the value f∗∗(x∗) is finite, then the
variational characterization

∂f∗∗(x) = argmaxx∗∈X∗{⟨x∗, x⟩ − f∗(x∗)}

holds for the (potentially empty) subgradient of f∗∗ at x based on considering the duality
between f∗∗ and f∗∗∗ = f∗ (which always holds)10. If f∗∗(x) ≠ f(x), there is a priori no need for
their subgradients to coincide, and the implication x ∈ ∂f∗(x∗)⇒ x∗ ∈ ∂f(x) need not hold as,
by Equation (5.25), the hyperplane (x,−f∗(x∗) + ⟨x∗,x⟩) is exact at f∗∗(x), but not at f(x).
In fact, as f∗∗ is the pointwise supremum of all affine functions lying below the graph of f , the
subgradient ∂f(x) has to be empty at such points. Otherwise any subgradient would be based
by definition on such an affine function which in addition passes through (x, f(x)), therefore
precluding f∗∗(x) < f(x). ◇

A particularly important example for a non-smooth situation where full duality holds in the
optimization setting is given by the indicator function of a nonempty closed convex subset K,

IK(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 x ∈K,

+∞ else.

This can be shown to be a convex, lower semicontinuous function due to the assumptions on K.
As the supremum defining the Legendre-transform is always equal to −∞ if x ∉ K, it is easy to
see that

I∗K(x∗) = sup
x∈K

{⟨x∗, x⟩} = ΠK(x∗),

where, for any subset S of Rn, the function ΠS(x
∗) ∶= supx∈S{⟨x

∗, x⟩} is the so-called support
function of the set S. By the basic properties of the Legendre-transform, ΠK is again a convex
lower semicontinous function if K is closed an convex, and, from Thm. 5, Π∗

K(x) = IK(x). The
10Note that the proof of this statement in [14] is slightly misleading, as applying their eq. 2.229 with f∗ instaed

of f∗∗ replacing f would only imply the equivalences (5.25) instead of the equivalence with x∗ ∈ ∂f∗∗(x).
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subgradient of IK is emtpy whenever x ∉K (as the value of IK is not finite there), and, directly
applying the condition (5.23) as the set of all x∗ ∈X∗ such that

IK(y) ≥ IK(x) + ⟨x∗, y − x⟩
IK(x)=0

= ⟨x∗, y − x⟩.

Since this inequality is trivially satisfied for y ∉K as IK(y) = +∞, the only relevant condition to
check is what happens if y ∈K (and thus IK(y) = 0), and the subgradient is thus given by all x∗

such that 0 ≥ ⟨x∗, y−x⟩ for all y ∈K. This situation can be summarized by defining the normal
cone to K at an arbitrary x as

NK(x) =

⎧⎪⎪
⎨
⎪⎪⎩

{x∗ ∈X∗ ∶ ⟨x∗, x − y⟩ ≥ 0 ∀y ∈K} x ∈K,

∅ else,
(5.29)

with which one has ∂IK(x) = NK(x). Based on Prop. 2, any of the subgradients of ΠK(x∗) is
characterized by the equality IK(x) + ΠK(x∗) = ⟨x∗, x⟩, i.e. supy∈K{⟨x∗, y⟩} = ⟨x∗, x⟩ − IK(x).
If x ∉ K, the right-hand side equals −∞, and as K is nonempty this equality cannot hold. All
potential subgradients thus have to lie in K. If x ∈K, the indicator-function drops out, and the
subgradient of ΠK at x∗ is given by the set of all x such that supy∈K{⟨x∗, y⟩} = ⟨x∗, x⟩, i.e. in
accordance with Equation (5.28) as ∂ΠK(x∗) = argmaxx∈K{⟨x∗, x⟩} and therefore the vector(s)
in K furthest away from the origin “along” x∗.

Remark 26. Note that the first conclusion is in principle another very efficient way of obtaining
the first-order necessary (and sufficient) conditions for convex constrained optimization problems
and that the supremum in the definition of the primal function LP (x) = sup{(λ,µ)∶µ≥0}L(x,λ,µ)
in Equation (5.6) has precisely the same effect as adding the indicator function for the admissible
set to f .
In fact, it is easy to see that that the necessary and sufficient condition for a convex minimization
problem is given by 0 ∈ ∂f(x), since this means that there is a horizontal “plane” passing
everywhere below (in the sense of ≤) the graph and touching it at the point x, and x therefore
has to be a minimizer (see the horizontal line in Figure 5.1). If f is smooth on K, one has11

∂(f + IK)(x) = {f ′(x)} + ∂IK , and requiring that 0 lie in this set therefore shows that for any
minimizer on must have −f ′(x) ∈ NK(x).
Neverthelees, the Lagrangian formulation, while more susceptible to failure unless a constraint
qualification condition is satsified, has the major advantage of directly delivering a “good guess”
of what the normal cone looks like based on an algebraic characterization of the constraint set,
whereas this question is left open in the characterization of the normal cone in Equation (5.29)12.
Some further links between the two approaches will be summarized in the next section. ◇

11Note that the equality ∂(f1 + f2) = ∂f1 + ∂f2 is not generally true but holds under some mild regularity
condition of f , see e.g. [26] or [20].

12It should be kept in mind that, similar to Remark 6, the normal cone is the actually relevant set, which can
often - but not always - be characterized using the gradient of the functions defining the constraint.
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Part III

Applications
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The phasefield method is primarily an approach used for the modeling and simulation of
phase transformations within the material sciences. In particular, it has been and continues to
be heavily employed as a tool to gain a deeper understanding of the effects of different process
conditions on the resulting microstructure during solidification processes. Additional - somewhat
more recent - applications include the study of the evolution of purely solid microstructures when
e.g. subjected to varying external loads or, more simply, during an aging process.

While many of the earlier phasefield models were already able to provide a qualitative un-
derstanding of the evolution of microstructures, it was soon realized that there are some serious
practical difficulties when trying to obtain more quantitative insights. These are primarily due
to the very idea underlying the phasefield method in combination with limited computational
resources.
One the one hand, the lengthscale εp associated with a physical interface region between two
different phases is usually several orders of magnitude smaller than the lengthscale L associated
with the microstructure itself. Even though this make the volume of the interfaces essentially
negligeable, these are nevertheless regions associated with a high energy density due to the mis-
match in the atomic arrangement between the materials on both sides. This energy contribution
can therefore normally not be neglected but can, at the scale L of the microstructure, be in a good
approximation be associated with a surface energy density γαβ on the “almost” two-dimensional
interface. The major advantage of this approximation is that the total energy (resp. entropy) of
the microstructure can then be described in terms of volumetric contributions from the various
pure phases in terms of their bulk-properties and the effective surface energy densities γαβ hiding
the highly complex physics within the true interfaces. In addition, being an effective macroscopic
property, these surface energy densities may in particular be experimentally accessible and can
therefore serve as input for numerical models for the evolution of the microstructure.
On the other hand, numerically modeling the evolution of a problem defined by moving (sharp)
interfaces is quite challenging. The core of the phasefield method when applied to such a sit-
uation lies in “partially undoing” this sharp interface limit by reintroducing a small but finite
transition region of width ∼ ε between the various phases. Given that the phasefield functional
can be based on the measured effective (macroscopic) surface energy densities γαβ , one has the
great advantage that it is neither necessary for this artifical length scale ε to match with the
actual width εp of the physical interface, nor to include a complex microscopic model for this
transition region.
Nevertheless, ε can of course not be chosen arbitrarily large as it needs to be sufficiently small
in order for the phasefield functional to provide an accurate approximation of the energy associ-
ated with the sharp interface setting. As the convergence of the “pure” phasefield functional to
the surface energy basically relies on the phasefield profile within the interface converging to the
classical one-dimensional steady-state profiles (see Section 6.2.2), in combination with additional
driving forces arising in the coupled models13, this essentially imposes at least three restrictions.
The first one is purely geometrical and requires for the interface width to be significantly smaller
than the (smallest) radius of curvature. Otherwise, the “tangential” derivatives of the phasefield
(w.r.t. to an assumed sharp interface surface lying e.g. at the 0.5 isoline) may become compete-
tive with the “normal” ones as one moves away from this line, thus leading to a distorted profile.
The second and third are somewhat related and dependend upon the additional energetic con-
tributions and their associated driving forces. On the one hand, even in the absence of any
curvature, it is usually necessary for the interface width to be significantly smaller than the total
length scale of the problem as otherwise the contribution of the - a priori to a degree arbitrary
- interpolation of the given bulk energy densities within the interface region can make up a sig-
nificant part of the total energy and thus lead to a large distortion of the energetics unless the

13The same issue arises can even arise in the absence of additional energetic contributions in the pure phasefield
case due to additional constraints such as a volume constraint.
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interpolated energy happens to coincide very closely with the “true” energy.
On the other hand, it is also necessary for the strength of the pure phasefield terms (i.e. the
ones arising from a and w) to be locally significantly larger than these additional driving forces
in order to avoid an excessive deformation of the interface profile.
Which of the three constraints on ε is more restrictive clearly depends upon the particular prob-
lem. The most obvious idea for avoiding any such issues is of course to simply choose a smaller
interface width ε as compared to the size of the microstructure. It is clear that if one does so
using a given grid-spacing, a reduction in ε will entail higher numerical errors in resolving the
transition of the phasefield within the increasingly narrow interfaces. Even though this procedure
is free of any computational cost (and will actually usually even decrease it) as it amounts to
simply reducing a parameter and will improve the approximation at a continuous level, the nu-
mercial difficulties will at some point overshadow this improvement. Once this point is reached,
the only viable alternative is then an increase of the resolution, which, unlike the modficiation of
ε, will always entail an increase in the computational effort. Finding the “sweet spot” for a given
problem, i.e. the point where the most accurate results are - due to a good balance between
numerical and continuous (in terms of ε) approximation errors - obtained for a given cost is a
fairly difficult problem, which also depends heavily on the interplay of various practical factors.
Some of these as well as their interplay with some of the numerical difficulties will be discussed
in Chapter 6, with a strong focus on an obstacle-potential based setting.
In contrast to these primarily numerical factors, the way any additional energy contributions
f(φ,c, T, ...) affect the precision of the results for a given ε can often be influenced quite heavily
by the particular manner they are modeled within the interface region. Since easing the restric-
tion on the numerical interface width can lead to a significant decrease of the required resolution
and therefore the necessary computational effort, this has been the subject of a fairly extensive
research effort over the past decades and will be the primary focus of Chapter 7.
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Chapter 6

Pure Phasefield Problems

The decisive role of the phasefield method within a modeling context is its ability to represent
effects associated with surface energies (or entropies). Two very useful properties in this respect
are that (at least when approaching the sharp-interface limit) this ability has relatively little
to do with the presence of additional energetic contributions provided these are well-behaved
as ε → 0, and that these additional influences can be included by simply “adding” them to the
essential gradient energy density and bulk-potential contributions. While this statement needs
to be put into perspective as it is in practice often necessary to use artifically enlarged interfaces
due to limited computational resources1, it explains the basic additive structure with respect to
the driving forces underlying the common phasefield modeling approach. In addition, it high-
lights the crucial importance of these “standard” phasefield contributions in general.
Before discussing the more complex multiphysics problems alluded to in Chapter 3, it is there-
fore instructive to first consider the simpler setting in which the phasefield variable is the only
unknown. On the one hand, this will serve to introduce some more details on the particular
phasefield model used in this thesis. On the other hand, while coupling the phasefield and other
fields - even those governed by more “classical” equations which are better understood at both
a theoretical and numerical level - can often lead to additional challenges by itself, there is also
a number of relatively generic challenges associated with phasefield-type problems, in particular
from a numerical point of view. Two of these - related with the bound-constraints in the obstacle
case - will be discussed in more detail in this chapter.

Remark 27. The “pure” phasefield-setting in this chapter is chosen primarily due to its simplic-
ity and since there is no point in adding any additional complexity through couplings for the
discussion below. Nevertheless, the minimization of surface energy is an interesting phenomenon
by itself, and there is in fact a number of relevant applications which can be modeled using the
phasefield variable alone. Two particularly interesting ones are the equilibrium shape of droplets
on substrates or fibers, for which the interested reader is referred to e.g. [9] and [1]. ◇
Remark 28. A sizeable part of the research focus in the phasefield community in the last decades
has been oriented towards improving the accuracy of phasefield methods despite the practical
need for artificially enlarged interfaces (often in terms of thin interface limits), in particular
for coupled multiphysics problems. This can often be achieved through an improved modeling
of the precise form of additional energy contributions within the interfacial regions (two such
examples will be considered in Sections 7.1 and 7.2). Even though this can lead to a quite
complex description, this added complexity has very little direct influence on the discussions in
this chapter. ◇

1Using a small but finite interface width will generally lead to deviations from the desired sharp-interface
limits. These are often related with the problem of excess energies and/or high Cahn-numbers (the ratio of
the interface width to the “radius” or, in the non-circular case, a measure thereof).

47



Remark 29. There are also applications where the phasefield method is not primarily used
due to its ability to capture effects associated with surface energies, but instead as a purely
numerical tool with the main purpose of replacing a physical problem involving sharp interfaces
(whether moving or not) with a diffuse approximation thereof. This includes in particular models
where the surface-minimizing property of the standard phasefield model is eliminated through an
appropriately chosen “counter-term” with the purpose of obtaining a method implicitly tracking
sharp interface motions (see e.g. [72], [67] and the references therein for some background and
applications). Even though this can be of obvious interest from a numerical point of view, as
it in principle allows for working on fixed grids (in particular simple Cartesian ones) even in
the presence of complex and potentially moving interface, such problems will not be considered
here. ◇

Section 6.1 will first provide a quick outline of the basic variational framework in the multi-
phase case, corresponding essentially to a simplified version of the one in [52] underlying most
the work in this thesis to a pure phasefield setting. Before returning to this more complex case in
Section 6.3, the discussion in Section 6.2 will again focus on the simplest possible setting consist-
ing of a reduced (i.e. expressed solely in terms of a single phasefield φ) two-phase version of this
general setting. After introducing some standard background and results, the main focus of this
section will be a relatively detailed analysis of the impact of the 0-1-bounds on the phasefield
values in the discrete case as one of the central “ingredients” of the basic phasefield model in
the obstacle case. More precisely, a discrete equivalent of the basic analytical one-dimensional
phasefield profile (corresponding to an indisturbed flat interface) and the associated energetics
will be derived for the case of the obstacle potential. One the one hand, this allows for a very
simple interpretation of some commonly observed effects (such as the discrete gradient energy
always being larger than the continuous one). On the other hand, the resulting expressions can
conveniently be expanded in terms of the discretization parameter ∆x, from which a number
of interesting facts can simply be “read off”. In particular, even though the discrete interface
width is only first-order accurate (and always more narrow than the continuous one), both the
energetics and the discrete profile itself are second-order convergent.
Some additional issues related to the multiphase setting will then be discussed in Section 6.3.
Subsection 6.3.1 will first recall the basic equations to be fulfilled and different choices for the dy-
namics. This is followed in Subsection 6.3.3 by a discussion of some numerical and algorithmical
aspects arising when dealing with multiphase problems.

Remark 30. Parts of this chapter consist of elementary background for the phasefield equation.
It was nevertheless chosen to introduce this background here instead of the actual background
part since it is on the one hand mostly directly relevant for the discussion of the main points and
on the other hand, explicitly being based on the phasefield equation itself, considerably more
specific than the relatively general and consequently abstract previous considerations.
The intention is also not to provide a full discussion of general phasefield problems (which, in
particular in the multiphase case, would be a very complex and difficult task), but simply to recall
some elementary facts before focusing on some particular but quite relevant topics encountered
when using an obstacle potential. ◇

6.1 The Basic Phasefield Functional
The key idea underlying the phasefield method for multiphase problems is essentially the same
as the one already outlined for the simpler two-phase setting in section 2 and consist in the use of
a vectorial order parameter φ = (φα)1≤α≤N , with each φα providing a smooth approximation
of the characteristic function of the given phase, i.e. with φα = 0 indicating that one is outside
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the phase and φα = 1 indicating that one is within the phase2. The requirement for a smooth
transition between these two cases enforces the existence of a transition region or interface
region whenever two or more phases meet, i.e. mixed regions where several phases are considered
to coexist. Within the coexistence regions, it is quite natural to interpret φα as representing
the individual phase or volume fractions, and thus to impose the sum condition ∑Nα=1 φ

α = 1. In
addition, it may be desirable or even necessary to, as in the two-phase case, impose the additional
restriction 0 ≤ φα ≤ 1 on the phase fractions, i.e. to restrict the phasefield values to lie within
the N -dimensional Gibbs-simplex

GS
N
= ΣN1 ∩ [0,1]N = {φ ∈R

N
∶
N

∑
α=1

φα = 1, 0 ≤ φα ≤ 1 ∀α}, (6.1)

where ΣN1 denotes the hyperplane of all N -dimensional vectors whose entries sum up to 1.

Remark 31. Note that the conditions in (6.1) are partially redundant as 0 ≤ φα ∀α and the
sum-constraint automatically imply that φα = 1−∑β≠α φ

β ≤ 1 ∀α. As this redundancy can some-
times lead to unnecessary complications - in particular when investigating Lagrange-multipliers
associated with the constraints - it is therefore often convenient to use the equivalent but simpler
description of GSN through3

GS
N
= ΣN1 ∩R

N
+ = {φ ∈R

N
∶
N

∑
α=1

φα = 1, 0 ≤ φα ∀α}. (6.2)

◇
While there are often additional difficulties in the modeling of the physics within these coex-

istence regions, they are also the basis for the approximation of the surface energies (or, in other
settings e.g. the entropy) through a volume integral

∫

Ω

εa(φ,∇φ) +
1

ε
w(φ)dx (6.3)

over the entire (fixed) domain. This is in contrast to the “sharp-interface” representation where
this modeling is not necessary, but the surface energy needs to be evaluated in terms of surface
integrals over surfaces whose position in time is usually an unknown to be determined as a part
of the problem to be solved. In Equation (6.3), a and w are generalizations of the gradient energy
density and bulk potential to the multiphase case, whose role within a variational framework
is the same as in the simpler two-phase case, namely a penalizes gradients (indicated by the
additional ∇φ-argument) while w penalizes values deviating from the bulk-values 0 and 1, and
ε is a parameter for controlling their relative strenghts and thus the resulting interface width.
In order for the integral in Equation (6.3) to provide the desired smooth approximation of the
surface energy (or entropy) in a multiphase problem, a and w still need to be chosen in an
appropriate manner. As, even for multiphase problems, the surface energies in the sharp inter-
face setting are associated with the interfaces between just two coexisting neighboring regions
(with regions where more than two phases meet making up lower-dimensional objects such as
lines or points), it is quite natural that the multiphase generalizations are usually based upon
various modifications of a simple summation procedure over two-phase interactions, such that,
in an idealized situation consisting of flat two-phase interphases alone, one would recover the
known results from that simpler setting. This approach still leaves a large degree of flexibility

2Note that in the two-phase setting, where it suffices to use a single order paramter, other choices such as ±1
or ± 1

2
for indicating one or the other phase are also popular. While one could in principle also use other values

than 0 and 1 in the multiphase case, this choice turns out to be a particularly convenient one.
3Here it is important to maintain the lower bound 0 instead of the upper one as soon as N ≥ 3. For example,

the vector φ = (−0.2,0.6,0.6)T would satisfy both the sum-constraint and φα ≤ 1 ∀α.
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in constructing particular functionals, which primarily differ in their treatment of triple- and
multiphase regions. Combined with the additional degree of freedom in the precise form of the
postulated phasefield dynamics - even if based on a gradient type flow - this has lead to a variety
of different phasefield models, each with their own advantages and disadvantages.

The one primarily used in this thesis - and the current default within the Pace3D-framework
- is based on the formulation originally introduced in [52] and [71] within an entropy framework
for solidification problems. Considering for simplicity the corresponding energy formulation, the
gradient energy density in the isotropic case is defined by

a(φ,∇φ) = ∑
β>α

γαβ ∣qαβ(φ,∇φ)∣2, (6.4)

with the generalized antisymmetric gradient vectors

qαβ(φ,∇φ) = φα∇φβ − φβ∇φα. (6.5)

This amounts to a summation over energy contributions stemming from two-phase interactions
in terms of the respective γαβ and qαβ corresponding to each α-β-pairing.
Extensions to anisotropic gradient energy densities can then be obtained in much the same way
as in the two-phase case by setting

a(φ,∇φ) = ∑
β>α

Aαβ(qαβ) = ∑
β>α

γαβ(aαβ)
2
(qαβ)∣qαβ(φ,∇φ)∣2 (6.6)

and a prefactor aαβ homogeneous of degree 0 and thus depending only on the orientation of qαβ ,
but not its norm (i.e. is a function of the normal vector nαβ = qαβ

∣qαβ ∣ only).

Remark 32. Note that, while sometimes convenient as it makes the desired quadratic dependence
of a on the norm of the gradient vectors easily visible, the definition of the prefactors as a function
of the direction only leads to some tricky issues when the norm of qαβ approches zero as this
leaves the normal direction - and thus the aαβ - undefined unless aαβ does not actually depend
on the direction, i.e. unless the gradient energy density is isotropic.
This does not entail any issues in terms of the “total” a-function or the Aαβ , since both a and
∂a
∂qαβ

(resp. Aαβ and ∂Aαβ

∂qαβ
) will converge to zero with ∣qαβ ∣ → 0 (being homogeneous of degree

2 resp. 1 in qαβ) regardless of the direction along which one approaches this point, but poses a
problem when trying to work with the aαβ themselves as in [75]. ◇

As outlined above, a generalized w-formulation could be obtained by introducing an addi-
tional summation into the two-phase formulation, i.e. by setting

w̃mw(φ) = 9 ∑
β>α

γαβ(φα)2
(φβ)2

in the well-case resp.

w̃mo(φ) =
16

π2 ∑
β>α

γαβφαφβ

in the obstacle-case. Unfortunately, using this simple extension, there is a tendency towards
the appearence of additional phases throughout the entire interface region, and in particular
also in regions that one would naturally want to consist of just the two phases corresponding to
neighboring bulk regions. For this reason, an additional penalty term is used in [52] to associate
an additional cost with the presence of more than two phases by setting

wmw(φ) = 9 ∑
α<β

γαβ(φα)2
(φβ)2

+ ∑
α<β<δ

γαβδ(φα)2
(φβ)2

(φδ)2 (6.7)
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resp.

wmo(φ) =
16

π2 ∑
α<β

γαβφαφβ + ∑
α<β<δ

γαβδφαφβφδ. (6.8)

The penalty parameters γαβδ are thus used to add an additional energy contribution over triple-
phase interactions with an analogous form as the previous two-phase energy contributions.

Remark 33. Note that within a pure two-phase α-β region with φα = 1 − φβ , qαβ reduces to
−∇φα = ∇φβ , i.e. the gradient energy distribution in such regions reduces precisely to the same
form as in the basic two-phase case. Similarly, as all triple-phase terms vanish within two-phase
regions and the summation over the two-phase pairings is based on the expressions obtained by
replacing φ and 1 − φ with φα resp. φβ (or vice versa) in the two-phase case, w will also reduce
to the desired form. ◇
Remark 34. There are of course many conceivable ways of generalizing the gradient energy
density a(∇φ) from the two-phase setting to the multiphase case. The construction used above
as a summation over two-phase interactions can be motivated by the observation that the surface
energy densities γαβ correspond to energies between pairings of phases. In addition, in the
anisotropic case, the surface energy associated with an interface only depends on the orientation
between the adjacent phases and not the absolute orientation of either one of them. This is
closely related to another somewhat delicate issue within multiphase regions, namely that of
defining appropriate “normal vectors” and angles between phases (the choice n = ±

∇φ
∣∇φ∣ being a

fairly obvious one in the two-phase case).
While the choice nα = ±

∇φα
∣∇φα∣ is still a natural one for the normal vector associated with the

phase α “as a whole”, the a priori intuitive choice of defining the orientation between two phases
based directly on two such normals may not necessarily lead to the best results. Considering the
simple sharp interface example of three straight interfaces meeting in a triple point, it is clear
that the angle between every pair of phases is well-defined and constant everywhere except at
a single singular point, at which all angles admit an obvious limit though. Within the diffuse
interface setting, this triple point is represented by an entire triple point region with small but
finite extension. It is clearly desirable with respect to this example for the definition of the
relative orientation between any two phases to remain as stable as possible upon the transition
from a two-phase to a three-phase (or, more generally, multiphase) region as this may otherwise
lead to non-negligeable deviations in the energetics unless the ratio of the interface width to
the domain size is chosen sufficiently small4. As the vectors − ∇φα

∣∇φα∣ of the individual phases will
generally follow a smooth transition from one (approximately) constant normal vector to the
other during the transition through the triple-point region, due to an increasing influence of the
respective third phase, this may be difficult to achieve based on these vectors themselves.
The choice of the generalized gradient vectors qαβ replacing the original ∇φ corresponds to
one possible way of defining a better suited normal nαβ =

qαβ

∥qαβ∥ between the individual phase

pairings, another popular choice being5 nαβ = ∇φβ−∇φα
∥∇φβ−∇φα∥ (see e.g. [61] and [74]). ◇

Assuming in line with the purpose of this chapter that any additional energetic contribution
are prescribed in the form of a simple weighted interpolation of given phase-specific contribu-
tions6 fα, another question to be adressed is how the nonlinear interpolation functions7 h(φ)

4Based on geometric considerations, one would expect the influence of these multiphase regions to decrease
very quickly with ε. Whereas interfaces translate to regions with a volume ∼ ε, the volumetric contribution of
“edges” and “points” are expected to be roughly of the order ∼ ε2 resp. ∼ ε3. Nevertheless, these regions can also
be associated with high energy densities such as e.g. when modeling an elastic problem with corners and edges
where one expects singularities in the solution, making these estimates too optimistic.

5Note that the choice of sign here in the second case is such that it agrees with the one for qαβ in two-phase
regions.

6Regarding the motivation of using fα here see remark 36.
7For the simplest linear case h(φ) = φ this is obvious.
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from the two-phase setting can be generalized while maintaining their principle properties.
Denoting the interpolation weights for the individual phases by hα(φ), the first such property
is that hα(eβ) = δα,β , i.e. the interpolation weights in a bulk-region should be one for the bulk
phase and zero for all other phases. A second desirable property is the monotonic increase of
hα(φ) with φα. Finally, the interpolation weights should also satisfy the consistency condition
∑α h

α(φ) = 1, which is necessary to ensure that the interpolation of any property e which does
not in fact depend on the phases, fα = f ∀α, satisfies ∑α fαhα(φ) = f .
A simple approach ensuring these properties under very basic conditions is the following (see e.g.
also [63]). It consists in taking any monotonically increasing (scalar) function8 h̃(φ) satisfying
h̃(0) = 0 and ∑β h̃(φβ) > 0 for ∑β φβ = 1 and defining the interpolation weights hα(φ) through
a normalization by

hα(φ) =
h̃(φα)

∑β h̃(φ
β)
. (6.9)

Remark 35. The third condition ∑α hα(φ) = 1 is then satisfied by construction. Together with
h̃(0) = 0, this normalization automatically also guarantees that the bulk weights hα(eα) satisfy
hα(eα) = 1. That the second condition also holds for all φ in the Gibbs-simplex follows from a
simple direct calculation showing that

∂hα(φ)

∂φα
=

(∑β h̃(φ
β))h̃′(φα) − h̃(φα) ∂

∂φα ∑β h̃(φ
β)

(∑β h̃(φ
β))

2
=
∑β≠α h̃(φ

β)

(∑β h̃(φ
β))

2
h̃′(φα).

The denominator is obviously non-negative and h̃′(φα) ≥ 0 by monotonicity. Finally, the numer-
ator is also non-negative for 0 ≤ φβ ≤ 1 for all β ≠ α due to the monotonicity condition together
with h̃(0) = 0, therefore showing that ∂hα(φ)

∂φα
≥ 0. ◇

Combining the different components above, one obtains a phasefield functional of the form

Fε(φ) = ∫
Ω

εa(φ,∇φ) +
1

ε
w(φ) + f(φ)dx, (6.10)

which is to be minimized under the relevant constraints on the phasefield φ. Besides the (rel-
atively simple) local sum-constraint ∑Nα=1 φ

α = 1 in the case of the multi-well potential or its
somewhat more complex counterpart in terms of the Gibbs-simplex GSN in the multi-obstacle
case, a further quite common restriction (considered e.g. in [29]) is to fix the total volume

∫Ω φ
α dx !

= V α of one or several phases α.

Remark 36. Here, the choice of the letter f (resp. F) should not be assigned any deeper
physical or thermodynamic meaning. Since the functional in this particularly simple setting
has no dependence on any of the standard thermodynamic quantities, this is just a matter of
notational convenience here since this leads to a set of equations which is closer to the one in [52]
(where the - then actual free energy - enters the phasefield equation through the term − 1

T
∂f
∂φ

)
and the discussion in section 7.1 which also relies on the actual free energy. ◇

8Some popular examples in the two-phase setting will be listed in section 6.2.
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6.2 Two-Phase Problems
Before returning to the multi-phasefield model introduced in the previous section in some ad-
ditional detail, this section will first discuss a number of pure phasefield applications in a pure
two-phase setting. Interpreting the variables φ1 and φ2 as the phase fractions of the first and
second phase, it is natural to impose the constraint φ1 + φ2 = 1 as a special case of the one in
Section 6.1. This implies that each phase fraction is known as soon as the other one is, such that
these problems can, as in the discussion in the introduction, be completely described in terms
of a single order parameter φ alone, taken here for definiteness as φ ∶= φ1.
It is clear that this leads to a number of significant simplifications as compared to the more gen-
eral multi-phasefield model from the outlined above. Firstly, this reduces the vectorial phasefield
equations to a single scalar one for φ. Secondly - and this is partially related to the particular
phasefield model used here - the generalized gradient vector q12 reduces back to the (nega-
tive of) the basic gradient vector −∇φ, i.e. unless the gradient energy density is anisotropic,
there is no nonlinearity in the “spatial” part of the functional. Thirdly, unless additional con-
straints are present, the representation of the admissible set becomes essentially trivial. As the
sum-constraint is already fully incorporated into the formulation, it simply drops out in the
double-well case, while the restriction to the Gibbs-simplex in the double-obstacle case reduces
to the box-constraint φ(x) ∈ [0,1].
Remark 37. Even though it may seem that the interest of the two-phase setting (as a particularly
simple special case of the more general multiphase-setting) is quite limited, this is somewhat
misleading. On the one hand, there are in fact a number of interesting applications of the
phasefield method (such as capillary rise problems and topology optimization problems) which,
while not a priori restricted to two phases, in practice often arise naturally in precisely this
setting. On the other hand, even though the simplifications above as compared to the multiphase
models are certainly significant, many of the essential challenges arising in the general case (high
resolution requirements due to the small length-scale ε, lack of convexity, bound-constraints,
treatment of strong anisotropies, ...) are actually inherited - though possibly in an exacerbated
fashion - from the ones in the two-phase case9. ◇

The problems to be considered in this section will, similar to Section 3, be based on slight
variations of the functional

Fε(φ) = ∫
Ω

εa(∇φ) +
1

ε
w(φ) + f(φ)dx, (6.11)

or, with a in the simplest case given by a(∇φ) = γ∣∇φ∣2, its isotropic version

Fε(φ) = ∫
Ω

γε∣∇φ∣2 +
1

ε
w(φ) + f(φ)dx. (6.12)

The bulk potential may be either given by the double well potential

wdw(φ) = 9γφ2
(1 − φ)2 (6.13)

or the double obstacle potential

w̃ob(φ) = wob(φ) + 1[0,1](φ), (6.14)

where
wob(φ) =

16

π2
γφ(1 − φ), (6.15)

9A notable exception here is given by the triple-phase terms in the bulk potential w, which, depending on the
size of the penalty parameters, may lead to an additional stiffness in the equations absent in the presence of only
two phases.
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is the smooth part of the obstacle potential and 1[0,1] is the indicator function

1[0,1](φ) =
⎧⎪⎪
⎨
⎪⎪⎩

0 ,0 ≤ φ ≤ 1,

+∞ , else.

of the interval [0,1], whose role it is to maintain the phasefield values within the interval [0,1].
Alternatively, one can also impose this restiction directly in terms of an additional constraint
0 ≤ φ ≤ 1, and, since 1[0,1] vanishes for all such values, work with the smooth part wob(φ) only
instead of w̃ob(φ).

Remark 38. Whereas the restriction of the φ-values to lie within [0,1] is a necessity when using
wob, in the case of the double-well potential one may or may not choose to impose this additional
constraint. As these bounds entail some notable complications in the solution of the resulting
phasefield problems below, which would only seem to be counterbalanced by large “pure” bulk
regions (i.e. regions with φ = 0 or φ = 1) when using double obstacle potential, this possibility
will not further be considered here10. ◇

In the simplest cases, f(φ) is given by an interpolation

f(φ) = ∆fh(φ) = (f1
− f2

)h(φ), (6.16)

describing the energy difference ∆f = f1 − f2 associated with transforming from the first to
the second phase. h(φ) is some appropriate interpolation function, whose choice provides some
additional freedom in modeling the energy contributions within two-phase regions.

Classical choices11 (see e.g. [52]) together with their derivatives are shown in Table 6.2.
Unlike h0, for which the contribution of the fα for each phase are directly proportional to the
phase fractions, the energy contributions for the other two functions remain closer to that of the
predominant phase, with a steeper transition around φ = 1

2
and therefore a sharper transition

region in an energetic sense than the phasefield variable itself.

h(φ) h′(φ) h′′(φ)
h0 φ 1 0
h1 φ2(3 − 2φ) 6φ(1 − φ) 6 − 12φ
h2 h2(φ) = φ

3(6φ2 − 15φ + 10) 30φ2(1 − φ)2 60φ(1 − φ)(1 − 2φ)

6.2.1 The Steady-State and Dynamic Phasefield Equations
From the functional Fε above and using the appropriate version of the functional derivative
δFε
δφ

= ∂F
∂φ

−∇ ⋅ ( ∂Fε
∂∇φ), it is now seeminlgy straightforward to (re)derive the first-order necessary

conditions to be satisfied by any potential minimizer φ of Fε and, based upon the postulate of
a gradient flow and under some additional assumptions, their “dynamic” version.
At least in the obstacle case, there is an additional constraint in terms of φ ∈ [0,1] though. From
this and the discussion in Section 4.3 one expects the appearence of two additional multipliers in
the resulting phasefield equation. Even though these do have a very fundamental impact, they
are often simply left out in the more applied literature.

10For coupled problems though, allowing negative φ-values in combination with simple interpolation schemes
for the material properties (e.g. weighing the material properties by the φ-values of the respective phase) may
lead to very serious issues such as e.g. negative diffusivities or stiffnesses. One way of of dealing with this is
of course to simply add the bound-constraints on the phasefield variable. Another one - avoiding the additional
complications this constraint entails - is to modify the basic interpolation schemes outside the range [0,1] such
as to ensure physically valid values of the interpolated quantities.

11In relation with the variational approach, it should be noted that H1(Ω) ↪ Lq with 1 ≤ q < ∞ if n = 2 and
1 ≤ q ≤ 6 if n = 3, i.e. integrability is ensured without knowing a priori whether φ is particularly well-behaved or
not.
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Remark 39. This may partly be due to the fact that their action can in principle be “hidden”
behind an appropriate projection operator12, but the practical usefulness of this approach is
highly problem-dependent. While this can be very convenient, in particular when using an
explicit time-stepping scheme involving a purely local projection operations, this need not be
the case anymore when using other time-discretizations or if one adds additional constraints (see
e.g. Remark 42).

◇
Since analyzing the impact of box-constraint is - at least at a purely formal level disregarding

regularity issues and the precise meaning of this constraint13 - mostly basic, it therefore seems
worthwhile to at least indicate the basic reasoning from which the resulting steady-state equations
and their complete form can in principle be derived. To keep the discussion as simple as possible,
it will in addition be assumed that a(∇φ) = γ∣∇φ∣2, i.e. that the phasefield energy is isotropic14.
Taking the directional derivative of the phasefield functional Fε leads to the first-order necessary
condition

F
′
ε(φ;ψ) = ∫

Ω

2γε∇φ ⋅ ∇ψ +
1

ε
w′

(φ)ψ + f ′(φ)ψ dx ≥ 0,

or, assuming sufficient regularity, an immediate integration by parts modifies this into

F
′
ε(φ;ψ) = ∫

∂Ω

2γε
∂φ

∂n
ψ ds + ∫

Ω

( − 2γε∆φ +
1

ε
w′

(φ) + f ′(φ))ψ dx ≥ 0

for all admissible directions ψ. At this point, there is now a strong difference between the
(unconstrained when expressed in the reduced form) double-well case and the double-obstacle
one. In the former case, ψ is (up to some regularity requirements due to the underlying function
space) essentially arbitrary. Since in particular both ψ and −ψ are admissible as long as ψ is so,
one has both Fε(φ;ψ) ≥ 0 and Fε(φ;−ψ) = −Fε(φ;ψ) ≥ 0, and thus

F
′
ε(φ;ψ) = ∫

∂Ω

2γε
∂φ

∂n
ψ ds + ∫

Ω

( − 2γε∆φ +
1

ε
w′

(φ) + f ′(φ))ψ dx = 0 ∀ψ ∈H1
(Ω). (6.17)

From this it is, at least formally, quite easy to obtain a more explicit characterization of the
minimizer. First “testing” this equality with functions ψ vanishing on the boundary, one can
conclude that one must have −2γε∆φ+ 1

ε
w′(φ)+f ′(φ) = 0 in Ω for this to hold. Provided this is

the case, the volume integral vanishes in Equation (6.17), and by varying the boundary values
of ψ, it then follows that ∂φ

∂n
will also have to be zero. In summary, one thus has to satisfy

⎧⎪⎪
⎨
⎪⎪⎩

−2γε∆φ + 1
ε
w′(φ) + f ′(φ) = 0 in Ω,

∂φ
∂n

= 0 on ∂Ω,
(6.18)

or, in the general anisotropic case,
⎧⎪⎪
⎨
⎪⎪⎩

−ε∇ ⋅ ( ∂a
∂∇φ) +

1
ε
w′(φ) + f ′(φ) = 0 in Ω,

∂a
∂n

= 0 on ∂Ω.
(6.19)

In contrast, when subject to the box-constraints, ψ and −ψ are usually not both admissble
directions15, and even a formal argument requires a little more care.

12This topic will be discussed in some more detail in Section 6.3, where, even in the discrete and fully explicit
case, this projection can become somewhat more complex depending on the precise form of dynamics chosen.

13On a less formal level, dealing with an obstacle-type constraint is in fact a quite involved question. This
will not be discussed in any detail here, but some of the more relevant issues will nevertheless be pointed out in
Remark 40 below.

14This is mostly irrelevant, but avoids a tedious discussion for relating the signs of ∂a
∂n

and ∂φ
∂n

.
15Unlike for the double-well case without constraints or e.g. equality constraints such as the volume-constraints,

the admissible directions in combination with the inequality constraints do not form a linear space but a cone
(see Chapter 4.3 for a basic discussion).
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If φ is at least locally continuous and 0 < φ < 1 at some point inside the domain, there would,
by this continuity, exist some neighborhood on which φ would continue to satisfy this inequality
and one could thus take (a sufficient amount of) local variations ψ for which both ψ and −ψ
would be admissible. From this one can deduce that

−2γε∆φ +
1

ε
w′

(φ) + f ′(φ) = 0 if 0 < φ < 1.

If one instead has φ = 0 in some region, the only admissible variations ψ will locally have to
satisfy (in the appropriate sense) ψ ≥ 0, from wich it then only follows that

µ− ∶= −2γε∆φ +
1

ε
w′

(φ) + f ′(φ) ≥ 0.

Applying the same argument to those “regions” where φ = 1, it similarly follows that

−µ+ ∶= −2γε∆ +
1

ε
w′

(φ) + f ′(φ) ≤ 0.

As both µ+ and µ− are non-negative, these three conditions can be summarized to

−2γε∆φ +
1

ε
w′

(φ) + f ′(φ) + µ+ − µ− = 0 (6.20)

combined with the complementarity conditions

µ+(1 − φ) = 0 and µ−φ = 0 (6.21)

enforcing that µ+ resp. µ− has to vanish unless the associated constraint is active, i.e. 1 − φ = 0
or φ = 0.
That this conclusion is not quite as simple as in the unconstrained case also leads to some
complications when trying to “focus” on the boundary. In fact, in contrast to the previous
argument, it does not follow that the volume integral simply drops out. Instead, using Equation
(6.20), one can only conclude that

F
′
ε(φ;ψ) = ∫

∂Ω

2γε
∂φ

∂n
ψ ds + ∫

Ω

(µ− − µ+)ψ dx ≥ 0

with µ± ≥ 0 together with the additional restrictions in Equation (6.21). This in principle also
makes the argument pertaining to the correct boundary conditions a little more complicated.
The simplest case is again the one if there is some neighborhood of the boundary where 0 < φ < 1,
as then both µ+ and µ− vanish in this region and one can additionally (locally) choose ψ freely,
leading, as before, to ∂a

∂n
= 0. If in contrast φ = 0 or φ = 1 in some neighborhood of the boundary,

either µ+ or µ− need not (and in combination with wob normally will not) vanish. Nevertheless,
since this means that one locally has a bulk-region, there is no need to pass through an indirect
argument using the test-functions as this implies through an obvious limit that ∇φ = 0 on the
boundary and thus obviously also ∂φ

∂n
= 0.

What is tricky though is the case when the boundary is not locally in a bulk-region, but φ tends
to one of the critical values 0 or 1 as one approaches the boundary. Even though µ+ and µ−

and therefore the volume-integral would locally vanish, one would face a sign restriction on the
variations of ψ on the boundary16 and would thus a priori only be able to conclude that ∂φ

∂n
≥ 0

16Note that this does not follow from e.g. the constraint 0 ≤ φ ≤ 1 a.e. in Ω by itself, since the boundary is a
set of measure zero. It is only in combination with the additional regularity - such as the one imposed through
the space H1(Ω) - that this as well as talking about the values of ψ on the boundary becomes meaningful.
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if φ → 0 resp. ∂φ
∂n

≤ 0 if φ → 1 as one approaches the boundary17. A strict inequality in these
conclusions is in contradiction with the assumptions on the profile though, as this to first order
means that any point in the boundary with φ = 0 would have to be approached from below and
any point with φ = 1 from above. Combining all these observations, the first-order necessary
conditions can finally be summarized to

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−2γε∆φ + 1
ε
w′(φ) + f ′(φ) + µ+ − µ− = 0 in Ω,

0 ≤ φ ≤ 1, µ± ≥ 0, µ+(1 − φ) = 0 and µ−φ = 0,
∂φ
∂n

= 0 on ∂Ω,

(6.22)

respectively in the general potentially anisotropic case
⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−ε∇ ⋅ ( ∂a
∂∇φ) +

1
ε
w′(φ) + f ′(φ) + µ+ − µ− = 0 in Ω,

0 ≤ φ ≤ 1, µ± ≥ 0, µ+(1 − φ) = 0 and µ−φ = 0.
∂a
∂n

= 0 on ∂Ω,

(6.23)

Remark 40. It needs to be stressed that, while in principle consistent, the argument above is
purely formal. Making it rigorous requires quite a bit of additional work and raises a number of
- often also practically important - questions.
Besides the derivation itself, one central question is of course the sense in which the various quan-
tities and equations should be interpreted and is thus essentially a matter of function spaces. This
point is more delicate in problems involving obstacles than for other more “global” constraints or
unconstrained problems. In particular, whereas the solutions of many classical equations in the
applied physics based on a Laplace-type operator are known to be as regular as the data permits
(and in particular C∞ in the interior of the domain if the right-hand side is so), the same is not
true for obstacle-type problems. In fact, even though both obstacles here are given by constants
(and are thus extremely regular), even the “optimal” unperturbed one-dimensional phasefield
profile has, as will be recalled in Remark 47, a jump in its second derivative upon crossing from
the bulk to an interface region. For this reason, it is clear that one should certainly not expect
for Equation (6.23) to hold in the classical sense.
An also in practice very important question is therefore whether it does at least hold in the
strong (a.e.) sense in e.g. L2(Ω), or whether it has to be interpreted in an even weaker sense.
Even though φ ∈H1(Ω) does at least (the trace-operator being well-defined) ensure a “continuity
through hypersurfaces”, the same does not a priori hold for the gradient of φ. On the one hand,
jumps in the gradient of φ would be expected to significantly increase numerical errors due to a
reduction in the convergence order of any standard numerical scheme. On the other hand, Equa-
tion (6.23) could then, through the second derivative in its first term, contain surface measures.
As both w′ and any reasonably chosen f ′ are bounded for 0 ≤ φ ≤ 1, this contribution could only
be counterbalanced by equally measure-valued multipliers µ±. While this has no precise meaning
in the discrete case, any convergent numerical scheme relying (explicitly or implicitly) on these
multipliers would have to mimic this behavior as the discretization is refined. This requires for
the discrete counterpart of µ± to locally tend to ∞ in some sense, and is thus highly likely to
cause additional numerical difficulties.
Fortunately, both theoretical predictions (see e.g. [28] for some regularity results for obstacle
problems) and computational practice18 indicate that this issue does usually not arise. Nev-
ertheless, the treatment of the transition region between the interface and the bulk remains a

17This is a technically somewhat difficult point as ∂φ
∂n

need not be “intrinsically” defined on hypersurfaces as
φ ∈ H1(Ω) by itself does not provide sufficient regularity for this. A simple example illustration of this in the
one-dimensional case will be discussed in Remark 46 (the interested reader is referred to [48] for a much more
general discussion of this topic). The central assumption made here is that µ± are both integrable functions and
not measure-valued.

18In the sense that calculated phasefield profiles do indeed exhibit a behavior consistent with a continuous
transition of ∇φ to 0 as one approaches the bulk.
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somewhat delicate point from a numerical point of view19.
For some related discussion in the phasefield context, the reader is referred to e.g. [60]. More
general background within a more abstract setting (including e.g. also the question of the regu-
larity of free boundaries) can, among many other sources, be found in [43], [28], [37] and [6] and
the references therein. ◇
Remark 41. It should also be noted that, within the bulk-regions, if f ′(0) = f ′(1) = 0, µ+ resp.
µ− are given by the constant value 16γ

π2ε
as the only “active” term in Equation (6.23) is given by

the derivative of the bulk-potential w in 0 or 120. In order to eliminate this dependence on ε, it
can therefore sometimes be convenient (as in [60]) to simply rescale the multipliers by instead
using µ̂± ∶= εµ±, i.e. modifying Equation (6.23) to

−ε∇ ⋅ (
∂a

∂∇φ
) +

1

ε
w′

(φ) + f ′(φ) +
1

ε
(µ̂+ − µ̂−) = 0

subject to the same complementarity conditions as µ±. ◇
Remark 42. If additional constraints are added, the situation also becomes much more involved
at a practical level, a very common and quite representative example being the volume-constraint
on the phases. Even though this is in principle quite simple at a theoretical level - the integral
constraint being very robust with respect to e.g. regularity issues and requiring only a very
low-dimensional multiplier - the phasefield equation now involves both a nonlinear but local
inequality constraint, and a linear but global constraint on the phasefield values.
This is in particular a difficulty for numerical schemes avoiding the use of multipliers through
a projection-based approach. While the projection operations associated with each constraint
separately are relatively straightforward to deal with (at least provided the outer algorithm can
make use of the strict locality of the box-constraint), the actually required projection would be
a both global and nonlinear one, leading to a very complex and expensive operation.
In practical terms, this can be dealt with in a quite satisfactory manner by instead satisfy-
ing a slight modification of the actual first-order necessary condition introducing an additional
modified driving force as in [53] (see also [29]). Through an additional simplification (in the
obstacle case), this can be turned into a quite notably more efficient algorithm based on purely
sequential operations. It should be kept in mind though that these modification are primarily
algorithmically motivated, and the solution thus corresponds to a (usually very accurate for the
time-stepping scheme actually used in [53]) approximation of the one minimizing the underlying
functional. ◇

In contrast to the conditions characterizing a minimizer of Fε in the “steady-state” case above,
the dynamics of the problem are not directly implied by the functional and the constraints alone.
The standard approach in the Allen-Cahn case is that of a (potentially weighted) L2-gradient
flow, i.e. in the unconstrained case one posulates ∂φ

∂t
∼ − δFε

δφ
. Assuming for the proportionality

to be of the form τε and combined with the expression for the gradient in Equation (6.19), one
obtains the dynamic counterpart

τε
∂φ

∂t
= ε∇ ⋅ (

∂a

∂∇φ
) −

1

ε
w′

(φ) − f ′(φ) (6.24)

to Equation (6.19) in the double-well case.
Remark 43. The prefactor τε is the “default” version within the Pace3D-framework, with τ
potentially depending on e.g. ∇φ in order to also enable the incorporation of anisotropic effects
into the dynamics in addition to the ones in the gradient energy density. The additional use of

19One consequence of the expected jump in the second derivative being that one does not expect a formally
fourth (or even higher order) scheme to actually achieve this increase in accuracy.

20Even if f ′ does not vanish for φ ∈ {0,1} - as when using h(φ) = φ - the other term is generally largely
dominant.
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ε in contrast does not by itself have any direct effect in this context as one could equally well
rescale time. As an alternative to the use of τ , one could also use its inverse m ∶= 1

τ
as a prefactor

on the right-hand side. In contrast to the multiphase situation in Section 6.3, this distinction is
of little interest for two-phase problems. ◇

The situation is again somewhat more complicated when using the obstacle-potential (or
more precisely, when enforcing the box-constraint on φ) as it naturally leads to counter-forces
for any change in the phasefield which would lead outside the admissible set. Arguing either
in a manner similar to the one for the steady-state case or simply “generalizing” the expression
in Equation (6.23) by adding a time-derivative compatible with the FONC, one obtains the
evolution equation

⎧⎪⎪
⎨
⎪⎪⎩

τε∂φ
∂t

= ε∇ ⋅ ( ∂a
∂∇φ) −

1
ε
w′(φ) − f ′(φ) − (µ+ − µ−),

0 ≤ φ ≤ 1, µ± ≥ 0, µ+(1 − φ) = 0 and µ−φ = 0.
(6.25)

Remark 44. Both Equations (6.24) and (6.25) still need to be complemented, as before, with
the boundary condition ∂a

∂n
= 0. ◇

6.2.2 The One-Dimensional Case and the “Standard” Phasefield Pro-
files

Before continuing the discussion above, it is instructive to take a look at the simple (parame-
terized families of) analytical solutions for the steady-state problems in the well and obstacle
case in their simplest one-dimensional form, as these on the one hand indicate some qualitative
properties expected in the more general case and on the other hand are the profiles underlying
the link between the diffuse and sharp interface models as well as the thin interface asymptotics.
In this setting, one is thus looking for a function φ satisfying

−2γε
d2φ

dx2
+

1

ε

dw
dφ

(φ) +
df
dφ

(φ) = 0 (6.26)

within the interface region21, with w being either the double-well or double-obstacle bulk po-
tential. An important difference between these two cases is that ∂wdo

∂φ
=

16γ
π2 (1 − 2φ) is an affine

function - thus allowing for applying the standard linear theory, at least within the interface re-
gion and provided ∂f

∂φ
is sufficiently simple - whereas ∂wdw

∂φ
is a cubic function of φ, and requires

other tools for determining an analytical solution.
The standard approach for the latter case is based on the existence of a first integral for (6.26),
a fact which has its own inherent interest from an energetic point of view also in the obstacle

case. More precisely, a multiplication of Equation (6.26) with dφ
dx and using22 d2φ

dx2
dφ
dx = d

dx
1
2
∣
dφ
dx ∣

2

as well as dw
dφ (φ)

dφ
dx = d

dxw(φ) and df
dφ(φ)

dφ
dx = d

dxf(φ)
23 shows that

( − 2γε
d2φ

dx2

1

ε

dw
dφ

(φ) +
df
dφ

(φ))
dφ
dx

=
d
dx

( − γε∣
dφ
dx

∣
2

+
1

ε
w(φ) + f(φ)) = 0

and thus that
−γε(

dφ
dx

)
2

+
1

ε
w(φ) + f(φ) = const (6.27)

21The restriction to this region avoids the issue of the multipliers µ± in the obstacle case.
22More generally, one could use the relation −( d

dx
∂a

∂( dφdx )
)dφ

dx = d
dx(a(

dφ
dx )−

∂a

∂( dφdx )
dφ
dx ). The use of an anisotropic

a-function seems of little interest in the one-dimensional case though.
23Valid as long as the only dependence on x in w resp. f arises solely through that of φ(x).
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within any region where one does not have to consider the bound constraints, i.e. within the
region 0 < φ(x) < 1 in the obstacle case and everywhere in the domain in the double-well case.
Besides the very useful information contained in Equation (6.27) from an energetic point of
view, an advantage (at least in the nonlinear double-well case) over the original second-order
differential equation is that it directly implies

√
γε

dφ
dx

= ±

√
1

ε
w(φ) + f(φ) − const.

This gives, within each region of monotonicity of φ, rise to a separable first-order ODE and
thus turns the problem of determining a solution to the original equation into the potentially
simpler one of determining an indefinite integral, whose solution one can then try to match to
the appropriate boundary conditions.

For some particular cases, this can in fact be done analytically. Assuming for example that
w is given by the double-well potential, that there is no driving force and that the domain is an
infinite one, it turns out that the constant in Equation (6.27) can be taken to be zero, and that
the solutions to the resulting nonlinear ODE √

γεdφ
dx =

√
1
ε
w(φ) are known to be given by24

φ(x) =
1

2
(1 ± tanh (

3

2ε
x + c)) (6.28)

valid for −∞ < x < +∞.
Remark 45. In practical computations, one of course never deals with actually infinite domains.
Even though the solution (6.28) is then not valid, the deviations from this ideal profile are usually
very small due to the exponential convergence to the bulk-values 0 and 1. Similarly, in higher-
dimensional and multi-interface and/or multiphase simulations involving several interfaces, these
“tails” will in priniple lead to an interaction between all phases and all interfaces. As long as
there is a reasonable distance between the small but “crucial” parts of the transition regions,
the energetic effect of these long-range interactions is typically negligeable as compared to other
sources of deviations such as curvature-induced chanes, discretization errors and the changes in
the energetics and profiles induced by multiphase regions.

◇
The situation in the double-obstacle case is both simpler and more complex. In fact, using

the expression for dwdo
dφ , the original second-order PDE (6.26) reduces, provided df

dφ vanishes,

to d2φ
dx2 +

16
π2ε2

φ = 8
π2ε2

within the interface region. It is well-known that the general solution to
this is equation is given by the superposition of a particular solution φp(x), which can here be
chosen as φp(x) = 1

2
, and a homogeneous solution of the form φh(x) = c̃1 sin ( 4

πε
x) + c̃2 cos ( 4

πε
x)

corresponding to the two roots of the characteristic equation λ2+ 16
π2ε2

= 0. Appropriately choosing
the constants, this can equivalently be rewritten as

φ(x) =
1

2
(1 ± c̃1 sin (

4

πε
x + c̃2)). (6.29)

24One way of obtaining this is through a partial fraction decomposition. Inserting the definition of w and
restricting the focus to the range 0 < φ < 1 leads to dφ

dx = ± 3
ε
φ(1 − φ). After a separation of the variables, φ thus

has to satisfy

∫
dφ

φ(1 − φ)
= ∫

1

φ
+ 1

1 − φ
dφ = ln(φ) + ln(1 − φ) = ln ( φ

1 − φ
) = ±3

ε
∫ dx + c̃ = ±3x

ε
+ c̃.

Taking exponentials on both sides simplifies this to φ
1−φ = e± 3x

ε
+c̃, or, solving for φ,

φ = e±
3x
ε
+c̃

ce±
3x
ε
+c̃ + 1

= 1

2

⎛
⎝
e±

3x
ε
+c̃ + 1

ce±
3x
ε
+c̃ + 1

+ e±
3x
ε
+c̃ − 1

ce±
3x
ε
+c̃ + 1

⎞
⎠
= 1

2

⎛
⎝

1 + e±
3x
ε
+c̃ − 1

ce±
3x
ε
+c̃ + 1

⎞
⎠
.

From this, the result follows in combination with tanh(y) = ey−e−y
ey+e−y = e2y−1

e2y+1
, defining c = ± c̃

2
and using the

antisymmetry of the tanh-function.
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In order to obtain an acceptable solution describing the transition between two bulk-regions, it
remains to adjust the constants c̃1 and c̃2. The right guess ensuring this (renaming c̃2 to c for
consistency with the double-well solution in Equation (6.28)) is to set

φ(x) =
1

2
(1 ± sin (

4

πε
x + c)), x ∈ ( − c −

π2

8
ε,−c +

π2

8
ε), (6.30)

prolongated by the respective bulk values 0 and 1 outside this inner region.

Remark 46. Even though it is intuitively clear that the profile in Equation (6.30) is indeed the
correct one as it is the one matching the “most smoothly” with the bulk-regions, this is not at all
obvious based on Equation (6.26) and the condition of having to reach the values of 0 and 1. In
fact, the (here implicit) condition that φ should at least lie in H1 implies, in the one-dimesional
setting, that φ at least has to be continuous. Based on Equation (6.29), this can be achieved using
any constant c̃1 ≥ 1 and then simply truncating the profile to the bulk-values at the points where
it starts going outside the bounds. Fixing for convenience the constant c̃2 to zero (corresponding
to centering the interface at x = 0) and choosing for definiteness the increasing profile, this still
leaves a one-parameter family of potential solutions φ(x) = 1

2
(1+ c̃1 sin ( 4

πε
x)) based on the ODE

withing the interface and the continuity condition alone, and choosing the correct one therefore
requires some additional information.
The safest way to argue here is by simply considering the total phasefield energy as function of
the parameterization in terms of c̃1 and to choose the relevant solution accordingly. A simple
calculation shows that, given c̃1 ≥ 1, the interface defined as the region between the points where
the profile first touches 0 resp. 1 will then extend from xl ∶= −

επ
4

sin−1 ( 1
c̃1

) to xr ∶= επ
4

sin−1 ( 1
c̃1

).
Further inserting this profile into the definitions of the gradient and bulk energy densities leads
to

εa(
dφ
dx

) = γ
4

π2ε
c̃21 cos2 (

4

πε
x) and

1

ε
w(φ) = γ

4

π2ε
(1 − c̃21 sin2 (

4

πε
x2)),

based on which a simple calculation25 shows that

Fε(c̃1) =

xr

∫
xl

εa(
dφ
dx

) +
1

ε
w(φ)dx =

2γ

π
(

√

c̃21 − 1 + sin−1 (
1

c̃1
)).

Even though the first term is increasing in c̃1 and the second one decreasing, differentiation this
expression shows that

dFε(c̃1)
dc̃1

=
2γ

π

c̃1 −
1
c̃1√

c̃21 − 1
,

i.e. the contribution by the first term is dominant and the energy is increasing for all c̃1 > 1.
The lowest energy is thus indeed achieved for the minimal admissible c̃1 = 1, i.e. the previously
obtained profile.
This is also a somewhat tedious argument as it in particular relies heavily on explicitly calculating
the total energy. A much faster argument is to proceed analogously as in the previous section,
which is in the current case much simpler to make rigorous as there are no issues with the

25Adding both contributions and using cos2(θ) − sin2(θ) = cos(2θ) shows that the integral can be rewritten as

Fε(c̃1) =
4γ

π2ε

xr

∫
xl

(c̃21 cos ( 8

πε
x) + 1)dx = γ

π
(c̃21 sin (2 sin−1 ( 1

c̃1
)) + 2 sin−1 ( 1

c̃1
)).

This simplifies further by inserting sin(2θ) = 2 sin(θ) cos(θ) to get c̃21 sin (2 sin−1 ( 1
c̃1

)) = 2c̃1 cos ( sin−1 ( 1
c̃1

)), from
which the result follows in combination with cos ( sin−1(θ)) =

√
1 − θ2.
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regularity of the domain (which is a nonempty interval here) and the profile is known (and very
smooth) within the interface and the interior of its complement26. ◇
Remark 47. Despite the fact that the analytical solution φ is C1 and even C∞ within the interface
and its complements, the use of this monotonous transition profile requires “violating” Equation
(6.26), and thus, by the complementary condition, re-introducing the multipliers µ±. The only
regions where φ need not satisfy this equation are the ones where φ = 0 or φ = 1, leading to
(µ−, µ+) = (

16γ
π2ε

,0) (resp. the other way around). In addition, it is easy to see that it is not
possible to match this inner solution in a C2-manner with the (constant) outer regions as -
by the nature of the sin-function - the only points where d2φ

dx2 =
d2φh
dx2 = 0 are the ones where

the homogeneous solution itself vanishes and therefore φ(x) = 1
2
∉ {0,1}. Whereas the second

derivative in the outside region is obviously zero, the limits from the interior are given by ± 8
π2ε2

,
showing in particular that the phasefield equation with the obstacle potential above does not
allow for a classical solution unless it is sinusoidal everywhere or if there is no interface at all
(i.e. φ(x) ≡ 0 or 1). ◇
Remark 48. The jump in the second derivatives of course also has numerical consequences. Tak-
ing the analytical profile and applying e.g. a centered finite difference scheme for the second
derivative at a point at the transition between the bulk and the interface, the discrete estimate
for the (non-existent) second-order derivative at this point will convergence to the average of
the second derivatives on the left and right of the transition point27 and thus, one of them be-
ing zero, to half the second derivative corresponding to the limit from the interior. This is of
course not a problem per se as there not being a “correct” value to converge to at this point,
the average is actually a quite pleasing limit. Nevertheless, a similar effect will happen for any
point whose stencil crosses the purported transition point. Taking for definiteness the transition
between a zero bulk-region and the interior, a point just outside the interface will overestimate
the (vanishing) second derivative at this point, whereas one just on the inside will underesti-
mate it, with the degree of both effects depending on the relative positions. Starting a discrete
simulation from the analytical profile, one would therefore in particular expect the value of this

26Assuming the actual domain Ω to be of the form Ω = (−R,R) with some sufficiently large R such that it fully
contains the interface (the energetic contributions in the bulk vanishing), the first order necessary condition in
its weak form is given by

R

∫
−R

2γε
dφ
dx

dψ
dx

+ 1

ε
w′(φ)ψ dx = ∫

(−R,xl)∪(xr,R)

1

ε
w′(φ)ψ dx +

xr

∫
xl

2γε
dφ
dx

dψ
dx

+ 1

ε
w′(φ)ψ dx ≥ 0

for all admissible directions ψ. Due to the smoothness of φ in the interface, the integration by part (corresponding
to the use of Gauss’s theorem in the multidimensional case) leading to

∫
(−R,xl)∪(xr,R)

1

ε
w′(φ)ψ dx + 2γε(dφ

dx
(x−r )ψ(xr) −

dφ
dx

(x+l )ψ(xl)) −
xr

∫
xl

( − 2γε
d2φ

dx2
+ 1

ε
w′(φ))ψ dx

= ∫
(−R,xl)∪(xr,R)

−16γ

π2ε
ψ dx + 2γε(dφ

dx
(x−r )ψ(xr) −

dφ
dx

(x−l )ψ(xl)) ≥ 0

in the interface is now easily justified provided ψ is moderately smooth and one takes the limits “from the interior”
for the values of dφ

dx . As there are no gradients involved in the expression for the bulk-region, one can then simply
take e.g. a sufficiently narrow hat-function of the appropriate sign centered around each endpoint for ψ to conclude
that dφ

dx (xl) cannot be positive and dφ
dxr

cannot be negative, contradicting the assumed shape of φ unless c̃1 = 1.
27This is easily seen by a two-sided Taylor-expansion, which, while not legitimiate through the discontinuity

of the second derivative at the transitions point, is valid in both the left and right region of the endpoints. Fixing
the position xi as one of two transition points xl and xr, a simple Taylor expansion using the left resp. right
limit of the second derivative gives φi−1 = φ(xi − ∆x) = φ(xi) − φ′(xi)∆x + 1

2
φ′′(x−i )(∆x)2 + O((∆x)3) and

φi+1 = φ(xi + ∆x) = φ(xi) + φ′(xi)∆x + 1
2
φ′′(x+i )(∆x)2 +O((∆x)3), from which the evaluation of the discrete

(3-point stencil based) second derivative is obtained as φi+1−2φi+φi−1

(∆x)2 = 1
2
(φ′′(x−i ) + φ′′(x+i )) +O(∆x).
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first inner point to start to drop28. Similarly, the last inner point near φ = 1 is expected to
rise. This can serve to provide an intuitive explanation for the observation (see Figure 6.1 and
the next section) that the resulting discrete phasefield profile is generally slightly more narrow
and steeper than the continuous one if the last “inner” point is close to the transition to the bulk.

A further quite interesting observation (discussed in more detail in Appendix A) is that,
at least without driving forces, there are generically (i.e. except for a discrete sequence of
ratios of ε

∆x
) two possible solutions to the discrete first-order necessary conditions corresponding

to Equation (6.22) with only one of them actually minimizing the discrete energy. For low
resolutions, these differ quite notably as is also illustrated in Figure 6.1. There, N corresponds
to the total distance in grid-spacings between the last discrete φ-value at 0 and the first one at
1, there thus being a total of N − 1 points within the interior of the discrete interface (i.e. with
0 < φi < 1) and a total of N + 1 when the two endpoints at 0 resp. 1 are included.
The discrete solution corresponding to N = 4 experiences precisely the effect just outlined above.
As the difference stencil of the last discrete point at x

ε
= 1 (an integer here for the choice ε = 2)

is roughly at a distance of ∆x
2

from the outer limit of the continuous profile, it will significantly
underestimate the “true” curvature at this point and is thus forced upwards (into the upper
bound at 1) as this weakens the contribution by the second derivative as compared to the bulk
potential one.
In contrast, the solution corresponding to N = 5 is in a sense “numerically optimal” as the last
discrete position is almost perfectly aligned with the right endpoint of the discrete profile (and
only very slightly outside the actual interface indicated by the vertical dashed line). For this
reason, the evaluation of the second derivative of the analytical solution at the last inner point
is essentially unaffected by the jump discontinuity and thus quite precise (up to the standard
O((∆x)2) error, see Footnote 28). Even though the (negative) second derivative “just outside”
the interface at the last point is highly overestimated, this only amounts (in line with the above)
to roughly half of what is required to counterbalance the forcing by the bulk potential term.
This leads to an underestimation of the corresponding multiplier µ+ by again roughly 1

2
, but this

is not sufficient to move the right-most point away from one. The jump of the second derivative
is thus essentially “hidden” in the multipliers, explaining the very close numerical agreement for
the profile itself. In this respect, it can also be noted that the error in the multiplier is much
lower for the more narrow profile.
While this may therefore seem very favorable from an approximation point of view, the discussion
in the next section and the Appendix A show that on energetic grounds the numerics should a
priori favor the other profile with N = 4 as it has a (slightly) lower total “discrete” energy (of
≈ 0.981γ as compared to ≈ 0.984γ for N = 5). ◇

28The discrete second-order derivatives are accurate to second order at all points not in the neighborhood of
the transition region and thus “almost” in equilibrium with the local w′(φ)-values. Even though a closer look
reveals that the discrete three-point stencil applied to the analytical profile also underestimates the magnitude
of the actual second derivative by a factor 2

cos(∆x)
∆x

= 1 − 2
4!
(∆x)2 +O((∆x)4), this is a priori nowhere near the

reduction by a factor of up to 2 at the transition points. Nevertheless, this (perhaps) surprisingly turns out to
have an effect of roughly the same order of magnitude (see Remark 66 for a more detailed discussion).

63



0 0.25 0.5 0.75 1 1.25 1.5 1.75
0.5

0.6

0.7

0.8

0.9

1

π2

8

x
ε

φ

continuous profile
discrete solution for N = 4
discrete solution for N = 5
solution curve for N = 4
solution curve for N = 5

0 0.25 0.5 0.75 1 1.25 1.5 1.75
0

0.2

0.4

0.6

0.8

1

x
ε

µ
+
π

2
ε

1
6
π

2
γ

continuous solution
discrete solution for N = 4
discrete solution for N = 5

Figure 6.1: Comparison of the right half of the φ-profiles and their corresponding multiplier µ+

for the continuous and the two (!) discrete solutions of the discrete analogue of the first-order
necessary conditions in Equation (6.22) for ε = 2∆x (see Remark 48 and the next Subsection
6.2.3 for a precise definition of N).
For the discrete profiles, the dashed resp. dash-dotted lines in addition show the underlying
sinusoidals on which the solution values lie (see Equation (6.48)). Note that while the curve for
N = 5 is closer to the analytical profile, it is actually the energetically unfavorable one.
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6.2.3 Some Analytics for the Discrete Case
The Discrete One-Dimensional Minimizers

A similar though somehwat heavier calculation for the obstacle potential can in fact, again relying
on the linearity, be reproduced in the discrete setting and sheds some light on the differences
between the continuous and discrete behaviour within the simple one-dimensional setting. Using
a standard centered difference discretization for the Laplacian and discretizing w using the values
at the cell centers, the discrete one-dimensional phasefield equation in the absence of driving
forces is given by

−2γε
φi+1 − 2φi + φi−1

(∆x)2
+

16

π2ε
γ(1 − 2φi) = 0. (6.31)

By linearity, one can again decompose the solution as the sum of the same particular solution
φpi =

1
2
as in the continuous case and the homogeneous solution φhi satisfying

φhi+1 − 2(1 −
8(∆x)2

π2ε2
)φhi + φ

h
i−1 = 0.

From the standard theory of difference equations (see e.g. [59]), the solution can be derived in
terms of the solutions λ of the characteristic equation29

λ2
− 2(1 −

8(∆x)2

π2ε2
)λ + 1 = (λ − (1 −

8(∆x)2

π2ε2
))

2

+
⎛

⎝
1 − (1 −

8(∆x)2

π2ε2
)

2⎞

⎠
= 0,

which, for (
8(∆x)2

π2ε2
)

2

≤ 2, are given by

α + iβ = (1 −
8(∆x)2

π2ε2
) ± i

√

1 − (1 −
8(∆x)2

π2ε2
)

2

where i =
√
−1 and α2 + β2 = 1. The general homogeneous solution is therefore given by

φhi = c1 cos(κi) + c2 sin(κi)

with

cos(κ) =1 −
8(∆x)2

π2ε2
= 1 −

1

2
(

4∆x

πε
)

2
(6.32)

sin(κ) =

√

1 − (1 −
8(∆x)2

π2ε2
)2 =

√

2
8(∆x)2

π2ε2
− (

8(∆x)2

π2ε2
)

2
=

8(∆x)2

π2ε2

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1. (6.33)

Due to the translation invariance of the problem, one may for simplicity assume that φ0 = 0,
and that the difference equation holds from φ1 up to φN−1. As this imposes φh0 = − 1

2
, this fixes

the first constant as c1 = − 1
2
. Similarly, using the condition

φhN = −
1

2
cos(κN) + c2 sin(κN)

!
=

1

2
(6.34)

29The approach here is similar to the one in the continuous case. Instead of the ansatz φh(x) = eλx based
upon which one can obtain the characteristic equation underlying the homogeneous solution in the continuous
double-well case, one instead postulates φi = λi (with generally complex λ), from which one then obtains the
characteristic equation by extracting the highest common power of λ. In the case with two complex-conjugate
λ’s below, it is then convenient to rewrite λi as ei lnλ = cos (R(lnλ))+ i sin (I(lnλ)). Further rewriting λ in polar
form as λ = ∣λ∣( cos(κ)+ i sin(κ)) and arguing precisely as in the continuous case then leads to the representation
used here.
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at the right endpoint leads to

c2 =
1 + cos(κN)

2 sin(κN)
=

1

2
cot (

κN

2
) (6.35)

unless κN is a multiple of π and fixes the second constant in terms of the (as of yet unknown!)
number of points N , leading to the discrete profile

φi =
1

2
−

1

2
cos(κi) +

1

2
cot (

κN

2
) sin(κi). (6.36)

Remark 49. If κN is multiple of π, equation (6.34) does not impose any restriction on c2 as
cos(κN) = 1 and sin(κN) = 0, implying that this equation is satisfied for any c2. This particular
case (for κN = π) turns out to be a very interesting one as will be seen towards the end of this
section. In order to avoid mixing two quite different lines of argument, the following paragraph
will first consider the case where π

κ
is noninteger. ◇

The case π
κ
noninteger All which remains to be done is therefore to determine the width of

the numerical interface in terms of N . A first point to be noted is that the assumption of φ1

being the first inner interface point already imposes an upper on N as this requires

φ1 =
1

2
−

1

2
cos(κ) +

1

2
cot (

κN

2
) sin(κ) > 0.

Since sin(κ) > 0, this translates to

cot (
κN

2
) >

cos(κ) − 1

sin(κ)
= − tan (

κ

2
)

and thus, restricting the range of cot−1 to the relevant one in (0, π) to obtain a single-valued
mapping and using cot−1 ( 1

y
) = π

2
− cot−1(y) for y > 0 and tan(y) = ( cot(y))

−1
, to

N <
2

κ
(π − cot−1

(tan (
κ

2
))) =

2

κ
(π − (

π

2
−
κ

2
))) =

π

κ
+ 1.

Since N has to be integer, this together with the strict inequality leads to the maximal admissible
number

Nmax = ⌈
π

κ
⌉ (6.37)

of points within the interface, where ⌈⋅⌉ denotes “round-up” operation (i.e. ⌈n⌉ is the smallest
integer number greater than or equal to n).
As all N ≤ Nmax would in principle permit the construction of a “geometrically admissible”
interface, an additional criterion is necessary for choosing the correct one. A first such criterion
is easy to obtain by readding the multipliers µ± corresponding to the constraint 0 ≤ φi and
φi ≤ 130,

−2γε
φi+1 − 2φi + φi−1

(∆x)2
+

16

π2ε
γ(1 − 2φi) = µ

−
i − µ

+
i , (6.38)

with µ±i ≥ 0 and satisfying µ− = 0 if φ > 0 and µ+ = 0 if φ < 1, which extens the validity
of the discrete difference Equation (6.31) to the entire domain. It is obvious that within the
bulk-region one has either µ− = 16

π2ε
or µ+ = 16

π2ε
, the respective other one being zero, and thus

multipliers consistent with the restriction in terms of the complementarity condition (6.21). The
only interesting points for judging the first-order admissibility for a given N are therefore the

30Recall the reasoning for Equation (6.22), which automatically becomes rigorous in the discrete case.
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transition points, where there is an additional contribution by the spatial second-order difference
operator.
Inserting the profile in Equation (6.36) and looking for simplicity at the left end-point of the
interface (the other endpoint being completely analogous) leads to the restriction

µ−0 = −2γε
φ1 − 2φ0 + φ−1

(∆x)2
+

16

π2ε
γ(1 − 2φ0) = γε

− cot (κN
2

) sin(κ) + cos(κ) − 1

(∆x)2
+

16

π2ε
γ

!
≥ 0 (6.39)

since φ−1 = φ0 = 0 and φ1 =
1
2
− 1

2
cos(κ) + 1

2
cot (κN

2
) sin(κ). Canceling the common factor γ, it

follows that N has to be such that

cot (
κN

2
) ≤

1

sin(κ)
(

16(∆x)2

π2ε2
+ cos(κ) − 1).

By the definition of κ in Equations (6.32) and (6.33), this can be simplified to

cot (
κN

2
) ≤

1

sin(κ)
(

16(∆x̄)2

π2
−

8(∆x̄)2

π2
) =

8(∆x̄)2

π2 sin(κ)
=

1
√

π2

4(∆x̄)2 − 1

which represents a lower bound on N as the cot-function is decreasing from +∞ at 0 to −∞ at π

(this being the interesting range here). More precisely, N has to satisfy κN
2

≥ cot−1
⎛

⎝

1√
π2ε2

4(∆x)2
−1

⎞

⎠
,

or, using the inverse formula cot−1 ( 1
y
) = tan−1(y) and as N has to be integer,

N ≥ Nmin ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢

2

κ
tan−1

⎛
⎜
⎝

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥

= ⌈
π

κ
− 1⌉ (6.40)

Any (integer) N satisfying both equations (6.37) and (6.40) is therefore compatible with the
first-order optimality conditions in Equation (6.38). As it is obvious from the expressions for
Nmin and Nmax that there are always two such integers, this shows that the existence of two
potentially relevant profiles in the example in Figure 6.1 is not an exception but actually the rule.

Since the discrete energy is not convex due to the concave contribution by w and this condition
is in the non-convex case only necessary but not sufficient for characterizing a local minimizer,
this naturally raises the question as to the nature of the critical points attained by both profiles.
A first insight into this matter can be obtained by comparing the discrete energies

E(N) = ε
N

∑
i=0

1

2
γ((

φi − φi−1

∆x
)

2
+ (

φi+1 − φi
∆x

)
2
) +

16γ

π2ε

N

∑
i=0

φi(1 − φi) (6.41)

for both potential profiles (this being the one for which Equation (6.38) is the FONC).
Remark 50. This is similar to the discussion in Remark 46, except that guessing the correct
choice is more difficult in the discrete case as enforcing a continuous derivative is meaningless in
this setting. ◇
Remark 51. Note that in order to obtain a discrete approximation of the continuous energy, this
expression still needs to be multiplied by ∆x to take the physical size of each cell into account.
The first contribution to this approximation is then given by 4γ

π2ε
N∆x. As ∆x converges to zero,

N∆x (as the width of the discrete interface) will converge to the width of the analytical one in
Equation (6.30) (i.e. to π2ε

4
) and the first term therefore to the desired value of γ. It further

follows that the second has to (and actually does) converge to zero.
A more quantitative evaluation of the energetic deviations requires considering both terms as
N∆x will only reduce to the correct value in the limit. ◇
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Even though this is a rather lengthy calculation (see the Appendix A), the discrete energy
contributions in Equation (6.41) can be evaluated analytically, leading to

N−1

∑
i=1

1

ε
w(φi) =

8

π2ε
γ
⎛

⎝

1

4
(1 − cot2 (

κN

2
))N +

1

2
cot (

κN

2
) cot(κ)

⎞

⎠
(6.42)

and
N−1

∑
i=1

εai =
8

π2ε
γ
⎛

⎝

1

4
(1 + cot2 (

κN

2
))N +

1

2

cot (κN
2

)

sin(κ)

⎞

⎠
=

8

π2ε
γ
⎛

⎝

N

4 sin2 (κN
2

)
+

1

2

cot (κN
2

)

sin(κ)

⎞

⎠
, (6.43)

or, using 1 − cot2(θ) = 2 − 1

sin2 (κN
2
)
and 1 + cot2(θ) = 1

sin2(θ) , alternatively to

N−1

∑
i=1

1

ε
w(φi) =

8

π2ε
γ
⎛

⎝
(

1

2
−

1

4 sin2 (κN
2

)
)N +

1

2
cot (

κN

2
) cot(κ)

⎞

⎠
(6.44)

and
N−1

∑
i=1

εai =
8

π2ε
γ
⎛

⎝

1

4 sin2 (κN
2

)
N +

1

2

cot (κN
2

)

sin(κ)

⎞

⎠
. (6.45)

Combining both expressions and making use of the definining properties of κ (see Appendix A
for details), this can in addition be shown to lead to a total energy given by

E(N) =
4γ

π2ε
N +

εγ

(∆x)2

1

2
cot (

κN

2
) sin(κ) =

4γ

π2ε

⎛

⎝
N + cot (

κN

2
)

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1

⎞

⎠
. (6.46)

A further analysis (see again Appendix A) then shows that, from an energetic point of view,
unless π

κ
happens to be an integer, the energetically optimal interface width is given by the lower

bound on N in Equation (6.40), i.e. whenever there is more than one potentially admissible
discrete interface width, one has Nopt = Nmin, leading to the optimal profile being determined
by

N = Nmin = ⌈
π

κ
− 1⌉ . (6.47)

From this, the profile itself and the associated discrete energies follow immediately from
equations (6.36), (6.42) and (6.43) (resp. (6.44) and (6.45)) as well as (6.46) using the actual
number N = Nmin of points.
Remark 52. The discrete profile is, as in the continuous case, only fixed up to a reflection and
an arbitrary translation as long as this does not interfere with the boundaries of the domain.
Even though the choice of fixing the profile as an increasing one starting at i = 0 is convenient
for some of the calculations above and in Appendix A, one can of course also recenter the profile
at the 0.5-isoline, i.e. the point xm = N

2
∆x. Using

cos(κi) = cos (κ(xi − xm) + κxm) = cos (κ(xi − xm)) cos (κxm) − sin (κ(xi − xm)) sin (κxm)

and

sin(κi) = sin (κ(xi − xm) + κxm) = sin (κ(xi − xm)) cos (κxm) + cos (κ(xi − xm)) sin (κxm),

leads to

φi =
1

2
−

1

2
cos(κi) +

1

2
cot(

κ

2
N) sin(κi)

=
1

2
−

1

2
( cos (κxm) − cot(

κ

2
N) sin (κxm)) cos (κ(xi − xm))

+
1

2
( sin (κxm) + cot(

κ

2
N) cos (κxm)) sin (κ(xi − xm)).
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As, by the definition of xm, κxm = κN
2

and cos (κ
2
N) − cot (κ

2
N) sin (κ

2
N) = 0, the prefactor for

the cosine cancels 31, whereas the one for the sine-term simplifies to

sin (
κ

2
N) + cot (

κ

2
N) cos (

κ

2
N) = sin (

κ

2
N) +

cos2 (κ
2
N)

sin (κ
2
N)

=
1

sin (κ
2
N)

,

leading to the more pleasant representation

φi =
1

2
+

1

2

1

sin (κ
2
N)

sin (
κ

∆x
(xi − xm)). (6.48)

The other choice of orientation (i.e. a decreasing profile) is then obviously again obtained by
simply changing the sign of the second term. ◇

In contrast to the choice for N = Nmin, it turns out that the second possible choice of N =

Nmax = Nmin + 1 does not satisfy the second-order necessary conditions for the characterization
of a local minimizer in terms of the phasefield, i.e. this second choice is not only not optimal in
terms of N , but does also not correspond to a local minimizer (of which there might a priori be
more than one) but simply to a critical point of the functional E .
The key steps for obtaining this result are (see Appendix A for additional details) that, since
the multipliers µ± are, for this larger choice of N , strictly positive, the second-order necessary
condition in fact reduces to the study of the local stability for a given N , and thus, by the
linearity of the equations within the interface, to showing the positive definiteness of the system
matrix corresponding to the difference stencil in Equation (6.31). As this is simply a difference
operator with constant coefficients (meaning also that the stability in particular has nothing to
do with the φ-values themselves, but only with the choice of N), this reduces to an examination
of the lowest eigenvalue of the discrete second-order difference operator under vanishing Dirichlet
boundary data.

Remark 53. As the analysis below will show, κ is, up to a third order error in ∆x
ε
, given by 4∆x

πε
,

whereas N is, up to a term of order O(1) (linked to the discepency between Nmin and Nmax in
equations (6.40) and (6.37)) given by π2ε

4∆x
, i.e. the “continuous” number of points necessary to

subdivide the analytical interface width into cells of width ∆x. The critical dependence of the
stability on the question of whether κN is less than or greater than π is therefore quite intuitive
as this essentially measures whether the discrete interface is broader or more narrow than the
analytical one. Roughly speaking, the choices of N for which the last point is slightly within
the the continuous interface (i.e. the ones with the more narrow profiles) are stable, whereas
those for which the last point is at the end or outside the continuous interface (i.e. the slightly
broader profiles) are unstable (see the previous Figure 6.1 and Figure 6.4, which shows one of
the “critical” points). ◇
Remark 54. Even though the choice with N = Nmin + 1 is not a stable solution for a descent-
based algorithm, it can sometimes nevertheless be obtained (and in some cases actually easier
so than the actual solution) in numerical simulations. This somewhat surprising observation is
likely due to the fact that all eigenvectors (for this fixed N) which are antisymmetric with
respect to the center of the interface (i.e. maintain the basic symmetry of the profile) are indeed
stable ones. Even without actual stability, this “stability on symmetric profiles” can persist for
quite some time when evaluated based on a numerically symmetric calculation32. ◇

31This also being clear by construction as the value at xi = xm has to be 0.5, which can only happen if the
cosine is eliminated.

32One example for this is in fact the example in Figure 6.1 for ε = 2∆x. Starting from a sharp transition, a
basic gradient-descent scheme tends to develop into the profile with N = 5 instead of the prediced value N = 4
and remains stable there (at least for a long time). This profile can be “broken down” though e.g. by perturbing
the φ-values at the first inner point by a term of order 10−11, which, with some delay, then leads to the predicted
profile.
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Figure 6.2: Development of the relative errors in the total energy and the bulk potential and
gradient energy as a function of the ration ε

r
(normalized w.r.t the exact values γ for the total

energy resp. γ
2
for the individual contributions).

One interesting consequence which can be derived from the explicit expressions for the total
energy and its two contributions is that it allows for a straightforward analysis of the energy
landscape and how it affects the discrete interface width33. For a more intuitive approach, this
energy landscape (in terms of the relative developments of the total energy ∆xE and that of the
contributions by the a- and w-term) is plotted in Figure 6.2.
A first observation to be made is that the total energy is in fact quite accurate and develops
relatively smoothly, even for very low resolutions34. The contributions by the the bulk potential
and gradient energy in contrast exhibit a strongly oscillating and discontinuous behavior, with
significantly larger deviations than the total energy. The accuracy of the latter is therefore pri-
marily the result of cancellations, as is also obvious from Figure 6.2.

This - as well as the tendency of the signs of the deviations - is intuitively relatively easy to
understand based on the competing nature of a and w combined with Figure 6.3, which shows
the relative errors in the interface width (counted as the distante between the last value at 0 and
the first one at 1). There, it is obvious that the discrete interface is always - and for low resolu-
tions quite significantly so - more narrow than the continuous one. As the role of the gradient
energy term is to try to enlarge the interface width whereas that of the bulk energy potential is
to make it thinner, it is clear by the decreased width that the discrete case consistenly favors the
bulk potential term. This leads to a deviation from the equipartition of energy in the continuous
case, with the bulk potential energy being below its continuous value γ

2
, but partially balanced

by an increase in the gradient contribution due to the necessity of a steeper interface (also recall
Figure 6.1)35.

33This could of course alternatively be evaluated based on a significantly more tedious simulation study.
34Note that the left-most point has a relative deviation of less than two percent, even though the number of

points (including the respecitvely first “bulk-point” on each side) is only 4 as already seen in Figure 6.1 and also
shown in Figure 6.3.

35The points where the gradient energy contribution drops below its reference value of γ
2
are those where the
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4
ε (also see Remark 59).

Remark 55. The discontinuous nature of the problem is also evident from both figures. In
particular, as the development of N in Figure 6.3 shows, the evolution of the number of interface
points would almost be linear (as one would expect by simply subdividing the analytical interface
width based on a spacing of ∆x), but, by the necessity of the ⌈⋅⌉-operation in Equation (6.47),
experiences jump discontinuities.
Each of these jumps is accompanied by a sudden drop in the gradient energy contribution and a
sudden increase in the bulk potential energy as seen in Figure 6.2. In contrast, the total energy
remains relatively smooth as the jumps in both contributions seem to cancel each other. ◇
Remark 56. It can also be noted that the profile shown in Figure 6.1 at the end of the previous
Section 6.2.2 is, with ε

∆x
= 2, relatively close to one of the “critical” ratios associated with adding

an additional discrete point in the interface. It is interesting to take a closer look at what
happens just to the right of one of the discontinuity points visible in Figures 6.2 and 6.3.
The effect on the discrete φ-profile is examplarily shown in Figure 6.4 for a ratio of ε

∆x
just

to the right of the discontinuity point near 2, with, for comparision, the profile for a nearly
double ration of ε

∆x
= 4. As can be seen there, even though the profile is quite accurate for the

higher number of interface points (with N = 9 i.e. a total number of 8 points strictly within
the interface), the match for the significantly lower ratio is also extremely good (and in fact
seemingly even slightly better) despite only having N = 5 and thus 4 “interior” interface points.
While the much better match as compared to the ratio of 2 in Figure 6.1 is not surprising
given the discussion above (and the fact that there is now one additional point), it should be
kept in mind that there are two factors influencing the profile. The first one, given by the
discrete angular frequency κ, is completely independent of the number of actual points within
the interface and is (with roughly 2% compared to 0.5% deviation from the “perfect” value π∆x

4ε
,

see the next Subsection 6.2.3) notably more accurate for the higher ratio ε
∆x

= 4. In contrast,
for ε ≈ 2.061∆x, the value of κ is very close to the one of the “bad” profile for ε = 2∆x. The

interface width is quite accurate, i.e. only slightly more narrow than the continuous one. The solution profile
at these points turns out to be quite accurate (see Remark 56). As the evaluation of the discrete gradient
corresponds to evaluating an “average” gradient over the width ∆x, it is to be expected that the discrete gradient
energy will be slightly lower than the continuous one since this corresponds to squaring the average gradient
instead of “averaging” (through the continuous integration) the square, and one always has (a+b

2
)2 ≤ 1

2
(a2 + b2)

with strict inequality unless a = b.
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second one, depending both on κ and N , is given by the amplitude sin (κN
2

)
−1

of the sinusoidal
in Equation (6.48). It is only through a partial cancellation of both influences due to the need
of fitting a slightly too “fast” sinusoidal into an almost correct interface width that one obtains
the observed excellent match.
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continuous profile
discrete solution for ε

∆x
= 2.060145

discrete solution for ε
∆x

= 4

Figure 6.4: Discrete solutions together with the underlying sinusoidals for ε
∆x

just to the right
of the critical ratio 2.06014486 (with N = 5) and for ε

∆x
= 4 (with N = 9) in comparison with the

continuous profile. Note that even though the resolution in the second case is almost twice as
high, the deviations in the profile itself are actually sligthly larger than for the one just to the
right of the critical point near ε

∆x
= 2.

A further interesting observation is that, as already discussed in Remark 48, the error in the
mulitpliers µ± is particularly high just to the right of the critical points as this will lead to an
underestimation of the second derivative at the last inner point by a factor of almost 2.
Even though one might - wrongly as will be explained below - conjecture that this could lead to
problems related with the undesirable pinning of the discrete interface (i.e. its inability to move
despite the action of a driving force) due to the large forcing required to move this point out
of the 0 or 1 bound, this seems not to be the case. Instead, as the simple numerical test-case
in Figure 6.5 illustrates, these regions at the transition between two different values of N in
fact also seem to be “sweet-spots” for the mobility of the interface. The figure shows the final
position of an interface intially placed near the left end of the domain under the influence of a
(relatively weak) driving force pulling it towards the center of the domain. As is easily visible,
the “arbitrary” low-resolution profile with ε = 2∆x leads to a relatively high deviation, whereas
the one with ε = 4∆x (and thus the higher numerical resolution) as expected performs signifi-
cantly better.
What is a priori somewhat unexpected is that, despite its markedly lower resolution of the inter-
face, the profile with ∆x = 2.061∆x (a point just slightly to the right of the jump in Figure 6.2)
not only results in a very accurate profile in the absence of driving forces as seen in Figure 6.4,
but also leads to a final interface position which is much more accurate than the higher-resolution
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one for ε = 4∆x.
It can also be observed that a similar improvement in accuracy occurs for ε = 3.667∆x, corre-
sponding to a ratio just to the right of the jump to the left of ε

∆x
= 4 in Figure 6.2, which has

the same number of “interface points” as the simulation for a ratio of four. Finally, the results
for ε = 3.57∆x and ε = 3.77∆x - very close to being at the same distance below and above the
critical value at ε

∆x
≈ 3.66615- illustrate that this effect is quite sensitive to the choice of the

ratio, but seems to favor slightly larger over slightly lower ratios.
This example illustrates that, even though the anaylsis above itself only covers the pure unper-
turbed one-dimensional case, the critical ratios at the transition points seem to maintain some
interesting properties even in the presence of slight perturbations. As these are the values where
κ = π

n
, Equation (6.32) shows that these ratios are given by cos(κ) = cos (π

n
) = 1 − 8(∆x)2

π2ε2
resp.

after solving for ε
∆x

using 1 − cos(θ) = 2 sin ( θ
2
) by

ε

∆x
=

2

π sin ( π
2n

)
. (6.49)

Some of these values are listed in Table 6.1.
As a moderate adjustment of a given ratio to the critical one just below it is something which
can essentially be done for “free” (i.e. one expects to maintain the same number of “active” points
for which actual calculations have to be performed), the vicinity of these ratios may therefore
also have some practical interest for finite-difference based simulations in more complex settings,
provided the interfaces are primarily aligned with the axis of the computational domain such as
in e.g. some directional solidification or capillary rise problems.
In contrast, it is unlikely that they have any particular effect for settings with roughly spherically-
shaped bulk regions, since the effective “grid-spacing” for the profiles along any oblique line can
differ very significantly from the one along the axis (i.e. for example a factor of

√
2 in the

two-dimensional case when an interface is oriented at an angle of 45○).
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Figure 6.5: Final position of an interface initially placed on the left side under the influence of
a “gravity” term pulling it towards the center of the gravity (COG) when varying ε for a fixed
grid spacing ∆x.
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N 5 6 7 8 9 10 11 12 13
( ε

∆x
)
min

2.460 2.861 3.264 3.667 4.070 4.474 4.878 5.282 5.686

Table 6.1: Some examples of the minimal values for the ratio of ε and ∆x given by Equation
(6.49) for a given number of points (rounded up at the fourth digit).

The case π
κ
integer As already alluded to in Remark 49 and seen on the example in Figure 6.5,

the critical ratios for which π
κ
is integer are very particular and quite interesting. Unfortunately,

much of the analysis from the previous paragraph does not carry over to the case where π
κ

is
integer and requires different and slighly more complex arguments. For this reason, the discussion
of this case is primarily performed in Appendix A, but the results will be summarized here.
Firstly, Equation (6.34) leaves c2 open, which can be a priori be chosen arbitrarily as long as this
is compatible with the bound constraint on the φi, 1 ≤ i ≤ N . As the definition of c2 in Equation
(6.35) does not apply then, one cannot derive the upper bound Nmax = ⌈π

κ
⌉ = π

κ
based on the

value of φ1 (or φN−1) as above. Given that N does not explicitly enter the solution through c2, it
is neither possible to derive the lower bound for Nmin in Equation (6.40) based on the positivity
of the multiplier µ−0 (resp. the analogous estimate for µ+N .)
Nevertheless, it turns out that both the bounds in terms of Nmin and Nmax continue to hold
due to energetic considerations. Furthermore, choosing c2 as in Equation (6.35), not only do
the discrete energies for N = Nmin and N = Nmax in Equation (6.36) have the same energy,
but there is actually a whole family of local minimizers with the same energy connecting these
two “extreme” profiles. In fact, for N = Nmax =

π
κ
, the sinusoidals with angular frequency κ are

eigenfunctions of the homogeneous difference operator (i.e. dropping the constant 16
π2ε

arising
from the w-term) within the interior of the interface in Equation (6.31) with an eigenvalue of 0
subject to vanishing boundary conditions at i = 0 and i = Nmax. As a consequence, any multiple
of this function can be added to the solution corresponding to Nmax for c2 = cot (κNmax

2
), which

corresponds to the symmetric solution for this number of points, without affecting the validity
of Equation (6.31). In addition, while a change of c2 to c2 + δc2 will affect the values of µ−0 and
by symmetry µ−N in Equation (6.39) by 2γεδc2

sin(κ)
(∆x)2 for µ−0 resp. with the opposite sign for µ+N ,

the common of the initial multiplier is given by 8
π2ε

γ (i.e. precisely half the bulk-value in the

bulk) and is therefore strictly positive. As long as ∣δc2∣ ≤
4(∆x)2

π2ε2

sin(κ) = 1
2

tan (κ
2
), both multipliers

at i = 0 and i = N maintain the correct sign. Finally, the values δc2 = ± 1
2

tan (κ
2
) are also the

ones where either φN−1 just touches 1 resp. where φ1 just touches 0, i.e. the values where a new
constraint becomes active corresponding to the solution (or a translate by one cell) for the value
N = Nmax − 1. More precisely, as

1

2
tan (

κ

2
) =

1

2
cot (

π

2
−
κ

2
) =

1

2
cot (

κ(π
κ
− 1)

2
) =

1

2
cot (

κNmin
2

),

and cot (κNmax
2

) = 0, the family of functions

φi =
1

2
−

1

2
cos(κi) + c2 sin(κi) ,0 ≤ c2 ≤

1

2
cot (

κNmin
2

)

satisfies the first-order necessary conditions for a local minimizer, has a constant total energy
and continuously transforms the “standard” profile with c2(Nmax) to the one for c2(Nmin).
This shows that there is an energetically neutral way of moving the right end of the broader
interface one point to the left for obtaining the thinner interface and similarly, reverting the
order of the argument for moving the left endpoint for the thinner interface one point to the
left for again obtaining the broader interface, but now translated by one cell. A symmetric
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discussion clearly also applies for moving the interface to the right, and then, by repetition,
shows that there is an entire family of interfaces through which can move the interface, albeit
with an “oscillating” deformation along the x-axis.

Remark 57. While this argument only strictly holds for the unperturbed equation at the precise
critical ratios, it provides an intuitive explanation for the situation observed in Figure 6.5 since
the “good” ratios are very close to a value where the interface is actually free to move without
having to pass through any energetic barriers. ◇
Remark 58. Even though the total energy is constant during the transformation above, this is
not true for the gradient- and bulk-contributions separately. ◇
An Asymptotic Analysis of the Profiles

Even though the expressions for the phasefield profile and discrete energy in equations (6.36)
and (6.46) are exact and can easily be evaluated numercially, they are not very “readable” in
this form. It is relatively straightforward to derive more tractable approximations though as ∆x
tends to zero.
One a priori problematic point here is that the definition N = Ntrue in Equation (6.47) relies on
a “round-up” operation. The number of points can therefore only be estimated up to a error of
order 1, i.e.

N =
π

κ
− 1 + δ, δ ∈ [0,1] (6.50)

where ∆x̄ ∶= ∆x
ε

abbreviates the ratio of the grid-spacing to the length-scale ε of the interface.
It turns out that, disregarding this round-up, the width N∆x of the discrete interface is, up
to a second order term, smaller than the continuous value π2

4
ε by a single grid-spacing ∆x. As

this is a term of the same magnitude, the round-up, even though hard to estimate, is therefore
not really limiting the precision of the general first-order convergence esimate for the interface
width.
Considering first the value of κ as defined in Equation (6.32), an estimate for κ can be derived
based upon the expansion

cos(κ) = 1 −
1

2
κ2

+
1

4!
κ4

+O(κ6
)

!
= 1 −

1

2
(

4

π
∆x̄)

2

of the cosine around zero (this being the relevant range for κ). An estimate based upon comparing
the quadratic term only then shows that κ = O(∆x̄) and then more precisely with κ

∆x̄
= O(1)

and
√

1 − y2 = 1 + 1
2
y2 −O(y4) that36

κ =

√

(
4

π
∆x̄)

2
+O(κ4) =

4

π
∆x̄

¿
Á
ÁÀ1 +O(

κ4

(∆x̄)2
) =

4

π
∆x̄(1 +O((∆x̄)2

)). (6.51)

Combined with (1 + y)−1 = 1 − y +O(y2)), it follows that

1

κ
=

1

4
π

∆x̄(1 +O((∆x̄)2))
=

π

4∆x̄

1

1 +O((∆x̄)2)
=

π

4∆x̄
(1 −O((∆x̄)2

)),

from which the formula (6.50) for N can be rewritten as

N =
π2

4∆x̄
(1 −O((∆x̄)2

)) − 1 + δ =
π2

4∆x̄
− 1 + δ −O(∆x̄), δ ∈ [0,1]. (6.52)

36A more precise estimate will be derived in Equation (6.57).
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Remark 59. Note that by the construction above, φ0 ∼ φ(x0) = φ(0) is the last point where the
φ-value is still 0, and φN ∼ φ(xN) = φ(N∆x) is the first point where the φ-value is at 1. Even
though there is not really a precise definition of the interface width in the discrete case37, the
value of N∆x = π2

4
ε − (1 − δ)∆x can be considered to be an upper bound for any reasonable

interpretation of the discrete interface width, and the discrete interface is therefore slightly more
narrow (with −1 + δ < 0) than the continuous one. ◇
Remark 60. Note that the approximation for κ shows that38 the angular frequency 4

πε
of the

continuous solution in Equation (6.30) is achieved up to a second-order error.
Even though the estimate for 1

κ
is only an estimate up to the order O(∆x̄), it is so around a

value tending to infinity. Multiplying N by ∆x to obtain the physical length of the interface,
this error (with the bounded tan−1-term) only leads to a second-order deviation, whereas the
value N∆x is generally only first-order accurate.
What is potentially surprising is that, based on Equation (6.52), the a priori fully numerically
induced necessity of the round-up operation turns out to actually cancel part of this first-order
error and that, if δ is very close to 1, the interface will match, then essentially up to second order,
the continuous one. This is also consistent with Figure 6.4, where the remarkable agreement of
the discrete profile with the continuous one, despite the low resolution, is primarily due to the
fact that the “continuous” approximation for N is just slightly above 4, and therefore, together
with the ⌈⋅⌉-operation leads to δ ≈ 1.
That the first-order error in the approximate width of the domain does not entail an error of
equal order in the solution can intuitively be explained by the fact that the continuous solution
enters the bulk with a slope of 0. While this is an unpleasant property in the “forward” direction
(i.e. the ratio of the change of the interface width as compared to a change in the solution can
be made arbitrarily high), it equally well applies in the “backward” direction, i.e. one can make
the change in the profile despite a perturbation in the interface width aribtrarily small as this
perturbation tends to zero. A similar argument applies in the discrete case. Even though the
derivative is never actually zero, it suffices for this derivative to approach zero at a linear rate in
order to be able to absorb a first-order error in the discrete interface width into a second-order
error in the actual profile. ◇
Remark 61. Regardless of the asymptotics themselves, an important (and quite natural) point to
be retained from the previous remark is that the interface width by itself is an unreliable criterion
for judging the actual quality of a solution. This is of course also (but therefore not only) an
issue when dealing with well-potentials and might partially explain why it is quite common to
“define” the interface width e.g. as being the width between the points where φ = 0.1 and φ = 0.9
instead of two points where φ is actually closer to 0 and 1. ◇

Combining the estimates for κ and N , it further follows that

κN =
4

π
∆x̄(1 +O((∆x̄)2

))(
π2

4∆x̄
− (1 − δ) +O(∆x̄)) = π −

4∆x̄

π
(1 − δ) +O((∆x̄)2),

and thus combined with cot (π
2
− θ) = tan(θ) = θ +O(θ3) that

cot (
κN

2
) = cot

⎛

⎝

π

2
− (

2∆x̄

π
(1 − δ) +O((∆x̄)2))

⎞

⎠
=

2∆x̄

π
(1 − δ) +O((∆x̄)2). (6.53)

37E.g. if interpreted in a cell-centerd fashion, there would be N − 1 “cells” with values deviating from the
bulk-ones, whereas, if interpreted in a FEM-like fashion, there would be N such “elements”.

38Multiplying κ by the “point” i leads to value

κi = 4

πε
i∆x(1 +O((∆x)2) = 4

πε
xi(1 +O((∆x)2)

for the argument of the sine and cosine in Equation (6.36).
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Remark 62. ◇
A multiplication of the second expression for E(N) in Equation (6.46) by ∆x then shows

that

∆xE =
4γ

π2
N∆x̄ +

4γ∆x̄

π2
cot (

κN

2
)

¿
Á
ÁÀ π2

4(∆x̄)2
− 1 =

4γ

π2
N∆x̄ +

2γ

π
cot (

κN

2
)

√

1 −
4(∆x̄)2

π2

=
4γ

π2
(
π2

4
− (1 − δ)∆x̄ +O((∆x̄)2)) +

2γ

π
(

2∆x̄

π
(1 − δ) +O((∆x̄)2))(1 −O((∆x̄)2)).

From this, it is seen that the first-order errors through the (1 − δ)-terms actually cancel (up to
second order) in the sum, leaving the final estimate

∆xE = γ +O((∆x̄)2), (6.54)

which in particular shows that the discrete energy is second-order convergent to the continuous
value.

Remark 63. This very pleasent conclusion is in fact not obvious based on the use of a formally
second-order numerical scheme. It is not a priori clear that this accuracy can actually be achieved
due to the only moderate smoothness in relation with the jumps in the second derivatives at the
transition points.
In continuation of Remark 51, one can also observe that, even though it is the first term in
Equation (6.46) that actually converges to the desired value γ, it does so only with first-order
accuracy due to the O(∆x

ε
)-error in the discrete interface width N∆x. That the convergence of

the energy is nevertheless quadratic is only achieved through the correction by the second term
in Equation (6.46) which (up to second-order order) cancels this contribution.
It can also be noted that this does not depend on the precise form of the error in N∆x (provided
the error δN is of order 1, as e.g. the one caused by the truncation in the calculation of N).
This can of course be seen by a close look at the coefficients arising in the expansions above, but
is intuitively much easier to understand based upon the choice of N itself. In fact, the energetic
argument underlying the choice of the “correct” number of points in the discrete interface is
simply a discrete analogue of the continuous condition ∂E

∂N
(N)

!
= 0. Even though this equality

need not be achieved exactly in the discrete setting, it will be so in first order. From this, the
“direct” contribution ∆x ∂E

∂N
δN of a perturbation in N to the discrete energy is indeed expected

to be only of second-order in ∆x. ◇
Remark 64. A further interesting observation is, by the expressions for the sums of the discrete
bulk potential and gradient energy in equations (6.42) and (6.43), that there is - in contrast to
the continuous case - not a precise equipartition of energy. In fact, one has

N−1

∑
i=1

(εai −
1

ε
wi) =

4γ

π2ε
( cot2 (

κN

2
)N + cot (

κN

2
)

1 − cos(κ)

sin(κ)
),

showing that the gradient energy is larger than the bulk potential energy in the discrete case.
Even though one could then conjecture that the second-order accuracy of ∆xE is due to a
beneficial cancellation, a short calculation using the expansions above reveals that both the
gradient energy and bulk energy contributions themselves (and not just their sum ∆xE) are also
second-order accurate39. ◇

39Both equations (6.42) and (6.43) contain a term of the form (1 ± cot2 (κN
2

))N , which would be the obvious

candidate for a cancellation. As cot (κN
2

) = O(∆x) by the above, this term does not actually matter in the first
order. More precisely, using this estimate for the cot and 1

sin(κ) ≈
1
κ
(or directly inserting the definition of sin(κ)
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As a final consequence of the expansions above, one can also construct a (quite accurate) con-
tinuous approximation to the discrete solution given in Equation (6.48) in terms of the paramters
∆x and ε alone. In constrast to the exact discrete profile, this has the advantage of directly high-
lighting some simple - both qualitative and quantitative - points.
This requires additionally approximating the term 1

sin(κN2 )
. Based on equations (6.51) and

(6.52), it follows (as already used above) that κN
2

= π
2
− 2∆x̄

π
(1− δ)+O((∆x̄)2). The elementary

relation sin (π
2
− θ) = cos(θ) = 1 − θ2 +O(θ4) near zero first leads to

1

sin (κ
2
N)

=
1

1 − 1
2
( 2∆x̄

π
(1 − δ))

2

+O(∆x̄)3)

= 1 +
1

2
(

2∆x̄

π
(1 − δ))

2

+O(∆x̄)3

and thus with κ = 4
πε

(1 +O((∆x̄)2)∆x from Equation (6.51) shows that the discrete profile can
also be rewritten as

φi =
1

2
+

1

2
(1 +

1

2
(

2∆x̄

π
(1 − δ))

2

) sin (
4

πε
(1 +O((∆x̄)2))(xi − xm)) +O(∆x̄)3) (6.55)

where xi ∶= i∆x.
Expanding the “error” in the angular frequency leads to

sin (
4

πε
(1 +O((∆x̄)2))(xi − xm)) = sin (

4

πε
(xi − xm)) cos (O((∆x̄)2)(xi − xm))

+ cos (
4

πε
(xi − xm)) sin (O((∆x̄)2)(xi − xm)).

(6.56)

Since cos (O((∆x̄)2)) = 1 −O((∆x̄)4), the prefactor in the sine-term can actually be replaced
(up to a fourth-order error) by 1, whereas the linear convergence of sin(θ) to zero with θ in
principle allows dropping the second-order term up to an error of O((∆x)2). Together with
the boundedness of the sin- and cos-function, this is already sufficient to show that the discrete
profile satisfies

φi =
1

2
+

1

2
sin (

4

πε
(xi − xm)) +O(∆x̄)2)

and is thus indeed a second-order accurate approximation of the analytical one.

Remark 65. It should again be stressed that this is not a priori obvious just because one is using
a formally second-order scheme for evaluating d2φ

dx2 . Even though imposing e.g. the requirement

in Equation (6.33)), one has

∆x
N−1

∑
i=1

εai =
8γ

π2
∆x̄

⎛
⎝

1

4
(1 + cot2 (κN

2
))N + 1

2
cot (κN

2
) 1

sin(κ)
⎞
⎠
= 8γ

π2
∆x̄

⎛
⎝

1

4
(1 +O((∆x̄)2))N + 1

2
cot (κN

2
) 1

sin(κ)
⎞
⎠

= 8γ

π2
∆x̄

⎛
⎝

1

4
(1 +O((∆x̄)2))( π2

4∆x̄
− (1 − δ) +O(∆x̄)) + 1

2
(2∆x̄

π
(1 − δ) +O((∆x̄)2)) π

4∆x̄
(1 +O((∆x̄)2))

⎞
⎠

= 8γ

π2
∆x̄( π2

16∆x̄
− 1

4
(1 − δ) + 1

4
(1 − δ) +O(∆x̄)) = 1

2
γ +O((∆x̄)2).

The contribution by w differs, up to the sign of the second-order term cot2 (κN
2

) only by the last factor cot(κ)
instead of 1

sin(κ) . As cot(κ) = cos(κ)
sin(κ) =

1
κ
+O((∆x̄)2), the calculation for the contributions by a can essentially

directly be reused to show that one also has

∆x
N−1

∑
i=1

1

ε
w(φi) =

1

2
γ +O((∆x̄)2).

An even quicker alternative is of course to observe that as the gradient energy contribution and the total energy
are second order accurate, the bulk potential necessarily also has to be as the difference between both.
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φ ∈ C4 for obtaining the formal estimate φi+1−2φi+φi−1

(∆x)2 = φ′′(xi)+O((∆x)2)+O((∆x)3) is in fact
more restrictive than actually necessary for obtaining global second-order convergence, it should
be kept in mind that, as pointed out in Remark 48, that this difference operator is only O(1)-
accurate when it straddles the transition points, corresponding to a loss of two order of accuracy.
Obtaining estimates for the order of convergence under such conditions requires a much more
detailed and complex analysis (see e.g. [38] for a detailed treatment of this topic). ◇

While this is interesting in itself, it is also useful to have a more precise estimate of the
remaining second-order deviations from the analytical profile. As the analysis above shows, the
accuracy of the approximation above is actually of the order O((∆x̄)3) except for the “imprecise”

second-order estimate for sin (O((∆x̄)2)(xi − xm)) due to the only second-order approximation
of κ.
Improving this estimate is fortunately only a matter of solving a quadratic equation. In fact,
κ being defined by cos(κ) = 1 − 1

2
( 4∆x
πε

)
2
, one can simply include the fourth-order term in the

expansion of the cosine to obtain 1 − 1
2
κ2 + 1

4!
κ4 +O(κ6)

!
= 1 − 1

2
( 4∆x̄

π
)

2
resp.

κ4
− 12κ2

+ 12(
4∆x̄

π
)

2
+O(κ6

)
!
= 0.

Since κ = O(∆x̄), this can be interpreted as a quadratic equation for κ2 perturbed by a term of
order (∆x̄)6, from which it follows (using

√
1 + y = 1+ 1

2
y − 1

8
y2 +O(y3) near y = 0 and choosing

the relevant sign preceding the square-root) that

κ2
=6 − 6

√

1 −
1

3
((

4∆x̄

π
)

2
+O((∆x̄)6))

=6 − 6(1 −
1

2
(

1

3
((

4∆x̄

π
)

2
+O((∆x̄)6))) −

1

8
(

1

3
((

4∆x̄

π
)

2
+O((∆x̄)6)))

2

)

=6(
1

2
(
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π
)

2
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π
)

4
+O((∆x̄)6).

Again expanding the square-root, a more precise estimate for κ is therefore given by

κ =
4∆x̄

π

√

1 +
1

12
(

4∆x̄

π
)

2
+O((∆x̄)4) =

4∆x̄

π
(1 +

1

24
(

4∆x̄

π
)

2
+O((∆x̄)4))

=
4∆x̄

π
+

∆x̄

6π
(

4∆x̄

π
)

2
+O((∆x̄)5),

(6.57)

allowing to obtain the improved approximation

cos (
4

πε
(xi − xm)) sin

⎛

⎝
(

1

6πε
(

4∆x̄

π
)

2
+O((∆x̄)4))(xi − xm)

⎞

⎠

=
1

6πε
(

4∆x̄

π
)

2
(xi − xm) cos (

4

πε
(xi − xm)) +O((∆x̄)4)

for the cos-based term in Equation (6.56). Combining this with the previous analysis for Equation
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(6.55) leads to the higher-order approximation40

φi =
1

2
+

1

2
(1 +

1

2
(

2∆x̄

π
(1 − δ))

2

) sin (
4

πε
(xi − xm))

+
1

12πε
(

4∆x̄

π
)

2
(xi − xm) cos (

4

πε
(xi − xm)) +O(∆x̄)3.

(6.58)

In contrast to the previous approximation in Equation (6.55), this expansion contains both
leading-order (i.e. second-order) perturbations of the analytical profile.
The first one in terms of the slightly increased amplitude of the dominant sine-term was already
obtained before. It on the one hand leads to a slightly steeper profile in the region around the
isoline φ = 1

2
, and on the other hand to both a slightly increased (resp. decreased) φ-value and

a slightly decreased (resp. increased) curvature near the outer limits of the interface near φ = 1
(resp. φ = 0) since this is where both the sin itself and thus also its second derivative attain
the maximal magnitude. The second contribution in contrast will also lead to a steeper profile
near the middle of the interface (the cosine being second-order close to one there), but has very
little effect on the φ-values near the outer limits as this is where the cosine approaches zero,
its primary effect on the φ-values itself therefore lying in the intermediate region. Nevertheless,
with (x cos(x))′′ = −2 sin(x) − x cos(x), it will also have a similiar “curvature-enhancing” effect
near the outer regions.

Remark 66. With respect to the interpretation of both perturbations and their relation with the
first-order perturbation of the interface width, it is worth noting that the first contribtution
could also be obtained by simply enforcing a steeper version (for simplicity with xm = 0) of
the analytical profile 1

2
+ 1

2
c′ sin ( π

4ε
x) to match the bulk-value 1 at the perturbed point x′ =

π2

8
ε − 1−δ

2
∆x̄, corresponding to distributing the discrepency in the width symmetrically to both

sides. In fact, with

sin (
4

πε
x′) = sin (

π

2
−

4

πε

1 − δ

2
∆x̄) = cos (

2

πε
(1 − δ)∆x̄),

the equation 1
2
+ c′ sin ( 4

πε
x′)

!
= 1 asymptotically reduces to

c′ cos (
2

πε
(1 + δ)∆x̄) = c′(1 −

1

2
(

2

πε
(1 − δ)∆x̄))

2
) +O(∆x̄)4)

!
=

1

2

and thus

c′ =
1

2(1 − 1
2
( 2
πε

(1 − δ)∆x̄))
2
) +O(∆x̄)4))

=
1

2
(1 +

1

2
(

2

πε
(1 − δ)∆x̄))

2
) +O(∆x̄)4)).

This is, up to a fourth-order error, the prefactor of the sin above. Note that, as already indicated
before, it is crucial here that the first-order perturbation in the interface width arises in a region
where the profile is to first order flat as this is the reason c′ differs from 1 only in second and
not in first order.
In contrast, the second contribution can be interpreted as being related to a more “mundane”
discretization error in line with Footnote 28. More precisely, applying a discrete (three-point

40Even though the pertubation by the term (xi − xm) cos ( 4
πε

(xi − xm)) a priori also appears with the slightly
increased amplitude of the sin-term, this results only in a fourth-order perturbation.
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stencil) second-order derivative to a sinusoidal profile, one obtains

sin(xi+1) − 2 sin(xi) + sin(xi−1)

(∆x)2
=

sin(xi +∆x) − 2 sin(xi) + sin(xi −∆x)

(∆x)2

=
sin(xi) cos(∆x) + cos(xi) sin(∆x) − 2 sin(xi) + sin(xi) cos(∆x) − cos(xi) sin(∆x)

(∆x)2

= − sin(xi)
2(1 − cos(∆x))

(∆x)2
= − sin(xi)

2(1 − (1 − 1
2
(∆x)2 + 1

4!
(∆x)4 −O((∆x)6))

(∆x)2

= − (1 −
1

12
(∆x)2) sin(xi) +O((∆x)4),

resp. from the same calculation but with a modified angular frequency for the sine,

sin ( 4
πε
xi+1) − 2 sin ( 4

πε
xi) + sin ( 4

πε
xi−1)

(∆x)2
= −(

4

πε
)

2
sin (

4

πε
xi)(1 −

1

12
(

4∆x̄

π
)

2
+O((∆x̄)4)).

One can successfully counterbalance this deviation in the second derivative of the dominant term
precisely by the cos-based term in Equation (6.58). In fact, inserting the ansatz (again taking
xm = 0 for simplicity) φ(x) = 1

2
+ 1

2
sin ( 4

πε
x)+δφ with δφ = O((∆x̄)2) into the discrete difference

Equation (6.31), it follows that δφ should satisfy

− 2γε( − (
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)

2 1

2
(1 −

1
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π
)

2
) sin (

4
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d2δφ

dx2
+

16

π2ε
γ(− sin (

4

πε
x) − 2δφ)

= − γε((
4

πε
)

2 1

12
(

4∆x̄

π
)

2
sin (

4

πε
x) − 2γε

d2δφ

dx2
−

32

π2ε
γδφ

!
≈ 0

since the first-order terms in the sin cancel by construction of the analytical profile and applying
the discrete second-order derivative to δφ will approximate its actual second derivative in order
O((∆x̄)2). δφ should thus satisfy

−2ε
d2δφ

dx2
−

32

π2ε
δφ ≈

4

3π2ε
(

4∆x̄

πε
)

2
sin (

4

πε
x)

and it is easily seen that defining δφ ∶= 1
12πε

( 4∆x̄
π

)
2
x cos ( 4

πε
x) corresponding to the second

correction in Equation (6.58) will actually solve this equation41.
It can further be noted that, for the choice of κ given by Equation (6.33), one has

sin (κ(i + 1)) − 2 sin (κi) + sin (κ(i − 1))

(∆x)2
= −2 sin (κi)

1 − cos (κ)

(∆x)2

= − 2 sin (κi)
1 − (1 − 1

2
( 4∆x
πε

)
2
)

(∆x)2
= −(

4

πε
)

2
sin (κi),

i.e. the prefactor of the sine resulting from the discrete second-order differentiation operator
coincides exactly with the one arising from the second differentiation of the sin ( 4

πε
x) in the

continuous solution. ◇
41Note that while this δφ solves the equation exactly in the interior of the domain, it is not completely compatible

with the (here implicit) boundary condition that δφ should vanish at the endpoints of the actual interface. This
violation is only first-order in ∆x (with respect to the already second-order size of δφ itself) though by the
linear convergence of the cos-term to zero near the outer region. This can then either be absorbed through the
construction of an appropriate boundary layer, or, since the dominant sin-term is maximal there, by a slight
modification of the dominant term through a third-order correction of its amplitude. Regardless of the details,
this does not affect the order of the error estimate in Equation (6.58).
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6.3 Multi-Phasefield Problems
As discussed in the beginning of Section 6.2, one has to deal with a number of additional chal-
lenges when considering problems with more than two phases.
A first - and quite important one within the usual variational framework - is the construction of
an appropriate generalization of the underlying functional to the multiphase case. While there
are a variety of possible choices, the discussion here will focus on the one based on [52] out-
lined in Section 6.1. Together with the additional constraints through either the sum-constraint
∑
N
α=1 φ

α = 1 or the restriction of the φ-values to the Gibbs-simplex GSN , the functional already
fixes an important part of the problem, namely the equations to be satisfied by any minimizer
and thus the steady-state equations, which will quickly be rederived - in a formal manner similar
to Section 6.2 - in Subsection 6.3.1.
A second important aspect, which is essentially independent of the functional (even if one postu-
lates a gradient flow)42 is the choice of the dynamics, i.e. how one chooses the “proportionality”
with respect to δFε

δφ
. Two popular choices also implemented within the Pace3D-framework will

quickly be outlined in Subsection 6.3.2. Despite its practical importance, the (relatively difficult)
question of the respective advantages and disadvantages of the different choices of dynamics from
a physical point of view will not be discussed in any detail here. Instead, after a short outline of
some general algorithmic considerations for multiphase problems in Subsection 6.3.3, in partic-
ular in the presence of a large number of phases, the focus in Subsection 6.3.3 will primarily be
on practical aspects of this choice in the presence of the constraint by the Gibbs-simplex.

6.3.1 The Steady-State Equations
As in the two-phase case, a directional differentiation of the phasefield-functional in Equation
(6.10) leads to the first-order necessary condition

F
′
ε(φ;ψ) =

N

∑
α=1
∫

Ω

ε(
∂a

∂∇φα
⋅ ∇ψα +

∂a

∂φα
ψα) +

1

ε

∂w

∂φα
ψα +

∂f

∂φα
ψα dx ≥ 0

for all admissible directions ψ.
If the individual contributions to Eε and the functions themselves are smooth enough and with
the “natural” boundary condition ∂a

∂∇φα ⋅ n = 0 (see Remark 70 below), any minimizer in the
multi-well case (without an additional restriction of the form 0 ≤ φα ≤ 1) will therefore have to
satisfy

N

∑
α=1
∫

Ω

( − ε∇(⋅
∂a

∂∇φα
) + ε

∂a

∂φα
+

1

ε

∂w

∂φα
+
∂f

∂φα
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶gα

ψα dx ≥ 0, (6.59)

where, unlike in Equation (6.17), ψ is locally restricted to satisfy ∑Nα=1 ψ
α = 0. In the steady-

state, the (L2-)gradients g = (gα)1≤α≤N are therefore locally orthogonal to all vectors with zero
average, i.e., as seen in Section 4, satisfy g(x) = −Λ(x)e, where the (scalar) Lagrange-multiplier
Λ(x) does depend on x but not on the phase α and the choice of the minus-sign is only a matter of
convenience. Through a simple summation, it therefore follows that Λ satisfies ∑Nα=1 −g

α = NΛ,
and thus, inserting the expression for g, that φ has to to satisfy as in [52]

⎧⎪⎪
⎨
⎪⎪⎩

−ε∇ ⋅ ( ∂a
∂∇φα ) + ε

∂a
∂φα

+ 1
ε
∂w
∂φα

+
∂f
∂φα

+Λ − µα = 0,

∑
N
α=1 φ

α = 1
(6.60)

42It is partially related to the constraint sets though.
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together with the appropriate isolating boundary conditions and Λ locally given by

Λ =
1

N

N

∑
α=1

ε∇ ⋅ (
∂a

∂∇φα
) − ε

∂a

∂φα
−

1

ε

∂w

∂φα
−
∂f

∂φα
. (6.61)

If the phasefield values are additionally subject to the constraints 0 ≤ φα ≤ 1∀α, the conditions
are, due to the additional sum-constraint, somewhat more complex than in the two-phase setting
from Section 6.2. Considering first the simpler representation of the (locally) admissible set in
Equation (6.2), one formally has that ψ is an admissible local variation if ψ satisfies ∑Nα=1 ψ

α = 0
with the additional restriction that ψα ≥ 0 if φα = 0. As in e.g. [11], if there are at least two
free phases with 0 < φα, φβ < 1, taking any ψ > 0 and ψ = ±ψeα ∓ ψeβ - thus satisfying the
sum-constraint - Equation (6.59) shows that ±ψ(gα − gβ) ≥ 0 and therefore gα = gβ . As this
argument can be repeated for an arbitrary combination of free phases, it follows that

gα(x) = −Λ(x) ∀α ∶ 0 < φα < 1, (6.62)

where Λ is, just as in the simpler case when restricted to ΣN1 only, independent of the free phases.
If there is any phase α at 0, there is necessarily at least one phase β with φβ > 0 due to the
sum-constraint. In this case, one has to restrict the sign of the variations of φα taking e.g. again
ψ > 0 and ψ = ψeα − ψeβ , and one can only conclude that ψ(gα − gβ) ≥ 0, i.e. gα ≥ gβ if φα = 0,
φβ > 0.
If there is any β such that 0 < φβ < 1, by the condition above, one therefore has gα ≥ −Λ. It
may happen though that the (then necessarily only) phase with φβ > 0 actually satisfies φβ = 1,
in which case all other phases are automatically at 0. As there are no free phases, the above
definition of Λ does not apply. Instead, one only has gα ≥ gβ ∀α ≠ β. If one in this case chooses
Λ ∶= −gβ , the necessary conditions can be written in a unified manner in terms of the KKT
system

g = −Λe +µ, µ ≥ 0, µαφα = 0, (6.63)
or, more explicitly,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ε∇ ⋅ ( ∂a
∂∇φα ) + ε

∂a
∂φα

+ 1
ε
∂w
∂φα

+
∂f
∂φα

+Λ − µα = 0,

∑
N
α=1 φ

α = 1,

µα ≥ 0,

µαφα = 0

(6.64)

for α = 1, ...,N .
In contrast to the simpler well-case, there is now no simple explicit formula for Λ as in Equation
(6.61) anymore. In fact, the same summation procedure as in the well-case applied to the first
line in Equation (6.63) now shows that

Λ =
1

N

N

∑
α=1

(ε∇ ⋅ (
∂a

∂∇φα
) − ε

∂a

∂φα
−

1

ε

∂w

∂φα
−
∂f

∂φα
)
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=∶Λmw

+
1

N

N

∑
α=1

µα = Λmw +
1

N

N

∑
α=1

µα. (6.65)

Since the µα are non-negative, the expression for Λ in Equation (6.61) is therefore only a lower
bound for the actual value of Λ in the obstacle case.
Remark 67. As the a-function in [52] is generally only defined indrectly in terms of φ and ∇φ
based upon the generalized gradient vectors qαβ(φ,∇φ) = φα∇φβ −φβ∇φα from Equation (6.5),
it is often more convenient to instead consider a as a function of the qαβ only and then obtain
the derivative with respect to φα and ∇φα through a simple chain rule. Since43

∂qβη

∂φα
= ∇φηδαβ −∇φβδαη and

∂qβη

∂∇φα
= (φβδαη − φηδαβ)I,

43Where δαβ is the usual Kronecker symbol, i.e. 1 if α = β and 0 otherwise.
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the differentiation of the summation in Equation (6.6) leads to

∂a

∂φα
=

∂

∂φα
∑
β

∑
η>β

Aβη(qβη) =∑
β

∑
η>β

∂Aβη

∂qβη
(∇φηδαβ −∇φβδαη).

The summation over the first term then directly reduces to ∑η>α
∂Aαη

∂qαη
⋅∇φη, whereas the second

one does, after exchanging the order of summation through ∑β∑η>β(⋅)βη = ∑η∑β<η(⋅)βη, lead to
−∑β<α

∂Aβα

∂qβα
⋅ ∇φβ . With qαβ = −qβα and Aαβ(qαβ) = Aβα(qβα) = Aβα( − qαβ) and exchanging

dummy-indices, one obtains the “missing” other half of the summation and thus finally

∂a(φ,∇φ)

∂φα
= ∑
β≠α

∂Aαβ

∂qαβ
⋅ ∇φβ . (6.66)

The same argument applied to the differentiation with respect to ∇φα in turn shows that

∂a(φ,∇φ)

∂∇φα
= − ∑

β≠α
φβ
∂Aαβ

∂qαβ
. (6.67)

This in principle simple but still somewhat tedious reasoning occurs very frequently in the
multiphase case and will for the sake of brevity not be repeated in detail again44, but can be
verified to lead to the expressions

∂wmw(φ)

∂φα
= 18φα ∑

β≠α
γαβ(φβ)2

+ 2φα ∑
δ>β
β,δ≠α

γαβδ(φβ)2
(φδ)2

) (6.68)

and
∂wmo(φ)

∂φα
=

16

π2 ∑
β≠α

γαβφβ + ∑
δ>β
β,δ≠α

γαβδφβφδ (6.69)

for the derivative of the bulk-potentials in the multi-well and multi-obstacle case. ◇
Remark 68. The choice Λ = −gβ for the bulk-phase β above is the most natural one when
explicitly enforcing only the positivity constraint explicitly and the constraint φα ≤ 1, α = 1, ...,N
implicitly through the sum-constraint as in the description of the Gibbs-simplex in Equation
(6.2). One could of course, as in Equation (6.1), also enforce this upper bound explicitly, thus
introducing a multiphase equivalent of the two multipliers µ± in Section 6.2, then leading to the
multiphase analogon

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ε∇ ⋅ ( ∂a
∂∇φα ) + ε

∂a
∂φα

+ 1
ε
∂w
∂φα

+
∂f
∂φα

+Λ + µ+,α − µ−,α = 0,

µ±,α ≥ 0,

µ−,αφα = 0,

µ+,α(1 − φα) = 0

of Equation (6.23).
This difference is of course only relevant when there is actually a bulk phase, but then has the
disadvantage of introducing an indeterminacy due to the partial redundancy of the description
of the constraint set. In fact, the sign restriction on the multipliers µ± in the presence of a bulk-
phase could be satisfied for any Λ satisfying gβ ≤ −Λ <= minα≠β g

α as for any such value, one
would still have gα = −Λ + µ−,α with µ−,α ≥ 0 for all phases with φα = 0, whereas gβ = −Λ − µ+,β

44A slightly quicker approach is to make use of the “symmetry” of the energy with respect to the pairings and
thus to replace the summation over all distinct phase-pairings with one-half the summation over all phase-pairings.
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with µ+,β ≥ 0. Even though this indeterminacy is not a problem in principle and the particular
choice of Λ (and thus µ+,β) does not affect the actual result, this is an unnecessary complication
which can easily be avoided by using the non-redundant description in Equation (6.2).
It should be noted though that this leads to a difference of the multipliers when using a multi-
phase formulation with two phases as compared to the reduced two-phase formulation. The
reduced formulation implictly corresponds to choosing (up to a factor of 2) the multiplier Λ =

− 1
2
(g1 + g2) and thus will lead to the multipliers µ± being equal to (twice) that value instead of

the choice gβ above anytime a bound-constraint is active (which then automatically implies the
presence of a bulk-phase)45. ◇
Remark 69. Similar indeterminacies arise quite frequently in non-reduced formulations. Another
simple example in relation with a volume-constraint will be seen in Section 6.3.3, whereas a more
complex one in a concentration-based setting will be discussed in some detail in Section 7.1. ◇
Remark 70. Recall from Section 6.2 that imposing ∂a

∂∇φα ⋅n is much less obvious in the presence of
constraints than it might appear at first sight, since the boundary condition it is not a priori “up
for choice” but actually has to be taken in accordance with the first-order necessary condition.
In particular, due to the multiphase setting, there is now even in the well-case an additional
restriction ∑Nα=1 ψ

α = 0 on the variations ψα, which a priori only leads to the necessity of
∑
N
α=1 ( ∂a

∂∇φα ⋅n)ψ
α !
= 0 and thus ∂a

∂∇φα ⋅n = Λ for all α.
In contrast to the interior of the domain, where “choosing” to enforce gα = 0, α = 1, ...,N (and
thus Λ = 0) is potentially possible, but practically useless for making the volume integral vanish46

(and therefore ), enforcing Λ = 0 and therefore the vanishing of the conormal derivative on the
boundary would seem a lot less restrictive. Nevertheless, even though this is clearly compatible
with the first-order necessary condition, it is not a priori obvious whether this is a necessity or
simply a selection having - with the pure bulk solution with the lowest fα - at least one solution
which is also a global minimizer. Showing that this is indeed a necessity is expected, but, similar
to the discussion in Section 6.2, actually requires a non-trivial argument even in the simplest
isotropic case47 and will therefore simply be assumed here. ◇

45Note also that gα ≥ gβ in the two-phase case automatically ensures gβ ≤ −Λ = gα+gβ
2

≤ gα. A similar
inequality based on the average of more than two phases however is generally not valid.

46This is basically only compatible with the solution consisting out of a single bulk-phase either in the absence
of driving forces or using one of the h-functions satisfying h′(0) = h′(1) = 0.

47Based on simplifying the expression for (6.67), one has
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β≠α
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β

∂n
− φβ ∂φ

α

∂n
) != Λ, α = 1, ...,N.

Similar to the interior of the domain, a simple summation over all phases, but now using ∑β≠α = 1 − φα as well

as ∑β≠α ∂φβ

∂n
= − ∂φ

α

∂n
due to the sum-constraint, shows that

∑
β

∑
α≠β

φβ(φα ∂φ
β

∂n
− φβ ∂φ

α

∂n
) =∑

β

φβ((1 − φβ)∂φ
β

∂n
− φβ(−∂φ

β

∂n
)) =∑

β

φβ
∂φβ

∂n
= −NΛ. (6.70)

Making use of this relation, one can eliminate one of the summations in the condition on the normal derivative
for the individual phases, since

− ∑
β≠α

φβ(φα ∂φ
β

∂n
− φβ ∂φ

α

∂n
) = −φα ∑

β≠α
φβ

∂φβ

∂n
+ ∑
β≠α

(φβ)2 ∂φα

∂n

= − φα((∑
β

φβ
∂φβ

∂n
) − φα ∂φ

α

∂n
) + ∑

β≠α
(φβ)2 ∂φα

∂n
= φαNΛ + (∑

β

(φβ)2)∂φ
α

∂n
= Λ

and thus (with ∑β (φβ)2 > 0)
∂φα

∂n
= Λ − φαNΛ

∑β (φβ)2
.
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6.3.2 The Choice of Dynamics
In practice, the phasefield model is most commonly employed as a dynamic model for the evo-
lution of microstructures, and not in terms of a pure minimization problem. While the choice of
a phasefield functional does, within a variational framework, fix the potential equilibrium points
through the solutions of the steady-state equations (6.60) resp. (6.64) above, this does not
imply anything specific about the evolution of the phasefield variables, besides the very broad
requirement that they should converge to a (potentially local) minimizer resp. maximizer of the
phasefield functional. A simple and natural way of enforcing such a behavior is to postulate a
gradient-type flow. In the Allen-Cahn case, the postulate is that of a non-conservative gradient
flow based on the L2-gradient of E , i.e. ∂φ

∂t
∼ −dFε

dφ , with individual models differing in the
particular choice of proportionality to dFε

dφ .
The model in [52] corresponds to a multiphase version of the simple scalar proportionality in
Equation (6.24), i.e. to postulating

τε
∂φ

∂t
= −

dFε
dφ

−Λe, (6.71)

or, in combination with the Gibbs-simplex constraint,

τε
∂φ

∂t
= −

dFε
dφ

−Λe +µ, (6.72)

where e is an N -dimensional vector of ones and µ is subject to the same complementarity
conditions as in Equation (6.64). In a more explicit form for the indiviual phases, this can also
be written as

τε
∂φα

∂t
= ε∇ ⋅ (

∂a

∂∇φα
) − ε

∂a

∂φα
−

1

ε

∂w

∂φα
−
∂f

∂φα
−Λ, α = 1, ...,N. (6.73)

resp.

τε
∂φα

∂t
= ε∇ ⋅ (

∂a

∂∇φα
) − ε

∂a

∂φα
−

1

ε

∂w

∂φα
−
∂f

∂φα
−Λ + µα, α = 1, ...,N. (6.74)

together with ∑Nα=1 φ
α = 1 as well as µα ≥ 0 and µα = 0 if φα > 0 in the obstacle case.

One disadvantage of using a scalar-valued kinetic coefficient is that this can lead to difficulties
within multiphase regions involving a mixture of highly mobile and highly immobile phases (or
phase-pairings). In fact, since τ is locally the same for the evolution of all phases, an interpolation
favoring the immobile interfaces may artifically slow down the evolution of the mobile ones and
vice versa. This raises the question of how and to what degree one can properly interpolate
between the individual mobilities such as to obtain satisfactory results.
A popular alternative, propagated in particular in [68] and used for e.g. also in [61] and [65], is
again based on considering two-phase interactions, but now postulating an evolution of the form

∂φα

∂t
= − ∑

β≠α
mαβ

(
dFε
dφα

−
dFε
dφβ

), α = 1, ...,N. (6.75)

This corresponds to postulating that the evolution of each phase is determinted as the sum of
its individual interactions with all other phases, each such interaction being equipped with its

This can be recombined with Equation (6.70) - now in terms of a φα-weighted summation over the previous
relation for the indivual phases - to obtain

−NΛ =∑
α

φα
∂φα

∂n
= ∑α φ

αΛ −∑α(φα)2NΛ

∑β (φβ)2
= Λ −∑α(φα)2NΛ

∑β (φβ)2
= Λ

∑β (φβ)2
−NΛ,

from which it follows that Λ indeed has to be zero.
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own mobility mαβ =mβα.
This may also be written more compactly as

ε
∂φ

∂t
= −M

dFε
dφ

, (M)αβ =

⎧⎪⎪
⎨
⎪⎪⎩

∑γ≠αm
αγ β = α,

−mαβ else,
(6.76)

and therefore amounts to replacing the scalar-valued kinetic coefficient on the left-hand side of
Equation (6.71) with a symmetric mobility-matrixM premultiplying the gradient.
It should be noted that there is no multiplier Λ for the sum-constraint in Equations (6.75) resp.
(6.76). This is due to the fact that the mobility matrix M above satisfies Me = eTM = 0
and thus on the one hand M ⋅ (dFε

dφ + Λe) = M ⋅ dFε
dφ , i.e. applying M to the gradient of the

Lagrangian L(φ) = Fε(φ) + ∫Ω Λ(e ⋅φ − 1)dx associated with the local sum constraint leads to
the same result as applying M directly to the gradient of Fε. On the other hand, as

∂∑
N
α=1 φ

α

∂t
=
∂e ⋅φ

∂t
= −

1

ε
e ⋅M

dFε
dφ

= 0,

there is no need to explicitly introduce the multiplier Λ since the phasefield will remain consistent
with the sum-constraint provided the initial values were so.

Remark 71. This is analogous in nature to the choice of the mobility matrix L in [52] for the
concentration- and energy-evolution, which, in addition to the multiplier Λ in the phasefield
equation would a priori also require another one Λc for the concentration equation due to the
constraint ∑Ki=1 ci = 1. As L is chosen to be only a positive semi-definite matrix satisfying
∑
K
i=1Lij = ∑

K
j=1Lij = 0 for all rows resp. columns, the multiplier for the concentration drops

out of the resulting equations while the sum-constraint nevertheless remains satisfied provided
it was so initially. ◇

This is in constrast to the multipliers µ arising due to the inequality constraints in the
obstacle case, which still need to be considered explicitly such that the evolution equation has
to be modified to (for the representation in (6.2) of the Gibbs-simplex)

ε
∂φ

∂t
= −M(

dFε
dφ

−µ), µαφα = 0, µα ≥ 0, α = 1, ...,N. (6.77)

Even though this formulation still has the apparent advantage of containing one multiplier less
than the obstacle-version of Equation (6.71) (the sum-constraint remaining satisfied regardless
of the choice of µ as well), this simply shifts the indirect interaction of each non-zero multiplier
µα with the other phases through the sum-constraint to a more explicit one in terms of the full
matrix M .

Remark 72. Note that one could in principle also rewrite Equation (6.71) resp. its obstacle-
analogon in a similar manner as48

∂φ

∂t
= −

1

τε
(I −

1

N
e⊗ e)

dFε
dφ

resp.
∂φ

∂t
= −

1

τε
(I −

1

N
e⊗ e)(

dFε
dφ

−µ),

where the Lagrange-multiplier Λ has been eliminated through the use of the “mobility matrix”
M = 1

τε
(I − 1

N
e⊗e) corresponding to a scalar multiple of the Euclidian projection operator onto

the subspace of zero-average vectors. As the diagonal entries of this projection matrix are given
by 1

τε
(1 − 1

N
) = N−1

Nτε
= −∑β≠α ( − 1

Nτε
), this is just a particular simple form of the one above

obtained by setting mαβ = − 1
Nτε

∀α ≠ β.

48This corresponds to a (partially in the obstacle case) “projected form” of the equation.
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It is therefore not surprising that both approaches actually share many of the same features and
difficulties, the most notable difference being that the particularly simple form in the latter case
often allows for more “explicit calculations”.
One point where the more complex form of the mobility matrixM leads to a notable complication
is when reyling on a projection-based descent algorithm. In fact, the modified interaction of the
gradients g through M also has to be taken into account during this projection operation (in
line with the role of µ in Equation (6.77)), and entails the necessity of using a more complexM -
weighted projection operator instead of the simpler Euclidian one. This projection, in particular
some of its algorithmic implications will be discussed in Section 6.3.3.

It can also be noted that in the two-phase case, the matrix 1
τε

(I−e⊗e) reduces to 1
2τε

(
1 −1
−1 1

),

and both approaches are therefore clearly equivalent if m12 is chosen as 1
2τ
. ◇

Remark 73. The two approaches outlined above are clearly not the only ones possible. In
particular, one can in principle use any spd mobility matrixM provided one is willing to maintain
the explicit multiplier Λ. Similarly, one could also choose to replace the use of a mobility matrix
by that of a matrix τ of kinetic coefficients and postulating τ ∂φ

∂t
= dE

dφ −Λ (this of course being
equivalent to the previous point in the spd case by setting M = τ−1 or vice versa)49. The latter
may be potentially useful for obtaining a somewhat “intermediate” model between the scalar
kinetic coefficient and the use of a full mobility matrix if applied in the form

ταε
∂φα

∂t
= −

dFε
dφα

−Λ, α = 1, ...,N

i.e. by using a a simple diagonal matrix τ = diag ((τα)1≤α≤N) allowing for some additional
freedom in specifying the dynamics while remaining in an “almost explicit” form due to the
diagonal structure of τ . ◇

6.3.3 Some Numerical and Algorithmic Considerations
A first important point to observe from a structural point of view is that the derivative conribu-
tion from w(φ) now always has a nonlinear contribution due to the triple-phase terms, even in
the previously linear obstacle case. Depending on the size of the penalty parameters γαβδ, this
contribution may be relatively large and can thus potentially also lead to additional numercial
difficulties. Similarly, due to the formulation of the surface energy densities in terms of the
(nonlinear) qαβ , the derivative contribution due to a will also always be nonlinear both in φ and
∇φ, even in the previously linear isotropic setting.
An additional complication, in particular in the obstacle case, arises due to the nature of the
admissible set. Whereas in the two-phase case, the sum-constraint is easily absorbed into a
reduced formulation and thus leads to no actual constraint in the double-well case and a simple
box-constraint in the double-obstacle case, it is more common when dealing with multiphase
problems to remain within a non-reduced formulation. This requires maintaining the sum-
constraint as an explicit constraint. While this is generally easily dealt with in the well case,
the combination with the positivity constraint is a somewhat trickier issue. In particular, there
is no simple explicit formula even for the simplest (Euclidian) projector onto the Gibbs-simplex,
as the combinatoric nature of the projection operation is more pronounced due to the higher
complexity of the constraint set (regardless of whether one uses a reduced formulation or not).

49In fact, if one maintains the explicit presence of the Lagrange multiplier Λ, one could also use a spsd τ -
matrix whose kernel (and, by symmetry, cokernel) coincides with Span{e}, even though this seems of somewhat
limited practical interest. While τ is then not invertible, the same choice of Λ (up to a prefactor of τε) as for
Equation (6.71) ensures consistency (i.e. orthogonality to the constants) of the left- and right-hand side, while
the indeterminacy in ∂φ

∂t
is eliminated by the presence of the sum-constraint.
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Remark 74. Even though it is in principle possible to use a reduced formulation in the mul-
tiphase setting by eliminating one of the N phasefields in terms of the remaining N − 1, any
potential benefits of doing so would primarily be restricted to the multi-well potential. The
central difficulty in the multi-obstacle case is not the sum-constraint, but its coupling with the
bounds on the φ-values. As this implies the risk that the phase which was eliminated in favor of
the others may actually not be allowed to change according to the changes of the other ones, this
does not in general avoid the issue of the sum-constraint. This is in constrast to the two-phase
case, where any one phase trying to move outside one of the 0-1-bound is equivalent to the other
one trying to move outside the opposite one. ◇

Before continuing the discussion on the challenges associated with “true” multi-phasefield
problems with N > 2, it is worthwhile to first take a closer look at how the formulation above
compares with the simpler description in terms of a single phasefield-variable φ from the previous
section. While it is clear that they are in principle equivalent, the redundant representation in
terms of φ1 ∶= φ and φ2 = 1 − φ1 = 1 − φ leads to a number of “technicalities” which should be
distinguished from the actual difficulties associated with the situation for N > 2.

Comparison of the “Single-Phase” to the “Two-Phase” Formulation

If one explicitly enforces the sum-constraint by reexpressing e.g. φ2 as a function of φ1, i.e.
with φ2 = 1 − φ1, ∇φ2 = −∇φ1 and thus also q12 = −∇φ1, it is easily seen that the values of
the a- and w-term (not the functions though!) reduce to the same expressions that would be
obtained from Equation (6.16). If the reduced functions in terms of φ2 = φ2(φ1) are denoted
with a hat-symbol, i.e. for example ŵ(φ1) = w(φ1, φ2(φ1)), as a simple consequence of the chain
rule and of

∂q12

∂φ1
= ∇φ2,

∂q12

∂φ2
= −∇φ1,

∂q12

∂∇φ1
= −φ2I,

∂q12

∂∇φ2
= φ1I

the respective derivatives in the phasefield equation are given by

1

γ12

δâ(φ1)

δφ1
=

1

γ12

δa

δφ1
−
δa

δφ2
= −∇ ⋅ (

∂a

∂∇φ1
−

∂a

∂∇φ2
) + (

∂a

∂φ1
−
∂a

∂φ2
)

= −∇ ⋅ ( − φ2

¯
=1−φ1

q12
+ φ1q12) + q12

⋅ ( ∇φ2

±
=−∇φ1

−(−∇φ1
)) = ∇ ⋅ q12

= −∆φ1

and

∂ŵdw
∂φ1

=
∂wdw
∂φ1

−
∂wdw
∂φ2

= 18γ12(φ1
(φ2

)
2
− (φ1

)
2φ2) = 18γ12φ1φ2

(φ2
− φ1

)

=18γ12φ1
(1 − φ1

)(1 − 2φ1
)

for the double-well potential and

∂ŵdo
∂φ1

=
∂wdo
∂φ1

−
∂wdo
∂φ2

=
16

π2
γ12(φ2

− φ1
) =

16

π2
γ12

(1 − 2φ1
)

for the double-obstacle potential respectively. In addition, if h̃ is based on any of the “standard”
two-phase interpolation functions and φ1 + φ2 = 1, and thus also h̃1(φ) + h̃2(φ) = 1, then the
denominator drops out and the values of the derivatives reduce to ∂h1

∂φ1 = h̃(φ2)h̃′(φ1) resp.
∂h1

∂φ2 = −h̃(φ1)h̃′(φ2). As one further has h̃′(φ2) = −h̃′(φ1), the derivative of the f -contribution
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becomes

∂f̂(φ1)

∂φ1
=
∂f

∂φ1
((φ1, φ2

(φ1
)) =

∂f

∂φ1
−
∂f

∂φ2
= f1(

∂h1

∂φ1
−
∂h1

∂φ2
) + f2(

∂h2

∂φ1
−
∂h2

∂φ2
)

=f1(h̃(φ2
)h̃′(φ1

) − h̃(φ1
)h̃′(φ2

)) + f2(h̃(φ1
)h̃′(φ2

) − h̃(φ2
)h̃′(φ1

))

=(f1
− f2

)( h̃(φ2
)

²
=1−h̃(φ1)

h̃′(φ1
) − h̃(φ1

) h̃′(φ2
)

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=−h̃′(φ1)

) = (f1
− f2

)h̃′(φ1
),

showing that this term as well reduces to the previous expression.

This is of course not particularly surprising as the multi-phasefield formulation is naturally
intended as a generalization of the two-phase case. The simple calculations above nevertheless
highlight two important points:

1. Whereas the original (isotropic) “one-phase” formulation is linear in the second-order term
and only involves at most low-order polynomial expressions in the derivatives of the w-
and/or f -term, its “two-phase” counterpart is a priori also nonlinear in the second or-
der term and involves much more unpleasant nonlinearities (fractions over squares of the
original h-function) in the f -term.

2. If the problem is not from the outset reduced to the previous version by using either φ2 =

φ2(φ1) or φ1 = φ1(φ2), the cancellations occuring in the reduced formulation will instead
have to be enforced through an external Lagrange mulitplier λ for the sum-constraint
φ1 + φ2 = 1. This, by itself, poses no particular problem. Nevertheless, if one additionally
chooses to (or has to) enforce the constraints 0 ≤ φ1, φ2 ≤ 1, a direct extension of the
procedure applied in the two-phase case using separate multipliers µ1/2,± for the lower and
upper constraints entails some additional technical difficulties. Due to the sum constraint,
there will be either no active inequality constraint or both equality constraints will be
active at the same time. In the former case, the Lagrange multiplier λ for the sum-
constraint will, as expected, just equal the average of both derivatives. In the latter case
though, there are a total of three multipliers (for example λ, µ1,− and µ2,+ if one has φ1 = 0,
φ2 = 1) to be determined based on only two actual unknowns φ1 and φ2 and one is faced
with an underdetermined problem. Barring the expectional case in which both constraints
are only weakly active (i.e. if both phases would remain in 0 resp. 1 even without the
box-constraints), this necessarily results in a non-unique (though bounded) set of Lagrange
multipliers.
This is not a problem per se, as there is no real need to have uniqueness for the Lagrange
multipliers. In particular, this indeterminancy can be dealt with through an appropriate
selection mechanism and the resulting phasefield-values will be the same regardless of
the particular choice made. Depending on the way λ and the µα,± are determined, this
nevertheless may require some care when e.g. working with direct solvers for the associated
matrices.

Remark 75. A similar issue with respect to the multipliers arises also if one e.g. imposes an
additional constraint ∫Ω φ

α = V α on the phase-volumes. These a priori two constraints require
an additional set of Lagrange multipliers (χ1, χ2), leading to the modification

τε
∂φα

∂t
= −gα − λ − χα, α = 1,2,

of the right-hand sides (or, when using the slightly modified approach in [53] and [29], of the
form ∑2

β=1 χ
β ∂hβ

∂φα
) and the appropriate modification

λ(x, t) =
1

2
( − g1

(x, t) − g2
(x, t) − (χ1

+ χ2
)) (6.78)
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of λ. There is again a redundancy in this case as it would be sufficient to fix just one of the
volumes, e.g. that of the first phase, and then let λ “handle the rest”. In particular with respect
to splitting-type approaches for the above system, it is highly preferable to maintain, at least
formally, both χ1 and χ2 as separate multipliers as this avoids enforcing the global constraint
on the other phase indirectly through a multiplier which is intuitively associated with the local
constraint. A natural selection criterion for eliminating the indeterminacy in this case is given by
choosing as in [53] χ1 and χ2 such χ1+χ2 = 0, since, by Equation (6.78), this leaves λ unaffected
by the additional constraint. ◇
Some Choices for the Spatial Discretization

The presence of more than two phases has essentially no impact on the simplest discretization of
the local terms due to the bulk potential and the driving forces within the cell-centered scheme
used in the Pace3D-framework. In contrast to the pure two-phase setting, the derivative of the
gradient energy density in the simplest isotropic case cannot be reduced to a Laplacian anymore
as soon as there are more than two phases present, and one does thus not have an “obvious”
choice of discretziation through the standard second-order difference quotient anymore50.
Based on the divergence-type nature of the expression ε∇ ⋅ ( ∂a

∂∇φα ), a very convenient discretiza-
tion for this term is to express it as the differences of fluxes over the cell “faces”, i.e. in the
simplest one-dimensional setting as

ε
d
dx

⎛

⎝

∂a

∂(dφα
dx )

⎞

⎠
≈

1

∆x

⎛
⎜
⎝

⎛

⎝

∂a

∂(dφα
dx )

⎞

⎠
i+ 1

2

−
⎛

⎝

∂a

∂(dφα
dx )

⎞

⎠
i− 1

2

⎞
⎟
⎠
,

where the ( ∂a

∂( dφα
dx )

)

j+ 1
2

correspond to appropriate approximations of this derivative on these

faces and the prime indicates a derivative with respect to x. As ( ∂a

∂( dφα
dx )

) is in the isotropic

case (this being the only reasonable choice in 1D) given by

∂a

∂(dφα
dx )

= −2
⎛

⎝
∑
β≠α

γαβφβqαβ
⎞

⎠

and qαβ(φ, dφ
dx ) = φ

α dφβ

dx −φβ dφα

dx , the most obvious choice of discretization for this expression on
the faces is obtained by using a short one-cell stencil for the first-order derivatives and the average
of the neighboring φ-values for the values of the phasefield itself. Defining φi+ 1

2
= 1

2
(φi +φi+1),

this leads to the natural approximations

qαβ
i+ 1

2

= φαi+ 1
2

φβi+1 − φ
β
i

∆x
− φβ

i+ 1
2

φαi+1 − φ
α
i

∆x
(6.79)

and

ε
⎛

⎝

d
dx

⎛

⎝

∂a

∂(dφα
dx )

⎞

⎠

⎞

⎠
i

≈ −2ε
1

∆x

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∑
β≠α

γαβφβ
i+ 1

2

qαβ
i+ 1

2

⎞

⎠
−
⎛

⎝
∑
β≠α

γαβφβ
i− 1

2

qαβ
i− 1

2

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (6.80)

In contrast, there are actually two quite natural discretizations for the second contribution from
the term ε ∂a

∂φα
, which is, in the isotropic case, given by ε ∂a

∂φα
= 2ε∑β≠α γ

αβqαβ dφβ

dx . The first and
most intuitive one is to evaluate it in a cell-centered fashion, i.e. by using the approximation

(ε
∂a

∂φα
)
i

≈ 2ε ∑
β≠α

γαβ
⎛

⎝
φαi
φβi+1 − φ

β
i−1

2∆x
− φβi

φαi+1 − φ
α
i−1

2∆x

⎞

⎠

φβi+1 − φ
β
i−1

2∆x
(6.81)

50Using higher-order stencils is of course in principle possible, but, in the obstacle case, unlikely to lead to any
major improvement by the discussion in Section 6.2.3.
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through central gradients only. An alternative is to try to reuse the already calculated gradients
of φ and the qαβ on the cell faces and thus to express ε ∂a

∂φα
as the average of its approximation

on the left and right face as

(ε
∂a

∂φα
)
i

≈ 2ε ∑
β≠α

γαβ
1

2

⎛

⎝
qαβ
i− 1

2

φβi − φ
β
i−1

∆x
+ qαβ

i+ 1
2

φβi+1 − φ
β
i

∆x

⎞

⎠
. (6.82)

The use of this - a priori slightly less intuitive - expression as compared to the one in Equation
(6.81) is two-fold. Firstly, it can indeed partially rely upon the same face-centered quantities qαβ

j+ 1
2

already required for the evaluation of the divergence-term in Equation (6.80), but at the price of
introducing the same spatial buffering requirement as for the fluxes over the cell faces if one wants
to avoid recalculating the same values twice. Secondly, the resulting discrete phasefield equation
based on the combined discretization of the gradient energy contributions as in equations (6.80)
and (6.82) together with the appropriate isolating boundary conditions corresponds itself to the
derivative of a discrete energy “functional” Fε,∆x given by

Fε,∆x(φ) =∑
i

1

2
ε(a(φi− 1

2
,
φi −φi−1

∆x
) + a(φi+ 1

2
,
φi+1 −φi

∆x
)) +

1

ε
w(φi) + f(φi), (6.83)

where a(φj+ 1
2
,
φj+1−φj

∆x
) abbreviates the summation∑α∑β>α ∣qαβ

j+ 1
2

∣2 with qαβ
j+ 1

2

defined as in Equa-
tion (6.79).
This is obvious for the local terms arising due to w and f . For seeing that this is also true with
respect to the spatial terms in the gradient energy contribution, it is convenient to first rewrite
some of the expressions above.
Firstly, it is easy to verify that the expression for qαβ in Equation (6.79) can be simplified to

qαβ
i+ 1

2

=
φαi φ

β
i+1 − φ

β
i φ

α
i+1

∆x
. (6.84)

Secondly, the combined contributions from the divergence term and the derivative of a with
respect to φα can be summarized to

− 2ε ∑
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Differentiating the total gradient energy contribution in Equation (6.83) with respect to a partic-
ular φ-value φαi , it is easy to see that it suffices to verify that for each phase-pairing individually,
one has

−
d

dφαi
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j
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2
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. (6.85)

Since φαi is only involved in two terms in this summation, namely the ones for j = i, it follows
that this is the same as

−
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and thus together with
dqαβ
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and
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= −
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∆x
based on the simplified

expression in Equation (6.84) that Equation (6.85) is indeed satisfied.
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In contrast, a similar property does not hold when using a discretization of the gradient energy
distributions using equations (6.80) and (6.82). In fact, the existence of an underlying potential
would, by Schwarz’s theorem, require the symmetry of the second derivatives with respect to
all unknowns. Even though it is clear that both contributions are symmetric with respect to
the phase-indices α ∈ {1,2, ...,N}, this is not the case with respect to the φ-values at different
spatial positions. Combining equations (6.80) and (6.82), the total gradient energy contribution
in a cell i is given by

−g̃αi = −2ε ∑
β≠α

γαβ
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.

In order to be compatible with the symmetry of the second derivatives, one would therefore
have to satisfy ∂g̃αi

∂φαj
=
∂g̃αj
∂φαi

for any combination of i and j, or, restricting the attention to two

neighboring cells ∂g̃αi
∂φαi+1

=
∂g̃αi+1

∂φαi
. By the symmetry with respect to the phases, it is furthermore

again clear that it suffices to check this for the contribution of a single phase-pairing, and is thus
a matter of comparing
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and
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Since qαβ
i+ 1

2

depends neither on φβi−2 nor on φβi+2, it is obvious that this equality cannot hold in
general, and that there is thus no potential underlying this discretization.
Remark 76. This lack of variational interpretation in the discrete case is not necessarily an issue
and does not automatically favor the other discretization. Instead, this choice (as well as that
of any other discretization), also depends heavily on the interplay of various factors.
On the one hand, both discretizations are perfectly legitimate and differ only by a second-order
discretization error. The results obtained by the two discretizations are therefore not expected
to change beyond the level of the other errors inherent in the discretization anyway51.
One the other hand, it does not have any real effect on the characterization of the “multipliers”
in Equation (6.64) (resp. its simpler well-version) or their alternative introduction through a
projection-based algorithm below. In fact, even though these are then not strictly speaking
Lagrange multipliers in the sense of an underlying Lagrangian52, they are still induced in the
same form by the constraints due to the more general geometrical characterization through
orthogonality and normal cone conditions for the admissible variations discussed in Sections 4
and 4.3.
It therefore often makes sense to prefer one or the other based on more practical considerations.

51This can also be verified numerically, with both solutions differing only very slightly.
52Recall that the two primary motivations for the Lagrangians are the formal simplicity with which they allow

to derive necessary conditions for constrained variational problems as well as any potential benefits obtained
through a saddle-point structure. Neither of these is used when arguing based on Equation (6.59).
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Figure 6.6: Layout of the φ-values and required gradients on the upper cell faces for the evalu-
ation of the gradient energy contribution in the cell (i, j).

In particular, when using an explicit time-discretization which is typically quite “forgiving” to
moderate perturbations in the equations, a much more relevant criterion is often the difference
in run-time obtained for both discretizations due to the usually very high number of time-steps
inherited by the stability restrictions. In contrast, other more complex schemes can often be
relatively sensible to even small perturbations in the equations. For example, the common
usage of line-search or trust-region algorithms in constrained optimization problems depends
fundamentally on the existence of a potential, and the use of an alternative merit-function which
is not actually being minimized can thus be an issue. Finally, there is also the very “mundane”
issue of the effort and amount of code required for the implementation of the equations. ◇

In the isotropic case considered above, both discretizations are easily extended to the higher-
dimensional setting by “splitting” the contributions of qαβ onto the faces in the respective spatial
direction, i.e. in two dimensions by associating the contributions from the x-component of qαβ

on the left and right cell faces, and those due to the y-component on the bottom and top faces.
With some further modifications, they can also be extended to an anisotropic settting. In
this respect, the primary difficulty faced by a cell-centered discretization in combination with
fluxes discretized on the faces is that these in general then depend on the whole vector qαβ

resp. its orientation qαβ

∣qαβ ∣ . Whereas the layout is very convenient for calculating e.g. the x-
component of ∇φ at the face-centers in the x-direction, it is much less so for calculating the
y-component at these same points as illustrated in Figure 6.6. While (

∂φ
∂x

)
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2 ,j
and (

∂φ
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)
i,j+ 1

2

can as before be evaluated using a short difference as φi+1,j−φi,j
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and φi,j+1−φi,j
∆y

, the evaluation
of the respective other component is most naturally done using a broader “averaged” stencil as
(
∂φ
∂y

)
i+ 1

2 ,j
≈

(φi,j+1+φi+1,j+1)−(φi,j−1+φi+1,j−1)
4∆y

and (
∂φ
∂x

)
i,j+ 1

2

≈
(φi+1,j+φi+1,j+1)−(φi−1,j+φi−1,j+1)

4∆x
.

Based on this stencil and the same simple averaging of the φ-values as before for approximat-
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ing φi+ 1
2 ,j

and φi,j+ 1
2
, one can then recover the full qαβ-vector on each of the faces. Based on

Equation (6.67), the two-dimensional and potentially anisotropic extensions of the divergence-
contribution in Equation (6.80) is thus given by
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(6.86)

Similarly, one can extend the additional contribution by ∂a
∂φα

in (6.66) in a cell-centered

fashion as in Equation (6.81), i.e. by calculating ∇φi,j through (
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corresponding to the default discretization in the Pace3D-framework.
Alternatively, one can also extend the more face-centered discretization in Equation (6.82) in a
similar manner by instead using the already calculated approximations of ∇φ and ∂Aαβ

∂qαβ
on the

cell phases and either setting
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or, in a somewhat cheaper manner which in addition reduces to the previous one if one is in fact
isotropic, by setting
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(6.89)

Remark 77. Which discretization of ∂a
∂φα

is more favorable again depends on a variety of consid-
erations. The one in Equation (6.87) is a priori the simplest, but has the potential disadvantage
of requiring an additional calculation of the ∂Aαβ

∂qαβ
in the cell-centers. In contrast, the discretiza-

tions in Equation (6.88) and (6.89) are again solely based on quantities already available on the
faces. In addition, if combined with a buffering scheme, the contributions by each of the phases
need only be calculated once as they are shared by the neighboring cells. This nevertheless has
the disadvantage of introducing a spatial interdependence and some additional overhead through
the buffering.
It should be stressed though that none of the formulations above is compatible with a discrete
variational principle unless the contributions of the derivatives in the lateral direction in Equa-
tion (6.89) happen to drop out53. Even though there is no principle difficulty in first defining

53This is obviously the case for isotropic problems, but can also happen for some simple anisotropies such as
e.g. an elliptic one described (in two dimensions) by

Aαβ(qαβ) = c2x(qαβx )2 + c2y(qαβy )2
.
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an “appropriate” discrete approximation of the energy Fε and then deriving the corresponding
difference scheme through a differentiation with respect to the φαi , this has a signifcant practi-
cal disadvantage as soon as this energy involves a gradient contribution calculated based on an
averaged gradient, i.e. with a stencil spanning more than one grid spacing as this automatically
entails a broader stencil.
This is most easily illustrated in an isotropic one-dimensional setting. Whereas the differentia-
tion of an energy contribution of the form ∑j (

φj+1−φj
∆x

)
2
with respect to φi leads to contributions

by the two terms j = i − 1 and j = i through φi−φi−1

∆x
1

∆x
and φi+1−φi

∆x
−1
∆x

and thus the standard
second-order three-point stencil −φi+1−2φi+φi−1

(∆x)2 of the negative Laplacian, an energy contribution

of the form ∑j
φj+1−φj−1

2∆x
has the two contributions φi−φi−2

2∆x
1

2∆x
and φi+2−φi

2∆x
−1

2∆x
and thus instead

leads to an undesirable five-point discretization −
φi+2−2φi+φi−2

(2∆x)2 of the same operator.
For the same reason, an energetic formulation based, as in the isotropic case, on energetic con-
tributions by the phases (but now dependent on the full qαβ-vectors there) would lead to the
much broader stencil shown in the left of Figure 6.7, which in addition is not based on the very
convenient structure of the discrete divergence operator as the difference of the fluxes through
the four (resp. six in three space dimensions) cell faces. The other two more obvious choices are
either the use of a purely cell-centered expression for the energy (leading to the slightly smaller
stencil in the right of Figure 6.7), or the use of a “corner-centered” scheme based purely on short
differences, which would allow to maintain the more narrow stencil in Figure 6.6. Both of the
these latter choices are well-known to reduce to inherently unstable schemes in the isotropic case
though, and are therefore likely not to be recommended.
Besides the higher computational complexity generally associated with broader stencils, they
raise, in combination with the obstacle potential, an additional difficulty related with the discus-
sion in Subsection 6.2.3. As already discussed there, by the discontinuity of the second derivative
of the basic one-dimensional phasefield profile one expects a O(1) error in the discretization of
the second derivative for any stencil crossing the transition from the interface to the bulk. While
this was shown not to reduce the second-order convergence in the one-dimensional case, the de-
gree to which this effect enters the calculation of the profile was nevertheless also seen to have a
notable impact on the numerical precision. Similar effects will also arise in a higher-dimensional
setting and will, with a broader stencil, affect more points depending on their relative positioning
with respect to this transition54.
Unless an energy-based discretization is necessary due to e.g. the use of a particular algorithm,
a discretization of the gradient energy contributions as in Equation (6.86) and either Equation
(6.87) or Equation (6.89) therefore seems to be the preferable choice.

◇

54Recall that the numerically most benign situation in Section 6.2.3 was the one where the stencil of the last
“mobile” point with 0 < φi < 1 is essentially completely within the expected interface region, whereas the - quite
high - error at the first bulk-point is only seen indirectly in the error in the multipliers for the constraint. For
a five-point stencil in a given direction, the one for the last inner point will always have to stretch across the
transition into the bulk by roughly one grid spacing, and is therefore likely to be associated with significant
numerical errors.
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Figure 6.7: Difference stencils for a face-based (left) and cell-based (right) variational difference
scheme for anisotropic gradient energy densities.

Dealing with Many Phases and the LROP Approach

In contrast to the mostly superficial difficulties from Subsection 6.3.3 (wich are relatively easy
to handle with in both a reduced and non-reduced fashion), a very crucial difficulty in the com-
putational treatment of multiphase as compared to two-phase problems lies in the a priori very
high computational and memory requirements associated with the large number of phases which
are in many cases necessary for the simulation of realistic microstructures (with represenative
samples often consisting of thousands of grains).
Firstly, it is clear that, without further modifications, the memory requirements will increase
linearly with the number N of phasefields required for the description of a given problem. Sec-
ondly, not only are there then also N equations to be solved (e.g. Equation (6.73) or Equation
(6.75)), but they are in addition based on the calculation of two-phase interactions for a and
even triple-phase interactions in the bulk potentials (see e.g. Equation (6.7) or (6.8)), and thus
a priori lead to a cubic dependence of the calculation time on N .

A by now widely adapted manner for maintaining a roughly constant storage space and
computational cost despite a large total number of phases is, at least in combination with an
obstacle-type potential, the use of a locally reduced order parameter (LROP) approach
([40]). The underlying idea is that, based on stability considerations for multiphase-regions, one
does not expect for regions with more than a few phases to be stable. If not initially present,
such regions are therefore also not expected to arise naturally within the simulation, and one
usually only has to deal with a very moderate maximal number l of phases which are acutally
present at any given point.
This is extremely useful from a compuational point of view as it motivates replacing the storage
of all phasefields with a scheme where one instead, for each computational cell, only stores the
indices and the values of those phases with non-vanishing φ-values. While this a priori only
allows reducing the memory requirements from O(N) to O(1) with respect to the number of
phases, this storage scheme in addition also enables the reduction of the calculation time to a
roughly constant one, regardless of the number of phases.
This is essentially due to the following two observations. On the one hand, the gradient energy
contributions by construction vanish for all those phase-pairings for which at least one of the
phases is locally constant at 0, as are the contributions to the equations of the other phases for all
those α with φα = 0. Even though these phases themselves do experience a contribution by the
other phases, the obstacle potential is designed to provide a strong counter-force to deviations
of the local φ-values different from 055. This in combination with the general dominance of the

55As well as from 1, but this is only of interest for at most one phase.
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a- and w-terms in the phasefield functional is almost always (see Remark 79) sufficient to ensure
that a locally “non-existent” phase which does not interact with its neighborhood through the
non-local a-term will have to remain at 0. In addition, the multipliers due to the sum-constraint
and the positivity constraint are such that the other phases remain unaffect by simply a priori
skipping over the calculation of the new values of these phases as well as their contributions
to the reminaining equations. This can be made use of in terms of a classification scheme
which identifies the phases actually present within a small neighborhood (depending upon the
stencil) of a given cell and completely skips all calculations for the other ones. This classification
is highly efficient in combination with the storage scheme above, as this simply amounts to
running through the stored φ-indices of a fixed number of neighboring cells for checking which
phases need to be considered, and thus is an operation of runtime O(1) with respect to the
phases, with a reduction of the cost of the actual computations to the same order.
Remark 78. This preclassification can - and is, at least in the sense of which cells require any
calculation at all, often worth the effort even in the two-phase case - in principle also be done
even if all phases are stored. While this does allow a reduction of the actual calculation time
to the same level as with the LROP-based scheme above, there are still two major drawbacks
as compared to the storage scheme above once the number of phases grows even moderately
large. Firstly, determining which phases should actually be considered as being present is still
an operation of complexity O(N) as one is forced to run through all possible ones. Secondly, even
if this classification does not require any real calculations (essentially reducing to a comparison
of φ-values with 0), it can still incur a significant cost in run-time due to both a large number
of conditional statements and the comparatively slow access to main memory56. ◇

While the storage could in principle also be done in an adaptive fashion with the scheme
adjusting according to the local requirements, having an a priori estimate of the maximal number
of phases one expects to locally coexist - either based on l as above or simply by experience for
a particular type of setting - allows both a simplification in the implementation and an increase
in the efficiency by using a less dynamic memory layout designed to provide sufficient space
for locally storing a fixed number l′ of phases only. In combination with the preclassification
outlined above, this leads to a very performant implementation capable of handling an essentially
arbitrary total number of phases with a roughly constant computational cost (see [40] and [67]
for a more detailed discussion on various aspects of this approach).
Remark 79. It is clear that the approach above is not rigorous in the sense that one is not
guaranteed to actually remain below any local prefixed number l′ < N of phases at all times.
Even in settings specifically designed to lead to an initial violation of this bound, simulations
with e.g. l′ = 6 or l′ = 8 typically lead to practically identical simulation results after a potential
(but very short) transient which quickly forces an elimination of the “excess” number of phases.
One example of such a setting is starting an N -phase simulation with a simple sharp interface
between two given phases. This initial jump discontinuity in the phases leads to a discrete δ′(x)-
type contribution and thus a term of order O( 1

(∆x)2 ) to the cells neighboring the interfaces due to
the second-order derivative in the divergence-term −∇ ⋅ ( ∂a

∂∇φ). Unless ε is chosen unrealistically
small, this term will initially dominate the contribution by the bulk-potential and will, at least
for an explicit time-discretization, enforce the appearce of all N phases trough the Lagrange-
multiplier Λ in Equation (6.73) resp. more indirectly but based on the same effect through the
mobility matrix M in Equation (6.75).
This can e.g. be seen by considering a very simple isotropic one-dimensional setting for which
there is a sharp transition between a bulk-phase for α = 1 up to the cell i to a bulk-phase for
α = 2 starting at i + 1, where, for simplicity of notation, it will additionally be assumed that all
γαβ are equal to the common value γ.

56This depends of course also very significantly upon the details of the particular implementation and simulation
setup (i.e. for example favorable cache effects). Regardless of this, it is an issue which is strongly mitigated using
the LROP approach.
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Together with the initially sharp transition, the evaluation of the simplified expression for qαβ

in Equation (6.84) leads to the only non-zero terms begin q12
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= 0 regardless of the phases for all j ≠ i. For the divergence-term ε∇⋅( ∂a
∂∇φα ) =

−2γε∑β≠α q
αβ

i+ 1
2

discretized as in Equation (6.80), the only non-zero contributions arising through
the divergence-part in the cell i are given by − γε

(∆x)2 for the phase α = 1 and γε
(∆x)2 for the phase

α = 2 since both φ1
i+ 1

2

and φ2
i+ 1

2

equal 1
2
. From Equation (6.69), it is also obvious that one has

∂w
∂φα

(φi) = 0 if α = 0 and ∂w
∂φα

(φi) =
16γ
π2 for α ≠ 1. The only remaining relevant term57 is given

by ε ∂a
∂φα

= 2γε∑β≠α q
αβ dφβ

dx . Discretizing this expression for example as in Equation (6.82), the
sum on the lower face in cell i is 0 and the upper one equals 2γε

(∆x)2 if α = 1 or α = 2 and 0

otherwise. Averaging over both faces and combining the result with the remaining expressions
above, it follows that one has

ε(∇ ⋅
∂a

∂∇φα
−
∂a

∂φα
) −

1

ε

∂w

∂φα
=̂

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

( −
γε

(∆x)2 −
γε

(∆x)2 ) − 0 = − 2γε
(∆x)2 , α = 1,

(
γε

(∆x)2 −
γε

(∆x)2 ) −
16γ
π2ε

= −
16γ
π2ε

, α = 2,

−
16γ
π2ε

else

and thus, if none of the µα differs from zero (as will be seen to be the case below )

Λ = −
2γε

N(∆x)2
−
N − 1

N

16γ

π2ε
.

In total, the right-hand sides in Equation (6.73) are therefore given by

−gα −Λ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

N−1
N

( −
2γε

(∆x)2 +
16γ
π2ε

) , α = 1,

1
N
(

2γε
(∆x)2 −

16γ
π2ε

) , α ≠ 1,

and are strictly positive and the same for all phases with φα = 0, leading to the appearence of
all phases. ◇
Remark 80. Even though the example in the previous remark shows that there are certain risks
associated with a priori assuming a result instead of performing the actual calculation, its intent
is not at all to argue against the use of such an approach. Firstly, it is from a computational
point of view essentially the only way one can reasonably perform simulations involving more
than a few phases. As such, the use of a (somewhat more conservative) LROP-type scheme
may even be justified when using a well-potential, despite the fact that one expects all phases
to spread over the entire domain and thus the introduction of a persistent error due to the
necessity of forcing phases with φα ≈ 0 to zero. With respect to the other sources of error
enforced by computational constraints - both numerical and in particular through the use of an
often artificially large interface - this cut-off may in fact still lead to better results by allowing
the use of higher resolutions and thus smaller interface widths.
Secondly, despite the algorithm delivering “wrong” results during one or a few time-steps, the
unexpected appearance of all phases is essentially an unphysical artefact due to an interplay of
the difficulties associated with modeling multiphase interactions combined with a very irregular
initial setting and is therefore - even though strictly speaking incorrect - preferable from a
physical point of view.
Nevertheless, one has to be very careful when skipping calculations or a priori excluding phases,
as this can, depending on the setting, also either hide less well-known difficulties of the model
or even lead to critical failures of the calculations58. ◇

57Unless the driving force is very strong, it plays no role in the argument here.
58Such failures are normally not due to a preclassification and the use of a restricted storage scheme alone, but

its combintation with a second not fully justified “optimization”.
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Projection-Based Alogrithms

A popular approach for the time-discretization of dynamic problems subject to additional con-
straints is the use of projection-based schemes59. In these, one first obtains a prediction such as
it would result from the equation obtained by partially or completely “ignoring” the constraint.
Since this prediction need not be compatible with the constraints, it is then, in a second step,
projected back onto the admissible set.
The basic idea of this two-step procedure is to separate the total problem into a sequence of two
a priori simpler problems. The first one (i.e. obtaining the prediction) is then dependent upon
the equation itself, whereas the second projection step is primarily tied to the structure of the
constraint set and can therefore be performed in a relatively “generic” fashion without knowing
the details of the various contributions arising in the equation itself.
While this cursory description is for the most part true in the sense that the projection operation
does not have to take the precise nature of any fixed contribution to the equation (such as e.g.
the actual expressions for the gβ = dFε

dφ if discretized in an explicit manner) into account, the
combined updates must remain compatible with the underlying first-order necessary conditions
characterizing the minimizer and thus, in the phasefield case, the KKT-condition in Equation
(6.63). This implies that the projection must be constructed in a manner compatible with the
way the prescribed forcings affect the prediction in the absence of the constraints. For this
reason, while essentially independent of the “energy” underlying the gradients, it does depend
crucially upon the chosen dynamics for the evolution.

This somewhat abstract difficulty as wells as some related issues are best understood by
considering an example. An in practice very relevant one in the phasefield context is given by an
explicit time-discretization of the differenct choices of dynamics considered in Subsection 6.3.2.
For the two choices of either a scalar proportionality of the dynamics as in Equation (6.72) or
the mobility-matrix based one in Equation (6.77), an “explicit” discretization leads to

τ (n)ε
φ(n+1)

−φ(n)

∆t
= r(n) −Λ(n′)e +µ(n′) (6.90)

resp.

ε
φ(n+1)

−φ(n)

∆t
=M(r(n) +µ(n′)

) (6.91)

where τ (n) ∶= τ(φ(n)
) and r(n) denotes an appropriate discrete version of the negative gradient

contributions from dFε
dφ in Equation (6.74). The n′ for the multipliers is used to indicate some

additional freedom in the choice and interpreation of their corresponding “time-step”.

One of the most popular algorithms for a constrained gradient-descent is to actually not con-
sider (6.90) and (6.91) and the associated question of the choice of multipliers directly. Instead,
the projected gradient descent algorithm corresponds to the the splitting approach above in
its purest form, where one first generates a prediction φ̂

(n+1)
by completely ignoring the con-

straints through φ̂
(n+1)

= φ(n)
+ ∆t
τ(n)ε

r(n) resp. φ̂
(n+1)

= φ(n)
+∆tMr(n), and then projects this

prediction back onto the admissible set. In order to be compatible with Equation (6.90), a direct

comparison shows that the change δφ ∶= φ(n+1)
− φ̂

(n+1)
induced by the projection operation has

to satisfy

φ(n+1)
= φ(n+1)

− φ̂
(n+1)

+ φ̂
(n+1)

= δφ +φ(n)
+

∆t

τ (n)ε
r(n) = φ(n)

+
∆t

τ (n)ε
(r(n) −Λ(n′)e +µ(n′))

59Two particularly well-known examples for this approach are provided by the pressure-projection schemes in
fluid-dynamical simulations and the popular projection-based approach in elasto-plastic simulations (where it is
usually only used as a substep of a global more complex algorithm).
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and thus δφ = ∆t
τ(n)ε

( − Λ(n′)e + µ(n′)), whereas the analogous calculation for Equation (6.91)
shows that δφ has to be of the form δφ =Mµ(n′).
This illustrates two points. On the one hand, the difference in structure of the increments due
to the projection clearly indicates that the appropriate projection operation in both cases is
different, and thus the dependence on the dynamics already discussed above. The appropriate
projector operator for the (scalar) kinetic coefficient is the one based on the Euclidian norm (or
some multiple thereof), since60

φ(n+1)
= min
φ∈GSN

1

2
∣φ − φ̂

(n+1)
∣
2

⇔

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

φ(n+1)
= φ̂

(n+1)
− Λ̄e + µ̄,

µ̄ ≥ 0, µ̄αφα = 0,

φ ∈ GS
N ,

and it thus leads to the desired structure of δφ. In contrast, when the dynamics are based on the
mobility-matrix M , the projection should be chosen as the one with respect to the semi-norm
induced by the pseudo-inverse M † of M , as, if φ̂

(n+1)
has a zero average, this implies that

φ(n+1)
= φ̂

(n+1)
+Mµ̄ and thus and increment δφ of the required form61.

On the other hand, it also explains one of the main reasons for the high popularity of the projected
gradient descent algorithm, namely its particularly simple formal structure. Whereas a direct
discretization of the dynamics in equations (6.72) or (6.77) as for example in equations (6.90)
and (6.91) requires some considerations with regards to the multipliers, these can, in the explicit
case, be completely disregarded and will be generated implicitly through the projection operator.

An alternative approach - consistent with a continuous interpretation if starting from a point
satisfying the constraints - would be to instead choose Λ and µ such that the evolution is
restricted to the tangent cone of the admissible set at the current point, and thus, due to the
scalar proportionality on the left-hand sides of equations (6.90) resp. (6.91), a projection of the
right-hand sides onto this tangent space instead of the projection of the result onto the admissible
set itself. This tangent space is given by all “directions” d such that ∑α dα = 0 for satisfying the
sum-constraint and dα ≥ 0 if φα = 0 and arbitrary otherwise in order not to move a phase at 0
below zero.
Projecting r with respect to the Euclidian norm, i.e. minimizing 1

2
∣d − r∣

2
over this admissible

set, the resulting direction can similar to above be written as d = r − Λ̄e + µ̄. Here µ̄ is subject
to two “complementarity” conditions, namely µ̄α = 0 if φα > 0 - this is known in advance and
is thus a purely artificial one for being able to use an (unnecessary) full vector of multipliers
for simplifying the notation - and µ̄αdα = 0 for all α with φα = 0. Similarly, a projection of
Mr with the respect to the semi-norm induced by M † leads to the analogous conclusion with
d =M(r + µ̄) with µ̄ subject to the same conditions.

Remark 81. This is in a sense the “most explicit” discretization possible as it amounts to a
projection of the given right-hand sides r and is thus a priori completely independent of φ(n+1),
and the multipliers will therefore be donoted with n′ = n. Nevertheless, it has the disadvantage
that, even though the projection of r is a feasible direction, it may only be so for a very restricted
time-step. More precisely, a negative total right-hand side for a phase α with φα ≈ 0 can force
this phase below zero in the next time-step, unless ∆t is chosen smaller than the one defined by
the break-point where 0 = (φα)

(n)
+

(∆t)αb
τ(n)ε

(r(n)−Λ(n)+µ(n)) and the scheme will therefore only
lead to feasible values in the next time-step if ∆t ≤ minα(∆t)

α
b . Even though the evaluation of

the right-hand side can thus be made completely independent of the next time-step, this simply
60Due to the the convexity of the norm, the first-order condition on the right being both necessary and sufficient.
61In contrast to the Euclidian case, this statement is a little more technical. As will be discussed in more

detail in Section 6.3.3, this projection is still well-defined despite the use of the semi-norm and the lack of actual
invertibility of M does in addition not cause any major practical difficulties.
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amounts to shifting the responsibility for maintaining the feasibility to the choice of ∆t.
This strategy is not by itself a bad idea and is in a similar form used as part of some optimization
algorithms such as e.g. the reduced gradient method [58]. The major disadvantage here though
is that the choice of ∆t has global effects as it will have to be the same for all cells - and thus
also has to be chosen based on the global minimum of the breakpoint of all phases in all cells
- in order to be admissible for an actual time-discretization. If there is no restriction to map a
physical evolution (i.e. in the current setting if every cell were allowed to use their own time-
step), this can be a relatively convenient way of exploring a potential solution on the “faces” of
the admissible set. ◇

The two choices above are clearly not the only ones possible. In particular, one can e.g.
choose to explicitly maintain an estimate Λ in the prediction step within the gradient projection
scheme, i.e. to set φ̂

(n+1)
= φ(n)

+ ∆t
τ(n)ε

(r(n) − Λ) and then project the result back onto the
Gibbs-simplex. As the sum-constraint is always “active”, this is easily shown to have no effect
on the final result, regardless how good or bad the choice of Λ.
Nevertheless, using e.g. the estimate Λ = 1

N ∑α r
α corresponding to the sum-constraint alone

can be useful in practice as it automatically covers the multiwell-case and can, in a somewhat
modified form, also be helpful in combination with a preclassification scheme such as in the
LROP approach. In particular, this Λ is always a lower bound for the (scaled) actual multiplier
resulting from the projection step62. As will be discussed in more detail in the next section,
together with the non-negativity of µ, this ensures that any φ-value satisfying φα ≤ 0 before
the projection operation will necessarily also satisfy φα = 0 after the projection.
The situtation for µ is somewhat more difficult. In fact, as long as an estimate of µ is compatible
with the complementarity condition and such that, if included in the predictor step, it does not
affect the inequality constraints which are ultimately active, the precise values are again irrelevant
and will be “complemented” by the projection operation in a way which leads to the same final
results for φ(n+1). It is intuitively clear that this is not at all a given, since one can e.g. choose
some φα at zero and force it to an arbitrarily high value in the prediction step by simply using
a sufficiently large estimate for µα.
An admissible choice - closely related to the preclassification schemes - is the use of Λ and µ
as they would result from the projection of the gradient itself discussed above. The obvious
advantage of this choice is that all phases for which this is compatible with the complementarity
between dα and µα (and for those phases only!), the φ-values initially at 0 will remain there and
thus need not be updated.

Remark 82. As Remark 79 shows though, the correctness of this approach depends crucially
upon these complementarity conditions actually being satisfied, since this example leads to a
prediction where all phases at 0 have a positive right-hand side. Interpreted in terms of a
“prediction step”, the (counter)example in this remark can be interpreted as a partial projection
of the gradient with respect to all inequality constraints for the φα at zero except for the one
which is classified as active due to its appearence in the neighboring cell. Due to the positivity
of the right-hand side for all these phases in the presence of the sum-constraint, this projection
would require negative µα’s to ensure that they remain at zero, i.e. dα = 0. Checking whether
complementarity actually holds would require maintaining the most expensive calculations due
to the necessity of disposing of the right-hand sides rα, and thus completely eliminates any
advantages in terms of the computational cost.
Similar to the discussion in Section 6.3.3, it is always, in one form or another, the ability to
perform this type of speculation in “good conscience” due to the favorable properties of the
obstacle-potential which leads to phasefield codes being able to handle very large problem sizes -
both in terms of the domain sizes and in particular with respect to the number of unknowns per
“cell” in terms of N - as compared to many a priori simpler nonlinear programming problems. ◇

62A similar obersvation was already made for the steady-state case in Equation (6.65).

102



Remark 83. Note that the main feature making the projected gradient algorithm attractive in
the phasefield case is that it is based on a relatively simple projection with a purely local ad-
missible set and can thus essentially be evaluated on-the-fly as one runs through the domain to
update the phasefield values. This in particular eliminates the necessity for storing the associ-
ated multipliers Λ and µ63.
In contrast, a straightforward extension of this two-step procedure above to situations where the
dynamics are modified through e.g. either the use of some semi-implicit or implicit time-stepping
scheme or a “lightweight” preconditioning of the basic gradient descent scheme would not enjoy
the same favorable features. In the simplest case, this leads to a scheme where a non-local
s.p.d. matrix A−1 essentially replaces the action of M on the right-hand sides. Due to this, the
appropriate projection is then a non-local one with respect to the norm induced by A, which is
on the one hand a siginificantly more difficult projection operation and on the other hand will
generally necessitate actually storing the multipliers required “internally” by the projection.
Therefore, other algorithms are generally more appropriate in this case. One of the earlier pop-
ular choices is given by a nonlinear extension of the standard SOR-smoother for linear equations
through a projected SOR (pSOR) algorithm (see [17] and e.g. [21] for a discussion in the
phasefield context). The basic idea is the use of a point-relaxation process, which consists in
considering each cell at a time and determining φ(n+1) as the projection of the value φ∗ which
would allow to solve the equations within this cell (or, in the nonlinear case, an approximation
thereof using e.g. a single Newton-step) if the values of the phasefield in all other cells are taken
as fixed. This procedure can then be further accelerated by, instead of projecting φ∗ itself, pro-
jecting the overrelaxed value (1 −ω)φ(n)

+ωφ∗. Even though this procedure does again require
the use of a weighted projection instead of the Euclidian one for consistency with the multipliers,
it maintains the main advantage of the strict locality of the projections.
More recently, various alternative approaches have been considered (see e.g. [60], [12], [32], [30],
[31] and [33]) which avoid the main drawback of the pSOR algorithm, namely that the strict
locality of this approach, while responsible for its simplicity, can also be the primary limiting
factor for its convergence rate. ◇
Some Algorithmic Aspects of the Projection onto the Gibbs-Simplex

In order to complete the description of the projected gradient algorithm above, it still remains
to clarify how the projection operation of the prediction φ̂ can actually be performed.
This is straightforward when the only constraint is the sum-constraint ∑Nα=1 φ

α !
= 1 as it suffices

to subtract the average deviation from φ̂, i.e. PΣ1
(φ̂) = φ̂ − 1

N ∑
N
α=1 φ̂

α.
Alternatively, at least if one has ∑α(φα)

(n)
i = 1, the same result can also be obtained by directly

subtracting the average of the “right-hand sides” in the simplified form of the update rule (6.90)
without the additional factor µ, i.e. by setting

τ (n)ε
φ(n+1)

−φ(n)

∆t
= r(n) − (

1

N
(∑
α

(rα)
(n)

) − 1)e

which then actually corresponds to the use of the projection of the gradient.
In contrast, when the predicted φ-values need to be projected back onto

GS = {φ ∶∑
α

φα = 1, 0 ≤ φα, α = 1, ...,N}, (6.92)

the projection operation is generally more difficult and can in particular not be put into a
convenient explicit formula.

63While this is unlikely to be an issue in the case of the (phase-independent) multiplier Λ, µ is a vector consisting
of phase-specific entries and therefore potentially problematic when a large number of phases are present. As
one of the principal advantages of explicit schemes is (besides their simplicity) their comparatively low memory
requirement, this a quite convenient property.
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The Euclidian Projector As already indicated above, the necessary and sufficient condition
characterizing the Euclidian projection as the minimizer φ = argminψ∈GS

1
2
∣ψ − φ̂∣2 are given by

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

φ = φ̂ −Λe +µ,

µ ≥ 0, µαφα = 0,

φ ∈ GS
N .

(6.93)

A summation over the entries of the first equation togehter with ∑α φα = 1 implies in particular
that the mulitplier Λ for the sum-constraint is given by

Λ =
1

N
∑
α

(φ̂α − 1 +∑
α

µα), (6.94)

and thus that Λ is not given by the simple formula corresponding to the sum-constraint alone
unless the multipliers µ happens to vanish.
Nevertheless (a point which has also already been noted before) defining Λ(0) ∶= 1

N ∑α φ̂
α − 1,

the positivity of the µα implies that one always has Λ ≥ Λ(0). In addition, any phase α in the
set of active constraints A ∶= {α ∶ φα = 0}, consisting of those which are actually at 0 after the
projection, satisfies 0 = φ̂α −Λ + µα and thus

µα = Λ − φ̂α ≥ 0. (6.95)

In particular, any estimate (µα)
(n)

= Λ(n)− φ̂α for µα based on Equation (6.95) and a value Λ(n)

satisfying Λ(n) ≤ Λ is never larger than the actual value of µα, i.e. (µα)
(n)

≤ µα.
A repeated application of these two observations makes it possible to show that the following
very simply algorithm will determine the correct projection:

Algorithm 1. Input: φ̂.

1. Set φ(0)
= φ̂ and A(0) = ∅.

2. If φ(n)
∈ GS

N , stop.

3. Else:

• Find all new active phases δA(n) = {α ∉ A(n) ∶ (φα)
(n)

≤ 0} and update the set of
active constraints: A(n+1) = A(n) ∪ δA(n).

• Calculate δΛ(n) = − 1
N−∣A(n+1)∣ ∑α∈δA(n) (φ

α)
(n)

.

• Update φ: For all α ∈ A(n+1) set (resp. keep) (φα)
(n+1)

= 0. For all inactive con-

straints, α ∉ A(n+1), set (φα)
(n+1)

= (φα)
(n)

− δΛ(n).

• Return to step 2.

One then has the following

Lemma 4. Given any φ̂, Algorithm 1 determines the vector φ = argminψ∈GS
1
2
∣ψ − φ̂∣2 corre-

sponding the Euclidian projection in at most N − 1 steps.
The sets A(n) increase monotonically to the correct set A of active constraints, and the values
of the corresponding multipliers Λ and µ are given by

Λ =∑
n

δΛ(n)
=

1

N − ∣A∣
( ∑
α∉A

φ̂α − 1) and µα =

⎧⎪⎪
⎨
⎪⎪⎩

0 α ∉ A,

Λ − φ̂α α ∈ A.
(6.96)
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Proof. The crucial point here are some useful monotonicity-properties. Given any prediction
A(n) of the active set which does not contain a phase falsely classified as being zero - and this is
certainly true for A(0) = ∅ - it follows from φα = 0 if α ∈ A(n) that the sum-constraint also has to
be satsifed by the remaining N−∣A(n)∣ phases. A simple summation over all of these phases in the
first line of Equation (6.93) shows that 1 = ∑α∉A(n) φ

α = ∑α∉A(n) φ̂
α − (N − ∣A(n)∣)Λ+∑α∉A(n) µ

α

and thus, similar to Equation (6.94), that

Λ(n)
=

1

N − ∣A(n)∣
( ∑
α∉A(n)

φ̂α − 1 + ∑
α∉A(n)

µα). (6.97)

As before, by the positivity of the µα, this implies that Λ ≥ 1
N−∣A(n)∣(∑α∉A(n) φ̂

α − 1) =∶ Λ(n).

Setting φ(n+1)
∶= φ̂

(n)
− Λ(n)e, it follows that φ(n+1)

≥ φ̂ − Λe, where the inequality is to be
understood componentwise. In particular, for all α with (φα)

(n+1)
≤ 0 one necessarily also has

φ̂α − Λ ≤ (φα)
(n)

− Λ(n) ≤ 0. This implies that the constraint of any such phase is acutally
active, i.e. α ∈ A and φα = 0, since, assuming this is not the case, the complementary condition
enforces µα = 0 and thus by the first-order necessary condition φα = φ̂α − Λ, contradicting the
non-negativity of φα. Adding all such phases to the set of active constraints A(n+1) at the next
iteration therefore again leads to a set satisfying A(n+1) ⊂ A.
This new estimate of the set of active constraints further leads to the new estimate

Λ(n+1)
=

1

N − ∣A(n+1)∣
( ∑
α∉A(n+1)

φ̂α − 1) =
1

N − ∣A(n+1)∣
( ∑
α∉A(n)

φ̂α − 1) −
1

N − ∣A(n+1)∣
( ∑
α∈δA(n)

φ̂α)

for the Lagrange multiplier for the sum-constraint, where the summation was artificially split
into those phases already in A(n) and those in δA(n) = A(n+1) ∖A(n). Using

1

N − ∣A(n+1)∣
=

1

N − ∣A(n)∣

N − ∣A(n)∣

N − ∣A(n)∣ − ∣δA(n)∣
=

1

N − ∣A(n)∣

⎛

⎝
1 +

∣δA(n)∣

N − ∣A(n)∣ − ∣δA(n)∣

⎞

⎠

=
1

N − ∣A(n)∣

⎛

⎝
1 +

∣δA(n)∣

N − ∣A(n+1)∣

⎞

⎠
,

the first term can be rewritten as

1

N − ∣A(n+1)∣
( ∑
α∉A(n)

φ̂α − 1) =
1

N − ∣A(n)∣
( ∑
α∉A(n)

φ̂α − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Λ(n)

+
∣δA(n)∣

N − ∣A(n+1)∣

1

N − ∣A(n)∣
( ∑
α∉A(n)

φ̂α − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Λ(n)

in terms of the previous estimate Λ(n), thus showing that

Λ(n+1)
=Λ(n)

+
∣δA(n)∣

N − ∣A(n+1)∣
Λ(n)

−
1

N − ∣A(n+1)∣
( ∑
α∈δA(n)

φ̂α) = Λ(n)
−

1

N − ∣A(n+1)∣
( ∑
α∈δA(n)

(φ̂α −Λ(n)))

=Λ(n)
−

1

N − ∣A(n+1)∣
( ∑
α∈δA(n)

(φα)
(n)

),

where the last summand is precisely the definition δΛ(n) = − 1
N−∣A(n+1)∣(∑α∈δA(n) (φ

α)
(n)

) in

algorithm (1). As all (φα)
(n)

in δA(n) are non-positive, it on the one hand is also clear that
δΛ(n) is non-negative, and the Λ(n) indeed form an increasing sequence, and on the other hand,
repeating this calculation, that Λ(n) = ∑m<n δΛ

(m).
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Finally, the algorithm is terminated once φ(n) contains no further non-positive entries except
for those in A(n). In addition, the φ(n) always satisfy the sum-constraint by the construction of
δΛ(n) and one therefore has φ(n)

∈ GS
N . All that remains to be verified is therefore that all the

(µα)
(n)

defined as in Equation (6.96) based on Λ(n) and A(n) are indeed positive. This is clear
though by the mononotonic increase of the Λ(n) and the fact that a phase is only added to A(m)

provided it satisfies, due to the equality (φα)
(m)

= φ̂α −Λ(m) by the summation formula for the

δΛ, 0 ≥ φ̂α −Λ(m) ≥ φ̂α −Λ(n) for all n ≥m, therefore ensuring (µα)
(n)

= Λ(n) − φ̂α ≥ 0.
That this has to happen in at most n steps is obvious as, starting from A(0) = ∅, each iteration
adds at least one phase with φα = 0, of which there can be at most N − 1 for any vector in GSN .

Remark 84. Note that, combining the description in Algorithm 1 and the proof of Lemma 4,
there are in fact a variety of ways this algorithm can be implemented in an “equivalent” fashion.
In particular, one can replace the incremental formulation in terms of the δΛ(n) and the φ(n)

by a direct evaluation based only on φ̂ and Λ(n) = 1
N−∣A(n)∣(∑α∉A(n) φ̂

α − 1 +∑α∉A(n) µ
α) as in

Equation (6.97). In fact, the φ(n) are not really needed directly in the algorithm, since they only
serve to judge whether φ̂α −Λ(n) ≤ 0 for any α ∉ A(n) in order to determine the update δA(n) of
the set of active constraints. This can also be done directly based on this formula for Λ(n) and
φ̂, with φ only being generated at the end through

φα =

⎧⎪⎪
⎨
⎪⎪⎩

0 α ∈ A(n),

φ̂α −Λ(n) (6.98)

once there is no new phase added at the step n.
In addition, even though one can add all phases with (φα)

(n)
≤ 0 to the new prediction of A, one

does not have to, and can e.g. only add the first such one that one encounters and then enter the
next step of the algorithm (this being the original implementation in the Pace3D-framework),
either in an incremental fashion using the δΛ(n) and the φ(n) or in a non-incremental one based
directly on φ̂ and Λ̂(n). Which version is more favorable computationally depends on a number
of practical factors. While taking all newly active constraints into account at the same time does
certainly deliver the lower number of total iterations, simply “skipping” the remaining checks and
restarting with an updated (and increased) estimate of Λ increases the chances of more quickly
identifying another phase which will ultimately have to be added to A anyway and can thus also
be advantageous.
Besides a pure iteration count and the number of arithmetic operations this involves, the actual
run-time also depends on the time spend traversing the loops64 in addition to the arithmetic
operations themselves. ◇
Remark 85. It should also be noted that the projection above (regardless of its actual imple-
mentation) interplays very favorably with a preclassification of the phases and an LROP-based
approach. More precisely, if, instead of actually using all phases in this algorithm, one a priori
can already exlude a number of those since they are already “known” to be zero, one can simply
restrict the projection to the reduced subvector of phases for which this is not a priori clear
without any effect on the result. In practical terms, this simply corresponds to taking only those
phases into account for the algorithm, and replacing the total number N of phases with the
number Ñ of phases which are not a priori fixed at 0. ◇

64For example skipping over phases in A(n) requires an additional conditional statement unless the phase is
directly eliminated through an LROP-type indirect indexing. If based on this indirect indexing, eliminating a
phase at 0 necessitates a rearrangement of indices, which can be an expensive operation if there are a large number
of them and the one to eliminate appears very early.
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The Weighted Projector Induced by the Mobility-Matrix M The projection is - both
on a theoretical and practical level - somewhat more difficult when the dynamics are based on the
use of the mobility-matrixM as in Equation (6.91). As discussed in the previous subsection, the
compatibility of the projection-based approach (at least in the final steady state) - requires that

the projection φ(n+1) and the prediction φ̂
(n+1)

be related through φ(n+1)
= φ̂

(n+1)
+Mµ(n+1)

with µ(n+1) subject to the same complementarity conditions with respect to the (a priori unkown)
vector φ(n+1) as in the Euclidian case, at least if φ̂ is such that it satisfies the sum-constraint65.
In analogy with the case of invertible matrices66 and dropping the time-indices corresponding
to the “outer” algorithm, it will be seen below that this is essentially the first-order necessary
condition corresponding to the minimization problem

φ = argminψ∈GSN
1

2
(ψ − φ̂) ⋅M †

(ψ − φ̂),

where M † is the pseudo-inverse of M .

Remark 86. Recall that M †
(ψ − φ̂) for the Moore-Penrose pseudo-inverse is defined as the

element ζ of smallest norm satisfyingMζ = ψ−φ̂. Since the kernel ofM consists of the constant
vectors only as long as all mαβ are strictly larger than 067, this smallest norm-condition is not
even necessary as long as φ̂ has the correct average as φ − φ̂ is then a vector of zero average,
meaning that the average of ζ plays no role for the semi-norm above. This is not true anymore
if ∑α φ̂α ≠ 1 though. ◇

A straightforward differentiation of the corresponding Lagrangian L(φ,Λ,µ) = 1
2
(ψ − φ̂) ⋅

M †
(ψ− φ̂)+Λ(∑α ψ

α−1)−µ ⋅ψ shows that the first-order necessary condition for this problem
is given byM †

(φ−φ̂) = −Λe+µ with satisfying the complementarity conditions µ ≥ 0, µαφα = 0.
Multiplying by M , it follows that

MM †
(φ − φ̂) =M( −Λe +µ) =Mµ.

This is not quite the same as the φ = φ̂ +Mµ as one has MM †
= PRange(M) (see e.g. chapter

3 in [8]). By the fundamental theorem of linear algrebra (Theorem 1) with m = n, Range(M)⊕

Ker(M) = Rn and since the kernel of M consists of the constant vectors only, it follows that
φ − φ̂ differs from Mµ only through a constant vector of the form −Λe, i.e. the the projected
vector actually has to satisfy

φ = φ̂ +Mµ −Λe. (6.99)

Remark 87. It is not overly surprising that the sum constraint leads to the appearence of a
multiplier Λ in a similar manner as in the Euclidian case, i.e. outside of M since M has no
manner of changing the average which nevertheless has to be the correct one due to the admissible
set.

65While this is due to the structure of M normally being ensured by the dynamics, provided the initial
phasefield-vectors are compatible with this constraint, this can cause some problems in combination with a too
low number of phases which can be stored in the LROP-approach. Even if the storage space is sufficient for
actually storing φ(n+1), this need not be the case for φ̂

(n+1)
which may contain some phases below zero which

would then be eliminated by the projection.
66Recall that M is a singular matrix as it satisfies Me = 0, i.e. it vanishes on the constant vectors.
67This is a very natural assumption in the variational context as it is the only way of generally ensuring that

φ becoming stationary in combination with µ as above implies that one has actually found a local minimizer.
More precisely, if M only vanishes on the constant vectors, M(−g + µ) = 0, implies that g = −Λe + µ and
thus the first-order necessary condition in Equation (6.63). Nevertheless, one seeming advantage of the mobility-
based formulation in contrast to the one based on τ is that, in the prediction step, one can easily eliminate all
interactions between certain phases by simply setting mαβ = 0 without incurring a “division by zero”. Besides
its problematic implications with respect to any potential minimizing or maximizing phasefield, this simplicity
is highly misleading, since it causes some very tedious issues in the projection step. The strict positivity of the
mαβ , regardless of whether or not they are very small, will therefore be a standing assumption made here.
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In contrast to the Euclidian case, the correct value of Λ can be determined upon entry into the
projection operation, since - regardless of the values of µ due to Range(M) = Span{e}⊥ - a
simple summation shows that Λ = ∑α φ̂

α − 1. If φ̂ already satisfies the sum-contraint, it is then
obvious that Λ = 0 and can thus safely be ignored. If not, it nevertheless suffices to replace φ̂ by
φ̂ −Λe within the actual projection operation in order to obtain the correct result. ◇
Remark 88. This is one of the points where vanishing values of mαβ can cause serious issues.
Assuming e.g. there is a single phase β which is “disconnected” from the other ones, this adds
an additional base vector eβ to Ker(M) and, by symmetry, to Range(M)⊥. The conclusion
above therefore needs to be modified to φ = φ̂ +Mµ − Λe + λβeβ . As eβ ∈ Ker(M)⊥, there is
no influence of µ on the β-th entry of this equation, i.e. one has φβ = φ̂β −Λ + ηβ . This in itself
essentially leaves λβ undefined, provided it is such that φβ satisfies the non-negativity constraint.
It is only in combination with the definition of the pseudo-inverse - enforcing that M †

(φ − φ̂)
be the element of smallest norm satisfying this equation - that one is indirectly able to fix both
Λ and ηβ .
If the “basic” prediction of Λ is such that φβ remains non-negative, the smallest deviation in
norm is obtained for ηβ = 0 as this is the optimal way of distributing a difference in the sum
onto a vector (the norm involved in the pseudo-inverse being the standard Euclidian one here
and not a weighted one) and the previous formula for Λ remains valid. If Λ moves φβ out of
the constraint set though - either directly due to φβ < 0 or indirectly through φ̂β − Λ > 1 in
combination with the sum-constraint and the constraints on the other phases - ηβ has to be
adjusted in a manner similar to the role of µ in the Euclidian projection, except that one now
has to keep two bounds in mind.
Even though this issue can in principle be handled and the phase β is afterwards unaffected by the
determination of µ, this requires a rather complex “preprocessing” operation before considering
the original problem of the determination of the µ. The situation is of course much worse when
it is not a priori known that there is only a single disconnected phase but when there may be
one or several groups of disconnected phases. ◇

Whenever all mobilities are strictly positive, the projection can in fact be performed in a
manner relatively similar to the Euclidian case. More precisely, it will be shown in Lemma 5
below that this can be achieved through

Algorithm 2. Input: φ̂.

1. Set φ(0)
= φ̂ and A(0) = ∅.

2. If φ(n)
∈ GS

N , stop.

3. Else:

• Find all new active phases δA(n) = {α ∉ A(n) ∶ (φα)
(n)

≤ 0} and update the set of
active constraints: A(n+1) = A(n) ∪ δA(n).

• Update the estimate for µ by solvingMA(n+1)A(n+1)µA(n+1) = −φ̂A(n+1) , where (⋅)A(n+1)

denotes the restriction of the respective matrices and vectors to the index-set A(n+1).

• Update φ: For all α ∈ A(n+1) set (resp. keep) (φα)
(n+1)

= 0. For all inactive con-

straints, set (φα)
(n+1)

= φ̂ +∑β∈A(n+1)Mαβµβ = φ̂α −∑β∈A(n+1)mαβµβ .
• Return to step 2.

Remark 89. Note that, in contrast to Algorithm 1, it is now necessary to explicitly keep track
of the values of the multipliers µ as they affect the remaining φ-values differently due to the
non-uniform weighting by themαβ . This is due to the fact that, unlike for the Euclidian case, the
effect of each µα is not the same on all remaining phases due to the weighting and can therefore
not be “summarized” through the action of a single multiplier Λ. ◇
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The following analogue of Lemma 4 holds:

Lemma 5. Assume that the mobility matrix M is of the form

Mαβ
=

⎧⎪⎪
⎨
⎪⎪⎩

∑γ≠αm
αγ α = β,

−mαβ else

with mαβ =mβα > 0 for all α ≠ β.
Then, given any φ̂ satisfying ∑α φ̂α = 1 or being being “replaced” by φ̂− 1

N
(∑

N
α=1 −1)e, Algorithm

2 determines the weighted projection φ = argminψ∈GS
1
2
(ψ − φ̂) ⋅M†

(ψ − φ̂) in at most N − 1
steps.
The sets A(n) increase monotonically to the correct set A of active constraints, each of the
submatrices MA(n)A(n) is invertible, and the corresponding multiplier µ is given by µα = 0 if
α ∉ A and

µA = −M−1
AAφ̂A (6.100)

otherwise, all entries of this vector are non-negative, and φ is given by φ = φ̂ +Mµ.

Proof. The proof of this lemma is based on a very similar argument as the one of Lemma 4 in
combination with the favorable structure ofM , namely verifying that the set A is monotonically
increasing without ever falsely classifying a constraint as active and that the vector µ in Equation
(6.100) therefore has only non-negative entries and (by construction) is zero if φα > 0.
The crucial property ofM here is that it, even thoughM itself is only a (singular) M-matrix,
each of the submatrices MA′A′ with A′ strictly included in {1, ...,N} is a strictly diagonally
dominant matrix with only non-positive off-diagonal entries. In fact, taking any such submatrix,
the diagonal entry Mαα is of the from ∑β≠αmαβ with all mαβ > 0, whereas the off-diagonal
entries consist of the entries −mαβ for all β ∈ A′. As A′ is assumed to be a strict subset of the
set of all phase-indices, Mαα is then clearly diagonally dominant as mαβ −∑A′∋β≠α ∣mαβ ∣ equals
the sum over all mαβ ∉ A′ which is strictly positive.
This implies firstly (see e.g. [55] and [76]) thatMA(n)A(n) is indeed invertible, and furthermore
that all entries of M−1

A(n)A(n) are non-negative. Even though this is by itself not sufficient to
show that µ is non-negative as −φ̂A may very well contain negative entries (i.e. “projected”
phases which are initially above 0), it is sufficient to show the monotonous increase of the µ(n)

in Algorithm 2 and thus, as µ(0) corresponding to A(0) = ∅ is all zero, that µ indeed only consists
of non-negative entries.
Assuming therefore that A(n) does not contain any phases falsely classified as active (and thus
necessarily ∣A(n)∣ < N by the sum-constraint) and that µ(n) ≥ 0 - this trivially holding for n = 0

- it remains to show the same for the step n + 1. By the definition of the φ(n+1) and µ(n+1) in
Algorithm 2 together with the invertibility of the submatrices, it follows that φ(n+1) actually
satisfies

φ(n+1)
= φ̂ +Mµ(n+1). (6.101)

On the one hand, since, with µα = 0 for α ∉ A(n+1), the summation in the product Mµ(n+1)

automatically reduces to the summation over all phases in A(n+1) and thus the formula for
(φα)

(n+1)
if α ∉ A(n+1). One the other hand, µ(n+1) is chosen precisely such that φ̂A(n+1) +

MA(n+1)A(n+1)µ(n+1) = 0 and thus implies that φ(n+1)
A(n+1) = 0 as imposed in the algorithm.

Since µ(n)
{1,...,N}∖A(n) = 0 by definition (and all relations are trivially true for n = 0), it follows by

restricting Equation (6.101) to the set A(n+1) that

φ
(n)
A(n+1) = φ̂A(n+1) +MA(n+1)A(n+1)µ

(n)
A(n+1)

and thus, by subtracting this from Equation (6.101), that

(φ(n+1)
−φ(n)

)A(n+1) =MA(n+1)A(n+1)(µ(n+1)
−µ(n))A(n+1) .
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As A(n) ⊂ A(n+1), φ(n+1)
A(n) = φ

(n)
A(n) = 0 (by the definition of the (φα)

(n)
) and all entries in

δA(n) = A(n+1) ∖A(n) satisfy (φ(n+1)
−φ(n)

)
δA(n) = 0−φ

(n)
δA(n) with φ

(n)
δA(n) ≤ 0 (by the definition

of δA(n)), it follows that the left-hand side consists of non-negative entries only. Together
with the postivity of all entries of M−1

A(n+1)A(n+1) , it is then clear that the same also holds for
(µ(n+1) −µ(n))A(n+1) and thus, with all other entries being zero, µ(n+1) −µ(n).
Summarizing these arguments, the sets A(n) increase by at least one entry per step unless there
are no negative entries left in the prediction of the projection. All vectors satisfy the sum-
constraint (potentially after a correction of their average as above) by the nature of M and the
µ are monotonically increasing from 0 and therefore non-negative, showing that the algorithm
converges to a solution of the necessary and here also sufficient condition in Equation (6.99).

Remark 90. It has to be observed that from a dynamic point of view, the mobility approach is
in general not compatible with a preclassification scheme. Nevertheless, it can be shown that,
once a steady state is reached and if the choice of skipping the calculations was correct (this
being the crucial assumption of course), this state is compatible with the first-order necessary
condition in Equation (6.63).
Even though this is therefore a potential problem only for the dynamics but not from a variational
point of view, this point should not be underestimated as the motivation of the mobility-based
formulation is precisely the modification of the dynamics, which, if used in an LROP-type fashion,
gets mixed with a very “discrete” concept in terms of the preclassification.
What can in additionally generate some difficulties with the projection-based scheme here in
combination with the LROP storage scheme is that, in contrast to the Euclidian projector, is
that it is not sufficient for the calculation of the correct projection that a phase will be at 0
after the projection step. Instead, even if the result itself for this phase is known, it nevertheless
necessary to also know he corresponding value in the prediction φ̂ as this difference has to be
redistributed to the remainig phases in accordance with the weights inM . Even if the storage is
chosen sufficiently large to be able to store all “actually” occuring phases with non-zero values -
i.e. those after the projection - this need not be the case before the projection as there may be
a number of phases with negative values after the prediction step. Due to the discussion above,
it is in this case not legitimate to simply truncate these to zero, since, even if this is their correct
final value, the difference has to known for the projection operation itself. ◇
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Chapter 7

Applications in the Material
Sciences

The use of the phasefield method in the material sciences is based on combining its ability for
capturing effects associated with surface energies with driving forces induced by an appropriate
thermodynamic contribution to the phasefield functional togehter with evolution equations for
the relevant additional fields such as e.g. the concentration or temperature. Within the Pace3D-
framework, these thermodynamic contributions are generally described directly or indirectly in
terms of a free energy density f(φ,c, T, ...), through which the underlying free energy densities
for the bulk-phases are extended to the diffuse interface region.

Given that the surface and bulk free energies are basically fixed parameters based on mea-
sured quantities for the given materials, one of the key challenges in achieving accurate results
based on the phasefield method therefore lies in the construction of a sufficiently accurate model
of the material behavior within the transition region. Whereas the earlier models for the energy
contributions within this region were usually based upon relatively simple interpolation proce-
dures in terms of the available additional fields - such as the total concentration c or, in the
mechanical case, the total strains ε - the more recent modeling approach consists in including a
larger degree of the underlying physics into the interpolation procedure.

As the chemically driven phase transformations where on the one hand historically the first
setting within which this question was adressed in detail and on the other hand in many cases
allows for obtaining a satisfactory model using a somewhat simpler modification than in the me-
chanical case, this setting will be considered first in Section 7.1. It will start with an outline of
and the discussion of some practically relevant issues induced by a now well established approach
for isothermal solidifation problems developed, among others, in the works of [42], [25], [19] and
[56]. Through a slight adaptation, this approach can in fact be extended to include the more
general non-isothermal setting underlying the model in [52].
Section 7.2, will then discuss related modeling approaches within a mechanical setting. In con-
trast to the chemical setting, a simple translation of the ideas in the chemical case unfortunately
does not result in equally satisfactory results due to a difference in the nature of the equilibrium
conditions1. Nevertheless, at least within a two-phase settings, a very satisfactory model based
on the sharp interface mechanical jump conditions at interfaces has been developed in different
forms in the works of [23], [51], [64] and [74]. Unlike in the chemical case, an extension to more
than two phases involves a very fundamental difficulty closely related to the well-known singu-
larities at singular points arising in the sharp interface setting.

1This is somewhat misleading though as similar difficulties can in fact arise in the chemical setting as well
depending on e.g. the boundary conditions.
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Even though partial extensions to the multi-phase setting were proposed in, among others, [61],
[62] and [74], these models loose, within multiphase regions, many of the favorable properties
valid in the two-phase setting. The discussion of the multi-phasefield models together with some
of these issues as well as modificitations aiming to at least mitigate their impact will there-
fore be postponed until Section 7.2.4. Finally, Section 7.2.5 will outline a situation where both
chemical and elastical effects arise in a coupled fashion, which will therefore be treated using a
combination of both the chemical and mechanical models from the previous sections.
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7.1 Quantitative Phasefield Models for Solidification

7.1.1 The “Traditional” Model
Before discussing some modifications through a more advanced modeling approach in the next
section, it is instructive to recall the more traditional approach to alloy solidification problems as
proposed in [52] and which parts of this model might be improved upon. As outlined in Section
3.2.1, it is based upon the entropy functional Sε(φ,c, e) from Equation (3.3) (repeated here for
convenience)

Sε(φ,c, e) = ∫
Ω

s(φ,c, e) − (εa(φ,∇φ) +
1

ε
w(φ))dx,

with the dependence of the thermodynamics of the material on the concentration c and the local
energy density e entering through the bulk entropy density s(φ,c, e). s(φ,c, e) can be related to
the often more convenient free energy density f(φ,c, T ) through the Legendre-type transform
pair

f(φ,c, T ) = inf
e
{e − Ts(φ,c, e)} ↔ s(φ,c, e) = inf

T
{
e

T
−
f(φ,c, T )

T
}

and it is thus sufficient to specify the bulk free energy density f(φ,c, T ) in order to specify
s(φ,c, e). Two examples for such a free energy density considered in [52] consist of an ideal-
solution type model

fid(φ,c, T ) =
N

∑
α=1

K

∑
i=1

(ciL
α
i

T − Tαi
Tαi

hα(φ)) +
K

∑
i=1

(
R

vm
Tci ln(ci)) − cvT (ln(T ) − 1) (7.1)

and a subregular solution model, which, in its simplest form, reduces to the Redlich-Kister-type
regular solution free energy density

fr(φ,c, T ) = fid(φ,c, T ) +
N

∑
α=1

K

∑
i=1

K

∑
j=1

cicjA
α
ijh

α
(φ). (7.2)

Here, Lαi and Tαi are the latent heats per unit volume and the melting temperatures respectively,
Rg the gas constant, vm the (constant) molar volume and cv the specific heat per volume. In
addition, theAα

= (Aαij)1≤i,j≤K in Equation (7.2) represent a set of binary interaction coefficients
for each phase α.

In relation with the discussion above, the following observation can be made: Taking φ = eα,
the free energy density within any bulk phase α is of the form

fαid(c, T ) = ciL
α
i

T − Tαi
Tαi

+
R

vm
Tci ln(ci) − c

α
vT (ln(T ) − 1),

and the above definition of the free energy density in Equation (7.1) therefore corresponds to
the simple weighted average fid(φ,c, T ) = ∑

N
α=1 f

α
id(c, T )hα(φ) of the ones in the bulk-phases

(a similar conclusion obviously also being valid for the regular solution case). In terms of the
distinction between the phase-specific and average concentrations above, and, a priori, an anal-
ogous distinction between the phase-specific temperatures Tα and the average temperature T ,
this could also be interpreted as being the weighted average fid(φ,c, T ) = ∑

N
α=1 f

α
id(c

α, Tα)hα(φ)
with the additional assumption that, within the interface region, one has cα = c and Tα = T for
all phases α.
Whereas this type of model was quite successful for purely temperature dependent problems,
it was realized in e.g. the works of [42] and [56] that by replacing the simple assumption on
the phase-specific concentrations by an energetically more favorable one, one could significantly
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reduce model artefacts within the interface region. In fact, whereas the assumption of equal
temperatures is compatible with the the global equilibrium condition corresponding to the equi-
libration of the temperature over the entire domain (and thus in particular the equilibrium of
the temperatures Tα in each of the bulk-phases), this is not the case for the assumption on
the concentration fields. Instead, for the entropy functional above, the equilibrium condition
for the evolution of the (average) concentration field is not given by the equilibration of the
concentrations. Instead, it is related to the chemical driving forces ∂S

∂c
= − 1

T
∂f
∂c

= −
µ
T

and thus,
in combination with the equilibrium condition T = const on the temperature, ultimately to the
condition of the equilibration (in the appropriate sense2) of the chemical potentials.
This has motivated replacing the assumption of the equality of the phase-specific concentrations
with a condition based upon the equality of the (reduced) chemical potentials. This condition
in combination with phase-specific concentrations was first used explicitly in a two-phase setting
by Kim, Kim and Suzuki in [42] and has subsequently been extended to the multiphase setting
and reanalyized in a number of papers, including [25], [56] and [19]. As first discussed in [25],
this so-called called local quasi-equilibrium condition - which will be discussed in more detail
in the next section - can in fact be interpreted as defining the free energy function in such a
way that it minimizes the local free energy density ∑Nα=1 f

α(cα)hα(φ) subject to a given phase-
field vector φ and average concentration c. Based upon this interpretation, it is quite natural
that this model will behave more favorably with respect to the issue of excess interface energy
contributions, thus explaining its large popularity despite its additional complexity.

Remark 91. With regards to the literature, there are two important points which should be
stressed here.
Firstly, there is a subtle but crucial difference between the earlier work [41] and the subsequent
seminal paper [42] by Kim, Kim and Suzuki. Whereas the latter may be considered as the
motivation and basis for the subsequent extensions by the various authors mentioned above, the
analysis in the former one is, despite its large formal similarity with the discussion in this section
in terms of its reliance upon implicit functions, actually much more closely related to the analysis
of a variational inconsistency (see Remark 97). Secondly, despite the recurrent appearance of
the grand potential energy densities Ψα below (a point which has been amply discussed in the
literature), the underlying variational principle - at least for the natural isolating boundary
conditions on the temperature and concentration field (resp. the free energy in the isothermal
case) - is still given by the maximization of the entropy (resp. minimization of the free energy).
While the Ψα appear quite naturally in this model and there is indeed a close link between the
total grand potential energy density Ψ and the free energy defined in equatin (7.3), these are
not the same and should not be confused. ◇

7.1.2 The “More Advanced” Free Energy Model in the Isothermal Case
Before discussing some practical implications and possible extensions in the following sections,
the basic idea underlying the more advanced free energy model in the isothermal case will be
outlined below. Even though the model can be considered to have originated in the work [42],
the discussion will mostly follow the approach in [25], which, in the authors opinion, provides a
much clearer interpretation of the resulting model.
This idea is in fact remarkably simple. As already indicated above, standard phasefield models
for chemically driven solidification problems are based on using a single, “average” concentration
field c only. Within interface regions with several coexistent phases, there is a priori no reason
to assume for the concentrations to be the same in all phases. It is therefore - in line with the

2There is a slight complication in the formulation of this equilibrium condition when based upon a model
using the full concentration vector c together with the sum-constraint ∑Ki=1 ci = 1 instead of the more common
formulation based upon a reduced concentration vector c̃ consisting e.g. only out of the first K − 1 components,
the last one then being, if required, recovered as a byproduct of the sum constraint. This basically technical point
will be discussed in more detail below.

114



interpretation of the φ-values (resp. the values hα(φ)) as the volume-fraction of a given phase
- quite natural to interpret the total concentration as a weighted averages of the ones in the
individual phases, i.e. to postulate c = ∑

N
α=1 c

αhα(φ) and similarly for the total free energy
density to be given by f(φ,c, T ) = ∑

N
α=1 f

α(cα, T )hα(φ) as the result of the contributions by
the phase-specific free energy densities fα within the indivual phases.
These hypotheses alone do not yet fully specify the model, as, for given values of the parameters
φ, c and T , there are many ways the total concentration could be distributed to the individual
phases while still satisfying the constraint on their average. The simplest assumption to make
- leading to models of the type in [52] - is to assume that cα = c for all phases α. For a chem-
ically isolated system, the underlying variational principle in terms of the minimization of the
free energy functional Fε(φ,c, T ) is the redistribution of the initially present total concentration
∫Ω cdx in the energetically most favorable manner. The simple but elegant idea underlying
the more quantitative models is to reuse this same principle for determining the phase-specific
concentrations in terms of the average one, i.e. to redistribute the (given) average concentration
onto the individual phases in such a manner as to minimize the total local free energy density
∑
N
α=1 f

α(cα, T )hα(φ).

Remark 92. From a physical point of view, it is clear that one would also like to, in addition to
the condition of the concentration average, enforce the conditions 0 < ci < 1 and 0 < cαi < 1 on
the concentration values. An important simplification as compared to the case of the phasefield
equation arises from the fact that one can usually safely ignore the 0-1-bounds on the concen-
tration values, i.e. given a total concentration satisfying 0 < ci < 1, one will automatically have
0 < cαi < 1 without having to enforce this condition explicitly. For example in the case of the
ideal and regular solutions above, this will be ensured by the logarithmic contributions, whose
derivatives tend to infinity as a concentration value approaches 0 or 1.
In other cases, such as e.g. when using a (significantly cheaper) quadratic approximation of
the free energy contributions, this need not be the case anymore though. The same of course
also holds when, due to e.g. an ill-suited time-stepping, the average concentration c falls out
of these bounds. As such cases are usually due to a failure of some other part of the approxi-
mation scheme, the box-constraints will (except for some hints in the footnotes) nevertheless be
systematically neglected in the following as this, in contrast to the discussion in the phasefield
case with obstacle potential, adds quite some complexity with a very limited benefit. ◇

In a more explicit manner, the f -function is thus given as the solution of the parameterized
minimization problem

f(φ,c, T ) ∶= min
(cα)1≤α≤N ∈A(φ,c)

{∑
α

fα(cα, T )hα(φ)} , (7.3)

where the admissible set A(φ,c) is, for any vector c satisfying ∑Ki=1 ci = 1, given by3

A(φ,c) = {(cα)1≤α≤N ∶
N

∑
α=1

cαhα(φ) = c} . (7.4)

Alternatively, one can integrate the sum-constraint ∑Ki=1 c
α
i = 1 directly by eliminating one

component (here e.g. the last one) as a function of the others. In terms of the reduced
3If the sum-constraint on the average concentration is not satisfied, the admissible set is obviously empty as

it is then not possible to obtain c as an average of phase-specific concentrations cα satisfying this constraint.
If one in addition wants to maintain the box-constraints on the concentration values, this admissible set would
have to be modified to

A(φ,c) =
⎧⎪⎪⎨⎪⎪⎩
(cα)1≤α≤N ∶

N

∑
α=1

cαhα(φ) = c,
K

∑
i=1

cαi = 1 ∀α, 0 ≤ cαi , i = 1,2, ...,K,∀α
⎫⎪⎪⎬⎪⎪⎭
,

which, as in the phasefield case, will automatically guarantee cαi ≤ 1 due to the sum-constraint on the cαi .
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concentration vectors c̃ and (c̃α)1≤α≤N consisting of the (then independent) first K − 1-
components, i.e. c̃ = (c1, c2, ..., cK−1) and similarly for the cα, the minimization problem (7.3)
can alternatively be expressed as

f̃(φ, c̃, T ) ∶= min
(c̃α)1≤α≤N ∈Ã(φ,c̃)

{∑
α

f̃α(c̃α, T )hα(φ)} , (7.5)

where f̃α(c̃α, T ) ∶= fα((c̃α,1 −∑
K−1
i=1 cαi ), T ) and the admissible set Ã(φ, c̃) is given by4

Ã(φ, c̃) = {(c̃α)1≤α≤N ∶
N

∑
α=1

c̃αhα(φ) = c̃} . (7.6)

An important prelimiary observation for the free energy functions defined in Equation (7.3)
resp. Equation (7.5) is given in the following

Lemma 6. Provided the fα are (strictly) convex functions of the phase-specific concentrations
cα, and the (hα(φ))

1≤α≤N represent convex weighting coefficients (i.e. satisfy 0 ≤ hα ≤ 1,

∑
N
α=1 h

α(φ) = 1), f is also a (strictly) convex function of c.
The same conclusion also holds with f̃ and c̃ replacing f and c.

Proof. This can be seen by essentially the same argument as for the convexity of inf(imal)-
convolutions (see e.g. [8]). Given a convex combination c = λc1 + (1 − λ)c2, 0 ≤ λ ≤ 1 of the
concentration vectors c1, c2, any convex combination cα = λcα1 + (1 − λ)cα2 with (cα1 )1≤α≤N ∈

A(φ,c1) and (cα2 )1≤α≤N ∈ A(φ,c2) satisfies

∑
α

cαhα(φ) =∑
α

(λcα1 + (1 − λ)cα2 )hα(φ) = λ(∑
α

cα1 h
α(φ)) + (1 − λ)(∑

α

cα2 h
α(φ)) = λc1 + (1 − λc2) = c,

K

∑
i=1

cαi =
K

∑
i=1

(λ(c1)
α
i + (1 − λ)(c2)

α
i = λ

K

∑
i=1

(c1)
α
i + (1 − λ)

K

∑
i=1

(c2)
α
i = λ + (1 − λ) = 1

and 0 ≤ cαi , and thus λA(φ,c1)+(1−λ)A(φ,c2) ⊂ A(φ, λc1+(1−λ)c2). Using this set-inclusion
and the assumed convexity of fα in terms of the cα in the definition (7.3) shows that

f(φ,c, T ) = min
{(cα)1≤α≤N ∈A(φ,λc1+(1−λ)c2)}

{∑
α

fα(cα, T )hα(φ)}

≤ min
{(cα)1≤α≤N ∈λA(φ,c1)+(1−λ)A(φ,c2)}

{∑
α

fα(cα, T )hα(φ)}

= min
{(cα1 ,cα2 )1≤α≤N ∈A(φ,c1)×A(φ,c2)}

{∑
α

fα(λcα1 + (1 − λ)cα2 , T )hα(φ)}

≤ min
{(cα1 ,cα2 )1≤α≤N ∈A(φ,c1)×A(φ,c2)}

{∑
α

(λfα(cα1 , T ) + (1 − λ)fα(cα2 , T ))hα(φ)} .

4Now, maintaining the box-constraints would require modifying Ã to

Ã(φ, c̃) =
⎧⎪⎪⎨⎪⎪⎩
(c̃α)1≤α≤N ∶

N

∑
α=1

c̃αhα(φ) = c̃, 0 ≤ cαi ≤ 1, i = 1,2, ...,K − 1,∀α
⎫⎪⎪⎬⎪⎪⎭
,

where, this time, it is necessary to enforce the upper bound of 1 on the cαi as the sum-constraints ∑Ki=1 c
α
i = 1 has

disappeared.
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As this last minimization problem is separable5, it can equivalently be replaced by

λ min
{(cα1 )1≤α≤N ∈A(φ,c1)}

{∑
α

fα(cα1 , T )hα(φ)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=f(φ,c1,T )

+(1 − λ) { min
(cα2 )1≤α≤N ∈A(φ,c2)}

{∑
α

fα(cα2 , T )hα(φ)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=f(φ,c2,T )

and thus f(φ,c, T ) ≤ λf(φ,c1, T )+ (1− λ)f(φ,c2, T ) and the mapping c↦ f(φ,c, T ) is indeed
convex.

As discussed in Subsection 5.1, the FONC for the minimizer in Equation (7.3) can e.g. be
obtained by considering the Lagrangian6

L (φ,c, T, (cα)
1≤α≤N ,µ, λ̂) =

N

∑
α=1

fα(cα, T )hα(φ) −µ ⋅ (
N

∑
α=1

cαhα(φ) − c) −
N

∑
α=1

λ̂α(
K

∑
i=1

cαi − 1)

with λ̂ ∈ RN . µ could in principle be taken as an arbitrary vector in RK , but, since the sum-
constraint ∑Nα=1 c

α
i h

α(φ) = ci is in fact automatically fulfilled for all K components as soon as
it holds for K − 1 components7, this would lead to an indeterminacy as µ would be capable of
“testing” a property which is already ensured through the mulitpliers (λα)1≤α≤N . In order to
avoid this issue, it may seem preferable to choose µ in a suitable (K − 1)-dimensional subspace
of RK . One possibility here, closely related to the reduced formulation, is to choose µ such that
µK = 0. A second, more “symmetric” choice is obtained by enforcing a zero average on µ, i.e.
by requiring that ∑Ki=1 µi = 0. Alternatively, and this is in many ways the most natural choice,
one may also fix µ “indirectly” by simply requiring that µ = ∑

N
α=1

∂fα

∂cα
hα(φ), which in particular

enforces ∑Nα=1 λ
αhα(φ) = 0.

Remark 93. Each choice clearly leads to a different, though closely related, set of multipliers
(µ, λα) as will be discussed in Subsection 7.1.5 below. The advantage of the last choice is that
it carries, in terms of the average values, the standard role of the sensitivity with respect to the
sum-constraint on the total concentration. The first two choices on the other hand “shift” this
responsibility to the cα, therefore emphasising the role of the λα on the effective equation. This
has no influence on the actual result, since it does not matter how the average sum-constraint
on c is ultimately enforced, but favors the last description on “aesthetic” grounds. ◇

5It consists in the minimization of two sums of functions depending on independent arguments in independent
sets. There is therefore no “competition” between the two summands, and the minimizer is obviously achieved
when each of them is minimal individually.

6Together with the box-constraint, this needs to be modified to

L (φ,c, T, (cα)
1≤α≤N ,µ, λ̂,ζ) =

N

∑
α=1

fα(cα, T )hα(φ)−µ ⋅(
N

∑
α=1

cαhα(φ)−c)−
N

∑
α=1

λ̂α(
K

∑
i=1

cαi −1)−
N

∑
α=1

K

∑
i=1

ζαi c
α
i

with λ̂ ∈RN and ζ ∈RN×K
+ .

7Assuming for example that it holds for the first K − 1 components and as the concentrations are required to
sum to one, one has

N

∑
α=1

cαKh
α(φ) =

N

∑
α=1

(1 −
K−1

∑
i=1

cαi )hα(φ) =
N

∑
α=1

hα(φ) −
K−1

∑
i=1

cαi h
α(φ) = 1 −

K−1

∑
i=1

ci = cK .
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In constrast, the modified Lagrangian for the reduced problem (7.5) is given by8

L̃ (φ, c̃, T, (c̃α)
1≤α≤N , µ̃) =

N

∑
α=1

fα(c̃α, T )hα(φ) − µ̃ ⋅ (
N

∑
α=1

c̃αhα(φ) − c̃) (7.8)

where now µ̃ ∈RK−1, and the multiplier λ̂ for the phase-specific sum-constraints has vanished.
As both definitions (7.3) and (7.5) only differ in the representation of the minimization problem,
it is clear that the numerical values of f̃(φ, c̃, T ) and f(φ,c, T ) will actually agree for any
admissible concentration, i.e. one has f(φ, (c̃,1 −∑K−1

i=1 ci), T ) = f̃(φ, c̃, T ). Nevertheless, the
different notations for both problems will be maintained in order to simplify the distinction
between the two approaches.

Differentiation of L w.r.t. to the phase-specific concentration vectors cα leads to the system
of equations

hα(φ)(
∂fα

∂cα
(cα, T ) −µ) − λ̂αe = hα(φ)(µα −µ) − λ̂α = 0,

together with the sum-constraint ∑Nα=1 c
αhα(φ) = c, where µα ∶= ∂fα

∂cα
(cα, T ) and e = (1,1, ...,1)

is a K-dimensional vector of ones. Similarly, with µ̃α ∶= ∂f̃α

∂c̃α
(c̃α, T ), the FONC for a minimizer

of the reduced function in Equation (7.5) is given by the set of equations

hα(φ)(
∂f̃α

∂c̃α
(c̃α, T ) − µ̃) = hα(φ)(µ̃α − µ̃) = 0

together with ∑Nα=1 c̃
αhα(φ) = c̃.

A first observation to be made is that in both cases the conditions on the derivatives of the
phase-specific f -functions only pertain to those phases for which hα(φ) ≠ 0, whereas the cα

(resp. c̃α) for the phases with hα(φ) = 0 can in principle be chosen arbitrarily within the
respective admissible sets9 without affecting either the value of f or ∑Nα=1 h

α(φ)cα (resp. the
reduced versions thereof). In the non-reduced case, the trivial choice λα = 0 is then clearly an
admissible choice for the multiplier λα for all vanishing phases, such that it suffices to focus only
on those phases with hα(φ) ≠ 010.

Defining the set Pp ∶= {α ∈ 1,2, ...,N ∶ hα(φ) ≠ 0} of phases which are actually “present” at
a given point, and for convenience scaling λ̂α, α ∈ PR by hα(φ) ≠ 0, it is therefore in practice

8Or, in the case with box-constraints, by

L̃ (φ, c̃, T, (c̃α)
1≤α≤N , µ̃, ζ̃

−
, ζ̃

+) =
N

∑
α=1

fα(c̃α, T )hα(φ) − µ̃ ⋅ (
N

∑
α=1

c̃αhα(φ) − c̃)

−
N

∑
α=1

K−1

∑
i=1

(ζ̃−)αi cαi −
N

∑
α=1

K−1

∑
i=1

(ζ̃+)αi (1 − cαi )
(7.7)

with µ̃ ∈ RK−1, ζ̃
± ∈ RN×(K−1)

+ . The introduction of two sets of multipliers ζ̃
±
is necessary as the inequality

cαi ≤ 1 is not automatically ensured by the combination of the positivity and sum constraint anymore.
9This will be discussed in a little more detail in Subsection 7.1.3 when considering the derivative w.r.t. φ.

10Here, one could again include the box-constraints by replacing the FONC in the non-reduced case to

hα(φ)(∂f
α

∂cα
(cα, T ) −µ) − λ̂αe − ζα = hα(φ)(µα −µ) − λ̂α − ζα = 0,

which then, in addition to the sum constraint, needs to be complemented by the box-constraints as well as ζαi ≥ 0
and the complementarity condition ζαi c

α
i = 0. Similarly, the reduced formulation would lead to the condition

hα(φ)(∂f̃
α

∂c̃α
(c̃α, T ) − µ̃) − (ζ−)α + (ζ+)α = hα(φ)(µ̃α − µ̃) − (ζ−)α + (ζ+)α = 0

and the additional restrictions (ζ±)αi ≥ 0 and (ζ−)αi cαi = 0, (ζ+)αi (1 − cαi ) = 0.
For phases with hα(φ) = 0, admissible choices for the multipliers would then be given by (λα,ζα) = (0,0) (resp.
ζ− = ζ+ = 0).
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sufficient to consider the system

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂fα

∂cα
(cα, T ) −µ − λαe = µα(cα, T ) −µ − λαe = 0, α ∈ Pp,

∑
K
i=1 c

α
i = 1, α ∈ Pp,

∑
N
α=1 c

αhα(φ) = c

(7.9)

with λα = λ̂α

hα(φ) in the non-reduced case and

⎧⎪⎪
⎨
⎪⎪⎩

∂f̃α

∂c̃α
(c̃α, T ) − µ̃ = µ̃α(c̃α, T ) − µ̃ = 0, α ∈ Pp,

∑
N
α=1 c̃

αhα(φ) = c̃
(7.10)

in the reduced case.
The system (7.10) with the reduced chemical potential or diffusion potential µ̃ is (except
for the temporary restriction to α ∈ Pp) precisely the same condition also used in the models by
[42], [25], [56] and [19]. As

∂f̃α(c̃α, T )

∂c̃α
=
∂fα((c̃α,1 −∑

K−1
i=1 cαi ), T )

∂c̃α
= (

∂fα(cα, T )

∂cαi
)

1≤i≤K−1
−
∂fα(cα, T )

∂cαK
ẽ, (7.11)

where ẽ = (e)1≤i≤K−1, it follows from equations (7.10) and (7.9) that µ̃ can be obtained from
(µ, λα) - independent of the specific phase α and the particular (K − 1)-dimensional subspace
chosen for µ - through the relation

µ̃i =µ̃
α
i =

∂f̃α(c̃α, T )

∂cαi
=
∂fα(cα, T )

∂cαi
−
∂fα(cα, T )

∂cαK
= µαi − µ

α
K

=(µi + λ
α) − (µK + λα) = µi − µK .

(7.12)

Conversely, as ∂fα(cα,T )
∂cα
K

= µK + λα, the solution satisfies11

∂fα(c, T )

∂cαi
= µi + λ

α
= µi +

∂fα(c, T )

∂cαK
− µK = µ̃i +

∂fα(c, T )

∂cαK
.

In the simplest case µ is, as suggested above, chosen such that µK = 0, in which case the previous
equation implies that

λα =
∂fα

∂cαK
and µi =

∂fα(c, T )

∂cαi
−
∂fα(c, T )

∂cαK
. (7.13)

Alternatively, for the choice ∑Ki=1 µi = 0, a summation over all components in the first equation
of (7.9) shows that, similar to the multiplier for the sum-constraint in the phasefield case,

λα =
1

K

K

∑
i=1

∂fα

∂cαi
and µi =

∂fα(c, T )

∂cαi
−

1

K

K

∑
i=1

∂fα(c, T )

∂cαi
. (7.14)

Remark 94. It is important to stress again that the optimality systems (7.9) and (7.10) a priori
only apply to those phases with hα(φ) ≠ 0 whereas the values for the phases with hα(φ) = 0 are
a priori arbitrary as they affect neither the weighted average of the phase-specific free energies
nor that of the average concentration. Nevertheless, as some of the following calculations will
require the values of the cβ (resp. c̃β) as well as the corresponding chemical potentials, the

11Note that, in contrast to the differences between the derivatives, the derivatives ∂fα(cα,T )
∂cα
i

themselves
actually do depend upon the phase α.
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standing assumption will be made that these are determined by the “natural” extension of the
optimality condition above, i.e. by imposing the same optimality conditions (7.9) resp. (7.10)
for all phases and not only those strictly required for actually solving the optimization problems.
Despite this convention, one should still maintain the distinction between the Pp and the set of
all phases, since it is much more convenient to a prior only solve the actual optimality systems
above and then recover the c̃β for all phases in {1, ...,N}∖Pp only when actually required from
the then known value of µ (or µ̃). ◇

7.1.3 The Resulting Driving Force
In constrast to the simpler models based on the “common” phase-specific concentrations cα =

c ∀α as in e.g. [52], the evaluation of the driving force contribution ∂f
∂φα

to the phasefield equation
is somewhat more complex for the model above. The primary difference is that, whereas in the
former case, the phase-specific concentrations are (for a given concentration c) independent upon
the phasefield-values and one thus has ∂f

∂φα
= ∑

N
β=1 f

β(c, T ) ∂h
β

∂φα
, the phase-specific concentration

cα in the latter case depend upon the parameters of the optimization problem (7.3), i.e. cβ =

cβ(φ,c, T ). This will lead to an additional contribution to ∂f
∂φα

related to ∂cβ

∂φα
.

More precisely, one now has12

∂f(φ,c, T )

∂φα
=

∂

∂φα

N

∑
β=1

fβ(cβ(φ,c, T ), T )hβ(φ) =
N

∑
β=1

fβ
∂hβ

∂φα
+
∂fβ

∂cβ
⋅
∂cβ

∂φα
hβ(φ).

While this would seem to require the ability to evaluate ∂cβ

∂φα
, the variational nature of the system

implicitly defining the cβ actually allows dispensing of this difficulty. In fact, by construction of
the cβ , one has ∂f

∂cβ
= µ + λβe in the solution of Equation (7.9) and thus

N

∑
β=1

∂fβ

∂cβ
⋅
∂cβ

∂φα
hβ(φ) =

N

∑
β=1

(µ + λβe) ⋅
∂cβ

∂φα
hβ(φ).

The first factor µ does not depend upon the phase β though, and can thus be extracted from the
sum. The second contribution λβe ⋅ ∂c

β

∂φα
in contrast vanishes automatically for each phase since

e ⋅ ∂c
β

∂φα
= ∂e⋅cβ

∂φα
= ∂1
∂φα

= 0 by the sum-constraint on the phase-specific concentrations. Making use
of the product rule and the constraint on the concentration average, one can then in a second
step actually eliminate the ∂cβ

∂φα
since

N

∑
β=1

∂fβ

∂cβ
⋅
∂cβ

∂φα
hβ(φ) =µ ⋅ (

N

∑
β=1

∂cβ

∂φα
hβ(φ)) = µ ⋅ (

∂(∑
N
β=1 c

βhβ(φ))

∂φα
−

N

∑
β=1

cβ
∂hβ(φ)

∂φα
)

=µ ⋅ (
∂c

∂φα
−

N

∑
β=1

cβ
∂hβ(φ)

∂φα
) = −µ ⋅ (

N

∑
β=1

cβ
∂hβ(φ)

∂φα
)

and thus one actually has, readding the arguments for clarity,

∂f(φ,c, T )

∂φα
=

N

∑
β=1

(fβ(cβ(φ,c, T ), T ) −µ(φ,c, T ) ⋅ cβ(φ,c, T ))
∂hβ

∂φα
. (7.15)

A similar calculation can also, though in a slightly simpler form, be conducted for the case of
the reduced formulation based on c̃. A differentiation with respect to φα taking into account the

12Here the convention in Remark 94 has to be kept in mind if ∂h
β

∂φα
does not vanish for hβ(φ) = 0, such as for

the simplest interpolation function hβ(φ) = φβ .

120



dependence of the c̃α on φ first leads to ∂f̃(φ,c̃,T )
∂φα

= ∂
∂φα ∑

N
β=1 f̃

β(c̃β(φ, c̃, T ), T )hβ(φ). By the

characterization of the c̃β in Equation (7.10), one has one the one hand ∂f̃β

∂c̃β
(c̃β , T ) = µ̃ for all β,

such that µ̃ can again be moved out of the summation. On the other hand, ∑Nβ=1 c̃
βhβ(φ) = c̃,

which can, as above, be combined with the product rule to eliminate the ∂c̃β

∂φα
making use of

µ̃ ⋅
N

∑
β=1

∂c̃β

∂φα
hβ(φ) = µ̃ ⋅ (

∂(∑
N
β=1 c̃

βhβ(φ))

∂φα
− c̃β

∂hβ

∂φα
) = µ̃ ⋅ (

∂c̃

∂φα
− c̃β

∂hβ

∂φα
) = −µ̃ ⋅

N

∑
β=1

c̃β
∂hβ

∂φα

thus resulting in the analogue

∂f̃(φ, c̃, T )

∂φα
=

N

∑
β=1

(f̃β(c̃β(φ, c̃, T ), T ) − µ̃(φ, c̃, T ) ⋅ c̃β(φ, c̃, T ))
∂hβ

∂φα
(7.16)

of Equation (7.15).

7.1.4 The Relation with the Grand Chemical Potential
Considering for simplicity the reduced formulation, it can be noted that since µ̃ =

∂f̃β

∂c̃β
(see the

discussion below), the contribution of each phase to the driving force in equation (7.16) corre-
sponds precisely to the grand potential energy densities Ψ̃β evaluated in µ̃(φ, c̃, T ). As already
indicated in Remark 91, this is a point which has been amply discussed in various forms in the
literature (see e.g. [42], [56] and [19]).
One point of view - which is in particular stressed in [56] and [19] - is that it is also possible
to obtain the same driving force without having to go through the somewhat more complex
dependence in terms of the phase-specific concentrations. This is achieved by replacing the free
energy density with the grand potential energy density Ψ̃(φ, µ̃, T ) ∶= ∑

N
α=1 Ψ̃α(µ̃, T )hα(φ) with

µ̃ considered as an indepdendent variable (instead of, as above, as µ̃(φ, c̃, T )), which suggests
using the (total) grand potential energy density Ω̃ε(φ, µ̃, T ) as the relevant potential instead of
the free energy density F . In contrast, both [42] and [25] do not actually introduce the grand
potential energy density directly, but simply state that the dependence on the phase-specific
concentrations does, as above, lead to this type of driving force for minimizing the (original) free
energy density.
Since both approaches result in the same driving force and the evolution of either µ̃ or c̃ is chosen
such that, up to potential differences in the choice of diffusion coefficients13, c̃ satisfies a locally
conservative gradient flow driven by the gradient of the (common) chemical potential, they will
in fact lead to the same result. Nevertheless, the use of two a priori quite different potentials
raises a number of questions which would not seem to have been discussed in sufficient detail in
the literature. The following discussion will therefore try to clarify the link - and the differences
in interpretation - between these two approaches.

One can first observe - this being the standard argument underlying the use of the La-
grangian in Equation (7.8) - that the optimization problem defining f̃(φ, c̃, T ) can equivalently
be rewritten as the unconstrained minimax-problem

f̃(φ, c̃, T ) = min
(c̃α)1≤α≤N

sup
µ̃

{
N

∑
α=1

f̃α(φ, c̃α, T )hα(φ) − µ̃ ⋅ (
N

∑
α=1

c̃αhα(φ) − c̃)}.

As duality holds here by the strict convexity of the fα, one may exchange the order of the two
13Their choice not being a matter of the underlying functional.
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extremum operations, i.e. one can also write

f̃(φ, c̃, T ) = sup
µ̃

min
(c̃α)1≤α≤N

{
N

∑
α=1

f̃α(φ, c̃α, T )hα(φ) − µ̃ ⋅ (
N

∑
α=1

c̃αhα(φ) − c̃)}

= sup
µ̃

{ min
(c̃α)1≤α≤N

{
N

∑
α=1

(f̃α(φ, c̃α, T ) − µ̃ ⋅ c̃α)hα(φ)} + µ̃ ⋅ c̃}.

The inner minimization problem decomposes into ∑Nα=1 minc̃α {fα(c̃α, T ) − µ̃ ⋅ c̃α}hα(φ), where
each of the separate minimization problems in fact corresponds precisely to the definition of
Ψα(µ̃, T ), and thus f̃(φ, c̃, T ) = supµ̃ {∑

N
α=1 Ψ̃α(µ̃, T )hα(φ) + µ̃ ⋅ c̃}.

There are two things which can be noted here. Firstly, in the interior sum, both µ̃ and c̃ are
actually independent parameters, and in particular the Ψ̃α are indeed the phase-specific grand
chemical potential densities Ψ̃α(µ̃α, T ) evaluated for µ̃α = µ̃. Secondly, while this makes appear
the average grand chemical potential density

Ψ̃(φ, µ̃, T ) ∶=
N

∑
α=1

Ψ̃α
(µ̃, T )hα(φ), (7.17)

it can clearly not be used to simply replace the free energy density f̃ since, on the one hand,
there is the additional term µ̃ ⋅ c̃, and on the other hand, there is a remaining extremum problem
in terms of µ̃.
What follows though (see Remark 24 and Equation (5.19) in particular) is that the “quantitative”
free energy density f̃ as defined above is in fact given by the (inverse) Legendre transform of
Ψ̃ with respect to µ̃. More precisely, denoting (in analogy to Remark 24) the partial forward
transform defining the Ψ̃α by L̂c̃(f̃α)(µ̃α, T ), the free energy density can also, with the analogous
notation, be characterized as

f̃(φ, c̃, T ) = L̂
−1
µ̃ [Ψ̃](φ, c̃, T ) ∶= sup

µ̃
{Ψ̃(φ, µ̃, T ) + µ̃ ⋅ c̃}, (7.18)

and is thus the inverse Legendre transform (w.r.t. µ̃) of the average grand chemical potential
density for µ̃α = µ̃.

Remark 95. Note that this relation - while intuitively pleasing based on the standard thermody-
namic relations - is neither quite standard nor entirely obvious based upon the initial definitions.
Whereas the direct definition of Ψ̃ involves a simple averaging procedure over the phase-specific
densities Ψ̃α(µ̃, T ) with a single parameter µ̃, f̃ is defined through the minimization of an av-
erage based on N phase-specific concentrations subject to an additional side condition on their
average. In contrast, the Ψ̃α themselves are a priori defined in terms of an unconstrained
parameterized optimization in each of the c̃, Ψ̃α(µ̃) = inf c̃α {fα(c̃α) − µ̃ ⋅ c̃α}.
That the “effective” densities f̃ and Ψ̃ are nevertheless related in terms of a standard transform
is thus not automatic but instead hinges on the internal consistency of the two definitions in
terms of the common multiplier µ̃. More examples of similar relations will be given in Section
7.1.6 when considering the non-isothermal case. ◇

From this, the original optimization problem for F̃ε(φ, c̃, T ) is then equivalent to

min
(φ,c̃)∫

Ω

εa(φ,∇φ) +
1

ε
w(φ) + L̂−1

µ̃ [Ψ̃](φ, c̃, T )dx (7.19)

and thus does clearly not correspond to the minimization of the grand potential energy

Ωε(φ, µ̃, T ) ∶= ∫

Ω

εa(φ,∇φ) +
1

ε
w(φ) + Ψ̃(φ, µ̃, T )dx. (7.20)
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That the driving force of the phasefield equation based on Equation (7.18) is nevertheless of
the form ∑Nβ=1 Ψ̃β ∂hβ

∂φα
above is - similarly to appearence of ∂f

∂φ
despite the maximization of the

entropy due the expression ∂s
∂φ

(φ,c, e) = − 1
T
∂f
∂φ

(φ,c, T ) discussed in Section 3.2 - a result of the
variational characterization of this inverse transform. More precisely, the value µ̃ for which the
supremum in Equation (7.18) is actually achieved14 is characterized by

∂

∂µ̃
(Ψ̃(φ, µ̃, T ) + µ̃ ⋅ c̃) =

∂Ψ̃

∂µ̃
(φ, µ̃, c̃) + c̃

!
= 0, (7.21)

defining µ̃ realizing the supremum as a function of the remaining parameters, µ̃ = µ̃(φ, c̃, T ).
Based on this maximizer, f̃(φ, c̃, T ) can then be rewritten explicitly in terms of Ψ̃ as

f̃(φ, c̃, T ) = min
{(c̃α)1≤α≤N ∶∑Nα=1 c̃

αhα(φ)=c̃}
{
N

∑
α=1

fα(c̃α, T )hα(φ)}

=Ψ(φ, µ̃(φ, c̃, T ), T ) + µ̃(φ, c̃, T ) ⋅ c̃,

(7.22)

from which the driving force follows as

∂f̃

∂φα
(φ, c̃, T ) =

∂Ψ

∂φα
(φ, µ̃(φ, c̃, T ), T ) +

∂

∂µ̃
(Ψ(φ, µ̃(φ, c̃, T ), T ) + µ̃(φ, c̃, T ) ⋅ c̃) ⋅

∂µ̃

∂φα
.

By the optimality condition on µ̃, the second term drops out, leaving

∂f̃

∂φα
(φ, c̃, T ) =

∂Ψ

∂φα
(φ, µ̃(φ, c̃, T ), T ) =

N

∑
β=1

Ψ̃β(µ̃(φ, c̃, T ), T )
∂hβ

∂φα
,

and thus an expression which, together with the relation Ψ̃β = fβ − µ̃ ⋅ c̃ of Ψ̃β , is the same as in
Equation (7.16)15.

By the expression of the driving force in Equation (7.16) combined with the fact that the
value (but not the function itself!) of f̃β(c̃β(φ, c̃, T ), T )−µ̃(φ, c̃, T ) ⋅ c̃β(φ, c̃, T ) indeed coincides
with Ψ̃β(µ̃, T ) evaluated for µ̃ = µ̃(φ, c̃, T ), it is obvious that the same result is also obtained
by a straight-forward differentiation of Ψ̃(φ, µ̃, T ) with µ̃ considered as a fixed parameter (i.e.
neglecting all potential dependencies). This simple mechanism for obtaining this driving force is
also the basis for the “phenomenological” approach taken in [56] and [19]. In fact, their approach
consists in postulating for φ to follow a (minimizing) gradient-flow for the grand potential energy

14Note that this is a strictly concave maximization problem in µ̃.
15Before drawing this conclusion, there is one (somewhat hidden) point which remains to be verified, namely

that the values of µ̃ in both equations as well as the values of Ψ̃β(µ̃, T ) above and the f̃β(c̃β(φ, c̃, T ), T ) −
µ̃(φ, c̃, T ) ⋅ c̃β(φ, c̃, T ) in Equation (7.16) in fact coincide as both are a priori defined based on different conditions
(one as the (free) maximizer of Ψ̃(φ, µ̃, T )+ µ̃ ⋅ c̃, the other one as the multiplier for the (constrained) optimality
system (7.10)). This now follows mostly from more standard “phase-specific” thermodynamics, more precisely
in the (smooth convex-concave) analogue of the third point in Proposition 3 in the case of full duality, namely

that µ̃ = ∂f̃β(c̃β ,T )
∂c̃β

iff Ψ̃β(µ̃, T ) = f̃β(c̃β , T ) − µ̃ ⋅ c̃β iff c̃β = ∂Ψ̃β

∂µ̃
. Since this implies that simply defining

c̃β(µ̃, T ) ∶= ∂Ψ̃β

∂µ̃
(µ̃, T ) (now as a function of µ̃) with µ̃ as in Equation (7.21), one has, on the one hand,

Ψ̃β(µ̃, T ) = f̃β(c̃β(µ̃, T ), T ) − µ̃ ⋅ c̃β(µ̃, T ) as well as µ̃ = ∂f̃β(c̃β ,T )
∂c̃β

(c̃β(µ̃, T ), T ) and on the other hand by the
optimality condition in Equation (7.21) that

c̃ = −∂Ψ̃

∂µ̃
= −

N

∑
α=1

∂Ψ̃α

∂µ̃
(µ̃, T )hα(φ) =

N

∑
α=1

c̃α(µ̃, T )hα(φ),

i.e. µ̃ in combination with the concentration values derived from it actually satisfies the optimality system (7.10)
and thus by unicity for this system that both expressions actually coincide.
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functional Ωε(φ, µ̃, T ) in Equation (7.20). This is combined with the standard evolution equation
(here using the notation similar to [19]16 together with the Einstein summation convention) for
the concentration in the isothermal case,

∂ci
∂t

= ∇ ⋅ (Mijk
∂µj

∂xk
), i = 1, ...,K − 1 resp.

∂c̃

∂t
= ∇ ⋅ (M ∶ ∇µ̃) (7.23)

for the independent concentration values.
If one takes, as proposed in both works and as the use of the grand potential energy would seem
to suggest, µ̃ instead of c̃ as the “fundamental” dynamic variable, this makes, together with the
condition on the equilibrium of the phasespecifc chemical potentials, c̃ a function of (φ, µ̃, T ),
where c̃(φ, µ̃, T ) = ∑

N
α=1 c̃

α
(µ̃, T )hα(φ). Together with the chain-rule and the given evolution

equation for φ, this permits rewriting the evolution equation for the reduced concentration as
one for µ̃ through ∂c̃

∂t
= ∂c̃
∂φ

⋅
∂φ
∂t

+ ∂c̃
∂µ̃

⋅
∂µ̃
∂t

, from which one obtains

∂µ̃

∂t
= (

∂c̃

∂µ̃
)
−1

⋅ (∇ ⋅ (M ∶ ∇µ̃) −
∂c̃

∂φ
⋅
∂φ

∂t
). (7.24)

Remark 96. Note that, together with −c̃ = ∂Ψ̃
∂µ̃

and the evolution equation for φ (e.g. from Equa-

tion (6.74)) complemented by the driving force ∂Ψ̃
∂φα

= ∑
N
β=1 Ψ̃β(µ̃, T ) ∂h

β

∂φα
(φ), this is in principle a

system dependent solely on φ and µ̃ since the parameter T is fixed by assumption. It would thus
seem that one can completely forget about the concentration and in particular the phase-specific
concentrations, or at least only use them as auxiliary quantities whenever convenient.
While this is essentially true17 in the continuous case, one does well to remember that the evo-
lution Equation (7.24) for µ̃ is designed solely for the purpose of ensuring the (conservative)
evolution of c̃ as in Equation (7.23) in the discrete case.
For example, when applying - as far as possible due to the term ∂φ

∂t
- the simplest time-

discretization in terms of an explicit Euler scheme, there are several potential pitfalls. Firstly, the
evaluation of the time-derivative of φ requires both a new and an old value φ(n+1) and φ(n) for
evaluating the time-derivative ∂φ

∂t
, at least when implemented as a single-step scheme18. Based

solely on Equation (7.24) and the use of an explicit scheme, it is then quite natural to firstly
evaluate the matrix ∂c̃

∂µ̃
as ∂c̃

∂µ̃
(φ(n), µ̃(n), T ), and secondly to explicitly evaluate the contribution

due to the time-derivative of φ as ∂c̃
∂φ

as

N

∑
α=1

N

∑
β=1

c̃β(φ(n), µ̃(n), T )
∂hβ

∂φα
(φ(n)

)
(φα)

(n+1)
− (φα)

(n)

∆t
.

In relation with Equation (7.23) and the known data, both of these are bad choices though. In
fact, instead of discretizing the “original” evolution equation for the concentration, one would
like to satisfy, still within an explicit Euler approach,

c̃(n+1)
− c̃(n)

∆t
= ∇ ⋅ (M ∶ ∇µ̃(n)

).

Treating µ̃ as the primary unknown and c̃ as the secondary one, this, together with the already
calculated value of φ(n+1) (and ∇D denoting a discretized version of the ∇-operator), leads to
the equation

c̃(φ(n+1), µ̃(n+1), T )
!
= c̃(φ(n), µ̃(n), T ) +∆t∇D ⋅ (M ∶ ∇Dµ̃

(n)
). (7.25)

16Note that the formulation of Plapp in [56] is slightly different in that it uses a single density field, which can
be related to the single independent component via the atomic volume, which is assumed to be the same for both
species of atoms. For more details, see [56] or the final note in section I.B. in [19].

17Except potentially for initial conditions which are often expressed more naturally in terms of the concentration.
18An alternative of course consists in using φ(n) and φ(n−1), but is both more complex in terms of storage

(when combined with an appropriate buffering scheme) and less accurate.

124



As all quantities except for µ̃(n+1) are known in this equation, a simple linearization leads to the
more appropriate discrete equivalent of Equation (7.24), namely

c̃(φ(n+1), µ̃(n+1), T ) ≈c̃(φ(n+1), µ̃(n), T ) +
∂c̃

∂µ̃
(φ(n+1), µ̃(n+1), T ) ⋅ (µ̃(n+1)

− µ̃(n)
)

!
=c̃(φ(n), µ̃(n), T ) +∆t∇D ⋅ (M ∶ ∇Dµ̃

(n)
).

Further combining this with c̃(φ(n+1), µ̃(n), T ) = ∑
N
α=1 c̃

α
(µ̃(n), T )hα(φ(n+1)

) and the analogous
expression c̃(φ(n), µ̃(n), T ) = ∑

N
α=1 c̃

α
(µ̃(n), T )hα(φ(n)

) for c(n), this then leads to the discrete
update-rule

µ̃(n+1)
∶=(

∂c̃

∂µ̃
(φ(n+1), µ̃(n), T ))

−1

⋅
⎛

⎝

N

∑
α=1

c̃α(µ̃(n), T )(hα(φ(n)
) − hα(φ(n+1)

)) +∆t∇D ⋅ (M ∶ ∇Dµ̃
(n)

)
⎞

⎠
,

(7.26)

which differs from the discretization above in two important points.
Firstly, the linearization through the matrix ∂c̃

∂µ̃
is used only in terms of the (as of yet unknown)

values of µ̃ but using the already known value of φ(n+1). In contrast, the most straightfor-
ward discretization does the same thing, but using a less appropriate linearization based on an
“outdated” value of the phasefield-vector φ(n). Whereas this linearization will be second-order
accurate in the case of Equation (7.26), it will therefore only be first-order accurate when using
φ(n). Secondly, using the (also already known) differences between the weight-functions hα(φ)
instead of their linearization together with φ(n+1)−φ(n)

∆t
is both cheaper and more accurate (ac-

tually exact) than what would result from an a priori natural discretization based on Equation
(7.24).
With this choice of parameters, the resulting update rule for µ̃ clearly corresponds to a single
Newton-step for the discrete update rule (7.25) for the concentration. An obvious advantage
of using such a “blind” single-step procedure in the update rule (7.26) as compared to actually
solving Equation (7.25) is that this is certainly cheaper and requires fewer parameters as there is
for example no control of the residual before accepting the new µ̃-value as sufficiently accurate.
This is at the same time also potentially a severe disadvantage, since this essentially restricts
the use of Equation (7.26) to situations where the changes in µ̃ between successive time-steps
are small enough for this to be the case. A particular but practically quite useful setting where
this never causes any issues is of course when using parabolic approximations of the free energy
densities, as, with the c̃α being affine functions of µ̃, the linearization is actually exact. ◇

Even though taking µ̃ instead of c̃ as the primary unknown (and thus a quantity which is
seemingly independent of φ) would at first sight seem to justify the use of the partial differen-
tiation of Ψ̃ with respect to φ only and thus the use of the grand potential energy density as
the relevant functional, this is somewhat misleading. More precisely, from an optimization point
of view, the relevance of the functional is not really a question of whether one parameterizes
an intermediary evolution in terms of c̃ or µ̃ (there being a one-to-one correspondence between
the two), but of whether the final steady-state can indeed be related to a critical point of this
functional or not. This is closely related to the discussion in [41]. In fact, once evolved to a
steady-state, the (reduced) chemical potential µ̃ will, regardless of the choice of parameterization
in c̃ or µ̃, satisfy the equation

−∇ ⋅ (M ∶ ∇µ̃) = 0

together with the natural isolating boundary conditions ∂µ̃
∂n

= 0. This equation will (under the
natural coercivity condition onM) enforce for µ̃ to be equal to a constant, i.e. µ̃(x) = η̃ for some
(K − 1)-dimensional vector η̃, which is just the well-known condition of the equilibration of the
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chemical potentials. As the conservative gradient flow for c̃ in Equation (7.23) is, in combination
with the isolating boundary conditions, specifically chosen such that the total concentration
∫Ω c̃dx remains equal to its initial value C̃0, this final value η̃ is not arbitrary, but fixed through
the condition

∫

Ω

c̃(φ, η̃, T )dx = ∫

Ω

−
∂Ψ̃

∂µ̃
(φ, η̃, T )dx = C̃0. (7.27)

From this, it is obvious that, even if one initially chooses µ̃ as an “independent” unknown, the
final values of µ̃ are of the form µ̃ = η̃(φ, C̃0, T ), where η̃ depends implicitly (and in a non-local
fashion) on φ through the consistency condition (7.27) on the total concentration19.
As the (physically obviously important) dynamics in themselves ultimately have no impact on
the final values of the functional, one might just as well directly consider Ωε using this final state
η̃(φ, T ), reducing Ωε to a function of φ and the fixed temperature alone,

Ωε(φ, η̃(φ, C̃0, T ), T ) = ∫

Ω

εa(φ,∇φ) +
1

ε
w(φ) + Ψ̃(φ, η̃(φ, C̃0, T ), T )dx

together with Equation (7.27) as a side-condition. An actual minimizer for Ωε in terms of φ
(being the only free parameter now), would thus have to satisfy the analogue of the steady-state
phasefield equation 6.64, but with the driving force contribution due to Ψ̃ now derived from

∫

Ω

∂Ψ̃

∂φ
⋅ δφ +

∂Ψ̃

∂µ̃
⋅ δη̃(δφ, T )dx

where δη̃(δφ) can be determined through the differentiation

∫

Ω

∂c̃

∂φ
(φ, η̃(φ, T ), T ) ⋅ δφ +

∂c̃

∂µ̃
(φ, η̃(φ, T ), T ) ⋅ δη̃(δφ)dx

= − ∫

Ω

∂2Ψ̃

∂φ∂µ̃
(φ, η̃(φ, T ), T ) ⋅ δφ +

∂2Ψ̃

∂µ̃2
(φ, η̃(φ, T ), T ) ⋅ δη̃(δφ)dx = 0

of the constraint in Equation (7.27). Since δη̃ is a constant vector, this equation is easily resolved
explicitly for δη̃(δφ) as

δη̃(δφ) = −(∫
Ω

∂2Ψ̃

∂µ̃2
(φ, η̃(φ, T ), T )dx)

−1

⋅ ∫

Ω

∂2Ψ̃

∂φ∂µ̃
(φ, η̃(φ, T ), T ) ⋅ δφdx,

showing that an actual minimizer of Ωε would have to be based on the driving force corresponding
to

∫

Ω

∂Ψ̃

∂φ
⋅ δφ −

∂Ψ̃

∂µ̃
⋅ (∫

Ω

∂2Ψ̃

∂µ̃2
dy)

−1

⋅ ∫

Ω

∂2Ψ̃

∂φ∂µ̃
⋅ δφdy dx.

Exchanging the order of integration in the last part, this contribution simplifies to the “local”
density

⎛

⎝

∂Ψ̃

∂φ
− (∫

Ω

∂Ψ̃

∂µ̃
dy) ⋅ (∫

Ω

∂2Ψ̃

∂µ̃2
dy)

−1

⋅
∂2Ψ̃

∂φ∂µ̃

⎞

⎠
⋅ δφ. (7.28)

This is obviously quite different from the expression resulting from the first part alone, show-
ing that steady-state solutions of the system above do not correspond to actual minimizers (or
more precisely critical points in general) of Ωε under the side-condition on the total concentration.

19This is essentially the same argument as in [41].
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In contrast, repeating an analogous argument for the free energy functional, with c̃ parame-
terized in terms of (φ, η̃(φ, T ), T ), leads to the condition

∫

Ω

∂f̃

∂φ
(φ, c̃(φ, η̃(φ, C̃0, T ), T ), T) ⋅ δφ +

∂f̃

∂c̃
(φ, c̃(φ, η̃(φ, C̃0, T ), T ), T) ⋅ δc̃(δφ)dx, (7.29)

where δc̃(δφ) (despite its a priori more complex dependence on both δφ and δµ̃(δφ)) can
again be characterized from a differentiation of Equation (7.27) through the very simple relation
∫Ω δc̃(δφ)dx = 0. By the equilibrium condition in terms of the concentration through the
equilibration of the chemical potentials, one in addition has

∂f̃

∂c̃
(φ, c̃(φ, η̃(φ, C̃0, T ), T ), T) = η̃(φ, C̃0, T )

with η̃ independent of x. It follows that the second contribution in Equation (7.29) simply drops
out and the driving force in Equation (7.16) is thus indeed consistent with a variational principle
in terms of the free energy together with the side-condition given by the conservation of the total
concentration C̃0.

This can alternatively also be seen by, instead of relying on the conservative gradient flow
for c̃ with respect to Fε, including the constraint ∫Ω c̃dx = C̃0 directly into the problem by
augmenting Fε with this constraint, i.e. by considering

min
(φ,c̃)

sup
η̃

{Fε − η̃ ⋅ (∫
Ω

c̃dx − C̃0)}.

Using Equation (7.18), this may also be written as

min
(φ,c̃)

sup
η̃

{∫

Ω

εa(φ,∇φ) +
1

ε
w(φ) + sup

µ̃
{Ψ̃(φ, µ̃, T ) + µ̃ ⋅ c̃} − η̃ ⋅ (∫

Ω

c̃dx − C̃0)}.

Assuming one can interchange the minimization with respect to c̃ with the suprema in µ̃ and η̃,
the minimization with respect to c̃, with the only term depending on c̃ given by ∫Ω (µ̃− η̃) ⋅ c̃dx
leads to

sup
(η̃,µ̃)

inf
c̃

{∫

Ω

Ψ̃(φ, µ̃, T )+(µ̃−η̃) ⋅ c̃dx+η̃ ⋅C̃0} = sup
(η̃,µ̃)

⎧⎪⎪
⎨
⎪⎪⎩

⎧⎪⎪
⎨
⎪⎪⎩

∫Ω Ψ̃(φ, µ̃, T )dx + η̃ ⋅ C̃0 µ̃ = η̃ a.e.,
−∞ else

⎫⎪⎪
⎬
⎪⎪⎭

.

The second case will obviously be eliminated by the sup-operations, such that it suffices to
consider the case with µ̃ = η̃ which can then be reduced to a global maximization operation in
the vector µ̃, supη̃ { ∫Ω Ψ̃(φ, η̃, T )dx+ η̃ ⋅ C̃0}. Combining this with the contributions by a and
w, an alternative formulation of the global problem is thus given by

min
φ

sup
η̃

{∫

Ω

εa(φ,∇φ)+
1

ε
w(φ)+Ψ̃(φ, η̃, T )dx+ η̃ ⋅C̃0} = min

φ
sup
η̃

{Ωε(φ, η̃, T )+ η̃ ⋅C̃0}. (7.30)

Note that since the phasefield terms play no role with respect to the supremum in µ̃, this is
basically just a “global” version of the inverse transform defining f̃(φ, c̃, T ) in terms of Ψ̃(φ, µ̃, T )

as in Equation (7.18). More precisely, the optimality condition for µ̃ in Equation (7.21) defines
µ̃ = µ̃(φ, c̃, T ) as a function of the given parameters (φ, c̃, T ). This value of µ̃ is such that, on
the one hand, c̃ = −∂Ψ̃

∂µ̃
(φ, µ̃(φ, c̃, T ), T ) and on the other hand, from Equation (7.22) and the

definition (7.5) of f̃(φ, c̃, T ), such that the value of Ψ̃(φ, µ̃(φ, c̃, T ), T )+µ̃(φ, c̃, T ) ⋅ c̃ is precisely
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the one of the effective free energy obtained by an energetically optimal distribution of the given
average concentration onto the phase-specific ones.
In an analogous manner, the optimality condition with respect to η̃ in Equation (7.30) is given
by C̃0 = − ∫Ω

∂Ψ̃
∂µ̃

(φ, η̃, T )dx, i.e. an integral version of c̃ = −∂Ψ̃
∂µ̃

, which serves to define η̃ =

η̃(φ, C̃0, T ) with the total concentration C̃0 replacing the local one in µ̃(φ, c̃, T ). In addition,
this value of η̃ satisfies an integral analogue of Equation (7.22), namely one has

min
{c̃∶∫Ω c̃dx=C̃0}

{∫

Ω

f̃(φ, c̃, T )dx} = sup
η̃

{∫

Ω

Ψ̃(φ, η̃, T )dx + η̃ ⋅ C̃0}

=∫

Ω

Ψ̃(φ, η̃(φ, C̃0, T ), T )dx + η̃(φ, C̃0, T ) ⋅ C̃0,
(7.31)

and thus the value of ∫Ω Ψ̃(φ, η̃(φ, C̃0, T ), T )dx + η̃(φ, C̃0, T ) ⋅ C̃0 is the one obtained from an
energetically optimal redistribution of the given concentration C̃0 over the domain.
The primary interest of this observation in terms of the current discussion is that it can serve
to derive an “extension” of the expression for the driving force in Equation (7.16). Whereas this
expression was obtained based on the local minimization of f̃ in terms of the cα given the local
concentration c̃, Equation (7.31) defines the global optimal contribution due to the bulk free
energy density through an a priori quite complex double-minimization as

min
{c̃∶∫Ω c̃dx=C̃0}

min
{(c̃α)1≤α≤N ∶∑Nα=1 c̃

αhα(φ)=c̃}
{∫

Ω

N

∑
α=1

fα(c̃α, T )hα(φ)dx}

enforcing an optimal redistribution of the given total concentration C̃0 over both the domain
and the individual phases. Regardless, in the same manner as before, it follows from Equation
(7.31) that the driving force contribution to this problem has the same simple structure as before.
More precisely, instead of differentating the expression for ∫Ω f̃(φ, c̃(φ, T ), T ) where c̃ = c̃(φ, T )

is the minimizer for the left-most expression in Equation (7.31), one can also differentiate the
right-most one, leading to

δ(∫
Ω

f̃(φ, c̃(φ, T ), T )dx)(δφ) = ∫
Ω

∂Ψ̃

∂φ
⋅ δφ +

∂Ψ̃

∂η̃
⋅ δη̃(δφ)dx + δη̃(δφ) ⋅ C̃0

with δη̃(δφ) denoting the increment of η̃(δφ) as a (non-local) function of δφ. As η̃ is such that
C̃0 = − ∫Ω

∂Ψ̃
∂µ̃

(φ, η̃, T )dx though, the last two terms drop out regardless of the value of δη̃(δφ),
thus again reducing the derivative with respect to φ (despite the additional global dependence
of the optimal c̃ on φ) to the simple local expression

∂f̃

∂φα
(φ, c̃(φ, C̃0, T ), T ) =

N

∑
β=1

Ψ̃β(φ, η̃(φ, C̃0, T ), T )
∂hβ

∂φα
(φ).

Summarizing the discussion above, it can be seen that while the Ψ̃α appear very naturally
as the relevant phase-specific quantities for the driving force in the phasefield equation, the link
between this model and the grand potential energy functional Ωε is a somewhat tenuous one.
While the use of this potential as suggested in [56] and [19] is clearly a very efficient approach
for “deriving” this driving force, this should rather be considered as a purely formal device20.

20In particular, as seen in Equation (7.28), a more carfeful derivation of the driving force corresponding to the
minimization of Ωε under the implicit constraint of maintaining the total concentration ∫Ω c̃dx enforced through
the evolution equation for c̃ (whether expressed in µ̃ or not) leads to a quite different expression. In contrast, as
seen based on Equation (7.31), it is only in combination with the additonal contribution by η̃(φ, C̃0, T ) ⋅ C̃0 to
Ωε - and thus reverting back to the free energy - that one recovers consistency of the driving force with a global
minimization property.
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As such this approach is in a certain sense in competition with the more common approach
of “guessing” the correct equations based upon a straightforward partial differentiation of the
Lagrangian

L(φ, c̃, T, (c̃α)1≤α≤N , µ̃) =
N

∑
α=1

f̃α(c̃α, T )hα(φ) − µ̃ ⋅ (
N

∑
α=1

c̃αhα(φ) − c̃).

While this approach is a priori also purely formal, obtaining the relevant driving force is then
just as simple as when starting from Ωε as it suffices to partially differentiate L with respect to
φα, with the additional advantage of being, even at a purely formal level, easier to link to the
original problem one is trying to solve21.

Remark 97. It is important to note that the discussion above is only valid in this form when the
concentration is (through the imposed conservative flow of c̃) subject to isolating boundary con-
ditions and therefore implicitly the constraint on the total concentration ∫Ω c̃dx. If, in contrast,
one chooses to enforce a constant value of the chemical potential ˆ̃µ on the outer boundary, it is
clear that the phasefield equation together with the driving force given in Equation (7.16), will
indeed minimize the grand potential energy Ωε(φ, ˆ̃µ, T ). In fact, since the chemical potential is,
up to some potential delay through the diffusion equation for c̃, then fixed to the value ˆ̃µ, there
will be no additional contribution as in Equation (7.28).

At the same time, there will not anymore be a natural minimization interpretation in terms
of F , a property which is closely related to the discussion in the earlier paper [41] by Kim, Kim
and Suzuki. More precisely, the analysis in [41] investigates the influence on the minimization
of the free energy F(φ, c) if one, instead of treating both c and φ (here in a reduced scalar
formulation) as independent variables, considers the steady-state concentration profile for c as
a function of the steady-state phasefield profile φ(x). Their argument is that any equilibrium
profile of the concentration has to satisfy the equilibration of the chemical potentials µ with the
prescribed one, i.e. ∂f

∂c
(c, φ) = µ̂ = const and thus implicitly defines c as a function of φ (and µ̂).

They then continue to argue that defining F (c(φ), φ) ∶= f(c(φ), φ) − µ̂c(φ) and thus such that
F satisfies ∂F

∂c
=
∂f
∂c
− µ̂ = 0 and dF

dφ = ∂F
∂φ

+ ∂F
∂c

∂c
∂φ

= ∂F
∂φ

=
∂f
∂φ

(c(φ), φ), the driving force ∂f
∂φ

for the
phasefield equation can equivalently be reformulated in terms of dF

dφ .
While this argument is correct, it needs to be interpreted with some care in the present context22.
In particular, the analysis in [41] should not be considered in the sense that the driving force for
a minimization of the free energy in this case should be given by the derivative of f(c, φ) − µ̂c.
It is thus quite different from the analysis in the paper [42] by the same authors, where, despite
the fact that it is still based on the minimization of the free energy, the use of two phase-specific
concentration fields defined as functions of (φ, c) in terms of the equality of the phase-specific
(reduced) chemical potentials does in fact lead to the driving force being given by the differences
of fα(cα) − µcα23.

Instead, it simply shows a variational inconsistency in the sense that under the constraint
in terms of µ̂, using the driving force ∂f

∂φ
derived as a partial derivative from the free energy

density, f will in fact not minimize the free energy but the grand chemical potential (i.e. the

21I.e. in particular, when the c̃α satisfy the sum-constraint, L reduces to ∑Nα=1 f
α(c̃α, T )hα(φ) and equating

the partial differentiations with respect to µ̃ and c̃α to 0 leads to the constraint and optimality condition ∂f̃α

∂c̃α
= µ̃

respectively.
22In [41], the appearence of this total differential is primarily used to enable a more standard analysis of the

energetics of the transition region in the one-dimensional case.
23In contrast to the former paper, this is based on a purely local analysis and does not consider any additional

dependence of the average concentration c on φ.
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quantity whose total derivative ∂f
∂φ

represents in combination with the constraint). As such, it is
essentially a restatement of the well-known fact that the minimization of the free energy is not
the appropriate variational principle when dealing with an open system.
In contrast, actually minimizing the free energy under the constraint on the chemical potential
would require using the total derivative of f , i.e.

df
dφ

(φ, c(φ)) =
∂f

∂φ
+
∂f

∂c

∂c

∂φ
=
∂f

∂φ
+ µ̂

∂c

∂φ
,

which could then, using the same argument as in [41], be rewritten as ∂f
∂φ

− µ̂(∂
2f
∂c2

)
−1 ∂2f
∂φ∂c

. ◇
Remark 98. It is quite interesting to observe what happens if the analysis in [42] is combined
with the one in [41] by again enforcing a prescribed chemical potential24. Firstly, adjusting the
previous argument to the notation above, it was already observed that ∂f̃

∂φ
= ∑

N
β=1 Ψ̃β(µ̂, T ) ∂h

β

∂φα
.

Since this is, for a fixed value of µ̂, clearly the same as dΨ̃
dφ , using

∂f
∂φ

as the driving force does in
fact lead to the minimization of Ωε. Secondly, the total derivative of f̃(φ, c̃(φ, µ̂, T ), T ) is then
given by

df̃
dφ

=
∂f̃

∂φ
+
∂f̃

∂c̃
⋅
∂c̃

∂φ
.

As in this model the average concentration c̃ is by construction given by the weigthed average
c̃ = ∑

N
α=1 c̃(ˆ̃µ, T )hα(φ) of the c̃α corresponding to the - then given - chemical potential ˆ̃µ, there

is in fact no need to invoke an implicit function theorem for determining ∂c̃
∂φ

as these derivatives

can directly be obtained from this definition. Combining this with the expresssion for ∂f̃
∂φα

and
the chain-rule for the differentiation of f̃ , one thus obtains

df̃
dφα

=
N

∑
β=1

Ψ̃β
(µ̂, T )

∂hβ

∂φα
+ ˆ̃µ ⋅

N

∑
β=1

c̃β(ˆ̃µ, T )
∂hβ

∂φα
=

N

∑
β=1

fβ(c̃β(µ̂, T ), T )
∂hβ

∂φα
.

In contrast to the minimization of F subject to a fixed total concentration, the correct driving
force for the minimization of F subject to a fixed chemical potential is therefore indeed given in
terms of the f̃α. ◇

7.1.5 The Practical Evaluation of f(φ,c, T ) and the Chemical Potential
Given that f is now only implicitly defined in terms of either the abstract minimization problem
Equation (7.3) (resp. through its alternative representation f̃ in Equation (7.5)) or the more
concrete optimality system in Equation (7.9) (resp. in Equation (7.10)), it is clear that the
evaluation of the free energy function is more involved than for an explicit formulation in terms
of the phase-averaged concentrations c as in e.g. [52]. Therefore, each evaluation of f(φ,c, T )

now requires solving for the (cα)α∈Pp realizing the minimum in Equation (7.3). As the fα(cα, T )

are in general nonlinear (though strictly convex) functions of the phase-specific concentrations
cα, this has to be done - except for particularly simple examples such as an ideal solution model
- using some iterative solution approach. The natural choice here is of course a Newton-type
scheme, based on either Equation (7.9) or Equation (7.10).

The Reduced Formulation

Beginning with the somewhat simpler case of the reduced formulation, each Newton step con-
sists in, given the current estimates of (c̃α)

(n)
α∈Pp

(and therefore trivially also (cαK)(n) = 1 −

24Given that both reduced chemical potentials are enforced to be equal, the only consistent choice for them is
to be equal to the prescribed one.
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∑
K−1
i=1 (cαi )

(n)
i ), determining the updated concentration values (c̃α)

(n+1)
α∈Pp

= ((c̃α)
(n)

+ δc̃α)
α∈Pp

and the associated updated multiplier µ̃(n+1) by either setting µ̃(n)
+ δµ̃ and solving the lin-

earized problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µ̃α((c̃α)
(n)
, T) +

∂µ̃α

∂c̃α
((c̃α)

(n)
, T)δc̃α − (µ̃(n)

+ δµ̃) = 0,

∑α∈Pp ((c̃
α
)
(n)

+ δcα)hα(φ) = c̃.
(7.32)

Alternatively, as the original equations µ̃α !
= µ̃ and thus automatically also (7.32) are in fact

linear in µ̃, one can also directly use µ̃(n+1) and solve

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

µ̃α((c̃α)
(n)
, T) +

∂µ̃α

∂c̃α
((c̃α)

(n)
, T)δc̃α − µ̃(n+1)

= 0,

∑α∈Pp ((c̃
α
)
(n)

+ δcα)hα(φ) = c̃.
(7.33)

Remark 99. It is clear that25 both the incremental (in µ̃) System (7.32) and the non-incremental
System (7.33) will lead to the same value for µ̃(n+1). Nevertheless, using an incremental formu-
lation can simplify certain modifications (such as the use of a damped Newton scheme when the
convexity is lost due to additional contributions) and, as pointed out below, allows a simpler
reuse of the algorithm when determining the cα for a given µ̃. It will therefore be preferred in
the following. If desired, the non-incremental version can easily be obtained from the description
below by simply replacing δµ with µ̃(n+1) and the old value µ̃(n) by 0. ◇

Assuming for notational simplicity that Pp = {1,2, ...,Np}, the matrix-vector form of the
system (7.32) is given by26

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
∂2f̃1

∂(c̃1)2 ) 0 ... 0

0 (
∂2f̃2

∂(c̃2)2 ) ... 0

⋱ ⋱ ⋱

0 ... 0 (
∂2f̃Np

∂(c̃Np)2 )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

−I
−I
⋮

−I

⎞
⎟
⎟
⎟
⎠

( h1(φ)I h2(φ)I ... hNp(φ)I ) 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

δc̃1

δc̃1

⋮

δc̃Np

⎞
⎟
⎟
⎟
⎠

δµ̃

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎜
⎝

r
(n)
µ̃1

r
(n)
µ̃2

⋮

r
(n)
µ̃Np

⎞
⎟
⎟
⎟
⎟
⎟
⎠

r
(n)
c̃

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the residuals are given by

r
(n)
µ̃α ∶= µ̃(n)

− (µ̃α)
(n)

and r
(n)
c̃ ∶= c −

Np

∑
α=1

(c̃α)(n)hα(φ) (7.34)

and the dependence of the ∂2f̃α

∂(c̃α)2 on ((c̃α)(n), T ) has been suppressed. A noteworthy feature of

this system is that the upper left part is block-diagonal as each f̃α only depends on the phase-
specific concentrations of this particular phase, and each (K − 1) × (K − 1)-block is formed by
an s.p.d. matrix due to the convexity of the f̃α w.r.t. c̃α. Due to this particular structure, the
system can conveniently be solved using a Schur complement approach, i.e. by first eliminating
the δc̃α in terms of the r(n)µ̃α and δµ̃ (resp. µ̃(n+1)) as

δc̃α =
⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

(r
(n)
µ̃α + δµ̃) =

⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

(µ̃(n+1)
− (µ̃α)(n)) α ∈ Pp. (7.35)

25Also see Remark 101 below.
26Note that this system in this form does not correspond to a classical saddle point matrix. If required, it can

be brought into such a form y “undoing” the division of the first set of equations through hα(φ) and changing
the signs in the last row.
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This leads to the reduced system

∑
α∈Pp

δc̃αhα(φ) =
Np

∑
α=1

⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

(r
(n)
µ̃α + δµ̃)hα(φ) = rc̃

and thus, defining ζ̃
α
∶=

⎛

⎝

∂2f̃α

∂(c̃α)2

⎞

⎠

−1

rµ̃α , the (K − 1)-dimensional Schur complement system

Sc̃δµ̃ = r
(n)
c̃ − ∑

α∈Pp

⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

r
(n)
µ̃α h

α
(φ) = r

(n)
c̃ − ∑

α∈Pp
(ζ̃
α
)
(n)
hα(φ) (7.36)

with the (reduced) Schur complement matrix

Sc̃ = ∑
α∈Pp

⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

hα(φ). (7.37)

Once δµ̃ (resp. µ̃(n+1)) is found, the new c̃α-values are then easily recovered using Equation
(7.35) in terms of the (independent) subsystems

(c̃α)
(n+1)

= (c̃α)
(n)

+
⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

(r
(n)
µ̃α + δµ̃) = (c̃α)

(n)
+
⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

(µ̃(n+1)
− (µ̃α)(n)). (7.38)

Remark 100. This procedure can in principle alternatively be interpreted as a predictor-corrector
scheme. In fact, defining the auxiliary quantities

(c̃α)
(n+ 1

2 ) ∶= (c̃α)
(n)

+
⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

(µ̃(n)
− (µ̃α)(n)) (7.39)

corresponding to the predicted values of the phase-specific concentration for the current value
µ̃(n) of µ̃, the increment δµ̃ and the final (cα)

(n+1)
satisfy

Sc̃δµ̃ = c̃ − ∑
α∈Pp

(c̃α)
(n+ 1

2 )hα(φ) = r
(n+ 1

2 )
c̃

and

(c̃α)
(n+1)

= (c̃α)
(n+ 1

2 ) +
⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

δµ̃.

It is easily verified that, after a division by hα(φ) for the phases with hα(φ) ≠ 0, this system is
also the FONC of the minimization problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

minimize 1
2 ∑α∈Pp ((c̃

α
)(n+1) − (c̃α)

(n+ 1
2 )) ⋅ ∂2f̃α

∂(c̃α)2 ((c
α)(n)) ⋅ ((c̃α)(n+1) − (c̃α)

(n+ 1
2 ))hα(φ)

subject to ∑α∈Pp (c̃
α
)
(n+1)

hα(φ) = c̃

and thus a correction step through a weigted (by the ∂2f̃α

∂(c̃α)2 -matrices evaluated for the old concen-

tration values (c̃α)
(n)

) projected operation onto the subspace of the phase-specific concentration
values satisfying the sum-constraint ∑α∈Pp c̃

αhα(φ) = c̃. ◇
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The block-factorization procedure using the Schur-complement Sc̃ instead of a direct solution
of the full system at once has two advantages. On the one hand, it can take advantage of the
block-diagonal structure. In particular, it is sufficient to work with the individual subblocks
∂2f̃α

∂(c̃α)2 alone when calculating the Schur complmenent Sc̃ and the modified residual in Equation

(7.36) as well as for the (c̃α)(n+1) in equation (7.38). On the other hand, while it is very
expensive in terms of memory requirements to store all the phase-specific concentrations for the
entire computational domain when a large number of phases are present, one can easily store
the phase-independent multiplier µ̃. At any point at which it is necessary to use the cα, they
can be recalculated from the known value µ̃, at least provided none of the other parameters
(here φ and T ) have changed in between. Starting e.g. from the initial guess (c̃α)(0) = c, the
corresponding Newton scheme reduces precisely to the same steps as the determination of the
(cα)(n+

1
2 ) in Equation (7.39) above, as one in fact has27

(c̃α)(n+1)
∶= (c̃α)(n) +

⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

(µ̃ − (µ̃α)(n)) = (c̃α)(n) + (
∂µ̃α

∂c̃α
)
−1

(µ̃ − (µ̃α)(n)). (7.40)

One can therefore simply reuse the same functionality for both problems, that of determining
the phase-specific concentrations and the reduced chemical potential from (φ,c, T ) alone or from
(φ,c, T ) and µ̃, the latter one of course being somewhat cheaper as there is in particular no
need of actually inverting the ∂2f̃α

∂(c̃α)2 -submatrices in order to determine Sc̃.
In matrix terms, the increments in the phase-specific concentration and µ̃ as a function of the

residuals from Equation (7.34) can succinctly be summarized as28 (
(δc̃α)α∈Pp

δµ
) =A(

(rαµ̃)α∈Pp
rc̃

)

with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A11

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

( ∂µ̃
1

∂c̃1
)
−1

S−1
c̃

( ∂µ̃
2

∂c̃2
)
−1

S−1
c̃

⋮
( ∂µ̃

Np

∂c̃Np
)
−1

S−1
c̃

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

( −h1S−1
c̃
∂µ̃1

∂c̃1
−h2S−1

c̃
∂µ̃2

∂c̃2
... −hNpS−1

c̃
∂µ̃Np

∂c̃Np
) S−1

c̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (7.41)

where the individual block-entries of the submatrix A11 are given by

Aαβ
11 = (

∂µ̃α

∂c̃α
)
−1⎛

⎝
δαβI − hβ(φ)S−1

c̃ (
∂µ̃β

∂c̃β
)
−1⎞

⎠
. (7.42)

While this representation can be convenient for theoretical purposes29 , its (1,1)-block - unlike
the one corresponding to Equation (7.32) - is now a fully filled matrix due to the coupling by the

27Where, as usual, it is preferable to solve these systems instead of multiplying the right-hand side by the
inverse of ∂2f̃α

∂(c̃α)2 = ∂µ̃α

∂c̃α
.

28This is simply a formula for the inverse of a matrix in terms of its Schur-complement in the case when the
off-diagonal blocks are not transposes of each other, see e.g. [10] or [77].

29Yet another represenation of this inverse - which is closely linked with the predictor-corrector interpretation
above - is based on the following block-factorization as a “perturbation” of the inverse of the (1,1)-block (see
[77]),

( A R
L C

)
−1

= ( A−1 0
0 0

) + ( −A−1R
I

)S−1 ( −LA−1 I ) ,

which, in terms of the given quantities here, corresponds to

⎛
⎜
⎝

( ∂µ̃
α

∂c̃α
)
−1

α∈Pp
0

0 0

⎞
⎟
⎠
+
⎛
⎜
⎝

( ∂µ̃
α

∂c̃α
)
−1

α∈Pp
I

⎞
⎟
⎠
S−1
c̃ ( −hα( ∂µ̃

α

∂c̃α
)
−1

α∈Pp
I ) .
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sum constraint. For practical purposes, it is therefore preferable to work with the “sequential”
representation of this inverse consisting in first determining δµ̃ and then simply updating the

c̃α through δc̃α = (
∂µ̃α

∂c̃α
)
−1

(rµ̃α + δµ̃
α
).

Remark 101. It should be noted that, due to the linearity in µ̃, disposing of a good “initial guess”
µ̃(0) has no direct effect on the basic Newton scheme in the form of (7.32) as µ̃(1) is a function
of the (c̃α)(0) only. This is also easily seen based on equations (7.36) and (7.34), as the prefactor
of µ̃(n) in the update formula (7.36) is (due to the independence of µ̃ on α) precisely -Sc̃, i.e.
one can equivalently replace Equation (7.36) by the alternative update rule

Sc̃(µ̃
(n)

+ δµ̃) = Sc̃µ̃
(n+1)

= (c̃ − ∑
α∈Pp

c̃αhα(φ)) + ∑
α∈Pp

⎛

⎝

∂2f̃α

∂(c̃α)
2

⎞

⎠

−1

(µ̃α)
(n)
hα(φ).

With µ̃(n+1), the (δc̃α)α∈Pp can then be recovered using the left expression in Equation (7.35). ◇
Remark 102. A natural initial guess is to simply choose the initial phase-specific concentrations
to be the same as the total concentration30, i.e. setting (c̃α)(0) = c̃, α = 1, ...,Pp. Due to the
averaging property ∑α∈Pp c̃h

α(φ) = (∑α∈Pp h
α(φ))c̃ = c̃, this in particular ensures that the sum-

constraint on the concentrations is automatically satisfied for the initial guess, i.e. r(0)c̃ = 0.
Due to the linearity of the second equation in either Equation (7.33) or (7.32) w.r.t. the δcα

and a simple recursion, this property will in fact be inherited by all subsequent iterates, as, per
construction, ∑α∈Pp δc̃

αhα(φ) = c̃−∑α∈Pp(c̃
α
)(n)hα(φ) and the weighted average of the cα does

therefore not change between the n-th and (n + 1)-th step provided it was already consistent31.
This unfortunately does not allow for any major simplifications of the algorithm above, as,
despite the ability of dropping the right-most row in Equation (7.41), the (larger) (1,1)-block
given by A11 in Equation (7.42) still contains all inverse matrices appearing in (7.41). ◇
Remark 103. Complementing Remark 101, if one believes an old value of µ̃ to be a good ap-
proximation of the new one - as is e.g. the case in many time-stepping schemes, in particular if
the time-step is small - one may nevertheless use this value to generate a well-educated initial
guess for the c̃α. To do so, it suffices to (approximately) determining the cα such that ∂f̃α

∂c̃α
= µ̃

which, as µ̃ is taken as fixed, only involves the small block-diagonal submatrices ∂µ̃α

∂c̃α
whose

factorizations need to be determined anyway.
In contrast to Remark 102, this does not ensure the fulfillment of the averaging on the (c̃α)(0)

to c̃, but, if solved exactly32, would ensure the equality of the µ̃α with µ̃ and thus the vanishing
of (r(0)µ̃α)α∈Pp .

While the contribution of the first (larger) part of A to the increments does in this case
vanish in the first step - i.e. it seems as if one could make full use of the sparsity of the
(1,1)-submatrix (

∂µ̃α

∂c̃β
)
α,β∈Pp

in the first equation of the system (7.32) instead of the fully filled

A11-matrix in Equation (7.42) - this, similar to Remark 102, typically would generally not lead
to any substantial decrease in the computational effort in the first iteration step as compared to
solving the full system in Equation (7.32). In fact, on the one hand, the appearence of Sc̃ still

30Which, as the conserved quantity, is a priori the natural one to be stored. In relation with the discussion
in Section 7.1.4, an alternative consists in - as proposed e.g. in [19] - instead storing µ̃ only and using the
(discretized) evolution equation for µ̃ from Equation (7.24) for updating µ̃ instead of the concentration itself.
While this approach is in certain cases quite efficient and has been used quite successfully also for very large
simulation setups (see for example the works [36], [70], [39] and the references therein), it is also somewhat
restrictive as will be discussed below.

31The same will actually happen for any initial guess after the first iteration.
32This is certainly not to be recommended in general! Even if the individual sub-iterations in this first step would

be slightly less inexpensive (but see Remark 103 below) than an iteration on the full system, this subiteration on a
subsystem of the actual one to be solved would be at the cost of the quadratic convergence of the Newton-scheme
on the actual system to be solved once the c̃α and µ̃ are sufficiently close to the true ones.
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requires an factorization and inversion of the submatrices (
∂µ̃α

∂c̃α
)
α∈Pp

for all phases in Pp. On

the other hand, the natural algorithmic approach for the solution of the full system consists in
first determining δµ̃ in terms of the auxiliary vectors ζ̃

α
as in Equation (7.36) and then using

Equation (7.38) for determining the δc̃α. This requires precisely the same steps as the first
iteration step assuming, as above, that the rµ̃α , α = α ∈ Pp vanish, except for the solution of
Equation (7.38) based on the already factorized or inverted submatrices (

∂µ̃α

∂c̃α
)
α∈Pp

.
◇

Remark 104. In relation with the approaches in [19] and [56], it should be kept in mind that there
is a seemingly very convenient alternative solution procedure, which consists in directly choosing
the (common) multiplier µ̃ as the primary unknown and expressing the remaining unknowns c̃α

as direct functions of µ̃ and T .
This reduction in the number of unknowns is clearly a quite appealing feature, since it replaces
the system (7.10) with one consisting of the sum-constraint as a function of µ alone,

N

∑
α=1

c̃α(µ̃, T )hα(φ)
!
= c̃. (7.43)

Furthermore, taking again a Newton scheme as the obvious choice of solving Equation (7.43),
one directly obtains the update rule

(
N

∑
α=1

∂c̃α

∂µ̃
(µ̃(n), T )hα(φ))δµ̃ = c̃ −

N

∑
α=1

c̃α(µ(n), T )hα(φ). (7.44)

This can in fact be a very efficient approach provided one disposes of a direct formulation of the
c̃α as functions of µ̃ and T since it only requires the solution of a single and usually fairly small
system for the K − 1 unknowns in δµ̃.
It is much less practical though if this is not the case, i.e. if one is not able to derive an explicit
expression for c̃α(µ̃, T ). Even though this does not preclude the use of such a scheme since one
can always solve the equation

∂f̃α

∂c̃α
(c̃α, T ) = µ̃ (7.45)

numerically33 and then recover the required expressions for ∂c̃
α

∂µ̃
by differentiating Equation (7.45)

for cα = cα(µ̃, T ) leading to

∂2f̃α

∂(c̃α)
2
(c̃α, T )

∂cα

∂µ̃
(µ̃, T ) = I resp.

∂cα

∂µ̃
(µ̃, T ) =

⎛

⎝

∂2f̃α

∂(c̃α)
2
(c̃α(µ̃, T ), T )

⎞

⎠

−1

, (7.46)

this reintroduces the necessity of the inversion of these phase-specific matrices and leads back to
the formula for the reduced Schur-complement matrix Sc̃ in Equation (7.37). Furthermore, the
numerical solution of Equation (7.45) is again most naturally done using a Newton-scheme and
thus through the update rule (c̃α)

(n+1)
= (c̃α)

(n)
+ δc̃α with δc̃α determined by

∂2f̃α

∂(c̃α)
2
((c̃α)

(n)
, T)δc̃α = µ̃ −

∂f̃α

∂c̃α
((c̃α)

(n)
, T), (7.47)

reintroducing the cα and δcα as auxiliary unknowns. In addition, Equation (7.45) should a priori
be solved exactly in order for the expression for ∂c̃α

∂µ̃α
in Equation (7.46) to be correct, and will

therefore in general require several Newton steps.

33This is also indicated in [56].
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The additional computational cost of this can of course be alleviated by deliberately allowing
for inaccuracies in the solution of this system by e.g. replacing the exact solution of the equations
(7.45) with a single Newton-step as in Equation (7.47), but one has to exercise some care when
doing so. While simply using the relation (7.46) is in principle still possible, this will seriously
impeed the convergence of the update rule (7.44). The problem with this approach is that it
neglects an effect distinguishing Equation (7.47) from the derivation of Equation (7.46). Namely,
whereas Equation (7.46) is based on predicting the change of c̃α to changes in µ̃ ∂2fα

∂(c̃α)22 δc̃
α
= δµ̃,

what actually happens due the update (7.47) is that δc̃α changes according to

∂2f̃α

∂(c̃α)
2
((c̃α)

(n)
, T)δc̃α = δµ̃ + µ̃ −

∂f̃α

∂c̃α
((c̃α)

(n)
, T),

and therefore is not only affected by δµ̃ but also by the residual rµ̃α for Equation (7.45) at the
last step. Including this effect for restoring the quadratic convergence rate then simply leads
back to Equation (7.36) and thus is ultimately a somewhat cumbersome and more error-prone
way of obtaining the the previous linearized system (7.32) obtained through a “mechanical”
differentiation based on the direct use of the more natural (for the f̃α given as functions of c̃α

and T ) variables. ◇
Remark 105. By the previous remark, the computational cost of calculating an increment in µ̃
due to a change in the concentrations using implicitly defined functions c̃α in terms of µ̃ and T
is, at least when using the inaccurate version, roughly similar to the one of obtaining µ̃ based
on a given concentration as in Section 7.1.5 based on Equation (7.10).
A very important exception to this occurs in the bulk-regions, where, given f̃α(c̃α, T ) and the
average concentration c̃ and the temperature T , one can obtain µ̃ directly from µ̃ =

∂f̃α

∂c̃α
(c̃, T )

and thus is an operation which is expected to be relatively cheap. This is a major advantage over
a scheme (such as proposed in [19]) based on the storage of µ̃ only, unless of course one has an
explicit formulation of the c̃α as functions of µ̃ allowing to make use of the same simplification
through a then also relatively cheap “conversion” of µ̃ to c̃α for the bulk-phase. If such is not the
case, the storage of µ̃ instead of c̃ is unlikely to be an efficient approach as this enforces an iter-
ative update scheme in some form for updating µ̃ if there are any changes in the concentration.
In particular, there is no really valid way of justifying the use of a “blind” single-step scheme as
for the time-discretization of Equation (7.24) in [19]. Even if the changes in µ̃ are very small,
due to e.g. a small time-step, and a single Newton-step for δµ̃ is therefore expected to be very
accurate, this requires at least an accurate estimate of ∂c̃

α

∂µ̃
, and therefore a sufficiently accurate

estimate of c̃α in the bulk-phase for which there is none if the concentration is not stored34.
Except for sufficiently simple free energies where one can derive the appropriate relations an-
alytically, a formulation directly in terms of c̃ or, if using a primarily µ̃-based formulation, at
least the additional storage of the concentration field is therefore to be recommended. ◇

34One of course has to be careful about the meaning of sufficiently accurate and to take the changes of other
parameters into account in order to maintain a high accuracy with such a scheme.
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The Non-Reduced Formulation

Solving for the unknowns in the non-reduced formulation from Equation (7.9) is a priori a little
more difficult. In this case, the linearized system is given by

∂fα

∂cα
((cα)(n), T ) +

∂2fα

∂(cα)
2
((cα)(n), T )δcα − (µ(n)

+ δµ + (λα)(n+1)e) = 0 (7.48)

together with the sum-constraint ∑α∈Pp c
αhα(φ) = c and the sum-constraints (e ⋅ cα)(n+1) = 1

on the phase-specific concentrations. On the one hand, this system a priori has the disadvantage
of being somewhat larger due to the presence of the additional phase-specific multipliers λ and
the additional sum-constraints on the cα. On the other hand, as pointed out above, due to the
partial redundancy in the sum-constraint for c, one needs to impose an additional condition on
µ in order to obtain unicity of the multipliers.
Nevertheless, this formulation is also somewhat more natural in the sense that the phase-specific
free energies are often more easily described using the full concentration vectors cα instead of
an “artificial” reduction to K − 1 components only.

Fortunately, this is not a very serious concern as one already disposes of a simple solution
procedure for the reduced formulation and the system in Equation (7.48) together with the con-
straints provides all the differential information on the system required to recover the remaining
quantities if desired. Both the reduced and the non-reduced case can therefore be handled in a
relatively transparent fashion using the same central algorithm.
More precisely, subtracting the K’th row in the System (7.48) from the first K − 1 ones - corre-
sponding to multiplying the system from the left by the matrix ( IK−1 −ẽ ) - makes it possible
to eliminate the common factor λα and reduces the remaining system to

(
∂fα(cα, T )

∂cαi
)

1≤i≤K−1
−
∂fα(cα, T )

∂cαK
ẽ + ( IK−1 −ẽ )

∂2fα

∂(cα)
2
((cα)(n), T )δcα

− ( IK−1 −ẽ ) (µ(n)
+ δµ) = 0.

Firstly, (
∂fα(cα,T )

∂cαi
)

1≤i≤K−1
−
∂fα(cα,T )

∂cα
K

ẽ =
∂fα(((cα)(n),1−∑K−1

i=1 (cαi )
(n)

),T)
∂c̃α

= µ̃α((c̃α)
(n)
, T) by

Equation (7.11) and similarly µi − µK = µ̃i and δµi − δµK = δµ̃. Secondly, making use of the

constraint to express to δcαK as −∑K−1
i=1 δcαi - corresponding to δcα = (

IK−1

−ẽ
) δc̃α - the system

is reduced to the (K − 1) × (K − 1) one

µ̃α((c̃α)
(n)
, T) + ( IK−1 −ẽ )

∂2fα

∂(cα)
2
((cα)(n), T )(

IK−1

−ẽ
) δc̃α − (µ̃(n)

+ δµ̃) = 0. (7.49)

This, as is to be expected, is precisely the one in Equation (7.32) that would be obtained based on
directly using a reduced formulation, except that µ̃α((c̃α)

(n)
, T) and the matrix ∂µ̃

∂c̃α
is recovered

a posteriori as

µ̃α((c̃α)
(n)
, T) = ( IK−1 −ẽ )

∂fα

∂cα
((cα)(n), T ) (7.50)

and
∂µ̃α

∂c̃α
((c̃α)

(n)
, T) = ( IK−1 −ẽ )

∂2fα

∂(cα)
2
((cα)(n), T )(

IK−1

−ẽ
) (7.51)

through two simple algebraic operations instead of a priori being included in the formulation of
the fα.

137



Remark 106. Even though it may seem relatively cumbersome to algebraically reproduce a
caculcation which could from the outset be done by hand when constructing the free energy
function, this is also closely related to a matter of “convention”. In particular, it is clear that
starting from a reduced formulation is in many ways the simplest approach, in particular since
one typically does not face any of the issues associated with such a formulation in the obstacle
case for the phasefield (i.e. where phases may not be allowed to move according to the changes
of the other ones). Nevertheless, this also introduces a certain asymmetry into the formulation
by having to choose which component is the one being eliminated (the K-th one clearly being
a good candidate though simply in terms of memory management and simplicity of any loops).
This may on the one hand be perceived as unpleasant on aesthetic grounds and on the other
hand entails a strict consistency requirement.
One advantage of the purely algebraic procedure above is its high robustness with respect to
these issues, since, even though it entails an in principle completely unnecessary calculation if
used with a reduced formulation (the operations in Equation (7.50) and (7.51) are then easily
seen to have no effect), it allows combining various preexisting model components even if based
on different conventions35 ◇

In relation with the non-reduced formulation and the reduced nature of the Newton-steps in
Equation (7.49), there are now essentially two manners to proceed. If one is solely interested
in an evaluation of the final concentrations, either for their own values or for evaluating the
f -function itself, it is obviously sufficient to simply recover the value of the last component cαK
in the solution of the reduced system through the sum-constraint as 1 −∑

K−1
i=1 cαi .

If one is instead also interested in the values of µ and the λα, one can also update these after
the last step of the solution procedure36. More precisely, as the solution satisfies (up to the
chosen tolerance for the residual of course) µα = µ + λαe, one can easily recover the required
information from the final values of µα at which the solution was considered sufficiently accurate
for the three choices of restriction on µ outlined in Subsection 7.1.2 since this relation implies
e ⋅ µα = e ⋅ µ + Kλα with a known left-hand side. If µ is fixed by enforcing its average to
equal 0, the second term drops out and one has λα = 1

K
e ⋅ µα, i.e. λα is simply equal to the

average of the µα. In contrast, if µ is fixed by the condition that µK = 0, one obviously has
µ̃ = (µi)1≤i≤K−1

− µK ẽ = (µi)1≤i≤K−1
, and thus ẽ ⋅ µ̃ = e ⋅ µ as the last entry vanishes, therefore

leading to λα = 1
K
(e ⋅µα − ẽ ⋅ µ̃). Finally, if µ is chosen indirectly as the hα-weighted average of

the µα =
∂fα

∂cα
, there is no need to first determine the λα as µ can be obtained directly from the

µα. The λα then immediately follow from the equality λα = 1
K
e ⋅ (µα −µ).

Remark 107. Note that despite these different choices, this has no effect on the final concentration
values, and that it does also not affect the evolution of the concentration by the construction of
the Lij-matrix in [52]. ◇

35For example, it is possible to combine a chemical contribution formulated in a reduced fashion through the
first K − 1 components with other contributions where the only direct contribution arises through the K-th
component. This of course has no theoretical relevance, but avoids some very tedious issues at a practical level.

36As the basic Newton-scheme is shifted to the reduced formulation, this is typically also where the residual
would typcially be controlled in its reduced form, i.e. one never directly uses µ and the λα in the algorithm itself.
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7.1.6 An Extension to the Non-Isothermal Case
The “grand-chemical” model considered in the previous section seems to have previously only
been used in either an isothermal setting, or, under a relatively strong simplifying assumption, in
combination with a prescribed non-uniform temperature field. In the form above, it is relatively
clear though how the more quantitative approach can be formulated in a non-isothermal setting.
With the maximization of the entropy functional from Equation (3.3) replacing the minimization
of the free energy functional in Equation (6.10) as the appropriate variational principle, it is
natural to define the entropy density within an interface region by

s(φ,c, e) ∶= max
(cα,eα)1≤α≤N ∈A(φ,c,e)

{
N

∑
α=1

sα(cα, eα)hα(φ)} , (7.52)

using the phase-specific quantities (cα, eα)1≤α≤N instead of the average quantities (c, e) and with
the admissible set A(φ,c, e) consisting of all (cα, eα)1≤α≤N such that37

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
N
α=1 c

αhα(φ) = c,

∑
K
i=1 c

α
i = 1 ∀α,

∑
N
α=1 e

αhα(φ) = e

(7.53)

replacing the one in Equation (7.4).
The corresponding optimality conditions can again be derived based on the modified Lagrange-
function

L (φ,c, e, (cα)
1≤α≤N , (e

α)
1≤α≤N ,η, λ̂, β) =

N

∑
α=1

sα(cα, eα)hα(φ) −β ⋅ (
N

∑
α=1

hαcα − c)

−
N

∑
α=1

λ̂α(
K

∑
i=1

cαi − 1) − β(
N

∑
α=1

hαeα − e)

with λ̂ ∈ RN and (a priori) β ∈ R. The first-order necessary conditions can then be obtained
from ∂L

∂cα
= 0 and ∂L

∂eα
= 0, leading, after by a division through hα for all α ∈ Pp, to the local

quasi-equilibrium conditions
⎧⎪⎪
⎨
⎪⎪⎩

∂sα

∂cα
= η + λ̂αe,

∂sα

∂eα
= β.

(7.54)

As ∂sα

∂eα
= 1
Tα

and in analogy to the equilibrium condition T = const for the temperature field,
it is of course not surprising that the second condition implies the equality of the phase-specific
temperatures Tα = 1

β
=∶ T for all phases (or, more precisely, for those with hα(φ) ≠ 0). Based

upon the monotonicity condition ∂sα

∂eα
> 0 for the bulk entropy densities, this common value in

addition is necessarily positive, and one can substitute η and λ̂α by − µ
Tα

= −
µ
T

and − λ
α

Tα
= −λ

α

T
and cancel the T in the first equation above to obtain the local quasi-equilibrium conditions in
the more “pleasant” form

Tα = T and µα =
∂fα

∂cα
(cα, T ) = µ + λαe ∀α ∈ Pp (7.55)

and thus in particular including the previous condition on the chemical potentials as in the
isothermal case.

Remark 108. The equilibrium conditions above are clearly what one would expect in relation
with the previous dicussion and based on the close analogy between the optimization problems

37Note that it is again assumed here that the positivity constraints on the cα can be safely neglected.
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in Equations (7.52) and (7.3). On the one hand, as discussed in e.g. [56], it is the compatibility
of the (local) assumption Tα = T with the (global) equilibrium condition T = const which can be
used to explain the much larger success of the early phasefield models for purely temperature-
driven solidification problems as compared to concentration-driven ones. On the other hand, the
equilibration of the chemical potentials is well-known to be the relevant equilibrium condition
for the concentration field, whether or not the process under consideration is from the outset
assumed to be isothermal.
The point of the (re-)derivation of these conditions based upon the definition (7.52) is therefore
not to show that these conditions are reasonable ones to impose within the interface region, but
rather to verify that they arise naturally through a definition of the relevant local density which
is compatible with the underlying global variational principle. ◇
Remark 109. It should be noted that Tα and µα in Equation (7.55) are a priori - based upon
their derivation from (7.54) - to be considered as functions of cα and eα (and in particular
µα as µα(cα, eα) = −Tα(cα, eα) ∂s

α

∂cα
(cα, eα)). As it is often prefered in practice to work with

more concrete temperature values Tα instead of the eα as the “independent” variable, this is
not necessarily the most convenient form and one may choose to work, using the ubiquitous
changes of variables in the thermodynamic setting, with a different set of “primary” unknowns.
This does of course not change the content of the equilibrium conditions, but, as it changes
their representation, can affect the solution process. Some advantages and disadvantages of such
changes of variables will be discussed after taking a closer look at the link of the Definition (7.52)
of the entropy s(φ,c, e) with the Definition (7.3) from the previous section. ◇
Some Basic Thermodynamic Relations

Before briefly discussing the solution procedure for the local system (7.55) in terms of the (as-
sumed to be given) phasefield φ and the conserved phase-averaged quantities c and e, it is helpful
to recover a number of basic thermodynamic properties resembling those from the more standard
case which are in fact implied by the Definition (7.52).
The primary difficulty here, as in the isothermal case, lies in the fact that the phase-inherent
quantities (cα, eα) upon which s(φ,c, e) is based are now only defined implicitly as the ones ful-
filling the local quasi-equilibrium conditions (7.55) above, i.e. (cα, eα) = (cα(φ,c, e), eα(φ,c, e)).
In particular due to the equilibrium condition on the Tα, a first useful step is to obtain the cor-
responding free energy density f(φ,c, T ), defined by

f(φ,c, T ) = inf
e

{e − Ts(φ,c, e)} . (7.56)

It turns out that the following intuitively pleasing but not entirely obvious characterization holds
for f(φ,c, T ):

Lemma 7. Let s(φ,c, e) be defined by Equation (7.52) and assume that the local quasi-equilibrium
conditions (7.55) allow for a unique (up to the addition of an arbitrary constant vector ξe to µ)
solution which depends smoothly on c and e and that the bulk entropy densities depend smoothly
on cα and eα. Then:

• For any minimizer e in Equation (7.56), the common value of the phase-specific tempera-
tures Tα for the solution of the local quasi-equilibrium conditions (7.55) coincide with the
“external” paramter T .

• The free energy density defined in Equation (7.56) coincides with the one defined in Equa-
tion (7.3)

f(φ,c, T ) = min
(cα)1≤α≤N ∈Ac(φ,c)

N

∑
α=1

fα(cα, T )hα(φ). (7.57)
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Proof. • Firstly, under the smoothness assumption of the lemma,

s(φ,c,e) = max
(cα,eα)1≤α≤N ∈A(φ,c,e)

{∑
α

sα(cα, eα)hα(φ)} =
N

∑
α=1

sα(cα(φ,c, e), Tα(φ,c, e))hα(φ)

depends smoothly on e and thus any minimizer e in definition (7.56) has to satisfy

1

T
=
∂s

∂e
=∑

α

(
∂sα

∂cα
⋅
∂cα

∂e
+
∂sα

∂eα
∂eα

∂e
)hα(φ) =∑

α

( −
µα

Tα
⋅
∂cα

∂e
+

1

Tα
∂eα

∂e
)hα(φ).

By the equilibrium conditions, Tα and µα

Tα
can be replaced by a common value θ (which

at this point is not yet known to be the same as T ) and µ+λαe
θ

, leading to

1

T
=∑

α

( −
µ + λαe

θ
⋅
∂cα

∂e
+

1

θ

∂eα

∂e
)hα(φ).

As θ does not depend on α and φ does not depend on e, the summation over the last term
can be simplified to

1

θ

∂(∑
N
α=1 e

αhα(φ))

∂e
=

1

θ

∂e

∂e
=

1

θ

and one in particular does not require to know ∂eα

∂e
anymore. In a similar manner, the

summation over the terms µ
θ
⋅ ∂c

α

∂e
leads to µ

θ
⋅
∂(∑Nα=1 c

αhα(φ))
∂e

=
µ
θ
⋅ ∂c
∂e

= 0 and therefore
simply drops out. That the same actually also happens for the (phase-dependent) term
in λα is directly based upon the sum-constraint ∑Ki=1 c

α = e ⋅ cα = 1 and thus e ⋅ ∂c
α

∂e
=

∂(e⋅cα)
∂e

= 0, the identical argument being true for an arbitrary constant vector ξe added
to µ. Together, this shows that 1

T
= 1
θ
, i.e. that the multiplier θ defining the local quasi-

equilibrium has to be the same as the given parameter T .

• Inserting the definition of s into the definition (7.56), one has

f(φ,c, T ) = inf
e

{e − T max
(cα,eα)1≤α≤N ∈A(φ,c,e)

{∑
α

sα(cα, eα)hα(φ)}} . (7.58)

Since T is, as shown above, the same as the multiplier for the constraint ∑Nα=1 e
αhα(φ) = e

in the local quasi-equilibrium conditions, the entropy can, given this value, equivalently be
characterized through the free (with respect to the eα) maximization problem

max
(cα,eα)1≤α≤N ∶(cα)1≤α≤N ∈Ac(φ,c)

{∑
α

sα(cα, eα)hα(φ) −
1

T
(
N

∑
α=1

eαhα(φ) − e)}

=
e

T
+ max

(cα)1≤α≤N ∈Ac(φ,c)
max

(eα)1≤α≤N

{∑
α

sα(cα, eα)hα(φ) −
1

T

N

∑
α=1

eαhα(φ)}

where Ac(φ,c) is the admissible set from Equation (7.4) in the last section for defining f .
Extracting the (fixed) factor − 1

T
and using that the eα are now independent, the last term

can be rewritten as

−
1

T
min

(cα)1≤α≤N ∈Ac(φ,c)
min

(eα)1≤α≤N

{
N

∑
α=1

(eα − Tsα(cα, eα))hα(φ)}

= −
1

T
min

(cα)1≤α≤N ∈Ac(φ,c)
{
N

∑
α=1

(min
eα

{eα − Tsα(cα, eα)} )hα(φ)} .
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The inner minimization problem is precisely the definition of the phase-specific free energy
fα(cα, T ) in terms of the phase-specific entropy sα,

fα(c, T ) = min
eα

{eα − Tsα(cα, eα)} , (7.59)

which holds due to the “standard” thermodynamic relations valid for the bulk potentials,
from which it follows that

max
(cα,eα)1≤α≤N ∶(cα)1≤α≤N ∈Ac(φ,c)

{∑
α

sα(cα, eα)hα(φ) −
1

T
(
N

∑
α=1

eαhα(φ) − e)}

=
e

T
−

1

T
min

(cα)1≤α≤N ∈Ac(φ,c)
{
N

∑
α=1

fα(cα, T )hα(φ)} .

Inserting this expression into Equation (7.58), e in fact cancels out and one is left with

f(φ,c, T ) = inf
e

{e − T (
e

T
−

1

T
min

(cα)1≤α≤N ∈Ac(φ,c)
{
N

∑
α=1

fα(cα, T )hα(φ)})}

= min
(cα)1≤α≤N ∈Ac(φ,c)

{
N

∑
α=1

fα(cα, T )hα(φ)} .

The reverse conclusion is essentially just applying the same argument in the reverse order.
Using Equation (7.59), one can rewrite f as

f(φ,c, T ) = min
(cα)1≤α≤N ∈Ac(φ,c)

{
N

∑
α=1

min
eα

{eα − Tsα(cα, eα)}hα(φ)}

=min
eα

{
N

∑
α=1

{eα − T max
(cα)1≤α≤N ∈Ac(φ,c)

sα(cα, eα)}hα(φ)} .

The outer minimization in the eα can be moved to the inner maximization problem by
aritifially “expanding” it through a double minimization

f(φ,c, T ) = min
e

min
eα∶∑Nα=1 e

αhα(φ)=e
{
N

∑
α=1

{eα − T max
(cα)1≤α≤N ∈Ac(φ,c)

sα(cα, eα)}hα(φ)}

which is legitimate since, even though this adds an restriction on the sum of the previously
completely free eα, the value of sum can be chosen in any arbitrary manner to make the
total expression as small as possible. Since the sum over the eα appearing in the expression
to be minimized is then obviously equal to e, one can move the mineα -operation into the
interior, leaving

f(φ,c, T ) = min
e

{e − T min
eα∶∑Nα=1 e

αhα(φ)=e
max

(cα)1≤α≤N ∈Ac(φ,c)
{
N

∑
α=1

sα(cα, eα)hα(φ)}} ,

and the inner problem is just the definition of s(φ,c, e) in Equation (7.52).

It turns out that the standard inversion formula for s in terms of f as

s(φ,c, e) = inf
T

{
e

T
−
f(φ,c, T )

T
} (7.60)

also continues to hold in this setting provided f is defined as in the previous section:
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Lemma 8. Let f(φ,c, T ) be defined as in Equation (7.57) (resp. Equation (7.3)) and assume
that the local quasi-equilibrium conditions (7.9) allow for a unique (up to the addition of an
arbitrary constant vector ξe to µ) solution which depends smoothly on c and T and that the bulk
free energy densities depends smoothly on cα and T . Then:

• Any minimizer T for the problem (7.60) is characterized by the averaging relation e =

∑
N
α=1 e

α(cα(φ,c, T ), T ) with respect to the external paramter e, where the cα(φ,c, T ) are
the ones defined in the optimality system for the definition of the f -function in Equation
(7.3) and

eα(cα, T ) ∶= −T 2 ∂

∂T
(
fα(cα, T )

T
). (7.61)

• The two definitions of s(φ,c, e) through equations (7.52) and (7.60) coincide.

Proof. • Under the same simplifying smoothness assumptions on the solution of the local
quasi-equilibrium condition from Equation (7.9), any minimizer T in the definition (7.60)
has to satisfy

0 = −
e

T 2
+

N

∑
α=1

∂

∂T
(
fα(cα(φ,c, T ), T)

T
)hα(φ)

= −
e

T 2
+

1

T 2

N

∑
α=1

(
∂fα

∂cα
(cα(φ,c, T ), T )

∂cα

∂T
(cα(φ,c, T ), T ))hα(φ)

−
∂

∂T
(
fα

T
)(cα(φ,c, T ), T )hα(φ),

where the last derivative corresponds to the one of fα with respect to its second argument
only (i.e. while holding cα fixed).
Similarly to above, using ∂fα

∂cα
= µ + λαe together with e ⋅ ∂c

α

∂T
= 0 and the independence

of µ on α shows that ∑Nα=1
∂fα

∂cα
⋅ ∂c

α

∂T
hα(φ) = µ ⋅

∂(∑Nα=1 c
αhα(φ))

∂T
= 0 since the cα in the

definition of f(φ,c, T ) satisfy the constraint ∑Nα=1 c
αhα(φ) = c. Using in addition the basic

thermodynamic relation −
eα(c,T )

T
= ∂
∂T

(
fα(cα,T )

T
) for the bulk free energy density, T thus

has to be such that

−
e

T 2
+

N

∑
α=1

eα(cα(φ,c, T ), T )

T 2
hα(φ) = 0,

from which the claim follows.

• As was already seen in the proof of the previous lemma, the definition of s(φ,c, e) in
Equation (7.52) is such that the phase-specific temperatures Tα defined through 1

Tα
= ∂sα

∂eα

are equal to a common value θ and that the phase-specific concentrations are such that
they coincide with the ones obtained from in the definition of f(φ,c, θ) in Equation (7.57)
and thus correpond to the concentrations in the claim with T being replaced by θ. Fur-
thermore, given any admissible phase-specific concentration cα and value of the multiplier
Tα, it follows from “standard” thermodynamics that the values of the eα can also be ex-
pressed as in equation (7.61)38 in terms of cα and Tα. Evaluated for the particular choice
Tα = θ for all α, it follows from the sum-constraint on the eα in the definition of (7.52)
that these eα(cα, θ) in fact satisfy ∑Nα=1 e

α(cα, θ) = e, and thus the condition in the first
part of the lemma, from which it follows that θ = T under the assumption that there is a
unique minimizer.

38This is basically the phase-specific version of the conclusion obtained from Equation (7.56).
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Conversely, any minimizer in Equation (7.60) does, by the use of f(φ,c, T ) through
Equation (7.57) satisfy the equality of the chemical potentials. Furthermore, it follows
from standard thermodynamics that defining eα(cα, T ) as in Equation (7.61), that the
sα(cα, eα(cα, T )) satisfy 1

T
= ∂s
∂eα

(cα, eα(cα, T )). Combined with the necessary condition
for the minimizer in Equation (7.60), it follows that this choice of (cα, T ) satisfies all the
conditions required for the minimizer in Equation (7.52).

Remark 110. Note that the reasoning above relies mostly on a combination of two arguments,
namely that standard thermodynamic relations holding at a phase-specific level and the op-
timality conditions for the phase-averaged quantities, ensuring that the contributions due to
additional implicit dependencies drop out of the differential relations. It is likely that one can
similarly extend most of the well-known “basic” thermodynamic relations to the phase-average
setting in a very similar manner39. ◇
The Resulting Driving Force

The driving force for the phasefield equation can be derived in a manner very similar to the
isothermal case in Section 7.1.3. The crucial point is again to keep in mind the dependence of the
phase-specific concentrations and energies for the maximizers in Equation (7.52) on the phasefield
φ. Assuming a smooth dependence and extending, if necessary, the optimality conditions in
Equation (7.55) to those phases with hα(φ) = 0, the differentiation of s with respect to φα leads
to

∂s(φ,c, T )

∂φα
=
∂

∂φα
(∑
β

sβ(cβ(φ,c, e), eβ(φ,c, e))hβ(φ))

=∑
β

sβ(cβ(φ,c, e), eβ(φ,c, e))
∂hβ

∂φα
+∑

β

(
∂sβ

∂cβ
⋅
∂cβ

∂φα
+
∂sβ

∂eβ
∂eβ

∂φα
)hβ(φ).

By construction, it holds that ∂sβ

∂cβ
= −

µ+λβe
T

and ∂sβ

∂eβ
= 1
T
. Extracting the phase-independent

quantities µ and T out of the sum and making use of e ⋅ ∂c
β

∂φα
= 0 due to the sum-constraint

e ⋅ cβ = 1, it follows that

∑
β

(
∂sβ

∂cβ
⋅
∂cβ

∂φα
+
∂sβ

∂eβ
∂eβ

∂φα
)hβ(φ) = −

µ

T
⋅∑
β

∂cβ

∂φα
hβ(φ) +

1

T
∑
β

∂eβ

∂φα
hβ(φ).

The derivatives of the phase-specific quantities can be eliminated by an application of the
product-rule since

∑
β

∂cβ

∂φα
hβ(φ) =

∂∑β c
βhβ(φ)

∂φα
−∑

β

cβ
∂hβ

∂φα
=
∂c

∂φα
−∑

β

cβ
∂hβ

∂φα
= −∑

β

cβ
∂hβ

∂φα

and similarly ∑β
∂eβ

∂φα
hβ(φ) = −∑β e

β ∂hβ

∂φα
, leaving ∂s(φ,c,T )

∂φα
= ∑β (sβ + µ

T
cβ − 1

T
eβ) ∂h

β

∂φα
. This can

further be simplified as sβ − 1
T
eβ = − 1

T
(eβ − Tsβ), whose value, as in Equation (7.59), coincides

with − 1
T
fβ(cβ , T ), now as a function of cβ and T . This finally leads to

∂s(φ,c, T )

∂φα
=∑

β

( −
1

T
fβ(cβ , T ) +

µ

T
cβ)

∂hβ

∂φα
= −

1

T
∑
β

(fβ −µ ⋅ cβ)
∂hβ

∂φα
, (7.62)

and thus again an expression based on the phase-specific grand chemical potential densities Ψβ .
39Recall also that it was already observed in Section 7.1.4 that f(φ,c, T ) and Ω(φ,µ, T ) are related through

a standard Legendre transform.
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The Solution Process

As already indicated in Remark 109 and as the discussion in the previous section shows, there
in fact several different ways one can choose the “primary unknowns” and thus to solve the local
quasi-equilibrium conditions in the non-isothermal case.

1. The first - and most obvious one - would be to apply a standard Newton-scheme di-
rectly to the original System (7.54), i.e. given the functions sα(cα, eα) and a set of values

(cα, eα)
(n)

1≤α≤N
for the phase-specific concentrations and energies as well as some value

(η, β, (λ̂α)1≤α≤N)
(n)

for the associated multipliers, to solve for a set of corrections based
on the linearization of Equation (7.54). By linearity in the multipliers (η, β, (λ̂α)1≤α≤N),

this can, as in Section 7.1.5, in effect be reduced to an iteration based on the (cα, eα)
(n)

1≤α≤N
alone, with, again by linearity, the residuals in the sum-constraints ∑Nα=1 c

αhα(φ) = c and
∑
N
α=1 e

αhα(φ) = e vanishing after the first iteration. This has the advantage of on the
one hand requiring only direct evaluations of the derivatives of the (assumed to be given)
sα(cα, eα) and on the other hand ensuring “conservation” of the phase-averaged conserved
(c, e) variables after a single Newton-step, regardless of the accuracy of the estimates for
the multipliers.
The major disadvantage is that this on the one hand requires working with the - less
commonly used - functions sα(cα, eα) and on the other hand leads to a system with total
of (K + 1)N “primary” unknowns (cα, eα)

1≤α≤N
in addition to the K + N + 1 multipli-

ers (η, β, (λ̂α) (resp. KN primary unknowns (c̃α, eα)
1≤α≤N

and K unknown multipliers

(µ̃α, β) after a reduction to K − 1 independent concentration values as in Section 7.1.5).

2. A quite natural alternative is suggested by the discussion in Section 7.1.5 in the isothermal
case. One can directly make use of the equilibrium condition Tα = T and then to use the
equivalent System (7.55), but instead based on the (cα, Tα)1≤α≤N as primary unknowns.
One advantage of this approach is that, since the local quasi-equilibrum conditions from
Equation (7.9) in the isothermal case are implicitly also based upon the assumption that
each Tα corresponds the the (given) value T , the system in Equation (7.55) can basically
be considered to be the same as in the previous case. The only difference is that now the
temperature T forms part of the unknowns and has to be fixed such that the averaging
condition ∑Nα=1 e

α(cα, T )hα(φ) = e - now with the eα as explicit functions of cα and T -
holds.
A second one is that, as the trivial constaint Tα = T can directly be integrated into the
system. As the (eα)1≤α≤N are here considered to be known for given values of (cα, T ),
one can reduce the number of primary unknowns to the KN + 1 values ((cα)1≤α≤N , T )

and K +N additional secondary unkowns through the multipliers (µ, (λα)1≤α≤N). Using
a reduced formulation, furhter eliminates unknowns, leaving only (K − 1)N + 1 primary
unknowns ((c̃α)1≤α≤N , T ) and the (K − 1) values of the muliplier µ̃.
One disadvantage - if based on storing (c, T ) as the primary unknowns instead of (c, e)
- is that one now needs to ensure that the (local) quasi-equilibrium systems are solved
accurately in order to ensure conservation of energy. This is due to the fact that the
function eα(cα, T ) are now in general nonlinear in both cα and T . The same then holds
for the the sum-constraint ∑Nα=1 e

α(cα, T ) = e, which will therefore not be solved exactly
with a single correction step40.

40Note that this can arise even for quite simple dependencies of the energies on the concentration and tem-
perature including e.g. a product of a linearly (in cα) interpolated specific heat capacity (cv)α(cα) with the
temperature. Even both factor are linear, the product obviously is not.
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3. A third approach - which is closely related to the approach suggested in [19] - is to use a
fully “dual” description, i.e. by also replacing the cα as functions of (µ, (λα)1≤α≤N , T ) and
(thus also, through the cα, the eα as functions of the same paramters) and then applying
a Newton-scheme on this set of equations. A clear advantage is that this leads to an even
further reduction of the primary unknowns to the K +N + 1 values (resp. the K values
(µ̃, T ) when using a reduced version) as the (cα, eα)1≤α≤N are now taken as direct func-
tions of the µα = µ + λαe and T (resp. µ̃ and T ).

Which approach is more appropriate again depends quite heavily on which thermodynamic
potential(s) can be considered as “given”. Even though the increasing reduction in the number
of unknowns above a priori seems highly favorable, it is subject to the same pitfalls as the choice
of working with µ̃ as the primary unknown already discussed in Remark 104. In particular,
if based on sα(cα, eα) as the basic thermodynamics potential, using ((cα)1≤α≤N , T ) instead of
(cα, eα)1≤α≤N as the primary unknowns is in general highly inconvenient as the solution of the
subsystems ∂sα

∂eα
(cα, eα) = 1

T
for determining the (then dependent) eα in terms of the (assumed

given) cα and T can itself require a number of Newton-steps. Even though this is scalar equation
in a single unknown, this is still likely an effort ill spent. One can of course then proceed similarly
to Remark 104 and allow for controlled inaccuracies, this leading, similarly to the isothermal
case based on µ̃ as the primary unkown, essentialy back to first approach. The situation is even
worse when taking (µ̃α, T ) as the primary unknowns, as this then requires, for each evaluation
of ∂2sα

∂(cα)2 , ∂2sα

∂cα∂eα
and ∂2sα

∂(eα)2 solving the systems

∂sα

∂eα
(c̃α, eα)

!
=

1

T
and

∂sα

∂c̃α
(c̃α, eα)

!
=
µ̃α

T

to a sufficiently high accuracy.
If based on fα(cα, T ) as the basic thermodynamic potential, as is currently the standard in the
Pace3D-framework, the use of ((cα)1≤α≤N , T ) is in general the most convenient one, and will
therefore be the one considered here.

Given that the fundamental conservative evolution equations are based on the concentration
c and the energy e, the requirement is therefore to find phase-specific concentrations cα and
energies eα compatibly with the optimality conditions for Equation (7.52) given the values of
the average concentration c and the average energy e. Since it is the fα as functions of cα

and Tα which are, for practical reasons, chosen as the fundamental potentials, the natural
parameterization for doing so is also in terms of the concentration values cα and the - known to
have to be a common value for all α - temperature T .

Given some initial guess c(0) and T (0), it is again natural to use a Newton-scheme for the
solution of the optimality system in Equation (7.55).

Remark 111. As already indicated, a parameterization in terms of T instead of e in principle
has the same drawbacks already discussed in Remarks 104 and 105. Being based on fα formu-
lated directly in terms of T , the constructions are usually such that the conversion of a given
concentration and temperature to the corresponding energy is relatively simple, and thus less
problematic. It will therefore be assumed in the following that obtaining the phase-specific en-
ergies eα as a function of (cα, T ) is computationally relatively cheap.
If such is not the case, one may have to apply similar considerations as in Remark 104. ◇

Given some initial guess such e.g. (cα)
(0)

= c, (eα)
(0)

= eα((cα)
(0)
, T (0)), the basic Newton-
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step consists in solving

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂µα

∂cα
((cα)(n), T (n))δcα + ∂µα

∂T
((cα)(n), T (n))δT −µ(n+1) − (λα)(n+1)

e
!= −µα((cα)(n), T (n))

∑Nα=1 δc
αhα(φ) != c −∑Nα=1 (cα)

(n)
hα(φ) =∶ rc

∑nα=1

⎛
⎝
∂eα

∂cα
((cα)(n), T (n))δcα + ∂eα

∂T
((cα)(n), T (n))δT

⎞
⎠
hα(φ) != e −∑Nα=1 e

α((cα)(n), T (n)) =∶ re

Due to the same considerations as in Section 7.1.5, this system is again most easily solved by
reverting to a reduced from, either by a priori using a reduced formulation or using an algebraic
“a posteriori” reduction. Dropping the arguments for notational simplicity, this results in having
to solve the simpler system41

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂µ̃α

∂c̃α
δc̃α + ∂µ̃α

∂T
δT − µ̃(n+1) !

= −(µ̃α)
(n)

∑
N
α=1 δc̃

αhα
!
= c −∑

N
α=1 (cα)

(n)
hα = rc̃

∑
n
α=1

⎛

⎝

∂eα

∂c̃α
δc̃α + ∂eα

∂T
δT

⎞

⎠
hα

!
= e −∑

N
α=1 (eα)

(n)
= re.

(7.63)

Since this system is still in a block-diagonal form with respect to the δc̃α, it is again convenient
to perform a block-elimination in this equation, leading, completely analogous to the discussion
in Section 7.1.5, to the Schur-complement system

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
N
α=1 (

∂µ̃α

∂c̃α
)
−1⎛

⎝
µ̃(n+1)

− (µ̃α)
(n)

−
∂µ̃α

∂T
δT

⎞

⎠
hα

!
= rc̃

∑
n
α=1

⎛

⎝

∂eα

∂c̃α
(
∂µ̃α

∂c̃α
)
−1⎛

⎝
µ̃(n+1)

− (µ̃α)
(n)

−
∂µ̃α

∂T
δT

⎞

⎠
+ ∂eα

∂T
δT

⎞

⎠
hα

!
= re,

(7.64)

consisting of a total of K unkowns, K − 1 ones in terms of µ̃ and one in terms of δT .
K is, due to computational requirements, usually quite small (typically below 4 or 5) due to the
fact that the concentration evolution - unlike an obstacle-potential based phasefield equation -
has to be calculated everywhere. A very natural choice for determining the values of δµ and
δT in Equation (7.64) is therefore simply to use any direct solver, since this is a non-singular
system of typically very small size. Given the values of µ̃ and δT , it is then again an easy matter
of updating the remaining phase-specific quantities δc̃α based on Equation (7.63), in which all
phases are then uncoupled.
Once the iterations converge, one can then, if required recover the values of µ and the λα as
in Subsection 7.1.5, or, if not so, simply recover the concentration values cαK based on the sum-
constraint ∑Ki=1 c

α
i = 1.

Remark 112. In terms of code-reusability, it may nevertheless have some interest to, in the same
spirit as in Subsection 7.1.5, perform another block-reduction on Equation (7.64). First moving
all known quantities to the right-hand side, this system can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sc̃µ̃
(n+1)

−
⎛

⎝
∑
N
α=1 (

∂µ̃α

∂c̃α
)
−1
∂µ̃α

∂T
hα

⎞

⎠
δT = rc̃ +∑

N
α=1 (

∂µ̃α

∂c̃α
)
−1

(µ̃α)
(n)
hα =∶ r̂c̃,

⎛

⎝
∑
n
α=1

⎛

⎝

∂eα

∂c̃α
(
∂µ̃α

∂c̃α
)
−1

hα
⎞

⎠
µ̃(n+1)

+ ST δT = re +∑
n
α=1

∂eα

∂c̃α
(
∂µ̃α

∂c̃α
)
−1

(µ̃α)
(n)
hα =∶ r̂e,

(7.65)

41Introducing the reduction into the term ∂eα

∂cα
is equally simple as in Subsection 7.1.5 using cαK = 1−∑K−1

i=1 cαi .
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where Sc̃ is the same Schur-complement matrix as in Equation (7.37) in Section 7.1.5 and ST is
the analogous “matrix” (this is simply a scalar value) to Sc̃ for the temperature increment given
by

ST =
n

∑
α=1

⎛

⎝

∂eα

∂T
−
∂eα

∂cα
(
∂µ̃α

∂c̃α
)
−1 ∂µ̃α

∂T

⎞

⎠
hα. (7.66)

The two basic choices for this are to either make use of the first equation in Equation (7.64)
for eliminating µ̃(n+1) as a function of δT ,

µ̃(n+1)
(δT ) = S−1

c̃ r̂c̃ +S
−1
c̃

N

∑
α=1

⎛

⎝
(
∂µ̃α

∂c̃α
)
−1 ∂µ̃α

∂T
hα

⎞

⎠
δT

or the elimination of δT as a function of µ̃(n+1) using the second equation, leading to

δT(µ̃(n+1)
) =

1

ST
r̂e −

1

ST

⎛

⎝

n

∑
α=1

∂eα

∂c̃α
(
∂µ̃α

∂c̃α
)
−1

hα
⎞

⎠
µ̃(n+1).

Inserting these two expressions into the respective other equation in the System (7.65), the first
choice leads a scalar equation in δT with a modified Schur-complement

ST +
⎛

⎝

n

∑
α=1

∂eα

∂c̃α
(
∂µ̃α

∂c̃α
)
−1

hα
⎞

⎠
S−1
c̃

N

∑
α=1

⎛

⎝
(
∂µ̃α

∂c̃α
)
−1 ∂µ̃α

∂T
hα

⎞

⎠

for the temperature increment, whereas the second choice leads to a modified equation for µ̃(n+1)

on the modified Schur-complement

Sc̃ +
1

ST

⎛

⎝

N

∑
α=1

(
∂µ̃α

∂c̃α
)
−1 ∂µ̃α

∂T
hα

⎞

⎠

⎛

⎝

n

∑
α=1

⎛

⎝

∂eα

∂c̃α
(
∂µ̃α

∂c̃α
)
−1

hα
⎞

⎠

for the reduced chemical potential.
If the code-functionality is primarily designed with the isothermal case in mind, the former
choice is likely the more convenient one, since this makes it possible to perform the solution of
the System (7.63) essentially without modification to the “purely chemical” part, as one can reuse
this functionality in an exterior manner for determining δT . Once δT is known, the remaining
system in µ̃(n+1) and the δc̃α then reduces to the one in Section 7.1.5 with slightly modified
right-hand sides.
A similar construction with a larger number of additional unknowns will be discussed in more
detail in Section 7.2.5. ◇
Remark 113. Note that it is also possible to obtain slightly different expressions making use of
some thermodynamic relations. For example, based on eα(cα, T ) = −T 2 ∂

∂T
(
fα(cα,T )

T
), one has

∂eα

∂cα
= − T 2 ∂2

∂cα∂T
(
fα(cα, T )

T
) = −T 2 ∂

∂T
(

1

T

∂fα

∂cα
) = −T 2 ∂

∂T
(
µα(cα, T )

T
)

= − T 2
( −

µα(cα, T )

T 2
+

1

T

∂µα

∂T
) = µα(cα, T ) − T

∂µα

∂T
.

In terms of “readibility”, an obvious definition to make use of is cαv = ∂eα

∂T
. ◇
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7.2 Quantitative Models for Solid-Solid Transformations
Similarly to the solid-liquid transformations considered in the previous section, the phasefield
method has also gained considerable interest for simulating the evolution of microstructures
consisting of different solid phases. Such solid-solid state transformations are, in addition to
the surface energy of the various phases, also heavily influenced by stored mechanical energy
contributions.
In some cases, for example during recrystallization processes, this additional stored energy dis-
tribution can be reasonably approximated as being a function of the phase only, thus allowing for
a simpler model as in Section 6 with the phasefields being the only unknowns (see e.g. [78]). In
other cases, the phase-transformation process itself heavily influences the mechanical state of the
system, requiring a more complex treatment in terms of a coupled phasefield-mechanical model,
where now there is (at least) one additional set of unknowns in terms of the displacement field u.

Phasefield models for solid-solid transformations are usually again based upon an appropri-
ately chosen energy functional in combination with a gradient-flow postulate on the dynamics of
the phasefield variables. In the small deformation setting, the phasefield functional is therefore
usually chosen (see e.g. [69] and [3] as some of the earlier works coupling phasefield methods with
elasticity) as consisting of the standard phasefield contributions through a and w supplemented
by the total elastic energy

Fε(φ,u) = ∫
Ω

εa(φ,∇φ) +
1

ε
w(φ)dx +Fel(φ,u) (7.67)

where, assuming for example a mixture of displacement and traction boundary conditions on
the Dirichlet-part ΓD and the Neumann-part ΓN , Fel(φ,u) is given by42

Fel(φ,u) = ∫
Ω

fel(φ, ε(u))dx − ρf ⋅udx − ∫
ΓN

g ⋅uds (7.68)

with the (here volumetric) strain energy density fel(φ, ε(u)) depending on u only through the
symmetric displacement gradient ε(u) = ∇Su.

In contrast to the solidification models considered in Section 7.1, the evolution of the me-
chanical state is not driven by a (typically comparatively slow) diffusion process, but by a wave-
propagation process which tends to quickly equilibrate itself until a mechanical equilibrium is
reached. As this equilibriation often takes place at a much shorter timescale than that of the
evolution of the phase boundaries43, it is common to employ a quasi-static approximation for
the mechanical fields.

Remark 114. While it is well-known that the propagation of a perfectly elastic wave conserves
energy, there are additional dissipative effects such as the radiation of wave energy into the
environment and damping of the waves within the material. These will in reality ultimately
lead to the establishment of a mechanically equilibrated state. The validity of the quasi-static
approximation therefore depends upon how fast this equilibration takes place as compared to
the other processes involved. ◇

42Note that the contribution due to f and the boundary contribution is often left out, even when considering
loads through body forces and/or external stresses. While these do not change the resulting phasefield evolution
equation if one does a purely formal differentiation (i.e. “forgetting” the coupling of u to φ), it is crucial for the
actual validity of this calculation.

43This need not always be the case tough as for example martensitic phase transformations occur at a very fast
rate.
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Under this quasi-static assumption, u is subject to the mechanical equilibrium condition

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−div (σ(φ, ε(u))) = f in Ω,

u = U on ΓD,

σ ⋅n = g on ΓN

(7.69)

where σ denotes the Cauchy stress tensor. Note that in order to be consistent with a variational
principle based on the functional Fε(φ,u) from Equation (7.67) and with Equation (7.68),
σ(φ, ε(u)) in addition has to satisfy (see the discussion below)

σ(φ, ε(u)) =
∂fel(φ, ε)

∂ε
(φ, ε(u)). (7.70)

As the external loads through f and g are to be considered as given data, it is clear that
the only point in which the various phasefield models differ lies in the definition of this strain
energy density fel. Alternatively, and which amounts up to an integration constant to the same
provided44 C(φ, ε) ∶= ∂σ

∂ε
obeys the usual symmetry condtions compatible with C(φ, ε) = ∂2fel

∂ε2
,

one may also define a stress-strain relationship σ(φ, ε).
Following the former approach and allowing for eigenstrains (prestrains) ε̃α, this strain energy
density within an α-bulk region is given by (see e.g. [69])

fαel(ε
α
) =

1

2
εαel ∶ C

α
∶ εαel =

1

2
(εα − ε̃α) ∶ Cα ∶ (εα − ε̃α),

where the elastic strain εαel is defined as the difference of the total and prestrains, εαel = ε
α − ε̃α.

As for the solidification problems considered in the previous section, the primary difficulty for
designing an accurate phasefield model thus lies in properly extending this definition to within
the interface regions. Based on the bulk-expression, the natural approach within the phasefield
context is again the use of a weighted interpolation

fel(φ, (ε
α
)1≤α≤N) =

N

∑
α=1

fαel(ε
α
)hα(φ) =

N

∑
α=1

(
1

2
(εα − ε̃α) ∶ Cα ∶ (εα − ε̃α))hα(φ) (7.71)

of the elastic free energy contributions of the individual phases. This is still an incomplete de-
scription though as it remains to specify the dependence of the phase-specific strains εα on the
total strain ε.

One natural restriction is that one would like for the relation σα = Cα ∶ (εα − ε̃α) to hold. A
second one - which is typically imposed in accordance with the standard approach of representing
the total quantities as an interpolation of the various phases - is that the total strain and the
total stresses be related to the phase-specific ones through

ε =
N

∑
α=1

εαhα(φ) and σ =
N

∑
α=1

σαhα(φ). (7.72)

This still leaves a large degree of flexibility in the construction of an effective material behavior
though.

44Even though, at least in the linearly elastic case, it is natural here to assume that C is independent of ε
(i.e. that the diffuse interface stress-strain relationship is linear in ε), this is not strictly necessary. While a
nonlinear stress-strain relationship a priori would then violate the linearity of the original problem, this could still
be of interest if this “violation” is carefully designed. One example of a similar situation is the use of nonlinear
advection schemes for an a priori linear advection operator.
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In terms of its contribution to the phasefield Equation (6.73), the minimization of Fε in
Equation (7.67) subject to the quasi-static equilibrium conditions (7.69) a priori leads to a
constrained optimization problem in terms of φ and u. Equation (7.69) is, under mild hypothesis,
uniquely (or uniquely up to some irrelevant kernel) solvable for u as a function of φ. One can
thus again consider a reduced formulation consisting in the minimization of Fε(φ,u(φ)) in terms
of which the FONC for any minimzer becomes

⟨
∂Fε
∂φ

, δφ⟩ + ⟨
∂Fε
∂u

, δu(δφ)⟩ = ⟨µ +Λ, δφ⟩

with µ and Λ as in Section 6.1.
As u only enters in Fel(φ,u) and the system (7.69) is, under the variational consistency condition
(7.70), precisely the condition ⟨

∂Fel(φ,u)
∂u

, δu⟩ = 0 for all admissible variations δu. The second
contribution therefore actually vanishes and one only has to consider the additional “driving
force” through the direct contribution ∂Fel

∂φ
to the phasefield equation. Assuming for simplicity

that neither the body force ρf nor the imposed boundary conditions depend on φ, the only
explicit dependence on φ is therefore through the strain energy density fel(φ, ε(u)) in Equation
(7.71). In the simpler models (this will be called the “traditional” phasefield models below), the
dependence of fel on φ is solely in terms of the (local) values of φ itself and not its gradients.
From Equation (7.71) and the chain-rule, this leads to an additional contribution of the form

∂fel
∂φα

=
N

∑
β=1

fβ(εβ)
∂hβ

∂φα
(φ) +

N

∑
β=1

hβ(φ)
∂fβ

∂εβ
∶
∂εβ

∂φα
.

For the more complex models discussed starting from Section 7.2.2, the calculation of fel relies
heavily on one or several normal vectors nαβ(φ,∇φ) between the various phases, defined in
terms of (possibly) the local values φ and their gradients ∇φ. It is therefore more convenient
to write fel and εα as functions of45 (ε,φ,nαβ(φ,∇φ))

1≤α≠β≤N , from which one obtains the
additional contributions

N

∑
β=1

N

∑
δ=1

⎛

⎝
hβ(φ)

∂fβ

∂εβ
∶
∂εβ

∂nβδ
⋅
∂nβδ

∂φα
−∇ ⋅ (hβ(φ)

∂fβ

∂εβ
∶
∂εβ

∂nβδ
⋅
∂nβδ

∂∇φα
)
⎞

⎠
.

Remark 115. Note the a priori somewhat curious situation that, even though the interpretation
of the εα is as the phase-inherent strains for the given phase α and thus in particular not a
“phase-averaged” quantity, these will, except for the simplest models, still depend implicitly
upon (at least) the φ-values. In contrast, the total strain ε - even though actually interpreted
as the phase-averaged quantity - is to be considered as independent of the phasefield (and the
other parameters).
This situation is completely analogous to Section 7.1, where the average concentration c was
considered as phase-independent, whereas the phase-specific concentration values depended upon
φ through their specification in terms of the condition of equal (reduced) chemical potentials.
This is clearly an inherent feature of the common approach underlying these phasefield models,
which, for obvious efficiency reasons, consists in expressing the phasefield functional and thus the
corresponding equilibrium conditions through some variational principle in terms of the phase-
averaged quantities as the primary unknown. The phase-specific quantities are only introduced
as auxiliary “secondary” quantities through which the bulk free energy potential in the interface
region is then (locally) linked to the ones of the individual phases. This is also why there is
- except potentially for the bulk-regions - no reason to expect the phase-inherent quantities to

45Since both the definition of suitable normal vectors in the multiphase case and the definition of normals at
the transition to bulk phases with ∇φ = 0 are by themselves somewhat tricky issue, the contributions due to the
dependences of the normal vectors will later on mostly be expressed only in terms of ∂εα

∂nβδ
, leaving the specifics

of the definition of those aside.
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obey the same elegant relations holding for the phase-averaged ones. For example, the εα defined
by the various models will in general not derive from a global displacement field uα and neither
will the corresponding phase-specific equilibrium condition −div(σα) = ραfα hold throughout
the domain (but it will, of course, be valid in the respective bulk-region). ◇
Remark 116. It is of course also possible to consider situations in which the density and/or body
force as well as the boundary conditions in addition depend on φ. This is easily dealt with in the
former case as, typically being defined in a simple local relation in terms of φ, the contribution
to the phasefield equation follows from a straightforward differentiation of this dependence. In
contrast, the latter case can, depending upon the complexity of the boundary condition, become
significantly more technical to deal with.
If g for example only depends on φ in a simple local manner such as e.g. when imposing g as an
interpolation of normal stresses assigned to the individual phases, this only affects the phasefield
equation in the sense that the natural “isolating” boundary condition needs to be replaced by
one including ∂g

∂φα
46. In other cases - quite intuitive from a purely mechanical point of view -

such as e.g. for a “constant-force” boundary condition, where a given force is distributed over the
boundary based upon some interpolation procedure in terms of φ, one has to deal with a non-local
dependence of g on φ on the Neumann-part of the boundary. This leads to a correspondingly
more complex (non-local) contribution to the phasefield boundary condition. ◇

7.2.1 “Traditional” Phasefield Models
Before considering a more recent modeling approach in a little more detail, this section will recall
a few key points concerning three more classical modeling approaches, namely the Voigt-Taylor-
model, the Reuss-Sachs-model and the model by Khachaturian. As the differences between these
models have been amply analyzed in the literature (see e.g. [3], [23], [51] and [64]), the primary
purpose of this section is to provide a brief summary of this analysis (and how it relates to the
one in the previous section) as a background for the following discussion.

The Purely Elastic Case

Two popular early approaches are to either assume that the strains or the stresses of all phases
are equal. In the first approach, the so-called Voigt-Taylor model, the assumption εα = ε ∀α,
the first relation in Equation (7.72) is trivially satisfied. Based on imposing σα = Cα ∶εα and the
second relation in (7.72), this leads to the total stress

σV T (φ, ε) =
N

∑
α=1

σα(ε)hα(φ) = (
N

∑
α=1

Cαhα(φ)) ∶ ε, (7.73)

i.e. σ is determined in terms of the total strain through an effective stiffness tensor given by the
(weighted) arithmetic interpolation of the phase-specific ones, CV T (φ) = ∑Nα=1 C

αhα(φ).
In addition, the total local free energy contribution is of the form

fel,V T (φ, ε) =
N

∑
α=1

(
1

2
εα ∶ Cα ∶ εα)hα(φ) = 1

2
ε ∶ (

N

∑
α=1

Cαhα(φ)) ∶ ε = 1

2
ε ∶ CV T (φ) ∶ ε.

Based on this form of fel and the Equation (7.73), σ is easily seen to satisfy the important
“compatibility” condition σ(φ, ε) = ∂fel

∂ε
(φ, ε) in Equation (7.70).

This can clearly be considered to be the mechanical analogue of the chemical model used e.g. in
[52], whose underlying chemical free energy density can, as discussed above, be interpreted as
a hα-weighted interpolated of the phase-specific ones fα under the assumption of equal phase-
specific concentrations cα = c ∀α. In addition, the total chemical potential µ(φ,c) is, similar to

46Depending on the precise form of the implementation, this can nevertheless be somewhat tedious from a
practical point of view.
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the stress in Equation (7.73), given as the weighted average µ = ∑α µ
α(c)hα(φ) of the phase-

specific chemical potentials µα(c) = ∂fα

∂cα
(c).

In the second approach, the Reuss-Sachs model (also called Steinbach-Apel model
based on their paper [69]), one assumes the equality of the phase-sprecific stresses with the total
one, σα = σ ∀α, instead of that of the strains. This leads to the second equality in (7.72) being
trivially satisfied, whereas, using εα = (Cα)−1

∶σα = (Cα)−1
∶σ = Sα ∶σ, the first one imposes the

restriction

ε =
N

∑
α=1

εαhα(φ) = (
N

∑
α=1

Sαhα(φ)) ∶σ (7.74)

and thus corresponds an effective material behavior where one interpolates the individual com-
pliance tensors Sα = (Cα)−1

instead of the stiffness tensors. Inverting relation (7.74) leads to
the explicit stress-strain relationship

σRS(φ, ε) = (
N

∑
α=1

Sαhα(φ))
−1

∶ ε = (
N

∑
α=1

(Cα)−1
hα(φ))

−1

∶ ε = CRS(φ) ∶ ε, (7.75)

with CRS(φ) = (∑
N
α=1 (Cα)−1

hα(φ))
−1

and thus corresponds to a weighted harmonic interpola-
tion of the stiffness tensors. In addition, using εα = Sα ∶σα = Sα ∶σ, the local energy contribution
is given by

fel,RS(φ, ε) =
N

∑
α=1

(
1

2
εα ∶ Cα ∶ εα)hα(φ) = 1

2
σ ∶ (

N

∑
α=1

(Sαhα(φ))) ∶σ

=
1

2
((

N

∑
α=1

Sαhα(φ))
−1
∶ ε) ∶ (

N

∑
α=1

(Sαhα(φ))) ∶ ((
N

∑
α=1

Sαhα(φ))
−1
∶ ε)

=
1

2
ε ∶ (

N

∑
α=1

(Sαhα(φ))
−1

∶ ε =
1

2
ε ∶ CRS(φ) ∶ ε

(7.76)

and is in particular again consistent with Equation (7.70).
In contrast to the Voigt-Taylor-model, this corresponds to a mechanical analogue (see also the
discussion in [69]) of the KKS-type models considered in Section 7.1. The only slight difference is
that in the chemical case one was only able to obtain equality of the reduced chemical potentials
(resp. equality of the µα =

∂fα

∂cα
only up to phase-specific constants). since there is no equivalence

of the additional “internal” constraint ∑Ki=1 c
α
i = 1 in the mechanical case, one can in fact enforce

full equality of the phase-specific stresses.

Remark 117. In relation with the quantitative chemical models from Section 7.1, it is further
interesting to consider how the above two models above compare from an energetic point of view.
In fact, the Reuss-Sachs model corresponds to the minimizer of the local strain energy density
fel(φ, ε) over all decompositions ε = ∑Nα=1 ε

αhα(φ) into phaseinherent strains (εα)1≤α≤N as in
Equation (7.72),

fel,RS(φ, ε) = min
{εα∶∑Nα=1 ε

αhα(φ)=ε}

N

∑
α=1

(
1

2
εα ∶ Cα ∶ εα)hα(φ). (7.77)

This follows from the fact that for 0 ≤ hα(φ) ≤ 1, the problem (7.77) is a convex (and strictly
convex for those εα with hα(φ) > 0)47 minimization problem and that, by a simple differentiation

47Note that, even though convexity in each variable separately does not generally imply “global” convexity, it
does so here due to the separated form of fel,RS in the εα. In addition, the feasible set is clearly convex as any
convex combination of phase-specific strains averaging to ε will also do so.
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of the Lagrangian,

L(φ, (εα)1≤α≤N ,σ) =
N

∑
α=1

(
1

2
εα ∶ Cα ∶ εα)hα(φ) −σ ∶ (

N

∑
α=1

εαhα(φ) − ε),

the minimizers satisfy (Cα ∶ εα −σ)hα(φ) = 0, i.e. σ = Cα ∶ εα = σα and thus the equality of the
stresses has to hold for all α with hα(φ) ≠ 048.
Similarly, the stress-strain relationship for the Voigt-Taylor approach can be recovered from the
minimization problem

f∗el,V T (φ,σ) = min
{σα∶∑Nα=1 σ

αhα(φ)=σ}

N

∑
α=1

(
1

2
σα ∶Sα ∶σα)hα(φ). (7.78)

corresponding to a minimization of the weighted average of the complementary strain energy
densities

(fel)
∗(φ, (σα)1≤α≤N) =

N

∑
α=1

(fαel)
∗
(σα)hα(φ) =

N

∑
α=1

(
1

2
σα ∶Sα ∶σα)hα(φ) (7.79)

over all decompositions satisfying σ = ∑
N
α=1σ

αhα(φ). This is again a convex function of the
(σα)1≤α≤N and the critical points of the corresponding Lagrangian satisfy (Sα ∶σα−ε)hα(φ) = 0
i.e. εα = Sα ∶σα = ε for all α with hα(φ) > 0.

Note that in both cases, even though one a priori only imposes one of the two interpola-
tion properties in Equation (7.72) in this variational formulation, the other one is actually also
trivially satisfied (the phase-specific stresses in the Reuss-Sachs model resp. the phase-specific
strains in the Voigt-Taylor model all being equal by the FONC for the minimization problems).

An obvious consequence of the characterizations above is that (see e.g. also [51], [61]) one
necessarily has the inequalities

fel,RS(φ, ε) ≤ fel,V T (φ, ε) and f∗el,V T (φ,σ) ≤ f∗el,RS(φ,σ)

as the Reuss-Sachs model is (according to Equation (7.77)) the one with the smallest possible
elastic free energy density defined by (7.71) for a given strain and the interpolation property
of the strains, whereas (according to Equation (7.78)), the Voigt-Taylor model has the smallest
complementary strain energy density for a given stress and the interpolation property for the
stresses.

◇
Remark 118. In addition, as pointed out in [61], by a well-known homogenization result, these
two interpolations correspond to variational bounds on the effective behavior which would be
expected from a real two-phase material.
It should be noted though that this result does not imply that the Voigt-Taylor model corre-
sponds to an upper bound on the strain energy density fel(φ, (εα)1≤α≤N) subject to the con-
straint of averaging to a given effective strain ε. In fact, it is easy to see that the effective free
energy can be made arbitrarily large for a given ε while maintaining the interpolation properties
above49. ◇

48The other ones being basically arbitrary, but without any contribution to fel,RS . As previously for the
chemical models, these phases still have a contribution to the derivative w.r.t. φ with the natural “definition”
being the one setting σα = σ, even if hα(φ) = 0.

49This is a convex maximization problem in the εα with an unbounded admissible set.
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The Case With Eigenstrains

The approaches above can also be extended to the more general setting including eigenstrains
(ε̃α)1≤α≤N

50, but now with, as above, σα = Cα
∶ (εα − ε̃α) and fel(φ, ε) as in Equation (7.71).

Assuming again, as in the Voigt-Taylor case, equality of the (total) strains then leads to the
phase-specific stress σα = Cα ∶ (ε − ε̃α) and therefore a total stress given by

σV T (φ, ε,{ε̃
α
}1≤α≤N) =

N

∑
α=1

Cα ∶ (ε − ε̃α)hα(φ)

=(
N

∑
α=1

Cαhα(φ)) ∶ ε −
N

∑
α=1

Cα ∶ ε̃αhα(φ) = CV T (φ) ∶ (ε − ˆ̃ε),

(7.80)

with ˆ̃ε(φ,{ε̃α}1≤α≤N) = C−1
V T (φ) ∶(∑

N
α=1 C

α
∶ ε̃αhα(φ)) (see also e.g. [3]), i.e. an effective material

behavior with the same stiffness but an eigenstrain given by a Cα-weighted average of the intrinsic
ones and in particular not satisfying the interpolation rule ε̃(φ) = ∑Nα=1 ε̃

αhα(φ).
If one in contrast assumes, corresponding to the model of Khachaturyan [18], the equality of
the elastic strains instead of the total strains and defining the total strain to be given by
ε ∶= ∑

N
α=1(εel + ε̃

α
)hα(φ), the interpolation

σK(φ, ε,{ε̃α}1≤α≤N) ∶=
N

∑
α=1

Cα ∶ εelhα(φ) = CV T (φ) ∶ εel = CV T (φ) ∶ (ε −
N

∑
α=1

ε̃αhα(φ)),

leads to an effective material behavior which satisfies σ = CV T (φ) ∶(ε− ε̃) with the “more natural”
definitions of ε and ε̃ ∶= ∑Nα=1 ε̃

αhα(φ).
Remark 119. Even though this model, in terms of the effective stress-strain relationship, may
seem like the simpler - and thus in a way more elegant one (requiring only averaged quantities
and no explicit phase-specific ones) - the higher simplicity is, from an energetic point of view,
also its major drawback51 (for a similar discussion, see [3]). In fact, it is obvious that, if the
consistency relation (7.70) is to hold, this stress-strain-relationship results from the elastic free
energy density

fel,K(φ, ε, ε̃(φ)) =
1

2
(ε − ε̃(φ)) ∶ CV T (φ) ∶ (ε − ε̃(φ)), (7.81)

and will generally not coincide with an average of the phase-specific free energy densities in
(7.71) unless all eigenstrans ε̃α happen to be the same. ◇

The situation for the Reuss-Sachs model is slightly simpler. Assuming the equality of the
stresses, one has εα = ε̃α + Sασ, α = 1, ...,N , and, again imposing ε = ∑Nα=1 ε

αhα(φ), a total
strain given by

ε =
N

∑
α=1

(ε̃α +Sα ∶σ)hα(φ) =
N

∑
α=1

ε̃αhα(φ) + (
N

∑
α=1

Sαhα(φ)) ∶σ.

Defining ε̃ = ∑Nα=1 ε̃
αhα(φ) and inverting this relationship shows that

σRS = (
N

∑
α=1

Sαhα(φ))−1
∶ (ε − ε̃) = CRS(φ) ∶ (ε − ε̃) with CRS(φ) = (

N

∑
α=1

Sαhα(φ))−1

and thus that the effective stiffness coincides with the expected expression and that the effective
eigenstrain ε̃ additionally obeys the standard interpolation property.

50Possibly depending upon additional paramters such as the concentration or temperature.
51This is similar in spirit to Section 7.1, where the properties of the model can improve significantly if one does

not assume the equality of the more convenient quantities (in this case the phase-specific concentrations cα) and
instead, at the cost of a more complex model, the equality of derived quantities which are much more natural to
assume to be the same for all phases.
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From this, it follows εα − ε̃α = Sα ∶ CRS(φ) ∶ (ε − ε̃). Reinserting this effective stress-strain
relationship into the definition of the elastic energy, one obtains the total elastic energy density
given by

fel,RS(φ, ε, ε̃(φ)) =
1

2

N

∑
α=1

(Sα ∶ CRS(φ) ∶ (ε − ε̃)) ∶ Cα ∶ (Sα ∶ CRS(φ) ∶ (ε − ε̃))hα(φ).

Canceling Cα with Sα and observing that the only remaining phase-dependent term is given by
∑
N
α=1S

αhα(φ) = (CRS(φ))
−1
, this further simplifies to

fel,RS(φ, ε, ε̃(φ)) =
1

2
(ε − ε̃(φ)) ∶ CRS(φ) ∶ (ε − ε̃(φ)) (7.82)

corresponding to simply replacing the total strain ε in Equation (7.76) with the average elastic
strain εel = ε − ε̃.

The Driving Force

The various choices above imply different driving forces ∂fel
∂φ

in the phasefield Equation (6.73).
In the simplest cases, i.e. in the Voigt-Taylor and Khachaturyan-model, the elastic free energy
density is given as a fully explicit formula in terms of the phasefield values φ and the total strains
ε. For the Voigt-Taylor model, a straightforward differentiation with εβ = ε for all β shows that

∂fel,V T (φ, ε,{ε̃
β
}1≤β≤N)

∂φα
=

N

∑
β=1

1

2
(ε − ε̃β) ∶ Cβ ∶ (ε − ε̃β)∂h

β

∂φα
=

N

∑
β=1

fβel
∂hβ

∂φα
,

i.e. the evolution of the phasefield is driven purely be the difference of the elastic free energy
densities fα. While reducing to the same model in the purely elastic case, the situation is
different in the presence of eigenstrains for the Khatchuryan-model, since, based on equation
(7.81) and ∂fel,K

∂ε̃
= −CV T ∶ (ε − ε̃(φ)) = −σK , one has

∂fel,K(φ, ε, ε̃(φ))

∂φα
=

N

∑
β=1

1

2
((ε − ε̃(φ)) ∶ Cβ ∶ (ε − ε̃(φ)) −σ ∶ ε̃β)∂h

β

∂φα

which in general can only be artificially related to a derivative involving the fβ(ε) underlying
Equation (7.71) unless all eigenstrains coincide (in which case the distinction between the Voigt-
Taylor and Khatchaturyan model again becomes irrelevant).
The situation for the Reuss-Sachs-model is slightly more complicated as one has, using, analogous
to the Khachaturyan-model, ∂fel,RS

∂ε̃
= −CRS ∶ (ε − ε̃(φ)) = −σRS ,

∂fel,RS(φ, ε, ε̃(φ))

∂φα
=

1

2
(ε − ε̃(φ)) ∶ (

∂CRS
∂φα

(φ)) ∶ (ε − ε̃(φ)) −σRS ∶
N

∑
β=1

ε̃β
∂hβ

∂φα
. (7.83)

Here, in contrast to the two previous models, CRS(φ) as a function of φ is only defined implicitly
as the (pseudo-)inverse of S(φ) = ∑Nβ=1S

βhβ(φ). This is not a serious issue though as it is well-
known that52

∂CRS(φ)
∂φα

= −CRS(φ) ∶
⎛

⎝

N

∑
β=1

Sβ
∂hβ

∂φα
⎞

⎠
∶ CRS(φ).

52To see this, it suffices to differentiate the identity CRS(φ) ∶(∑Nα=1 S
αhα(φ)) = I(s), which is legitimate under

the standard coercivity assumption for the Cα resp. Sα (on the subspace of symmetric tensors).
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While this expression in itself is somewhat cumbersome, it in fact allows for a major simplification
in combination with Equation (7.83) as, by symmetry of CRS ,

1

2
(ε − ε̃(φ)) ∶ (

∂CRS
∂φα

(φ)) ∶ (ε − ε̃(φ)) = −
1

2
(ε − ε̃(φ)) ∶ CRS(φ) ∶

⎛

⎝

N

∑
β=1

Sβ
∂hβ

∂φα
⎞

⎠
∶ CRS(φ) ∶ (ε − ε̃(φ))

= −
1

2
σRS ∶

⎛

⎝

N

∑
β=1

Sβ
∂hβ

∂φα
⎞

⎠
∶σRS .

Since by construction σRS = σβ for all β, this is the same as − 1
2 ∑

N
β=1σ

β ∶ Sβ ∶ σβ ∂h
β

∂φα
=

−∑
N
β=1 f

β ∂hβ

∂φα
, thus leading to a total driving force given by

∂fel,RS

∂φα
(φ, ε,{ε̃β}1≤β≤N) = −

N

∑
β=1

(fβel +σ(φ, ε) ∶ ε̃β)
∂hβ

∂φα
. (7.84)

Remark 120. As pointed out above (and already discussed in e.g. [69]), the Reuss-Sachs/Steinbach-
Apel scheme is similar in spirit to the quantitative chemicals models from Section 7.1 with the
εα taking the role of the phase-specific concentrations cα and σ the role of the (reduced) chem-
ical potential µ̃. In constrast, the Voigt-Taylor model (and, up to a point, the Khatchuryan
approach) is more similar in nature to the chemical model used in e.g. [52], which can be inter-
preted as assuming the equality of the phase-specific concentrations cα with the average one.
Even though these analogies are helpful for interpreting the mechanical models above, it needs
to be realized that they are not “complete”. Compared to the seemingly quite satisfactory case
previously considered in Section 7.1, it was observed early on (see e.g. [23]) that the results
obtained using the Reuss-Sachs model are usually not as satisfactory as those from the chemi-
cal case and in particular leads to excess interface energy contributions except for very special
mechanical settings.

There are several reasons why developing successful models in the mechanical case is more
difficult than in the purely chemical one. A first one is that it is more common to have to deal
with an additional “internal” forcing expressed through the eigenstrains in the mechanical than
in the chemical case. The more crucial one lies in the non-local dependence of fel on u through
its (symmtrized) gradient ε and the resulting nature of the equilibrium conditions themselves.
The classical condition of the equilibration of the chemical potentials underlying the reasoning in
Section 7.1 is in fact a highly restrictive one which is physically valid only for the very particular
(but commonly used) settings of a closed system.
From a more mathematical point of view, this setting is related to the minimization of the free
energy functional

Fε(φ,c) = ∫
Ω

εa(φ,∇φ) +
1

ε
w(φ) + fch(φ,c)dx (7.85)

under the implicit assumption that Fε is to be minimized with respect to c under the addi-
tional constraint that the total amount of concentration of each component is to be maintained
constant, ∫Ω ci dx = const. Even though the form of the functional (7.85) does not lend itself
naturally to the application of boundary conditions on c53, the same effect can be enforced in
terms of the gradient-flow appraoch to the minimization of Fε by “externally” postulating a con-
servative gradient-flow for c as discussed in Section 6.1, where the conservation of the total mass
is ensured by the locally conservative flow in combination with the “natural” isolating boundary
conditions for the concentration.

53As it is purely local in c, there is a priori no reason for any minimizer in c to be sufficiently regular (e.g.
c ∈H1(Ω)) to make sense of its boundary values such that this regularity would have to be enforced “artificially”.
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In contrast, when modeling other physical situations (involving for example prescribed concen-
tration values and/or chemical potential values on the outer boundary), the simple condition
µ̃ = const will in general not hold anymore. Instead, the physically relevant equilibrium condition
(in terms of the model in [52]) becomes

⎧⎪⎪
⎨
⎪⎪⎩

−∇ ⋅ (Lij(φ,c)∇µj(φ,c)) = 0 in Ω,

boundary conditions on c resp. µ.
(7.86)

On the one hand, it is clear (there for example not being any Lij in Fε(φ,c)) that this is not
easily connected to a minmization of the functional in Equation (7.85) unless one would treat
this explicitly as a constrained optimization problem subject to Equation (7.86). On the other
hand, as the condition µ̃ = const would have to be replaced with the (significantly) more complex
equilibrium condition in Equation (7.86) corresponding to −div (σ(φ, ε)) = ρf in the mechanical
case. In terms of the diffuse interface approximation, it is easy to see that one would therefore
also have to deal with the same issues as will be discussed in the mechanical case in the following
sections.
The primary difference between the chemical and mechanical case therefore lies in the fact that,
for the physically interesting examples, the latter one only very rarely allows for the simple
solution σ = const54, whereas the analogous condition µ̃ = const is much more common in the
chemical setting55. ◇

7.2.2 The Quantitative Model in the Two-Phase Case
A more recent modeling approach, first introduced in the two-phase setting by [51] and [64]
(and later partially extended to the multiphase setting in [63], [62], [66] and also to situations
involving plastic [35] and viscoelastic effects is based on the observation that, at an interface
between two phases in the sharp interface setting, one usually neither has the equality of the
strains nor that of the stresses. Instead, the spatial nature of the equilibrium conditions is also
reflected in the well-known mechanical jump conditions on internal interfaces. These require
on the one hand that the tangential components of the displacement gradient coincide on the
interface, i.e. the jump J∇uK of ∇u upon traversing the interface is oriented along the normal
direction and the displacement gradients on both sides are therefore related by the condition
(∇u)

+
= (∇u)−+a⊗n. For the strain tensor usually used within the small deformation settting,

this obviously implies that JεK = (a⊗n)S = 1
2
(a⊗n+n⊗a). On the other hand, in contrast to

∇u, it is the normal components of the stress-tensor on both sides of the interface which need
to coincide, i.e. JσK ⋅n = 0.

Remark 121. The idea of treating the normal and tangential components was actually introduced
slightly earlier by Durga et al. under an additional simplifying assumption in the two-dimensional
setting [23] and later generalized by the same authors in [24] to the three-dimensional setting
without this simplification. As will be discussed in Section 7.2.3, the models in [51] and [64]
differ from - and in fact improve upon - the generalization in [24] in a small but important point.
For this reason, despite the fundamental importance of the work [23] in the current setting for
initiating this line of thought, the other model(s) considered below should be preferred over the

54A notable exception being the purely elastic material chain, in which case the Reuss-Sachs approximation is
in fact free of excess energy contributions, see e.g. [64].

55There are also a significant number of works - for example in directional solidification - in which the models
from Section 7.1 are applied in situations where this does not hold. These applications usually being set up
(using e.g. moving window techniques) such that one never actually achieves equilibrium, the precise advantages
and disadvantages of the models are significantly harder to judge as they are always based on the much more
complex dynamic case. In particular, it is common to employ an artificial dynamic contribution in terms of an
antitrapping current, further increasing the complexity of the situation.
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one in [24]56. ◇
Remark 122. It is useful to keep the reasoning behind these jump conditions in mind.
The first one on J∇uK is essentially imposed a priori - at least within the standard variational
approach - by demanding a global H1-regularity of the solution. This implies that the trace
γ(u) of u on a smooth hypersurface Γ can be uniquely defined as an element of H

1
2 (Γ), i.e.

denoting the limiting values of u as one approaches this hypersurface from both sides by γ±(u),
one has γ+(u) = γ−(u). The traces coinciding along the surface then implies the same for their
tangential derivatives57.
In constrast, the second condition on σ is only valid provided the right-hand side is regular enough
and in particular (consistent with the intuitive reasoning) excludes the case of a “concentrated”
surface force acting on Γ. Focusing on the simpler steady-state equilibrium conditions −div(σ) =

f , f being in e.g. L2
(Ω) implies (by the very definition) that σ ∈ Hdiv(Ω)58. Similar to the

trace of functions inH1
(Ω), it is a standard fact (see e.g. [34], [43] or [48]) that one can define a

unique normal trace in H− 1
2 (Γ) on any (sufficiently smooth) hypersurface for such functions59,

and that therefore the normal components of σ have to coincide as one approaches Γ from both
sides. ◇

More elaborate mechanical models taking these sharp interface jump conditions at a two-
phase interface into account have first been proposed by Mosler et al. [51] within an energy-based
setting (a priori relying upon the jump conditions for the strains alone) and by Durga et al. [24]
and Schneider et al. [64] within a more direct approach based on the jump conditions for both
the strains and the stresses. In contrast to the work by [51], these models do not rely on a jump
vector a (as also used below), but instead use a basis transformation into an appropriate coordi-
nate system in which they then enforce the equality of the appropriate stress- and strain-entries.
Yet another approach is taken in [74], which avoids the use of the basis transformation by using
a description in terms of projecters N and T onto the “normal” and “tangent” subspaces of the
symmetric second-order strain and stress tensors.
Given that all models are essentially based on the same sharp-interface jump conditions, it is not
surprising that, from a modeling point of view, they are in fact all different representations of
the same physical model. Nevertheless, the choice of representation clearly can have a significant
impact both in terms of the computational complexity of the models as well as the effort required
for their mathematical description and practical implementation. For this reason, after a quick
outline of the mechanical model and its additional contributions to the phasefield equation - here
using a description in terms of a jump vector a - the links between the various models will be
discussed in Section 7.2.3 in a little more detail.
Further discussions, extensions and applications (often within the multiphase setting to be dis-
cussed in the next section) can e.g. be found in [61], [63], [74], [62], [35], [66], [4] and [5].

The Mechanical Model

The underlying idea is to increase the accuracy of the phasefield model (with a small but non-
zero interface width) by directly incorporating the jump conditions from the sharp-interface
setting. Following [51] (see also [61] for a more detailed discussion), one can therefore impose

56Nevertheless, as shown in [23], their model does, among other things, in fact improve significantly upon the
Voigt-Taylor or Reuss-Sachs model in terms of interfacial excess energies.

57Then in an even weaker sense as elements of H− 1
2 (Γ).

58Hdiv(Ω) being defined by Hdiv(Ω) ∶= {σ ∈ L2(Ω) ∶ div(σ) ∈ L2(Ω)}.
59The essential idea is based upon “extending” Gauss’s divergence theorem ∫ω div(g)dx = ∫∂ω g ⋅nds for smooth

functions by appropriately defining the (a priori meaningless in the non-smooth case) values of g such that this
integral equality holds.
If the divergence of σ is for example only in H−1(Ω) (e.g. if surface forces are present), the definition of an
appropriate trace is a much trickier issue (see e.g. [48]).
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the condition
JF K = F 2

−F 1
= a⊗n resp. JεK = ε2

− ε1
= (a⊗n)S (7.87)

on the displacement gradients F = ∇u resp. its symmetrization in the small deformation setting.
Combined with the interpolation requirement ε = ε1h2(φ) + ε2h2(φ), where, as in Section 6.2,
h1(φ) = h(φ), h2 = h(1 − φ) = 1 − h(φ), this results in an effective strain given by ε = ε1h1(φ) +
(ε1 + (a ⊗ n)S)h

2(φ) = ε1 + h2(φ)(a ⊗ n)S , which can be solved for the strains (ε1, ε2) as a
function of ε and the (as of yet arbitrary) jump vector a to give

ε1
(ε,a) = ε − h2

(φ)(a⊗n)S and ε2
(ε,a) = ε1

+ (a⊗n)S = ε + h1
(φ)(a⊗n)S . (7.88)

Inserting these expressions into the material law σα = Cα ∶ (εα − ε̃α) and the jump condition for
σ, one obtains the additional condition

JσK ⋅n =(C2
∶ (ε2

− ε̃2
) − C1

∶ (ε1
− ε̃1

)) ⋅n

=
⎛

⎝
C2

∶ ((ε − ε̃2
) + h1

(φ)(a⊗n)S) − C1
∶ ((ε − ε̃1

) − h2
(φ)(a⊗n)S)

⎞

⎠
⋅n

!
= 0.

Given the subsymmetry Cαijkl = C
α
ijlk of the stiffness-tensor60, this can in fact be simplified to the

equation
⎛

⎝
n ⋅

⎛

⎝
h2

(φ)C1
+ h1

(φ)C2
) ⋅n

⎞

⎠
⋅ a

!
= (C1

∶ (ε − ε̃1
) − C2

∶ (ε − ε̃2
)) ⋅n.

This is a 3 × 3 linear system allowing for the determination of a in terms of ε as

a =(n ⋅ (h2
(φ)C1

+ h1
(φ)C2

(φ)) ⋅n)
−1

⋅ (C1
∶ (ε − ε̃1

) − C2
∶ (ε − ε̃2

)) ⋅n

=(n ⋅ C̄12
(φ) ⋅n)

−1
⋅ (Σ1

−Σ2
) ⋅n,

(7.89)

where, adopting the notation in [74], C̄12
(φ) denotes the “anti-arithmetic” average

C̄12
(φ) ∶= h2

(φ)C1
+ h1

(φ)C2
(φ) = (1 − h(φ))C1

+ h(φ)C2 (7.90)

and the Σα
∶= Cα ∶(ε− ε̃α) correspond to the phase-specific stresses predicted by the Voigt-Taylor

model.
Remark 123. The solvability of the system for a (resp. the invertibility of C̄12 under the standard
assumptions on the Cα can e.g. be seen from the fact that the bilinear form 1

2
ε ∶Cα ∶ ε is strictly

convex in ε, which implies rank-one convexity. Together with the subsymmetries of the Cα and as
C̄12 is a convex combination (for 0 ≤ h(φ) ≤ 1) of C1 and C2, it follows that a↦ a ⋅(n ⋅ C̄12

(φ) ⋅n)

is strictly convex and C̄12
(φ) a positive definite matrix. ◇

Remark 124. Depending on the way the stiffness-tensors are arranged in memory, it may be
advantageous to use any of the (equivalent given the subsymmetries) expressions

niCijklnl = njCijklnl = njCijklnk = niCijklnk.

Note that none of these is the same as C ∶ (n⊗n) = (n⊗n) ∶ C though.
With respect to the commonly used Voigt-notation, it should also be noted that, as this formula

60By the right subsymmetric of C, Cijkl = Cijlk, applying C to a non-symmetric tensor t leads to the same
result as applying it to the symmetrized tensor tS = 1

2
(t + tT ) since (using the Einstein summation convention)

C ∶ tS = 1

2
(Cijkltkl + Cijkltlk) =

1

2
(Cijkltkl + Cijlktkl)

Cijkl=Cijlk= Cijkl
1

2
(tkl + tkl) = C ∶ t.
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involves two separate contractions (and not a double-contraction with a symmetric tensor in a
“reduced” vector format) there are no additional prefactors involved in the evaluation of n ⋅ C ⋅
n. ◇

With a determined by Equation (7.89) and with σα = Cα ∶ (εα − ε̃α) together with Equation
(7.88), one can calculate the phase-specific stresses (again using the right subsymmetry of the
stiffness) to be given by

σ1
=C1

(ε − h2
(φ)(a⊗n)

S
− ε̃1

) = Σ1
− h2

(φ)(C1
⋅n) ⋅ a

=Σ1
− h2

(φ)(C1
⋅n) ⋅ (n ⋅ C̄12

(φ) ⋅n)
−1
⋅ ((Σ1

−Σ2
) ⋅n)

and similarly

σ2
= Σ2

+ h1
(φ)(C2

⋅n) ⋅ (n ⋅ C̄12
(φ) ⋅n)

−1
⋅ ((Σ1

−Σ2
) ⋅n).

Finally, together with the definition of σ as the weighted average of σ1 and σ2, this leads to the
effective material behavior given by

σ =h1
(φ)σ1

+ h2
(φ)σ2

= h1
(φ)Σ1

+ h2
(φ)Σ2

− h1
(φ)h2

(φ)((C1
− C2

) ⋅n) ⋅ a

=σV T (ε, φ) − ((C1
− C2

) ⋅n) ⋅ (n ⋅ C̄12
(φ) ⋅n)

−1
⋅ ((Σ1

−Σ2
) ⋅n),

(7.91)

in terms of the various auxiliary quantities introduced above (and with σV T (ε, φ) corresponding
to the stress from the Voigt-Taylor model in equations (7.73) resp. (7.80)), or, after reinserting
the definitions, the fully explicit formula

σ =h1
(φ)C1

∶ (ε − ε̃1
) + h2

(φ)C2
∶ (ε − ε̃2

)

− h1
(φ)h2

(φ)((C1
− C2

) ⋅n) ⋅ (n ⋅ C̄12
(φ) ⋅n)

−1
⋅
⎛

⎝
n ⋅ (C1

∶ (ε − ε̃1
) − C2

∶ (ε − ε̃2
))

⎞

⎠

(7.92)

for σ in terms of ε, n and φ.

Remark 125. The formulas above simplify somewhat when there are no eigenstrains, i.e. when
ε̃1

= ε̃2
= 0. It is easy to see that one then obtains

σ1
= C1

∶ ε − h2
(φ)(n ⋅ C1

) ∶
⎛

⎝
(n ⋅ C̄12

(φ) ⋅n)
−1
⋅ (n ⋅ (C1

− C2
) ∶ ε)

⎞

⎠

and

σ2
= C2

∶ ε + h1
(φ)(n ⋅ C2

) ∶
⎛

⎝
(n ⋅ C̄12

(φ) ⋅n)
−1
⋅ (n ⋅ (C1

− C2
) ∶ ε)

⎞

⎠

and thus, using the abbreviation CV T (φ) ∶= h1(φ)C1
+ h2(φ)C2

= h(φ)C1
+ (1 − h(φ))C2 for the

“arithmetic” Voigt-Talyor-type average of the stiffnesses and the various symmetries,

σ =
⎛

⎝
CV T (φ) − h1

(φ)h2
(φ)((C1

− C2
) ⋅n) ⋅ (n ⋅ C̄12

(φ) ⋅n)
−1
⋅ (n ⋅ (C1

− C2
))

⎞

⎠
∶ ε, (7.93)

i.e. an effective behavior corresponding to the stiffness-tensor

Ceff(φ,n) = CV T (φ) − h1
(φ)h2

(φ)((C1
− C2

) ⋅n) ⋅ (n ⋅ C̄12
(φ) ⋅n)

−1
⋅ (n ⋅ (C1

− C2
)). (7.94)
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This effective stiffness can also be very useful for numerical purposes when using an implicit
time-integration scheme or when making a quasi-steady state assumption for the elastic fields.
As is well known, applying any of the standard Krylov solvers for the determination of the
displacement field u requires, except for the evaluation of the initial residual, only the ability
to evaluate the system response to increments in u, and thus here the ability to evalue δσ =

σ(ε(u + δu)) − σ(ε(u)). As long as any eigenstrains considered do not have any additional
dependence61 on ε, the stress-contributions due to the ε̃α will cancel in δσ and the “homogeneous”
version (7.93) and thus the effective stiffness Ceff(φ,n) in Equation (7.94) is also the relevant
one for evaluating the effect of increments in u, δσ = Ceff(φ,n) ∶ ε(δu).
As Ceff(φ) can in principle be precalculated and stored once at the beginning of each time-
step, it is clear that the evaluation of this stress-increment using this prestored stiffness can be
significantly cheaper than the procedure above (i.e. first determining the Voigt-Taylor stress
predictions, then solving for a and finally correcting σV T ). ◇
Remark 126. For isotropic materials, the formula above can actually be evaluated analytically.
Based on C̄12

= λ̄12I⊗I +2µ̄12I(s) where I(s) = 1
2
(δikδjl+δilδjk)ei⊗ej⊗ek⊗el is the symmetric

fourth order unit tensor and λ̄12 and µ̄12 the “anti-arithmetic” averages of λ and µ, one has
n ⋅ C̄12

⋅n = λ̄12n⊗n + 2µ̄12ni(I
(s)

)ijklnlej ⊗ ek, or, as

ni(δikδjl + δilδjk)nlej ⊗ ek = (ninjej ⊗ ei + niniej ⊗ ej) = (n⊗n + ∥n∥2I) = (n⊗n + I),

the simple expression

n ⋅ C̄12
⋅n = (λ̄12

+ µ̄12
)n⊗n + µ̄12I, where λ̄12

= h2λ1
+ h1λ2, µ̄12

= h2µ1
+ h1µ2

for n ⋅ C̄12
⋅n in terms of the Lamé-parameters λ and µ. Since this is a rank-one perturbation of

the (scaled) identity, the inverse of this tensor is easily determined using the Sherman-Morisson-
Woodsbury-formula to be given by62

(n ⋅ C̄12
⋅n)−1

= (µ̄12)
−1⎛

⎝
I −

λ̄12+µ̄12

µ̄12

1 + λ̄12+µ̄12

µ̄12

n⊗n
⎞

⎠
= (µ̄12)

−1
(I −

λ̄12 + µ̄12

λ̄12 + 2µ̄12
n⊗n). (7.95)

◇
The stress-strain relationship (7.92) above can alternatively - instead of defining it based on

the weighted average of the two σα = Cα ∶ (εα − ε̃α), α = 1,2 - also be obtained as the derivative
σ =

∂fel
∂ε

of the elastic free energy density

fel =
1

2
(ε − h2

(φ)(a⊗n)
S
− ε̃1

) ∶ C1
∶ (ε − h2

(φ)(a⊗n)
S
− ε̃1

)h1
(φ)

+
1

2
(ε + h1

(φ)(a⊗n)
S
− ε̃2

) ∶ C2
∶ (ε + h1

(φ)(a⊗n)
S
− ε̃2

)h2
(φ).

(7.96)

This correspond to Equation (7.71) with εα, α = 1,2 chosen as in Equation (7.88) provided the
vector a is, as above, fixed by the continuity condition σ1 ⋅n = σ2 ⋅n on the normal stress com-
ponents. In fact, even though a depends on ε through the defining normal continuity condition,

61Two such examples will quickly be considered below.
62Alternatively, as in [74], one can also rewrite the formula for n ⋅ C̄12 ⋅n as

n ⋅ C̄12 ⋅n = (λ̄12 + 2µ̄12)n⊗n + µ̄12(I −n⊗n)
where n⊗n and I −n⊗n are the two orthogonal projection operators onto the normal subspace Span({n}) and
the tangential one, Ker(n). By orthogonality both terms can be inverted separately leading to

(n ⋅ C̄12 ⋅n)−1 = 1

λ̄12 + 2µ̄12
n⊗n + 1

µ̄12
(I −n⊗n)

which is easily seen to be equivalent to the expression in Equation (7.95).
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differentiating the free energy density w.r.t. ε and making use of the right subsymmetries of the
Cα leads to
∂fel
∂ε

=h1C1
(ε − h2

(a⊗n)S) ∶ (I
(s)

− h2n⊗
∂a

∂ε
) + h2C2

(ε + h1
(a⊗n)S) ∶ (I

(s)
+ h1n⊗

∂a

∂ε
)

=h1σ1
∶ (I(s) − h2n⊗

∂a

∂ε
) + h2

∶σ2
∶ (I(s) + h1n⊗

∂a

∂ε
).

While the two terms h1σ1 + h2σ2 give rise to the desired effective stress σ, the remaining two
terms can be combined to h1h2((σ2 − σ1) ⋅ n) ⋅ ∂a

∂ε
and thus simply drop out by the imposed

continuity of σα ⋅ n. The two-phase model above therefore indeed does satisfy the important
relation σ =

∂fel
∂ε

in Equation (7.70).

Remark 127. The crucial point here is that there is no additional contribution due to ∂a
∂ε

. The
same will also be seen to hold with respect to the dependence of a on the other parameters φ and
n and is in fact to be expected from the variational characterization by [51] to be recalled below.
As will be seen in Section 7.2.4, the same property does unfortunately not hold for all of the
multiphase generalizations which have been proposed, and then leads to significant complications
as compared to the very favorable two-phase setting. ◇
The Mechanical Driving Force

In contrast to the simpler models using an interpolation in terms of the local values of φ alone, the
mechanical free energy density fel now depends not only on the values of φ and ε alone, but has
an additional dependence on the gradients of φ due to the heavy use of the normal vector n for
constructing the phase-specific stress- and strain-fields. Due to this additional dependence, there
are now two different contributions to the mechanical driving for the phasefield model, namely
the one due to the derivative w.r.t. φ itself and an additional divergence-type contribution
−∇ ⋅ (

∂fel
∂∇φ) due to the dependence on the orientation of the interface trough n = −∇φ63.

Remark 128. The appearence of an additional contribution to the phasefield equation due to
the dependence on n was already clearly stated in [51] but is in contrast (erroneously) claimed
in [64] (and later corrected e.g. in [74]) not to be the case64. ◇

By the formula (7.89) for a, this vector obviously depends both on φ and, through n, on ∇φ,
a = a(φ,∇φ, ε). Making use of ∂fel

∂εα
= Cα ∶ (εα − ε̃α) = σα, differentiating the free energy density

with respect to φ leads to

∂fel
∂φ
=f1
el
∂h1

∂φ
+ f2

el
∂h2

∂φ
+σ1 ∶ ∂ε

1

∂φ
h1 +σ2 ∶ ∂ε

2

∂φ
h2

=f1
el

∂h1

∂φ
+ f2

el

∂h2

∂φ
+σ1 ∶ ( − ∂h

2

∂φ
(a⊗n)

S
− h2(∂a

∂φ
⊗n)

S
)h1 +σ2 ∶ (∂h

1

∂φ
(a⊗n)

S
+ h1(∂a

∂φ
⊗n)

S
)h2.

As indicated in Remark 127, the dependence of a on φ actually again drops out since the two
terms containing ∂a

∂φ
can be combined to give h1h2(σ2−σ1)(∂a

∂φ
⊗n)

S
= h1h2((σ2−σ1)⋅n)⋅ ∂a

∂φ
= 0

by the symmetry of σ, and the normal stress-jump JσK ⋅ n vanishes by construction. The
remaining terms can then, using ∂h2

∂φ
= −∂h

1

∂φ
and −h1σ1 ∂h2

∂φ
+h2σ2 ∂h1

∂φ
= (h1σ1+h2σ2)∂h

1

∂φ
= σ ∂h

1

∂φ
,

be summarized to

∂fel
∂φ

= (f1
el − f

2
el)
∂h1

∂φ
+σ ∶ (a⊗n)

S

∂h1

∂φ
= (f1

el − f
2
el)
∂h1

∂φ
+ (σ ⋅n) ⋅ a

∂h1

∂φ
, (7.97)

63Note that in the two-phase setting, the assumption that n is a function of ∇φ alone is very natural. This can
potentially be different in the multi-phase setting as when e.g. defining the normal(s) in terms of the qαβ from
Section 6.1 (making the normal(s) a function of both ∇φ and φ) and thus leading to an additional contribution
to ∂fel

∂φα
itself as well.

64The error in [64] is hidden in the claim that “the partial derivatives are evaluated at constant εαB = (εn, εt)”,
where εn and εt are the normal and tangential strain components.
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or, with (a⊗n)
S
= ε2 − ε1, to the alternative expression

∂fel
∂φ

= ((f1
el −σ ∶ ε

1) − (f2
el −σ ∶ ε

2))
∂h1

∂φ
(7.98)

using only the phase-specific strains.
Proceeding similarly for the derivative with respect to ∇φ, one has65

∂fel
∂∇φ

=
∂

∂∇φ
( − h1h2(σ1

∶ (a⊗n)
S
+ h1h2σ2

∶ (a⊗n)
S
))

=h1h2 ∂

∂n

⎛

⎝
((σ2

−σ1) ⋅ a) ⋅n
⎞

⎠
⋅
∂n

∂∇φ
+ h1h2 ∂

∂a

⎛

⎝
((σ2

−σ1) ⋅n) ⋅ a
⎞

⎠
⋅
∂a

∂∇φ

=h1h2
((σ2

−σ1) ⋅ a) ⋅
∂n

∂∇φ
,

(7.99)

where the term ∂a
∂∇φ drops out by the continuity of the normal stresses. Using

∂n

∂∇φ
=

∂

∂∇φ
( −

∇φ

∣∇φ∣
) = −

∣∇φ∣I −∇φ⊗ ∇φ
∣∇φ∣

∣∇φ∣2
= −

1

∣∇φ∣
(I −n⊗n)

and, by symmetry of σ, h1h2((σ2 − σ1) ⋅ a) ⋅ (n ⊗ n) = h1h2(a ⋅ (σ2 − σ1) ⋅ n)n = 0, one thus
finally obtains

∂fel
∂∇φ

= −
1

∣∇φ∣
h1h2

((σ2
−σ1) ⋅ a). (7.100)

Remark 129. The appearence of the prefactor 1
∣∇φ∣ in the derivative (7.100) is clearly somewhat

problematic in regions where ∣∇φ∣ approaches 0 (or even worse, actually is zero). For “realistic”
phase-field profiles in the obstacle case, this essentially concerns the transition region from the
interface to the neighboring bulk values. Assuming a phasefield profile corresponding roughly to
the standard sinusoidal shape, the degree to which this contribution can cause numerical difficul-
ties in these regions depends quite strongly on the interpolation function used. When using any
of the higher-order interpolation functions, one does not expect any actual practical difficulties
since the product h1h2 in this case converges superlinearly to zero (one factor converging to one,
the other one superlinearly to zero) as one approaches the outer interface regions. In contrast,
∣∇φ∣ does so only linearly and one therefore expects an “extension by zero” to be a legitimate
choice.
For the simplest interpolation function h0(φ) = φ, the situation is somewhat more difficult though
as h1h2

∣∇φ∣ would, for the basic one-dimensional profile, converge to a finite but non-zero value. In
the discrete setting, a simple extension by zero66 to the region just outside the interface can
thus lead, in combination with the discrete divergence-operator, to a discrete Dirac-type source-
term. ◇

7.2.3 Comparison of the Different Formulations in the Two-Phase Case
Before discussing some issues related with the (inherently difficult) extension of the jump-
condition based model(s) to the multiphase case, the following paragraphs will proceed to a

65Here use is made of σα ∶(a⊗n)
S
= (σα ⋅a) ⋅n = (σα ⋅n) ⋅a in order to avoid the (purely notational) difficulty

of differentating the symmetrized form with respect to a vector.
66This may in particular happen “automatically” depending on the discretization. Using e.g. a standard cell-

centered finite difference discretization based on a central gradient operator, the first cell with φ = 0 would satisfy
h1h2 = 0 even though the discrete gradient would not yet vanish due to its broader stencil. This should not be
interpreted as there not being a problem anymore, but simply shows that the non-zero limit h

1h2

∣∇φ∣ is not properly
approximated in this case.
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detailed comparison of the formulations in [51], [24], [64] and [74]. Even though this is a some-
what lengthy endeavor as some of them a priori differ quite substantially in their formulation,
this effort seems worthwile for several reasons.
Firstly, this will serve to verify - as already indicated above - that the models proposed in [51]
(in its small-deformation analogon), [64] (except for a missing contribution to the phasefield
equation) and [74] are in fact one and the same model and just differ in their representation.
While this is intuitively to be expected, this is in some cases not at all obvious based on the
actual expression for the various quantities such as the elastic free energy density, the effective
stress and the contributions to the phasefield equation. All three in turn can be considered to
improve upon the one in [24], which, while in the same spirit, is in parts based on a somewhat
different assumption.
Secondly, even though discussing different representations of an equivalent model may seem like
a purely superficial effort, their differences can in fact be quite important. On the one hand,
different descriptions will give rise to different implementations which can differ quite signifi-
cantly in their respective computation effort. On the other hand, the various representations
are suggestive of different non-equivalent ways of generalizing the two-phase models to the
multiphase case. While some of the differences in the resulting models are fairly obvious, others
are much harder to understand without properly understanding the differences in the two-phase
case.
Last but not least, as each multiphase model generalization has its advantages and disadvan-
tages, it may be quite useful to dispose of an implementation for several ones (such as is the
case in the Pace3D-framework). As will be seen in the following discussion, the models consid-
ered do, despite their inherent complexity and the differences in the precise formulation, for the
most part rely on a fairly reduced set of “central” opertations. From a practical point of view,
understanding which these are and making them accessible in a unified manner for the different
model implementations can significantly reduce code overhead, increase readibility and reduce
the risk of implementation errors.

The Jump-Vector Based Approach by Mosler et al. [51]

The model in [51] is, just as the one outlined in Section 7.2.2, also based upon the use of a
jump-vector a and the latter can in fact be considered to be a simple consequence of the small
deformation analogue of the former. Even though the details with respect to the mechanical
model and the drivingforce are already worked out in Section 7.2.2, it is, in particular with
respect to Remark 127, worthwhile to recall the slightly different starting point in [51] based
on a variational argument instead of the (from a mechanical point of view) sligthly more direct
approach above.
Their approach, termed partial rank one relaxation, is based upon introducing a jump vector
a such that JF K = F (2)

− F (1)
= a ⊗N and, consistent with the averaging condition, F 1

=

F −φa⊗N and F 2
= F +(1−φ)a⊗N . The jump vector a is then chosen such that it minimizes

the total free energy for a given deformation gradient F .
Translating this to the small deformation setting (i.e. in particular identifying the normal vector
N in the reference configuration with the one in the current one, N ≈ n) and replacing the
weighting by φ with the one in terms of the weighting-functions h1(φ) and h2(φ), this corresponds
to defining F α and thus εα, α = 1,2, as in Equation (7.87), where a is defined in terms of the
minimization problem

min
a

{fel(φ,∇φ, ε)} = min
a

{
2

∑
α=1

hα(φ)
1

2
(εα(φ,a,n) − ε̃α) ∶ Cα ∶ (εα(φ,a,n) − ε̃α)}. (7.101)
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Using ε1 = ε − h2(a⊗n)
S
and ε2 = ε + h1(a⊗n)

S
and differentiating with respect to a leads to

the FONC

∂fel
∂a

(ε, φ,a,n) ⋅ da =
2

∑
α=1

hα(φ)(Cα ∶ (εα(φ,a,n) − ε̃α)) ∶ (∂ε
α

∂a
⋅ da) =

2

∑
α=1

hα(φ)σα ∶
∂εα

∂a

=h1
(φ)σ1

∶ ( − h2
(da⊗n)S) + h2

(φ)σ2
∶ (h1

(da⊗n)S)

=h1
(φ)h2

(φ)(σ2
−σ1) ∶ (da⊗n)S = h1

(φ)h2
(φ)((σ2

−σ1) ⋅n) ⋅ da !
= 0,

and thus, within the interface region (where h1h2 ≠ 0), to the continuity condition σ1 ⋅n = σ2 ⋅n.
From this, it is on the one hand clear that the variational characterization by [51] is (at least
whenever h1(φ)h2(φ) ≠ 0) equivalent to imposing the jump conditions on both the strains and
stresses as above, and on the other hand that the dependence of a on φ and ∇φ has, as already
seen above, no bearing on the derivative of fel with respect to φ and ∇φ as these conditions
characterize precisely the points where ∂fel

∂a
= 0.

An Alternative Variational Characterization of the Model by Schneider et al. [64]

The same two jump conditions are also the ones which the model by [64] and the mechanical
part of the model in [24] are based upon. In contrast to the use of the jump vector a above
though, the description in [64] uses a transformation matrix Q constructed as QT

= ( n t s )

from an orthonormal set (n, t,s) of vectors consisting of the normal n and the two tangential
vectors t and s. Q is thus a unitary matrix satisfying Q−1

=QT , and can be used to transform
the original entries of the stress-tensor and (analogously for the strain tensor) in their Cartesian
representation to a new orthonormal coordinate system by setting

σB ∶=QσQ
T
=
⎛
⎜
⎝

n ⋅σ ⋅n n ⋅σ ⋅ t n ⋅σ ⋅ s
t ⋅σ ⋅n t ⋅σ ⋅ t t ⋅σ ⋅ s
s ⋅σ ⋅n s ⋅σ ⋅ t s ⋅σ ⋅ s

⎞
⎟
⎠
=∶

⎛
⎜
⎝

σnn σnt σns
σtn σtt σts
σsn σst σss

⎞
⎟
⎠

and analogously for εB ∶=QεQT .
The advantage of using this coordinate system is that the matrices representing the continuity
condition on the phase-specific stresses and strains therefore have a particularly simple algebraic
structure as the coordinates of the normal vector n in this new coordinate system are given by
QTn = ( n ⋅n t ⋅n s ⋅n )

T
= ( 1 0 0 )

T
. More precisely, as JεK is assumed to be of the

form (a⊗n)
S
, premultiplying this equality by Q and postmultiplying the result with QT , it is

easily seen that, in this new coordinate system, JεBK is of the form

JεBK =
1

2

⎛
⎜
⎝

nT

tT

sT

⎞
⎟
⎠
(a⊗n +n⊗ a) ( n t s ) =

1

2

⎛
⎜
⎝

2a ⋅n a ⋅ t a ⋅ s
t ⋅ a 0 0
s ⋅ a 0 0

⎞
⎟
⎠
,

and, by the symmetry of the scalar product, therefore satisfies

JεBK =
⎛
⎜
⎝

JεBKnn JεBKnt JεBKns
JεBKnt 0 0
JεBKns 0 0

⎞
⎟
⎠
. (7.102)

Remark 130. The reverse conclusion also holds, i.e. if εB =QεQT is of the form as in Equation
(7.102), there is some a such that JεK is of the form (a⊗n)

S
. In fact, due to the symmetry of

εB , obtaining such an equality requires satisfying the three equations a ⋅n = JεnnK, a ⋅ t = 2JεntK
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and a ⋅s = 2JεnsK, or, in matrix-vector form, Qa = ( JεnnK 2JεntK 2JεnsK )
T
. As Q is a unitary

matrix (with Q−1
=QT ), the vector

a =QT
⎛
⎜
⎝

JεnnK
2JεntK
2JεnsK

⎞
⎟
⎠

(7.103)

clearly satisfies this requirement. ◇
Similarly, pre- and postmultiplying σ with Q and QT and making use of nB = ( 1 0 0 )

T

and the symmetry of σB, it is easy to see that the continuity condition on the normal stresses
implies that the stress jump is on the complementary entries and therefore of the form

JεBK =
⎛
⎜
⎝

0 0 0
0 JσBKtt JσBKts
0 JσBKst JσBKss

⎞
⎟
⎠

(7.104)

whereas the continuous components of σ are given by σnn, σtn = σnt and σsn = σns.
Remark 131. The following discussion (in particular the retransformation to the original co-
ordinate system in the next section) will, for shortening the notation, only be performed in a
two-dimensional setting, in which, with the single tangential vector t the jump in ε takes the
form

JεBK = (
JεBKnn JεBKnt
JεBKnt 0

)

whereas the continuity condition on σB carries on σnn and σnt = σtn. Most of it is in fact
independent of whether one works in two or three dimensions though, and the rest easily carries
over to the three-dimensional case as indicated in Remark 146, simply requiring somewhat more
lenghty formulae.

◇
Remark 132. The following discussion will (as in [64]) primarily make use of the in practice
more common Voigt notation. Since this formalism is for the most part based upon matrix-
vector and matrix-matrix multiplications only and there in particular being no point in “visually”
differentiating between single- and double-contractions, single contractions will not be marked
by a (⋅)-symbol except for actual scalar products between vectors or second-order tensors in
Voigt-notation.
In contrast, the contraction-symbols will continue to be used in all expressions which are to
be interpreted as using the “non-Voigt”-notation. In particular, several formulae contain both
Voigt-notation and the normal traction vector σ ⋅n, a notation which seems much more natural
then its more cumbersome67 counterpart Bσv in Voigt-notation (see below). ◇

Using Voigt-notation, the transformations above can be reexpressed as (and similarly for the
eigenstrains)

σvB =
⎛
⎜
⎝

σnn
σtt
σnt

⎞
⎟
⎠
=Mσ

⎛
⎜
⎝

σxx
σyy
σxy

⎞
⎟
⎠

and εvB =
⎛
⎜
⎝

εnn
εtt

2εnt

⎞
⎟
⎠
=Mε

⎛
⎜
⎝

εxx
εyy
2εxy

⎞
⎟
⎠

using the two matrices

Mσ =
⎛
⎜
⎝

n2
x n2

y 2nxny
t2x t2y 2txty
nxtx nyty nxty + nytx

⎞
⎟
⎠

and Mε =
⎛
⎜
⎝

n2
x n2

y nxny
t2x t2y txty

2nxtx 2nyty nxty + nytx

⎞
⎟
⎠
.

67Note that the multiplication of the stress-tensor by n in Voigt-notation has to map the “vector” σv to the
normal traction vector, and thus (by linearity) is represented in terms of a matrix. Even though mapping the
second-order tensor σ to the same vector in fact involves an even higher-dimensional construct, its representation
in terms of the contraction with n is much more compact and readable than the one in the Voigt-case.
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Using this new coordinate system, (εv)
α
= M−1

ε ε
v
B, and, with M−1

ε = MT
σ , this allows

rewriting the elastic free energy density of each phase as

fαel((ε
v
B)
α
) =

1

2

⎛

⎝
MT

σ((ε
v
B)
α
− (ε̃vB)

α
)
⎞

⎠
⋅ (Cv)α

⎛

⎝
MT

σ((ε
v
B)
α
− (ε̃vB)

α
)
⎞

⎠

=
1

2
((εvB)

α
− (ε̃vB)

α
) ⋅ (Mσ(Cv)

α
MT

σ)((ε
v
B)
α
− (ε̃vB)

α
).

Imposing in accordance with the Hadamard condition the equality εαtt = εtt, α = 1,2 for the
tt-component of the given strain and decomposing (εvB)

α
− (ε̃vB)

α
as68

(εvB)
α
− (ε̃vB)

α
=
⎛
⎜
⎝

εαnn − ε̃
α
nn

εtt − ε̃
α
tt

2(εαnt − ε̃
α
nt)

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠

⎛

⎝
(
εαnn
2εαnt

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶εαn

−(
ε̃αnn
2ε̃αnt

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ε̃αn

⎞

⎠
+
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
( εtt
¯
=∶εt

− ε̃αtt
¯
=∶ε̃αt

)

and using the abbreviating CαB ∶= (Mσ(Cv)
α
MT

σ) together with the symmetry of CαB, this
density can be rewritten, similarly to [64], as

fαel((ε
v
B)
α
) =

1

2

⎛
⎜
⎝

εαnn − ε̃
α
nn

εtt − ε̃
α
tt

2(εαnt − ε̃
α
nt)

⎞
⎟
⎠
⋅ CαB

⎛
⎜
⎝

εαnn − ε̃
α
nn

εtt − ε̃
α
tt

2(εαnt − ε̃
α
nt)

⎞
⎟
⎠

=
1

2
((εαn − ε̃

α
n) ⋅ C

α
nn(ε

α
n − ε̃

α
n) + 2(εαn − ε̃

α
n) ⋅ C

α
nt(εt − ε̃

α
t ) + (εt − ε̃

α
t ) ⋅ C

α
tt(εt − ε̃

α
t )),

with

Cαnn = (
1 0 0
0 0 1

)CαB
⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
, Cαnt = (

1 0 0
0 0 1

)CαB
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

Cαtn = ( 0 1 0 )CαB
⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
, Cαtt = ( 0 1 0 )CαB

⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
.

(7.105)

Remark 133. Note that one could also reorder the stress- and strain-entries as in [64] in order
to have these auxiliary matrices correspond to contiguous subblocks of CαB. While this does not
affect the theoretical discussion, it is clearly advantageous for a practical implementation of the
scheme above as this simplifies the access to the relevant part of the stiffness tensor and can
be performed essentially free of overhead by appropriately permuting the rows of Mε and Mσ

during their construction.
As will be discussed below though, the primary advantage of the description in [64] (and in a
somewhat different form in [24]) is that they lead (for the most part69) to a pleasent theoretical
representation. In practice, choosing such a representation in the particular coordinate system
described through Q above leads to a significant amount of computational overhead due to the
basis transformations involved such that for actual computations, other descriptions may be
preferrable. ◇

68Even though the definition of εt below is clearly superfluous in the two-dimensional setting considered here,
it leads to a notation which is on the one hand more consistent with the one in [64] and on the other hand leads to
calculations which are equally vaild in the three-dimensional case where both εαn and εt consist of three entries.

69An important exception here is performing the derivative with respect to ∇φ as this, in contrast to the
descriptions in [51] and [74], involves the normal and tangential vectors. In addition, a large part of these
dependencies is essentially “artificial” and would, through a likely lenghty calculation, cancel, as their only purpose
is to obtain the component representation of the vectors and matrices in this particular coordinate system, which
does not affect these quantities themselves.
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Fixing εt in terms of the given strain still leaves open the definition of the εαn in terms of the
given average normal strain components εn. As a first condition, one can impose that εn should
be given by the weighted average of the phase-specific normal strains,

εn = h1
(φ)ε1

n + h
2
(φ)ε2

n. (7.106)

As a second condition, one can either, as in [64], directly impose the continuity condition σ1
n =

σ2
n = σn, or, in a manner which underlines some of the similarities with the chemical model from

Section 7.1, instead rely on an energetic argument in combination with the constraint (7.106).
In fact, augmenting this constraint in the Lagrange function

L(ε1
n, ε

2
n, εt,σn) = f

1(ε1
n, εn, εt)h

1
(φ)+f2(ε2

n, εt)h
2
(φ)−σn ⋅(h

1
(φ)ε1

n+h
2
(φ)ε2

n−εn) (7.107)

and using the symmetry of Cα, it is easily seen that the minimizers ε1
n and ε2

n for the problem

min
(ε1n,ε2n) ∶ h1(φ)ε1n+h2(φ)ε2n=εn

{f1(ε1
n, εt)h

1
(φ) + f2(ε2

n, εt)h
2
(φ)}

are characterized by
∂L

∂εαn
= hα(φ)(Cαnn(εαn − ε̃

α
n) + C

α
nt(εt − ε̃

α
t ) −σn) = 0, α = 1,2,

and thus that, whenever hα(φ) > 0, the decomposition of the strains with the minimal energy is
characterized by the equality of the phase-specific normal stresses σαn = ( σαnn σαnt )

T
.

As in [64], and with the abbreviation70 Sαnn = (Cαnn)
−1
, one can then first solve for (ε1

n, ε
2
n) in

terms of the (yet unknown) σn as εαn = ε̃αn + S
α
nn(σn − C

α
nt(εt − ε̃

α
t )) and then determine σn

from the constraint (7.106) through
2

∑
α=1

εαnh
α
(φ) =

2

∑
α=1

⎛

⎝
ε̃αn +S

α
nn(σn − C

α
nt(εt − ε̃

α
t ))

⎞

⎠
hα(φ)

!
= εn

to be given by

σn = (
2

∑
α=1

Sαnnhα(φ))
−1⎛

⎝
εn − ε̃n(φ) +

2

∑
α=1

SαnnC
α
nt(εt − ε̃

α
t )h

α
(φ)

⎞

⎠
(7.108)

with ε̃n(φ) ∶= ∑2
α=1 ε̃

α
nh

α(φ).
Reinserting this normal stress into the expressions for the εαn and combining these with the
material law then shows that the tangential stress is, as the weighted average of the σαt , given
by

σt =
2

∑
α=1

⎛

⎝
CαtnS

α
nn(σn − C

α
nt(εt − ε̃

α
t )) + C

α
tt(εt − ε̃

α
t )

⎞

⎠
hα(φ)

=(
2

∑
α=1

CαtnS
α
nnh

α
(φ))σn +

2

∑
α=1

(Cαtt − C
α
tnS

α
nnC

α
nt)(εt − ε̃

α
t )h

α
(φ)

=(
2

∑
α=1

CαtnS
α
nnh

α
(φ))(

2

∑
α=1

Sαnnhα(φ))
−1

(εn − ε̃n(φ))

+
2

∑
α=1

(Cαtt − C
α
tnS

α
nnC

α
nt)(εt − ε̃

α
t )h

α
(φ)

+ (
2

∑
α=1

CαtnS
α
nnh

α
(φ))(

2

∑
α=1

Sαnnhα(φ))
−1 2

∑
α=1

SαnnC
α
nt(εt − ε̃

α
t )h

α
(φ).

(7.109)

70Even though this notation is somewhat inconsistent as Cαnn is in fact the n−n-subblock of Cα, whereas Sαnn
is not the n − n-subblock of Sα, it will nevertheless be used here as it significantly shortens the notation and
there is no actual risk of confusing the meaning here as Sα itself is never used.
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Using the same abbreviations

T̄ nn = −∑
2
α=1S

α
nnh

α(φ), T̄ nt = ∑2
α=1S

α
nnC

α
nth

α(φ),

T̄ tn = ∑
2
α=1 C

α
tnS

α
nnh

α(φ), T̄ tt = ∑2
α=1 (Cαtt − C

α
tnS

α
nnC

α
nt)h

α(φ),

χ̃n = ∑
2
α=1 (ε̃αn +S

α
nnC

α
ntε̃

α
t )h

α(φ), χ̃t = ∑
2
α=1 (Cαtt − C

α
tnS

α
nnC

α
nt)ε̃

α
t

(7.110)

as in [64], it is easy to see that these stresses correspond precisely to the expressions

σn = −T̄ −1
nn(εn + T̄ ntεt − χ̃n) (7.111)

and
σt = T̄ tnσn + T̄ ttεt − χ̃t = −T̄ tnT̄

−1
nn(εn + T̄ ntεt − χ̃n) + T̄ ttεt − χ̃t (7.112)

given there. In the form above, the calculation of the effective stress therefore consists in the
following four-step procedure:

1. transform the given strain εv and eigenstrains (ε̃v)
α
to the B-coordinate system;

2. transform the stiffness-tensor C to the B-coordinate system and calculate the submatrices
in Equation (7.110);

3. calculate the stresses σB as in equations (7.111) and (7.112);

4. retransform σvB to the standard coordinate system.

Retransformation of the Mechanical Model to the Original Coordinate System

Even though this is a theoretically pleasing description, it involves (as indicated above) a quite
notable overhead due to the heavy use of the components of the various tensors in the transformed
coordinate system. For actual computational purposes, it is thus useful to reexpress this model
based on quantities in the original coordinate system only. Besides the computational point of
view, this retransformation is also instructive in its own right, as it relates various operations
expressed in term of a - as well as for the model in [74] to be discussed below - with the more
transparent “direct” calculations in the aligned coordinate-system B.

For this it is more convenient to take the expression for σn in Equation (7.108) instead of
Equation (7.111) as a starting point. Artificially expanding εn− ε̃n(φ) as ∑2

α=1 (εn− ε̃
α
n)h

α(φ) =

∑
2
α=1S

α
nnC

α
nn(εn − ε̃

α
n)h

α(φ), σn can firstly be rewritten as

σn = (
2

∑
α=1

Sαnnhα(φ))
−1 2

∑
α=1

Sαnn(C
α
nn(εn − ε̃

α
n) + C

α
nt(εt − ε̃

α
t ))h

α
(φ), (7.113)

where the term in the latter parenthesis is precisely the normal phase-specific stress component
corresponding to the Voigt-Taylor model, i.e. denoting these stresses by

Σα
n ∶= C

α
nn(εn − ε̃

α
n) + C

α
nt(εt − ε̃

α
t ),

one has

σn = (
2

∑
α=1

Sαnnhα(φ))
−1 2

∑
α=1

SαnnΣα
nh

α
(φ). (7.114)

Based upon the middle expression for σt,

σt = (
2

∑
α=1

CαtnS
α
nnh

α
(φ))σn +

2

∑
α=1

(Cαtt − C
α
tnS

α
nnC

α
nt)(εt − ε̃

α
t )h

α
(φ)
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in Equation (7.109) (or from the first one in (7.112) and the definitions in Equation (7.110)),
one can derive an expression of similar nature for the tangential stress components. Adding and
subtracting ∑2

α=1 C
α
tn(ε

α
n − ε̃

α
n), the second term (corresponding to T̄ ttεt − χ̃t in the notation of

[64]) can be expanded to
2

∑
α=1

(Cαtt(εt − ε̃
α
t ) + C

α
tn(ε

α
n − ε̃

α
n))h

α
(φ) −

2

∑
α=1

Cαtn((εαn − ε̃
α
n) +S

α
nnC

α
nt(εt − ε̃

α
t ))h

α
(φ)

=
2

∑
α=1

(Cαtt(εt − ε̃
α
t ) + C

α
tn(ε

α
n − ε̃

α
n))h

α
(φ) −

2

∑
α=1

CαtnS
α
nn(C

α
nn(ε

α
n − ε̃

α
n) + C

α
nt(εt − ε̃

α
t ))h

α
(φ).

The term in the last parenthesis is just Σα
n, whereas the first one is nothing but the tangential

component of the stress predicted by the Voigt-Talyor model, i.e. with the analogous abbrevia-
tion Σα

t ∶= C
α
tt(εt − ε̃

α
t ) + C

α
tn(ε

α
n − ε̃

α
n) as for the normal components, one has

T̄ ttεt − χ̃t =
2

∑
α=1

(Σα
t − C

α
tnS

α
nnΣα

n)h
α
(φ).

The prefactors CαtnS
α
nn in the last sum are the same as the ones appearing in the prefactor of

T̄ tnσn, allowing to summarize the formula for the tangential stress components to

σt =
2

∑
α=1

Σα
t h

α
(φ) +

2

∑
α=1

CαtnS
α
nn(σn −Σα

n)h
α
(φ), (7.115)

i.e. a first Voigt-Taylor-type contribution corrected by a term based on the differences of the
real normal stress from the one predicted by the Voigt-Taylor model.
Remark 134. Even though this may not seem particularly convenient at this point, one can also
artifically rewrite σn in a similar form. In fact, simply expanding expressions by making use of
∑

2
α=1 h

α(φ) = 1 and CαnnS
α
nn = I, one has

σn =
2

∑
α=1

Σα
nh

α
(φ)+

2

∑
α=1

(σn−Σα
n)h

α
(φ) =

2

∑
α=1

Σα
nh

α
(φ)+

2

∑
α=1

CαnnS
α
nn(σn−Σα

n)h
α
(φ). (7.116)

This obviously does not actually contain any additional information (and in particular does not
allow for the determination of σn itself, for which one has to rely on Equation (7.114)), but
shows that both the tangential and normal stress components can be expressed in a common
form once the actual normal stress σn is known, namely a Voigt-Taylor-type prediction together
with a correction based on the Sαnn(σn −Σα

n), α = 1,2 and Cαtn resp. Cαnn. ◇
Despite of the relative simplicity of the formulae for σn and σt when expressed in terms

of the auxiliary quantities Σα
n/t, both equations (7.114) and (7.115) still rely heavily upon the

transformed quantities (and in particular the transformed stiffness-tensors CαB) in the B-system.
A large part of this dependence can in fact be eliminated in a straightforward manner though
as a closer look at the interplay between the extraction of the normal components and the
transformation matrices will reveal.

A convenient starting point here are the Cαnn-matrices, which, by Equation (7.105), are
determined by

Cαnn = (
1 0 0
0 0 1

)CαB
⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
= (

1 0 0
0 0 1

)(Mσ(Cv)
α
MT

σ)
⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
.

Making use of

(
1 0 0
0 0 1

)Mσ = (
n2
x n2

y 2nxny
nxtx nyty nxty + nytx

) = (
nx ny
tx ty

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Q

(
nx 0 ny
0 ny nx

)
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and similarly

MT
σ

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
=
⎛
⎜
⎝

nx 0
0 ny
ny nx

⎞
⎟
⎠
QT

this can also be rewritten as

Cαnn =Q
⎛
⎜
⎝
(
nx 0 ny
0 ny nx

)(Cv)α
⎛
⎜
⎝

nx 0
0 ny
ny nx

⎞
⎟
⎠

⎞
⎟
⎠
QT .

Adopting the same notation B resp. BT as in [74] (not to be confused with the caligraphic
indicator B of the basis),

B ∶= (
nx 0 ny
0 ny nx

) , (7.117)

these relations can be written more succinctly as

(
1 0 0
0 0 1

)Mσ =QB, MT
σ

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
=BTQT and Cαnn =QB(Cv)αBTQT . (7.118)

Remark 135. It is easy to verify that B(Cv)αBT corresponds, in non-Voigt notation, to the
matrix n ⋅ Cα ⋅ n. In addition, while the use of B is convenient for notational purposes, this
matrix need not actually be constructed in practice. Instead, it is both more “readable” and
more efficient to evaluate the resulting expressions directly (i.e. the first entry of CvBT simply
corresponds to Cxxxxnx + Cxxxyny in 2D resp. Cxxxxnx + Cxxxyny + Cxxxznz in 3-D, which is
easily translated to Voigt-notation). ◇
Remark 136. The role of the outer factors Q and QT here is precisely the same as in [64],
namely to transform the inner quantity from the Cartesian coordinate system to the system
B. In contrast to the original procedure of first transforming the fourth-order tensors (Cv)α in
Voigt-notation usingMσ andM−1

ε =MT
σ and then extracting the normal subblocks, the major

advantage of first contracting Cα with n from the left and right (resp. left-right-multiplying
(Cv)α with B and BT ) is that n ⋅ Cα ⋅ n is a “standard” second-order tensor, which, even
though it is symmetric, is not subject to the pitfalls of the Voigt-notation. In particular, it
transforms based on the standard rules using Q and QT , instead of the more complex original
transformation. Being composed of the orthonormal vectors n and t, it is also clear that Q is
unitary, i.e. satisfies QQT

=QTQ = I. ◇
With the outer matrices in the expression for Cαnn being inverses of each other, this leads to

the alternative expression

Sαnn =Q(B(Cv)αBT
)
−1

QT (7.119)

for Sαnn and thus σn from Equation (7.114) can, making use of QTQ = I, be rewritten as

σn =Q(
2

∑
α=1

(B(Cv)αBT
)
−1

hα(φ))
−1 2

∑
α=1

(B(Cv)αBT
)
−1

QTΣα
nh

α
(φ).

While the prefactor itself does not now make explicit use of the transformed stiffess-tensors CαB,
the evaluation of the Σα

n itself still does. In accordance with the physical meaning of Σα
n, it is

not surprising that one is also able to reexpress Σα
n based on simple quantities from the original

coordinate system. In fact, from the original expression Σn = Cαnn(εn − ε̃
α
n) + C

α
nt(εt − ε̃

α
t ), the
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definitions of εn− ε̃αn and εt− ε̃t and again making use of Equation (7.118) together with (7.105),
Σα
n may be rewritten as

Σα
n =

⎛
⎜
⎝
QB(Cv)αMT

σ

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠

⎞
⎟
⎠
((

1 0 0
0 0 1

)Mε(ε
v
− (ε̃v)

α
))

+
⎛
⎜
⎝
QB(Cv)αMT

σ

⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

⎞
⎟
⎠
(( 0 1 0 )Mε(ε

v
− (ε̃v)

α
)) .

By extracting both the common pre- and postfactors QB(Cv)αMT
σ and Mε(ε

v − (ε̃v)
α
) and

since the sum of the two inner dyads is clearly the (3× 3) identity matrix, this simplifies first to
Σα
n =QB(Cv)αMT

σIMε(ε
v − (ε̃v)

α
) and then, with MT

σ =M−1
ε , to

Σα
n =QB(Cv)α(εv − (ε̃v)

α
) =QB(Σv

)
α

(7.120)

with (Σv
)
α
∶= (Cv)α(εv−(ε̃v)α). Reinserting this into the expression for σn and again cancelling

QT and Q, one finally has

σn =Q
⎛

⎝

2

∑
α=1

(B(Cv)αBT
)
−1

hα(φ)
⎞

⎠

−1
2

∑
α=1

(B(Cv)αBT
)
−1

B(Σv
)
α
hα(φ), (7.121)

i.e. an expression which, except for the appearence of the Q-prefactor in front, is entirely based
upon non-transformed quantities.

Remark 137. Instead of interpreting σn as the sub-vector of normal entries of the stress-tensor
in Voigt-notation, one can also interpret it as the components of the normal stress σ ⋅n in the
system B. In fact, as

σn = (
σnn
σtn

) = (
n ⋅σ ⋅n
t ⋅σ ⋅n

) =Q(σ ⋅n),

it is clear that the role of Q (being composed row-wise of the two orthonormal vectors n and t)
in Equation (7.121) is simply to “read out” the coordinates of σ ⋅n in the basis formed by (n, t).
Applying QT from the left (i.e. evaluating σnnn+σtnt), it follows that the actual normal stress
is given by

σ ⋅n =
⎛

⎝

2

∑
α=1

(B(Cv)αBT
)
−1

hα(φ)
⎞

⎠

−1
2

∑
α=1

(B(Cv)αBT
)
−1

B(Σv
)
α
hα(φ)

=(
2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα(φ))

−1

⋅
2

∑
α=1

(n ⋅ Cα ⋅n)
−1

⋅ (Σα
⋅n)hα(φ)

(7.122)

where Σα
∶= Cα ∶ (ε − ε̃α) and can in particular be evaluated completely without any reference

to the transformed system B. ◇
Remark 138. While it is tempting, based on the role of Q and QT , to directly try to retransform
Equation (7.121) back into the corresponding part of the stress in the standard coordinate
system, this is not as straightforward as one might expect at first sight. In fact, all that would
be required in order to do so would be to “reinsert” the entries of σn into the full vector σB and
then, as the inverse of Mσ is given by MT

ε , apply M
T
ε from the left. In matrix-vector form,
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this corresponds to applying

MT
ε

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
=
⎛
⎜
⎝

n2
x t2x 2nxtx
n2
y t2y 2nyty

nxny txty nxty + nytx

⎞
⎟
⎠

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
=
⎛
⎜
⎝

n2
x 2nxtx
n2
y 2nyty

nxny nxty + nytx

⎞
⎟
⎠

=
⎛
⎜
⎝

nx 0
0 ny

1
2
ny

1
2
nx

⎞
⎟
⎠
(
nx 2tx
ny 2ty

) =
⎛
⎜
⎝

nx 0
0 ny

1
2
ny

1
2
nx

⎞
⎟
⎠
(
nx tx
ny ty

)(
1 0
0 2

)

(7.123)

to the expression for σn. Even though the middle matrix is just QT , there is an additional
“weighting” by the right-most matrix which prohibits cancelling QT and the left-most factor Q
in Equation (7.121).
One might expect at first sight that the factors 2 in the right-most matrix and the 1

2
-prefactors

in the left-most matrix are due to the Voigt-representation, but this is actually not the case (note
that the transformation above is between two stress-type quantities). In fact (by the previous
remark) σn in Equation (7.121) corresponds to the correct components of the normal traction
vector σn expressed in the B-system, and retransforming this vector back to the Cartesian sys-
tem could therefore indeed be done by applying QT from the left. Interpreted as the components
of a symmetric second-order tensor written in Voigt-notation, the transformation is somewhat
different though, a point which will be discussed in a little more detail in Remarks 140 and 141
below. ◇

Using this expression for σn, one can now evaluate the tangential stress components σt in
Equation (7.115). On the one hand, arguing analogously as for Σα

n in Equation (7.120), it is
easy to verify that Σα

t = ( 0 1 0 )Mσ(Σ
v
)
α
. On the other hand, combining the expression

for Cαtn from Equation (7.105) with the definition of CαB and using (7.118), one has

Cαtn = ( 0 1 0 )Mσ(Cv)
α
BQT .

and thus with Equation (7.119)

CαtnS
α
nn = ( 0 1 0 )Mσ(Cv)

α
B(B(Cv)αBT

)
−1

QT .

Inserting these expressions into the formula (7.115) for σt, one obtains

σt =
2

∑
α=1

Σα
t h

α
(φ) +

2

∑
α=1

CαtnS
α
nn(σn −Σα

n)h
α
(φ)

= ( 0 1 0 )Mσ (
2

∑
α=1

(Σv
)
α
hα(φ) +

2

∑
α=1

(Cv)αB(B(Cv)αBT
)
−1

QT
(σn −Σα

n)h
α
(φ)) .

By the previous Remark 138, QT
(σn − Σα

n) is nothing but σ ⋅ n − Σα
⋅ n, i.e. an expression

which can be evaluated fully without recourse to the system B. As the other terms in the last
factor do not rely on B either, the only remaining fragment of the transformation consists in the
prefactor ( 0 1 0 )Mσ, whose role is simply reading out the tt-component of the expression
on the right71.
It turns out that, with respect to the construction of the actual stress σv, this is now completely

71This is clear by construction, but can also be verified directly. In fact,

( 0 1 0 )Mσ = ( t2x t2y 2txty ) = ( tx ty )( tx 0 ty
0 ty tx

) .

It is, as for B, easily verified that the pre-multiplication of a stress-type tensor σ̂v in Voigt-notation by second
factor simply corresponds to the evaluation of σ̂ ⋅ t. Further applying ( tx ty ) then leads to t ⋅ σ̂ ⋅ t = σ̂tt.
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superfluous as the right factor in fact already represents the (full) correct stress. Eliminating
σn and Σα

n (recall that these quantities are still based upon the system B) with σn = QBσv

(see Remark 137 and recall that a multiplication by B in Voigt-notation corresponds to the
multiplication by n) and Σα

n =QB(Σv
)
α
, one therefore has the formula

σv =
2

∑
α=1

(Σv
)
α
hα(φ) +

2

∑
α=1

(Cv)αB(B(Cv)αBT
)
−1

((σ ⋅n) −B(Σv
)
α
)hα(φ), (7.124)

resp., in non-Voigt notation,

σ =
2

∑
α=1

Σαhα(φ) +
2

∑
α=1

(Cα ⋅n) ⋅ (n ⋅ Cα ⋅n)
−1

⋅ ((σ −Σα
) ⋅n)hα(φ), (7.125)

with the normal traction vector σ ⋅n given by Equation (7.122).
That this is true for the tangential part of the stress is clear from the above. For the normal
part, this can either be seen from the “artificial” reexpression of σn in Equation (7.116) and
inserting the expressions for Cαnn and Sαnn, or, more succinctly, by verifying that the expression
(7.124) reproduces the correct remaining two (normal) components of the stress. This is easily
seen to be the case, as extracting the normal componts in the B-system corresponds, by Equation
(7.118), to a premultiplication by QB, from which one obtains

QBσv =QB
2

∑
α=1

(Σv
)
α
hα(φ) +

2

∑
α=1

QB(Cv)αB(B(Cv)αBT
)
−1

((σ ⋅n) −B(Σv
)
α
)hα(φ).

As B(Cv)αB and its inverse cancel in the second term, this leaves

QBσv =
2

∑
α=1

QB(Σv
)
α
hα(φ) +

2

∑
α=1

Q((σ ⋅n) −B(Σv
)
α
)hα(φ) =

2

∑
α=1

Q(σ ⋅n)hα(φ) =Q(σ ⋅n).

According to Remark 137, Q(σ ⋅ n) = σn, from which it follows that Equation (7.124) (resp.
Equation (7.125)) reproduces the correct values of all three entries of σvB in the B-system, and
therefore also, after a retransformation to the original system, of σv.

Remark 139. Note that the expressions (7.124) and (7.125) are now entirely based upon quanti-
ties in the non-transformed system. While this is of course still the same model, it has the major
advantage of avoiding the construction and repeated application of the transformation matrices
Mσ and Mε (resp. their transposes). Besides a reduction in computational cost and complex-
ity, this in particular also avoids the construction of a (resp. two in 3D) tangential vector. This
is particularly helpful when trying to evaluate ∂fel

∂∇φ , as this contribution now only enters (in an
explicit form) in terms of n, instead of in a quite implicit form through both the normal and the
tangent vector(s) in the original formulation. ◇
Remark 140. As seen above, the expressions in equations (7.124) resp. (7.125) - a priori only
necessary for the tangential part of the stress-tensor, as the normal stresses are already known -
allow reconstructing the full stress tensor without an explicit separate treatment of the normal
and tangential components. It is nevertheless interesting to understand the meaning of the
stress-tensor (resp. vector in Voigt-notation) obtained by retransforming the expressions for σn
in Equations (7.120) resp. (7.121) as indicated in Remark 138.
The central observation here is that the combined operation of reinserting the normal stress-
components into σvB and then retransforming this vector can also be rewritten as

σvn =MT
ε

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
σn = σnn

⎛
⎜
⎝

n2
x

n2
y

nxny

⎞
⎟
⎠
+ σnt

⎛
⎜
⎝

2nxtx
2nyty

nxty + nytx

⎞
⎟
⎠
,
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corresponding to the Voigt-representation of σnnn⊗n+σntn⊗ t+σntt⊗n, i.e. the symmetric
second-order tensor with the same normal components as σn and a vanishing tangential one.
From this, it is then also clear that extracting the normal components from σvn (in contrast to
σn which is a full tensor in Voigt-notation in the standard coordinate system) and reinserting
them in the same manner will again lead to the same tensor σvn. This implies that, given any
symmetric second-oder tress-type tensor σv (in Voigt-notation), the matrix

Nv
σ ∶=M

T
ε

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
(

1 0 0
0 0 1

)Mσ =MT
ε

⎛
⎜
⎝

1 0 0
0 0 0
0 0 1

⎞
⎟
⎠
Mσ

describing this combined operation corresponds to a projection operator onto the “normal sub-
space” of the stress-type tensors, while the matrix

T vσ ∶= I −N
v
σ =MT

ε IMσ −N
v
σ =MT

ε

⎛
⎜
⎝

0 0 0
0 1 0
0 0 0

⎞
⎟
⎠
Mσ

corresponds to the projection operator onto the “tangent subspace” of the stress-type tensors72.
The stress obtained by retransforming σn as above is therefore simply the “minimal” one with
the prescribed normal component σ ⋅n. ◇

Besides the calculation rule for σv, both the driving force calculation and dealing with more
complex models - such as visco-elastic or plastic settings - will also require access to the phase-
specific strains and stresses. Their calculation is again straightforward in the B-system as, by
assumption, the tangential ones are all equal to the average ones, εαt = εt, while the normal ones
can be recovered based upon

σn = Cαnn(εαn − ε̃
α
n) + C

α
nt(εt − ε̃

α
t ) = C

α
nn(ε

α
n − εn) + C

α
nn(εn − ε̃

α
n) + C

α
nt(εt − ε̃

α
t )

and thus

εαn − εn = Sαnn(σn − C
α
nt(εt − ε̃

α
t ) − C

α
nn(εn − ε̃

α
n)) = S

α
nn(σn −Σα

n). (7.126)

Combined with the equality of the tangential stresses, εαt − εt = 0, one therefore has, in the
B-system (again using Equation (7.118)),

εαB − εB =
⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
Sαnn(σn −Σα

n) =
⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
Q(B(Cv)αBT

)
−1

(QTσn −B(Σv
)
α
).

In contrast to the recovery of the normal stresses in the original coordinate system, the recovery
of this purely normal jump in the strains results in a simple formula. In fact, using M−1

ε =MT
σ

72One way to see this is by realizing that the inner matrices
⎛
⎜
⎝

1 0 0
0 0 0
0 0 1

⎞
⎟
⎠
and

⎛
⎜
⎝

0 0 0
0 1 0
0 0 0

⎞
⎟
⎠
in the definitions

of Nv
σ and T vσ are clearly the corresponding projectors in the B-system with the Mσ- and MT

ε -matrices just
transforming to and back from that system.
Alternatively, it can be verified in a more explicit but also more tedious manner in the original system. A quite
useful property in this respect is that, as one can verify making use of the orthogonality properties of n and t,

BMT
ε

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
=QT ,

which in particular ensures that, in combination with Equation (7.118), BNv
σ = QTQB = B, and thus the

equality of the normal stress vectors Bσv and BNv
σσ

v before and after the projection.
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and combiningMT
σ

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
=BTQT (see Equation (7.118)) with QTQ = I and QTσn = σ ⋅n,

the retransformation leads to

(εv)
α
− εv =BT

(B(Cv)αBT
)
−1

((σ ⋅n) −B(Σv
)
α
). (7.127)

Defining

aα ∶= (B(Cv)αBT
)
−1

((σ ⋅n) −B(Σv
)
α
) resp. aα ∶= (n ⋅ Cα ⋅n)

−1

⋅ ((σ −Σα
) ⋅n) (7.128)

this can also, in a form coinciding with the jump vector based formulation outlined above, be
written as

(εv)
α
− εv =BTa =

⎛
⎜
⎝

nx 0
0 ny
ny nx

⎞
⎟
⎠
a =

⎛
⎜
⎝

axnx
ayny

axny + aynx

⎞
⎟
⎠
, (7.129)

with is easily recognized as the Voigt-representation of the strain-type (i.e. with the shear
components doubled) tensor εα − ε = (aα ⊗n)

S
.

Unlike for the strains, the recovery of the phase-specific stresses is most easily done along the
same lines as for the total stress. Starting again in the B-system, the normal stress components
are given by σαn = σn, whereas the tangential ones can either be obtained directly from the
phase-specific strains calculated above, or, more in line with the previous calculations, through

σαt =C
α
tn(ε

α
n − ε̃

α
n) + C

α
tt(εt − ε̃

α
t ) = C

α
tn(εn − ε̃

α
n) + C

α
tt(εt − ε̃

α
t ) + C

α
tn(ε

α
n − εn)

=Σα
t + C

α
tn(ε

α
n − εn) = Σα

t + C
α
tnS

α
nn(σn −Σα

n).

The equality σαn = σn can again, similar to its phase-averaged version in Equation (7.116),
artificially be expanded to σαn = Σα

n+C
α
nnS

α
nn(σn−Σα

n). Based on this common representation
of the full stress tensor, the same arguments as for the retransformation of σB can be applied,
thus allowing to express the entire phase-specific stress tensor in the original system through

σα = Σα
+ (Cα ⋅n) ⋅ (n ⋅ Cα ⋅n)−1

((σ −Σα
) ⋅n). (7.130)

Remark 141. In relation with Remark 138, it should be noted that the quite straightforward
retransformation of the normal strain-jumps in contrast to the more difficult “retransformation”
of the normal stress components is due to the interplay of the additional factor 2 on the shear-
components in the Voigt-representation of the strain-type tensors in combination with Equation

(7.103). In fact, as the strain-jump and the “extension by zero” (
σnn σnt
σnt 0

) of the normal

stress have the same structure, it is clear that this extension could also be written in terms
of a symmetrized dyad (b ⊗ n)S with some vector b. By Equation (7.103), this vector b is
given by b = (σnn,2σnt)

T (this multiplication of the shear-component by 2 being the role of the
rightmost-matrix in Equation (7.123)). The middle factor QT then simply serves to retransform
this vector back to the normal coordinate system. Finally, the left-most matrix - corresponding
to the B-matrix with the “shear-entries halved” - is the Voigt-representation of a symmetrized
dyad with n for stress-type tensors in Voigt notation, i.e. one where the shear-components are
not stored in doubled form.
That the retransformation of the normal strain jump is so easily expressed in term of BT and
QT is therefore somewhat fortuitous. On the one hand, given that the shear-components of the
strain are stored in doubled form, the 2-factor in the calculation of the jump-vector a according
to Equation (7.103) is already included. On the other hand, storing the symmetrized dyad
(a ⊗ n)S with doubled shear-components cancels the 1

2
-prefactor in the left-most matrix in

Equation (7.123), leading to BT . ◇

177



Remark 142. From an implementation point of view, at least in the current setting, the (obviously
equivalent) alternative expression

σ =
N

∑
α=1

(Σα
−(Cα⋅n)⋅(n⋅Cα⋅n)−1

⋅(Σα
⋅n))hα(φ)+(

N

∑
α=1

(Cα⋅n)⋅(n⋅Cα⋅n)−1
hα(φ))⋅(σ⋅n) (7.131)

for the stress is in principle more convenient than the one in Equation (7.125). The advantage of
this form in combination with the expression (repeated from Equation (7.122) for convenience)

σ ⋅n = (
2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα(φ))

−1

⋅
2

∑
α=1

(n ⋅ Cα ⋅n)
−1

⋅ (Σα
⋅n)hα(φ)

for the normal stress is that the first term contains only initially known quantities, whereas the
second part consist out of a single correction operation based on an averaged Cα-n-combination
in the end once σ ⋅ n has been calculated. In addition, all phase-specific quantities required
for both calculating σ ⋅n as well as the correction are essentially the same as the ones already
required for the evaluation of the first term. It is therefore not necessary to evalute these two
times - once for the determination of σ ⋅n and then for the evaluation of σ itself once the normal
stress is known - as one can simply accumulate the required quantities while running over the
phases in the evaluation of the Σα

− (Cα ⋅n) ⋅ (n ⋅ Cα ⋅n)−1
⋅ (Σα

⋅n).
For more complex models where one requires access to the phase-specific stresses and/or strains
for the stress-calculation itself (such as for visco-elastic or plastic problems), an obvious alterna-
tive to both equations (7.125) and (7.131) is to simply calculate the total stress as the average
of the phase-specific ones (presumably already calculated based upon e.g. Equation (7.130)),
σ = ∑ασ

αhα(φ).
◇

Remark 143. In either case, it should be kept in mind that regardless of the particular formula-
tion and implementation used, the jump-condition based models are fairly expensive to evaluate
within the interface region (this being even more problematic for potential multiphase exten-
sions). Whenever - such as in many implicit or linearized schemes - a larger amount of evaluations
of stress-increments have to be performed based on fixed phasefield values (an potentially other
parameters), it may be significantly cheaper from a computational point of view to precalculate
the “effective” or algorithmically consistent stiffness, linking the increments in the total stress to
those of the total strain. For the linearly elastic case above, it is straightforward to verify that,
given fixed eigenstrains ε̃α, an increment in the average strain ε leads to the increment

δ(σ ⋅n) = (
N

∑
α=1

(n ⋅ Cα ⋅n)−1
hα(φ))

−1

⋅ (
N

∑
α=1

(n ⋅ Cα ⋅n)−1
⋅ (n ⋅ Cα)hα(φ)) ∶ δε.

Combined with the increments δΣα
= Cα ∶δε for the Voigt-Taylor stress prediction, it then follows

from Equation (7.125) that the increment in the effective stress δσ is related to the one in the
total strain by δσ = Ceff ∶ δε with Ceff given by

Ceff =
2

∑
α=1

⎡
⎢
⎢
⎢
⎢
⎣

Cα + (Cα ⋅n) ⋅ (n ⋅ Cα ⋅n)−1

⋅
⎛

⎝
(

2

∑
β=1

(n ⋅ Cβ ⋅n)−1
hβ)

−1

⋅ (
2

∑
β=1

(n ⋅ Cβ ⋅n)−1
⋅ (n ⋅ Cβ)hβ) −n ⋅ Cα

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

hα.

(7.132)

◇
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As a final step, it remains to derive an expression for the driving force in the original coor-
dinate system. The simplest way of doing so is simply reusing the expression

∂fel
∂φ

=
2

∑
β=1

(fβel −σn ⋅ ε
β
n)
∂hβ

∂φ
=

2

∑
β=1

(
1

2
(εβB − ε̃

β
B) ⋅ C

β
B(ε

β
B − ε̃

β
B) −σn ⋅ ε

β
n)
∂hβ

∂φ

derived in [64]. The first part fβel can directly be reexpressed (the transformation matrices for the
strains and the stiffness tensor simply cancel) using either the expressions for (εv)

α
in Equation

(7.127) together with the original stiffness-tensor, or by combining the expression for εα with
the one for the phase-specific stresses (σv)

α
from Equation (7.130).

Due to its particular form, the additional contribution by the normal stress can also easily be
rewritten in terms of quantities in the original system. In fact, firstly using

2

∑
β=1

σn ⋅ ε
β
n

∂hβ

∂φ
=

2

∑
β=1

σn ⋅ (ε
β
n − εn)

∂hβ

∂φ
+σn ⋅ εn

2

∑
β=1

∂hβ

∂φ

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

and combining this with σn = QBσv and the expression (7.126) for the phase-specific strains
and the definition Σα

n =QB(Σv
)
α
leads to

σn ⋅ ε
β
n =QBσv ⋅SαnnQB(σv −Σα

n) =Bσ
v
⋅QTSαnnQB(σv −Σα

).

The Q-factors cancel with the ones in the expression Sβnn =Q(B(Cv)βBT
)
−1

QT from Equation
(7.119) though, thus leaving

∂fel
∂φ

=
2

∑
β=1

(fβel − (Bσv) ⋅ (B(Cv)βBTB(σv −Σα
))
∂hβ

∂φ
, (7.133)

or, in non-Voigt notation,

∂fel
∂φ

=
2

∑
β=1

(fβel − (σ ⋅n) ⋅ (n ⋅ Cβ ⋅n) ⋅ ((σ −Σα
) ⋅n)

∂hβ

∂φ
. (7.134)

Remark 144. Note that, with the definition (7.128) of aα, these expressions can also be rewritten
in the more pleasant form

∂fel
∂φ

=
2

∑
β=1

(fβel − (Bσv) ⋅ aα)
∂hβ

∂φ
resp.

∂fel
∂φ

=
2

∑
β=1

(fβel − (σ ⋅n) ⋅ aα)
∂hβ

∂φ
. (7.135)

With Bσv ⋅ aα = σv ⋅ (BTaα) (resp. (σ ⋅ n) ⋅ aα = σ ∶ (n ⊗ a)
S
using the symmetry of σ)73, it

follows that yet another form of the driving force is given by

∂fel
∂φ

=
2

∑
α=1

(fαel −σ ∶ (a
α
⊗n)

S
)
∂hα

∂φ
, (7.136)

which, as (aα⊗n)
S
= εα−ε and ∑2

α=1σ ∶ε
∂hα

∂φ
= σ ∶ε(∑

2
α=1

∂hα

∂φ
) = 0, can finally also be replaced

by
∂fel
∂φ

=
2

∑
α=1

(fαel −σ ∶ ε
α
)
∂hα

∂φ
. (7.137)

◇
73As in Equation (7.129), BTaα is precisely the Voigt-represenation of the (strain-type) tensor (a⊗n)S .
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Remark 145. It is also possible to directly derive the (same) driving force directly based upon
expression in the original coordinate system only. In fact, from σα =

∂fα

∂εα
, one has

∂fel
∂φ

=
∂

∂φ

2

∑
α=1

fαhα =
2

∑
α=1

fα
∂hα

∂φ
+ Cα ∶ (εα − ε̃α) ∶ ∂ε

α − ε̃α

∂φ
hα =

2

∑
α=1

fα
∂hα

∂φ
+σα ∶

∂εα − ε̃α

∂φ
hα.

(7.138)
As neither ε̃α nor ε depend on φ and εα − ε = (aα ⊗ n)

S
and σα is symmetric, the second

contribution can be rewritten as
2

∑
α=1

σα ∶
∂εα − ε

∂φ
hα =

2

∑
α=1

σα ∶ (
∂aα

∂φα
⊗n)

S
hα =

2

∑
α=1

(σα ⋅n) ⋅
∂aα

∂φα
hα.

By construction, σα ⋅n = σ ⋅n, such that it only remains to evaluate ∂aα

∂φ
. By Equation (7.128),

if further follows that
∂aα

∂φα
= (n ⋅ Cα ⋅n)−1

⋅
∂(σ ⋅n)

∂φ

and thus that
2

∑
α=1

σα ∶
∂εα − ε

∂φ
hα = (σ ⋅n)(

2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα) ⋅

∂(σ ⋅n)

∂φ
. (7.139)

From Equation (7.122), one has

∂(σ ⋅n)

∂φ
=(

2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα)

−1

⋅
2

∑
α=1

(n ⋅ Cα ⋅n)
−1

⋅ (Σα
⋅n)

∂hα

∂φ

+
⎛

⎝

∂

∂φ
(

2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα)

−1⎞

⎠
⋅

2

∑
α=1

(n ⋅ Cα ⋅n)
−1

⋅ (Σα
⋅n)hα,

where the derivative in the second term can be evaluated as

−(
2

∑
α=1

(n⋅Cα ⋅n)−1
hα)

−1

⋅(
2

∑
α=1

(n⋅Cα ⋅n)−1 ∂hα

∂φ
)⋅(

2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα)

−1

⋅
2

∑
α=1

(n ⋅ Cα ⋅n)
−1

⋅ (Σα ⋅n)hα

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=σ⋅n

.

Reinserting this expression into the derivative of σ ⋅n then leads to

∂(σ ⋅n)

∂φ
=(

2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα)

−1

⋅
2

∑
α=1

(n ⋅ Cα ⋅n)
−1

⋅ (Σα
⋅n)

∂hα

∂φ

− (
2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα)

−1

⋅ (
2

∑
α=1

(n ⋅ Cα ⋅n)−1 ∂hα

∂φ
) ⋅ (σ ⋅n)

=(
2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα)

−1

⋅
2

∑
α=1

(n ⋅ Cα ⋅n)
−1

⋅ ((Σα
⋅n) − (σ ⋅n))

∂hα

∂φ
.

Recognizing that the summands in the second sum correspond to aα, this further simplifies to

∂(σ ⋅n)

∂φ
= −(

2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα)

−1

⋅
2

∑
α=1

aα
∂hα

∂φ
, (7.140)

and finally, combined with Equation (7.138) and (7.139), to

∂fel
∂φ

=
2

∑
α=1

fα
∂hα

∂φ
+ (σ ⋅n) ⋅ (

2

∑
α=1

(n ⋅ Cα ⋅n)−1
hα) ⋅

∂(σ ⋅n)

∂φ
=

2

∑
α=1

(fα − (σ ⋅n) ⋅ aα)
∂hα

∂φ
.

This is precisely the same expression as the second one in Equation (7.135). ◇

180



In contrast to the (correct) derivative with respect to φ, there is no expression for the deriva-
tive with respect to ∇φ in [64], as the paper (falsely) claims that this derivative vanishes. In
addition, given that the transformation matrices Mσ and Mε depend in an intricate fashion
on the normal and (in particular in the three-dimensional case) how the tangent vector(s) are
constructed based upon n, performing this derivative based upon the formulation in [64] is likely
to be a very arduous task. In contrast, it is straightforward based upon the reformulation above
and runs essentially along the same lines - but actually in a simpler form - as the derivation of
the expression for ∂fel

∂φ
in the previous remark.

Again starting from fel = ∑
2
α=1

1
2
(εα − ε̃α) ∶Cα ∶(εα − ε̃α)hα(φ), a differentiation w.r.t. n leads to

∂fel
∂n

=
2

∑
α=1

σα ∶
∂(εα − ε̃α)

∂n
hα =

2

∑
α=1

σα ∶
∂

∂n
(aα ⊗n)

S
hα

since, similar to above, ∂(εα−ε̃α)
∂n

=
∂(εα−ε)
∂n

as both ε̃α and ε are independent of n. By the
symmetry of σ, this can be simplified to

∂fel
∂n

=
2

∑
α=1

((σα ⋅n) ⋅
∂aα

∂n
+ (σα ⋅ aα) ⋅

∂n

∂n
)hα =

2

∑
α=1

((σ ⋅n) ⋅
∂aα

∂n
+ (σα ⋅ aα))hα,

where use was made of the equality of the phase-specific normal stresses with the total one. As
σ ⋅n does not depend on α, the first contribution can be summarized to (σ ⋅n)⋅∑

2
α=1

∂(∑2
α=1 a

αhα)
∂n

,
and since ∑2

α=1 a
αhα = 074, actually drops out, leaving the very simple expression

∂fel
∂n

=
2

∑
α=1

(σα ⋅ aα)hα (7.141)

for ∂fel
∂n

.
Remark 146. An analogous calculation to the one above could also be performed in the three-
dimensional case. The only major difference to the two-dimensional one is the larger dimension-
ality of the vectors and subvectors as the Voigt-representation then consists of six-dimensional
vectors and both the normal and tangential components are made up of three entries. For
example, the Mσ-matrix for performing the transformation to the B-system becomes [64]

Mσ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n2
x n2

y n2
z 2nynz 2nxnz 2nxny

t2x t2y t2z 2tytz 2txtz 2txty
s2
x s2

y s2
z 2sysz 2sxsz 2sxsy

txsx tysy tzsz tysz + tzsy txsz + tzsx txsy + tysx
nxsx nysy nzsz nysz + nzsy nxsz + nzsx nxsy + nysx
nxtx nyty nztz nytz + nzty nxtz + nztx nxty + nytx

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

With this transformation matrix, reading out the normal components in the B-system (in the
order (σnn,σnt,σns)

T ) is represented by the combined matrix

⎛
⎜
⎝

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟
⎠
Mσ =

⎛
⎜
⎝

n2
x n2

y n2
z 2nynz 2nxnz 2nxny

nxtx nyty nztz nytz + nzty nxtz + nztx nxty + nytx
nxsx nysy nzsz nysz + nzsy nxsz + nzsx nxsy + nysx

⎞
⎟
⎠

=
⎛
⎜
⎝

nx ny nz
tx ty tz
sx sy sz

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Q

⎛
⎜
⎝

nx 0 0 0 nz ny
0 ny 0 nz 0 nx
0 0 nz ny nx 0

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶B

,

74This can be verified “manually” based on Equation (7.128) combined with the definition of σ ⋅n, but is also
easily seen from the imposed averaging relation 0 = ∑2

α=1 ε
αhα − ε = ∑2

α=1 (εα − ε)hα = ∑2
α=1 a

αhα.
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where Q is again a unitary matrix corresponding to the transformation of “standard” vectors,
and B encodes the multiplication of a Voigt-type quantity with n. Adjusting the remaining
formulae above making explicit use of the two-dimensional nature in an analogous manner, one
can then verify that the rest of the calculation can be performed along exactly the same lines,
just requiring more “bulky” matrices. ◇
Comparison with the Model by Durga et al. [24]

As already indicated in Section 7.2.2, Durga el al. propose a slightly different model in [24]
(generalizing their previous work [23]). The formulation is in fact a priori very similar to the
one in [64] in the sense that both approaches rely upon a transformation into a coordinate
system where the normal vector n corresponds to the first unit vector e1 and that, within
this transformed system and using the notation from [64], one assumes σαn = σn, εαt = εt and
σαt = C

α
tn(ε

α
n− ε̃

α
n)+C

α
tt(εt− ε̃

α
t )

75. In contrast to the model in [64], the (common) normal stress
is a priori not (but see the discussion below) calculated from σαn = Cαnn(εαn − ε̃

α
n)+C

α
nt(εt − ε̃

α
t ),

but instead simply assumed to be equal to the corresponding components of the one calculated
using the Reuss-Sachs model. In non-Voigt notation, one therefore has

σ ⋅n ∶= σRS ⋅n = ((
2

∑
α=1

Sαhα(φ))−1
∶ (ε −

2

∑
α=1

ε̃αhα(φ))) ⋅n.

In order to complete the model, it remains to specify a rule for determining the normal strains εαn.
This is achieved here - in line with the argument underlying the Reuss-Sachs model - by defining
εαn to be given by the normal components of Sα ∶σα, i.e. εαn− ε̃

α
n = (Sα)

nn
σn+(Sα)

nt
σαt , where

σα is the (full) stress reconstructed based upon the normal components from the Reuss-Sachs
model and σαt based upon the phase-specific material law76. Combined with the expression for
σαt in terms of εαn leads to

εαn − ε̃
α
n = (Sα)

nn
σn + (Sα)

nt
(Cαtn(εαn − ε̃

α
n) + C

α
tt(εt − ε̃

α
t )),

resp.
(I − (Sα)

nt
Cαtn)(εαn − ε̃

α
n) = (Sα)

nn
σn + (Sα)

nt
Cαtt(εt − ε̃

α
t ) (7.142)

and thus to an equation which can be solved for εαn − ε̃
α given the prescribed normal stress and

tangential strains.
This equality can actually be modified into a more instructive form as Sα and Cα are inverses
(in Voigt notation) of each other, i.e. one has

(
(Sα)

nn
(Sα)

nt
(Sα)

tn
(Sα)

tt

)(
Cαnn Cαnt
Cαtn Cαtt

) = (
(Sα)

nn
Cαnn + (Sα)

nt
Cαtn (Sα)

nn
Cαnt + (Sα)

nt
Cαtt

(Sα)
tn
Cαnn + (Sα)

tt
Cαtn (Sα)

tn
Cαnt + (Sα)

tt
Cαtt

) = (
I 0
0 I ) .

From the upper-left block of this equality, one has I−(Sα)
nt
Cαtn = (Sα)

nn
Cαnn, while the upper-

right block shows that (Sα)
nt
Cαtt = −(Sα)

nn
Cαnt. Inserting these expressions into Equation

(7.142), the phase-specific normal strains can alternatively be characterized by

(Sα)
nn
Cαnn(εαn − ε̃

α
n) = (Sα)

nn
σn − (Sα)

nn
Cαnt(εt − ε̃

α
t ),

and thus, (Sα)
nn

being invertible as a diagonal subblock of a positive definite matrix, in fact

σn = Cαnn(εαn − ε̃
α
n) + C

α
nt(εt − ε̃

α
t ). (7.143)

75In the Voigt-index based notation of the appendix A in [24], the normal and tangential stress components
are given by σn = (σ1, σ5, σ6)T and σt = (σ2, σ3, σ4)T (and similarly for the strains).

76Note the difference in notation here with (Sα)nn designating the actual n −n-subblock of Sα, in contrast
with Sαnn defined above.
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From this, it is obvious that the only difference between the model in [24] and the one
discussed above77 is that in the former, the normal stresses are prescribed directly based on the
Reuss-Sachs/Steinbach-Apel scheme, whereas in the latter case, σn is obtained by enforcing the
averaging condition

εn
!
=

2

∑
α=1

εαnh
α
(φ) =

2

∑
α=1

(Cαnn)
−1

(σn − Cαnt(εt − ε̃
α
t ))h

α
(φ)

based upon Equation (7.143).
In contrast to the model by [64], the model in [24] therefore does not generally satisfy the natural
relation ∑2

α=1 ε
α
nh

α(φ) = εn unless the normal stresses in e.g. Equation (7.108) or Equation
(7.122) happen to coincide with78 σRS ⋅n.
Remark 147. As the Reuss-Sachs/Steinbach-Apel model is based on the assumption of (fully)
equal stresses between all phases, it is, as used in [23] and [24], an intuitively much more reason-
able choice for a common normal stress than the one from e.g. the Voigt-Talyor model, which
is based on a completely different assumption. In addition, as shown in these papers, combining
this assumption with the subsequent imposition of common tangential strains does in fact lead
to a marked improvement in comparison with both the Reuss-Sachs- and Voigt-Taylor-model
themselves.
Nevertheless, the stress-prediction by the Reuss-Sachs model is (implicitly) based on phase-
specific strains where the tangential components need not coincide. In combination with Equa-
tion (7.143), the subsequent choice of the phase-specific normal strains based on σRS ⋅ n can
then be interpreted as adjusting the normal strains such that, now under the different (and more
physical assumption) εαt = εt and with the phase-specific material law, one obtains this same
“predicted” normal stress for both phases. Even though this model presents a major step forward
in terms of modeling the stress-strain relationship within a diffuse interface, it does therefore
not achieve the same degree of internal consistency as the model(s) by [51] and [64], where the
calculation of σ ⋅n itself is already based on the same assumptions as the evaluation of the final
stresses79. ◇
Equivalence of the Two-Phase Model to the One by Tschukin

Yet another formulation for the jump-condition based mechanical model is presented by Tschukin
in [74]. As the primary motivations of this alternative formulation to the model in [64] (a
collaboration between, among others, Schneider with Tschukin), Tschukin also mentions the
computational overhead involved in the transformations to the B-system (including the necessity
of generating two tangent vectors instead of relying solely on n) as well as correcting the wrong
claim of the vanishing contribution ∂fel

∂∇φ in the variational derivative.
Even though the description in [74] is in many ways formally similar to the one in [64] in
the sense that it continues to decompose both the strain- and stress-tensor (and similarly the
stiffness tensor) into normal and tangential “components”, the crucial difference is that these are
not defined in terms of a collection of specific entries within the transformed coordinate system
B anymore. Instead, Tschukin defines these quantities in terms of two (forth-order) projection
operators

N = I ◻Φ +Φ ◻ I −Φ ◻Φ and T = (I −Φ) ◻ (I −Φ) (7.144)
77As one explicitly assumes εα = εt, the averaging condition εt = ∑2

α=1 ε
α
t h

α = εt is trivially satisfied, and from
Equation (7.143) combined with the analogous (explicit) assumption for the tangential stress, the model also
satisfies the phase-specific material law σα = Cα ∶ (εα − ε̃α), from which the total stress is obtained by a weigted
interpolation (trivially reducing to σn for the normal components).

78One (quite particular) case where this actually happens is when both materials are taken as isotropic, with
the Lamé-parameters of one phase being chosen as (equal) multiples of those of the other phase, i.e. C2 = cC1

with C1 = λ1I ⊗ I + 2µ1I(s).
79Note also, that as in [64], the dependence on n is disregarded in the phasefield evolution equation in [23] and

[24].
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onto the normal and tangential components, where Φ = n⊗n and the “box-product” is defined
by (A ◻B) ∶C = A ⋅C ⋅B. In terms of these, the normal and tangential components of the
stress- and strain-tensor are defined by

σn ∶= N ∶σ, σt ∶= T ∶σ, and εn ∶= N ∶ ε, εt ∶= T ∶ ε. (7.145)

Using σα = N ∶σα+T ∶σα and εα = N ∶εα+T ∶εα together with the idempotence and orthogonality
of these projectors, this allows rewriting the normal “part” of the phase-specific material law as

σαn =N ∶σα = N ∶ Cα ∶ (N ∶ εα + T ∶ εα) = N ∶ Cα ∶N ∶ εα +N ∶ Cα ∶ T ∶ εα

=(N ∶ Cα ∶N ) ∶ (N ∶ εα) +N ∶ Cα ∶ T ∶ (T ∶ εα) = (N ∶ Cα ∶N ) ∶ εαn +N ∶ Cα ∶ T ∶ εαt .

Proceding similarly with the tangential part and adding, by the same argument, the eigenstrains,
the material behavior can be fully characterized by σα = σαn +σ

α
t through

σαn =Cαnn ∶ (εαn − ε̃
α
n) + C

α
nt ∶ (ε

α
t − ε̃

α
t ) and

σαt =C
α
tn ∶ (ε

α
n − ε̃

α
n) + C

α
tt ∶ (ε

α
t − ε̃

α
t ),

(7.146)

where the normal and tangential components of the respective second-order tensors are defined
as in Equation (7.145), and

Cαnn ∶= N ∶ Cα ∶N , Cαnt ∶= N ∶ Cα ∶ T , Cαtn ∶= T ∶ C
α
∶N , Cαtt ∶= T ∶ C

α
∶ T . (7.147)

Remark 148. Note that Equation (7.146) is formally completely identical with the stress-calculation
as it would be performed in the B-system based on the subvectors εαn and εt and subblocks of the
stiffness-tensor defined in (7.105). The interpretation of the varvious quantities is quite different
though, as, due to the use of the projection operators, these quantities are now not, as in [64],
elements of lower-dimensional subspaces, but instead elements of the original full-dimensional
space (but which do of course each actually lie in a lower-dimensional subspace).
While this also induces some technical difficulties, this representation has the advantage of on
the one hand not requiring a basis transformation and on the other hand - as seen from the
definitions of N and T - being constructed based solely on the normal vector n. ◇

Due to the strong formal similarities, it is possible to closely mimick the calculations in [64]
within this new formulation. The only technical difficulty is that, as in particular Cαnn now has
a non-trivial kernel even in Voigt-notation as it is based upon a pre- and postmultiplication by
a (non-trivial) projector, one cannot rely on actual inverses for systems involving Cαnn. One
can, as in Tschukin, replace the (non-existent) inverses with respect to the normal subspace by
Moore-Penrose pseudo-inverses though80. At least in theory, the lack of actual invertibility does
then not cause any significant issues. In particular, using the corresponding pseudo-inverse S̄12

nn

of
C̄12
nn ∶= h

1
(φ)N ∶ C1

∶N + h2
(φ)N ∶ C1

∶N = N ∶ C̄12
(φ) ∶N

with the anti-arithmetic average C̄12
(φ) = h1(φ)C1

+ h2(φ)C2 as in Equation (7.90), he derives
the expression81

fel =
1

2
(Σ1

∶ (ε− ε̃1
)h1

(φ)+Σ2
∶ (ε− ε̃2

)h2
(φ)− (Σ1

−Σ2
) ∶ S̄12

nn ∶ (Σ
1
−Σ2

)h1
(φ)h2

(φ)) (7.148)

80Constructed such as to act as the corresponding inverses when restricted to the normal subspace only, these
satisfy in particular ( ⋅ )† ∶ ( ⋅ ) = N as well as ( ⋅ )† ∶N = N ∶ ( ⋅ )† = ( ⋅ )†, ( ⋅ )† ∶ T = T ∶ ( ⋅ )† = 0, see [74] and the
discussion below.

81Note that, while Tschukin’s starting point is - similarly to the work in [64] - an expression for the elastic
free energy in terms of the “homogeneous” variables σn and εt, he then proceeds a somewhat different line as a
preparation to a quite different generalization to the multiphase case from the one in [62]. This will further be
discussed in Section 7.2.4.
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for the elastic free energy density, where Σα
= Cα ∶ (ε − ε̃α), α = 1,2, corresponds to the stress

obtained under the Voigt-Taylor assumption εα = ε82. The effective stress is then, in accordance
with Equation (7.70), determined by differentiating fel with respect to the average strain ε to
be given by

σ = Σ1h1
(φ) +Σ2h2

(φ) − h1
(φ)h2

(φ)(C1
− C2

) ∶ S̄12
nn ∶ (Σ

1
−Σ2

). (7.149)

Even though the model in [74] starts from a similar argument as the one in [64], as one
might guess by comparing equations (7.149) and (7.91), it is in fact much easier to relate to the
jump-vector based formulation in Section 7.2.2 than to the one in [64]. The key observation to
this is contained in the following lemma:

Lemma 9. Let C be a symmetric (in the same sense as the standard stiffness-tensor with the
major and minor subsymmetries) fourth-order such that n ⋅C ⋅n is invertible. Then the pseudo-
inverse Snn ∶= (N ∶ C ∶N )

†
satisfies

Snn ∶Σ = (a⊗n)
S

where a = (n ⋅ C ⋅n)−1
⋅ (Σ ⋅n) (7.150)

for any symmetric second-order tensor Σ.

Proof. Even though it would be possible to verify this in Voigt-notation by retransforming to
the B-system and using Remark 130 together with the discussions in Remark 140 and 141, it
is actually simpler to directly verify that the construction in Equation (7.150) satisfies all the
required properties.
Based on the definitions of the projectors in Equation (7.144), it is easy to verify that Snn
satisfies T ∶Snn = Snn ∶T = 0 and N ∶Snn = Snn ∶N = Snn. With the definition in the left-most
equality in Equation (7.150), the equalities for T ∶Snn and N ∶Snn are in fact independent of
the particular choice of a but simply rely on the fact that (a⊗n)

S
is an element of the normal

subspace83 and thus satisfies T ∶ (a⊗n)
S
= 0 and N ∶ (a⊗n)

S
= (a⊗n)

S
. Applying T resp. N

to Snn ∶Σ = (a⊗n)
S
then leads to the desired conclusion.

The corresponding equalities with T and N applied from the right in turn depend upon Σ
entering the formula for a in terms of its normal component Σ ⋅n only. Since (T ∶Σ) ⋅n = 0 and
(N ∶Σ) ⋅ n = Σ ⋅ n84, the definition of a shows that Snn ∶ T ∶Σ = 0 in the first case, whereas a
remains unchanged in the second case and thus Snn ∶N ∶Σ = Snn ∶Σ.
As Snn therefore maps into the normal subspace and its kernel contains (at least) the tangent
subspace, all that remains to verify is that Snn acts as an inverse to N ∶ C ∶N on the normal
subspace (of symmetric tensors), i.e. Snn ∶ N ∶ C ∶ N ∶ Σ = N ∶ C ∶ N ∶ Snn ∶ Σ = N ∶ Σ for all
symmetric Σ. Applying N ∶ C ∶N from the left to the left equality in equaion (7.150), it first
follows from N ∶ (a⊗n)

S
and the right subsymmetry of C that

(N ∶ C ∶N ) ∶Snn ∶Σ = (N ∶ C ∶N ) ∶ (a⊗n)
S
= N ∶ C ∶ (a⊗n)

S
= N ∶ ((C ⋅n) ⋅ a).

82Note that Tschukin also uses the notation E instead of ε for the strain do distinguish it from its representation
in Voigt-notation.

83While this has already been used a number of times, it can also be verified directly based on Φ = n⊗n and
the definition of T . One has

T ∶ (a⊗n) = (I −n⊗n) ⋅ (a⊗n) ⋅ (I −n⊗n) = (I −n⊗n) ⋅ (a⊗ (I ⋅n) − ∥n∥2a⊗n) = 0

and similarly T ∶ (n⊗ a) = 0. As N = I − T , N ∶ (n⊗ a)
S
= (n⊗ a)

S
− T ∶ (n⊗ a)

S
= (n⊗ a)

S
.

84This is intuitively clear again as the former is the projection onto the tangential subspace and the latter
the one onto the normal subspace. It can also easily be verified explicitly by applying the projectors to Σ and
contracting the result with n.
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Insering ((C ⋅n) ⋅ a) into the definition of N and using the left subsymmetry of C, one further
has

N ∶ ((C ⋅n) ⋅ a) =(I ◻Φ +Φ ◻ I −Φ ◻Φ) ∶ ((C ⋅n) ⋅ a)

=(((C ⋅n) ⋅ a) ⋅n)⊗n +n⊗ (n ⋅ ((C ⋅n) ⋅ a)) − (n ⋅ ((C ⋅n) ⋅ a) ⋅n)n⊗n

=((n ⋅ C ⋅n) ⋅ a)⊗n +n⊗ ((n ⋅ C ⋅n) ⋅ a) − (((n ⋅ C ⋅n) ⋅ a) ⋅n)n⊗n.

Together with the definition of a above, the prefactors n ⋅ C ⋅n cancel, leaving

N ∶ ((C ⋅n) ⋅ a) = (Σ ⋅n)⊗n +n⊗ (Σ ⋅n) − ((Σ ⋅n) ⋅n)n⊗n.

As this is precisely N ∶Σ, it follows that

(N ∶ C ∶N ) ∶Snn ∶Σ = N ∶Σ

for any (symmetric) Σ, and thus the result.

Remark 149. Note that the (somewhat tedious) restriction to symmetric tensors in the lemma
is due to the fact that it is on the one hand fully sufficient in the current setting and and on
the other hand avoids a slight technical difficulty related to the various subsymmetries of fourth-
order tensors. More precisely, as (a⊗n)S is obviously a symmetric tensor, Snn as defined above
maps into the subspace of symmetric second order tensors and thus enjoys the left subsymmetric
(Snn)ijkl = (Snn)jikl. One could also enforce the right subsymmtry by replacing the definition

of a by a ∶= (n ⋅C ⋅n)−1
⋅ 1
2
(Σ ⋅n+ΣT

⋅n), which, although not really used in the current settting,
would not require any major modifications either and would then indeed lead to the required
pseudoinverse.
The only somewhat unpleasent issue in the general case is related to the definition of the projec-
tors N and T themselves. In fact, even though the projector N in the form of Equation (7.144)
does not posess either the left nor right subsymmetry85, it is well suited to the setting here86

and avoids introducing unnecessary symmetrization operations. ◇
Based on Lemma 9, it is now easy to see that, within the two-phase setting, the model by

[74] is equivalent to the jump-condition based one in Section 7.2.2 and by the previous discussion
thus also (except for the missing contribtuion due to ∂fel

∂∇φ in [64]) with the one in [64].
Firstly, using this lemma for replacing the term S12

nn(φ) in Equation (7.149) with (a ⊗ n)S
with a defined by C̄12

nn(φ) ⋅ a = (Σ1
−Σ2

) ⋅n with the jump-vector a coinciding with the one in
Equation (7.89) and making use of the Cα, the expression for the effective stress in [74] clearly
reduces to the one from Equation (7.91) in Section 7.2.2. Secondly, the same replacement in the
expression for the elastic free energy density reduces Equation (7.148) to

fel =
1

2
(Σ1

∶ (ε − ε̃1
)h1

(φ) +Σ2
∶ (ε − ε̃2

)h2
(φ) − (Σ1

−Σ2
) ∶ (a⊗n)

S
h1

(φ)h2
(φ)). (7.151)

For comparison with the jump-condition based approach, note that, by construction, the elastic
free energy density from Equation (7.96) in Section 7.2.2 can be rewritten as

fel =
1

2
(σ1

∶ (ε1
− ε̃1

)h1
(φ) +σ2

∶ (ε2
− ε̃2

)h2
(φ))

=
1

2

⎛

⎝
σ1

∶ (ε − h2
(φ)(a⊗n)

S
− ε̃1

)h1
(φ) +σ2

∶ (ε + h1
(φ)(a⊗n)

S
− ε̃2

)h2
(φ)

⎞

⎠
.

85This can be seen from N ∶Σ = (Σ ⋅n)⊗n+n⊗ (ΣT ⋅n)− (n ⋅Σ ⋅n)n⊗n, which is not in general symmetric
unless Σ is so, nor depends symmetrically on Σ.

86Both N and T are here only applied to quantities with the necessary subsymmetries for this not to matter
(either symmetric second-order tensors of fourth-order tensors with the left and right subsymmetries).

186



As already used in various forms above, the terms in (a⊗n)S cancel as they can be combined to
((σ2 − σ1) ⋅n)h1(φ)h2(φ) which vanishes due to the common normal stress, i.e. an equivalent
expression is given by

fel =
1

2
(σ1

∶ (ε − ε̃1
)h1

(φ) +σ2
∶ (ε − ε̃2

)h2
(φ)).

Further inserting

σ1
=C1

∶ (ε − h2
(φ)(a⊗n)

S
− ε̃1

) = Σ1
− h2

(φ)C1
∶ (a⊗n)

S
,

σ2
=C2

∶ (ε + h1
(φ)(a⊗n)

S
− ε̃2

) = Σ2
+ h1

(φ)C2
∶ (a⊗n)

S

(7.152)

then leads to

fel =
1

2
(Σ1

∶(ε− ε̃1
)h1

(φ)+Σ2
∶(ε− ε̃2

)h2
(φ))−(a⊗n)

S
∶(C1

∶(ε− ε̃1
)−C2

∶(ε− ε̃2
))h1

(φ)h2
(φ),

which is precisely Equation (7.151), thus showing that both free energy densities also coincide87.

Based on the equality of fel, it is clear that the contributions ∂fel
∂φ

and ∂fel
∂∇φ =

∂fel
∂n

⋅ ∂n
∂∇φ should

also coincide. Tschukin specifies the expression for ∂fel
∂φ

as88

∂fel
∂φ

=
1

2

⎛

⎝
(Σ1

∶(ε− ε̃1
)−∆ε̄12

∶C1
∶∆ε̄12(h2)

2
)−(Σ2

∶(ε− ε̃2
)−∆ε̄21

∶C2
∶∆ε̄21(h1)

2
)
⎞

⎠

∂h1

∂φ
(7.153)

where ∆ε̄12 and ∆ε̄21 are specified by

∆ε̄12
= S̄12

nn ∶ (Σ
1
−Σ2

) and ∆ε̄21
= S̄21

nn ∶ (Σ
2
−Σ1

).

From Lemma 9, and S̄12
nn = S̄21

nn, it is easily seen that these quantities in fact correspond to
∆ε̄12 = (a⊗n)

S
and ∆ε̄21 = −∆ε̄12 = −(a⊗n)

S
.

In addition, using ε = ε1 + h2(a ⊗n)
S
and thus Σ1

= σ1 + h2C1
∶ (a ⊗n)

S
, one can rewrite the

first term Σ1
∶ (ε − ε̃1

) as

Σ1
∶ (ε1

− ε̃1
) + h2Σ1

∶ (a⊗n)
S

=σ1
∶ (ε1

− ε̃1
) + h2(ε1

− ε̃1
) ∶ C1

∶ (a⊗n)
S
+ h2σ1

∶ (a⊗n)
S
+ (h2)

2
(a⊗n)

S
∶ C1

∶ (a⊗n)
S

=σ1
∶ (ε1

− ε̃1
) + 2h2σ1

∶ (a⊗n)
S
+ (h2)

2
(a⊗n)

S
∶ C1

∶ (a⊗n)
S

and similarly, with ε = ε2 − h1(a⊗n)
S
and thus Σ2

= σ2 − h1C2
∶ (a⊗n)

S
,

Σ2
∶ (ε − ε̃2

) = σ2
∶ (ε2

− ε̃2
) − 2h1σ2

∶ (a⊗n)
S
+ (h1)

2
(a⊗n)

S
∶ C2

∶ (a⊗n)
S
.

Combining these observations in the expression (7.153), the quadratic terms in ∆ε̄12 and ∆ε̄21

cancel, leaving

∂fel
∂φ

=
1

2

⎛

⎝
(σ1

∶ (ε1
− ε̃1

) + 2h2σ1
∶ (a⊗n)

S
) − (σ2

∶ (ε2
− ε̃2

) − 2h1σ2
∶ (a⊗n)

S
)
⎞

⎠

∂h1

∂φ
.

87Note that the equality of the stresses could also have been derived from the equality of the free energy
densities, as the effective stress in both cases satisfies σ = ∂fel

∂ε
. Nevertheless, the direct verification of the

equality of the stresses is much simpler.
88Note that the expressions are slightly adopted as compared to the ones in [74] since, in contrast to the

discussion in Section 7.2.2, Tschukin does not explicitly use a reduced formulation φ2 = 1 − φ1 but instead works
with h1(φ1) and h2(φ2) with φ1 and φ2 considered as independent. Once the Lagrange-multiplier for the sum-
constraint is taken into account, this reduces, up to the usual factor 2, to the same.
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While the terms 1
2
σα ∶ (εα − ε̃α) correspond to the phase-specific contributions fαel to fel, the

remaining terms in the jump vector a can, making use of the equality of the normals stresses,
be summarized to

h2σ1
∶ (a⊗n)

S
+ h1σ2

∶ (a⊗n)
S
= (h2σ1

⋅n + h1σ2
⋅n) ⋅ a = (h2

+ h1)σ ⋅ a = (σ ⋅n) ⋅ a,

showing that the expression for ∂fel
∂φ

coincides with the one in Equation (7.97) (and therefore of
course also with the other alternative expressions listed in Section 7.2.2).
Tschukin also specifies the (auxiliary but decisive) quantity ∂fel

∂ni
in terms of ∆ε̄12 as

∂fel
∂ni

= −(Σ1
−Σ2

) ∶ (Di − S̄
12
nn ∶Di ∶ C̄

12
) ∶∆ε̄12h1

(φ)h2
(φ) (7.154)

where Di = ∂
∂ni
N . Noting first that S̄12

nn ∶ (Σ
1
−Σ2

) = ∆ε̄12, this can, together with the major
symmetry of Di, be rewritten as89

∂fel
∂ni

= (Σ2
−Σ1

− C̄12
∶∆ε̄12

) ∶Di ∶∆ε̄
12h1

(φ)h2
(φ).

Replacing ∆ε̄12 as above with (a⊗n)
S
and with C̄12

(φ) = h2(φ)C1
+h1(φ)C2, the first term can

be rewritten as

Σ2
−Σ1

+ C̄12
∶ (a⊗n)

S
= (Σ2

+ h1C2
∶ (a⊗n)

S
) − (Σ1

− h2C1
∶ (a⊗n)

S
) = σ2

−σ1,

where the final equality follows from Equation (7.152). This further simplifies ∂fel
∂ni

to ∂fel
∂ni

=

(σ2−σ1) ∶Di(a⊗n)S . As a final step for relating the expression (7.154) with the one previously
derived in Equation (7.99) for the jump-vector based approach, it remains to eliminate the
derivatives Di of the projector N . Firstly, by a simple application of the chain-rule,

Di ∶ (a⊗n)S = (
∂

∂ni
N ) ∶ (a⊗n)S =

∂

∂ni
(N (a⊗n)S) −N ∶

∂

∂ni
(a⊗n)S

Secondly, (a⊗n)S being an element of the normal subspace, N ∶ (a⊗n)S = (a⊗n)S , and thus

Di ∶ (a⊗n)S =
∂

∂ni
(a⊗n)S −N ∶

∂

∂ni
(a⊗n)S = T ∶

∂

∂ni
(a⊗n)S .

Even tough both a and n depend on n, the presence of the tangential projector then ensures
that the contribution ( ∂a

∂ni
⊗ n)

S
due to the derivative of a drops out as this is (regardless of

the entries of the first vector in this dyad), again an element of the normal space. This further
simplifies the expression for Di ∶ (a⊗n)S to

Di ∶ (a⊗n)S = T ∶ (a⊗
∂n

∂ni
)
S
= T ∶ (a⊗ ei)S .

Reinserting this into the expression for ∂fel
∂ni

, as the last step, it suffices to realize that by the
normal continuity of the stresses, σ2 − σ1 is an element of the tangential subspace and thus
satisfies T ∶ (σ2 −σ1) = σ2 −σ1, from which it then follows that

∂fel
∂ni

= (σ2
−σ1) ∶ T ∶ (a⊗ ei)S = (T ∶ (σ2

−σ1)) ∶ (a⊗ ei)S = (σ2
−σ1) ∶ (a⊗ ei)S .

89This expression corresponds to the non-Voigt version of the alternative expression for ∂fel
∂ni

provided by
equation (4.58) in [74].
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Together with the symmetry of the first term, this is the same as ((σ2 − σ1) ⋅ a) ⋅ ei, i.e. the

derivative of fel with respect to ni is simply the i’th of the vector (σ2 −σ1) ⋅ a and therefore

∂fel
∂n

= (σ2
−σ1) ⋅ a. (7.155)

Contracting this expression with ∂n
∂∇φ , this obviously leads to the same expression for ∂fel

∂∇φ as in
Equation (7.100).

Remark 150. Note that Tschukin also provides a description of his model in Voigt-representation,
where he includes some additional simplifications as compared to the non-Voigt description
above. Some of these are in part similar to the manipulations above, whereas others are more
similar to the ones performed when discussing the model in [64].
In particular, he factorizes the Voigt-representationNv

σ of the projector onto the normal space as
Nσ =AB, whereA ∈R6×3 andB ∈R3×6 (as above) is the matrix representing the multiplication
of a stress-type tensor in Voigt-notation by the normal vector n. Recalling Remark 140, Nv

σ

(in the two-dimensional setting) and making use of Equation (7.118), this projector can also be
written as

Nv
σ ∶=M

T
ε

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
(

1 0 0
0 0 1

)Mσ =MT
ε

⎛
⎜
⎝

1 0
0 0
0 1

⎞
⎟
⎠
QB,

from which it follows thatA corresponds precisely to the product of the first three matrices90. He
then makes use of the idempotence of Nv

σ and the “good guess” for the required pseudo-inverse
S12
nn in Voigt-nation for finally eliminating A completely, reducing e.g. his stress-calcuation to

a form much more similar to the one in Equation (7.124).
A particular consequence of this is that the matrices Di introduced in this Voigt-setting should
not be confused with the derivatives of the projector above as these are actually defined as the
derivatives of the matrix B with respect to ni. As this is just a matrix-form of encoding the
multiplication by n, it is obvious that ∂B

∂ni
is simply a matrix-form of encoding a multiplication

by the unit vector ei and that his expression for the derivative in ∂fel
∂ni

in equation 4.58 thus in
fact just corresponds to the i’th component of (σ2 −σ1) ⋅ a in Equation (7.155). ◇

90One major difference being that Tschukin reexpresses this in terms of the normal vector only.
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7.2.4 Some Partial Extension to the Multiphase Case
Given that the jump-condition based model delivers very satisfactory results in the two-phase
case, it is natural to try to extend it to the more general multiphase setting. Unfortunately, in
constrast to e.g. the simpler Voigt-Talor or Reuss-Sachs approach, the extension of the more
elaborate model described in the previous section faces a very fundamental difficulty which is
not a priori related to the phasefield modeling approach itself. Rather, it is related to the de-
scription of the mechanical behavior at irregular points such as corner points or, within the
present context, points where multiple interfaces meet, since it is well known that - unlike for
flat or smoothly curved interfaces - such points (and/or edges in the three-dimensional setting)
are generally associated with singularities in the behavior of the solution.

In relation with the jump condition approach from the previous section and the following
discussion, it is instructive to illustrate this difficulty in a more concrete form in the example
in Figure 7.1, which, for notational simplicity, is based on the analogous approach for the linear
heat-conduction problem

⎧⎪⎪
⎨
⎪⎪⎩

∇ ⋅ q = f, q = −κ∇T in Ω

T = 0 on ∂Ω

In this case, the continuity of the traces (and their tangential derivatives) leads to the jump
condition ∇T β = ∇Tα + aαβnαβ , whereas for f regular (e.g. in L2(Ω)), the continuity of the
normal stress-components needs to be replaced by Jqα − qβK ⋅nαβ = 0.
Simply assuming that these jump conditions between the two-phase interfaces continue to hold
as one approaches the triple point (i.e. there is a well-defined limit, regardless along which
interface this point is approached), the jump condition on the 2-3-interface and the combination
of the two jump-conditions for ∇T 1 at the 1-2- and 1-3-interface lead to

∇T 3
= ∇T 2

+ a23ex and ∇T 2
+ a21ey = ∇T

1
= ∇T 3

+ a31ey,

implying that a21ey = a23ex + a
31ey. By linear independence, this shows that a23 = 0, i.e.

(as expected from the continuity of the tangential derivatives along the 1-2- and 1-3-interface)
∂T 1

∂x
= ∂T 2

∂x
= ∂T 3

∂x
, and a21 = a31, i.e. (as expected from the continuity of the tangential derivative

along the 2-3-interface) ∂T 2

∂y
= ∂T 1

∂y
− a21ey =

∂T 1

∂y
− a31ey =

∂T 3

∂y
. Inserting these equalities into

the jump conditions on the normal fluxes further leads to the conclusion that

κ2 ∂T
2

∂x
= κ3 ∂T

3

∂x
and κ2 ∂T

2

∂y
= κ2(

∂T 1

∂y
− a21) = κ3(

∂T 1

∂y
− a31) = κ3 ∂T

3

∂y
.

As ∇T 2 = ∇T 3 by the above, these equality is possible iff either κ2 = κ3 (i.e. there is no
“real” triple-junction) or both gradients happen to vanish at this point. In the latter case, one
necessarily also has ∂T 1

∂x
= 0 by continuity of the tangential derivatives and ∂T 1

∂y
= 0 due to the

equality of the normal fluxes. In summary, the jump conditions between all three phases in this
case can only be satisfied when κ2 = κ3 or when all three gradients happen to vanish at this
point91.

Remark 151. Note that, from a phasefield perspective, the issue at internal corners does not
a priori seem to impose any particular difficulties from a pure modeling point of view as such
corners are usually “smoothed out” due to the diffuse interface profile. This seeming simplicity is
somewhat misleading in the same sense that, even though e.g. a standard (sharp-interface) FEM-
simulation does not in principle require any special treatment of corners points, the accuracy of
the resulting approximation will in general be significantly reduced as compared to a “smooth”

91In contrast, when either κ2 = κ1 or κ3 = κ1, one would still expect a singular behavior due to the presence of
a corner between the two “effective” material regions.
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Figure 7.1: Illustration of the contradictory nature of the jump-conditions at a triple point.

problem. Understanding this difficulty is, at least at a qualitative level, quite intuititve, as
approximation a solution which has a highly complex behavior within a relatively small region
is of course much harder than approximating one which which is highly regular.
In contrast to the case of internal corners, which can in principle be tackled using the jump-
condition based model above, the case of intersecting interfaces also poses a “visible” difficulty
in the sense that the modeling of such multiple junctions within the phasefield context requires
using more than two coexistent phases, and thus requires some extension of the previous model(s)
to the multiphase case. ◇

A very similar (though algebraically more challenging) difficulty arises when trying to extend
the jump-condition based model from the previous section to the multiphase case. A straight-
forward generalization of the jump relations on the symmetrized displacement gradient from
Equation (7.87) would consist in imposing

JF Kαβ = F β −F α = aαβ ⊗Nαβ resp. JεKαβ = εβ − εα = (aαβ ⊗nαβ)S (7.156)

for all α ≠ β and then trying to determine the aαβ , α ≠ β from the corresponding continuity
conditions

JσKαβ ⋅nαβ = (σβ −σα) ⋅nαβ = 0 , α ≠ β (7.157)

for the normal stresses.
As above, such a straightforward generalization is unfortunately doomed to failure (except for
some special cases). In fact, even though Equation (7.156) would a priori introduces N(N − 1)
unknown jump vectors (aαβ)

1≤α≠β≤N together with an equal number of continuity conditions,
these conditions are not all independendent. Firstly, using nβα = −nαβ and thus from

aβα ⊗nβα = −aβα ⊗nαβ = JF Kβα = −JF Kαβ = −aαβ ⊗nαβ

that aβα = aαβ , the number of unknowns can be reduced to the N(N−1)
2

unknown jump vectors
(aαβ)

1≤α<β≤N . At the same time, as JσKαβ ⋅ nαβ = 0 directly implies JσKβα ⋅ nβα, one can
simultaneously reduce the number of jump conditions to be satisfied in Equation (7.157) to
those for 1 ≤ α < β ≤ N .
The number of truly independent entries for the jump vectors can be significantly lower though
as the algebraic equality

JF Kαβ = F β −F α = F β −F δ +F δ −F α = JF Kδβ − JF Kδα = JF Kδβ − JF Kδα
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imposes the additional compatibility conditions

aαβ ⊗nαβ = aδβ ⊗nδβ − aδα ⊗nδα ∀δ ≠ α,β (7.158)

on the aαβ . Since nαβ is a unit vector, right-multiplying this equation with nαβ direclty fixes
aαβ in terms of aαδ and aβδ as92

aαβ = (nαβ ⋅nαβ)aαβ = (nαβ ⋅nδβ)aδβ − (nαβ ⋅nδα)aδα ∀δ ≠ α.

This already implies that all jump vectors would immediately follow once they are known with
respect to a single phase93.
Even when all normals happen to be parallel (and “testing” the combatibility conditions (7.158)
with the common normal vector nαβ = ±n, α ≠ β, therefore provides all relevant information
contained in the system) already reduces the number of effectively independent jump vectors to
at most N − 1 (e.g. the a1α, α ≥ 2). For every triplet (α,β, δ) of phases for which the normals
nαβ , nδα and nδβ are not all parallel, Equation (7.158) imposes an additional set of restrictions
on the aαβ though. In fact, if either nδα or nδβ are not parallel to nαβ , there is a tangential
vector tαβ such that tαβ ⋅ nαβ is zero but at least one of nδβ ⋅ nδα and tαβ ⋅ nδβ is non-zero.
Applying tαβ from the right to the compatibility conditions,

0 = (tαβ ⋅nδβ)aδβ − (tαβ ⋅nδα)aδα

which allows, besides fixing aαβ in terms of the two respective other jump vectors, fixing one
jump vector on the right-hand side in terms of the other one (or directly as zero if one of the other
normals also happens to be parallel to nαβ). Having non-parralel “two-phase-normal vectors” -
such as is normally the case - thus even further reduces the available degrees of freedom in the
ansatz (7.156).

Just as the jumps in the strains are not all independent, neither are of course the jumps in
the normal stresses. Nevertheless, this does - similar to the example from Figure 7.1 - not usually
entail a sufficient reduction of the number of normal continuity equations to be satified, with one
notable exception being the case when there is only a single normal involved. In combination
with the continuity condition, the resulting system is therefore generally inconsistent since there
are not enough degrees of freedom to enforce all equations simultaneously.

Remark 152. Together with the averaging condition F = ∑
N
α=1F

αhα(φ), it is, similarly to the
two-phase setting, possible to reexpress F α in terms of the average displacement gradient F
and the jumps with respect to the other phases. If fact, making use of F β = F α + JF Kαβ and
∑
N
α=1 h

α(φ) = 1 allows rewriting the averaging condition as

F = F αhα(φ) + ∑
β≠α

F βhβ(φ) = F αhα(φ) + ∑
β≠α

JF Kαβhβ(φ) = F + ∑
β≠α

JF Kαβhβ(φ)

92Note that, even though this argument is slightly simpler in the non-symmetrized case, the symmetrized form

(aαβ ⊗nαβ)
S
= (aδβ ⊗nδβ)

S
− (aδα ⊗nδα)

S

leads to the same conclusion. In fact, a first contraction of the equality (aαβ ⊗nαβ)
S
= T with known T leads

to 1
2
(aαβ + (aαβ ⋅nαβ)nαβ) = T ⋅nαβ , which is not yet fully explicit in aαβ . A second contraction then shows

aαβ ⋅nαβ = nαβ ⋅T ⋅nαβ , which, reinserted into the previous equation shows that aαβ = 2T ⋅nαβ−(nαβ ⋅T ⋅nαβ)nαβ
and thus fully specifies aαβ in terms of T .

93In fact, assuming for convenience for this to be the first phase, knowing the a1α, 2 ≤ α ≤ N and using
the appropriate column in Equation (7.158) with δ = 1 and β = α + 1 one can obtain all jump vectors aαβ for
α = β − 1. Thus knowing aα(α+1) and a(α+1)(α+2) for all α ≥ 2, the aα(α+2) follow immediately from aβα = aαβ
and aα(α+2) ⊗nα(α+2) = a(α+1)(α+2) ⊗n(α+1)(α+2) −a(α+1)α ⊗n(α+1)α and, repeating this argument, finally all
aαβ for β ≠ α.
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and thus leads to94

F α = F − ∑
β≠α

JF Kαβhβ(φ),∀α, (7.159)

respectively, through a completely analogous calculation, the relation

εα = ε − ∑
β≠α

JεKαβhβ(φ),∀α (7.160)

for the εα. ◇
Remark 153. Note that, taking the weighted average of Equation (7.159) and Equation (7.160)
shows that the jumps in addition satisfy

N

∑
α=1
∑
β≠α

JF Kαβhα(φ)hβ(φ) = 0 and
N

∑
α=1
∑
β≠α

JεKαβhα(φ)hβ(φ) = 0. (7.161)

◇
A Model Based on a Common Normal ([62], §4.5 [61])

A first way of generalizing the two-phase model from the previous section to the multiphase
setting is proposed in [62] and [61] and further successfully applied in e.g. [66], [4], [5]. It is based
upon generalizing the representation of the normal and tangential stresses in equations (7.111)
and (7.112) in terms of a basis-transformation in equation through the use of a common “average”
normal vector n. Using this normal vector, it assumes the equality of all tangential strains with
the (given) average one εt and then enforces the equality of all normal phase-specific stresses with
the effective (a priori unknown) normal stress σn. Using, instead of the base-transformation as
in [62] the projector-based formalism in [74] and setting ( ⋅ )

n
∶= N ∶ ( ⋅ ), ( ⋅ )

t
= T ∶ ( ⋅ ), the

underlying assumption is thus that εαt = εt ∀α and that σαn = σn ∀α. This is combined with
the usual averaging conditions ε = ∑Nα=1 ε

αhα(φ) and σ = ∑
N
α=1σ

αhα(φ) on the total strains and
stresses, where, due to the conditions above, it is clear that the averaging procedure actually only
affects the normal resp. tangential components. Together with the phase-specific material law
σα = Cα

∶(εα − ε̃α) and making use of the idempotence of the projection operators (N = N 2 and
T = T 2), the continuity condition on the normal components of the stresses may be rewritten as

σαn =N ∶ (Cα ∶ (N ∶ (εα − ε̃α) + T ∶ (εα − ε̃α)) = N ∶ (Cα ∶ (N ∶ (εα − ε̃α) + T ∶ (ε − ε̃α))

=Cαnn ∶ (εαn − ε̃
α
n) + C

α
nt ∶ (εt − ε̃

α
t )

!
= σn ∶= N ∶σ ∀α,

where Cαnn = N ∶ Cα ∶ N , Cαnt = N ∶ Cα ∶ T and use was made of εαt = εt. Using, as in [74],

an appropriate pseudo-inverse Sαnn = (Cαnn)
†
of Cαnn, this equation permits reexpressing all

unknown normal components of the phase-specific strains in terms of the single common normal
stress-component as

εαn = ε̃αn +S
α
nn ∶ (σn − C

α
nt ∶ (ε − ε̃

α
)) (7.162)

and thus leads, through a weighted average, to the condition

εn =
N

∑
α=1

ε̃αnh
α
(φ) +

N

∑
α=1

Sαnn ∶ (σn − C
α
nt ∶ (ε − ε̃

α
))hα(φ)

94Note that if hα(φ) = 0, Fα does not appear in the averaging condition in terms of the (F β)
1≤β≤N and F

and can therefore in principle be defined arbitrarily regardless of the values of the other F β , β ≠ α. In contrast,
given a set of jump vector JF Kαβ and F , the relation (7.159) still has to hold for Fα, the only difference to the
case hα(φ) ≠ 0 being that, given all other F β and F , one is free to choose an arbitrary Fα for defining the jumps
JF Kαβ = F β −Fα.
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relating the σn with the given average normal strain εn. Together with the corresponding
pseudo-inverse of ∑Nα=1S

α
nnh

α(φ), which, for consistency with the description in [62] will be

abbreviated as −T̄ nn, i.e. T̄ nn ∶= −(∑
N
α=1S

α
nnh

α(φ))
†
, this allows obtaining the commmon

normal stress component as

σn = −T̄ nn ∶
⎛

⎝
εn −

N

∑
α=1

ε̃αnh
α
(φ) +

N

∑
α=1

(Cαnt ∶ (εt − ε̃
α
t ))h

α
(φ)

⎞

⎠
. (7.163)

Finally, again using Equation (7.162) with this now known normal stress, one can first obtain
the normal phase-specific strain components εαn given by

εαn = ε̃αn +S
α
nn ∶

⎡
⎢
⎢
⎢
⎢
⎣

− T̄ nn ∶
⎛

⎝
εn −

N

∑
β=1

ε̃βnh
β
(φ) +

N

∑
β=1

(Cβnt ∶ (εt − ε̃
β
t ))h

β
(φ)

⎞

⎠
− Cαnt ∶ (εt − ε̃

α
t )

⎤
⎥
⎥
⎥
⎥
⎦

and, combined with the already known tangential strains εαt = εt and through another averaging
using the phase-specific material law, the tangential stress components as

σt =
N

∑
α=1

σαt h
α
(φ) =

N

∑
α=1

(Cαtn ∶ (εαn − ε̃
α
n) + C

α
tt ∶ (εt − ε̃

α
t ))h

α
(φ)

= −
N

∑
α=1

(Cαtn ∶S
α
nnh

α
(φ)) ∶ T̄ nn ∶

⎛

⎝
εn −

N

∑
β=1

ε̃βnh
β
(φ)

⎞

⎠

+
N

∑
α=1

⎛

⎝
(Cαtt − C

α
tn ∶S

α
nnC

α
nt) −

N

∑
β=1

(Cβtn ∶S
β
nnh

β
(φ)) ∶ T̄ nn ∶ Cαnt

⎞

⎠
∶ (εt − ε̃

α
t )h

α
(φ)

(7.164)

As in the two-phase case, one can alternatively choose a description in terms of appropriately
chosen jump vectors. As T ∶ εα = εαt = εt for all α, ε

α is necessarily of the form

εα = ε − (aα ⊗n)
S
. (7.165)

Together with the averaging condition ε = ∑Nα=1 ε
αhα(φ), this in addition implies the constraint

N

∑
α=1

hα(φ)aα
!
= 0 (7.166)

on the jump-vectors aα.
In terms of the jump vectors and again using the abbreviation Σα

= Cα ∶ (ε − ε̃α), the condition
on the equality of the normal stresses can be written as

σα ⋅n = n ⋅ (Cα ∶ (ε − (aα ⊗n)
S
− ε̃α)) = Σα

⋅n − (n ⋅ Cα ⋅n) ⋅ aα !
= σ ⋅n

and thus shows that the phase-specific jump vectors aα are given by

aα = (n ⋅ Cα ⋅n)−1
⋅ ((Σα

−σ) ⋅n) (7.167)

in terms of the common value σ⋅n. Together with the zero-average condition on the jump-vectors,
it follows that σ ⋅n has to be such that∑Nα=1 ah

α(φ) = ∑
N
α=1 ((n⋅Cα ⋅n)−1

⋅((Σα
−σ)⋅n)hα(φ)

!
= 0,

i.e.

σ ⋅n = (
N

∑
α=1

(n ⋅ Cα ⋅n)−1
hα(φ))

−1

⋅
N

∑
α=1

(n ⋅ Cα ⋅n)−1
⋅ (Σα

⋅n)hα(φ). (7.168)
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Similarly to before, recombining the now known normal stress with Equation (7.167) shows that
the phase-specific jump vectors are given by

aα = (n ⋅ Cα ⋅n)−1
⋅

⎡
⎢
⎢
⎢
⎢
⎣

(Σα
⋅n − (

N

∑
β=1

(n ⋅ Cβ ⋅n)−1
hβ(φ))

−1

⋅
N

∑
β=1

(n ⋅ Cβ ⋅n)−1
⋅ (Σβ

⋅n)hβ(φ)

⎤
⎥
⎥
⎥
⎥
⎦

,

thus leading, with the given value of ε to the alternative expression

σ =
N

∑
α=1

Σαhα(φ) +
N

∑
α=1

(Cα ⋅n) ⋅ aαhα(φ)

=Σ +
N

∑
α=1

(Cα ⋅n) ⋅ (n ⋅ Cα ⋅n)−1

⋅

⎡
⎢
⎢
⎢
⎢
⎣

(Σα
⋅n − (

N

∑
β=1

(n ⋅ Cβ ⋅n)−1
hβ(φ))

−1

⋅
N

∑
β=1

(n ⋅ Cβ ⋅n)−1
⋅ (Σβ

⋅n)hβ(φ)

⎤
⎥
⎥
⎥
⎥
⎦

hα(φ)

(7.169)

for the effective stress.

Based on the use of the jump-vectors above, the driving-force calculation for this model can,
alternatively to the procedure in [62] in the transformed coordinate system, be performed in
a manner similar to the two-phase case considered previously. Differentiating the expression
fel(φ, ε) = ∑β f

β
elh

β(φ) = ∑β
1
2
(εβ(φ, ε) − ε̃β) ∶ Cβ ∶ (εβ(φ, ε) − ε̃β)hβ(φ) with respect to φα for

a fixed normal vector n, if first follows that

∂

∂φα
∣
n
fel(φ, ε) =∑

β

fβel
∂hβ

∂φα
+∑

β

σβ ∶
∂εβ

∂φα
∣
n
hβ .

In contrast to the chemical case, one can again not directly make use of the product rule and
∂∑β εβhβ

∂φα
= ∂ε
∂φα

= 0 for simplifying the last term as the tangential parts of the σβ do not reduce

to a common value. Nevertheless, since εβ = ε − (aβ ⊗n)S , it follows that ∂εβ

∂φα
∣
n
= −(∂a

β

∂φα
⊗n)S

and thus

∑
β

σβ ∶
∂εβ

∂φα
∣
n
hβ = −∑

β

(σβ ⋅n) ⋅
∂aβ

∂φα
hβ = −(σ ⋅n) ⋅∑

β

∂aβ

∂φα
hβ

since all normal stresses for the different phases are in fact equal. Further making use of the
condition ∑β aβhβ = 0 from Equation (7.166) and using the product rule ∑β

∂aβ

∂φα
hβ =

∂∑β aβhβ
∂φα

−

∑β a
β ∂hβ

∂φα
, one can eliminate the derivatives of the aβ , finally leading to

∂

∂φα
∣
n
fel(φ, ε) =∑

β

fβel
∂hβ

∂φα
+ (σ ⋅n) ⋅∑

β

aβ
∂hβ

∂φα
=∑

β

(fβel + (σβ ⋅n) ⋅ aβ)
∂hβ

∂φα
. (7.170)

Alternatively using εβ = ε−(aβ⊗n)
S
, one can also rewrite the second contribution to the driving

force as

N

∑
β=1

(σ ⋅n) ⋅aβ
∂hβ

∂φα
=

N

∑
β=1

σ ∶(aβ⊗n)
S

∂hβ

∂φα
=

N

∑
β=1

σ ∶(ε−εβ)
∂hβ

∂φα
= −

N

∑
β=1

σ ∶εβ
∂hβ

∂φα
+(σ ∶ε)

∂∑
N
β=1 h

β

∂φα
.

Since the last term vanishes, this leaves

∂fel
∂φα

∣
n
=

N

∑
β=1

(fβel(ε
β) −σ ∶ εβ)

∂hβ

∂φα
. (7.171)
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The remaining contributions to ∂fel
∂φα

and ∂fel
∂∇φα through the dependence on n follow from a

similar reasoning in combination with the definition of n in terms of φ and ∇φ. Differentiating
fel with respect to n one has

∂fel
∂n

=∑
β

σβ ∶
∂εβ

∂n
hβ = −∑

β

((σβ ⋅n) ⋅
∂aβ

∂n
+ (σβ ⋅ aβ))hβ .

The first contribution can be eliminated by making use of the common normal stress σβ ⋅n = σ ⋅n
for all β and the condition ∑β aβhβ = 0 together with the independence of the hβ on n, thus
leaving the simple expression

∂fel
∂n

= −
N

∑
β=1

(σβ ⋅ aβ)hβ(φ) (7.172)

for the derivative with respect to n.

Remark 154. As the similarity of the calculations and the resulting expressions for the driving
force contributions to the two-phase case shows, this model is able to maintain the most of the
pleasant properties of its two-phase analogon in the multiphase case. In particular, its free energy
density is defined in the natural manner as the weigted average of the fα = 1

2
(εα−ε̃α)∶Cα ∶(εα−ε̃α)

of the phase-specific ones with the εα satisfying the Hadamard jump conditions with respect to
every other phase. Furthermore, the normal stresses between all phases are continuous, and the
total stress satisfies both σ = ∑ασ

αhα(φ) and the compatibility condition σ =
∂fel
∂ε

. In fact, one
has ∂fel

∂ε
= ∑ασ

α ∶ ∂ε
α

∂ε
hα, which, from εα = ε − (aα ⊗n)S , leads to

∂fel
∂ε

=∑
α

σαhα −∑
α

(σα ⋅n) ⋅
∂aα

∂ε
hα = σ − (σ ⋅n)

∂∑α a
αhα

∂ε
= σ.

Its only drawback - and this is a potentially major one from a physical point of view - is that
this is primarily due to the usage of a single common normal vector n. While the appropriate
definition of a normal vector nαβ between any phase-pairing is already a topic of some debate,
i.e. for example in terms of the qαβ or the normalized differences ∇φβ − ∇φα, doing so for all
phases and thus also phase-pairings at once is an even more difficult problem. This is also the
primary criticism of the model in [62] by Tschukin in [74].
In addition, even though the contribution to the driving force through the dependence on n
is left out in [62], defining n in terms of a fairly complex averaging procedure based on the
phasefield and various mechanical properties will, despite of the simplicity of the expression in
Equation (7.172), lead to a very complex total driving force in combination with the correspond-
ing expressions for ∂n

∂φα
and ∂n

∂∇φα . ◇

The Model by Schneider et al. ([63] and [61])

A quite different generalization of the model from Section 7.2.2 to the multiphase setting was
proposed by Schneider et al. in [63] in the finite deformation setting (see also [61]).

Dropping the restrictions imposed by Equation (7.156) except with respect to a given refer-
ence phase R, Equation (7.159) applied for this reference phase becomes

FR
= F − ∑

β≠R
aRβ

⊗NRβhβ(φ) and F α = FR
+ aRα

⊗NRα, α ≠ R (7.173)

resp.

εR = ε − ∑
β≠R

(aRβ
⊗nRβ)

S
hβ(φ) and εα = εR + (aRα

⊗nRα)
S
, α ≠ R (7.174)
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in the small deformation case. The remaining 3(N − 1) unknowns in the jump vectors aRα,
α ≠ R, can then again be fixed by imposing the continuity conditions on the normal stresses in
Equation (7.157) with respect to this reference phase only, i.e.

JσKRα ⋅nRα
= (σα −σR) ⋅nRα

= 0 (7.175)

for all α ≠ R.

Inserting the definition of the εα in terms of ε and the aRα into the phase-specific stress
strain relationships, α = 1, ...,N , one has

σα =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

CR
∶ (ε −∑β≠R (aRβ ⊗nRβ)

S
hβ(φ) − ε̃R) α = R,

Cα ∶ (ε −∑β≠R (aRβ ⊗nRβ)
S
hβ(φ) + (aRα ⊗nRα)

S
− ε̃α) else.

Together with the right subsymmetry of Cα and defining as before Σα
∶= Cα ∶ (εα − ε̃α), this

simplifies to

σα =

⎧⎪⎪
⎨
⎪⎪⎩

ΣR
−∑β≠R h

β(φ)(CR
⋅nRβ) ⋅ aRβ α = R,

Σα
−∑β≠R h

β(φ)(Cα ⋅nRβ) ⋅ aRβ + (Cα ⋅nRα) ⋅ aRα else,

and thus, in combination with the condition on the normal continuity of the stresses leads to

⎛

⎝

⎛

⎝
ΣR

− ∑
β≠R

(CR
⋅nRβ) ⋅ aRβ⎞

⎠
−
⎛

⎝
Σα

− ( ∑
β≠R

(Cα ⋅nRβ)⊗ aRβhβ) + (Cα ⋅nRα) ⋅ aRα⎞

⎠

⎞

⎠
⋅nRα !

= 0.

Regrouping terms, one therefore has to solve the 3(N − 1)-system

(nRα
⋅ Cα ⋅nRα) ⋅ aRα

− ∑
β≠R

hβ(nRα
⋅ (Cα − CR

) ⋅nRβ
) ⋅ aRβ

=
⎛

⎝
(nRα

⋅ Cα ⋅nRα) − hα(nRα
⋅ (Cα − CR

) ⋅nRα
)
⎞

⎠
⋅ aRα

− ∑
β≠R,α

hβ(nRα
⋅ (Cα − CR

) ⋅nRβ
) ⋅ aRβ

=(nRα
⋅ ((1 − hα)Cα + hαCR

) ⋅nRα)) ⋅ aRα
− ∑
β≠R,α

hβ(nRα
⋅ (Cα − CR

) ⋅nRβ
) ⋅ aRβ

!
=(ΣR

−Σα
) ⋅nRα

= −JΣKRα ⋅nRα
=∶ rRα

(7.176)

with the “residual” rRα corresponding to the (negative) stress jump as it would arise in the
Voigt-Taylor model.

Finally, having determined the aRα, the total stress σ is obtained, based on a weighted
average of the phase-specific ones, as

σ =
N

∑
α=1

σαhα(φ) =
N

∑
α=1

(Cα ∶ (εα − ε̃α))hα(φ)

=
N

∑
α=1

⎛

⎝
Cα ∶ (ε − ∑

β≠R
(aRβ

⊗nRβ
)Sh

β
(φ) − ε̃α) +

⎧⎪⎪
⎨
⎪⎪⎩

0 α = 1,

(aRα ⊗nRα)
S

else
⎞

⎠
hα(φ)

=
N

∑
α=1

⎛

⎝
Σα

− Cα ∶ (∑
β≠1

(aRβ
⊗nRβ

)Sh
β
(φ))

⎞

⎠
hα(φ) + ∑

β≠R
Cβ ∶ (aRβ

⊗nRβ)
S
hβ(φ).
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Using 1 = ∑
N
α=1 h

α(φ), this can further be combined to give95

σ =
N

∑
α=1

⎛

⎝
Σα

− ( ∑
β≠R

(Cα − Cβ) ∶ (aRβ
⊗nRβ

)Sh
β
(φ))

⎞

⎠
hα(φ). (7.177)

Remark 155. Similarly to the chemical case considered in Section 7.1, it is not really necessary
to solve for all N phases at once. Instead, the only equations which are actually coupled are
the ones for which hα(φ) > 0, whereas the strains and stresses for all remaining phases can, if
required, be recovered a posteriori. ◇

In contrast to the model based on a common normal, a clear advantage of this model is that
it allows, more in line with the standard phasefield approach, using different normal vector nαβ

for each of the phase-pairings. This comes at a heavy price though, as this is made possible here
by enforcing the desired jump-conditions with respect to a single reference phase R only, whereas
all other phase-pairings will generally not satisfy the jump conditions on either the strains or
the stresses96.

Remark 156. Due to this, an important question is also how the reference phase can be chosen
“appropriately”. A simple and quite intuitive possibilty is to use the phase with the highest
local volume-fraction φα. Other choices are of course possible, i.e. one could for example try
to take the mechanical properties of the phases into account. Regardless of the actual choice,
the necessity of having to choose is on the one hand an unpleasant one, and on the other hand
also entails some issues (there being others as well as will be seen below) in the calculation of
the driving force as the points where the reference phases change will generally be associated
with discontinuities in the mechanical energies due to the sudden change of the subset of jump
conditions to be satisfied. ◇

Furthermore - and this is an in principle very problematic issue from a variational point of
view - even though one can conveniently define an elastic free energy density fel as in Equation
(7.71) based on the εα in Equation (7.174), there is no extremum principle with respect to this
density underlying the actual determination of the jump vectors aRα.
In fact, a minimization of the free energy density (7.71) as in [51] for the given form of the εα

would, with

δεα =

⎧⎪⎪
⎨
⎪⎪⎩

−∑β≠R h
β(δaRβ ⊗nRβ)

S
α = R,

−∑β≠R h
β(δaRβ ⊗nRβ)

S
+ (δaRα ⊗nRα)

S
α ≠ R

result in

− hRσR ∶ ∑
β≠R

hβ(δaRβ
⊗nRβ)

S
+ ∑
α≠R

( − hασα ∶ ∑
β≠R

hβ(δaRβ
⊗nRβ)

S
+ hασα ∶ (δaRα

⊗nRα)
S
)

= ∑
α≠R

hα
⎛

⎝
(σα − ∑

β≠R
hβσβ − hRσR) ⋅nRα⎞

⎠
⋅ δaRα

= ∑
α≠R

hα
⎛

⎝
(σα −∑

β

hβσβ) ⋅nRα⎞

⎠
⋅ δaRα !

= 0,

and thus the requirement that each aRα should be such that the normal stress components w.r.t.
nRα coincides with the ones of the total resulting stress. As this differs from the characterization
in Equation (7.175), there is no reason for the dependence of the aRα with respect to the
parameters φ, ε and n to drop out when differentiating fel. In particular, the stress defined by
σ = ∑ασ

αhα = ∑α Cα ∶ (εα − ε̃α) does not generally satisfy the crucial relation σ =
∂fel
∂ε

except
within bulk- or two-phase regions.
This has, at least at a theoretical level, far-reaching consequences in terms of the postulated
gradient flow for φ similar to the discussion in [41]. In fact, one now has to choose between

95The summation could clearly also be restricted to β ≠ R, α.
96Unfortunately, the claim in [61] that the remaining equations are redundant is incorrect.
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maintaining the simple structure of the algorithm, i.e. ignoring the interdependencies between
the different parameters φ and the displacement respectively ε, or, ultimately, the minimization
of the functional in Equation (7.67).
Remark 157. From a more practical point of view, this global variational inconsistency can
likely be considered as a secondary issue as compared to the many difficult questions related to
multiphase regions such as the choice of normal vectors and implications associated to the choice
of reference phase and, more importantly, the continued neglection of the dependence on n in
[63].
One can in principle derive a driving force consistent with the minimization of Fε subject to the
momentum-balance based on σ as above considered as a side-constraint using e.g. an adjoint
equation corresponding to a reduced formulation in terms of the displacement u as a function of
φ and the nRα. This has the drawback that determining the adjoint state gives rise to a second
global problem similar in nature to the steady-state momentum-balance Equation (7.69) and is
therefore potentially relatively expensive. ◇

For the calculation of the driving force, it is again convenient to separate the derivative into
two separate contributions, one based on fixed normal vectors (nαβ)α≠β and the other one due to
the changes in the normal vectors. A partial differentiation with respect to φα for fixed normals
leads to

∂

∂φα
∣
nαβ

f(φ, ε) =∑
β

fβ
∂hβ

∂φα
+∑

β

σβ ∶
∂εβ(φ, ε)

∂φα
∣
nαβ

hβ(φ).

From

εR(φ, ε) = ε− ∑
β≠R

(aRβ
(φ, ε)⊗nRβ)

S
hβ(φ), εα(φ, ε) = εR(φ, ε)+ (aRα

(φ, ε)⊗nRα)
S

α ≠ R

together with σ = ∑
N
β=1σ

βhβ(φ), the second sum can be rewritten to to

∑
β

hβσβ ∶
∂εβ(φ, ε)

∂φα
∣
nαβ

=(∑
β

σβhβ) ∶
∂εR(φ, ε)

∂φα
∣
nαβ

+ ∑
β≠R

σβ ∶ (
∂aRβ

∂φα
∣
nαβ

⊗nRβ)
S
hβ(φ)

= −σ ∶ ∑
β≠R

(aRβ
⊗nRβ)

S

∂hβ

∂φα
−σ ∶ ∑

β≠R
(
∂aRβ

∂φα
∣
nαβ

⊗nRβ)
S
hβ

+ ∑
β≠R

σβ ∶ (
∂aRβ

∂φα
∣
nαβ

⊗nRβ)
S
hβ

= −σ ∶ ∑
β≠R

(aRβ
⊗nRβ)

S

∂hβ

∂φα
+ ∑
β≠R

((σβ −σ) ⋅nRβ
) ⋅
∂aRβ

∂φα
hβ .

Using (aRβ(φ, ε)⊗nRβ)
S
= εβ − εR, an alternative expression is given by

N

∑
β=1

hβσβ ∶
∂εβ(φ, ε)

∂φα
= −σ ∶ ∑

β≠R
(εβ − εR)

∂hβ

∂φα
+ ∑
β≠R

((σβ −σ) ⋅nRβ
) ⋅
∂aRβ

∂φα
hβ

which, with

σ ∶ ∑
β≠R

εR
∂hβ

∂φα
= σ ∶ εR

∂∑β≠R h
β

∂φα
= εR

∂(1 − hR(φ))

∂φα
= −σ ∶ εR

∂hR

∂φα

show that

∑
β

hβσβ ∶
∂εβ(φ, ε)

∂φα
= −σ ∶

N

∑
β=1

εβ
∂hβ

∂φα
+ ∑
β≠R

((σβ −σ) ⋅nRβ
) ⋅
∂aRβ

∂φα
hβ .
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This makes it possible to rewrite this contribution to the total driving force in a manner more
similar to the one for the model with the common normals in Equation (7.171) as

∂

∂φα
∣
nαβ

f(φ, ε) =∑
β

(fβ −σ ∶ εβ)
∂hβ

∂φα
+ ∑
β≠R

hβ((σβ −σ) ⋅nRβ
) ⋅
∂aRβ

∂φα
∣
nαβ

. (7.178)

In contrast to the former model, there is no reason here for the terms in ∂aRβ

∂φα
∣
nαβ

, except of

course for two-phase regions where both phases with hβ > 0 share the only common relevant
normal and therefore the normal stress. This is considerably less problematic than the issues
caused by σ ≠

∂fel
∂ε

as the required expressions for these derivatives can be recovered in a local
fashion after a differentiation of their defining system in Equation (7.176), leading to

(nRα
⋅ ((1 − hα)Cα + hαCR

) ⋅nRα)) ⋅
∂aRα

∂φδ
∣
nαβ

− ∑
β≠R,α

hβ(nRα
⋅ (Cα − CR

) ⋅nRβ
) ⋅
∂aRβ

∂φδ
∣
nαβ

= − (nRα
⋅ ((1 −

∂hα

∂φδ
)Cα + ∂h

α

∂φδ
CR

) ⋅nRα)) ⋅ aRα
+ ∑
β≠R,α

∂hβ

∂φδ
(nRα

⋅ (Cα − CR
) ⋅nRβ

) ⋅ aRβ .

Remark 158. A pleasant property of this system is that it is based on the same matrix as the
original system (7.176) for the determination of the aRα and differs only in the right-hand sides
and one can thus reuse a previous factorization for solving for the ∂aRβ

∂φα
∣
nαβ

. Nevertheless, one
needs to solve such a system for the derivative with respect to each of the phases.
A very pragmatic alternative is to instead simply neglect these additional contributions. While
this has no real mathematical justification, it leads to a simpler driving force, which remains
correct within the two-phase regions, while the errors in the multiphase regions are expected
to be of a similar order as the ones already induced by the variational inconsistency due to the
construction of σ. ◇

As the calulation of the phase-specific strains relies on the nRα only, there are no additional
contributions to ∂fel

∂φα
and ∂fel

∂∇φα due to the other normal vectors. For the nRα, one has

∂fel
∂nRα

=∑
β

hβσβ ∶
∂εβ

∂nRα =∑
β

hβσβ ∶
∂εR

∂nRα + ∑
β≠R

hβσβ ∶
∂

∂nRα (aRβ
⊗nRβ)

S

= −∑
β

hβσβ ∶ ∑
δ≠R

hδ
∂

∂nRα (aRδ
⊗nRδ)

S
+ ∑
β≠R

hβσβ ∶
∂

∂nRα (aRβ
⊗nRβ)

S
.

Whereas the explicit dependence on the normal vectors only entails a single contribution for
α = δ resp. α = δ, the aRδ depend on all nRα simultaneously, such that one has

∂fel
∂nRα

= −∑
β

hβσβ ⋅ aRαhα −∑
β

∑
δ≠R

hδhβ(σβ ⋅nRδ) ⋅
∂aRδ

∂nRα

+ hασα ⋅ aRα
+ ∑
β≠R

hβ(σβ ⋅nRβ) ⋅
∂aRβ

∂nRα .

Using σ = ∑β h
βσβ and exchanging the dummy-indices, this can be rewritten in a more compact

form as
∂fel
∂nRα

= hα(σα −σ) ⋅ aRα
+ ∑
β≠R

hβ((σβ −σ) ⋅nRβ
) ⋅
∂aRβ

∂nRα . (7.179)

There is again no reason for the second contribution to drop out. Unless one decides to ne-
glect this contribution for simplicity, the required contributions through ∂aRβ

∂nRα can be recovered,
similarly to those due to ∂aRβ

∂φα
through a linearization of the system (7.176).
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The Model by Tschukin ([74])

A quite different extension of the two-phase models from Section 7.2.2 is proposed by Tschukin
in [74]. In contrast to the work by Schneider, the model in [74] is a priori not based upon a
prefixed expression of the strains and stresses in each phase but instead obtained through a
generalization of the expression (7.151) of the elastic free energy density. He suggests replacing
the first part in Equation (7.151) through a summation over the analogous expression over all
phases and, in analogy to the treatment of the surface energy contributions through a summation
over all phase-pairings in Section 6.1, replacing the last term through a summation over all

two-phase pairings. More precisely, using the same definitions S̄αβnn = S̄βαnn = (C̄αβnn)
†
where

C̄αβnn = N ∶ (hαCβ + hβCα) ∶N , he introduces the expression97

fel(φ,∇φ, ε) =
1

2

N

∑
α=1

⎛

⎝
Σα

∶ (ε − ε̃α) −
1

2
∑
β≠α

JΣKαβ ∶ S̄αβnn ∶ JΣKαβhβ(φ)
⎞

⎠
hα(φ) (7.180)

for the elastic free energy density. The average (effective) stress σ is then derived from Equation
(7.180) in accordance to Equation (7.70) as σ ∶=

∂fel
∂ε

, which, together with

∂

∂ε
JΣKαβ =

∂

∂ε
(Cβ ∶ (ε − ε̃β) − Cα ∶ (ε − ε̃α)) = Cβ − Cα

leads to the expression

σ ∶=
∂fel
∂ε

=
N

∑
α=1

⎛

⎝
Σα

−
1

2
∑
β≠α

(Cβ − Cα) ∶ S̄αβnn ∶ JΣKαβhβ(φ)
⎞

⎠
hα(φ) (7.181)

generalizing the one in Equation (7.149) from the two-phase case.

Remark 159. A clear advantages as compared to the model by [63], [61] is that it is obvious from
equations (7.180) and (7.181) that there is no “preferential” or reference phase. In addition, the
stress tensor will, by its very definition in Equation (7.181), satisfy the consistency condition
(7.70). ◇

In constrast to the model by Schneider, Tschukin avoids the issue of defining phase-specific
strains and stresses. In particular, the free energy density being based upon considering a sum
over essentially “independent” two-phase interactions, it is not at all clear a priori how his model
can be extended to situations (such as viscoelastic or plastic problems), where one would require
a consistent (i.e. independent of the phase-pairing) definition of these phase-inherent quantities.
Simply defining similar to the discussion in the two-phase case in Section 7.2.3 the jump vector
aαβ for a given phase-pairing through (aαβ ⊗nαβ)

S
= S̄αβnn ∶ (Σ

α
−Σβ

) = −S̄αβnn ∶ JΣKαβ , or, in a
simpler form similar to Lemma 9, through

aαβ = (nαβ ⋅ C̄αβ ⋅nαβ)−1
⋅ ((Σα

−Σβ
) ⋅nαβ) = −(nαβ ⋅ C̄αβ ⋅nαβ)−1

⋅ (JΣKαβ ⋅nαβ), (7.182)

with C̄αβ = hβCα + hαCβ , it turns out that it is in fact possible to obtain the stress-strain
relationship above based upon consistently defined phase-specific stresses σα and strains εα

given by
εα = ε − ∑

β≠α
hβ(aαβ ⊗nαβ)

S
and σα = Cα ∶ (εα − ε̃α). (7.183)

97Note that the additional factor 1
2
in front of the last term is due to each phase-pairing appearing twice in

this generalization and can be eliminated by including each pairing only once by e.g. instead summing over all
1 ≤ α < β ≤ N .
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In fact, using S̄αβnn = S̄βαnn and JΣKαβ = −JΣKβα, the second term in Equation (7.181) can be
rewritten as

1

2

N

∑
α=1
∑
β≠α
Cα ∶ S̄αβnn ∶ JΣKαβhβ(φ)hα(φ) −

1

2

N

∑
α=1
∑
β≠α
Cβ ∶ S̄αβnn ∶ JΣKαβhβ(φ)hα(φ)

=
N

∑
α=1
∑
β≠α
Cα ∶ S̄αβnn ∶ JΣKαβhβ(φ)hα(φ),

thus leading to the alternative expression

σ ∶=
∂fel
∂ε

=
N

∑
α=1

⎛

⎝
Σα

+ Cα ∶ ( ∑
β≠α
S̄αβnn ∶ JΣKαβhβ(φ))

⎞

⎠
hα(φ). (7.184)

for the effective stress. As Σα
= Cα ∶ (ε − ε̃α), this is the same as

σ =
N

∑
α=1

Cα ∶
⎛

⎝
ε − ε̃α + ( ∑

β≠α
S̄αβnn ∶ JΣKαβhβ(φ))

⎞

⎠
hα(φ)

=
N

∑
α=1

Cα ∶ (ε − ∑
β≠α

hβ(aαβ ⊗nαβ)
S
− ε̃α)hα(φ),

and thus a weighted average of the phase-specific stresses defined as in Equation (7.183). Furhter-
more, ε and the εα also satisfy the averaging condition ε = ∑α εαhα(φ), since

N

∑
α=1

εαhα(φ) =
N

∑
α=1

εhα(φ) −
N

∑
α=1
∑
β≠α

(aαβ ⊗nαβ)
S
hα(φ)hβ(φ)

and the last term vanishes due to

−
N

∑
α=1
∑
β≠α

(aαβ ⊗nαβ)
S
hα(φ)hβ(φ) =

N

∑
α=1
∑
β≠α
S̄αβnn ∶ (Σ

β
−Σα

)hα(φ)hβ(φ)

=
N

∑
α=1
∑
β≠α
S̄αβnn ∶Σ

βhα(φ)hβ(φ) −
N

∑
α=1
∑
β≠α
S̄αβnn ∶Σ

αhα(φ)hβ(φ)

and thus
N

∑
α=1
∑
β≠α

(aαβ ⊗nαβ)
S
hα(φ)hβ(φ) = 0.

The model in [74] therefore avoids two of the major drawbacks of the model in [63], namely the
dependence on a reference phase and the inconsistency between σ and ∂fel

∂ε
. Unfortunately, it

has other issues within multiphase regions. Firstly, since the calculation of the jump-vectors aαβ

is such that it would only enforce the normal continuity of the stresses if α and β where the
only phases present, there will generally be no phase-pairing for which the phase-specific stresses
defined in Equation (7.183) will actually satisfy this continuity condition in multiphase regions.
Secondly, and this is probably the more problematic point, the definition of fel in Equation
(7.180) is much less natural than it may seem at first sight. More precisely, with

−
1

4

N

∑
α=1
∑
β≠α

(Σβ
−Σα

) ∶ S̄αβnn ∶ JΣKαβhα(φ)hβ(φ)

=
1

4

N

∑
α=1
∑
β≠α

Σα
∶ S̄αβnn ∶ JΣKαβhα(φ)hβ(φ) +

1

4

N

∑
α=1
∑
β≠α

Σβ
∶ S̄βαnn ∶ JΣKβαhα(φ)hβ(φ)

=
1

2

N

∑
α=1
∑
β≠α

Σα
∶ S̄αβnn ∶ JΣKαβhα(φ)hβ(φ)
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fel can be written as

fel(φ,∇φ, ε) =
1

2

N

∑
α=1

⎛

⎝
Σα

∶ (ε − ε̃α) +Σα
∶ ( ∑

β≠α
S̄αβnn ∶ JΣKαβhβ(φ))

⎞

⎠
hα(φ).

Together the definition of the aαβ and the εα in Equation (7.183), this further simplifies to

fel(φ,∇φ, ε) =
1

2

N

∑
α=1

Σα
(ε) ∶ (εα(φ,∇φ, ε) − ε̃α)hα(φ), (7.185)

and thus a free energy density where one half of the expression is based on the supposedly bad
approximation Σα

= Cα ∶ (ε − ε̃α) instead of σα corresponding to the “correct” strains εα.
One particularly problematic point with this definition is that, whereas the weighted average
1
2 ∑α (εα − ε̃α) ∶ Cα ∶ (εα − ε̃α)hα(φ) is necessarily non-negative regardless of the precise choice
of the εα, this need not be the case for the expression in Equation (7.185), and it can in fact be
observed numerically that defining fel as in [74] may indeed lead to locally negative free energy
densities.

The last expression in Equation (7.185) also allows for a somewhat simpler derivation of the
correct driving force contributions (in [74] based on the nαβ defined in terms of the gradients of
φ only)

∂fel
∂φα

=
1

2

N

∑
β=1

(Σβ
∶ (ε − ε̃β) −∑

δ≠β
(aβδ ⊗nβδ)

S
∶ Cβ ∶ (aβδ ⊗nβδ)

S
(hδ)

2
)
∂hβ

∂φα
(7.186)

as in [74], which, while correct, requires a somewhat heavy formalism due to the use of the
pseudo-inverses in Equation (7.180). A partial differentiation with respect to φα while holding
the normal vectors fixed first leads to

∂fel
∂φα

∣
nαβ

=
1

2
∑
β

Σβ
∶ (εβ − ε̃β)

∂hβ

∂φα
+

1

2
∑
β

hβΣβ
∶
∂εβ

∂φα
∣
nαβ

,

where, by Equation (7.183),

∂εβ

∂φα
∣
nαβ

= −∑
δ≠β

(aβδ ⊗nβδ)
S

∂hδ

∂φα
−∑
δ≠β

hδ(
∂aβδ

∂φα
∣
nαβ

⊗nβδ)
S
.

By a partial differentiation of the defining Equation (7.182) for the jump vectors and the defini-
tion of Cβδ, it is easily seen that

∂aβδ

∂φα
∣
nαβ

= −(nβδ ⋅ C̄βδ ⋅nβδ)−1
⋅ (nβδ ⋅ (

∂hδ

∂φα
Cβ + ∂h

β

∂φα
Cδ) ⋅nβδ) ⋅ aβδ.

Further expanding the term Σβ
∶ (εβ − ε̃) using εβ = ε −∑δ≠β (aβδ ⊗nβδ)

S
hδ, it follows that

∂fel
∂φα

∣
nαβ

=
1

2
∑
β

Σβ
∶ (ε − ε̃β)

∂hβ

∂φα

−
1

2
∑
β

∑
δ≠β

(Σβ
⋅nβδ) ⋅ aβδhδ

∂hβ

∂φα
−

1

2
∑
β

∑
δ≠β

hβ(Σβ
⋅nβδ) ⋅ aβδ

∂hδ

∂φα

+
1

2
∑
β

∑
δ≠β

hβhδ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ (
∂hδ

∂φα
Cβ + ∂h

β

∂φα
Cδ) ⋅nβδ) ⋅ aβδ
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Rewriting the last line as

1

2
∑
β

∑
δ≠β

hβ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ hδCβ ⋅nβδ) ⋅ aβδ ∂h
δ

∂φα

+
1

2
∑
β

∑
δ≠β

hβhδ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ hβCδ ⋅nβδ) ⋅ aβδ ∂h
β

∂φα

=
1

2
∑
β

∑
δ≠β

hβ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ (hδCβ + hβCδ − hβCδ) ⋅nβδ) ⋅ aβδ ∂h
δ

∂φα

+
1

2
∑
β

∑
δ≠β

hβhδ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ (hδCβ + hβCδ − hδCβ) ⋅nβδ) ⋅ aβδ ∂h
β

∂φα

=
1

2
∑
β

∑
δ≠β

hβ(Σβ
⋅nβδ) ⋅ aβδ

∂hδ

∂φα
+

1

2
∑
β

∑
δ≠β

hδ(Σβ
⋅nβδ) ⋅ aβδ

∂hβ

∂φα

−
1

2
∑
β

∑
δ≠β

hβ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ hβCδ ⋅nβδ) ⋅ aβδ ∂h
δ

∂φα

−
1

2
∑
β

∑
δ≠β

hδ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ hδCβ ⋅nβδ) ⋅ aβδ ∂h
β

∂φα

allows canceling the middle row, leaving

∂fel
∂φα

∣
nαβ

=
1

2
∑
β

Σβ
∶ (ε − ε̃β)

∂hβ

∂φα

−
1

2
∑
β

∑
δ≠β

hβ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ hβCδ ⋅nβδ) ⋅ aβδ ∂h
δ

∂φα

−
1

2
∑
β

∑
δ≠β

hδ(Σβ
⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1

⋅ (nβδ ⋅ hδCβ ⋅nβδ) ⋅ aβδ ∂h
β

∂φα
.

Finally, exchanging dummy-indices and making use of nβδ = −nδβ and aβδ = aδβ , the last two
rows can further be summarized to

−
1

2
∑
β

∑
δ≠β

hδ((Σβ
−Σδ

) ⋅nβδ) ⋅ (nβδ ⋅ C̄βδ ⋅nβδ)−1
⋅ (nβδ ⋅ hδCβ ⋅nβδ) ⋅ aβδ ∂h

β

∂φα
,

which, since aβδ = (nβδ ⋅ C̄βδ ⋅ nβδ)−1
⋅ ((Σβ

− Σδ
) ⋅ nβδ), leads to the relatively simple final

expresssion

∂fel
∂φα

∣
nαβ

=
1

2
∑
β

Σβ
∶ (ε − ε̃β)

∂hβ

∂φα
−

1

2
∑
β

∑
δ≠β

(hδ)
2
aβδ ⋅ (nβδ ⋅ Cβ ⋅nβδ) ⋅ aβδ ∂h

β

∂φα

which amounts to the same as the one in Equation (7.186) by the subsymmetries of Cβ .
For the remaining contributions arising from the dependence on the nαβ , it is convenient to
explicitly make use of nαβ = −nβα in order to reduce fel to a function of e.g. the (nαβ)α<β only.
Doing so and with aαβ = aβα, it follows that

∂fel
∂nαβ

=
1

2
∑
δ

hδΣδ
∶
∂εδ

∂nαβ
=

1

2
∑
δ

hδΣδ
∶

∂

∂nαβ
(ε −∑

η≠δ
hη(aδη ⊗nδη)

S
)

= −
1

2
hαhβ(Σα

−Σβ
) ⋅ aαβ −

1

2
hαhβ((Σα

−Σβ
) ⋅nαβ) ⋅

∂aαβ

∂nαβ
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Since daαβ is, for fixed φ, characterized in terms of δnαβ as

(nαβ ⋅ C̄αβ ⋅nαβ) ⋅ daαβ = (Σα
−Σβ

) ⋅ dnαβ − (dnαβ ⋅ C̄αβ ⋅nαβ) ⋅ aαβ − (nαβ ⋅ C̄αβ ⋅ dnαβ) ⋅ aαβ ,

one has

((Σα
−Σβ

) ⋅nαβ) ⋅ daαβ =((Σα
−Σβ

) ⋅nαβ) ⋅ (nαβ ⋅ C̄αβ ⋅nαβ)−1

⋅ ((Σα
−Σβ

) ⋅ dnαβ − (dnαβ ⋅ C̄αβ ⋅nαβ) ⋅ aαβ − (nαβ ⋅ C̄αβ ⋅ dnαβ) ⋅ aαβ)

=aαβ ⋅ ((Σα
−Σβ

) ⋅ dnαβ − 2((aαβ ⊗nαβ)
S
∶ C̄αβ ⋅ aαβ) ⋅ dnαβ ,

where use was made of the symmetries of C̄αβ . Combining this with the previous expression for
∂fel
∂nαβ

, one therefore has

∂fel
∂nαβ

= −hαhβ((Σα
−Σβ

) ⋅ aαβ − (aαβ ⊗nαβ)
S
∶ C̄αβ ⋅ aαβ), (7.187)

which is a slightly simpler version of expressions in [74] since it avoids the use of the derivative
of the projector N onto the normal subspace of symmetric second-order tensors.

Remark 160. Summarizing the discussion of the three models considered here, each has its own
advantages and disadvantages. Whereas the model in [62] has the mathematically most pleasant
properties and in particular satisfies the desired jump conditions between all phase-pairings, this
can only be achieved through a very significant geometrical simplification of using a common
normal vector for all phase-pairings. The models in [63] and [74] do not make this assumption,
but are therefore not generally able to satisfy all jump conditions simultaneously except for in
the two-phase regions.
Whereas the model in [63] has the advantage of enforcing the jump conditions on both the strains
and stresses at least with respect to the reference phase R, the use of such a preferential phase
is clearly an undesirable feature. In constrast, the model in [74] does not rely on a reference
phase, but will generally not satisfy any jump conditions on either the stresses or strains within
multiphase regions.
From an energetic point of view, both models have some deficiencies when more than two phases
are present at a given point. Whereas the small-deformation analogon of the model in [63] is
seemingly based on the very natural definition fel as a weighted average of the elastic free energy
densities fαel(ε

α) evaluated in the respective phase-specific strain and thus in particular satisfies
σα =

∂fαel
∂εα

, it does generally not satisfy σ =
∂fel
∂ε

. In contrast, the effective stress in [74] satisfies
this relation by construction, but in the form in Equation (7.180) does not allow for such an
easy interpretation in terms of phase-specific free energy densities. Even though it was seen in
Equation (7.185) that one can artificially rewrite fel in such a form, the resulting expression is
quite unsatisfactory as it is based on a mixture of a Voigt-Taylor-type stress prediction and a
more quantitative prediction of the strains and does in particular not satisfy σα =

∂fαel
∂εα

.
This should not be misinterpreted as saying that these are bad models, as both achieve a fairly
reasonable extension of the very satisfactory two-phase model to within the highly difficult
multiphase. Nevertheless, their drawbacks have to be kept in mind when choosing between them
for a particular application, and will be inhereted from any extension to more complex physical
situtations. ◇
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7.2.5 Chemo-Elasticity
A more complex situation arises when there is a coupling between the both chemical and elastic
influences and the evolution of a microstructure. Such a situation can arise in a diffusion process
under a simultaneous elastic deformations if the elastic free energy density depends not only
upon the total strain and a phasedependent eigenstrain, but in addition on the concentration
itself, for example if the eigenstrains and/or the stiffness tensors have an additional dependence
upon the concentration vector. In the bulk phases, this leads to a total free energy densities
depending both on the “purely” chemical part fαch(c

α) as well as an additional elastic contribution
fαel(c

α, εα), i.e.

fα(cα, εα) = fαch(c
α
) + fαel(ε

α,cα) = fαch(c
α
) +

1

2
(εα − ε̃α(cα)) ∶Cα

(cα) ∶ (εα − ε̃(cα)). (7.188)

For constructing a phasefield model based on these free energy densities, one again has to choose
how this definition should be extended to within the diffuse interface region, where several phases
coexist. Assuming as before that one wishes to formulate the model purely in terms of the average
concentration c and strain ε, assumed to satisfy

c =
N

∑
α=1

cαhα(φ) and ε =
N

∑
α=1

εαhα(φ), (7.189)

an interpolation of the phase-specific energies fα(cα, εα) in Equation (7.188) of the form

f(φ,c, ε) =
N

∑
α=1

fα(cα, εα)hα(φ) (7.190)

requires an appropriate additional set of conditions for the determination of the phase-specific
quantities (cα, εα)1≤α≤N in terms of φ,c and ε.

Probably the simplest approach is to combine the assumption cα = c, α = 1, ...,N , with one
of the classical mechanical models, i.e. the Voigt-Talyor or Reuss-Sachs appraoch. In the former
case, the assumption of the equality of all strains εα = ε, α = 1, ...,N leads to the total free energy
density

f(φ,c, ε) = fch(φ,c) +
N

∑
α=1

(
1

2
(ε − ε̃α(c)) ∶Cα

(c) ∶ (ε − ε̃α(c)))hα(φ).

The major advantage of this model lies in its particularly simple form, as, assuming the individual
parts are explicit in c, it results in the formula

σ =
∂f

∂ε
(φ,c, ε) =

N

∑
α=1

(Cα
(c) ∶ (ε − ε̃α(c)))hα(φ)

for the average stress and

µ ∶= ∂f
∂c
(φ,c, ε) = ∂fch

∂c
(φ,c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶µch(c)

+
N

∑
α=1

⎛
⎝
− (Cα(c) ∶ (ε − ε̃α(c))) ∶ ∂ε̃

α

∂c
+ 1

2
(ε − ε̃α(c)) ∶ ((ε − ε̃α(c)) ∶ ∂C

α

∂c
)
⎞
⎠
hα(φ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶µel(c,ε)

for the chemical potential, both of which are “fully explicit” in c and ε.
In the latter case, the situation is - similarly to before - slightly more complex due to the
appearence of the derivative of an inverse matrix. As for Equation (7.82), the assumption of
equal stresses σα = σ ∀α leads to the total free energy density

f(φ,c, ε) = fch(φ,c) +
1

2
((ε − ε̃(φ,c)) ∶CRS(φ,c) ∶ (ε − ε̃(c))), ε̃(φ,c) =

N

∑
α=1

ε̃α(c)hα(φ)
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with CRS(φ,c) = (∑
N
α=1S

α
(c)hα(φ))

−1

. From this, the stress calculation is in fact even slightly
simpler than for the Voigt-Talyer model as it now only involves the averaged eigenstrain ε̃(φ,c) =
∑
N
α=1 ε̃

α
(c)hα(φ),

σ =
∂fel
∂ε

(φ,c, ε) = CRS(φ,c) ∶ (ε − ε̃(φ,c)).

The definition of CRS(φ,c) in terms of the inverse of the interpolated compliances gives rise to
the same minor complication already encountered in the calculation of the drivingforce for the
Reuss-Sachs model as

µel(φ,c, ε) =
∂fel
∂c
(φ,c, ε) = −CRS(φ,c) ∶(ε− ε̃(c)) ∶

∂ε̃

∂c
(φ,c)+ 1

2
(ε− ε̃(φ,c)) ∶

⎛
⎝
(ε− ε̃(c)) ∶ ∂CRS(φ,c)

∂c

⎞
⎠
.

By the same argument as for Equation (7.84) with c taking the role of φ, this can again be
replaced by a fully explicit expression in terms of the stresses and the derivatives of the Sα(c)
leading to

µel(φ,c, ε) = −σ(φ,c, ε) ∶
⎛

⎝

∂ε̃

∂c
(φ,c) +

1

2
σ(φ,c, ε) ∶ (

N

∑
α=1

∂Sα(c)

∂c
hα(φ))

⎞

⎠
.

It is clear that, while this model is simple, it will inherit the same drawbacks already discussed
in the chemical and mechanical case above. As a natural extension of the discussion in Section 7.1,
one could instead consider a “grandchem”-type approach with the phase-specific concentrations
cα fixed through equality chemical potentials, i.e.

f(φ,c, ε) =
N

∑
α=1

⎛

⎝
fαch(c

α
) +

1

2
(εα − ε̃α(cα)) ∶Cα

(cα) ∶ (εα − ε̃α(cα))
⎞

⎠
hα(φ)

with (cα)1≤α≤N fixed by either the equality up to a phase-specific multiplier λαe of the chemical
potentials

µα =
∂fαch
∂cα

− (Cα
(cα) ∶ (εα − ε̃α(cα))) ∶

∂ε̃α

∂cα
+

1

2
(εα − ε̃α(cα)) ∶ ((εα − ε̃α(cα)) ∶

∂Cα

∂cα
) (7.191)

or the equality of the µ̃α when using a reduced formulation, where the first purely chemical
distribution will be designated by µαch and the second one by µαel. The complexity of such a
model depends heavily upon the particular mechanical model this is combined with.

The Voigt-Taylor Case

The simplest situation arises if the εα are, as in the Voigt-Taylor model, all assumed to the be
equal to the average strain ε. Even though the determination of the mechanical stress does then
require the knowledge of the c̃α, the only unknown parameter for the evaluation of the chemical
potentials are the cα,

µα = µαch − (Cα
(cα) ∶ (ε − ε̃α(cα))) ∶

∂ε̃α

∂cα
+

1

2
(ε − ε̃α(cα)) ∶ ((ε − ε̃α(cα)) ∶

∂Cα

∂cα
).

One can therefore proceed in a two-step fashion by first solving for the c̃α as in Section 7.1, the
only difference being that the expressions for the phase-specific chemical potentials become some-
what more complex due to the additional - but known as a function of cα - elastic contributions.
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More precisely, with

∂(µαel ⋅ ζ
α
)

∂cα
⋅χα =

∂

∂cα
⎛

⎝
−σα(cα, εαel) ∶ (

∂ε̃α

∂cα
⋅ ζα) +

1

2
(εαel ∶ (

∂Cα

∂cα
⋅ ζα) ∶ εαel)

⎞

⎠
⋅χα

= −σα ∶ (
∂2ε̃α

∂(cα)
2
∶ (ζα ⊗χα)) − (

∂σα

∂cα
⋅χα) ⋅

∂ε̃α

∂cα
⋅ ζα

+
1

2
εαel ∶ (

∂2Cα

∂(cα)
2
∶ (ζα ⊗χα)) ∶ εαel − ((

∂Cα

∂cα
⋅ ζα) ∶ εαel) ∶ (

∂ε̃α

∂cα
⋅χα),

or, using
∂σα

∂cα
⋅ dcα = −Cα ∶ (∂ε̃

α

∂cα
⋅ dcα) + (

∂Cα

∂cα
⋅ dcα) ∶ εαel (7.192)

for replacing the derivative of the stress w.r.t. cα, one obtains the formula

∂2fαel

∂(cα)
2
∶ (ζα ⊗χα) =

1

2
εαel ∶ (

∂2Cα

∂(cα)
2
∶ (ζα ⊗χα)) ∶ εαel −σ

α
∶ (

∂2ε̃α

∂(cα)
2
∶ (ζα ⊗χα))

− ((
∂Cα

∂cα
⋅χα) ∶ εαel) ∶ (

∂ε̃α

∂cα
⋅ ζ) − ((

∂Cα

∂cα
⋅ ζα) ∶ εαel) ∶ (

∂ε̃α

∂cα
⋅χα)

+ (
∂ε̃α

∂cα
⋅χα) ∶ Cα ∶ (∂ε

α

∂cα
⋅ ζα)

(7.193)

for characterizing the second derivative of the mechanical contribution to the free energy density
with respect to the phase-specific concentration.
Once the cα have been determined, the evaluation of the stress σ is then straightforward.
Remark 161. This can nevertheless exacerbate the issues already discussed in Remark 104 when
considering the cα as functions of the chemical potential, since any additional contribution further
decreases the likelyhood of being able to perform the conversion from (µ, ε) to cα explicitly. ◇

In terms of the driving force ∂f
∂φα

for the phasefield equation, it is clear that, due to the choice
εβ = ε, this approach entails very little changes with respect to the previous considerations and
one has

∂f

∂φα
=

N

∑
β=1

(fβch(c
α
) +

1

2
(ε − ε̃β) ∶ Cβ ∶ (ε − ε̃β) −µ ⋅ cβ)∂h

β

∂φα
.

The Reuss-Sachs Case

In contrast (unless is no dependence on cα in fαel), using a Reuss-Sachs-type approach already
entails some notable complications, since the defining requirement σα = σ for some σ on the
phase-specific stresses σα is now fixed in terms of system depending on two primal unknowns
(εα,cα) and one dual one in terms of σ,

σα = Cα
(cα) ∶ (εα − ε̃α(cα))

!
= σ. (7.194)

One can therefore not proceed in a sequential fashion as in the Voigt-Taylor case and instead
has to consider the full coupled chemo-mechanical system simultaneously.

Considering for simplicity an a priori reduced formulation and reusing the notation Pp for
the indices of those phases with hα(φ) > 0, the basic structure of a Newton-step on the full
coupled system is of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎜
⎜
⎜
⎜

⎝

diag (
∂µ̃α

∂c̃α
)α∈Pp

⎛

⎜

⎝

−I
⋮

−I

⎞

⎟

⎠

( h1I ⋯ hN I ) 0

⎞

⎟
⎟
⎟
⎟

⎠

⎛

⎜

⎝

diag (
∂µ̃α

∂εα
)α∈Pp

0

0 0

⎞

⎟

⎠

⎛

⎝

diag ( ∂σ
α

∂c̃α
)α∈Pp

0

0 0

⎞

⎠

⎛

⎜
⎜
⎜
⎜

⎝

diag ( ∂σ
α

∂εα
)α∈Pp

⎛

⎜

⎝

−I
⋮

−I

⎞

⎟

⎠

( h1I ⋯ hN I ) 0

⎞

⎟
⎟
⎟
⎟

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎝

(δc̃α)α∈Pp
µ̃

⎞

⎠

⎛

⎝

(δεα)α∈Pp
σ

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟

⎠

=

⎛

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎝

( − µ̃α)α∈Pp
rc̃

⎞

⎠

⎛

⎝

( −σα)α∈Pp
rε

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟

⎠

,
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i.e. a system consisting of two generalized saddle-point problems98 coupled by two very sparse
off-diagonal blocks.
In addition to the part ∂2fα

∂(cα)2 expressed in Equation (7.193), from Equation (7.191), a variation
dεα of the phase-specifc strain leads to the variation

∂µαel
∂εα

∶ dεα = −(Cα(cα) ∶ dεα) ∶ ∂ε̃
α

∂cα
+ dεα ∶ (εαel ∶

∂Cα

∂cα
) = dεα ∶

∂σα

∂cα
(7.195)

of the elastic contribution to the chemical potential, whereas, by the phase-specific stress-strain
relationship, one trivially has ∂σα

∂εα
= Cα.

As both diagonal subproblems are themselves highly sparse with a known block-diagonal
substructure in the “primal” part, it is natural to try to make use of this knowledge by using a
block-factorization based approach. There are three relatively obvious choices for doing so.
The first two are to start either analogously to the purely chemical or the purely mechanical
case99, i.e. by performing a block-elimination step either in terms of the inverse of the full
chemical or mechanical saddle-point problems. The principle advantage of this approach is that,
from an implementation point of view, this semi-sequential treatment allows maintaining at
least some of the modularity from the simpler setting whithout an explicit coupling between
the chemical and mechanical parts. Its major disadvantage is that since both system containg a
coupling between all phases due to the sum-constraint on the c̃α resp. the εα, the first elimination
leads to a loss of the remaining block-diagonal structure in the respective other subblock. More
precisely, eliminating ((εα)αPp ,σ) in terms of ((c̃α)αPp , µ̃) leads in particular to the subblock
diag (

∂µ̃α

∂c̃α
)
α∈Pp

being replaced by a fully filled matrix, whereas eliminating ((c̃α)αPp , µ̃) in terms

of ((εα)αPp ,σ) has the same effect on the previously block-diagonal part diag (∂σ
α

∂εα
)
α∈Pp

.
This is avoided by the third approach, which consists in eliminating all primal unknowns in
terms of the dual ones, i.e. by performing a block-elimination based on the subblocks

∂2f̃α

∂(c̃α, εα)
2
(
δc̃α

δεα
) = (

∂µ̃α

∂c̃α
∂µ̃α

∂εα
∂σα

∂c̃α
∂σα

∂εα
)(

δc̃α

δεα
) = (

µ̃ − µ̃α

σ −σα
)

for each phase for determining (c̃α, εα) as functions of µ̃ and σ, and thus reducing the problem
to the one of solving a coupled Schur-complement equation for (µ̃,σ). A clear advantage of such
a factorization is that it makes the highest use of the underlying sparsity pattern. A potential
drawback from an implementation point of view is that it is the “most explicitly coupled” of the
three approaches above, and therefore, while likely the most efficient choice, the one which is
the trickiest with respect to code-reusability.

In combination with the Reuss-Sachs model, the dependence of both cβ and εβ on φ leads
to the same two contributions as before, i.e. −µ ⋅cβ from the chemical part and −σ ∶ εβ from the
chemical part,

∂f

∂φα
=

N

∑
β=1

(fβch(c
α
) +

1

2
(ε − ε̃β) ∶ Cβ ∶ (ε − ε̃β) −µ ⋅ cβ −σ ∶ εβ)∂h

β

∂φα
.

Remark 162. From similar calculations as before, it also follows that the important properties
µ =

∂f
∂c

and σ =
∂f
∂ε

still hold with σ and µ as defined above, despite the dependence of the

98The more standard saddle-point structure could again be recovered by “undoing” the division by hα in the
upper lines of each of the subblocks.

99The procedure outlined above essentially being a nonlinear (in the cα) variation of the latter approach which
does, after performing the linearization in the δcα, reduce to the same resulting set of equations.
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phase-specific quantities on both c and ε. For the chemical potential, this follows from

∂f

∂c
=∑

α

(
∂fα

∂cα
⋅
∂cα

∂c
+
∂fα

∂εα
∶
∂εα

∂c
)hα(φ) =∑

α

((µ + λαe) ⋅
∂cα

∂c
+σ ∶

∂εα

∂c
)hα(φ)

combined with e ⋅ ∂c
α

∂c
=
∂(e⋅cα)
∂c

= ∂1
∂c

= 0 as well as, after extracting the phase-independent terms
out of the sums, ∑α

∂cα

∂c
hα = ∂c

∂c
and ∑α

∂εα

∂c
hα = ∂ε

∂c
= 0. The calculation for the stresses is

completely analogous. ◇
Remark 163. As the “mechanical” subsystem is linear in both the εα and σ, yet another alter-
native for solving this system is to proceed in the same manner as for the original description of
the Reuss-Sachs model and eliminate the the εα as functions of the cα and σ before performing
the linearization. This first leads to

εα(cα,σ) = Sα(cα) ∶σ + ε̃α(cα),

and, combining this with the sum-constraint on the εα, to the Schur-complement system

ε =
N

∑
α=1

εα(cα,σ)hα(φ) = S(φ, (cα)1≤α≤N) ∶σ + ε̃(φ, (cα)1≤α≤N)

for σ, where ε̃(φ, (cα)1≤α≤N) = ∑α ε̃
α
(cα)hα(φ). It follows that

σα(φ, (cα)1≤α≤N , ε) = σ(φ, (cα)1≤α≤N , ε) = CRS(φ, (c
α
)1≤α≤N) ∶ (ε − ε̃(φ, (cα)1≤α≤N))

and thus
εα − ε̃α(cα) = εαel(φ, (c

α
)1≤α≤N , ε) = S

α
(cα) ∶σ(φ, (cα)1≤α≤N , ε),

the only difference to the purely mechanical case being that σ now in addition depends on all
the (cα)

1≤α≤N . Reinserting these expressions into Equation (7.191) leads to

µα =µαch(c
α
) − (Cα

(cα) ∶ (εα − ε̃α(cα))) ∶
∂ε̃α

∂cα
+

1

2
(εα − ε̃α(cα)) ∶ ((εα − ε̃α(cα)) ∶

∂Cα

∂cα
)

=µαch(c
α
) −σ(φ, (cα)1≤α≤N , ε) ∶

∂ε̃α

∂cα

+
1

2
(Sα(cα) ∶σ(φ, (cα)1≤α≤N , ε)) ∶

⎛

⎝
(Sα(cα) ∶σ(φ, (cα)1≤α≤N , ε)) ∶

∂Cα

∂cα
),

and thus a system in the cα alone.
A subsequent linearization for dealing with the nonlinearity in cα will then leads to essentially
the same system as obtained above by linearization first and then performing a block-elimination
of the mechanical quantities in terms of c̃α and µ̃.

◇
The Jump-Condition Based Formulation

Finally, if there are notable differences in the mechanical behavior of the different phases, it may
be beneficial to complement the conditions on the chemical potentials with a mechanical model
as in Section 7.2.2 or 7.2.4.
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The Two-Phase Case In the two-phase case, the simplest choice is to, as in Equation (7.88),
impose ε1(ε,a) = ε − h2(φ)(a⊗n)S and ε2(ε,a) = ε + h1(φ)(a⊗n)S , and to fix a through the
additional condition

rσ ∶= Jσα(cα, εα)K12
⋅n = (σ2

(c2, ε2
) −σ1

(c1, ε1
)) ⋅n

!
= 0. (7.196)

Since the εα are are both given in terms of a simple explicit expression in terms of ε and a,
it is clearly convenient to rewrite the system consisting of Equation (7.196) and the equality of
the (reduced) chemical potentials as functions of (cα, µ̃) and a instead of the εα themselves. A
Newton-step on this system consists in solving

⎛
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

∂µ̃1

∂c̃1 0 −I

0 ∂µ̃2

∂c̃2 −I
h1I h2I 0

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∂µ̃1

∂a
∂µ̃2

∂a
0

⎞
⎟
⎟
⎠

( ∂rσ
∂c̃1

∂rσ
∂c̃2 0 ) ∂rσ

∂a

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎝

δc̃1

δc̃2

µ̃

⎞
⎟
⎠

δa

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

⎛
⎜
⎝

−µ̃1

−µ̃2

rc̃

⎞
⎟
⎠

rσ

⎞
⎟
⎟
⎟
⎠

, (7.197)

and thus a relatively simple addition to the purely chemical problem100. In addition, from
Equation (7.195) together with the expressions for ε1 and ε2, it follows immediately that the
∂µ̃α

∂a
are characterized by

∂µ̃1

∂a
= −h2

∂(σ1(c̃1,a) ⋅n)

∂c̃1
and

∂µ̃2

∂a
= h1

∂(σ2(c̃2,a) ⋅n)

∂c̃2
,

whereas the remaining new entries are given by

∂rσ

∂c̃1
= −

∂(σ1(c1,a) ⋅n)

∂c̃1
and

∂rσ

∂c̃2
= +

∂(σ2(c2,a) ⋅n)

∂c̃2

as well as the matrix
∂rσ
∂a

= n ⋅ (h2
(φ)C1

(c1
) + h1

(φ)C2
(c2

)) ⋅n

already used in Section 7.2.2 in a non-incremental form in a.

Remark 164. It can be noted that this matrix is, after “undoing” the various divisions by the
h-functions (i.e. after a multiplication of the first two rows with h1 and h2 respectively and
the fourth one by h1h2 symmetric, as is to be expected from the variational characterization
underlying the equality of the chemical potentials as in [25] (see Section 7.1) and the continuity
condition on the stresses as proposed in [51] (see Section 7.2.2). ◇

Even though the coupling of the local chemical and mechanical equilibrium conditions now
implicitly defines cα and the εα as functions of the four given parameters (φ,c, ε,n), the usual
calculations show that this does not really affect the previous contributions in the separate
chemical and mechnical case. Firstly, for the driving force, one has

∂f

∂φα
=∑

β

fβ(cβ , εβ)
∂hβ

∂φα
+∑

β

∂fβ

∂cβ
⋅
∂cβ

∂φα
+
∂f

∂εβ
∶
∂εβ

∂φα
hβ .

The summation over the first term in the second sum leads as previously to ∑β −µ ⋅ cβ
∂hβ

∂φα
. The

last term consists as in Section 7.2.2 of two contributions, one given by the explicit dependence
of the definitions of ε1 − h2(φ)(a⊗n)S and ε2 + h1(φ)(a⊗n)S on φ and the other one due to
100Some points regarding potential solution strategies will be discussed in relation with the multiphase formu-
lation.
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the implicit dependence of a on φ. The latter one cancels as the vanishing of the normal stress
jump ensures that ∑β

∂fβ

∂a
hβ = 0, whereas the first one results in

h1σ1
∶ (a⊗n)S(−

∂h2

∂φα
) + h2σ2

∶ (a⊗n)S
∂h1

∂φα
.

Using (a⊗n)S = ε2 − ε1, h1 +h2 = 0 and ∂h1

∂φα
= − ∂h

2

∂φα
, this expression can, as in Section 7.2.2, be

rewritten into a more pleasant form as ∑β −σ ∶ εβ
∂hβ

∂φα
, leaving the final expression

∂f

∂φα
=∑

β

(fβ(cβ , εβ)
∂hβ

∂φα
−µ ⋅ cβ −σ ∶ εβ)

∂hβ

∂φα
.

The remaining contribution to the phasefield equation through ∂f
∂n

can also directly be taken
from Equation (7.99), since, even though the cα now also depend on n, one has

∑
β

∂fβ

∂cβ
⋅
∂cβ

∂n
hβ =∑

β

(µ + λβe) ⋅
∂cβ

∂n
hβ = µ ⋅∑

β

∂cβ

∂n
hβ = µ ⋅

∂(∑β c
βhβ)

∂n
= µ ⋅

∂c

∂n
= 0

Finally, making use of the analogous arguments (and in particular ∂f
∂a

= 0), one can further verify
that µ and σ continue to satisfy µ =

∂f
∂c

and σ =
∂f
∂ε

.

The Multiphase Case Extending the two-phase model above to a multiphase setting is again
a highly non-trivial task as it inherits the same difficulties already encountered in the purely
mechanical setting in Section 7.2.4 and will only be discussed for the two models in [62] and [63].
The simplest to extend is the one based on a common normal vector as the model was seen to
essentially preserve the pleasant mathematical properties from the two-phase case. Using the
jump-vector based reformulation with εα = ε−(aα⊗n)

S
, the system to be solved is obtained by

complementing the chemical conditions with the equality of the phase-specific normal stresses

σα(cα, εα) ⋅n = n ⋅ (Cα(cα) ∶ (ε − (aα ⊗n)
S
− ε̃α(cα)))

!
= σ ⋅n

with the yet to be determined total normal stress σ ⋅n. For the application of the basic Newton-
scheme, it is again convenient to explicitly make use of the expressions for the εα in terms of the
jump-vectors. In the simpler reduced form, this leads to the system

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎜
⎜
⎜
⎜

⎝

diag (
∂µ̃α

∂c̃α
)α∈Pp

⎛

⎜

⎝

−I
⋮

−I

⎞

⎟

⎠

( h1I ⋯ hN I ) 0

⎞

⎟
⎟
⎟
⎟

⎠

⎛

⎜

⎝

diag (
∂µ̃α

∂aα
)α∈Pp

0

0 0

⎞

⎟

⎠

⎛

⎜

⎝

diag (
∂(σα ⋅n)

∂c̃α
)α∈Pp

0

0 0

⎞

⎟

⎠

⎛

⎜
⎜
⎜
⎜

⎝

diag (
∂(σα ⋅n)

∂aα
)α∈Pp

⎛

⎜

⎝

−I
⋮

−I

⎞

⎟

⎠

( h1I ⋯ hN I ) 0

⎞

⎟
⎟
⎟
⎟

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎛

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎝

(δc̃α)α∈Pp
µ̃

⎞

⎠

⎛

⎝

(δaα)α∈Pp
σ ⋅n

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟

⎠

=

⎛

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎝

( − µ̃α)α∈Pp
rc̃

⎞

⎠

⎛

⎝

( −σα ⋅n)α∈Pp
ra

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟

⎠

,

where, from Equation (7.195) and dεα = −(daα ⊗ n)S , one has ∂µ̃α

∂aα
= −∂σ

α⋅n
∂c̃α

and rσαn ∶=

σ ⋅n −σα ⋅n, while ra = ∑Nα=1 a
αhα(φ) is the error in the sum-constraint on the average of the

jump-vectors.

Remark 165. This system clearly has the same basic structure as the one in the Reuss-Sachs
case with the aα replacing the εα and in particular the sum-constraint ∑α aαhα = 0 replacing
∑α ε

αhα = ε. Even though it is in principle somewhat easier to solve due to the smaller number
of unknowns in the aα and σ ⋅n as compared to the full values of εα and σ, the considerations
underlying its solution are essentially the same as for the Reuss-Sachs based model. ◇
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The driving force follows by combining the standard argument for the chemical part with the
arguments preceding Equations (7.170) and (7.171)101 to be given by

∂

∂φα
∣
n
f(φ, ε) =∑

β

(fβel −µ ⋅ c
β
+ (σβ ⋅n) ⋅ aβ)

∂hβ

∂φα
, (7.198)

or, using εβ = ε − (aβ ⊗n)
S
, by

∂fel
∂φα

∣
n
=

N

∑
β=1

(fβel(ε
β) −µ ⋅ cβ −σ ∶ εβ)

∂hβ

∂φα
. (7.199)

The differentiation with respect to n leads to the same result as in Equation (7.172), since,
despite the additional dependence of the cβ on n, their total contributions drop out again due
to the relation satisfied with respect to the chemical potential. Finally, µ and σ as obtained in
the solution of the local quasi-equilibrium conditions above still satisfy, despite the additional
implicit dependencies, µ =

∂f
∂c

and σ =
∂f
∂ε

102.

The natural extension of the model by Schneider [61] is obtained by simply admitting an
additional dependence on the cα in the normal continuity conditions

JσαKRα ⋅nRα
= (σα(cα, εα) −σR

(cR, ε1
)) ⋅nRα !

= 0

with respect to the reference phase combined with the previous definition of the phase-specific
strains εR = ε−∑β≠R (aRβ⊗nRβ)

S
hβ(φ) and εα = εR+(aRα⊗nRα)

S
, α ≠ R in Equation (7.174).

In terms of a Newton-step for the cα and aRα, one has, from Equation (7.195), to consider the
additional increments

∑
β≠R

∂µ1
el

∂aRβ ⋅ δa
Rβ

= − ∑
β≠R

δaRβ
⋅ hβ

∂(σR ⋅nRβ)

∂cR
(7.200)

in the chemical potential for the reference phase, and

∑
β≠R

∂µαel
∂aRβ ⋅ δa

Rβ
= − ∑

β≠R
δaRβ

⋅ hβ
∂(σα ⋅nRβ)

∂cα
+ δaRα

⋅
∂(σα ⋅nRα)

∂cα

=δaRα
⋅ (1 − hα)

∂(σα ⋅nRα)

∂cα
− ∑
β≠R,α

δaRβ
⋅ hβ

∂(σα ⋅nRβ)

∂cα

(7.201)

for α ≠ R, as well as the increments

∂(σα ⋅nRα)

∂cα
⋅ δcα −

∂(σR ⋅nRα)

∂cR
⋅ δcR (7.202)

in the normal stress jumps due to the changes in the concentration, whereas the expression for
∑β≠R

∂(σα−σR)⋅nRα

∂aRβ ⋅ δaRβ is, by linearity in the aRβ and Equation (7.176) given by

(nRα
⋅ ((1 − hα)Cα + hαCR

) ⋅nRα)) ⋅ δaRα
− ∑
β≠R,α

hβ(nRα
⋅ (Cα − CR

) ⋅nRβ
) ⋅ δaRβ . (7.203)

101I.e. essentially a combination of the common normal stress for all phases and the constraint equation
∑α aαhα = 0.
102For example for µ, the potentially problematic new contribution could arise from the dependency of aα on c.
Since ∑α σα ∶( ∂a

α

∂ci
⊗n)hα = (σ ⋅n) ⋅∑α ∂aα

∂ci
hα = ∂∑α aαhα

∂ci
= 0 by the constraint ∑α aαhα = 0, this dependency

drops out.
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The total system therefore has a quite different structure from the one based on using a common
normal vector. In particular, it consists of a fully filled (1,2) and (2,2)-block by Equations
(7.201) and (7.203). For this reason, the only sparsity pattern which can be made use of lies
in the chemical subblock, i.e. two reasonable alternatives to solving the full system is to either
perform a block-elimination on the concentration increments in terms of the jump-vectors and
the chemical potential or a full block-elimination on the chemical quantities in terms of the
jump-vectors.

The driving force calculation is, except for the standard additional term −µ ⋅ cβ essentially
the same as the one for Equations (7.170) and (7.171), leading to

∂

∂φα
∣
nαβ

f(φ, ε) =∑
β

(fβ −µ ⋅ cβ −σ ∶ εβ)
∂hβ

∂φα
+ ∑
β≠R

hβ((σβ −σ) ⋅nRβ
) ⋅
∂aRβ

∂φα
∣
nαβ

. (7.204)

As before, there is a remaining dependence on the ∂aRβ

∂φα
. For a full evaluation, one therefore

has to obtain the ∂aRβ

∂φα
∣
nαβ

from a linearization of the local equilibrium conditions103. The non-
variational structure of the equilibrium conditions with respect to the a is also the reason why,
similarly to the relation σ =

∂fel
∂ε

not holding within multiphase regions, the “chemical potential”
obtained from the solution of the local conditions above does not actually satisfy µ =

∂f
∂c

104.
As both points lead to notable complications and there is already a variational consistency in
terms of σ and ∂f

∂ε
, the pragmatic choice is again to ignore this difficulty within the multiphase

regions105.

103At least assuming that the reference phase does not change as there will usually not be differentiability at
these points. Differentiating the equilibrium conditions µ̃β = µ̃ for all β together with the sum-constraint on the
c̃β and (σα −σR) ⋅nRβ = 0 for all β ≠ R with respect to φα with the normal vectors kept fixed one obtains

∂µ̃β

∂c̃β
∂c̃β

∂φα
∣
nαβ

+ ∂µ̃β

∂aRδ
∂aRδ

∂φα
∣nαβ −

∂µ̃

∂φα
∣nαβ = ∂µ̃

β

∂εβ
∶ ∑
δ≠R

(aRδ ⊗nRδ)
S

∂hδ

∂φα

as well as ∑β hβ ∂c̃
β

∂φα
∣
nαβ

= −∑β cβ ∂h
β

∂φα
from the chemical part which needs to be combined with the conditions

− ∂σ
R ⋅nRβ

∂c̃R
∂c̃R

∂φα
∣
nαβ

+ ∂σ
β ⋅nRβ

∂c̃β
∂c̃β

∂φα
∣
nαβ

+ ∑
δ≠R

∂(σβ −σR) ⋅nRβ

∂aRδ
∂aRδ

∂φα
∣
nαβ

= − (∂σ
β ⋅nRβ

∂εβ
− ∂σ

R ⋅nRβ

∂εR
) ∶ ∑
δ≠R

(aRδ ⊗nRδ)
S

∂hδ

∂φα

for all β ≠ R.
If not based on an interpolation function satisfying ∂hδ

∂φα
= 0 if hδ(φ) = 0, there is a slight additional complication

here as compared to the original solution procedure for the local equilibrium conditions, since, even though the
coupling in the unknowns is still only through those phases with hβ(φ) > 0, this is not true for the right-hand
sides.
104Instead, one has

∂f

∂c
=∑
α

(µ + λαe)∂c
α

∂c
hα +∑

α

σα ∶ ∂ε
α

∂c
hα.

While the first term again simplifies to µ, the second one maintains a dependence of the jump vectors on the
total concentration through

−∑
α
∑
β≠R

hαhβ(σα ⋅nRβ) ⋅ ∂a
Rβ

∂c
+ ∑
α≠R

hα(σα ⋅nRα) ⋅ ∂a
Rβ

∂c
= − ∑

β≠R
hβ(σ ⋅nRβ) ⋅ ∂a

Rβ

∂c
+ ∑
α≠R

hα(σα ⋅nRα) ⋅ ∂a
Rβ

∂c

= ∑
α≠R

hα((σα −σ) ⋅nRα) ⋅ ∂a
Rβ

∂c
.

105Recall that within two-phase regions, there is no such issue.
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Remark 166. One can in principle also construct a chemo-mechanical extension of the model by
Tschukin by e.g. simply adding a concentration dependence in his expression

1

2

N

∑
α=1

⎛

⎝
Σα

(cα) ∶ (ε − ε̃α(cα)) −
1

2
∑
β≠α

JΣKαβ(cα,cβ) ∶ S̄αβnn(cα,cβ) ∶ JΣKαβ(cα,cβ)hβ(φ)
⎞

⎠
hα(φ)

for the mechanical free energy density106 with the cα determined based on the usual chemical
equilibrium condition and then defining σ =

∂f
∂ε

as in [74].
As one of the motivations of the expressions in [74] seems to have been to obtain a fairly explicit
expression of the underlying free energy in terms of the parameters (φ,∇φ, ε), this is somewhat
contrary in spirit as the cα would then be defined implicitly as cα = cα(φ,∇φ,c, ε) and has not
been investigated in more detail107. ◇

106As discussed previously, the term in the double-summation could also be rewritten as

(JΣKαβ(cα,cβ) ⋅nαβ) ⋅ (nαβ ⋅ C̄αβ(cα,cβ) ⋅nαβ)
−1
⋅ (JΣKαβ(cα,cβ) ⋅nαβ)

for avoiding the use of the pseudo-inverse S̄αβnn.
107It may be interesting to do so though. In this regard, it should be noted that this implicit dependence is,
again by the variational characterization of the cα, not really problematic here. In particular, the basic form of
the expression for the final stress in Equation (7.181) would be maintained, since, despite the a priori additional
appearance of the terms ∂f

∂cα
⋅ ∂c

α

∂ε
, these would again drop out in the sum making use of the equality of the

chemical pontials and ∑α cαhα = 1. For similar reasons, most of the description in Section 7.2.4 is expected to
carry over without major modifications.
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Chapter 8

Summary

The focus of this thesis has been on some primarily practical implications of different constraints
arising in phasefield based models.
Chapter 6 discussed several consequences of the Gibbs-Simplex constraint on the phasefield
values. Even though the constraint itself is relatively simple, it has far-reaching numerical
consequences. One of these was studied in detail in terms of the spatial discretization for a
simple but prototypical two-phase problem, illustrating some interesting relations between the
numerical interface width as compared to the parameter ε and the associated discrete energetics.
The central point of Section 6.3 is, besides a short summary of some by now mostly standard
background such as the LROP approach from [40], the description of a simple local projection
algorithm in combination with the mobility-matrix based dynamics as in [68]. Even though
similar algorithms are likely known in the quadratic programming literature, the author is not
aware of any specific source with an explicit description adapted to the particular nature ofM1.

In constrast, Chapter 7 considers coupled problems with “internal” phase-specific variables
in a chemical, mechanical and chemo-mechanical setting. Subsections 7.1.2 and 7.1.3 are essen-
tially introductory in nature, adding some additional details to the very elegant description of
the quantitative free energy model as described in [25]. This is then compared in Subsection
7.1.4 with the now more commonly used description in [56] and [19]. This discussion is in a
sense continued in Sections 7.1.5 and 7.1.5, where some practical implications of the choice of
“primary” unknown in terms of the concentration or the chemical potential are discussed. In
particular, it was argued that, while the latter description can be highly efficient for particularly
simple free energy densities, the former approach should be preferred in the general case. Finally,
Subsection 7.1.6 considered an extension of the model to a non-isothermal situation, illustrating,
among other things, the pleasant interplay of the variational definitions on two classical thermo-
dynamic relations.
A closely related modeling approach in the mechanical case is discussed in Section 7.2. As the
conditions fixing the phase-specific quantities is more complex in this case, various different for-
mulations have been suggested in the literature even in the two-phase case. Some advantages and
disadvantages of these formulations as well as their links are summarized in Subsections 7.2.2
and 7.2.3 as a basis for the analysis of some of the difficulties encountered by three extensions
to the multiphase setting by Schneider and Tschukin in [63], [62] and [74]. As a final topic,
Subsection 7.2.5 outlined several practical and theoretical implications obtained by coupling the
chemical model from Section 7.1 with the various mechanical models.

1There are also surprisingly few explicit descriptions of the Euclidian projection onto the Gibbs-simplex as
many algorithms are instead designed to handle weighted projections subject to general equality and inequality
constraints. Nevertheless, it is clear that the weight being given by the identity, the equality constraint by e ⋅φ = 1
and the inequality constraints by φα ≥ 0 allows for some significant simplifications as compared to the general
case.
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The central aspect of Chapter 7 is not the descriptions of the various models themselves,
which are for the most part either well-known or relatively straightforward extensions of already
known approaches, but to sensitize to and analyze some of the issues which can arise due to
the introduction of more complex models, in particular in the presence of additional “internal”
unknowns in terms of phasespecific quantities. Since the advantages of such models for the ap-
proximation quality of the related sharp interface modes even in the presence of artificially large
interfaces are by now clearly recognized, it is to be expected that their use will become even more
widespread in the years to come. As seen on the chemical and mechanical examples considered
in Sections 7.1 and 7.2, there are some pitfalls when trying to combine such approaches with the
very common two-step formalism for the derivation of new phasefield models in the literature.
On the one hand, the discussion of the multiphase mechanical model in [63] illustrated that
independently postulating a phasefield functional and a set of equations to be satisfied by an
additional set of unknowns besides the phasefield itself entails the risk of introducing an incom-
patibility with the standard variational approach. Even though this is not necessarily a problem
in itself as the resulting model may still deliver very accurate results, one has to be careful about
invoking an intuitively very pleasant but ultimately nonexistent energy minimization principle
for its justification.
On the other hand, Chapter 7 also highlighted potential fallacies arising from the derivation of
the drivingforces for the phasefield equation through a purely formal partial differentiation of
a given functional with respect to φ, in particular also in combination with potential changes
of primary unknowns. The questions raised by an interdependence between various unknowns
and equations are of course well-understood and have mostly been answered a long time ago.
Unfortunately, the fact that this allow to justify such a procedure for many of the earlier and
simpler models, this seems to have lead to a fairly widespread misconception in the more ap-
plied phasefield community that this is simply “what needs to be done” in order to minimize
or maximize the underlying functional. One of the purposes of the discussion of the models is
therefore also to stress the importance of underlying variational principles or the lack thereof and
the additional drivingforce contributions arising due to both local constraints imposed on the
phasespecific quantities and global constraints imposed e.g. through a global mass-conservation
principle. It is the author’s hope that the detailed consideration of some of these issues in the
very applied context of Chapter 7 may help to clear up some a priori confusing but ultimately
clear-cut questions, in particular for young researches newly discovering the fascinating domain
of phasefield modeling.
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Appendix A

Calculation of the Discrete
One-Dimensional Phasefield Energy
and Interface Width

This section will provide some more details on the calculations underlying the one-dimensional
discrete profile in subsection 6.2.3, and in particular the expressions (repeated here for conve-
nience)

E(N) =
4γ

π2ε
N +

εγ

(∆x)2

1

2
cot (

κN

2
) sin(κ) =

4γ

π2ε

⎛

⎝
N + cot (

κN

2
)

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1

⎞

⎠
(A.1)

for the total energy,

N−1

∑
i=1

1

ε
w(φi) =

8

π2ε
γ
⎛

⎝

1

4
(1 − cot2 (

κN

2
))N +

1

2
cot (

κN

2
) cot(κ)

⎞

⎠
(A.2)

for the total contribution by the bulk potential in Equation (6.42) and

N−1

∑
i=1

εai =
8

π2ε
γ
⎛

⎝

1

4
(1 + cot2 (

κN

2
))N +

1

2
cot (

κN

2
)

1

sin(κ)

⎞

⎠
, (A.3)

for the total contribution by the gradient energy in Equation (6.43) as well as the actual number
of interface points from Equation (6.47),

N = Nmin =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

2

κ
tan−1

⎛
⎜
⎝

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥

. (A.4)

A.1 A Quick Recap of the First-Order Analysis
As seen in Subsection 6.2.3, fixing for convenience φ0 = 0 as the last bulk-point on the left and
φN = 1 as the first bulk-point on the right, the discrete first-order optimality condition (6.31)
within the interface (i.e. at all points 1 ≤ i ≤ N − 1 for which the strict inequality 0 < φi < 1
holds) together with imposing the conditions φ0 = 0 and φN = 1 at the transition to the bulk
implies

φi =
1

2
−

1

2
cos(κi) +

1

2
cot (

κN

2
) sin(κi) (A.5)
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with κ determined by

cos(κ) =1 −
8(∆x)2

π2ε2
= 1 −

1

2
(

4∆x

πε
)

2
(A.6)

sin(κ) =

√

1 − (1 −
8(∆x)2

π2ε2
)2 =

√

2
8(∆x)2

π2ε2
− (

8(∆x)2

π2ε2
)

2
=

8(∆x)2

π2ε2

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1. (A.7)

Remark 167. Note that up to this point, this is simply a consequence of the linear difference
equation satisfied wihin the interface and the choice of an (in total) increasing profile going from
0 on the left to 1 on the right and will up to this point work for an arbitrary integer N > 0. In
order to select the correctN , one still needs take both the underlying demand of a minmimization
of the total energy ∆xE(N) = ∑

N−1
i=1 (εai +

1
ε
wi)∆x and the constraints 0 ≤ φi ≤ 1 on the profile

into account. ◇
The positivity constraint φ1 ≥ 0 leads, within the relevant range1, to the restriction

N ≤ Nmax = ⌈
π

κ
⌉ (A.8)

on the total number of points, whereas the sign-constraint on the multipliers µ± for the box-
constraint 0 ≤ φi ≤ 1 lead to the lower bound

N ≥ Nmin ∶= ⌈
π

κ
− 1⌉ (A.9)

.
Comparing the bounds it is obvious that this leaves two potential choices for N . Determining
the optimal profile is therefore not possible based on the first-order necessary condition alone
and requires a more detailed energetic analysis, which is of an inherent interest anyway.

A.2 The Discrete Energetic Analysis
Determining the total energy starting from a given sinusoidal profile is essentially a matter
of a simple integration. The only difficulty is that, unlike in the continous case, the correct
interpretation of this integration here is actually a summation over a set of discrete sinusoidal
values. While this generally leads to - provided one is even able to do this analytically - very
cumbersome expressions, it can be achieved in a very elegant fashion in the solenoidal case by
the use of Lagrange’s trigonometric identities

N−1

∑
i=1

sin(λi) =
1

2
cot(

λ

2
) −

cos (λ(N − 1
2
))

2 sin(κ
2
)

, (A.10)

N−1

∑
i=1

cos(λi) = −
1

2
+

sin (λ(N − 1
2
))

2 sin(λ
2
)

. (A.11)

In fact, a simple differentiation (based on a finite-dimensional vector of φ-values) shows that
the first-order optimality condition as in Equation (6.38) corresponds to the minimization of the
discrete energy function (the fixed factor ∆x essentially being irrelevant for the minimizer, but
of course important from a physical point of view)

∆xE(N) =∆xε
N

∑
i=0

1

2
((
φi − φi−1

∆x
)

2
+ (

φi+1 − φi
∆x

)
2
) +

16∆x

π2ε

N

∑
i=0

φi(1 − φi)

=ε∆x
N

∑
i=1

(
φi − φi−1

∆x
)

2
+

16∆x

π2ε

N−1

∑
i=1

φi(1 − φi)

1By periodicity, significantly larger choices of N would in principle also be possible, but would be related to
transitions involving several sinusoidals, which is obviously energetically unfavorable.
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where the contributions from all i < 0 and i > N vanish due to both the zero gradients and the
vanishing of the w-term at φ ∈ {0,1}.
Based on the variational character of the phasefield Equation (6.31) within the interface, it turns
out that the total energy is significantly easier to evaluate than the bulk potential or gradient
energy contributions themselves. In fact, since

N

∑
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the total energy can equivalently be rewritten as
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With φi = 1
2
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and Lagrange’s trigonometric identities in Equation (A.10), this can be “integrated” due to
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Combined with the choice of orientation for the interface here, i.e. φ0 = 0 and φN = 1, one further
has

φN − φN−1 = (1 − cos(κ))(
1

2
) + sin(κ)(
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and thus
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Based on the half-angle formula
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for the cosine, it follows that c2 =
1+cos(κN)
2 sin(κN) , where κ is independent of N . Combining this with

the addition formulae
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for the sine and cosine, one obtains
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A significant simplification can be obtained due to c2 sin(κN) = 1
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to the bulk. As ε

(∆x)2 (1 − cos(κ)) = 8
π2ε

, this reduces to

E =
4

π2ε
N +

ε

(∆x)2
c2 sin(κ) =

4

π2ε
N +

ε

(∆x)2

1

2
cot (

κN

2
) sin(κ), (A.17)

221



or, inserting the expression sin(κ) = 8(∆x)2
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in Equation (6.46).

The evaluation of the individual contributions through the gradient- and bulk energy contri-
butions is unfortunately a little more tedious than that of the total energy as one cannot directly
make use of the equation itself to eliminate the quadratic terms in φ as in Equation (A.12).
Starting with the somewhat simpler bulk-potential term, one has to evaluate
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The quadratic terms in the sinusoidal function can be eliminated using the basic identities
sin(θ) cos(θ) = 1

2
sin(2θ), sin2

(θ) = 1−cos(2θ)
2

and cos2(θ) = 1+cos(2θ)
2

, leading to

∆x∑
1

ε
wi =

16∆x̄

π2

N−1

∑
i=1

1

4
− (

1

4

1 + cos(2κi)

2
−

1

2
c2 sin(2κi) + c22

1 − cos(2κi)

2
)

=
8∆x̄

π2ε

N−1

∑
i=1

(
1

4
− c22) − (

1

4
− c22) cos(2κi) + c2 sin(2κi).

This is now in a form where Equation (A.10) can be applied, resulting (with λ = 2κ) in

∆x∑
1

ε
wi =

8∆x̄

π2ε

⎛

⎝
(

1

4
−c22)(N−1)−(

1

4
−c22)(−

1

2
+

sin (κ(2N − 1))

2 sin(κ)
)+c2(

1

2
cot(κ)−

cos (κ(2N − 1))

2 sin(κ)
).

Using the addition formulae (A.15) this can further be expanded to

∆x∑
1

ε
wi =

8

π2ε
((

1

4
− c22)(N − 1) + (c22 −

1

4
)( −

1

2
+

1

2
sin(2κN) cot(κ) −

1

2
cos(2κN))

+ c2(
1

2
cot(κ) −

1

2
cos(2κN) cot(κ) −

1

2
sin(2κN))),

or, with the double angle fomulae

sin(2κN) = 2 sin(κN) cos(κN) and cos(2κN) = cos2
(κN) − sin2

(κN), (A.19)
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to

∆x∑
1

ε
wi =

8

π2ε
((

1

4
− c22)(N − 1) +

1

2
(c22 −

1

4
)( − 1 + 2 sin(κN) cos(κN) cot(κ) − cos2

(κN) + sin2
(κN))

+
1

2
c2( cot(κ) − (cos2

(κN) − sin2
(κN)) cot(κ) − 2 sin(κN) cos(κN)))

=
8

π2ε
((

1

4
− c22)(N − 1) + (c22 −

1

4
)( sin(κN) cos(κN) cot(κ) − cos2

(κN))

+ c2( sin2
(κN) cot(κ) − sin(κN) cos(κN))).

Making further progress now requires reintroducing the definition 1
2

cot (κN
2

) of c2. First, the
half-angle formula (A.14) allows modifying the last term to

c2( sin2
(κN) cot(κ) − sin(κN) cos(κN))) =

1

2
(1 + cos(κN))( sin(κN) cot(κ) − cos(κN))).

It further implies on the one hand that

c2 sin2
(κN) =

1

2
sin(κN) +

1

2
sin(κN) cos(κN)

and on the other hand that

c22 −
1

4
=

1

2
c2

1 + cos(κN)

sin(κN)
−

1

4
=

2c2 + 2c2 cos(κN) − sin(κN)

4 sin(κN)
=

2c2 + 2(c2 −
1
2

sin(κN)) − sin(κN)

4 sin(κN)

=
4c2 − 2 sin(κN)

4 sin(κN)
=

c2
sin(κN)

−
1

2
,

and thus the two additional relations

(c22 −
1

4
) sin(κN) = c2 −

1

2
sin(κN)

(c22 −
1

4
) sin(κN) cos(κN) = c2 cos(κN) −

1

2
sin(κN) cos(κN).

Combining these observations, one obtains

∆x∑
1

ε
wi =

8

π2ε
((

1

4
− c22)(N − 1) + (c22 −

1

4
)( sin(κN) cos(κN) cot(κ) − cos2

(κN))

+ c2( sin2
(κN) cot(κ) − sin(κN) cos(κN)))

=
8

π2ε
((

1

4
− c22)(N − 1) − (c22 −

1

4
) cos2

(κN)

+ (c2 cos(κN) −
1

2
sin(κN) cos(κN)) cot(κ)

− c2 sin(κN) cos(κN) + (
1

2
sin(κN) +

1

2
sin(κN) cos(κN)) cot(κ))

=
8

π2ε
((

1

4
− c22)(N − 1) − (c22 −

1

4
) cos2

(κN) + c2 cos(κN) cot(κ)

− c2 sin(κN) cos(κN) +
1

2
sin(κN) cot(κ)).

Again based on the half-angle formula (A.14), it further follows that c2 cos(κN) = c2−
1
2

sin(κN)

and replacing cos2(κN) with 1 − sin2
(κN) leads to the major simplification,

∆x∑
1

ε
wi =

8

π2ε
((

1

4
− c22)N + (c22 −

1

4
) sin2

(κN) + c2 cot(κ) − c2 sin(κN) cos(κN)),

223



and then finally with

(c22−
1

4
) sin2

(κN)−c2 sin(κN) cos(κN) = (c2−
1

2
sin(κN)) sin(κN)−(c2−

1

2
sin(κN) sin(κN) = 0

to the expression

∆x∑
1

ε
wi =

8

π2ε
((

1

4
− c22)N + c2 cot(κ)) (A.20)

for the contributions by the bulk-potential already given in Equation (6.42) resp. (A.2).
The energetic contribution of the gradient energy density term in Equation (A.3) resp. (6.43)
can in principle be recovered by a similarly tedious calculation using a slight variation of the
arguments above, but, as one already disposes of an epression for the total energy and the contri-
bution by the bulk-potential, simply by taking the difference between the expression in Equation
(A.1) and Equation (A.2).

Based on the expression for the total energy in Equation (A.1), it is now an easy matter to
determine the value of N with the lowest interface energy. Taking the difference between the
energies for two successive values of N shows that

E(N + 1) − E(N) =
4

π2ε
+

ε

(∆x)2
(c2(N + 1) − c2(N)) sin(κ),

where c2(N) is defined in Equation (A.13). Based on

c2(N + 1) − c2(N) =
1

2
( cot (

κ(N + 1)

2
) − cot (

κN

2
))

and

cot (
κ(N + 1)

2
) =

cot (κN
2

) cot(κ
2
) − 1

cot (κN
2

) + cot(κ
2
)
,

one has

2(c2(N + 1) − c2(N)) =
cot (κN

2
) cot(κ

2
) − 1

cot (κN
2

) + cot(κ
2
)
− cot (

κN

2
) = −

1 + cot2 (κN
2

)

cot (κN
2

) + cot(κ
2
)

= −
1

sin2 (κN
2

)( cot (κN
2

) + cot(κ
2
))

and therefore

E(N + 1) − E(N) =
4

π2ε
−

ε

2(∆x)2

1

sin2 (κN
2

)( cot (κN
2

) + cot(κ
2
))

sin(κ). (A.21)

This expression is initially decreasing for small N and will eventually start increasing as N passes
the optimal value of N whose zero, treating N as continuous, would be achieved 2 for (see the
discussion preceding Equation (6.40) for details on the elimination of the tan−1)

Ncont =
2

κ
tan−1

(

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1) =

π

κ
− 1. (A.22)

2While this can be shown more rigorously treating N as continuous and considering ∂2E
∂N2 , the monotonicity is

intuitively obvious as very thin interfaces will spread due to the very high gradient energy density whereas very
broad interfaces will contract due to the high bulk energy density. Treating N as continuous, both the actual
zero of the difference and the sign of the second derivative can be found by using tangent half-angle substitution

t = tan (κN
2

) and basic trigonometric identities to be given by t =
√

π2ε2

4(∆x)2 − 1, and therefore the expression in

Equation (A.22). Since the correct “guess” is already available, this calculation is skipped here for shortness.
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In fact, using Equations (A.6) and (A.7) as well as κNcont = π − κ, one has

sin2 (κNcont
2
) = 1 − cos(κNcont)

2
= 1 − cos(π − κ)

2
= 1 + cos(κ)

2
= 1 − 4(∆x)2

π2ε2
= 4(∆x)2

π2ε2
( π2ε2

4(∆x)2 − 1)

and cot (κ
2
) =

1+cos(κ)
sin(κ) =

√
π2ε2

4(∆x)2 − 1 and by Equation (A.22) cot (κNcont
2

) =
√

π2ε2

4(∆x)2 − 1
−1

. It
follows that the denominator in the second term in Equation (A.21) reduces to

4(∆x)2

π2ε2
(
π2ε2

4(∆x)2
− 1)(

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1

−1

+

¿
Á
ÁÀ π2ε2

4(∆x)2
− 1)

Combining this with Equation (A.7), one obtains

E(Ncont + 1) − E(Ncont) =
4

π2ε
−

ε

2(∆x)2

8(∆x)2

π2ε2

√
π2ε2

4(∆x)2 − 1

4(∆x)2

π2ε2
( π2ε2

4(∆x)2 − 1)(
√

π2ε2

4(∆x)2 − 1
−1

+
√

π2ε2

4(∆x)2 − 1)

=
4

π2ε
−

4
π2ε

4(∆x)2

π2ε2
(1 + ( π2ε2

4(∆x)2 − 1))
= 0.

From the global point of view, it follows that the optimal N for enforcing a transition region
compatible with the first-order necessary condition is given by ⌈Ncont⌉ = ⌈π

κ
−1⌉ if π

κ
is not integer

since the lower choice ⌊Ncont⌋ is still in the region where the energy is smaller when adding an
additional point. In contrast, if π

κ
is integer, the energies for both N = ⌊Ncont⌋ and N = ⌈Ncont⌉

coincide, meaning that from a discrete perspective (in N), the choice is indeterminate since both
are energetically optimal.

A.3 The Local Analysis and the Second-Order Conditions
While the analysis in the previous section was primarily concerned with the analysis of the en-
ergetics in terms of the discrete parameter N , this does not exclude the possibility of several
local minima for two successive values of N . This section is therefore more focused on the local
stability in terms of continuous variations of the φi.
As recalled in Section A.1, the two values Nmin ∶= ⌈π

κ
− 1⌉ and Nmax = ⌈π

κ
⌉ together with the

profile in Equation (A.5) define two admissible solutions to the first-order necessary condition
for a local minimizer of the phasefield equation. While it was seen in the previous section that
the lower choice N = Nmin usually is the one with the lower total energy (unless π

κ
is integer, in

which case both energies are equal), this does neither imply that the second choice N = Nmax
is not a local minimizer nor, without further argument, that the profile for N = Nmin is in fact
also a local minimizer and not just a critical point of the energy E . Investigating this question
requires including second-order information. Even though the question of second-order neces-
sary and sufficient conditions for equality- and inequality-constrained problems is a well-studied
one (see e.g. [13] and [46]), due to the fact that the energy E is a quadratic form in φ and
that the bound-constraint 0 ≤ φi ≤ 1 is the only relevant restriction on φ it seems preferable to
argue directly on the equation itself instead of using theorems primarily aimed at more difficult
settings. The following argument is essentially a slight variation and extension of the proof of
the closely related Theorem 16.4 in [54] for quadratic programming problems with linear side
constraints in order to avoid the convexity assumption on the energy in that theorem3.

3As there is a large body of (primarily algorithmic) literature on such indefinite quadratic programming
problems, one could certainly also find theorems specifically adapted to this situation. Since the argument below
is quite instructive for the particular problem considered here, in particular for π

κ
integer, no particular effort

has been made though for finding a specific reference where the required conclusions are stated in a simple and
explicit form.
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As the phasefield energy E is quadratic in φ, the quadratic expansion

E(φ + δφ) = E(φ) + E ′(φ) ⋅ δφ +
1

2
δφ ⋅ E ′′(φ) ⋅ δφ (A.23)

is exact around any given value of φ and for any direction δφ. E ′(φ) is precisely the left-hand
side of by Equation (6.38), such that, if the φ-profile solves the first-order necessary condition,
one has

E
′
(φ) ⋅ δφ =∑

i

( − 2γε
φi+1 − 2φi + φi−1

(∆x)2
+

16

π2ε
γ(1 − 2φi))δφi =∑

i

(µ−i − µ
+
i )δφi,

together with the complementarity conditions µ−i ≥ 0, µ−i = 0 if φi > 0 resp. µ+i ≥ 0, µ+i = 0 if
φi = 1. From this, E(φ + δφ) in any such point can be rewritten as

E(φ + δφ) = E(φ) +∑
i

(µ−i − µ
+
i )δφi +

1

2
δφ ⋅ (E ′′(φ)δφ), (A.24)

where E′′(φ) =∶A is the (constant) matrix characterized by the homogeneous form

(Aψ)i = −2γε
ψi+1 − 2ψi + ψi−1

(∆x)2
−

32

π2ε
γψi. (A.25)

In order to show that a given phasefield profile satisfying the FONC is indeed a local minimizer
(not necessarily strict), what needs to be shown is that

E(φ + td) − E(φ) = t∑
i

(µ−i − µ
+
i )di +

1

2
t2d ⋅ (E ′′(φ)d) ≥ 0 (A.26)

for all admissible directions d and t > 0 sufficiently small. A first important observation is that, if
any multiplier µ±i is strictly positive (i.e. the constraint is strongly active), it suffices to consider
directions d such that di = 0 for any such i. In fact, assuming e.g. µ−i > 0, the complementarity
condition enforces that φi = 0 and thus the only admissible directions are such that di ≥ 0.
Similarly, di is necessarily non-positive if µ+i > 0. From this, it follows that (µ−i −µ

+
i )di ≥ 0, and,

if an entry di for any strongly active constraint is non-zero, will actually be strictly positive.
Combined with the quadratic term being O(t2), any such direction leads to a strict increase in
the energy for sufficiently small t > 0, regardless of the values of the remaining dj , j ≠ i.
The only admissible directions in which the energy could potentially locally decrease are thus
the ones which can vary freely if 0 < φi < 1 and, if there are weakly active constraint with φi = 0
and µ−i = 0 or φi = 1 and µ+i = 0, the respective sign-restriction at these points. In addition, since
the linear term ∑i (µ−i − µ

+
i )di vanishes for all such directions, one has

E(φ + td) − E(φ) = t2d ⋅ (E ′′(φ)d), (A.27)

i.e. the sign of the energy difference depends only upon that of the quadratic term in d.
All constraints in the bulk regions i < 0 and i > N are strictly active (with the multiplier taking
the value 16γ

π2ε
). Furthermore, from the derivation of the lower bound on N in Equation (6.40),

the multipliers µ−0 resp. µ+N at the outermost points are strictly positive provided N > π
κ
− 1 and

only become zero if N = π
κ
− 1. One therefore has to distinguish two cases:

1. If π
κ
is not an integer, both by Nmin and Nmax are strictly larger than π

κ
− 1 and all active

constraints are strongly active. From this, it follows that it suffices to focus on variations
within the inner interface region, i.e. the interval 1 ≤ i ≤ N − 1, with all relevant search
directions d satisfying di = 0, for i ≤ 0 and i ≥ N and di arbitrary for 1 ≤ i ≤ N − 1. In
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combination with Equation (A.27), this reduces the question of being a local minimizer
to the subblock of the matrix A = E ′′(φ) corresponding to values 1 ≤ i ≤ N − 1 being
positive (semi-)definite, resp. by Equation (A.25), to all eigenvalues of the linear difference
equation

−2γε
ψi+1 − 2ψi + ψi−1

(∆x)2
−

32

π2ε
γψi ,1 ≤ i ≤ N − 1,

subject to the homogeneous Dirichlet boundary condition ψ0 = ψN = 0 being non-negative.
It is well-known that the eigenfunctions for such an operator are given by ψi = c sin (kπ

N
i),1 ≤

i ≤ N with 1 ≤ k ≤ N − 1. Using sin (kπ
N

(i ± 1)) = sin (kπ
N
i) cos (kπ

N
) ± cos (kπ

N
i) sin (kπ

N
), it

is easy to see that, for each k, the corresponding eigenvalue λk is given by

λk = 4γε
1 − cos (kπ

N
)

(∆x)2
−

32

π2ε
γ.

Since 0 < kπ
N

< π for 1 ≤ k ≤ N − 1 and the cosine is decreasing on this interval, the

lowest eigenvalue is given by 4γε
1−cos( πN )

(∆x)2 − 32
π2ε

γ =
4γε

(∆x)2 (1 − cos ( π
N
) −

8(∆x)2

π2ε2
), which is

non-negative if

cos (
π

N
) ≤ 1 −

8(∆x)2

π2ε2
= cos(κ).

On the relevant domain, cos ( π
N
) is monotonically decreasing with N , from which it follows

that λ1 ≥ 0 if π
N

≥ κ i.e. if N ≤ π
κ
. Since π

κ
was assumed non-integer, this inequality is

strictly satisfied for N = Nmin = ⌈π
κ
− 1⌉, whereas it is strictly violated for N = Nmax = ⌈π

κ
⌉.

It follows that the profile for N = Nmin is a strict local (and actually also global under the
“constraint” of having an actual interface by the analysis in the last section) minimizer of
E . In contrast, the profile obtained for N = Nmax is not a local minimizer since adding an
aribtrarily small multiple of the first eigenfunction to the profile - and thus in particular
breaking its symmetry - will lead to a strict decrease of the energy.

2. If π
κ
is integer, the situation is somewhat more complex but also considerable more inter-

esting. In this case, the two possible choices for N are given by Nmin = ⌈π
κ
− 1⌉ = π

κ
− 1 and

Nmax = ⌈π
κ
⌉ = π

κ
. For the latter choice, both relevant multipliers µ−0 and µ+N are strictly

positive with a value given, by Equation (6.39) combined with cot (π
2
) = 0 and equation

(A.6) by

µ−0 = µ+N = γε
cos(κ) − 1

(∆x)2
+

16

π2ε2
γ = γε

−
8(∆x)2

π2ε

(∆x)2
+

16

π2ε2
γ =

8

π2ε2
γ,

i.e. a value which corresponds precisely to half the for the multipliers in the bulk. As
the constraints are therefore strictly active, one can apply the same analysis as for the
previous case to conclude that the profile for N = Nmax is in fact a local minimum, but
with the smallest eigenvalue of the corresponding eigenvalue problem being zero due to
cos ( π

N
) = cos(κ).

In contrast, for the choice N = π
2
− 1, µ−0 = µ+N = 0. This implies that the values φ0 and φN

can also be varied without a first-order increase in the energy, but the entries d0 and dN of
any admissible direction do have to satisfy a sign-restriction in order to remain compatible
with the box-constraints. Here it is convenient to separately consider two types of search
directions.

• The first one is formed by those directions for which at most one of the outermost
interface points φ0 or φN would move away from the respective constraint, i.e. di-
rections with either d0 ≥ 0 and dN = 0 or d0 = 0 and dN ≤ 0. These directions are a
subset of all the directions d for which at most Nmin + 1 = Nmax =

π
κ
values are free
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to vary, i.e. of those directions where either d0 = dN+1 = 0 but di, 1 ≤ i ≤ N can be
chosen freely or where di, 0 ≤ i ≤ N −1 can be chosen freely but d−1 = dN = 0. This “re-
laxed” problem is easily seen to reduce precisely to the eigenvalue analysis performed
for N = Nmax and it follows that, except for those directions generated by negative
multiples of sin ( π

Nmax
i) (compatible with d0 = 0 and dNmin = dNmax−1 < 0) or posi-

tive multiples of sin ( π
Nmax

(i − 1)) (compatible with d0 > 0 and dNmin+1 = dNmax = 0)
of the eigenfunction sin ( π

Nmax
i) resp. its translate lead to a strict increase in the

energy. As these particular eigenfunctions leave the energy invariant, it follows that
d ⋅ (E ′′(φ)d) ≥ 0 for all such directions.

• It remains to verify that it is not possible to decrease the energy by choosing a direction
with both d0 > 0 and dNmin < 0 corresponding to a simultaneous expansion of the inner
interface in two directions. This cannot be verified using the same arguement, as fixing
only di = 0 for i ≤ −1 and i ≥ Nmin + 1 = Nmax would lead to an eigenvalue problem
on a domain which is “broader” than the maximal stable number of points given by
Nmax and would actually allow for an eigenfunction sin ( π

Nmax+1
(i+1)), −1 ≤ i ≤ Nmax

with a negative eigenvalue. Here the constaints on d0 and dNmin are decisive, as these
essentially exclude this type of direction since it either has to increase or decrease
both φ0 and φNmin and is therefore always incompatible with the one of the sign
restriction.
More precisely, from the analysis for N = Nmax, the function d̂i = sin ( π

Nmax
i), 0 ≤

i ≤ Nmax is an eigenfunction with eigenvalue 0 for the restriction of the operator
E ′′(φ) to the range of indices 1 ≤ i ≤ Nmax − 1. In contrast, when broadening the
region of interest by increasing the inner interval under consideration to 0 ≤ i ≤ Nmax
and extending this function (still denoted by d̂) with d̂−1 = 0, this function is not an
eigenfunction anymore, but satisfies (similarly to the homogeneous form of Equation
(6.39) defining µ−0)

(E
′′
(φ)d̂)

i,1≤i≤Nmax−1
= 0 and

(E
′′
(φ)d̂)

i,1≤i≤Nmax−1
= 2γε

d1

(∆x)2
= 2γε

sin ( π
Nmax

)

(∆x)2
,

(A.28)

i.e. the homogeneous difference operator applied to this extension of the eigenfunction
still leaves the previous (for N = Nmin) interior of the interface unaffected, but leads
a positive contribution to the cell i = 0. An arbitrary search direction d = (di)0≤i≤Nmin
can be decomposed as

di = di −
dNmin

sin ( π
Nmax

Nmin)
d̂i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶d′i

+
dNmin

sin ( π
Nmax

Nmin)
di = d

′
i −

dNmin
sin ( π

Nmax
)
d̂i,

where use was made of sin ( π
Nmax

Nmin) = sin ( π
Nmax

(Nmax − 1)) = sin (π − π
Nmax

) =

sin ( π
Nmax

) and where d′Nmin = 0 by the choice of prefactor for d̂.
Since dNmin is negative by assumption and sin ( π

Nmax
) is positive, this decomposes any

such direction d as the sum of one vector d′ with d′Nmin = 0, d′0 = d0 + c sin ( π
Nmax

) >

d0 > 0 and a positive multiple c = − dNmin

sin( π
Nmax

)
of the extension of the eigenvector d̂.
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From Equation (A.28), it further follows that

(E
′′
(φ)d)

1≤i≤Nmin
= (E

′′
(φ)d′)

1≤i≤Nmin
and

(E
′′
(φ)d)

0
= (E

′′
(φ)d′) + 2γεc

sin ( π
Nmax

)

(∆x)2

(A.29)

since d̂ does not affect the results of the operator for any index i > 0. Taking the
scalar product with d, one has

d ⋅ (E ′′(φ)d) =d0(E
′′
(φ)d)

0
+
Nmin

∑
i=1

di(E
′′
(φ)d)

i

=d0((E
′′
(φ)d′)

0
+ 2γεc

sin ( π
Nmax

)

(∆x)2
) +

Nmin

∑
i=1

di(E
′′
(φ)d′)

i

=2γεc
sin ( π

Nmax
)

(∆x)2
d0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

+d ⋅ (E ′′(φ)d′) > d ⋅ (E ′′(φ)d′).

Again with Equation (A.29), d ⋅(E ′′(φ)d′) can be expanded in a similar fashion using
the symmetry of E ′′(φ) as

d ⋅ (E ′′(φ)d′) =(E ′′(φ)d) ⋅ d′ = (E
′′
(φ)d)

0
d′0 +

Nmin

∑
i=1

(E
′′
(φ)d)

i
d′i

=((E
′′
(φ)d′)

0
+ 2γεc

sin ( π
Nmax

)

(∆x)2
)d′0 +

Nmin

∑
i=1

(E
′′
(φ)d′)

i
d′i.

The term 2γεc
sin( π

Nmax
)

(∆x)2 d′0 is again strictly positive, such that d ⋅(E ′′(φ)d) can finally
be esimated from below as d ⋅ (E ′′(φ)d) > d′ ⋅ (E ′′(φ)d′). Since the last entry of d′

is in addition zero by construction, the sign of this term in fact only depdends on
the sign of this quadratic form restricted to the subvector (d′)

0≤i≤Nmin−1
, i.e. on

vectors which have at most one additional non-zero entry as compared to the original
innner transition region. This is precisely the question already investigated in the
previous point, finally showing that the “standard” profile with N = Nmin is also a
local (non-strict) minimum.

229



Bibliography

[1] Patrick Altschuh. Skalenübergreifende analyse makroporöser membranen im kontext digi-
taler zwillinge, 2020. Dissertation, Karlsruher Institut für Technologie (KIT).

[2] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discon-
tinuity Problems. Oxford Mathematical Monographs. Clarendon Press, Oxford, 2000.

[3] Kais Ammar, Benoît Appolaire, Georges Cailletaud, and Samuel Forest. Combining phase
field approach and homogenization methods for modelling phase transformation in elasto-
plastic media. European Journal of Computational Mechanics/Revue Européenne de Mé-
canique Numérique, 18(5-6):485–523, 2009.

[4] PG Kubendran Amos, Ephraim Schoof, Daniel Schneider, and Britta Nestler. Chemo-elastic
phase-field simulation of the cooperative growth of mutually-accommodating widmanstätten
plates. Journal of Alloys and Compounds, 767:1141–1154, 2018.

[5] PG Kubendran Amos, Ephraim Schoof, Nick Streichan, Daniel Schneider, and Britta
Nestler. Phase-field analysis of quenching and partitioning in a polycrystalline fe-c sys-
tem under constrained-carbon equilibrium condition. Computational Materials Science,
159:281–296, 2019.

[6] Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille. Variational analysis in Sobolev
and BV spaces: applications to PDEs and optimization. SIAM, Philadelphia, Pa., 2. ed.
edition, 2014.

[7] Jean-Pierre Aubin and Hélène Frankowska. Set-valued analysis. Birkhäuser, Boston, Mass.,
2009.

[8] H. Bauschke and P. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. CMS Books in Mathematics. Springer, Cham, 2 edition, 2017.

[9] Marouen Ben Said, Michael Selzer, Britta Nestler, Daniel Braun, Christian Greiner, and
Harald Garcke. A phase-field approach for wetting phenomena of multiphase droplets on
solid surfaces. Langmuir, 30(14):4033–4039, 2014.

[10] Benzi, Michele and Golub, Gene H and Liesen, Jörg. Numerical solution of saddle point
problems. Acta numerica, 14:1–137, 2005.

[11] Bertsekas, Dimitri P. Nonlinear programming. Athena scientific, Belmont, Mass., 1999.

[12] L. Blank et al. Allen-Cahn and Cahn-Hilliard variational inequalities solved with optimiza-
tion techniques. International Series of Numerical Mathematics, 160:21–35, 2012.

[13] F. B. Bonnans et al. Numerical Optimization - Theoretical and Practical Aspects. Univer-
sitext. Springer, Berlin, 2 edition, 2006.

230



[14] J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer
Series in Operations Research. Springer, New York, 2000.

[15] A. Braides. Gamma-convergence for beginners, volume 22 of Oxford lecture series in math-
ematics and its applications. Oxford University Press, Oxford, 2002.

[16] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer,
New York, NY, 2010.

[17] Céa, Jean and Glowinski, Roland. Sur des méthodes d’optimisation par relaxation. Revue
française d’automatique informatique recherche opérationnelle. Mathématique, 7(R3):5–31,
1973.

[18] Armen G. Chačaturijan. Theory of structural transformations in solids. Wiley, New York
[u.a.], 1983.

[19] Abhik Choudhury and Britta Nestler. Grand-potential formulation for multicomponent
phase transformations combined with thin-interface asymptotics of the double-obstacle po-
tential. Physical Review E, 85(2):021602, 2012.

[20] Clarke, F. Functional analysis, calculus of variations and optimal control, volume 264.
Springer Science & Business Media, London, 2013.

[21] Klaus Deckelnick, Gerhard Dziuk, and Charles M Elliott. Computation of geometric partial
differential equations and mean curvature flow. Acta numerica, 14:139, 2005.

[22] N Dinh and V Jeyakumar. Farkas’ lemma: three decades of generalizations for mathematical
optimization. Top, 22(1):1–22, 2014.

[23] A Durga, Patrick Wollants, and Nele Moelans. Evaluation of interfacial excess contribu-
tions in different phase-field models for elastically inhomogeneous systems. Modelling and
simulation in materials science and engineering, 21(5):055018, 2013.

[24] A Durga, Patrick Wollants, and Nele Moelans. A quantitative phase-field model for two-
phase elastically inhomogeneous systems. Computational Materials Science, 99:81–95, 2015.

[25] J Eiken, B Böttger, and I Steinbach. Multiphase-field approach for multicomponent alloys
with extrapolation scheme for numerical application. Physical review E, 73(6):066122, 2006.

[26] I. Ekeland and R. Témam. Convex analysis and variational problems. Classics in Applied
Mathematics. SIAM, Philadelphia, Pa., 1999.

[27] F. Facchinei and J.S. Pang. Finite-Dimensional Variational Inequalities and Complementary
Problems, volume 1 of Springer Series in Operations Research. Springer, New York, 2007.

[28] Avner Friedman. Variatonal Principles and Free Boundary Problems. Dover Publications,
Mineola, NY, dover ed. edition, 2010.

[29] H. Garcke et al. Allen-Cahn systems with volume constraints. Mathematical Models and
Methods in Applied Sciences, 18(8):1347–1381, 2008.

[30] C. Gräser. Convex minimization and phase field models, 2011. Dissertation Freie Universität
Berlin.

[31] C. Gräser, R. Kornhuber, and U. Sack. Time discretizations of anistropic Allen-Cahn
equations. IMA Journal of Numerical Analysis, 33(48):1226–1244, 2013.

231



[32] Carsten Gräser and Ralf Kornhuber. On preconditioned Uzawa-type iterations for a saddle
point problem with inequality constraints. In Domain decomposition methods in science
and engineering XVI, pages 91–102. Springer, Berlin, Heidelberg, 2007.

[33] Carsten Gräser and Oliver Sander. Truncated nonsmooth Newton multigrid methods for
simplex-constrained minimization problems. Preprint 384, IGPM Aachen, 2014.

[34] P. Grisvard. Elliptic Problems in Nonsmooth Domains, volume 69 of Classics in Applied
Mathematics. SIAM, Philadelphia, Pa., 2011.

[35] Christoph Herrmann, Ephraim Schoof, Daniel Schneider, Felix Schwab, Andreas Reiter,
Michael Selzer, and Britta Nestler. Multiphase-field model of small strain elasto-plasticity
according to the mechanical jump conditions. Computational Mechanics, 62(6):1399–1412,
2018.

[36] Johannes Hötzer. Massiv-parallele und großskalige Phasenfeldsimulationen zur Unter-
suchung der Mikrostrukturentwicklung. Schriftenreihe des Instituts für Angewandte Ma-
terialien ; Band 70. KIT Scientific Publishing, Karlsruhe, 2017. Dissertation, Karlsruher
Institut für Technologie (KIT).

[37] K. Ito and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Appli-
cations. Advances in Design and Control. SIAM, Philadelphia, Pa., 2008.

[38] Boško S Jovanović and Endre Süli. Analysis of finite difference schemes: for linear partial
differential equations with generalized solutions, volume 46. Springer Science & Business
Media, London, 2013.

[39] Michael Kellner. Modellierung mehrkomponentiger Materialsysteme für die Phasenfeld-
methode und Analyse der simulierten Mikrostrukturen, 2020. Dissertation, Karlsruher In-
stitut für Technologie (KIT).

[40] Seong Gyoon Kim, Dong Ik Kim, Won Tae Kim, and Yong Bum Park. Computer simu-
lations of two-dimensional and three-dimensional ideal grain growth. Physical Review E,
74(6):061605, 2006.

[41] Kim, Seong Gyoon and Kim, Won Tae and Suzuki, Toshio. Interfacial compositions of solid
and liquid in a phase-field model with finite interface thickness for isothermal solidification
in binary alloys. Physical Review E, 58(3):3316–3323, 1998.

[42] Kim, Seong Gyoon and Kim, Won Tae and Suzuki, Toshio. Phase-field model for binary
alloys. Physical Review E, 60(6):7186–7197, 1999.

[43] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and Their
Applications. Classics in Applied Mathematics. SIAM, Philadelphia, Pa., 2000.

[44] Cornelius Lanczos. The variational principles of mechanics. Dover, New York, 2012.

[45] Stephan Luckhaus and Luciano Modica. The gibbs-thompson relation within the gradient
theory of phase transitions. Archive for Rational Mechanics and Analysis, 107(1):71–83,
1989.

[46] Luenberger, David G and Ye, Yinyu and others. Linear and nonlinear programming, vol-
ume 2. Springer, Cham, 1984.

[47] G. Dal Maso. An Introduction to Gamma-Convergence. Progress in Nonlinear Differential
Equations and Their Applications. Birkhäuser, Boston, 1993.

232



[48] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University
Press, Cambridge, 2000.

[49] L. Modica. Gradient theory of phase transitions with boundary contact energy. Annales de
l’I.H.P., 4(5):487–512, 1987.

[50] L. Modica. The gradient theory of phase transitions and the minimal interface criterion.
Archive for Rational Mechanics and Analysis, 98(2):123–142, 1987.

[51] J Mosler, O Shchyglo, and H Montazer Hojjat. A novel homogenization method for phase
field approaches based on partial rank-one relaxation. Journal of the Mechanics and Physics
of Solids, 68:251–266, 2014.

[52] Britta Nestler, Harald Garcke, and Björn Stinner. Multicomponent alloy solidification:
phase-field modeling and simulations. Physical Review E, 71(4):041609, 2005.

[53] Britta Nestler, Frank Wendler, Michael Selzer, Björn Stinner, and Harald Garcke. Phase-
field model for multiphase systems with preserved volume fractions. Physical Review E,
78(1):011604, 2008.

[54] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Re-
search. Springer, New York, 2 edition, 2006.

[55] James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations in
several variables, volume 30. Siam, Philadelphia, Pa., 1970.

[56] M. Plapp. Unified derivation of phase-field models for alloy solidification from a grand-
potential functional. Physical Review E, 84(031601):1–15, 2011.

[57] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer
Science & Business Media, Berlin, 2009.

[58] Ruszczyński, Andrzej P and Ruszczynski, Andrzej. Nonlinear optimization, volume 13.
Princeton university press, Princeton, 2006.

[59] Alexander A Samarskii. The theory of difference schemes, volume 240. CRC Press, New
York, 2001.

[60] Lavinia Sarbu. Primal-dual active set methods for Allen-Cahn variational inequalities. PhD
thesis, University of Sussex, 2010.

[61] Daniel Schneider. Phasenfeldmodellierung mechanisch getriebener grenzflächenbewegungen
in mehrphasigen systemen, 2016. Dissertation, Karlsruher Institut für Technologie (KIT).

[62] Daniel Schneider, Ephraim Schoof, Oleg Tschukin, Andreas Reiter, Christoph Herrmann,
Felix Schwab, Michael Selzer, and Britta Nestler. Small strain multiphase-field model ac-
counting for configurational forces and mechanical jump conditions. Computational Me-
chanics, 61(3):277–295, 2018.

[63] Daniel Schneider, Felix Schwab, Ephraim Schoof, Andreas Reiter, Christoph Herrmann,
Michael Selzer, Thomas Böhlke, and Britta Nestler. On the stress calculation within phase-
field approaches: a model for finite deformations. Computational Mechanics, 60(2):203–217,
2017.

[64] Daniel Schneider, Oleg Tschukin, Abhik Choudhury, Michael Selzer, Thomas Böhlke, and
Britta Nestler. Phase-field elasticity model based on mechanical jump conditions. Compu-
tational Mechanics, 55(5):887–901, 2015.

233



[65] Ephraim Schoof. Chemomechanische modellierung der wärmebehandlung von stählen mit
der phasenfeldmethode, 2020. Dissertation, Karlsruher Institut für Technologie (KIT).

[66] Ephraim Schoof, Christoph Herrmann, Nick Streichhan, Michael Selzer, Daniel Schneider,
and Britta Nestler. On the multiphase-field modeling of martensitic phase transformation
in dual-phase steel using j2-viscoplasticity. Modelling and Simulation in Materials Science
and Engineering, 27(2):025010, 2019.

[67] Michael Selzer. Mechanische und strömungsmechanische topologieoptimierung mit der
phasenfeldmethode, 2014. Dissertation, Karlsruher Institut für Technologie (KIT).

[68] I Steinbach and F Pezzolla. A generalized field method for multiphase transformations using
interface fields. Physica D: Nonlinear Phenomena, 134(4):385–393, 1999.

[69] Ingo Steinbach and Markus Apel. Multi phase field model for solid state transformation
with elastic strain. Physica D: Nonlinear Phenomena, 217(2):153–160, 2006.

[70] Philipp Steinmetz. Simulation der bei der gerichteten erstarrung ternärer eutektika entste-
henden mikrostruktur mit der phasenfeldmethode, 2017. Dissertation, Karlsruher Institut
für Technologie (KIT).

[71] Bjorn Stinner, Britta Nestler, and Harald Garcke. A diffuse interface model for alloys with
multiple components and phases. SIAM Journal on Applied Mathematics, 64(3):775–799,
2004.

[72] Ying Sun and Christoph Beckermann. Sharp interface tracking using the phase-field equa-
tion. Journal of Computational Physics, 220(2):626–653, 2007.

[73] R. Temam. Navier-Stokes Equations - Theory and Numerical Analysis. AMS Chelsea
Publishing, Providence, 2001.

[74] Oleg Tschukin. Phase-field modelling of welding and of elasticity-dependent phase transfor-
mations, 2017. Dissertation, Karlsruher Institut für Technologie (KIT).

[75] Oleg Tschukin, Alexander Silberzahn, Michael Selzer, Prince GK Amos, Daniel Schnei-
der, and Britta Nestler. Concepts of modeling surface energy anisotropy in phase-field
approaches. Geothermal Energy, 5(1):19, 2017.

[76] R. S. Varga. Matrix Iterative Analysis, volume 27 of Springer Series in Computational
Mathematics. Springer, Berlin, 2000.

[77] P. S. Vassilevski. Multilevel Block Factorization Preconditioners. Springer, New York, 2008.

[78] Alexander Vondrous. Grain growth behavior and efficient large scale simulations of recrystal-
lization with the phase-field method, 2014. Dissertation, Karlsruher Institut für Technologie
(KIT).

[79] K. Yosida. Functional Analysis. Classics in Mathematics. Springer, Berlin, 6 edition, 1980.

[80] Zeidler, E. Nonlinear functional analysis and its applications: III: variational methods and
optimization. Springer Science & Business Media, New York, 2013.

234


