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Abstract. We investigate some excellent algorithms in the field of video space super-resolution 
based on artificial intelligence, structurally analyze the network structure of the algorithm and 

the commonly used loss functions. We also analyze the characteristics of algorithms in the new 

field of video space-time super-resolution. This work helps researchers to deeply understand the 

video super-resolution technology based on artificial intelligence. 

Keywords. Video super-resolution; deep learning; convolutional neural network; recurrent 

neural network. 

1. Introduction 
Video super-resolution technology is a basic technology in the field of video enhancement and reparation. 

Before the rise of deep learning, researchers used traditional image processing methods to achieve video 

resolution, like up-conversion. In the 1960s, Harris and Goodman [1-5] proposed to recover the image 
information beyond the limit frequency of the optical system modulation transfer function (MTF) by 

spectral extrapolation, which was the origin of image super-resolution algorithm and video super-

resolution algorithm. At present, the commonly used restoration methods include bilinear interpolation, 

local adaptive amplification interpolation, cubic spline interpolation, etc. To process video in the way of 
image processing, video should be first parsed into video frames, and then each video frame should be 

handled by image super-resolution algorithm. This simple image interpolation method ignores the 

timing dimension of the video, and fails to take into account the correlation between the frames before 
and after the video and the blurring caused by the video transition and fast movement [6]. Although the 

restoration speed is very fast, the final reconstructed high-resolution video will produce incoherent, 

fuzzy, and other degraded effects, leading to the unideal subjective effect. 

Currently, video super-resolution algorithms based on Artificial Intelligence (AI) have become a 
trending technology in the field of AI video enhancement/repair. With the successful application of deep 

learning in spatial super-resolution of video, the space-time super-resolution technology derived from 

video super-resolution technology realizes the up-conversion from low definition to ultra-high 
resolution, and from low frame rate to high frame rate. At present, the spatial super-resolution algorithm 

and spatial-temporal super-resolution algorithm of AI video are generally based on Convolutional 

Neural Networks (CNN), Generative Adversarial Networks(GAN), and Recurrent Neural Network 
(RNN) [7-8]. Compared with traditional algorithms, video super-resolution technology based on AI  

takes the temporal dimension into account, and it pays more attention to the connection between the 

video reference frame and adjacent frames in the processing process. Especially when dealing with 

occlusion, large-scale motion and severe blur, it is necessary to align multiple frames and establish 
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accurate correspondence, as well as effectively fuse the aligned features for reconstruction. Therefore, 

the AI algorithm can do a better job of restoring the video. 

2. Video Spatial Super-Resolution Algorithm Based on Deep Learning 

2.1. Input and Output of Network 

The input of network is generally divided into two categories: reference frame and adjacent frame. 

Multiple consecutive video frames are used as input, such as EDVR [9], RBPN [10], FISR [11] and 
MuCAN [12]. These models generally input multiple video frames into their respective preprocessing 

modules, and then get the features containing a lot of information. Base on that, the model can get much 

more ideal experimental results. 
Theoretically, more frames input at one time, more information contained, and better results obtained 

after recovery. For example, TGA [13] will take 7 consecutive video frames as input at one time and 

output 1 video frame at last. This model has achieved good results on the test dataset. Some network 
models choose 2 video frames as input, such as Zooming Slow-Mo [8] and STARNet [14], which are 

based on RNN network and can output 2 corresponding high-resolution frames at the same time. In 

addition, STARNet uses RBPN as a pre-training model. As the result, for videos with many motion 

scenes, STARNet has a good generalization ability, the experimental results are significant. 

2.2. Network Structure 

The structure of spatial super-resolution network can be divided into frame alignment, feature extraction 

and fusion, attention mechanism, and reconstruction. Frame alignment is the key to determine the effect 
of model experiment. Feature extraction fusion can extract the main information of data. The attention 

mechanism can further distinguish the importance of different features in the main messages. In general, 

the existing image super-resolution algorithm structure is used to perform reconstruction work such as 
up-transform. 

2.3. Frame Alignment Module 

Before the continuous video frames are input into the network model, it is necessary to align the adjacent 

frames to the reference frame by means of frame alignment, that is, adding the time information of 
adjacent frames to the reference frame, then the input frames are fused with features. 

There are many methods of frame alignment, which can be categorized as explicit alignment and 

implicit alignment. Explicit alignment is pixel level alignment on the original image, using optical flow 
method through motion estimation and compensation generally (VESPCN [15], TOFLOW [16], RBPN, 

SOFVSR [17]). The optical flow method calculates the optical flow by pre-training an optical flow 

model and aligning adjacent frames to reference frames so as to realize information reuse. The optical 

flow method will usually first operate at low resolution, which can reduce a certain amount of 
computation. Of course, there are also algorithms for alignment at high resolution conditions, such as 

TecoGAN [18], FRVSR, etc. These algorithms calculate the optical flow between previous frame and 

current frame, and apply the up-sampling directly to the generated results of the previous frame, so as 
to realize the reuse of high-resolution images. 

Although algorithms using explicit alignment module is widely used in video super-resolution, the 

algorithms also have some problems. (1) The quality of video frame alignment depends heavily on the 
pre-trained optical flow model, which increases the workload and makes the algorithm are not strong 

robustness. (2) Motion occlusion and other problems often exist in moving videos, which can not be 

well solved by optical flow method. Problems such as blur and flicker are likely to occur, which can 

easily affect the performance of the model. 
Implicit alignment is usually performed at the feature level, the deformable convolution is 

representative of implicit alignment algorithms. TDAN [19] first applied deformable convolution to 

video super-resolution, and DNLN and EDVR also applied it with good results. Since deformable 
convolution can adaptively select regions of interest to itself, this makes it possible for variable 
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convolution to extract regions that are useful for video frame reconstruction to a certain extent. However, 

before performing deformable convolution, the offsets of two sets of features need to be calculated using 

normal convolution and input to the deformable convolution unit together with the adjacent frames, and 
the reliance on the calculation of the offsets makes the network less stable during the training process. 

2.4. Feature Extraction and Fusion 

Feature extraction and fusion is an effective way to extract key information, reduce repetitive 
information in consecutive video frames, and speed up the computational efficiency of the model. 

CNN algorithms have the ability of representation learning and classify the input data in terms of 

translation invariance [20]. The VESPCN, DRVSR [21] algorithms will use CNN for feature extraction 

and fusion. For example, VESPCN will input motion-compensated video frames into a series of CNN 
layers and then get the features of the video frames to be reconstructed;  DRVSR is designed a feature 

fusion module, which first down-sampled the image using a convolution kernel with a step size of two, 

and then used deconvolution to obtain a HR residual image, which can help the model to recovery to 
super-resolution; The residual module is also a widely used model, in MMCNN [22], where a feature 

extraction method is designed based on residual dense networks. With the residual module, the image 

information is not easily lost in the transmission of the network and the model can obtain rich features. 

2.5. Reconfiguration Modules 

To overcome the shortcomings of traditional methods and to achieve end-to-end behavior of the 

algorithm, two common reconstruction methods are presented here: Transposed Convolution [23] and 

Sub-pixel Convolution [24]. 
The difference between the deconvolution and the convolution in CNN is that the convolution in 

CNN is based on the input feature image information to get the corresponding features, while the 

deconvolution can output the final image based on a set of features learned by the model. Taking a 2x 
hyper-segmented and 3x3 feature map as an example, the input feature map will first be expanded by a 

factor of 2. 

After computing the enlarged feature map by using convolution kernel of size 3x3 and set padding 

to 1, an image with a magnification of 2 was obtained. Because deconvolution achieves image 
enlargement in an end-to-end manner, it is also widely used in various reconstruction modules. However, 

deconvolution can also easily cause uneven overlap on different axes, which ultimately affects the 

reconstructive effect of the model. 
Sub-pixel convolution is another end-to-end reconstruction method, where multiple channels of 

feature maps are generated by convolution, and then the shape of this set of feature maps has changed.  

Suppose we have a 3x3 feature map, in order to obtain the corresponding 2x image, we first compute 
the feature map of 4 channels using convolution, and then fuse this set of feature maps into a single 

channel image, which gives us the result after 2x super-resolution. Due to the end-to-end reconstruction 

approach, sub-pixel convolution is also used by various video super-resolution models. Compared to the 

inverse convolution layer, sub-pixel convolution has a larger receptive field, providing more contextual 
information, and helping to generate more realistic details. However, as the receptive fields are not 

evenly distributed, block regions actually share the same receptive field, which may lead to some 

artefacts near the boundaries of different blocks. On the other hand, independent prediction of adjacent 
pixels in a block region may lead to an unsmooth output. Therefore, Gao and his team [25] proposed 

PixelTCL, which replaces interdependent sequential prediction to produce smoother and more 

consistent results. 

2.6. Attention Mechanisms 

Attention mechanisms are widely used in video super-resolution algorithms. EDVR provides a time-

space attention fusion module, which can calculate the similarity between video frames in a new space. 

And for video frames with higher similarity, this model can give more attention by this module; DNLN 
designs a non-local attention mechanism module based on deformable convolution, which can 
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significantly improve the effect after video reconstruction; TGA [13] designed a time-domain grouped 

attention module that reduces the redundant information of the input, and can also bring an improvement 

in the effect. 
2.7. Other Modules 

In addition to the common modules, scholars have also proposed many other novel superpartition 

modules, which can effectively improve the model effect. 
RBPN, based on the idea of RNN, designs a mapping module combining an encoder and a decoder. 

The encoder mainly consists of image super-resolution related model structure, and the decoder mainly 

consists of the residual network. TecoGAN [18] designed a novel network on the basis of GAN, which 

is able to estimate the optical flow between reference frames and adjacent frames. It used bicubic 
interpolation to amplify the corresponding HR optical flow map, and combined the HR optical flow map 

with the GT of the previous frame to obtain GT', and finally fed both GT' and GT into the discrimination 

network for discrimination, so as to alleviate smoothing over and non-smoothness of the output results. 

2.8. Loss Function 

The types of loss functions can be classified into pixel-level loss, structural loss, content loss, and 

adversarial loss. For video super-resolution, pixel-level loss and structural loss are mainly used as 
evaluation metrics. And to further enhance the subjective visual effect, a weighted loss of “pixel-level + 

structural + content” is generally used. 

2.9. Pixel Loss 

(1) L1 & L2 loss 

 𝐿1 =
1

𝑁
∑ |𝑦′(𝑝) − 𝑦(𝑝)|𝑝∈𝑃                         (1) 

𝐿2 =
1

𝑁
∑ (𝑦′(𝑝) − 𝑦(𝑝))

2
𝑝∈𝑃                       (2) 

Here 𝑁 represents the number of pixels, and 𝑝 represents all pixel positions in the graph. 𝑦′ is the 

gennerated image and 𝑦 is the ground truth. 

Practically, both L1 and L2 have their own drawbacks. For L1 is that the gradient is not smooth, 
which tends to make the network training unstable. L2 will increase the punishment intensity for large 

errors, while it is opposite for small errors. Therefore, gradient explosion is very easy to occur at the 

beginning of network training. In order to alleviate the above problems, the loss functions of L1 and L2 
are alternately used to optimize the training of the network in super-resolution models. The loss function 

of ClipL1 is basically the same as the loss of L1, but the gradient trimming method can control the 

magnitude of the gradient and make the training process more stable during the back propagation. 

(2) Charbonnier Loss 

Cha𝑟𝑏𝑜𝑛𝑛𝑖𝑒𝑟(𝑥, 𝑦) = √(𝑥 − 𝑦)2 + 𝜀2ε(𝜀 is usually equal to 1e-6)      (3) 

Charbonnier loss avoid excessive gradient caused by excessive processing outliers, so that the 

generated effect can be clearly defined and cleared. The loss was first applied in the LAPSRN. 

2.10. Structural Loss 

(1)SSIM Loss 

SSIM measures three factors: luminance, contrast, and structure. 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝑐1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1
 

𝑐(𝑥, 𝑦) =
2𝛿𝑥𝛿𝑦 + 𝑐2

𝛿𝑥
2 + 𝛿𝑦

2 + 𝑐2
 

𝑠(𝑥, 𝑦) =
𝛿xy + 𝑐3

𝛿𝑥𝛿𝑦 + 𝑐3
 



AICS 2021
Journal of Physics: Conference Series 2025 (2021) 012051

IOP Publishing
doi:10.1088/1742-6596/2025/1/012051

5

 

 

Here μ is the mean, σ is the variance, and 𝛿xy  is the covariance of x, y. 𝑐1 = (𝑘1𝐿)2  and 𝑐2 =

(𝑘2𝐿)2 are constants to avoid dividing by zero, where L is the range of pixel value, k1 is 0.01and k2 is 

0.03. 

SSIM(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)𝛼 · (𝑥, 𝑦)𝛽 · 𝑠(𝑥, 𝑦)𝛾](α、β、γ are usually equal to 1)    (4) 

SSIM is one of the most commonly used loss functions in video super-resolution algorithms, taking 

into account the fact that human eyes are sensitive to structural information, whereas insensitive to 

distortion in high luminance areas and more contrast areas of “texture”. 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝑐1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1
𝑐(𝑥, 𝑦) =

2𝛿𝑥𝛿𝑦 + 𝑐2

𝛿𝑥
2 + 𝛿𝑦

2 + 𝑐2
𝑠(𝑥, 𝑦) =

𝛿xy + 𝑐3

𝛿𝑥𝛿𝑦 + 𝑐3
SSIM(𝑥, 𝑦)

= [𝑙(𝑥, 𝑦)𝛼 · (𝑥, 𝑦)𝛽 · 𝑠(𝑥, 𝑦)𝛾] 

2.11. Content Loss 

Content loss function estimates the perceived quality of images. Generally, pre-trained image 

classification network is used to measure the differences in image content, which can be expressed as: 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝐼′, 𝐼; 𝛷, 𝑙) =
1

ℎ𝑙𝑤𝑙𝑐𝑙
√∑ (𝛷𝑖,𝑗,𝑘

(𝑙)
(𝐼′) − 𝛷𝑖,𝑗,𝑘

(𝑙)
(𝐼))2

𝑖,𝑗,𝑘           (5) 

Hl, wl, and cl represent the height, width, and channel number of the first layer respectively; Φ 

represents the pre-trained model (VGG and RESNET are commonly used); I 'and I represent the 

generated image and the real image. The essence of content loss is to transfer the hierarchical features 
of image in the classification network to the super-resolution reconstruction network. 

2.12. Adversarial Loss.  

Among the super-resolution algorithms related to GAN, the loss function of WGAN is used most. 

𝐿𝑔𝑎𝑛_𝑐𝑒_𝑔 = −log (𝐼)                           (6) 

𝐿𝑔𝑎𝑛_𝑐𝑒_𝑑 = − log(𝐼𝑠) − log (1 − 𝐷(𝐼))                   (7) 

where 𝐿𝑔𝑎𝑛_𝑐𝑒_𝑔and 𝐿𝑔𝑎𝑛_𝑐𝑒_𝑑denote the adversarial loss of the generator and the discriminator, and 

𝐼𝑠 represents images randomly sampled from the ground truths. The reconstruction network based on 

GAN will reduce the fidelity to some extent, as the result, the loss of strong monitoring algorithms such 

as PSNR and SSIM will not be applied to it. 

3. Video Spatial-Temporal Super-Resolution Algorithm Based on Deep Learning 

Video spatio-temporal super-resolution algorithm is algorithm that pays more attention to the 

combination of spatial and temporal information of video, which can improve the resolution and frame 

rate of video at the same time. Compared with the video spatial super-resolution algorithm, the video 
spatial super-resolution algorithm is disparate in model structure, but similar in structure, loss function, 

and etc. At present, the video spatio-temporal super-resolution model is mainly composed of basic 

structures such as 3D convolution and Recurrent Convolutional Neural Network (RCNN). 

3.1. Algorithm Based on 3D Convolution 

Compared with 2D convolution, 3D convolution increases the time sequence dimension and can 

independently extract the spatio-temporal correlation between consecutive frames, so it is very suitable 
for processing video data. DUF [26], FSTRN [27], and 3DSRnet [28] all use 3D convolution based 

methods to integrate video time and space information. 

DUF adopts the dynamic change network structure, which can generate different convolution kernels 

according to different inputs, so as to obtain the adaptive feature map. DUF uses 3D convolution to 
independently extract the time information between consecutive frames, making the output of the model 

more stable. FSTRN uses 3D convolution for feature extraction and feature fusion, where a k×k×k 
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convolution kernel is divided into two cascaded convolution kernels with sizes of 1×k×k and k×1×1 

respectively, which can effectively reduce the computational load of the model. 3DSRnet extracts 

features from continuous video frames through 3D convolution, and provides a scene transformation 
method, which replaces frames with the nearest adjacent frames of the same scene when the scene 

changes. This method can overcome the performance degradation caused by scene changes to a certain 

extent. However, compared with 2D convolution methods, most 3D convolution methods have higher 
computational complexity, which limits their application for real-time video super-resolution tasks. 

3.2. RCNN-Based Algorithm 

RCNN is a combination of RNN and CNN, taking advantage of RNN’s ability to handle serialization. 

Many models, such as STCN [29] and RISTN [30], adopt the idea of RCNN to solve the video super-
resolution problem. 

STCN is an algorithm without motion estimation and motion compensation. STCN consists of three 

parts: space processing module, time processing module, and reconstruction module. Space module is 
for feature extraction of continuous low resolution video frames; Time processing module is a 

bidirectional convolution neural network, which is mainly used to extract features in the video time 

domain; RISTN which is used to reconstruct consists of three modules: reversible residual block, LSTM 
(Long Short-Term Memory) combined with dense residual network, RDC-LSTM, and sparse feature 

fusion module. Among them, RDC-LSTM can be used to extract the temporal and spatial information 

of the video. After extracting the temporal and spatial information, the sparse fusion strategy is adopted 

to selectively fuse the features. However, the traditional RCNN based method is difficult to train and 
sometimes has the problem of gradient disappearance. When the length of input sequence is too large, 

the long-term dependence of the input may not be captured, and good performance cannot be obtained. 

4. Conclusion and Future Directions 
So far, video super-resolution technology based on deep learning is still limited to hardware equipment 

conditions, and single image super-resolution. Although the optical flow method has been widely tested, 

and highly innovative models such as EDVR have been constantly introduced, the development of deep 
learning-based video super-resolution technology has not yet met the expectations of developers. At the 

same time, there are some problems that need to be overcome, such as the processing of the front and 

back frames during the special video session, the processing of subtitles, and the resolution of the super-
resolution results when replayed, etc. There is still a long way to go for deep learning based video super-

resolution technology. 
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