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Abstract

Model-based performance prediction is a well-known concept to ensure the

quality of software. Thereby, software architects create abstract architec-

tural models and specify software behaviour, hardware characteristics, and

the user’s interaction. They enrich the models with performance-relevant

characteristics and use performance models to solve the models or simulate

the software behaviour. Doing so, software architects can predict quality

attributes such as the system’s response time. Thus, they can detect viola-

tions of service-level objectives already early during design time, and alter

the software design until it meets the requirements.

Current state-of-the-art tools like Palladio have proven useful for over a

decade now, and provide accurate performance prediction not only for so-

phisticated, but also for distributed cloud systems. They are built upon the

assumption of single-core CPU architectures, and consider only the clock

rate as a single metric for CPU performance. However, current processor

architectures have multiple cores and a more complex design. Therefore, the

use of a single-metric model leads to inaccurate performance predictions for

parallel applications in multicore systems.

In the course of this thesis, we face the challenges for model-based per-

formance predictions which arise from multicore processors, and present

multiple strategies to extend performance prediction models. In detail, we

(1) discuss the use of multicore CPU simulators used by CPU vendors; (2)

conduct an extensive experiment to understand the e�ect of performance-

in�uencing factors on the performance of parallel software; (3) research

multi-metric models to re�ect the characteristics of multicore CPUs better,

and �nally, (4) investigate the capabilities of software modelling languages

to express massively parallel behaviour.

As a contribution of this work, we show that (1) multicore CPU simulators

simulate the behaviour of CPUs in detail and accurately. However, when
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Abstract

using architectural models as input, the simulation results are very inaccurate.

(2) Due to extensive experiments, we present a set of performance curves

that re�ect the behaviour of characteristic demand types. We included

the performance curves into Palladio and have increased the performance

predictions signi�cantly. (3) We present an enhanced multi-metric hardware

model, which re�ects the memory architecture of modern multicore CPUs.

(4) We provide a parallel architectural pattern catalogue, which includes

four of the most common parallelisation patterns (i.e., parallel loops, pipes

and �lter, fork/join, master worker). Through this catalogue, we enable the

software architect to model the parallel behaviour of software faster and

with fewer errors.
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Zusammenfassung

Modellbasierte Performancevorhersagen sind ein bekanntes Konzept zur

Sicherung der Qualität von Software. Dabei erstellen Softwarearchitekten

abstrakte Architekturmodelle und spezi�zieren das Softwareverhalten, die

Hardwareeigenschaften und die Interaktion der Nutzer. Sie reichern die Mo-

delle mit leistungsrelevanten Eigenschaften an und verwenden Performan-

cemodelle, um das Software-Verhalten zu simulieren oder durch analytische

Methoden zu bestimmen. Auf diese Weise können die Software-Architekten

Qualitätsmerkmale wie die Antwortszeit des Systems auf Benutzeranfragen

vorhersagen. So können sie Verletzungen der Service-Level-Ziele bereits an-

hand des Entwurfs erkennen und den Software-Entwurf so lange verändern,

bis er den Anforderungen entspricht.

Palladio ist ein Werkzeug, das dem aktuellen Stand der Technik entspricht

und sich seit über einem Jahrzehnt bewährt hat. Palladio bietet eine genaue

Performancevorhersage nicht nur für anspruchsvolle, sondern auch für ver-

teilte Systeme. Dabei baut Palladio auf der Annahme von Single-Core-CPU-

Architekturen auf und berücksichtigt nur die Taktrate als einzige Metrik.

Aktuelle Prozessorarchitekturen haben jedoch mehrere Kerne und ein kom-

plexeres Design. Daher führt die Verwendung eines Modells mit nur einer

Metrik zu ungenauen Performancevorhersagen für parallele Anwendungen

in Mehrkernsystemen.

Im Verlauf dieser Arbeit stellen wir uns den Herausforderungen für mo-

dellbasierte Performancevorhersagen, die sich aus Mehrkernprozessoren

ergeben, und präsentieren mehrere Strategien zur Erweiterung von Perfor-

mancevorhersagemodellen. ImDetail diskutierenwir (1) die Verwendung von

Mehrkern-CPU-Simulatoren, die von CPU-Herstellern verwendet werden;

(2)Wir führen ein umfangreiches Experiment durch, um den Ein�uss von leis-

tungsbeein�ussenden Faktoren auf die Performance paralleler Software zu

verstehen; (3) Wir erforschen multimetrische Modelle, um die Eigenschaften
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Zusammenfassung

vonMehrkern-CPUs besser widerzuspiegeln; (4) und schließlich untersuchen

wir die Fähigkeiten von Software-Modellierungssprachen, massiv paralleles

Verhalten auszudrücken.

Als Beitrag dieser Arbeit können wir zeigen, dass (1) Multicore-CPU-Simula-

toren das Verhalten von CPUs detailliert und genau simulieren. Wenn jedoch

Architekturmodelle als Input für die Simulatoren verwendet werden, sind die

Simulationsergebnisse von geringer Qualität. (2) Aufgrund der umfangrei-

chen Experimente können wir eine Reihe von Referenzkurven präsentieren,

die das Verhalten von charakteristischen Lasten widerspiegeln. Wir haben

die Referenzkurven in Palladio integriert und können die Performancevor-

hersagen erheblich steigern. (3) Wir stellen ein verbessertes multimetrisches

Hardware-Modell vor, das die SpeicherarchitekturmodernerMehrkern-CPUs

widerspiegelt. (4) Wir stellen einen Katalog paralleler Architekturmuster zur

Verfügung, der vier der gängigsten Parallelisierungsmuster enthält. Durch

diesen Katalog ermöglichen wir es dem Software-Architekten, das Parallel-

verhalten von Software wesentlich schneller und mit weniger Fehlern zu

modellieren.

iv
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1. Introduction

Manufacturers had been doubling

the density of components per

integrated circuit at regular

intervals, and they would

continue to do so as far as the eye

could see.

Gordon E. Moore – 1965

Software sells. This slogan is true for almost all areas of today’s business.

Software no longer has a supporting role, but is a core feature and enabler of

technology, features, usability, and business. Autonomous cars, smartphones,

smart homes, legal tech companies, and multimedia streaming services are

only a few examples of successful applications that dominate our daily life

and highly depend on sophisticated software. This software is so complex

that it contains thousands or even millions of lines of code, it cannot be de-

veloped by a single person anymore, and it has to ful�l high levels of quality

standards to meet the Service-level Objective (SLO). Due to the complexity

of the software and the immense cost of software failures and bugs, such

software is developed in an engineering-like way, to ensure high quality stan-

dards [KBAW94; KKB+98]. This engineering-like way includes a structured

method of collecting requirements, creating architectural designs, as well

as evaluating and testing. In the following, we focus on the evaluation of

architectural designs used in the early design phase. Therefore, model-based

performance prediction approaches are used to simulate and to evaluate the

quality attributes of architectural design (e.g., response time). To use such

approaches, the Software Architect (SA) must create an architectural model

of the software (i.e., the software model), specify the users’ behaviour (i.e.,

user model), and create a description of hardware characteristics (i.e., the

hardware model). In the next step, the SA uses simulation-based or analytic
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1. Introduction

solvers to evaluate the di�erent quality attributes of the architectural design.

State-of-the-art approaches like the Palladio Bench
1
or CloudSim

2
achieved

accurate predictions for complex, distributed, and cloud systems.

Nevertheless, all of the current approaches consider only a single metric in

the hardware model—the CPU speed—as relevant for estimating the perfor-

mance of the system. This assumption is appropriate when using hardware

powered by CPUs with up to four cores. However, today’s common CPUs

have more than four cores. By now, multicore processors have been widely

used for more than a decade in all types of devices, such as smartphones,

laptops, and desktop PCs. While smartphones have up to 8 cores, desktop

PCs with 16 cores or servers with more than 100 cores are a common sight

today.

Moving from single-core CPUs to multicore CPUs brings a range of new

challenges to the software engineering domain. First of all, to use the full

potential of multicore processors, software developers must write software

that supports parallelism on multiple levels. Writing parallel software is

even more challenging when the developers must consider live-/ deadlock,

synchronisation, concurrent data access, etc.

Di�erent domains tackle the multicore challenge in their ways: In safety-

critical embedded systems like aeroplanes or cars it is important to prove the

correctness of the application and to guarantee deadline (e.g., detecting and

reacting before crashing into an obstacle). Because parallelism signi�cantly

increases the complexity, it was common sense in the embedded domain to

disable all but one core and continue to use sequential applications [KSS+17].

However, due to the increased amount of software (and thus, hardware

requirements) manufacturers are now forced to develop new approaches to

not only develop parallel applications but also to specify and verify them.

In the HPC domain, parallel execution has been researched for years. Thereby

HPC focuses on low and algorithmic levels. It is common sense to use

programming languages like Fortran and to optimise each instruction. So,

developers in HPC search for potential optimisations and count each byte to,

e.g., �t their instructions into a single cache page. That way, they can gain

1
http://www.palladio-simulator.com/

2
http://www.cloudbus.org/cloudsim/
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massive performance boosts, since each instruction is executed millions of

times.

The developers of Business Information System (BIS) usually do not have

the expert knowledge of HPC developers, nor do they have the resource

limitations embedded systems have. So, a common practice today is to slice

applications into (micro-)services and try to avoid parallelism within these

services. Moreover, parallelism is achieved by running multiple instances

of a service and handling user requests in isolation. E.g., to coordinate or

exchange data in a Kubernetes Cluster, key-value databases like etcd.io are

used, even though a shared in-memory solution like Redis might be much

faster. But also more complex to handle parallel accesses.

Slicing applications along the user requests (jobs) has the advantage that

each job can be handled independently. However, the bene�ts are limited.

With multiple jobs accessing the main memory at the same time—even if

they have an isolated memory space—shared resources like the memory

bus become a bottleneck. Further, slicing is often not possible due to the

domain. E.g., for data analysis, the whole data set is evaluated, and the

algorithms are complex, time and resource-intensive. Thus, to use the full

potential of today’s hardware, the code within the services also needs to be

parallelised.

Today, it is still common practice for people from High Performance Comput-

ing (HPC) and BIS to follow a try-and-error approach to see if the software

under development ful�ls the SLOs. This approach is not only cost, and time-

intensive, but simply not applicable for large-scale systems like Facebook,

Net�ix, or Twitter any more. These systems are so large and have such a

high number of user requests that it is simply not possible to generate the

load for testing any more [WS03].

Thus, having reliable software performance predictions of parallel appli-

cations in multicore environments in more critical than ever. Thereby we

need to enable SAs to factor in parallel behaviour during the early design

phase, which is challenging, since commonly-used languages for designing

software (e.g., UML 2.5
3
) have only limited capability to express parallel

behaviour and the SA needs to model each behaviour manually. Next, we

3
UML 2.5 Speci�cation: https://www.omg.org/spec/UML/2.5.1/PDF
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1. Introduction

must reevaluate the model-based performance prediction methods to show

their accuracy and suitability for parallel software.

In the course of this thesis, we will not focus on challenges when coding

parallel applications but focus on the modelling and performance prediction

aspect.

1.1. Requirements to Enable Model-based
Performance Predictions for Parallel So�ware
on Multicore Environments

Given this background, we can identify major requirements to successfully

perform model-based performance predictions for parallel software run in

multicore environments:

𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 Software architects must be able to express concurrency in soft-

ware models, that (a) describe the behaviour of the software and (b) is

feasible for the SA to model regarding time and e�ort. This includes

highly concurrent software, which can consist of multiple hundreds

or even thousands of concurrently executed threads, where it is not

feasible to model each thread by hand.

𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 Since the single metric—CPU speed—is no longer su�cient to cover

all the performance-relevant aspects of multicore systems, the soft-

ware architect must be able to specify the additional performance-

in�uencing factors (e.g., memory bandwidth, cache behaviour, or the

memory architecture) needed.

𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 The performance prediction models must include relevant

performance-in�uencing factors and re�ect the additional complexity.

𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 The solvers, used to interpret and analyse the models, need to be

capable of processing and evaluating the adapted software, hardware,

and performance models.

𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 The performance predictions need to align with the real and mea-

surable behaviour of the software to an extent that is useful for the

software architect.

6



1.2. Problem Statement

Unfortunately, no approach exists which ful�ls all of the above requirements

[FHLB17]. However, approaches exist that meet at least one requirement,

although none of them focuses on model-based performance predictions. In

what follows, we give a brief overview (see Chapter 4 for a full discussion

on the related work):

Memory Architecture Modelling: For𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 and𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 , there are few

research projects that use memory architecture modelling to pre-

dict the behaviour of the memory [THW09; THW12; VE11; Wil09;

XCDM10]. These approaches focus on CPU caches and their hit rates.

Parallel Behaviour Modelling: For 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔, [RGD11b] aims at using UML

MARTE pro�les to enrich softwaremodels withmulticore information.

However, they do not focus on performance predictions, but on code

generation for OpenCL.

Reusable Architectural Knowledge: TheArchitectural TemplateMethod aims

to provide reusable architectural templates to SA [Leh18; LHB18],

which can help us address 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 and 𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 .

Due to the paucity of all-encompassing approaches, SAs are currently limited

in their ability to model parallel behaviour, and the process of modelling is

highly error-prone and time-consuming [FH16; FSH17]. Furthermore, when

it comes to performance predictions, SAs are currently not able to make

reliable Quality of Service (QoS) predictions for parallel applications running

in multicore environments. Thus, an engineer-like approach to develop

highly parallel applications su�ers from single-metric hardware models,

incomplete performance models, inaccurate solvers, and the absence of

language support for modelling parallel software behaviour at the moment.

1.3. Solution Overview & Contributions

To overcome the shortages named above, we propose an approach containing

four individual contributions combined into the Palladio Bench.

7
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Figure 1.1.:Overview of the solution and contributions presented in this thesis

Figure 1.1 gives an overview of the contributions. To be able to provide them

to the SA as a combined approach, we integrate them into the Palladio Bench.

In this way the SA can bene�t from the full potential of all contributions.

CB1: First, we provide a parallel architectural template catalogue based on

the AT method to o�er SAs a set of easy-to-use common parallel design

patterns (𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔). Thus, we can signi�cantly reduce the time a SA needs

to model parallel behaviour—while keeping the number of errors low. At the

same time, we increase user acceptance and improve the user experience.

In total, we support four abstract parallel design patterns (Master-Worker,

Parallel Loops, Fork & Join, Pipes & Filters), which the SA can use to model

the behaviour of 33 common parallel design patterns.

CB2: We conduct extensive experiments to analyse the impact of performance-

in�uencing factors on the response time (𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ). We use the measurements

to derive performance curves, which we integrate into Palladio to increase

the prediction accuracy (𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). As result, we provide a set of perfor-

mance curves for common types of software behaviour to the SA. These

performance curves can increase the performance predictions without de-

tailed modelling of all performance relevant aspects.

8
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CB3: We extend the Domain Speci�c Language (DSL) of the Palladio Bench,

the Palladio Component Model (PCM)[BKR09], and include characteristic

elements to re�ect the memory hierarchy into performance models (𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ,

𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ). In doing so, we also extend the current state-of-the-art simula-

tor (SimuLizar) to handle the models (𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 ). As a result, we present a mem-

ory hierarchymodel, implement the approach in the PCM and SimuLizar, and

are now able to simulate cache behaviour and memory bandwidth utilisation

to a certain extent.

CB4: We connect multicore CPU simulators used by hardware architects and

CPU vendors to Palladio. We use the PCMmodels as input for the simulators,

simulate them, and play the results back (𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 ). We eventually

provide two strategies: A trace-driven and a source code-driven approach.

We evaluate both methods and are able to show that CPU simulators cannot

be used for realistic model-based performance predictions, due to the low-

level information needed as input model. This information is absent in our

architectural input models.

In the context of this doctoral project, we published a number of peer-

reviewed publications including conference papers, journals, workshops, and

posters. Further, a number of student theses were supervised by the author

of this thesis. Appendix A.1 gives a detailed overview of the publications

and topics.
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1.4. Thesis Structure

The remainder of this thesis is structured in three parts: Introduction &

Foundations, Contributions, and Summary. Table 1.1 gives an outline of the

remaining chapters.

Part Chapter Content

2: Foundations Describes the fundamental concepts needed to follow the thesis. This

includes knowledge of CPU architecture, parallel applications and

execution, and model-based performance prediction.

3: Research

Design

Here we explain in-depth the research objectives, questions, and

method we follow in the thesis.

4: Related

Work

In this chapter we perform a Systematic Literature Review (SLR) to

reveal existing approaches to build upon and discover related work.

P
a
r
t
I
.
–
F
o
u
n
d
a
t
i
o
n
s

5: Running

Examples

In the course of the thesis, we use reoccuring code examples, which

we will introduce here. We utilise these use cases to provide sample

scenarios or evaluate our results later.

6: 𝐶𝐵1 Parallel

Architectural

Pattern

Catalogue

In order to overcome the lack of parallel language concepts, we create

a parallel architectural pattern catalogue in this chapter. As input, we

use 35 patterns we discovered in a structured literature review. After

categorising, we use the Architectural Template Method to create a

catalogue including the four most common parallel patterns. Finally,

we evaluate the catalogue using a use-case example an empirical user

study.

7: 𝐶𝐵2

Performance

Curves

We conduct extensive experiments to evaluate the in�uence of spe-

ci�c factors on the speedup behaviour of applications. We extract

performance curves from the measurements and include them in the

parallel AT catalogue.

8: 𝐶𝐵3

Memory

Model

Here, we discuss memory architectures and their mapping in per-

formance models. We present an extension to the PCM language to

include caches and memory bandwidth in the models and extend the

SimuLizar simulator to improve the prediction accuracy.

P
a
r
t
I
I
.
–
C
o
n
t
r
i
b
u
t
i
o
n
s

9: 𝐶𝐵4 CPU

Simulators

To further increase the prediction accuracy, we investigate the use

of hardware multicore CPU simulators. We research how we can

use the PCM instances as input for the simulators and evaluate the

overall performance.

10: Goal

Evaluation

We evaluate the achievement of the research goal, discussing each

research question and its answer.

P
a
r
t

I
I
I
.

S
u
m
m
a
r
y

11: Conclusion Concludes the thesis by summarising the �ndings from the contribu-

tions, discussing the lessons learned, and suggesting future research.

Table 1.1.:Overview of the thesis structure
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2. Foundations

In the following section, we introduce the fundamental concepts needed to

understand and follow the rest of the thesis.

First of all, we are going to lay out the basics of parallel and concurrent

software. In the same section, we will introduce two di�erent taxonomies to

categorise concurrent and parallel software: categorisation based on memory

usage and categorisation based on information exchange.

After we understand the software characteristics of concurrent and parallel

software, we will expound the hardware characteristics of multicore CPUs.

Thereby, we will focus on high-level concepts needed to follow the rest of

the thesis.

In the latter portion of this section, we will use that knowledge to elaborate

common parallelisation patterns, approaches to predict the behaviour of

multicore CPUs, and model-based approaches to predict quality attributes

of software designs.

2.1. Parallel and Concurrent So�ware

In this section, we will elaborate on the characteristics of parallel and con-

current software. Thereby, we will focus only on the software view (the

hardware view is illuminated in Section 2.2).

2.1.1. Parallel vs. Concurrent

Parallelism and concurrency are often used as synonyms in the literature.

However, they are not the same thing.

11
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Figure 2.1.:Concurrent vs. Parallel Execution

In computing, concurrency was �rst used to better utilise or share resources

in a computer (comp. [MSM04]). For that, the computing task is partitioned

into smaller subsets and, with the help of the operating system’s schedulers,

tasks can quickly be swapped. This has the bene�t of one task not having

to lock the processor while idling (i.e., while waiting for I/O). By quickly

swapping many tasks, it appears to the user as if the tasks are executed

in parallel. However, this must not be the case. Figure 2.1a exempli�es a

concurrent execution of multiple tasks.

Compared to concurrency, parallelism describes the behaviour of two tasks

being executed at the same time, in parallel. Figure 2.1b exempli�es a parallel

execution.

Finally, we can conclude with the following de�nitions for concurrency and

parallelism from [Sun08]:

"Concurrency: A condition that exists when at least two threads are making

progress. Amore generalised form of parallelism that can include time-slicing

as a form of virtual parallelism.

Parallelism: A condition that arises when at least two threads are executing

simultaneously."

In addition, Table 2.1 summarises the di�erent characteristics.

While we use concurrency to utilise a single core more e�cently, parallelism

needs real multicore systems to execute di�erent threads in parallel. Thus, we

use multicore systems to improve the throughput of a system. In this thesis,

we focus on parallelism, parallel software, and multicore architectures.
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CONCURRENCY PARALLELISM

Act It is the act of managing and run-

ning multiple computations at

the same time.

It is the act of managing and run-

ning multiple computations si-

multaneously.

Method Interleaving operation Using multiple CPUs

Bene�ts Increased amount of work ac-

complished at a time.

Improved throughput, computa-

tional speed-up

Uses Context switching Multiple CPUs for operating

multiple processes.

Required
Processing
Units

Single or multiple Multiple

Table 2.1.:Comparison of Concurrency and Parallelism (cf. [Tec17])

2.1.2. Shared vs. Distributed Memory

In parallel systems, it can be necessary to exchange data among the individ-

ual tasks. Most common approaches are based on either shared or distributed

memory approaches. In this context, the terms shared and distributed mem-

ory do not refer to the physical location or layout of the memory, but rather

to how the memory is presented to the parallel applications (cf. also shared

and distributed memory computer architectures):

Shared Memory: In shared-memory approaches, each task can access the

whole memory of the application. The data exchange occurs by mul-

tiple threads accessing the same data in the memory. This approach

is vulnerable to a high number of drawbacks. So, in every paralleli-

sation approach which is based on shared memory (i.e., threads) the

developer has to take care of synchronisation, mutual exclusion, and

data privacy aspects (cf. [MMG+09]).

Distributed Memory: In comparison to shared memory, distributed memory

grants each task access to a speci�c address space only. Hence, it

is not possible for a task to directly access the data of another task.

To enable data exchange among tasks, one task has to send data to

another task individually to exchange data.

13



2. Foundations

2.1.3. Means to Parallelise

Depending on the given memory access method (shared or distributed),

di�erent parallelisation paradigms have to be used to support the access

method or to ensure it. In the following section, we will explain two general

means of achieving parallelisation: Thread-based and message-based. For

each of these two methods, we will give examples of commonly used imple-

mentations. The list of examples is far from complete and is only used to

explain the basic concept.

2.1.3.1. Thread-Based Approaches

In thread-based approaches, parallelisation is achieved by spawing new

threads. The operating system then schedules the new threads to the proces-

sors and cores. Data exchange is done by the principle of shared memory,

which makes it also necessary for the developer to take care of mutex. In

the next three paragraphs, we explain pure threads and stream processing,

as well as OpenMP.

Threads: Threads are the most basic means of achieving parallelisation.

Figure 2.2a exempli�es the approach. To achive thread-based parallelism

within an application, the main thread of the application forks new threads

and assigns tasks to them. Each thread executes its subroutine, and by

scheduling the threads to individual cores (by the operating system), the

threads run in parallel. This approach is often also called task parallelism be-

cause each task is separated into an individual thread [Rei07]. To successfully

use this approach, it is essential that the individual tasks have no limited,

well designed inter-thread communication. If they share the same data, the

developer needs to take care of data access restrictions (i.e., locks and mu-

tual exclusion). Thread-based means to parallelise are the foundations for

design pattern (like master-worker pattern) or parallelisation patterns (like

fork-join). We discuss these patterns in more detail in Section 2.3.

Stream Processing or data-�ow programming (sometimes also referred to

by the architectural style: pipes and �lters) is a programming paradigm

well known from Linux command line shells (pipe) or graphical calculations

14
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main:Runnable t1:Runnable t2:Runnable
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(a) Synthetic multithread example

collect

collect

sum print

(b) Toy example: Sum up with Streams

(cmp. [Bea15])

Figure 2.2.:Abstract overview of threads and stream processing

within GPUs. The basic concept is explained by using Figure 2.2b. In stream

processing, there is a sequence of data (stream) and a series of operations.

The operations are applied in a speci�c order to the streams to get the desired

result set [Bea15]. Each operation is thereby independent of the others, and

only needs speci�c input data. Thus, it is possible to run each operation in

parallel and even to have multiple instances of each operation. Typically,

each operation instance runs in its thread to archive the parallel execution.

While stream processing traditionally used kernel functions, such as oper-

ations, and was optimised for particular CPUs (e.g., GPUs), the concept is

widely adopted nowadays, used in common programming languages (e.g.,

Java Streams), and runs on general-purpose CPUs [GR04].

OpenMP: The OpenMP Application Programming Interface (API) is a pre-

compiler, who was designed by a group of software and hardware manu-

facturers. Both interest groups have agreed on speci�cations to create a

uniform standard for programming parallel computers with a shared address

space. The three main components of OpenMP are compiler directives, run-

time libraries, and environment variables. Implementations are available

for almost all common programming languages, which makes OpenMP a

popular API for developers.

The parallel programming model of OpenMP is based on parallel threads

which have a shared and a private address space. All programs start with a

single master thread. Based on the fork-join execution model, it creates a so-

called thread team. The compiler directive triggers the creation of the team

15
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at the beginning of the program section, which is about to be parallelised.

All threads of the team execute this section in parallel. The exchange of

information between the threads takes place using shared variables. These

variables are kept in the address space shared by all threads concerned.

However, private variables are stored on each thread’s stack and are therefore

only held for the duration of the execution of the parallel section. The shared

and private variables are speci�ed in the compiler directives. When parallel

processing is completed, the created threads terminate, leaving only the

master thread.

OpenMP provides various mechanisms for coordinating the threads. It is

possible to implement critical areas in which only one thread may process.

To synchronise the threads of a team, OpenMP uses the barrier directive to

wait for all threads, and to synchronise the work�ow. The barrier directive

causes all threads reaching it to pause until all threads of the team have

reached it. The programming model also provides locking mechanisms

in the form of simple and nestable lock variables. Their use and further

implemented concepts for thread coordination are described in detail in

[RR12](p.369-373).

One of the most critical aspects of the underlying programming model is

the possibility of establishing parallelism on the loop level. Within a parallel

section, loops can be parallelised using the for-directive. For this purpose, the

loop iterations, and thus the computing work, is distributed to the threads of

the team. This distribution can be done in di�erent ways, e.g., by assigning

a certain number of iterations to the threads in the team. Another variant

is to assign the iteration blocks dynamically. Whenever the processing of a

block is completed, a new one is assigned. To use OpenMP parallel loops,

the parallel loop must ful�l certain conditions. One is that the total number

of iterations must be known before entering the loop. Furthermore, the

individual calculations of the iterations must be independent of each other

and must not change the running index of the loop (cf. [HL08; RR07]).

Due to its relatively simple use, OpenMP is frequently used to speed up and

parallelise legacy software, by merely annotating for-loops, so that they run

in parallel.
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2.1.3.2. Message-Based Approaches

Message-based parallelism is characterised by the clear intercommunication

of a set of concurrent tasks. These tasks may reside on the same physical

device, or across an arbitrary number of devices. To exchange data with

each other, the tasks communicate by sending and receiving messages. This

data exchange usually requires the cooperation of each process [GHK+13].

Even though message-based parallelism approaches can be used on the

same machine, message-passing is often associated with distributed memory

models and distributed computing.

In the following, wewill brie�y explain two common frameworks formessage-

based parallelisation: MPI and Actors.

MPI: Message Passing Interface (MPI) is a speci�cation for developing

parallel programs that communicate with each other by the exchange of

messages [BVS13]. It is a standard interface for message-passing calls and is

powerful, �exible, and usable [SAB18]. One property of MPI is that it is very

explicit, meaning that the programmer can control many details of the data

�ow [Eij17]. Additionally, interface speci�cations have been de�ned and

implemented for C/C++ and Fortran [BVS13]. Nowadays, MPI has become a

standard for developing message-passing applications [BVS13].

Actors: The Actors Model (Actors) is an abstract model for parallel pro-

cessing. It was �rst presented in the paper [HBS73], which introduced the

basic concept of actors. There are numerous programming languages and

partly identically named implementations, which use the axioms of the ac-

tors model to implement parallelism, but di�er in detail. In the following,

we will, therefore, only deal with the core axioms of the actors model:

Actors are considered to be basic, abstract units, which include processing,

memory and communication. Actors follow the principles of object-oriented

design. Accordingly, actors can be considered as objects, and are encapsu-

lated from each other. The encapsulation also means that no two actors share

the same memory. Thus the exchange of information between the actors

must take place via explicit communication. Explicit communication hap-

pens by the asynchronous exchange of messages (in many implementations
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also a synchronous option is available). The actor can react to a message

only with three actions:

• Creating additional actuators

• Sending messages to known actuators

• Adjust the behaviour for processing the next message

Actors have a message queue in which the incoming messages are held (see

Figure 2.3), since they can only be processed one after the other. Messages

are taken from the queue and processed according to the "First In - First Out"

principle. Also, the concept of state machines is supported. The state of the

actor after processing a message determines the behaviour for processing

the next one [Ver15]. Due to encapsulation and independence, actors can be

executed in parallel. However, the actors themselves operate like a sequential

application. A manual implementation of locks and mutexes is not necessary,

because each actor has its own memory space [Cli81].

When it comes to determining potential actors in an application, Storti

gave the following statement: "Everything is an actor" [Sto15]. In practice,

however, this leads to too much complexity and performance losses for a

�ne-granular actor system. Therefore, one tends to represent each functional

task by an actor [Ver15].

2.1.4. Thread-Based vs. Message-Based

The shared memory model characterises thread-based parallelism. Each

thread has its local memory, but also shares the global set of variables. The

communication between the threads is achieved by updates and access to

memory in the same address space [GHK+13]. Thread-based approaches can

be faster than message-based approaches because of the more convenient

access to the shared memory address space. However, this shared access can

lead to problems, such as race conditions. Message-based approaches have

better scalability than thread-based approaches because of the distributed

memory model, which enables the simple addition of new parallel tasks.

Also, since each task has its isolated memory, race conditions are a much
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Actor A

Actor C

Actor B

Mailbox

Mailbox

Mailbox

Message
Message

Message

Figure 2.3.: Example of an Actor System (cf. [Doy14])

smaller threat. A disadvantage of message passing is the necessity of imple-

menting an interface that is responsible for the data transfer between the

tasks [Pie16].

2.2. Single- and Multicore Architectures

In practice, a wide variety of multicore CPU architectures exist. The variance

ranges from very specialised architectures (like GPUs or embedded control

units), over networks clusters, symmetric multiprocessors, and massive

parallel supercomputer CPUs to o�-the-shelf CPUs [MSM04].

In the following, we will give an overview of the most common CPU ar-

chitectures. A basic understanding of the hardware will later help to un-

derstand performance characteristics and performance issues of parallel

applications.

2.2.1. Architectural Design

While there are multiple taxonomies to categorise CPU architectures, by far

the most common one is the taxonomy introduced by Flynn [Fly72], which

we will follow in this section. Flynn categorises all CPU architectures by the
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control unit

processor

output
data

input
data

instruction

Figure 2.4.: Example of SISD (cf. [MSM04])

number of instruction streams and data streams. Thereby, a stream is a se-

quence of instructions or data a CPU processes. Flynn distinguishes between

four di�erent types: SISD, SIMD, MISD and MIMD [Fly72; MSM04].

Single Instruction and Single Data (SISD): Figure 2.4 exempli�es the cate-

gory of SISD. In this type, each processing unit in the system gets its

own data for each instruction.

Single Instruction and Multiple Data (SIMD): In contrast to SISD, in SIMD

systems, each processing unit gets the same instruction but di�erent

data upon which to execute the instruction. A typical example is

image processing or digital signal processing, which are well suited

for low-level parallelism (see Figure 2.5).

Multiple Instruction and Single Data (MISD): ForMISD there is nowell-known

system that �ts this category, and it is only included in Flynn’s taxon-

omy for the sake of completeness.

Multiple Instruction and Multible Data (MIMD): In aMIMD system, each pro-

cessor unit has its own set of instructions and its own set of data upon

which to execute the instructions (see Figure 2.6). Each processor unit

has an interconnection bus to exchange information with the other

processors. This group of systems is the most generalised one while

at the same time, �tting modern multicore architectures the best.

Only considering Flynn’s taxonomy is a good start. However, it is not

su�cient for understanding multicore architectures as a whole. In particular,
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Figure 2.5.: Example of SIMD (cf. [MSM04])
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Figure 2.6.: Example of MIMD (cf. [MSM04])

the memory hierarchies and the CPU core interactions are not detailed

enough. Thus, Mattson et al. [MSM04] speci�ed additional subcategories

for MIMD: Symmetric Multiprocessors (SMP) and Non-Uniform Memory

Access (NUMA) architectures.

CPU CPU CPU CPU

Memory

Figure 2.7.: Exempli�cation of SMP (cf. [MSM04])

SMP: Figure 2.7 shows the composition of SMP. It is a subclass for shared

memory systems. Each CPU accesses the same memory, while only
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Core Core Core Core

Memory

Core Core Core Core
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Figure 2.8.: Exempli�cation of NUMA (cf. [MSM04])

one memory exists in the architecture. Furthermore , all CPUs share

the same connection (memory bus) and can access the memory at the

same speed. SMP architectures are the easiest for the programmer,

because there is no need to consider the location of the data. In this

kind of architecture, the memory bus often becomes a bottleneck,

because the utilisation of the bus increases with an increasing number

of cores. Therefore, this architecture does not scale well, and only

works for a limited number of CPUs.

NUMA: A more complex architecture is NUMA architecture, which Figure

2.8 illustrates. As in SMP architectures, the memory is shared, and

each processor can access all blocks in the memory. However, some

blocks of memory might be more closely associated with some CPU

cores than others. Thus, cores can access data located in a closer

memory faster and therefore, the access times for data located in

di�erent memories can di�er signi�cantly. To compensate for these

e�ects, a hierarchical cache system is often used [KTJ06] together with

a strategy to maintain cache-coherence. Hence, these architectures

are also called cache-coherent nonuniform memory access systems

(ccNUMA).

For the sake of completeness, we also have to mention the subcategories

for distributed-memory architectures. In a distributed-memory architec-

ture, each processing unit has its memory and address space (see Figure

2.9). Communication with the other processors is done by message passing.

Depending on the topology, the communication speed can range from as

fast as shared memory to rather slow (e.g., communicating over an ethernet
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CPU CPU CPU CPU

Memory Memory Memory Memory

Connection Network

Figure 2.9.: Exempli�cation of a Distributed Memory Architecture (cf. [MSM04])

network) [MSM04]. Even though these kinds of systems have a high research

interest, especially in the domain of HPC, we will focus in this thesis on

general-purpose CPUs since the business information applications we are

interested in use this kind of hardware architecture.

2.2.2. Common CPU Architecture Example

To foster understanding, we will brie�y describe the architecture of a com-

mon general-purpose CPU with a hierarchical memory hierarchy (like an

Intel i7) in this section using Figure 2.10. In Figure 2.10, multiple processors

are depicted. Each processor contains multiple cores. Common desktop

processors currently have 2 to 32 cores per processor (i.e., AMD Ryzen

Threadripper 3970X
1
).

Each core contains a Central Processing Unit (CPU) and two types of Level 1

Cache (L1)—one for instructions (L1 Instruction cache) and one for data (L1

data cache). The L1 cache is directly accessible by the CPU and guarantees

fast access of data in case of a cache hit. Further, each core has its Level 2

Cache (L2), which is, in comparison to the L1 cache, slightly larger, but its

access times are slower.

Depending on the system’s architecture and the mainboard used, multiple

processors can be used. Thereby, the memory bus connects the individual

processors with the Last Level Cache (L3) and the main memory. If there is

too much communication between processors, or between processors and

main memory, the bus can become a bottleneck—similar to network links.

1
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3970x
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Figure 2.10.: Example of a Common Hierarchical Multicore Processor (cf. [Sch08])

Often mainboards support prioritised access from one processor to a speci�c

segment of the main memory (RAM module), which improves the access

rates of data in that segment.

Besides architectures with hierarchical memory hierarchies, there are also

architectures with a pipeline or array design [RR07]. However, since they

are not common, we will skip explaining them at this point.

2.3. Parallel Programming Patterns

In the past years, not only specialised domains like HPC, but also standard

application developers and researchers have had to face the need for e�cient

parallel software. However, developing such software is complex, challeng-

ing, and error-prone [MMG+09]. Therefore, a quite broad range of best

practices and patterns has arisen to guide developers when realising parallel

software.

In this section, we will introduce fundamental parallelisation patterns. Un-

derstanding the pattern will help to comprehend the core concepts of parallel

programming. Following this section will also help to elucidate contribution

1 (see Chapter 6), in which we introduce a parallel pattern catalogue for

common modelling languages, such as UML2.
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First, we look at the pattern de�nition. Afterwards, we will introduce dif-

ferent categories of parallel patterns and explain the main concepts behind

them.

2.3.1. Patterns for Parallel Programming

Mattson et al. de�nes a pattern as follows:

"A (design) pattern describes a good solution to a recurring

problem in a particular context. The pattern follows a pre-

scribed format that includes the pattern name, a description of

the context, the forces (goals and constraints), and the solution.

The idea is to record the experience of experts in a way that

can be used by others facing a similar problem. In addition

to the solution itself, the name of the pattern is important. It

can form the basis for a domain-speci�c vocabulary that can

signi�cantly enhance communication between designers in the

same area." [MSM04, p. 11]

Starting from this, de�ning the characteristics of a pattern is tricky, fuzzy,

and in practice, the gap between a pattern description and its implementation

can signi�cantly di�er. Further, the same pattern often goes by di�erent

names in di�erent communities. Therefore, we performed a literature review

in [SWD19] to categorise common parallel patterns and �nd synonyms. The

main results of this review are shown in �gure 2.12, and a more detailed

discussion is given in Section 6.5.1.

After collecting parallel patterns from the literature, we extracted the de-

scription and grouped similar patterns together, naming the pattern by the

most common name (i.e., fork & join). Further, we categorised the patterns

by their level of abstraction, into three groups: Algorithmic, Architectural,

and Design Patterns (Figure 2.12 groups the latter two, for reasons of sim-

pli�cation). For each pattern, Figure 2.12 lists synonyms or implementation

variants. This list is far from complete and is intended only to provide a

rough overview.

In the following, we describe each main pattern in more detail.
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2.3.2. Parallel Architectural & Design Patterns

"[An architectural] pattern provides a scheme for re�ning elements of a

software system or the relationships between them. It describes a commonly

recurring structure of interacting roles that solves a general design problem

within a particular context." [BHS07, p. 392]

2.3.2.1. Master-Worker Pattern

According to [Eij17], the master-worker pattern is one of the most well-

known patterns in parallel programming, and is supported by a broad set of

programming languages. The basic idea behind the master-worker pattern

is simple: One mammoth task is split into multiple subtasks that can run in

parallel. Thereby it is essential that the subtask is as isolated as possible, in

order to avoid interdependences.

The master is in charge of distributing the work to the workers, as well as

coordinating them.

Since it is a design pattern, the master and the workers are often designed as

individual components. While each worker-component has a speci�c task,

the master-component takes over the role of a facade and a load-balancer

or task manager. The calling instances call only a function on the master-

component, which also provides the result to the calling instances.

On a lower abstraction level, this pattern behaves similarly to the fork/join

pattern.

2.3.2.2. Message Passing

We already discussed in Section 2.1.3.2 the basic idea of message passing:

each acting instance has its own memory, and can only interact with other in-

stances by sending messages. Often these messages are sent asynchronously,

and each acting instance has a message queue to store messages until they

can be processed [Erb12].

To implement the message passing pattern, languages that support these

features are required. One option is to use object-oriented programming

26



2.3. Parallel Programming Patterns

languages to manually implement the pattern, frameworks like AKKAActors

(for Scala)
2
, or speci�c languages like Erlang

3
.

Choosing a message-passing approach is a fundamental design and therefore

categorised here as an architectural pattern.

2.3.3. Algorithmic Patterns

Algorithmic patterns are, in contrast to design and architecture patterns,

on a much lower abstraction level and focus on a solution strategy for

one concrete implementation problem. An algorithmic pattern, therefore,

describes a solution strategy with one or multiple subroutines.

In the following three paragraphs, we will describe three parallel algorithmic

patterns. All of them are based on shared memory, and have a thread-based

approach.

2.3.3.1. Parallel Loops & Sections

Parallel loops are an e�cient way to realise parallelism for programs that

show a need formany repetitions of the same calculationwithout dependency

between loop cycles [MSM04].

Its ease of achieving parallelism de�nes the parallel loops pattern, and it

requires a set of independent data that can be split into smaller subsets. Each

data subset is initially passed to an individual loop. E.g., considering a list

of 800 entries, where for each entry the same operation is performed. The

parallel loop pattern would split the list into, e.g., four subsets—each subset

containing 200 entries. Now instead of having one single loop iterating

over 800 elements, we have four loops iterating over 200 elements each. By

separating each loop into an individual thread, parallelism can be achieved.

To achieve the best results, splitting the dataset into equal and independent

parts is critical.

2
https://doc.akka.io/docs/akka/current/typed/index.html

3
https://www.erlang.org/
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Figure 2.11.: Example Stream Application (cf. [Mic17])

2.3.3.2. Streams or Pipes and Filters

The pipes & �lters pattern is rather common as well. The following descrip-

tion is a summary of the o�cial Microsoft Azure documentation [Mic17].

The pipes & �lters pattern can be used as a parallelism approach based on

data streams. A stream consists of �lters, which are processing steps, and

pipes that represent connections between �lters.

The pipes & �lters pattern works by separating a set of data into streams

and applying pipelines of pipes and �lters in a predetermined order onto

these streams. While each �lter is independent of the others, and only relies

on the input stream, parallelisation can be achieved by executing di�erent

�lters in parallel. Slow �lters can have multiple instances to faster process

the input stream. In the end, the processed data stream is collected. Figure

2.11 illustrates this approach.

2.3.3.3. Fork-Join

The following content is based on information found in [Eij17] and is very

similar to the master-worker pattern. Even though the abstraction level is

much lower, the idea is the same: due to the logical identi�cation of subtasks,

one mammoth task is split into subtasks, which can be executed in parallel.

In the best case, the subtasks are independent. However, this is often not the

case. Therefore, locks and synchronisation mechanisms are used to include

barriers, mutually exclusive data access, and waiting conditions.
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Figure 2.12.:Categorisation of Parallel Patterns

2.4. Analyses and Prediction of Quality of Service
Attributes

The analyses and prediction of QoS attributes (e.g., response time) is a major

part of Software Performance Engineering (SPE). C. Smith and W. Lloyd

de�ne SPE as following: “SPE is a model-based approach that uses deliber-
ately simple models of software processing with the goal of using the simplest
possible model that identi�es problems with the system architecture, design,
or implementation plans. These models are easily constructed and solved to
provide feedback on whether the proposed software is likely to meet performance
goals.”[SW03]

In this section, we will �rst introduce an approach using CPU simulators

to estimate the QoS attributes. Second, we focus on the model-based QoS

predictions on architectural level (e.g., the Palladio approach).

2.4.1. CPU Simulators

CPU simulators are often used by hardware vendors to evaluate the quality

attributes of new CPU architectures. However, they can also ful�l various

other duties. The primary duty we are interested in is the estimation of

quality attributes of a parallel software running on a target environment

without deploying it. So, one of the biggest challenges is the consideration of

29



2. Foundations

di�erent types of CPU architectures. Even though common architectures are

supported by now, and CPU simulators deliver reliable results, the simulation

takes much time.

In the following, we will describe the main characteristics of CPU simulators.

CPU simulators are relevant to follow the accomplishment in Contribution 4

described in Section 9. Parts of this section originated from the collaboration

with a Student—S. Graef [Gra18].

2.4.1.1. Foundations of CPU Simulators

Hardware architects have researched CPU simulators for years. The main

di�erence is in the type of entry, the calculation method and the application

scope [AS16].

Figure 2.13.: Simulation of target components [Carl J. Mauer – Computer Sciences

Department – University of Wisconsin]

Figure 2.13 shows the evaluation process when using simulators. The in-

teresting part here is the target application, which is running on the target

system. While the target application is known, the target system needs to

be simulated (or emulated) on the host machine (i.e., the computer running

the simulation) [AS16].

In the following sections, we describe the di�erent dimensions according to

[SK13a] in detail:

Section 2.4.1.2: Functional vs. Timing Simulators

Section 2.4.1.3: Cycle-Driven vs Event-Driven Simulators

Section 2.4.1.4: Trace-Driven vs. Execution-Driven Simulators
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Section 2.4.1.5: User-Level vs Full-System Simulators

In Chapter 9, we perform a literature survey and use the above dimensions

to classify the CPU simulators. Thus each simulator receives a trade-o�

(spider-web) diagram, which brie�y describes its characteristics.

2.4.1.2. Functional vs. Timing Simulators

The group of functional simulators are used for functionality testing [AS16]

only. Thus, they are not relevant in this theses. Because we do not research

the correctness of application, but the behaviour and performance.

In contrast to functional simulators, timing simulators focus on the exact

behaviour. They can simulate the hardware and software under study to

an extent, that it is possible to get performance counter for any time. Most

timing simulators are also called cycle-level simulators [AS16], because they

track every clock cycle. The cycle level accuracy, however, comes on the cost

of time. The simulations times of cycle-level simulators are up to 25 times

longer than functional simulators, and they use more compute resources

[AS16].

2.4.1.3. Cycle-Driven vs. Event-Driven Simulators

To further drill down into the group of timing simulators. We can distinguish

between two additional subgroups: the cycle-driven (cycle-accurate, or cycle-

level) and the event-driven simulators.

While cycle-driven approaches are relatively slow, event-driven simulators

reduce the time consumption. One particular kind of event-driven simulators

is interval simulators [GEE10]. Interval simulators combine the feature set

of functional and timing simulators. But they do not simulate on cycle-level

but in intervals. The idea is that the missing events such as branching,

mismatches, and cache misses dividing the normal command �ow through

the pipeline into intervals. Then these intervals are evaluated separately.

This combination can reduce simulation time [AS16].
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2.4.1.4. Trace-Driven vs. Execution-Driven Simulators

CPU simulators use a di�erent kind of inputs. We distinguish between trace-

driven and execution-driven. Trace-driven simulators use a trace as input.

The traces contain detailed and low-level information about the execution.

One drawback is that trace �les can grow very large. But on the plus side, it

is not necessary to emulate the Instruction Set Architecture (ISA) with this

type of simulator [AS16].

In contrast to that, execution-driven simulators use an executable application

as input. When it comes to accuracy execution-driven simulators are very

accurately by emulating the ISA and also take errors that occur into account

(e.g., incorrectly speci�ed code path) [AS16]. Thus, this type of simulators is

most suited to predict the behaviour of an application.

2.4.1.5. User-Level vs Full-System Simulators

User-level (or application-level) simulators do not consider operating system

calls. In contrast, full-system simulators take the system calls into account.

So, the predictive power for system calls intensive applications is better

with full-system simulators. The disadvantage is that the simulators become

heavy [AS16].

2.4.2. Model-Based Quality-of-Service Predictions on
Architectural Level

In model-driven software development, models are used to develop the soft-

ware on a high abstraction level, which abstracts the software‘s complexity

to ease understanding and analysability. As a result, models become a central

artefact and are used for, e.g., code generation and automatic deployment.

In an early design phase, models are used to analyse and improve the software

before the software is realised. SPE is such an analysis method. SPE aims to

predict the software’s quality attributes, such as response time (performance),

costs of operation (costs), and range of capable performance (scalability)

[BDIS04]. Later, this approach was used in model-driven performance engi-

neering, which allows software developers to design performance models in
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a DSL [BDIS04; Hap08]. However, to derive performance metrics from such

models, it is necessary to combine model-based hardware descriptions with

software descriptions and environment/usage descriptions.

The main advantages of SPE are that software developers are able to evaluate

the performance requirements of the system at an early stage. In this phase,

decisions and design can easily be altered, because no realisation has to be

adapted. So di�erent design alternatives can be evaluated and compared, and

trade-o� decisions can be made in an informed and engineer-like manner,

saving both time and money [WS03].

SPE also enables complex load tests. These tests can cover usage scenarios,

e.g., for highly dynamic cloud systems with worldwide deployment and

multiple millions of users. To run such tests on a real installation can be

nearly impossible, based on the load generation, substantial expenses, and

not yet available hardware. With SPE, such tests can be realised for dozens

of di�erent design variants with lower costs [BDIS04].

Currently, there are two approaches that can be named as state-of-the-

art approaches for model-based quality-of-service prediction and analysis:

CloudSim
4
and Palladio

5
. While the former focuses especially on cloud

applications and elasticity, the latter is a general-purpose approach, which

works for all kinds of component-based systems. Due to this fact, we will

focus in the following on the Palladio approach.

2.4.2.1. The Palladio Approach

Palladio is a model- and software component-based modelling approach that

focuses on the prediction of quality attributes, and is therefore an example of

a model-based analysis method on an architectural level [BKR09; RBH+16].

Palladio supports a variety of quality attributes, such as performance (i.e.,

response time) [BKR09], cost-e�ciency [LE15], reliability [BKBR11], energy-

e�ciency [ÖGW+14], security [HFL16], and recently also scalability and

elasticity [LB14]. Palladio uses its own DSL, which follows the example of

UML. Therefore, it has a short adoption phase, and it is expected to have a

high acceptance rate among software architects [BKR09].

4
http://www.cloudbus.org/cloudsim/

5
https://www.palladio-simulator.com/home/
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To analyse an architectural design, the software architect has to specify a soft-

ware and hardware model, as well as usage behaviour. Within the software

model, the architect describes the behaviour, structure, and characteristics

of the software. In the hardware model, the given hardware environment

is described (for instance the HDDs, CPUs, and the system-landscape). Fi-

nally, the usage behaviour describes the behaviour of the user: How often a

function is called, how many users are active at the same time, etc..

In the remainder of this section, we will continue explaining the details

of PCM, describe standard solvers to analyse the architectural models, and

introduce the AT extension, which will be used for contribution 1 (see Section

6).

2.4.2.2. PCM

Figure 2.19 gives an overview of the PCM and its elements. The PCM contains

multiple main aspects, which are explained as follows:

Repository Diagram: In the repository diagram, the software architect mod-

els the components and their type. Further, he de�nes the required

and provided interfaces of components here. Each component has a

type, which is de�ned by (a) the provided interfaces of the type, and (b)

by the required interfaces of the type. The syntax and semantics used

in the diagram are similar to the UML2 Component Diagram [RQZ07].

Further, each component speci�es a particular behaviour for each op-

eration inherited from the provided interface. Within this behaviour

speci�cation, the software architect can model the behaviour of this

operation, i.e., calling other operations or consuming resource de-

mands, such as CPU or hard disk demands. In the PCM, the behaviour

speci�cation is called Service E�ect Speci�cation (SEFF). The SEFF is

similar to a UML2 Activity Diagram; it can use, e.g., loops, branches,

internal actions (to demand hardware resources like CPU cycles) and

external actions (usage of other components that causes requires

interfaces of the component).

System Diagram: In the system diagram, the components from the reposi-

tory diagram are instantiated. The instances of components are called

assembly context. Further, the system in the system diagram provides
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Figure 2.14.:Overview of the PCM (cf. [Leh18])

its interfaces, which represents the external access that is called from

a user. These interfaces are forwarded to a provided interface of an

assembly context. Also, a system can require interfaces, i.e., if an

assembly requires external services (cf. [Leh18]).

Allocation Diagram: In the allocation diagram, it is speci�ed which assembly

(system) is allocated on which container (resource environment).

Resource Environment Diagram: In the resource environment diagram, the

software architectmodels the hardware container onwhich the system

is allocated. In the resource environment, it is possible to create

multiple containers, which are interconnected via a network. Each

container can represent a physical machine or a virtual server node.

Each container can have an active resource, like CPUs or HDDs, for

which the software architect needs to specify the processing rates and

scheduling strategies (cf. [RBH+16]).
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Usage Diagram: In the usage diagram, the software architect de�nes the

user’s behaviour. Here, the software architect can model di�erent

usage scenarios, chooseing from closed (�xed number of users) or

open (users enter a speci�c arrival rate) workload models. In each

scenario, individual user behaviour is modelled, and the user enters

the system by the operations provided by the system.

QoSMonitor Diagram: In the QoSmonitor diagram, it is speci�edwhichmet-

rics are going to be measured and where during the analysis [Bec17].

Therefore, each entry in the QoS monitor points to a PCM element

where the measurements should be taken, and the corresponding

metrics which should be measured for that element (cf. [Leh18]). To

give an example, in a QoS monitor, one can con�gure it to measure

the response time of the system to a particular system operation of a

system interface.

Each of the above models represents a part of a complete PCM model. The

whole model can serve as input for di�erent solvers described in the follow-

ing.

2.4.2.3. Solver

To analyse a PCM model, a set of analytic or simulative solvers can be used

(as shown in Figure 2.19). The result is a behaviour analysis of the complete

system. This behaviour can be further analysed to identify limitations of the

system, such as bottlenecks or SLOs violation. Afterwards, the model can be

altered, and the consequences of the changes can be analysed. The analysis

allows the SA to evaluate di�erent versions of a system, before the �rst line

of code is written.

Palladio o�ers a set of solvers, which we brie�y characterise in the following.

We will give more detail information about the solver needed for this thesis

in the next section.

SimuCom: SimuCom is a simulation-based solver for the PCM. Its engine

works based on a model-to-text (m2t) transformation, and, during

the simulation, SimuCom can take measurements for a set of default

metrics (i.e., response time).
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SimuLizar: SimuLizar is the latest simulation-based solver for the PCM.

SimuLizar interprets the PCM and provides measurements modelled

in the QoS model (i.e., response time, utilisation, etc.). In contrast to

SimuCom, SimuLizar can detect changes during the simulation in the

instances. Due to this feature, SimuLizar can feature self-adaptive

systems and enable recon�gurations during the simulation.

LQN: The Layered Queuing Network (LQN) is an analytical solver for the

PCM. It is based on queuing networks, and it extends them by layers

and elements, such as fork/join [KR08]. The LQN solver performs

a model-to-model (m2m) transformation to create a LQN model of

the PCM. Afterwards, the LQN models are solved with analytical and

numerical mean-value approximation methods [KR08]. As a result,

the LQN solver provides information in the form of, e.g., the mean

response time of the system.

ProtoCom: ProtoCom is a Palladio extension that generates a runnable Java

prototype out of the PCM. These prototypes hold the QoS constraints

modelled in the PCM (e.g., resource demands), and can be executed

in various target environments. With the help of prototypes, it is

possible to run initial designs in real environments and evaluate the

results concerning the SLOs.

CodeSkeleton: Besides the prototypes, Palladio supports m2t transforma-

tions to generate code skeletons from the PCM. A developer can use

these code skeletons as a starting point for the implementation of the

modelled system.

While analytical solvers are a lot faster in analysing the input model, they

provide only information about mean values. Further, a simulation-based

solvers o�er more �exibility and freedom to the software architect, but can

result in long simulation times, even for smaller systems.

For the understanding of this thesis, it is necessary to have a more detailed

understanding of SimuCom (for Chapter 9), SimuLizar (for Chapter 8), and

ProtoCom (for Chapters 7 and 9), which we give in the following.
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Figure 2.15.:Overview of the SimuCom Solver [Bec08]

Figure 2.16.:Detailed View of SimuCom [Bec08]

2.4.2.4. SimuCom

Figure 2.15 shows the basic approach of the SimuCom solver. First, Simu-

Com takes as input a full PCM instance. Afterwards, it uses model-to-text

transformations to generate the simulations code, which again is executed

by the SimuCom Platform [Bec08]. The SimuCom Framework uses Discrete-

Event-Simulation Modelling in Java (DESMO-J)
6
.

To get a better understanding of the m2t transformation, Figure 2.15 gives a

more detailed view.

6http://desmoj.sourceforge.net/home.html
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The whole SimuCom simulation approach is based on the simulation of

resources. Each resource is handled and simulated as a G/G/1 queue. The

simulated workload component generates the load for the queues, and for

each user, a thread is spawned that traverses through the simulated system

[Bec08].

The simulation is based on a simulation of resources (see Figure 2.16). For

this, SimuCom simulates the G/G/1. A simulated workload generates the

load for the simulated resources. For each user, a thread is started which

traverses the (simulated) system. When passing through the SEFF simulation,

the resource demands in the form of stochastic expressions are evaluated to

determine the resource demands. In general, there are two types of resources:

The CommunicationLinkResource and the ProcessingResources. The latter are
subdivided again into active resources (e.g., CPU or HDD demands) and

passive resources (e.g., thread pools).

2.4.2.5. SimuLizar

SimuLizar is the next generation simulator and replaces the SimuCom simu-

lator [BBM13; Bec17]. Therefor, SimuLizar is based on the SimuCom core

framework as well. In addition to SimuCom, SimuLizar supports the analysis

of self-adaptive systems, e.g., systems that scale dynamically depending on

environmental factors, such as workload changes or service-level objectives

violations. Further, SimuLizar gives more freedom when specifying the mon-

itoring points. In contrast to SimuCom, the SimuLizar simulator does not

generate simulation code. SimuLizar follows an interpreter-based approach

instead. Meyer [Mey11] argues that a generator-based approach is faster

for non-adaptive systems. However, for adaptive systems, the generative

approach is unsuited because the generated code must be modi�ed each time

an adaption occurs. In interpreter-based approaches, the simulator traverses

through the PCM instance and interprets the model elements it encounters.

For the simulation logic, SimuLizar uses the core SimuCom framework. The

simulation and interpretation process of SimuLizar contains two steps:

1. In the �rst step—the SimulizarRuntimeState— the setting up and

con�guration takes place. Thereby di�erent model instances run the

ModelObservers, in which, e.g., the ResourceEnvironmentSyncer is

called, which creates SimulatedResourceContainer and
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SimulatedLinkResourceContainer for each ResourceContainer or

NetworkLink that is modelled inside the resourceEnvironment

model. Next, the containers are stored in the resource registry of the

SimuComModel.

2. In the second step, the simulation run, the PCM model interpreter

traverses each user request and navigates through the various

Palladio models. Thereby, the interpreter calls the correct

interpretation for each model element. For example, �rst the user

scenario model is interpreted, then all system calls in the user

scenario are identi�ed and interpreted. That way, the interpreter

traverses through the models until it reaches the resource demands.

Additionally, SimuLizer can consider self-adaptive behaviour [Bec17].

2.4.2.6. ProtoCom

Like the above two solvers, ProtoCom is also a Palladio analyser. A common

method of design evaluation is performance prototyping. For this purpose,

ProtoCom o�ers a method for generating runnable Java applications from

the PCM instances. Thereby, it uses model-to-code (m2c) transformations

[KL14]. These applications can be run in realistic environments, and the

software developer can check the monitoring data against the SLOs.

ProtoComTransformation The process of them2c transformation is shown

in �gure 2.17. The input of the transformation is a PCM instance. The

transformation generates a runnable performance prototype. The prototype

consists of the generated code and the ProtoCom framework.

During the m2c transformation, ProtoCom traverses through the PCM in-

stances, and transforms the processing resource demands into synthetic

resource demands (e.g., calculating Fibonacci)
7
.

To match the speci�ed resource demands in the model, ProtoCom needs to

run a calibration on the target platform. The calibration step is required only

once. Afterwards, the target platform is no longer needed. Moreover, it is

possible to run all experiments on a host machine.

7
A full description of all available demands is given in Chapter 5
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Figure 2.17.:Overview of the ProtoCom M2C Transformation [KL14]

Java SE RMI Prediction Prototype ProtoCom can provide various target

applications (like Java SE or Java EE). In the following, we have a closer look

at the Java SE RMI prediction prototype. This will become most relevant in

Chapter 9.

Figure 2.18 shows the architectural view of a JavaSE performance prototype.

As one can see, the prototype consists of two parts: �rst, the prototype (above

the dotted line) and second, the ProtoCom framework (below the dotted

line). The latter is the same for each prototype and contains the ProtoCom

logic. The prototype varies and re�ects the PCM input instances directly.

Especially interesting for us is the AbstractResourceEnviroment. This com-

ponent contains all the di�erent resource demands. By default, ProtoCom

uses a Fibonacci demand to represent the load on the CPU (for CPU-intensive

load). However, other demands, such as sorting array demand (for I/O-

intensive tasks), are available.

Resource DemandMapping Given the work from Becker [Bec08], there are

two ways to map independent resource demands to hardware-dependent

ones.

The �rst approach involves the introduction of a constant scaling factor.

This requires the knowledge of the hardware‘s capabilities. For example, one

work unit could correspond to the calculation of 100, 000 Fibonacci numbers.

However, the knowledge of this factor and the accuracy of this approach is

highly questionable.
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Figure 2.18.:Architectural View of JavaSE Performance Prototype [KL14]

Therefore, the second approach is based on an automated performance

detection of this factor. Thereby, a benchmark is run on the target machine

to determine the factor. The output of this benchmark is a calibration table.

This table includes two columns: the �rst column shows the time in𝑚𝑠 and

the seconds, the input parameter for the Fibonacci function (e.g., how many

numbers should be calculated).

We will explain the resource demands and the approach behind it in more

detail in Chapter 5. For more information on the ProtoCom approach, we

refer to [Bec08].

2.4.2.7. Architectural Templates

S. Lehrig proposed the AT approach in [Leh18] to enable software architects

to easily reuse architectural knowledge in the form of reusable AT in the

context of architectural analysis. Lehrig included a proof of concept of the

AT method in Palladio. We will use the AT method in Chapter 6 to build a

parallel architectural catalogue. Therefore, we will explain the details of the
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Figure 2.19.: Process of the AT Application Process (cf. [LHB18])

AT method in the course of this section. To follow Chapter 6, it is necessary

to understand the basics explained in the following.

The Architectural Template Method

“The AT method is a software engineering method with

which software architects can reuse architectural knowledge

from pre-speci�ed templates—ATs—for architectural modelling

and architectural analyses. AT engineers specify the AT, that is,

implemented, quality-assured, and provided within catalogues.

In applying ATs from such catalogues, software architects be-

come more e�ective and e�cient in their architectural analysis

tasks.” [LHB18]

The AT method di�ers between two views: (a) the view of the software

architect who wants to use ATs, and (b) the AT engineer who creates the

ATs. In the following, we will explain the use of ATs and their creation in

detail as proposed by Lehrig [Leh18; LHB18].

Usage of an Architectural Template To use an AT, the software architect

needs �rst to model the software architecture of the desired system. During

this process, the software architect can choose and apply suitable ATs from

the provided AT catalogue. The catalogue provides di�erent QoS speci�c
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templates. For example, a load balancer template can improve response time.

To use the AT, the software architect binds the corresponding roles to the

software architecture, and con�gures the parameters of the AT. When using

the AT tool, it prevents miscon�guration or violation of AT constraints (e.g.,

having illegal connections between model elements). Before analysing the

model by the solver, the AT engine performs a m2m transformation and

weaves AT completions into the architectural model (e.g., a load balancer

[Leh18]).

Creation of an Architectural Template The AT engineer creates AT tem-

plates and provides them via an AT catalogue to the software architect. An

AT catalogue contains ATs for a speci�c topic, like architectural styles or

parallel architectural patterns.

The �rst step in the creation of a new AT is the identi�cation of need and

the corresponding QoS properties (e.g., response time) and which metrics

need to be measured, as well as a suitable analysis approach (e.g., Palladio).

In the next step, the AT engineers need to gather and extract the reusable

architectural knowledge, and to formalise it within an AT. Thereby, the

AT engineer needs to specify roles, completions, and constraints, and bind

�rst-named to architectural elements. In the last step, AT engineers ensure

the quality and correctness of the AT, e.g., by testing.

2.5. Hierarchical Queueing Petri Nets

Especially for the �rst contribution of this thesis (see Chapter 6), we are using

Hierarchical Queuing Petri Net (HQPN) to formally describe the dynamic

behaviour of the parallel language elements in the PCM. Therefore, we will

brie�y describe the foundations of HQPN here.

HQPNs include several extensions to the conventional Petri Net (PN)s. These

extensions include the Coloured Petri Net (CPN), Generalised Stochastic

Petri Net (GSPN), Coloured Generalised Stochastic Petri Net (CGSPN), and

QPN. In the following, we assume the reader is familiar with PNs. Therefore,

we only give a brief introduction to PNs and HQPNs. Thereby, we follow
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the de�nitions given by [BK02] for PNs and the various extensions [Jen13].

A more detailed overview is provided in [Koz08].

2.5.1. Petri Nets

An ordinary PN is a 5-tuple 𝑃𝑁 = (𝑃,𝑇 , 𝐼−, 𝐼+, 𝑀0), where:

1. 𝑃 = 𝑝1, 𝑝2, ..., 𝑝𝑛 a �nite and nonempty set of places;

2. 𝑇 = 𝑡1, 𝑡2, ..., 𝑡𝑚 a �nite and nonempty set of transitions 𝑃 ∩𝑇 = ∅;

3. 𝐼− and 𝐼+ : 𝑃 ×𝑇 → N0 are called backward and forward incidence

functions, respectively;

4. 𝑀0 : 𝑃 → N0 is called initial marking.

PNs cannot di�er between the token type. A CPN allows the user to bind

a type (colour) to each token. Each place is restricted to a set of colours.

Furthermore, the transitions of CPNs can �re in di�erent modes based on

the colour of the token.

In addition, using Stochastic Petri Net (SPN)s, we can include temporal

aspects. SPN assigns an exponentially distributed �ring delay to each transi-

tion. This delay de�nes the time a transition waits after being enabled until

it �res [Koz08].

2.5.2. Queuing Petri Nets

Bause et. al [BK02] introduced QPNs. QPNs are based on CGSPNs and

integrates the queue concepts into places. Therefore, QPNs are used to

express queuing behaviour, which are in the form of SPE, in PNs. In QPN,

there is a queueing place, where tokens are queued, and a depository for

tokens which have completed their service.

Models in QPN can become quite large. To tolerate the size problem of mono-

lithic QPNs, it is convenient to divide them into smaller inter-active subnets.

For this purpose, HQPNs are used. They consist of several QPNs subnets

and additionally contain subnet places. Each subnet has a dedicated input

and output place, as well as another place counting the active population of
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the subnet, which is the number of tokens �red into the subnet that have

not yet left the subnet.

According to Bause et. al [BK02] a Hierarchical Queueing PN is a 4-tuple

𝐻𝑄𝑃𝑁 = (𝑁, 𝑆𝑃, 𝑆𝐴, 𝐹𝑆), where:

1. 𝑁 is a �nite set, where:

a) 𝑛 ∈ 𝑁 is a non-hierarchical QPN(
𝑃𝑛,𝑇𝑛,𝐶𝑛, 𝐼

−
𝑛 , 𝐼

+
𝑛 , 𝑀𝑛0

, 𝑄𝑛,𝑊𝑛

)
,

b) the sets of net elements are pairwise disjoint:

∀𝑛1, 𝑛2 ∈ 𝑁 :

[
𝑛1 ≠ 𝑛2 ⇒

(
𝑃𝑛1

∪ 𝑇𝑛1
) ∩

(
𝑃𝑛2

∪𝑇𝑛2

)
= ∅]

2. 𝑆𝑃 ⊂ 𝑃𝑁 is the set of the subnet places,

3. 𝑆𝐴 : 𝑆𝑃 → 𝑁 is the subnet assignment function,

4. 𝐹𝑆 ⊆ P (𝑃𝑁 ) is the set of fusion sets, such that members of a fusion

set have identical colour sets and equivalent initialisation expressions:

∀𝑓 𝑠 ∈ 𝐹𝑆 : ∀𝑝1, 𝑝2 ∈ 𝑓 𝑠 : [𝐶 (𝑝1) = 𝐶 (𝑝2) ∧𝑀0 (𝑝1) = 𝑀0 (𝑝2)]
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2.6. Summary of Foundations

2.6. Summary of Foundations

In this chapter, we presented the foundations needed to follow the course

of the thesis. Since not all foundations are necessary to understand certain

contributions, Figure 2.20 provides an overview of the contributions, and of

the sections of the foundations required to follow.

ProtoCom

Palladio
Component

Model
PCM Solver

CB1: Parallel 
Architectural 

Template 
Catalogue

Memory Bandwidth and 
Memory Hierarchies

CB3: Palladio 
Component Model 

Extension

CB4: CPU Simulator 
Integration

Software Models

PCM 
Performance 

Prototype

Analysis

Parallel ATs

PCM 
Extension

Performance 
Model

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

12
7

CB2: Reference Curves 
for Speed-up 

Behaviour

Performance Curves

Architectural 
Templates

2.1 Parallel Software

2.2 CPU 
Architectures

2.3 Parallel Patterns

2.4.1 CPU 
Simulators

2.4.2 Model-
based QoS 
Prediction

2.5 Hierachical 
Queueing Petri 

Nets 

Figure 2.20.:Mapping of Foundations to Contributions

In the next chapter, we will continue with outlining the research design.
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This section introduces the research design followed in this thesis. It clari�es

the overall research goal, the research questions to be answered in the course

of this thesis, and the process followed to answer the questions.

In model-based QoS prediction, the highest goal is to be as precise as possible

about the predictions of the desired quality attribute in comparison to the

real system (accuracy).

Since the focus of this thesis is performance prediction, we will look only

at the quality attribute performance. The current state-of-the-art model-

based performance prediction approaches focus only on a single metric—CPU

Speed—when specifying the characteristics of processor architectures. Single-

metric models might be �ne for most single-core architectures. However,

recent experiments have shown that current performance models produce

insu�ciently accurate predictions when analysing parallel applications in

multicore environments [FH16; FSH17]. Therefore, we formulate the follow-

ing hypothesis, on which this thesis is based:

Hypothesis 1 (𝐻0.1):
There exist additional CPU architecture and memory hierarchy related

performance-in�uencing factors—besides CPU speed—which have an

impact on the performance of parallel application.

Hypothesis 2 (𝐻0.2):
When considering the additional performance-in�uencing factors in

performance prediction models in an abstract form, in architectural

models, and during design time, we can improve the accuracy of the

model-based performance predictions for parallel application.
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3. Research Design

Validating the hypothesis will result in a set of emerging research ques-

tions: How can parallel applications be modelled; how far o� are current

predictions; what are the relevant performance-in�uencing factors; do other

approaches exist to predict the performance of parallel applications; etc.

Since model-based performance prediction is often used during the early

design phase, it is important that predictions based on abstract software ar-

chitectures are reliable—also for parallel applications—to ensure a high level

of quality and to foster the use of engineering-like approaches. Therefore

the overall goal is de�ned as follows:

Research Goal (𝑅𝐺):
Improving the accuracy, usability, and applicability of model-based QoS

predictions of the performance of parallel applications in multicore

environments.

3.1. Research Method

To achieve its goal, this thesis follows the the design science approach in

combination with the method for experiment-based performance model

derivation proposed by Jens Happe [Hap08]. According to this method, the

performance model is extended in steps. First, a minimum set of additional

attributes are identi�ed in a goal-oriented manner. Second, the additional

attributes are added to the performance model. Third, the performance is

evaluated and checked to see if it meets the requirements. If so, the model

derivation terminates. If not, further performance attributes are identi�ed,

and steps two and three are repeated. The evaluation—checking whether the

requirements are met—is based on an experiment validation. One chooses

a concrete scenario, sets up an experimental environment, and uses the

experiment’s results to evaluate the altered performance model [Hap08].

In contrast to behavioural science, whose goal is truth, the outcome of this

thesis is one or multiple useful artefacts. Therefore, the design science

approach, whose goal is a utility (cf. [HC10]), is most suitable and is applied

in the course of this thesis. Figure 3.1 shows the design science approach we

have chosen. The core artefact—in the middle of the �gure—is the improved
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Figure 3.1.:Applied Design Science Framework to Archive the 𝑅𝐺 ([HC10])

performance prediction prototype, including improved prediction models,

enhanced tooling, and adjusted processes. We evaluate this artefact using the

experiment-based performance model derivation method, mentioned above.

The environment provides the requirements for the artefact, particularly the

requirements of software architects and performance engineers, who have a

real-world need for accurate parallel performance predictions, and therefore,

also for the evaluation. The environment also de�nes the use case scenarios

and provides further insights from expert interviews.

The insights gained during the evaluation of the artefacts can not only be

used to improve the artefacts further, but can also add to the knowledge base.

Vice versa, the artefact builds and is improved by the current state-of-the-art

techniques, methods and knowledge. As a last step, the environment is used

to conduct a �eld test and con�rm the quality of the artefact in production

or semi-productive environments.

To �nd the relevant metrics for the evaluation, to break down the overall 𝑅𝐺 ,

and to reveal additional contributions, the formulation of research questions

helps. In the following, the research questions for this thesis are introduced

and explained based on the thesis process overview given in Figure 3.2.
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3. Research Design

3.2. Research Questions

Given the research method described above, a concrete process can be ex-

tracted. In this section, we will describe the research process (see Figure

3.2) step by step. While doing so, we will break down the overall hypothesis

𝐻0.1, 𝐻0.2, and 𝑅𝐺 into smaller and easier-to-evaluate research questions

and assign them to the process steps. In so doing, we identify four main

questions, which we break down into subquestions. For each question, we

will give a detailed explanation as well as introducing the hypothesis on

which we have based the research question.

The �rst step shown in Figure 3.2, is to verify or falsify the base hypothesises

𝐻0.1 and 𝐻0.2, and to identify the research need. We veri�ed the hypoth-

esis in [FH16; FSH17], where we performed a scenario evaluation of the

capability of a state-of-the-art performance prediction approach (Palladio).

For this, we used two di�erent parallelisation paradigms—Java threads and

AKKA Actors—to implement and parallelise two standard parallel appli-

cations, namely a matrix multiplication and a bank transaction scenario.

Further, the scenarios were modelled and analysed with Palladio. Finally, we

compared the Palladio analysis results with the measured execution times of

the applications. Simply put, the results show that the predictions are o� by

up to 63%.

The next logical step is to perform a SLR to identify all related research in the

�eld and to discover possible solution strategies unknown to our community.

The SLR is described in Chapter 4.

Further, the lessons we learned from the experiment led us to hypothesise

𝐻1 to 𝐻4, explained next.

3.2.1. 𝑅𝑄1: Performance Modelling of Parallel Behaviour

So�ware Behaviour: When we talk about software behaviour in the follow-

ing, we relate to the performance in�uencing aspects of the behaviour.

Thus, we model abstract elements of the control �ow of the software

and the path the application takes through the program. The model’s

pragmatism is based on the idea to re�ect the program’s performance

as good as possible concerning wall clock time. We do not focus on
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3. Research Design

the formal semantics of the behaviour. Moreover, we relate to the

performance characteristics and the performance relevant demands

a software behaviour executes on its hardware, especially in multi-

core environments. Relevant aspects are (but not exclusively) forking

and synchronising of threads, data read and write operations, and

resource-demanding operations.

Keeping that in mind, our �rst hypothesis𝐻1 relates to the abilities of current

modelling languages to represent the needs and performance characteris-

tics of parallel software behaviour. Often parallel behaviours do the same

task, but with di�erent data (e.g., parallel loops—Section 2.3—or SIMD—

Section 2.2). Therefore, modelling the same behaviour over and over again

is time-consuming, error-prone, and simply not possible for highly parallel

systems.

So, to verify or falsify 𝐻1 we raised 𝑅𝑄1.1 and 𝑅𝑄1.2. Further, 𝑅𝑄1.3 was

de�ned to answer the question of how to improve modelling languages if 𝐻1

is veri�ed.

These research questions relate to the actions𝐴4.1 to𝐴4.3 in Figure 3.2, where

�rst the current modelling languages are evaluated; next, an extension in the

form of a parallel AT catalogue is created; and last, the extension is evaluated

based on a user study to prove its e�ectiveness.

𝑅𝑄1: Modelling of parallel performance relevant behaviour in
massive parallel environments:

𝐻1: Current modelling languages (e.g. UML) have only limited expres-
sion power and are insu�cient to express the performance relevant
behaviour of highly parallel software.

𝑅𝑄1.1: Are software architects able to model even simple parallel con-

cepts of highly parallel systems in an e�cient way? Thereby, SA

needs to focus on abstract performance relevant attributes on

architectural level during early design time.

𝑅𝑄1.2: Are software architects able to model the parallel software be-

haviour of an application with the help of current modelling

languages, so that (a) the relevant performance characteristics
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3.2. Research Questions

are captured and expressed, and (b) all necessary information for

performance evaluation is covered?

𝑅𝑄1.3: How can software architects be supported in the task of creating

accurate performance prediction models e�ciently?

3.2.2. 𝑅𝑄2: Behaviour of Highly Parallel Applications

The second research question focuses on the performance behaviours charac-

teristics of highly parallel systems in parallel environments (multicore archi-

tectures). The assumption here is that the selected parallelisation paradigm,

as well as the architecture characteristics, have a high impact on the perfor-

mance of an application and therefore need to be considered in the perfor-

mance predictions (𝐻2.1).

The 𝑅𝑄2.1 therefore focuses on observing the parallel application execution,

while the 𝑅𝑄2.2 aims to identify the most relevant performance-in�uencing

factors (Action 𝐴5.1). 𝑅𝑄2.3 covers the observation from [FSH17], in which

we noticed that the selection of the parallelisation paradigm may have an

impact. A validation of this hypothesis (𝐻2.1) is needed. Finally, 𝑅𝑄2.4 aims

to identify common characteristics in the execution of parallel behaviours,

which can be described in characteristic curves (Action 𝐴5.3.1). These curves

can be included in the model predictions to increase accuracy.

𝑅𝑄2: Performance behaviour of highly parallel applications in
massive parallel environments:

𝐻2.1: The speedup and performance behaviour of highly parallel appli-
cations depends heavily on the chosen parallelisation strategy or
paradigm.

𝐻2.2: The hardware architecture (e.g., number of CPU cores, memory
bandwidth, memory hierarchies) of the execution environment has
a strong impact on the performance of the parallel applications.
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𝐻2.3: The speedup of a parallel application is not only in�uenced by
the number of cores available in a system but also by additional
hardware speci�c performance-in�uencing factors.

𝑅𝑄2.1: How do highly parallel applications behave in massive paral-

lel environments (multicore systems) regarding response time

(speedup), memory access rates (L1, L2, L3, Random Access Mem-

ory (RAM) usage), and memory bandwidth utilisation?

𝑅𝑄2.2: What factors in�uence performance the most in highly parallel

applications?

𝑅𝑄2.3: Does the choice of parallelisation strategy have a signi�cant

impact on behaviour?

𝑅𝑄2.4: Do highly parallel applications show similar behaviour, which

can be described by one or multiple performance curves?

3.2.3. 𝑅𝑄3: Performance Prediction Models

This research question deals with performance prediction models for parallel

applications. 𝐻3 is the baseline hypothesis here, and 𝑅𝑄3.1 is designed to

verify that.

Based on 𝑅𝑄2.2, 𝑅𝑄3.2 aims to answer the question of which performance-

in�uencing factors need to be included in the prediction model (Action𝐴5.2.1).

At the same time, 𝑅𝑄3.3 covers the evaluation of the altered performance

prediction models (Action 𝐴5.2.2).

𝑅𝑄3: Performance prediction models:

𝐻3: Current model-based performance prediction models fail to consider
relevant performance-in�uencing factors for parallel systems and
thus their predictions are o�.
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𝑅𝑄3.1: Are current simulation-based performance prediction ap-

proaches capable of predicting the performance of parallel and

highly parallel systems accurately?

𝑅𝑄3.2: If not, what are the missing characteristics of software be-

haviour that must be included in performance prediction models

(performance-in�uencing factors)?

𝑅𝑄3.3: Can modelling the additional performance-in�uencing factors

improve the overall accuracy of performance prediction?

3.2.4. 𝑅𝑄4: CPU Simulators

As explained in Section 2.4.1, CPU simulators can simulate the behaviour

of parallel applications in multicore environments based on a given imple-

mentation. Therefore, the hypothesis here is that these CPU simulators,

included in the performance prediction process, can help improve the quality

of prediction (𝐻4). The signi�cant challenge here will be to �nd suitable

simulators that work with architectural designs (𝑅𝑄4.1) and integrate them

into the existing approaches and tooling (𝑅𝑄4.2 and Acton 𝐴6.1). Finally,

𝑅𝑄4.3 evaluates the quality of the integrated approach (Action 𝐴6.2).

𝑅𝑄4: CPU simulators for architectural performance predictions:

𝐻4: CPU simulators—used in other domains (e.g, hardware vendors)—can
help to improve predictions for parallel applications on multicore
CPUs.

𝑅𝑄4.1 Can CPU Simulators be used by software architects to evaluate

the response time of parallel architectural designs?

𝑅𝑄4.2 How would the integration of CPU simulators alter the process

of performance predictions?
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𝑅𝑄4.3 Does the use of CPU Simulators increase the performance pre-

diction accuracy for parallel applications in multicore environ-

ments?

3.3. Research Design Evaluation

Addressing the RQ satisfactorily, and providing an artefact that is bene�cial

for the given use cases, is essential for a design science approach [HC10].

Therefore, we will lay out the evaluation of the contributions in this section

and follow the concepts pointed out by [SV12]. Sonnenberg and vom Brocke

argue for a continuous evaluation of artefacts and sub-artefacts throughout

the whole research project. As Figure 3.2 shows in action 𝐴4.3, 𝐴5.2.2, 𝐴5.3.2,

and𝐴6.2, each research question (contribution) is evaluated separately. While

in 𝐴5.2.2, 𝐴5.3.2, and 𝐴6.2 the artefacts are compared against the current

state-of-the-art approaches, 𝐴4.3 is evaluated by a user study to prove the

usability of the artefact empirically. After this, an individual evaluation and

additional integrated evaluation of the combined artefacts is planned (Action

𝐴7). Further details of the speci�c evaluation methods are provided in the

corresponding chapters of the contributions.

3.4. Design Science Guidelines

To perform an adequate design science experiment, Hevner et al. provide

seven guidelines, which they recommend addressing in a project-speci�c

manner [HC10]. The guidelines are listed below, and we brie�y describe

how we have addressed them in this thesis:

𝐺𝑙1 Design as an artefact: This thesis will result in multiple artefacts. First,

it provides a modelling language extension to specify parallel behaviour

within models (see Chapter 6). Second, it provides a model or model ex-

tension that captures the relevant characteristics of multicore architectures

(see Chapter 8), which can be used for performance predictions. Third,
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it provides a model that captures the characteristic speedup behaviour of

highly parallel applications, including the relevant performance-in�uencing

factors (see Chapter 7). This can be used to estimate the maximum speedup

of applications. Fourth, it provides a method to include CPU simulators in

the process of predicting performance (see Chapter 9) to get very accurate

parallel behaviour predictions.

𝐺𝑙2 Problem relevance: As [FH16; FSH17] showed, the need for accurate

performance predictions is highly relevant, as current prediction models are

far o�. Moreover, in the papers, they only considered a medium parallel

multicore system with 16 cores. The current state of the art is already 32 to

64 cores for desktop PCs.

𝐺𝑙3 Design evaluation: The utility, quality, and e�cacy of the design arte-

facts is rigorously demonstrated by use case evaluations and commitment

to state-of-the-art performance. If an artefact does not perform with bet-

ter accuracy than the current state of the art, the artefact is considered

depraved.

𝐺𝑙4 Research contributions: The main contribution of this work is an im-

proved performance prediction for parallel applications in multicore envi-

ronments. An added bene�t is its contribution to the knowledge base.

𝐺𝑙5 Research rigour: Strict, rigorous, and peer-reviewed methods are used

to achieve the research goal, e.g., SLRs, the experiment-based performance

model derivation proposed [Hap08], and guidelines for user studies and

experiment evaluations (e.g., GQM).

𝐺𝑙6 Design as a search process: It is necessary to satisfy existing laws and

best practices in the application area of the artefacts domain. Identifying

laws and best practices is achieved by a SLR covering this and neighbouring

domains, as well as by expert interviews from academia and industry.
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𝐺𝑙7 Communication of research: The results are transmitted to both indus-

try and the academy, who will both bene�t from this information, by means

of various peer-reviewed conference and workshop papers. The publications

are summarised in Appendix A.1.

Given that, we will continue in the next chapter with 𝐴3 and research and

describe the related work.
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Following the research design described above, we came to ask ourselves

if existing research had face challenges similar to what we faced in [FH16;

FSH17]. To answer this question as extensively as possible, we decided

to perform a full SLR according to Kitchenham [KBB+09]. A SLR has two

advantages: First, wemay �nd useful approaches that we can use to overcome

our challenges. Second, at the same time, we delineate the research area and

cover related work.

In this section, we elaborate on step (𝐴3) in the research process and present

the SLR design and results. This SLR was sucessfully peer-reviewed and

published in [FHLB17]. For the sake of being up-to-date, we re-executed

the SLR for this thesis and added the delta of resources found. This ensures

that we focus only on research question R𝑆𝐿𝑅−2 (see Section 4.2.1), which is

especially relevant for this thesis.

4.1. SLR Overview

Even though performing a SLR comes with additional overhead, it also brings

a set of advantages. First, Kitchenham [KBB+09; KDJ04] provides a detailed

reference process to follow step by step. Second, if the review protocol

(search method) is well designed, the outcome of the search is reproducible

and more importantly, scienti�cally elaborated and reusable.

Figure 4.1 shows the process we followed during the SLR. We split the whole

process into three phases: Planning, conducting, reporting. In brackets, we

indicate how many sources remain for further processing. The �rst number

(red) shows the sources from the 2016 run, and the second number (blue)

from the 2020 re-execution.
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In the course of the chapter, we elaborate on each phase and each step in

detail. Finally, we give a conclusion and an overview of the related work.

3.1 - Identification 
of the Need for a 

Review

3.2 - Define 
Research Question

4.1 - Search
(54) 

4.2 - Apply Filters
(47) 

Sec. 4.2 - Planning
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4.2.2 - Define 
Research Question
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Review Protocol

4.2.4 - Evaluate 
Review Protocol

Sec. 4.3 - Conducting

4.3.1 - Search
(>100) 
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(54+15) 
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Data

(34+7)

4.3.4 - Analysis of 
Data

Sec. 4.4 - Reporting

4.4.1 - Report 
Results

4.4.2 - Evaluate 
Report

Figure 4.1.:Overview of the Systematic Literature Review Process (cf. [KC07])

4.2. SLR Planning

The �rst phase, the planning phase, will result in the review protocol, which

is the most important artefact of the SLR. It de�nes the whole process,

containing the search strategy, inclusion and exclusion criteria, and the data

extraction process. Further, we de�ne the search goal and research questions

here. In the following, we report on each step in detail.

4.2.1. Research Questions

As we have already elaborated on the need for research [FH16; FSH17], we

will skip this step and start on the research question, which sets the primary

direction of the search.

Given our domain, we focus on software developers and architects. We

search for modelling approaches that enable software architects to analyse
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and predict the performance of parallel software in multicore environments

during the design phase. Thus, we aim to answer two concrete research

questions [FKB18]:

R𝑆𝐿𝑅−1 Which modelling approaches exist for performance prediction in

di�erent parallel programming paradigms, andwhat are their practical

uses?

R𝑆𝐿𝑅−2 Which concepts exist to predict the performance of parallel software

in multicore environments?

4.2.2. Review Protocol

Given the research question, we create the review protocol, which is the

central artefact created during the �rst phase. All further steps are aligned to

the de�nitions established in the review protocol. Thus, its quality is crucial

for the SLR. To guarantee high quality, we develop the review protocol

iteratively. At the end of each iteration, we validate the review protocol

against a set of sources that we want to ensure are included, and a set

of sources that we want to ensure are excluded. We pick theses sources

manually upfront.

For the sake of simplicity, we describe only the �nal version here.

4.2.2.1. Search Strategy

In the search strategy, we de�ne which search engines we use and how we

construct the search terms to create the search phrases.

Our �rst decision here is to use Google Scholar
1
. Using Google Scholar is

suggested by Kitchenham [KC07] because Google Scholar is a meta-search

engine and includes most sources of scienti�c publications—also from other

relevant databases.

Next, we derive the search terms. The initial set of search terms we gain from

our knowledge and the already-known related work. During the iterations,

1https://scholar.google.com/
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we update the collection of search terms, based on the results, and also

include synonyms.

The �nal list contains the following search terms—synonyms not listed: Par-
allel Programming,Many Core,Multicore,Modeling, and Software Performance
Engineering. To get the search phrases we combine these terms using “AND”-
and “OR”-operators. This leads to the following search terms [FHLB17]:

T1: (“Parallel Programming”) AND (“Modeling”)

T2: (“Multicore”) AND (“Modeling” OR “Software Performance Engineering”)

T3: (“Multicore”) AND (“Parallel Programming” ) AND (“Modeling” OR “Soft-
ware Performance Engineering”)

We also use our synonym list to replace keywords by synonyms. This way,

we can cover a more extensive range. An example, based on T3 and synonyms

is:

T3𝑚𝑜𝑑1
: (“Many Core”) AND (“Performance Modeling” OR “Software Design”)
AND (“ACTORS”)

Further, we created a blacklist with terms we expected to come up in our

search that are outside our speci�c domain. For example, we blacklisted

weather, since we expected to �nd sources focused on weather prediction

models. The full list of synonyms, blacklist, and keywords, along with all

results, are available online
2
.

4.2.2.2. In- and Exclusion Criteria

After agreeing on the search strategy, we de�ne in- and exclusion criteria to

�lter identi�ed sources and to focus on relevant documents. In our case, we

consider all sources that ful�l one of the following statements [FHLB17]:

2https://doi.org/10.5281/zenodo.3972806
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Inclusion Criteria

I1: Sources that describe a modelling language or a language extension for

modelling parallel programs.

I2: Sources that address the limitation or potentials of existing modelling

languages for parallelism.

I3: Sources that give details or de�nitions of one of the search terms.

I4: Sources that talk about techniques for paradigms of multicore systems.

I5: Sources that give performance prediction models for multicore systems.

Additionally, we de�ne the following exclusion criteria. We will not consider

sources that ful�l one of the following criteria [FHLB17]:

Exclusion Criteria

E1: Sources focusing on prediction models for subjects other than software

(e.g., weather prediction models) and where the general topic is not

computer science or programming.

E2: Sources that do not address problems with parallel programming or

performance prediction.

E3: Sources that do not include the search terms in the title or abstract.

E4: Panel discussions, prefaces, tutorials, book reviews, or presentation

slides; we prefer to focus on genuine publications.

E5: Sources in languages other than German or English.

E6: Sources that are inaccessible through public or the university access

from the TU Chemnitz or Uni Stuttgart.

E7: Sources published before 2003: Because it was only around 2003 that

multicores became common in desktop computers. Also, software

performance engineering was not commonly known before.

E𝑛𝑒𝑤1: We will not consider our own sources during the repetition of the

SLR.
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To decide whether to consider a source or not, we �rst apply the inclusion

criteria. Next, we apply the exclusion criteria to all sources passing the

inclusion criteria check. If a source ful�ls the exclusion criteria, we eliminate

it from consideration.

4.2.2.3. Quality Indicators:

The next step is to evaluate the remaining sources. For this, we use quality

indicators. In the following, we will introduce the quality indicators. To pass

the evaluation step, a source has to at least partly ful�l at least one quality

indicator:

Q1𝑎 Does the source address problems with parallel programming?

Q1𝑏 Does the source identify problems or open questions?

Q2 Does the source provide techniques, paradigms, or patterns to apply

parallelism to software?

Q3𝑎 Does the source introduce a modelling approach to deal with the com-

plexity of parallelism?

Q3𝑏 Does the source evaluate a modelling approach that deals with the

complexity of parallelism?

Q3𝑐 Does the source introduce or evaluate an approach to predict quality

attributes of parallel software (in multicore environments)?

4.2.2.4. Data Extraction

Next, we need to de�ne how the data is extracted from the remaining sources.

For this, we de�ne a three-step process. First, we collect bibliographic

information about the source (e.g., authors and date of publication). Based

on this information, along with the absolute number of keyword hits in the

title, we rank the sources. Second, we extract and summarise the sources by

evaluating the abstract, introduction, and conclusion (in order of ranking). In

the process, we re-evaluate the in- and exclusion criteria. Third, we perform

a full paper review for the remaining papers. During the review, we again

double check in- and exclusion criteria.
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Characteristic Values
Domain General Software Engineering, HPC, Embedded Sys-

tems, Software Performance Engineering (SPE)

Source Type Problem Statement, Solution Introduction, Experience

Report, Knowledge Accumulation

Pattern Type Design Patterns, Programming Patterns, Architec-

tural Patterns, Not Available

Technique Modeling Paradigm, Programming Language, Li-

brary/Framework, Not Available

Table 4.1.:Characteristics Used for Categorising [FHLB17]

4.2.2.5. Data Analysis

After data extraction, we evaluate and interpret the extracted data. We

categorise the data using the four characteristics shown in Table 4.1.

The �rst dimension of categorisation is the domain. Here we distinguish

between sources contributing to the domains of Embedded Systems, HPC,

or SPE. Sources that target software engineering, in general, are assigned to

General Software Engineering.

The second dimension is the source type: Problem Statements focus on open

issues; Solution Introductions provide an approach; Experience Reports

describe practical realisations (e.g., case studies); and Knowledge Accumula-

tions summarise a wide �eld of knowledge (e.g., surveys).

We expect numerous sources to target parallelisation patterns or techniques.

Thus, the third and fourth dimension splits these source groups according to

the pattern or technique each focuses on. In case no pattern or technique is

described, we tag it as Not Available.

4.2.3. Evaluate Review Protocol

To evaluate the review protocol, we execute two evaluations. First, as men-

tioned, we perform multiple iterations. In each iteration we execute a small

test search and check that pre-de�ned sources are included or excluded

correctly.
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Second, we form a review board within our group, including experts from

SPE, Model-driven SoftwareDevelopment (MDSD), andHPC domains, which

are the most relevant domains for our search. Within this board, we review

each iteration run. In total, we had three iterations within the full group and

several discussions in groups of two.

4.3. SLR Conducting

Once the SLR is planned, the implementation phase begins (see Figure 4.1).

In this section, we describe how to perform the SLR as de�ned in the review

protocol (Section 4.2.2). We perform the actual search, apply the �lters to

the sources found, and analyse the data retrieved. For the sake of simplic-

ity, we give only a summary of the results. The complete raw data and

documentation are available in our repository
3
.

4.3.1. Executing the Search

To evaluate our search phrases and terms, we performed test searches with

strict automatic �ltering based on our blacklist rules. Due to the small

number of results (three), we relaxed the blacklist rule by removing the word

weather forecast, which led to the expected result that the sources found

covered a more comprehensive range. Therefore, we decided to manually

preselect sources based on title only, evaluating the title of the sources one

by one. Only those sources that passed the evaluation were considered in

further steps. On December 11, 2016, we conducted the search of the �rst

run and obtained 54 sources after the manual pre-selection. On June 14, 2020,

we reran the SLR. We focused only on R𝑆𝐿𝑅−2 and executed only the query

T3 with its variations. We received a delta of 15 new papers.

4.3.2. Applying the Filters

With the initial result set at hand, we apply our �lter criteria step by step.

As mentioned above, we performed the �rst evaluation during the search.

3https://doi.org/10.5281/zenodo.3972806
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We manually evaluated all sources based on the title. To minimise personal

bias, we ensured that only sources from other areas were excluded and only

if the title provided su�cient evidence for exclusion. Figure 4.2 shows the

�ltering process and the number of sources after each step.

First 
Evaluation

Second 
Evaluation

Third 
Evaluation

Final 
Evaluation

Keyw
ord 

analys
is

Resu
lts 

- 

initia
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arch

Abstr
act 

analys
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[Order 
by 

metr
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]

Manual pre-selection
based on title

Keyword matching Inclusion and 
exclusion criteria

Full paper review

Final paper 

list

[>100] [54+15] [47+12] [38+9] [34+7]

Figure 4.2.: Filtering Process

During the second evaluation, we check that the search terms are mentioned

in the title, the keyword section, or at least in the abstract. All sources not

mentioning at least one of our search terms were excluded. We ended up with

47 sources after this step. The rejected sources only mentioned the keyword

in the full text, where we assume that it had no signi�cant relevance.

In the third evaluation step, we read the abstract of each source and apply

our in- and exclusion criteria, leaving us with 38 sources relevant for the

SLR.

In addition, we ranked the remaining sources according to the ranking

criteria “date”, “keyword hit rate in the title”, and “ number of citations”.

For each ranking criterion, we have introduced a corresponding metric that

assigns a source to a rank: an ordinal scale from “A” (high relevance) to “D”

(low relevance). For example, we have assigned the rank “A” to sources with

over 1,000 citations. Finally, we ranked all sources based on the mean value

of the assigned ranks.

After the ranking, we conducted a full review of the paper for a detailed

analysis. We evaluated the quality of the paper and re-evaluated the in- and

exclusion criteria, eliminating four additional sources. So in total, 34 (+ seven

from the second round) sources made it into the �nal paper list, which was

passed on to the next step.
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4.3.3. Extracting the Data

The extraction of data followed the three-step plan de�ned in the protocol.

First, we collected meta-information (e.g., authors and date of publication).

Then, we summarised the problems the sources faced by reading the abstract.

In the third step, we performed a full review of the �ltered sources.

4.3.4. Analysing the Data

After the full paper reviews, we categorised the sources into the pre-de�ned

dimensions (see Section 4.2.2.5). Table 4.2 and 4.3 show the sources and their

categories.

Also, we added a column “Model for” to the table. Whenever a source targets

a modelling approach, the purpose of the model is noted in this column.

Do-
main Source Type Pattern Type Language or

Technique Model for

[MSM04] KA

design,

programming

[ABD+09]

PS

[BSA+10] ER

[EE10] PS

[HO09] SI ACTORS

[HKM08] PS

[ISC+15] SI OpenMP scalability of OpenMP

[KP11] SI auto tuner

[MJU+09]

PS programming

[OPT09] SI XJava

[Pan11] SI quality assurance

[PH11] SI auto tuner

[PJT09] ER design POSIX, OpenMP

[PSJT08] ER design Java, C#, OpenMP

[RGD11a]

SI task, data allocation

[RGD11b]

ER

[SEPA13] SI quality prediction

[SPT10] SI auto tuner

[SWH+09]

PS

[ZP12] SI auto tuner

[ADKT17]**

SI design

Framework for

stream processing

[TMCB16]**

SI design

optimise data

locality

G
e
n
e
r
a
l
S
o
f
t
w
a
r
e
E
n
g
i
n
e
e
r
i
n
g

[IDSM05]**

SI Deep Learning Model

PS - Problem Statement SI - Solution Introduction *Hierarchical State Machine

ER - Experience Report KA - Knowledge Accumulation **Sources from 2020

Table 4.2.:Classi�cation of Sources for General Software Engineering
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Do-
main Source Type Pattern Type Language or

Technique Model for

[DMN12] KA

rage of techniques

and languages

[HPD09] SI OpenMP

[Lue08] PS CUDA

[MGF11] SI CUDA, OpenCL

[RHJ09] PS

Shared Memory,

OpenMP

[CGIP16]**

SI QN performance model

[EB16]** SI

statistic model from

empirical obser.

[PF05]** SI

Hybrid sim model (DES

& MathMod)

H
P
C

[SEE19]** SI QN performance model

[BBE+11] SI ACTORS

[GA12] PS

[LLL+11] SI design VERTAF

[GA12] PS

E
m
b
e
d
d
e
d

S
y
s
t
e
m
s

[LCFH14]

SI HSM
∗
, data parallelism

[XCDM10]

SI shared cache

[THW09] SI hierarchical memory

[VE11] SI

multiple programs on

multi-cores

[Wil09] SI performance counters

S
P
E

[THW12] PS

PS - Problem Statement SI - Solution Introduction *Hierarchical State Machine

ER - Experience Report KA - Knowledge Accumulation **Sources from 2020

Table 4.3.:Classi�cation of sources for HPC, Embedded Systems, and SPE

4.4. SLR Reporting

In this section, we report on the results of the SLR in detail. Thus, we �rst

give a summary of each paper. The purpose of the abstract is not to fully

understand each approach (for this, we refer to the source), but to get an

overview of the areas where active research is being done. After the report,

we extract valuable lessons learned, summarise the �ndings, and highlight

sources that are particularly relevant as related work for this thesis.

4.4.1. Report Results

Table 4.2 and 4.3 summarises the complete set of sources we found during

the search. In the following, we report the results, as we reported them in

[FHLB17]. Further, we mark every source that came up while re-performing

the SLR with the keyword “[2020]”.

The report follows the structure of the domain category.
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4.4.1.1. General So�ware Engineering

“Sources we found for general software engineering address di�erent chal-

lenges, which focus mainly on the design and implementation phase in the

software development process. For example, in their problem statement,

Hwu et al. [HKM08] describe the challenges that arise from concurrent pro-

gramming and claim that software developers need to apply engineering

approaches to handle the complexity involved.

Mehrara et al. [MJU+09] give an overview of parallelism and compiler tech-

nology to understand the software development challenge. To ease the

development process, the book by Mattson et al. [MSM04] presents a me-

thodical approach for creating parallel programs and gives an overview of

patterns. “Finding Concurrency”, “Algorithm Structure”, “Supporting Struc-

tures”, and “Implementation Mechanisms” are the four groups of patterns

systematised according to the stage of the software development process and

re�ecting the di�erent abstraction levels during the process. Following this

approach, Pankratius et al. [PSJT08] present an experience report on four

case studies on developing multicore software for general purpose applica-

tions, where each case study uses a di�erent programming language and

hardware speci�cation. The report shows that parallelising software is an

individual task, and the speed-up can vary. A reason for varying speed-ups is

the di�erent hardware speci�cation (i.e., number of cores, cache architecture),

which motivates auto-tuners. Auto-tuners are used for source-code-based

parallelisation and are addressed by [KP11; PH11; SPT10; ZP12].

Pankratius et al. give another experience report in the form of a case

study [PJT09]. Di�erent groups of software developers were asked to paral-

lelise BZip2. Lessons learned are that the use of parallelisation patterns on

higher abstraction levels increases the speed-up.

Haller et al. gives another approach [HO09], where a combination of thread-

based and event-basedmodels are uni�ed with the help of an abstract ACTOR

that provides di�erent kinds of operations to receive messages.

In the work of Iwainsky et al. [ISC+15], the authors automatically generate

empirical performance models for OpenMP. They perform tests on di�erent

hardware and show that the overhead of OpenMP grows linearly or super-
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linearly with the number of threads. Further, they show that the chosen

compiler has a major impact on the performance of the application.

To illustrate the hardware impact, Stürmer et al. [SWH+09] compare two

di�erent system architectures. In their work, they show that not only the

number of cores, but also the memory controller and the caches have a

signi�cant impact on performance.

To avoid low-level synchronisation defects during the software development,

new programming languages are proposed. For example, XJava, which

preserves the object-oriented approach while simplifying the expression of

parallelism, is presented by [OPT09]. To support the development of new

programming languages, an automated usability evaluation for the design of

parallel programming languages was introduced by Pankratius [Pan11].

Rodrigues et al. [RGD11a] utilise a meta-model extension on MARTE pro�les

to specify the task and data allocation in the memory hierarchy for GPU

architectures.

We also found an experience report by Rodrigues et al. [RGD11b] that de-

scribes a case study where the authors use UML and the MARTE pro�le to

specify and generate OpenCL code with the help of model-driven engineer-

ing approaches. They claim that the model-driven engineering approach is

well suited for programmers to create parallel programs and that the MARTE

pro�le has a high potential for parallel modelling programs.

The paedagogically-oriented contribution of Brown et al. [BSA+10] focuses

on the education of ’new generations of students’. They identify a list of rec-

ommendations to improve students’ knowledge of parallel programming.

The work of Sagardui et al. [SEPA13] needs to be highlighted because it

focuses on veri�cation and validation of multicore systems in early design

phases. In their related work, they show that in the embedded system

domain, there are approaches for modelling multicore systems with the

help of MARTE pro�les. Their contribution is a high-level process, which

recommends the use of three models to represent multicore systems and

their software: an application model, a platform model, and an allocation

model.”[FHLB17]

[2020] An additional three sources came up in this category when re-

performing the SLR in 2020: In his doctoral dissertation [TMCB16], C. Ter-
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boven describes the high relevance of data locality to the performance of

parallel applications. He develops an approach to optimise the data locality

in NUMA systems for the OpenMP paradigm. For this purpose, he creates a

thread-a�nity model. In [ADKT17], the authors face the issue of the absence

of ’good high-level programming tools’. To overcome this problem, they

introduce FastFlow, which is a framework that uses a steam-based paradigm

to parallelise. They enable the software architect to model their system

using cyclic graphs. Finally, [IDSM05] proposes a deep learning approach

to estimate the performance of a parallel application by using multilayer

neural networks.

4.4.1.2. HPC

“All sources we found in the HPC domain focus on techniques to enable

parallelism in HPC applications. Diaz et al. [DMN12] performed a survey.

They comprehensively described di�erent concepts, libraries, and languages

to bring parallelism to applications. They show that distributed memory is

the most commonly used programming approach for parallel programming

in the HPC domain. Further, the work from Rabenseifner et al. [RHJ09]

focuses on the potentials and challenges of this dominant programming

model.

Other sources we found introduce problem-speci�c solutions to handle paral-

lelism. Hadjidoukas et al. [HPD09] introduce a user-level thread library called

PSTHREADS, which allows the use of �ne-grained parallelism with large

numbers of threads. Luebke et al. [Lue08] explained the CUDA program-

ming model and argued for its use in the biomedical imaging community.

Martinez et al. [MGF11] proposes a source-to-source translator from CUDA

to OpenCL.”[FHLB17]

[2020] During the re-performance, we found four additional sources, all

highly relevant. Two of them [CGIP16; SEE19] use a Queuing Network

(QN)-based approach. More speci�cally, [CGIP16] uses QN along with both

analytical and simulation-based solvers to optimise parameters for parallel

execution in systems with CPUs and GPUs. In contrast, [SEE19] uses QN

along with non-linear solvers to estimate the message communication for

Message Passing Interface (MPI)-based applications in cloud environments.
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They focus on the interaction delay in distributed systems caused by the

network delay.

In [EB16], the authors use a statistical approach to estimate the performance

of parallel applications. They perform small-scale experiments, measure and

analyse these small-scale experiments, and use these data to estimate the

performance in large-scale scenarios. Finally, the authors of [PF05] combine

discrete event simulations and mathematical modelling to create a perfor-

mance model for parallel and distributed systems. Further, they use UML

activity diagrams to model the low-level (close to code) behaviour of the ap-

plication and enrich it with additional performance relevant information.

4.4.1.3. Embedded Systems

“The majority of the sources we found in the domain of embedded sys-

tems introduce an approach to handle parallelism within a program. Bini

et al. [BBE+11] present the approach developed in the ACTORS project.

They show that the ACTORS approach is useful in handling time-sensitive

applications with variable load. A problem statement paper by Gray et

al. [GA12] describes the challenges of multicores in the embedded domain

on the model-driven software engineering level. They identify problems

within the whole development spectrum (i.e., system modelling, program-

ming models of software languages, analysis and veri�cation, toolchains

support, and sophisticated hardware implementations).

Llopard et al. introduce a modelling approach. [LCFH14] that combines

hierarchical state machines (HSMs) with data parallelism and operations on

compound data.

Lin et al. [LLL+11] propose a framework to generate program code for multi-

core embedded systems out of SysML models.”[FHLB17]

4.4.1.4. SPE

“After the �nal evaluation, �ve sources in the SPE domain remained. As one

would expect, all the sources focus on improving the accuracy of performance

prediction for multicore systems by either adopting an existing performance

model or proposing a new model.
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In [THW09], Treibig et al. improve the predictive power by including prop-

erties of cache hierarchy design with the use of the simple balance metric.

Further, the authors publish a problem statement paper [THW12] and discuss

the sensible use of hardware performance counters in a structured perfor-

mance engineering approach. Additionally, typical performance patterns

and their respective metric signatures are de�ned.

Xu et al. [XCDM10] propose a new performance model called CAMP for

sharedmemory onmulticore systems. Themodel uses non-linear equilibrium

equations.

Van Craeynest et al. [VE11] also proposes a newmodel, MPPM, for estimating

multi-program multicore performance. It employs a method to model the

performance entanglement between co-executing programs with shared

caches.

Samuel Williams uses a roo�ine function to determine the correlation be-

tween �oating-point operations and bytes transferred from DRAM to esti-

mate the peak performance of a CPU in [Wil09].” [FHLB17]

4.4.2. Evaluate Report

In the previous section, we presented insights into our search results. To

sum up our �ndings, we derive the critical lessons learned during the SLR

[FKB18]:

Programming Languages: Especially in the software engineering domain,

we found various approaches that introduce new programming lan-

guages [HO09; OPT09; Pan11], which are supposed to ease the devel-

opment process and raise the level of parallelism from a low, code-

based level, to a design level.

Patterns: In the software engineering discipline many patterns exist to

tackle parallelism on di�erent abstraction levels [MJU+09; MSM04;

PJT09; PSJT08]. Programming patterns are useful to help software

developers implement software in a faster and more structured way.

Design patterns help software developers bring parallelism to mul-

tiple levels of software design. Both types of patterns help software

developers to abstract the degree of parallelism.
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Libraries: Libraries are common in the HPC domain to address large-scale

parallelism [HPD09; Lue08; MGF11; RHJ09]. Most common are dis-

tributed memory approaches like MPI, but approaches like CUDA

are gaining importance [DMN12]. In recent years, these libraries

also have become more critical in the embedded system domain and

general software development.

Auto-parallelisation: In addition to parallel programming, much research

has been conducted in auto-parallelisation on a low abstraction level

(e.g., compiler).

Auto-tuner: Auto-tuners optimize software for various hardware/ architec-

tures and are still under heavy development [KP11; PH11; SPT10;

ZP12].

UML andMARTE Profiles: Research is being performed in the �eld of veri�-

cation and validation of multicore enabled software. Further, several

approaches exist to model multicore systems with the help of UML

and MARTE pro�les, but to date none of these approaches supports

performance prediction in an SPE way [RGD11b].

Technical Focus of HPC: All sources we found from the HPC domain focus

on a close-to-programming level. This observation leads to the hy-

pothesis that high-level modelling is not conventional in the HPC

domain. Our expertise supports this hypothesis. Another reason for

this result could be the selection of search terms (see also Section 4.5).

Performance Prediction: The approaches and models we found for perfor-

mance prediction mostly focus on adopting models to include shared

memory [THW09; VE11; XCDM10] or memory bandwidth behaviour

[Wil09] to increase the prediction accuracy. However, the majority of

the sources claim only to provide initial work.

HPCModelling: When re-performing the SLR we found four approaches

[CGIP16; EB16; PF05; SEE19] in the domain of HPC using models

to evaluate quality attributes of parallel and distributed software. In

contrast to that, we did not �nd any model-based approach in the �rst

run. That indicates an increased awareness and need for performance

models in that domain.
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In addition to the above insights, we can answer the SLR’s research questions

as follows:

R𝑆𝐿𝑅−1: We found various modelling approaches that try to consider paral-

lelism on a model level. For this, the authors create their modelling

languages or extend existing ones (like UML) with constructs like the

UML Pro�le for MARTE. Overall, only one source [PF05]—from the

HPC domain—utilises the model adoptions for performance predic-

tion.

R𝑆𝐿𝑅−2: We found �ve sources proposing approaches to predict the per-

formance of multicore systems. Three of these approaches include

memory designs to their models. One method uses a roo�ine function

to determine the correlation between �oating-point operations and

bytes transferred from DRAM, and one uses hybrid solvers to simulate

the performance of low-level algorithmic problems.

4.5. Threats to Validity

During the design of the SLR, we made several decisions according to our

scope. Each one brings certain trade-o�s, which we discuss in the following,

and as was reported in [FHLB17]:

Search Terms: In Section 4.2.2, we describe howwe derived the search terms.

For each search term, we created a synonym list. The list was discussed

with experts from at least two domains. Based on the fact that our

search covered even more domains and that synonyms are commonly

used, we cannot guarantee that we included all possible combinations.

Search Engine: In Section 4.2.2, we also decided to use Google Scholar as a

search engine because Google Scholar works as a meta-search engine

that covers a wide range of databases. To minimise the risk, we

performed test searches with other search engines like SpringerLink,

ACM Digital Library, or IEEExplore. The results indicate that Google

Scholar covers them as well. However, using other or additional

search engines might bring di�erent or additional results.
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Pre-selection : Due to the problem that strictly applying the blacklist to the

search results led to very few results (see Section 4.3.2), we decided

to use manual pre-selection. Even when the pre-selection was based

on personal experience, we assume that the exclusions are mostly

correct. Based on the fact that the number of papers we kept is much

higher than that yielded by automatic pre-selection, we believe that

we attained a higher accuracy.

Date Restrictions: In the review protocol (Section 4.2.2), we limited the

sources considered to those published between 2003 and 2020 be-

cause we wanted to focus on developments after multicores came into

common use in desktop computers. Considering sources before 2003

might bring additional results.

Re-performing: When re-performing the search in 2020, we followed the

initial review protocol strictly, to ensure comparable results. To only

capture the delta of sources, we focused on sources published from

2016 onward. However, we noticed two sources from 2005 that had

not shown up in the �rst search. We decided to include these sources

as well, even though we cannot explain why they did not show up in

the �rst search. One reason might be copy right related reason which

run out by now.

4.6. Summary

The SLR revealed useful insights in the area of parallel programming, par-

allel modelling, and parallel performance prediction. Even though none of

the approaches satisfy our requirements, we gained a lot of insights and

knowledge in this area. On top of that, we acknowledge the work in three

areas, especially:

Parallel Modelling: It becomes clear that the expression of parallel behaviour

in software models is more and more relevant. Therefore, [RGD11b]

aims to use UML MARTE pro�les to enrich software models with

multicore information. Even though they do not focus on performance

predictions, but on code generation for OpenCL, and therefore focus
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on a low abstraction viewpoint, their ideas and methods to express

parallel behaviour might be adaptable.

Even more relevant is the work from [PF05], in which they use UML

activity diagrams to specify software performance models for parallel

applications. Again, they focus on low abstraction levels and assume

an implementation already exists, but these insights should be used to

create performance prediction models on architectural levels during

the design phase.

Analytical Performance Models: Numerous approaches exist to use either

analytical models [THW09; VE11; XCDM10], statistical models [EB16;

Wil09], or QN [CGIP16; SEE19]. All of these approaches have in

common that they focus on cache, bandwidth, or memory interaction,

particularly on simpli�ed and low-level scenarios.

Performance Prophet: In the work of Pllana et al. [PF02; PF05], the authors

introduce a novel approach to use a hybrid variant of analytical and

simulative performance models. They use UML activity diagrams to

model the behaviour of procedural modelling languages (e.g., C or

Fortran). Additionally, they use cost functions to specify the resource

demands and hardware capabilities. Their main goal is to predict

the performance of MPI-based scienti�c applications on large-scale

multi-node hardware environments. Noteworthy is the di�erentiation

between node internal and external behaviours, which are handled

by either event-driven simulators or analytical solvers. The major

drawback is the estimation of the cost function. The cost functions are

an essential part of the performance model. However, their estimation

is far from trivial. We will address this topic in CB1 and CB4 as well.

Further, we take the insights from [PF02] into account when proposing

additional language constructs for parallel software behaviour in

performance engineering.

In addition to the references revealed by the SLR, there exist other related

works that are not directly related to performance predictions of parallel ap-

plications. The exacted schedulers from J. Happe [Hap08] and the CloudSim

project are the two most relevant contributions [CRB+11].

J. Happe included a concept of exacted scheduling in the performance predic-

tion approach. This approach takes several e�ects (like overhead for content
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switches) for speci�c scheduling approaches into account. The approach is

designed to work mainly for single cores and does not addresses the chal-

lenges of multicore systems. However, it supports concurrent software, and

can therefore be used for parallel applications as well. Even though this

increases the prediction accuracy of parallel applications, the impact is rather

small [FH16].

Like Palladio, the CloudSim approach is a system simulator for cloud envi-

ronments. Similar to Palladio, CloudSim uses a speci�cation of a hardware,

software and usage model to simulate quality attributes like response time

and elasticity of cloud environments. Due to this characteristic, they both

support basic parallel executions of containers. However, they do not con-

sider multicore aspects and assume a linear speedup.

Since none of the related work satis�es our requirements or answers our re-

search question, we take the insights from the SLR into account and continue

with our research process (see Figure 3.2).
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5. Running Example: Resource
Demands

Through the course of the thesis, we refer to di�erent kinds of representative

examples. In this section, we introduce each example, give a brief description,

an implementation example, and characterise it. We categorise the examples

into two groups: Resource Demanding Examples and Complex Examples.

5.1. Resource Demanding Examples

The group of resource-demanding examples represents very low-level and

algorithmic examples, where each represents a special kind of resource-

demanding behaviour. Most of the resource demands can be marked as

processor-intensive demands (which mainly consume CPU time), I/O in-

tensive tasks (which have many reads and writes, memory accesses, and

consume memory bandwidth), or a characteristic combination of both. We

will not focus on an optimised implementation of the given problems for

a speci�c hardware. Moreover, we are interested in the characteristics of

resource-demanding behaviours, since this will be relevant for the perfor-

mance predictions later. In the following, we will brie�y explain each re-

source demand and give an implementation example. Further, the realisation

of each resource demand in Protocom is provided in Appendix A.2. The

general implementation example will help to understand the core problem.

In contrast, the implementation from Protcom will help in following Contri-

bution 4 (see Chapter 7).
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5.1.1. Fibonacci Numbers

Description: Inmathematics, the Fibonacci numbers (or Fibonacci sequence)

is a well-known sequence and describes the addition of two preceding nu-

merical values to get the current value. The �rst element of the sequence

is 𝐹0 = 0 and the second is 𝐹1 = 1. For all other elements 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2
must hold [Knu97].

Implementation: Implementing a sequential version of the Fibonacci se-

quence is straightforward, and a Java implementation is given in Lst. 5.1. In

this implementation, recursion is used to calculate all the other numbers up

to the given position. This implementation shows the core problem and is

not optimised for the most performant execution.

1 /* Returns the fibonacci number of the position n

2 * in the sequence. */

3 static int fibonacci(int position) {

4 if (position <= 1) {

5 return position;

6 }else {

7 return fibonacci(position-1) + fibonacci(position-2);

8 }

9 }

Listing 5.1: Sample implementation of the Fibonacci number in Java

Since the Fibonacci number of position n is based on the two preceding

numbers, a parallelisation of this problem is complex and exceeds the scope

of this work.

Characterisation: The actual work of the Fibonacci number calculation is

a simple addition. Therefore, the Fibonacci demand is a processor-intensive

demand [FBKK19]. Storing the preceding values is very low overhead and

can be done e�ciently in L1.

5.1.2. Mandelbrot Set

Description: The Mandelbrot Set is another mathematical sequence, which

is named after the French mathematician Benoit Mandelbrot (cf. [DH84]).
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The sequence is a set of complex numbers which is de�ned by the iteration

of 𝑧0 = 0 and 𝑧𝑛 + 1 = 𝑍 2

𝑛 + 𝑐 .

Geometrically interpreted as a part of the Gaussian number plane, the Man-

delbrot set is a fractal. Images of it can be generated by placing a pixel grid

on the number plane and assigning a value of 𝑐 to each pixel. If the sequence

is restricted with the corresponding 𝑐 , i.e. if it belongs to the Mandelbrot

set, the pixel will be coloured (e.g., black), and otherwise not. If the colour is

determined by how many elements of the sequence have to be calculated

until it is clear that the sequence is not restricted, a so-called speed picture

of the Mandelbrot set is created: The colour of each pixel indicates how fast

the sequence with the respective 𝑐 is heading towards in�nity.

Implementation: The following implementation (Lst. 5.2) plots a region

(size by size) of the Mandelbrot set. The variables 𝑥𝑐 and 𝑦𝑐 represent the

centre of the region, while 𝑛 gives the size dimension and𝑚𝑎𝑥 de�nes the

maximum number of iterations.

1 public class Mandelbrot {

2

3 // return number of iterations to check if c = a + ib is in Mandelbrot set

4 public static int mand(Complex z0, int max) {

5 Complex z = z0;

6 for (int t = 0; t < max; t++) {

7 if (z.abs() > 2.0) return t;

8 z = z.times(z).plus(z0);

9 }

10 return max;

11 }

12

13 public static void main(String[] args) {

14 double xc = Double.parseDouble(args[0]);

15 double yc = Double.parseDouble(args[1]);

16 double size = Double.parseDouble(args[2]);

17

18 int n = 512; // create n-by-n image

19 int max = 255; // maximum number of iterations

20

21 Picture picture = new Picture(n, n);

22 for (int i = 0; i < n; i++) {

23 for (int j = 0; j < n; j++) {

24 double x0 = xc - size/2 + size*i/n;

25 double y0 = yc - size/2 + size*j/n;

26 Complex z0 = new Complex(x0, y0);

27 int gray = max - mand(z0, max);

28 Color color = new Color(gray, gray, gray);

29 picture.set(i, n-1-j, color);

30 } }
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31 picture.show();

32 } }

Listing 5.2: Sample implementation of the Mandelbrot Set in Java [SW17]

Characterisation: Creating a graphical representation of the Mandelbrot

set is not only a computation-intensive task, a lot of (complex) numbers have

to be calculated, stored, and re-accessed as well. Therefore, the Mandelbrot

Set demand can be characterised as I/O-intensive task.

5.1.3. Sorting Arrays

The sorting array demand is characterised by a lot of data access and swap-

or-switch operations. In practice, a lot of di�erent sorting algorithms are

known, and have di�erent pros and cons. In the following, we will focus on

the Dual Pivot Quicksort algorithm, since this one is also implemented in

the Java base class library.

Description: The Dual Pivot Quicksort algorithm [Yar09] is an improved

version of Quicksort. It is characterised by using two pivot elements, one

at the left end of the array and one at the right end of the array. In this

algorithm, the left element must be smaller or equal to the right element.

Otherwise, they will be swapped. After that, the set is spilt into three subsets:

Values smaller than the left pivot element, values larger than the right pivot

element, and values between the left and right element. After that, the three

sets are partitioned and step one is repeated until all partitions contain only

one element. At the last step, they are merged.

Implementation: The following code in Lst. 5.3 is an implementation of

the algorithm described above from the Java base class library. The code is

highly optimised and hard to read. An easily comprehensible version, along

with detailed explanations, can be found in [Yar09].
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1 static void sort(int[] a, int left, int right,

2 int[] work, int workBase, int workLen) {

3 // Use Quicksort on small arrays

4 if (right - left < QUICKSORT_THRESHOLD) {

5 sort(a, left, right, true);

6 return;

7 }

8

9 /*
10 * Index run[i] is the start of i-th run

11 * (ascending or descending sequence).

12 */

13 int[] run = new int[MAX_RUN_COUNT + 1];

14 int count = 0; run[0] = left;

15

16 // Check if the array is nearly sorted

17 for (int k = left; k < right; run[count] = k) {

18 if (a[k] < a[k + 1]) { // ascending

19 while (++k <= right && a[k - 1] <= a[k]);

20 } else if (a[k] > a[k + 1]) { // descending

21 while (++k <= right && a[k - 1] >= a[k]);

22 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {

23 int t = a[lo]; a[lo] = a[hi]; a[hi] = t;

24 }

25 } else { // equal

26 for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {

27 if (--m == 0) {

28 sort(a, left, right, true);

29 return;

30 }

31 }

32 }

33

34 /*
35 * The array is not highly structured,

36 * use Quicksort instead of merge sort.

37 */

38 if (++count == MAX_RUN_COUNT) {

39 sort(a, left, right, true);

40 return;

41 }

42 }

Listing 5.3: Implementation of the sort method of the DualPivotQuicks from the Java

base class library

Characterisation: Due to the high interaction with the memory and the

enormous amounts of reading and writing operations, the Dual Pivot Quick-

sort algorithm is a highly I/O-intensive task.
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5.1.4. Calculating Primes

Description: In mathematics, a prime number is a natural number, that

is higher than one, and that cannot be formed by multiplying two smaller

natural numbers.

Prime numbers are of high interest in informatics, especially in cryptography.

Large prime numbers are used for encryption.

Even though there are di�erent approaches to �nd a prime number, i.e.,

trial division (i.e., brute force) or with the help of the Sieve of Eratosthenes

[One09], it remains a resource-intensive task. The current largest prime

number is 2
82,589,933 − 1 and was discovered by Patrick Laroche in 2018

[Lar18].

Implementation: The implementation in Lst. 5.4 shows a trial division

approach to �nd prime numbers. It simply checks whether each number is

divisible by another number higher than one.

1 public static List<Integer> getPrimeNumbers(final int upperBound) {

2 List<Integer> resultSet = new ArrayList<>();

3 for (int i = 2; i <= upperBound; i++) {

4 if (isPrime(i)) {

5 resultSet.add(i);

6 }

7 }

8 return primeNumbers;

9 }

10 public static boolean isPrime(final int numberToCheck) {

11 boolean result = true;

12 for (int i = 2; i < numberToCheck; i++) {

13 if (numberToCheck % i == 0) {

14 result = false;

15 }

16 }

17 return result;

18 }

Listing 5.4: Implementation of trial division approach to calculating primes

Characterisation: The base characterisation of the above calculating prime

resource demand is de�ned by the method isPrime, which performs a high

number of divisions. This leads to a load on the CPU. The I/O interaction
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is comparably low. The few numbers can even be stored in caches. Thus,

calculating prime demand is a CPU-intensive demand.

5.1.5. Counting Numbers

Description: Counting numbers is a straightforward algorithm to count

numbers from zero upwards toward a limit. This example is a synthetic

demand, which is added here because it can put much pressure on the

memory architecture.

Implementation: The implementation of the counting number example is

given in Lst. 5.5. It shows a for-loop which iterates until the given upper limit

is reached. In each iteration, the current counter 𝑖 is added to a counting vari-

able of 𝑘 . In this Java implementation, 𝑘 must be a class variable to prevent

the just-in-time compiler from removing it during the code execution—as

part of the just-in-time code optimisation.

1 // needed to stop the JIT compiler from removing the code in execute

2 private long k;

3

4 private void countNumbers(final double countTo) {

5 for (long j = 0; j < countTo; j++) {

6 if (k > 100000) {

7 k = 0;

8 }

9 k += j;

10 }

11 }

Listing 5.5: Implementation of the counting numbers demand from Protocom

Characterisation: The characteristics of the counting number demand are

rather simple but at the same time interesting. The demand produces both

CPU demand from the addition and I/O demand by getting the numbers from

memory. The latter can be neglected when executing the code sequentially

because the numbers will be stored in L1 or registers.
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5.1.6. Matrix Multiplication

Description: In mathematics, matrix multiplication is a multiplicative com-

bination of matrices. To multiply two matrices with each other, the number

of columns in the �rst matrix must match the number of rows in the second

matrix. The result of matrix multiplication is again a matrix. The entries of

the new matrix are calculated by multiplying and summing the entries of

the rows of the �rst matrix, component by component, with the columns of

the second matrix.

Matrix multiplication is often used in linear algebra or natural science. Each

𝑐𝑖𝑘 entry of the matrix product is calculated by 𝑐𝑖𝑘 =
∑𝑚

𝑗=1 𝑎𝑖 𝑗 · 𝑏 𝑗𝑘 . In this

equation, 𝑎𝑖 𝑗 and 𝑏 𝑗𝑘 are the corresponding entries of the matrices A and B,

when 𝐴𝑥𝐵 is calculated.

Implementation: The implementation in Lst. 5.6 shows an example of a

matrix multiplication. The number of columns of matrix a must be equal to

the number of rows of matrix b.

1 public static int[][] multiplyMatrix(final int[][] matrixA,

2 final int[][] matrixB) {

3 int[][] result = new int[matrixA.lenght][matrixB[0].length];

4 for (int i = 0; i < matrixA.length; i++) {

5 for (int j = 0; j < matrixB[0].length; j++) {

6 for (int k = 0; k < matrixA[0].length; k++) {

7 result[i][j] = result[i][j] + matrixA[i][k] * matrixB[k][j];

8 }

9 }

10 }

11 return result;

12 }

Listing 5.6: Example implementation of the a matrix multiplication in Java

Characterisation: Matrix multiplication is a good example of an I/O inten-

sive task because for each multiplication, two values have to be loaded from

memory, and one value has to be written. The multiplication itself has only

a moderate impact on the CPU. Further, the order of the three for-loops has

a signi�cant impact on performance. Arranging the 𝑖 , 𝑗 ,𝑘 properly can cause

caching e�ects because the data of arrays are stored in the main memory

in a way that the next value is within the same cache page and proactively
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loaded (see page cache for more details). Arranging them in the wrong order

will result in a lot of cache misses and main memory access, which results in

a degraded performance. The di�erence between the best and worst version

can impact the performance by a factor of eight (the worst combination is

eight times slower than the best combination) [FH16].

5.1.7. Summary

The examples given in this section will be used throughout the further course

of this thesis, each example representing a unique resource demand. Table

5.1 summarises the characteristics of the individual demands and gives the

CPU-intensity and I/O intensity of each demand.

Resource Demand CPU-intensity I/O-intensity
FibonacciNumbers high low

MandelbrotSet low high

SortingArrays low high

CalculatingPrimes high low

CountingNumbers low medium

MatrixMultiplication medium high

Table 5.1.: Summary of Resource Demand Characteristics

5.2. Complex Examples

In the upcoming section, we will describe more complex examples which pro-

duce amore extensive resource demand. The �rst example—Bank Transaction—

is a common one, when it comes to interaction between multiple threads or

actors.

The second example is taken from the SPEC Benchmark Suite. It consists

of multiple combined low-level demands (like the ones explained before).

SPEC Benchmarks are often used to evaluate the performance of hardware

systems. Thus, they can be used as a substitution for more complex real-

world examples. The advantage of using SPEC Benchmarks instead of real
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examples is that they are (a) more comfortable to set up, and (b) better

compared to di�erent setups.

5.2.1. Bank Transaction Example

Description: The bank transaction example is a common example used in

literature to describe various problems in parallel execution [Lin10a]. Its

underlying data model consists of a simpli�ed version of the bank domain.

Figure 5.1 shows the domain represented by a UML class diagram.

 
 

Bank

# deposit ( amount : double) : void
# withdraw ( amount : double): void

- balance : double
Account

# execute ( ) : void

- amount : double
- status : Status

Transaction

0..*- accounts

- bank

▼ has

- source

1..2

1

- transaction

- target

1

1

- transaction

◀ has

◀ has

- bank

- transactions0..*

▶ tracks

Figure 5.1.:Domain View of the Bank Transaction Example (cf. [Lin10a])

In this example, a bank consists of a set of accounts. Each account has a

balance and a method to deposit or withdraw money. Further, there are

transactions which transfer a speci�c amount of money from one account to

another. A transaction is successful if the balance of the source account is

higher than the amount of the transaction and the money can be transferred.

Vice versa, a transaction will fail if the balance is insu�cient.

The scenarios rising from the example are complex—especially for paral-

lel executions—because the order in which the transactions are executed

is important. Additionally, it must be guaranteed that only one transac-

tion is executed for a bank account to prevent multiple write operations

simultaneously.

92



5.2. Complex Examples

Implementation: For this example, a variety of instances can be found

across the literature. However, in the course of this thesis, we will refer

to the version conceived by J. Link [Lin10b]. Link uses AKKA Actors to

implement the scenario. As introduced in Chapter 2, Actors are used as a

means to parallelise. In the example presented, each bank account represents

an actor with its own message queue. In the message queues, the incoming

transactions are stored. Further, Link uses a transaction actor, whichmanages

the individual transactions. Thereby, each transaction is executed in the

following order: (1) get the source and target account, (2) check account

balance, (3) withdraw money and (4) deposit money. Given the use of the

actor paradigm, the example implementation can be executed in parallel,

and multiple transactions are processed at once.

The full implementation can be found in [Lin10b].

Characterisation: The primary work in this example is subtraction or ad-

dition. However, the use of Actors puts much additional overhead on top.

Every message utilises the memory bus and uses additional memory. So, if

we consider the example by using an Actor implementation, we can expect

a low to medium demand on the CPU and a comparable high demand on the

memory architecture.

5.2.2. SPEC Benchmarks

In two seminar theses we evaluated in collaboration with P. Gruber [Gru20]

and A. Yoon [Yoo19], the suitability of performance benchmarks as use case

examples. The following sections are part of these works:

Performance benchmarks (e.g., from SPEC
1
) are designed to evaluate the

performance of computer systems. Further, they can be used to make di�er-

ent computer systems comparable. To ensure comparability, a benchmark is

standardised and portable, which means the benchmark has the minimum

possible dependencies on speci�c hardware. Additionally, benchmarks are

not designed to stress the operating system. Depending on the benchmark

set, it stresses the graphic card, the I/O bus, or—most commonly—the CPU.

1https://www.spec.org/
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According to SPEC (the Standard Performance Evaluation Corporation)—a

non-pro�t organisation whose goal it is to establish, maintain and endorse

a standardised set of relevant benchmarks for computer systems—a bench-

mark is "a standard of measurement or evaluation" [SPE20]. A computer

benchmark refers to a computer program which executes a set of operations

to produce a metric that represents the performance of a computer environ-

ment. A Benchmark typically measures execution speed and throughput

as metrics. These metrics are used to analyse the performance of a system

[SPE20].

Running the same benchmark on di�erent hardware enables us to com-

pare the performance of the di�erent systems [SPE20]. According to the

IBM Knowledge Centre, benchmark testing can help to determine current

performance (issues) and help to improve performance [IBM18].

In the following, we will focus on the SPEC Benchmark sets, as they are very

commonly used. However, other benchmark sets are suitable as well.

When the user runs the benchmarks from SPEC, he usually gets a base and

a peak value for the speci�c task. The main di�erence between base and

peak is that peak is the result of using optimisations for the particular task,

while the base value is based on the same optimisation setting for all tasks

[MVL+10]. In general, both are re�ecting the time the task has run. Further,

the benchmark outputs the ratio between the execution time and the run

time of the benchmark on a reference system. The creators of the benchmark

individually chose the reference system. This ratio would give an impression

of whether the used system were faster, slower, or as fast as the reference

system. This allows the evaluation of comparison results at �rst glance. In

the end, the SPEC benchmarks deliver a speci�cation which ideally gives an

impression of how well a system performs. The general speci�cation is the

median value of all applications.

In the following, we will give a brief overview of the SPEC benchmarks,

focusing on parallel execution as they are suited to test multicore systems.

SPECMPI 2007: SPEC MPI consists of 13 di�erent applications [MVL+10].

All 13 applications are examples from a scienti�c background. They

are used to perform weather predictions or to simulate �uids. They

are all implemented in FORTRAN or C(++). In contrast to the above

resource-demanding examples, these tasks are neither low, in terms
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of complexity, nor created synthetically. The SPEC MPI benchmark

uses MPI calls as a means to parallelise. That means the indepen-

dent processor cores need to communicate with each other regularly.

Müller et al. [MVL+10] give additional details about the message size,

implementation, and number of message calls.

SPEC OMP 2012: SPEC OMP is a benchmark built upon the OpenMP frame-

work and uses shared memory instead of message passing. It consists

of a total of 15 applications and also includes optional power consump-

tion metrics—in addition to the base and peak metrics [MBB+12].

SPEC ACCEL: This benchmark consists of 49 applications in total, and uses

di�erent approaches to parallelise. So, 19 applications use OpenCL,

15 applications use OpenACC, and 15 applications use OpenMP. In

comparison to the above benchmarks, this benchmark set does not

focus on the CPU and CPU architecture but on the GPU—which is

not in the scope of this thesis.
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6. CB1: Parallel Architectural
Pattern Catalogue

In the previous sections we learned about the foundations and state of the art

of parallel computing, hardware architectures, and parallelisation paradigms,

de�ned the research approach and the research question to be answered in

this thesis, and followed the research design. In the next four chapters we

lay out the individual contributions (numbered from 𝐶𝐵1 to 𝐶𝐵4 according

to the 𝑅𝑄1 to 𝑅𝑄4) in detail.

The �rst contribution picks up the requirement 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 deployed in Chap-

ter 1. The requirement is that software architects should be able to express

concurrency in software models in a way that characterises the behaviour

of the software. The speci�cation also includes highly concurrent software

with multiple thousands of concurrently executed threads. As a result of

this chapter, we can present an answer to the research question 𝑅𝑄1, vali-

date hypothesis 𝐻1, and present a parallel architectural pattern catalogue,

which contains reusable knowledge. Given that pattern catalogue, the soft-

ware architect can easily and e�ciently model the behaviour of parallel

software.

Figure 6.1 lays out the process followed to produce the �rst contribution.

As the �rst step of this process, we analyse the current state of the art and

establish why this requirement is currently not ful�lled. Next, we de�ne a set

of challenges to overcome and goals to meet in order to ful�l the requirement.

To evaluate the quality of a parallel modelling language enhancement, we

propose a set of evaluation metrics next. After that, we investigate di�erent

strategies to enhance current modelling languages, pick the most suitable

one for our scenario, and execute the approach using the example of OpenMP

parallel loops.
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Evaluation Criteria
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Figure 6.1.:Overview of the Research Method for Contribution 𝐶1

After con�rming that the strategy is suitable, we identify a list of the most

useful parallel patterns, which we implement and combine in the parallel

architectural template catalogue. Finally, we execute an empirical study to

evaluate this catalogue.

As result we present a parallel architectural pattern catalogue containing

three of the most frequently-occurring parallelisation patterns. We can

show that the use of the pattern catalogue increases the e�ciency of the

SAs signi�cantly. Furthermore, we are able to increase the accuracy of the

performance predictions with the help of overhead functions.

Please note that signi�cant parts of the work from step 1 are reviewed and

published in [FH16]. Additionally, the results from steps two through four are

summarised, published, and reviewed in [FKHB19]. Finally, the speci�cation

of the pattern behaviour (described in Section 6.6) is reviewed and published

in [FHB20].
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All raw data, implementations, and accompanying resources are publicly

available:

Section 6.1 Peformance Prediction for Matrix Multiplications:

https://zenodo.org/badge/latestdoi/250200347

Section 6.5 Parallel Architectureal Pattern Catalogue:

https://github.com/PalladioSimulator/Palladio-Addons-P

arallelPerformanceCatalogue

Section 6.7.2 User Study Data:

https://doi.org/10.5281/zenodo.3755339

6.1. Problem Space

To emphasise the issues with current modelling approaches, we will �rst

brie�y report on a controlled experiment we performed in [FH16]
1
. In this

work we used a matrix multiplication example (see Section 5.1.6). Later we

will leverage the same example to evaluate our enhancements to existing

modelling languages.

6.1.1. General Information

In the controlled experiment, we evaluate the multicore and multi-threading

capabilities of the current state-of-the-art performance modelling tools. In

this speci�c case, we prioritise Palladio and raise the following research

questions:

𝑅𝑄𝑝1 Is it possible to model multicore systems with Palladio?

𝑅𝑄𝑝2 How precise are the predictions?

1
The full experiment description can be found in [FH16], and all data are available at

https://zenodo.org/badge/latestdoi/250200347
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To answer these questions, we confront the problem from two sides. On the

one side, we implement a matrix multiplication as a parallelised code example

and measure the execution time (response time) on dedicated hardware. On

the other side, we model the same instance with Palladio and perform a

simulation.

As a metric, we focus only on the execution (or response) time of the actual

matrix multiplication. To evaluate its accuracy, we compare measurements

to our simulation result.

6.1.2. Implementation

Listing 6.1 shows the implementation we used for the matrix multiplication.

The implementation follows the explanation in Section 5.1.6 and uses three

for-loops to multiply and add up the respective matrix elements of matrixA

and matrixB. The provisional sum is stored in matrixC. When all iterations

are �nished, matrixC holds the results of the matrix multiplication. The

order of the three for-loops can be altered without changing the result, but

this impacts the performance greatly. We tested all variants on our target

hardware and chose the fastest variant as described in [FH16].

For parallelisation, we used a framework—the omp4j
2
framework. It provides

basic OpenMP functionalities like parallel sections and loops for the Java

environment, and supports up to 16 worker threads. To use this framework

we simply had to add line 5 to the code and use the omp4j pre-compiler (see

Lst. 6.1). Please note that the threadNum feeds omp4j the number of threads

it should use. This parameter is optional. We used that number to set the

number of threads. When not speci�ed, the default is the number of available

CPU cores. The scheduling parameter is optional. A static scheduling tells

omp4j to do the scheduling while pre-compiling and not during runtime

(dynamic).

1 /* Requires: matrixA, matrixB, matrixC != null;

2 * Requires: matrixA.getWidth == matrixB.getHeight;

3 * Ensures: matrixC = matrixA x matrixB;

4 */

5 // omp parallel for schedule(static) threadNum(2)

6 for (int i = 0; i < matrixA.getWidth(); i++) {

7 for (int k = 0; k < matrixB.getHeight(); k++) {

2
See http://omp4j.org and https://github.com/omp4j/omp4j
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8 for (int j = 0; j < matrixA.getHeight(); j++) {

9 result[i][j] += matrixA[i][k] * matrixB[k][j];

10 } } }

Listing 6.1: Sample implementation of a matrix multiplication in Java with OpenMP

annotations

6.1.3. Modelling

While implementing the matrix multiplication is straightforward, the mod-

elling part is more challenging. To model the software behaviour in Palladio,

we need to know some characteristics of our software; for example, the

resource demand (i.e., the CPU time) for a speci�c task like a single multipli-

cation, and how often this action is performed. Tasks that demand a single

resource are called actions in Palladio.

To gather the additional characteristics, we �rst measure a sequential matrix

multiplication and estimate the resource demand for a single multiply-add

(line 9). We compute the number of multiply-add operations from the input

matrices dimensions.

With this information at hand, we begin to model the use case, starting with

a sequential version. Figure 6.2 shows the PCM’s Service E�ect Speci�cation

(SEFF), which we use to model the software behaviour. The SEFF consists of

only one action, which includes the resource demand for one multiplication

(0.00000069) multiplied by the number of multiplication operations needed

(indicated by the input matrices’ dimensions). We took the resource demand

from the measurements and it represents the time it takes to perform a single

multiply-add operation.

We could also have used three nested PCM loop-actions and only annotated

the actual resource demand in the internal action, which would be a more

natural approach. However, we chose the �rst approach because it abstracts

the actual algorithm and greatly improves performance during analysis

[FH16].

After creating the sequential model, we adapt it to �t the parallel scenario.

This process involves much manual modelling, since the parallel constructs

in the PCM are aligned to UML and are therefore very basic (e.g., do not
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ResourceDemands
0.00000069 * matrixASizeM.VALUE * 

matrixASizeN.VALUE * 
matrixBSizeJ.VALUE <CPU>

<< InternalAction >>
matrixMultiplication

Figure 6.2.: SEFF De�nition of the Sequential Model

support massive parallel behaviour). We model each thread as a separate

branch of a fork, where each branch gets the same amount of work. This is a

valid assumption because the OpenMP parallel loop construct is implemented

in the same way
3
.

Therefore, depending on the number of threads needed, it is necessary to

model not only one but 𝑛 threads by 𝑛 branches with 𝑛 actions and divide

the resource demand into equal shares. This process is labour-intensive and

error-prone.

6.1.4. Experiment Evaluation

Table 6.1 shows the measurements and simulation results we collected by

executing the program 500 times and by running the Palladio simulation.

We computed the mean for both—the execution and simulation time. As

one can see, the accuracy of the simulations drops when the number of

worker threads (viz., the number of used cores) increases. One reason for

the decreasing accuracy is that the simulation only considers CPU speed as

a relevant metric, which leads to a linear speedup, while the measurements

show that this is not the case.

3
see OpenMP Speci�cation: https://www.openmp.org/wp-content/uploads/OpenMP-API

-Specification-5.0.pdf
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There are several known reasons for not reaching an ideal speedup with

a parallel program. We assume that the reason with the most signi�cant

impact is additional overhead created by the threads like synchronisation.

In most cases, the matrices are not read or written directly from memory,

but from the caches of the CPU cores. So, every time the result matrix is

updated, the cache entries of other CPU cores become invalid and have to

be synchronised or invalidated, which is expensive.

Regarding our research questions we summarise our �ndings:

Evaluation of𝑅𝑄𝑝1: During the modelling phase, we show that modelling

multicore systems is possible. However, a lot of manual and error-

prone modelling was needed, since every thread had to be modelled

individually. Finding ways to directly add parallel constructs (e.g.,

OpenMP parallel loop constructs) in Palladio is a desirable avenue for

future research.

Evaluation of𝑅𝑄𝑝2: To evaluate the accuracy of the simulation results, we

performed several simulations according to the number of worker

threads. We achieved the best accuracy for the sequential scenario,

which is logical, since we used the measurements gained from the

sequential run as calibration for the resource demand. But noteworthy

is the decreasing accuracy as the number of worker threads increases.

The decreasing accuracy indicates that predictions for even more

worker threads will be even worse. That shows that further factors,

like synchronisation overhead, have to be considered in the model to

increase its accuracy.

Following the thesis hypothesis 𝐻3 we assume that the inaccuracy

is due to additional performance-in�uencing factors like cache sizes,

memory size, and memory bandwidth, which are not considered in

the model yet. The investigation of these factors follows in Chapter 7.

Having the result of the controlled experiment at hand, we can use it to

de�ne challenges and goals in the next section. Afterwards, we will use

these goals to evaluate di�erent modelling approaches of language extension

strategies.
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Worker

Threads

Mean Execution

Time (in 𝑠)
Speedup

Simulation

Time (in 𝑠)

Accuracy

(in %)

2 10.31 1.80 9.41 91

4 5.45 3.42 4.76 87

8 2.95 6.32 2.43 82

16 1.60 11.66 1.26 79

Table 6.1.: Simulations and Measurements Summary

6.2. Problem Specification - Challenges and Goals

In this section we use the insights from the controlled experiment described

above and the lessons learned from the SLR (see Chapter 4). In the process, we

identi�ed challenges in modelling the behaviour of parallel software and the

performance predictions for multicore systems. As the matrix multiplication

use case makes clear, there are two major challenges [FKHB19]:

𝐶1 Modelling Support for Parallel Constructs: Current modelling languages

like UML2 or PCM support concurrency aspects like threading. How-

ever, this means every thread must be modelled manually and in detail.

Thus, the modelling is time-consuming and error-prone. Therefore,

modelling languages have to support massive parallel executions of

threads.

𝐶2 Missing Overhead: Even though the PCM supports simple concurrency

aspects, the use case shows that their accuracy is a problem. The use

case we looked at is easy to parallelise and only considers a limited

number of cores (by now 128 is realistic). But also for 16 cores, the

accuracy dropped by 21%. Besides many other issues (like missing

performance metrics, e.g., memory architectures), all parallelisation

paradigms produce additional overhead, e.g., for forking threads, syn-

chronisation, and communication. Therefore, we need to �nd a way

to include this behaviour in our models.
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6.2.1. Goals

According to the challenges identi�ed, we aim for the following goals

[FKHB19]:

𝐺1 E�ort: Reduce the modelling e�ort, so that the software architect does

not need to model every thread individually.

𝐺2 Language Constructs: Similar to the OpenMP parallel loop construct, we

aim for a single construct, which includes all relevant information.

In this way the model is not in�ated, and the complexity remains

reasonable.

𝐺3 Support: All newly introduced concepts ease the modelling process,

encourage understanding, and need to be designed such that the

current tools for analysis and simulation can cope with them.

𝐺4 Accuracy: The prediction accuracy for parallel aware software compo-

nents should increase without violating the 𝐺1: E�ort.

6.2.2. Evaluation Metrics

To be able to evaluate di�erent language extension approaches, we de�ne

the following evaluation metrics [FKHB19], based on the goals identi�ed in

Sec 6.2.1:

𝐸1 Configurable: in terms of parametrisation and con�guration. An ap-

proach is highly con�gurable if it enables the SA to easily change

the model’s con�guration (i.e., thread numbers), and therefore o�ers

the option to evaluate variations of con�gurations simply. A highly

con�gurable approach is desirable.

𝐸2 Additional Information: describes the amount of additional information

needed to use the language extensions. From the perspective of the

SA it is desirable to add the minimum additional information required.

𝐸3 E�ort: describes the amount of manual work. We distinguish the e�ort

to inject an approach into a language (implement) and the e�ort to

use the approach (use). A lower e�ort is desirable.
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𝐸4 Understandable: means how intuitively one can use the approach. An

approach is intuitively usable if (a) it can be used without much

training and (b) the syntax supports the underlying semantics. A

more understandable approach is desirable.

6.3. Modelling Language Extension

With the goals (𝐺1 to 𝐺4) in mind, in this section we evaluate di�erent vari-

ants to enrich existing modelling languages with parallel constructs. We �rst

determine which di�erent diagram types we consider relevant (see Section

6.3.1). Second, we propose di�erent concepts (see Section 6.3.2) and third,

we evaluate whether each combination of diagram type and concept meets

the evaluation metrics 𝐸1 to 𝐸4 (see Section6.3.3). During the evaluation, we

continue to use the running example, matrix multiplication, in combination

with openMP, and regularly refer to it. Even though we use this speci�c

example, we claim that the approach is transferable and works for di�erent

examples and parallelisation paradigms as well. We discuss that in the next

section in detail.

6.3.1. Diagram Types

The PCM (see Section 2.4.2.1) provides di�erent diagram types, which are

candidates for an extension. We now have a closer look at the diagram types

and their suitability for expressing parallel software behaviour:

(S)ervice (Ef)fect Speci(f)ication Diagram (UML activity-diagram-like): The

SEFF is a suitable entry point for a modelling language extension since

it directly describes the software behaviour. E.g., to describe the be-

haviour of the matrix multiplication, we use an internal action and

a loop action. Therefore, the loop action or the internal action

are potential extension points to de�ne that either the loop or the

action can be executed in parallel.

Repository Diagram (UML class-diagram-like): The repository diagram shows

the available components in the system. Thus, one opportunity is

to de�ne a speci�c component and mark it as "parallel capable” and
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set the whole component as parallel executable. That way two in-

stances of the same component run in parallel, very much like in

function-oriented architectures or micro-services.

Allocation Diagram (UML deployment-diagram-like): This diagram speci-

�es which assembly (system diagram) is allocated to which resource

container (resource environment diagram). Due to the deployment,

the components are related to the hardware. At this step it becomes

clear whether a component is running on a multicore system or not.

However, no information about the software behaviour is available.

Thus, the allocation diagram is not a suitable entry point for an ex-

tension.

Resource Diagram (UML component-diagram-like): The resource diagram

only describes the hardware characteristics, so here we can express

whether multicore CPUs are available or not. However, we can model

no information about how the software utilises the cores and how

the parallel behaviour takes e�ect. Thus, the resource diagram is not

suitable.

Usage Diagram: Also in the usage diagram, no information about the parallel

behaviour is modelled. Only information about user behaviour is

available here. Therefore, this diagram type is not a�ected and not

suitable for an extension.

6.3.2. Extension Concepts

Using a model means abstracting real-world objects and behaviour for a

speci�c purpose [Sta73]. The challenge is �nding the right level of abstraction

as well as the relevant objects to represent in the model. In the following,

we introduce three relevant elements (objects) for software characteristics,

which are candidates to take into account while modelling the software

behaviour. These concepts are independent of the above-described diagram

types and can be included in any of them.

Overhead: The concept of overhead modelling considers overhead caused

by parallel execution (i.e., thread initialisation, synchronisation, etc.).

For example, if we parallelise a program using threads, the additional
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overhead for creating, running, terminating, and synchronising the

threads needs to be represented to adapt the speedup correctly.

Sequential Share: According to Amdahl’s Law [HM08], a fraction of the

software cannot be executed in parallel, which limits the speedup that

can be reached by the software. Thus, the Sequential Share Modelling

concept speci�es the sequential parts in the models.

Shared Resources Behaviour: Using variables and resources in a parallel

program is a challenge. In speci�c scenarios, it is essential that vari-

ables are not modi�ed concurrently. Also, the program must modify

the resources in the correct order. Further, where the resources are

stored and how they are accessed is important. Using the Shared

Resources Behaviour Model means considering this information on

the model level.

Hybrid: Due to the characteristics of the concepts mentioned above, a com-

bination of ideas is possible. In the following, we only consider the

pure concepts, but we do not rule out the usage of multiple concepts

later on.

6.3.3. Diagram and Concept Evaluation

Now that we know the relevant extension points (view types) and the possible

concepts, we evaluate each combination based on the evaluation goals 𝐸1 to

𝐸4 (see. Section 6.2.2). Afterwards, we will take the combination which seems

most promising, evaluate it based on the use case example, and propose it as a

reference approach to create the parallel AT catalogue. This plan also means

that we neglect the other combinations for now, but keep them in mind so

that we can return to them if the chosen solution is not satisfactory.

The process to evaluate the combination is based on expert opinions. For this

purpose, we conducted multiple review rounds within the Reliable Software

Systems Group in Stuttgart, the Software Engineering Chair in Chemnitz,

the Software Design and Quality Group in Karlsruhe, and with various

external experts. The invited experts—mostly from German universities—

work in di�erent domains (Model-based Performance Prediction, HPC, Cloud

Computing, and Parallel Programming).
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ConceptDiagram Eval.
Goal Overhead Seq. Share Shared Res.

𝐸1 + + -
𝐸2 o o -
𝐸3 + + -SEFF

𝐸4 + + -
𝐸1 + + -
𝐸2 o o -
𝐸3 - - -Repository

𝐸4 o o -
𝐸1 o o -
𝐸2 o o o
𝐸3 - - -Allocation

𝐸4 o o -
𝐸1 + easy to change - hard to change

𝐸2 + no add. information needed - a lot of add. information needed

𝐸3 + easy to realise - hard to realise

𝐸4 + very intuitive to understand - hard to understand

Table 6.2.: Summary for Di�erent Extension Strategies

Table 6.2 summarises our evaluation and shows in the left column the three

diagrams we selected as entry points. For each diagram type we used 𝐸1 to

𝐸4 as evaluation criteria (second column). The third to �fth columns show

the three concepts, and an individual cell gives our �nal rating for a concept

in combination with a diagram type based on the evaluation criteria. In the

following, we will enter a detailed discussion.

Neglect the Allocation Diagram Even though the allocation diagram de�nes

which component runs on which hardware, and therefore represents

which component can run on a multicore system, using the allocation

diagram seems unreasonable because at that point the de�nition of a

component has already taken place. Parallelisation has to be enabled

by software and therefore de�ned in the component description. Just

because a component is allocated on a multicore system, does not

necessarily mean it can be executed in parallel.

Neglect the Shared Resource Concept Handling shared resources by all kinds

of parallelisation strategies is known as a complex and error-prone

process. So, regardless of diagram type, including this concept will
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require much e�ort to realise. But even then, the bene�t is more than

questionable, because to use the concept, the software architect needs

detailed knowledge of the resources and their access, which should

be abstracted during the design phase. Further, including a complex

concept (like locks) into a design model dramatically decreases the

understandability and increases the e�ort needed.

Evaluating the SEFF Diagram SEFFs represent the behaviour of components

by, e.g., activity diagrams and therefore on a medium to low level.

The concepts of loops and actions are known in these diagrams, and

the structure follows the control �ow. Reorganising often means only

adding or removing activities or redirecting the control �ow, and is

therefore easy to realise. Because the abstraction level is not set for

these diagrams, it is theoretically possible to model even low-level

software behaviour. Therefore, concepts like overhead and sequential

share could already be modelled with a lot of modelling e�ort (see Sec

6.1.1), and with a fair amount of additional information (i.e., thread

pool size). However, without additional language constructs, the

models became far too complicated and time-consuming to handle.

Thus, the SEFF is a possible candidate for enhancement.

Evaluating the Repository Diagram The repository diagram represented as,

e.g., UML2 Component Diagram, shows the composition of the com-

ponents and therefore the architecture of the software on an abstract

level. So if we want to integrate one of the concepts here, it must

be on an abstract level as well. On the upside, that means changing

con�gurations can be done quickly. On the downside, however, this

means the understandability can su�er due to abstract representation.

A fair amount of additional information is required, in this and in

all other diagram types. But the e�ort to implement is high, due

to the assumption that realising abstract concepts is always more

challenging. Further, most parallelisation paradigms focus on low- to

medium-level parallelism. Raising that concept to a higher level can

result in inaccurate speci�cations.
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6.3.4. Enhancement Process

Having the evaluation of the diagram types and the concepts at hand, in the

following section we present the process for including parallel concepts (e.g.,

parallel loops) into a modelling language (like the PCM).

6.3.4.1. Choosing a Starting Point

After listing and evaluating all available options, we decide to focus on the

SEFF Diagram with an overhead concept in the �rst run. Deciding for or

against the repository diagram is a matter of abstraction level. While de�ning

a component as parallel-capable means abstracting the parallelisation to the

component level, and low abstract concepts like loops or section, focusing on

loops means that the SA must already have an accurate idea of the software

system during the design phase, which might not be the case. However,

focusing �rst on the SEFF brings another advantage. The inclusion of the

overhead model is better supported than in the repository diagram.

6.3.4.2. SEFF Language Extension

After choosing a concept and a diagram type, we now propose an approach to

extend the language. This is a two-step approach: We �rst design a language

construct to represent massive parallelism on the CPU level (like OpenMP

parallel loops); and second, we add the overhead concept to the language to

increase the prediction accuracy.

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒1ModellingAspect: In the following, we focus on𝐺1 to𝐺3, which

meanswewant to ease themodelling process formulti-threading and support

parallel behaviour in the models. For proof of concept, we focus on the

running example of the matrix multiplication in combination with OpenMP-

like behaviour in our models. Since UML2 Activity Diagrams, as well as the

PCM, already support loop-action, we focus on this action �rst.

The �rst question to answer is, which additional information is required

to enrich a loop-action to a parallel loop-action. To answer that question,
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we follow the method for an experiment-based performance model deriva-

tion [Hap08]. According to this method, the performance model is extended

in steps.

1. We identify a minimum set of additional attributes.

2. We add the additional attributes to the performance model.

3. We evaluate and check if the enhanced model �ts the requirements.

4. If we see that it does not �t, or that we need di�erent or additional

attributes, we repeat steps two and three.

To identify the minimum set of attributes, we look again at the OpenMP

parallel loop as a reference. As shown in Listing 6.1, the parallel loop only

takes information about the number of worker threads used and the scheduler

method (for a full discussion on performance-in�uencing factors see Section

7.2). Additionally, the scheduler method can already be set as a parameter

of the CPU in the Resource Diagram of PCM. For the sake of simplicity, we

start with the number of worker threads. Figure 6.3a shows the result of this

�rst step.

Figure 6.3a shows a loop action annotated as parallel loop based on the

PCM languages. There are only two di�erences to a regular loop action:

The applied role @Parallel, which indicates that everything in the loop

behaviour can be executed in parallel, and the number of worker threads

attribute (threadPoolSize).

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒2 Accuracy Aspect: In the following, we focus on 𝐺4. For this,

we decided to use the concept of overhead modelling �rst and include this

concept in the PCM modelling language. To that end, we add the attribute

to the parallel loop action from above. Figure 6.3 shows the parallel loop

with the new overhead attribute. By allowing the attribute to be a dynamic

value (as indicated by the sample value 50*threadPoolSize), we can achieve

two things at once. First, we enable the modelling of overhead, which can

either be �xed or dynamic and equal for all threads (like thread initiation

or synchronisation overhead). Second, we give the software architect the

freedom to use this attribute to include a speedup function or, to be more

precise, slow-down functions. For this, we allowed the speci�cation of any
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<< loopAction >>
@Parallel

rep = matrixASizeM.VALUE * matrixASizeN.VALUE * 
matrixBSizeJ.VALUE

threadPoolSize = threadNumber

ResourceDemands
0.00000069 <CPU>

<< InternalAction >>
calculation

(a) Annotate Parallel Loop Including Thread

Pool Size

<< loopAction >>
@Parallel

rep = matrixASizeM.VALUE * matrixASizeN.VALUE * 
matrixBSizeJ.VALUE

threadPoolSize = threadNumber
overhead = 50 * threadPoolSize <CPU>

ResourceDemands
0.00000069 <CPU>

<< InternalAction >>
calculation

(b) Annotate Parallel Loop Including Thread

Pool Size and Overhead Function

Figure 6.3.: Stepwise extension of loop to a parallel loop

kind of stochastic expression (in PCM called stoex). In theory, this enables

the software architect to model any type of behaviour here.

For clarity, in Figure 6.4 we show what a parallel loop would look like when

using only existing concepts in PCM for a threadPool- Size of two. Figure

6.4 shows the instantiation of the parallel loop with two threads. It uses a

fork action to fork two separate threads. Each thread has an internal action,

which needs CPU-time. The resource demand is split equally among the two

threads. Both threads are in a synchronisation point, which means they are

synchronised after execution. In each thread, we add an internal action to

describe the additional overhead.

6.3.4.3. Enhance the Modelling Language

Now that we have introduced the conceptual idea, we discuss in the following

how the concept can be realised and integrated into existing models and

analysis. First, we describe two di�erent ways (Meta-Model Extension vs.

UML Pro�les) to extend modelling languages in general. Afterwards, we

sketch the process of how to integrate them.
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<< Fork >>
ForkedBehaviours

 << Synchronisation Point >>

ResourceDemands
0.00000069 * matrixASizeM.VALUE * 

matrixASizeN.VALUE * 
matrixBSizeJ.VALUE / 2 <CPU>

<< InternalAction >>
calculationA

ResourceDemands
0.00000069 * matrixASizeM.VALUE * 

matrixASizeN.VALUE * 
matrixBSizeJ.VALUE / 2 <CPU>

<< InternalAction >>
calculationB

ResourceDemands
100 <CPU>

<< InternalAction >>
overhead

ResourceDemands
100 <CPU>

<< InternalAction >>
overhead

Figure 6.4.: SEFF Representation of the Unfolded the Parallel Loop Example from

Figure 6.3

Architectural Templates & Meta Model Extension: There are two known

ways to extend a modelling language like the PCM. The �rst way includes a

full meta-model extension. In our case, this would mean extending the PCM

directly and adding new meta-model elements and attributes.

The second approach is a pro�ling strategy. A UML Pro�le uses stereotypes

and pro�les to extend the meta-model without changing the actual meta-

model. For the PCM there is a similar approach—the AT Method [LHB17]—

which uses the AT Language. Within the ATMethod, new language elements

can be added, as long as there is a way to map the new language constructs

to already-existing elements in the meta-model.

ATs vs. Meta Model Extension: With our scenario in mind, we identify the

advantages and disadvantages of the inclusion strategies.
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Using the AT method has many advantages. Once an AT is de�ned, it is easy

and fast to use, and since every AT model extension has to be representable

within the PCM, it is guaranteed that the simulations and analysing tools

can handle the AT model extension. Thus we will not break any existing

system. At the same time, this advantage becomes a disadvantage because

mapping everything to existing meta-model elements also means limited

power. Therefore, it might still be necessary to use a meta-model extension

to achieve the intended outcome.

On the other hand, using a full meta-model extension is the most �exible

option and gives us the freedom to integrate any kind of extension. However,

this freedom comes at the cost of e�ort. Using a full meta-model extension

means we would also have to adapt the performance prediction model and

analysis tools to guarantee that the new language elements are supported.

In our case, we decided to use the AT method because it �ts the use case

best. As shown in Section 6.3.4.2, we are able to represent the new language

extensions (see. Figure 6.3b) with the help of existing meta-model elements

(see Figure 6.4). Note that other use cases may still require a full meta-model

extension.

Architectural Template Extension Process: To use the AT method for our

needs, we have to create a new AT. We can create a new AT by following

three basic steps as described in [Leh18].

I. Create a Profile: First, we need to create a new pro�le. Creating a new

pro�le is similar to creating UML2 Pro�les. For our example this

means we create a new stereotyped class called ParallelLoopAction

and extend the target class from the PCM LoopAction. In so doing, we

also model two attributes: threadPoolSize and overhead (see Figure

6.5).

II. Define Completion: In the second step, we need to de�ne a model-to-

model transformation. This is done with a QVT-o de�nition. The AT

method contains a model checker, which is called before every per-

formance analysis. Whenever the model checker �nds an AT, it calls

the QVT-o script and performs the model-to-model transformation

to create a plain PCM model.
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III. Register AT: In the last step, we have to add the newly created AT to the

AT catalogue to make it available to the software architect via the

Palladio tooling.

A full explanation of how the use case example is realised, along with a

de�nition of additional relevant patterns, can be found in Section 6.5.

Figure 6.5.:AT Pro�le for Parallel Loop Extension

6.4. Proof of Concept Evaluation

In this section we present a proof of concept evaluation, using the running

example. We apply the new parallel AT and evaluate it based on the simu-

lation results, the prede�ned goals 𝐺1 to 𝐺4, and the evaluation metrics 𝐸1
to 𝐸4. If the evaluation is positive, we will use the approach to build a full

parallel architectural template catalogue (see Section 6.5).
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6.4.1. Result-based Evaluation

First of all, we evaluate the approach based on the prediction accuracy of the

simulation. Here we use our use case example and compare the results of the

altered model with the model we used in Section 6.1.3. More speci�cally, we

use the newly introduced language extension concepts and remodel the use

case using the new AT. So instead of using the fork action and modelling

all the individual worker threads manually, we use a loop action and apply

the parallel loop AT. Instead of creating di�erent models for each number

of worker threads, we were able to use the threadPoolSize attribute to

con�gure the model.

The most challenging part, however, was to �nd a function to represent

the overhead. For this evaluation, we want to keep the process of �nding

a good representation for the overhead as simple as possible. Thus we use

the measurements we took from the implementation (see Table 6.1) for one,

two, and four worker threads. We calculate the di�erence between a linear

speedup and the actual measurements. Next, we extract a simple linear curve

based on the number of threads as x and the di�erence of linear speedup and

actual measurements as y. We ended up with the following equation, because

it best �t the observations: overhead = 900 - 50 * threadPoolSize.

At �rst, this seems unnatural because we decrease the overhead while in-

creasing the thread pool size. However, we increase the overhead per worker

thread according to the workload while increasing the thread pool size. For

two threads we have a total overhead of 1, 600 (800 for worker thread one

plus 800 for worker thread two), and for four worker threads, we have a total

overhead of 2, 800 (compare with Figure 6.3a).

Table 6.3 shows the simulation results when using a parallel loop action,

con�gured as described above. The most noticeable outcome is that we

achieve better accuracy in all cases. For one to eigth threads we reach 99%

precision.

The high precision is not surprising because we used the measurements from

the real execution to calibrate the model. If we had used all measurments,

we would have achieved an accuracy of 99% for all cases. This, however,

would have been a model over�tting.
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Worker

Threads

Mean Execution

Time (in 𝑠)
Speedup

Simulation

Time (in 𝑠)

Accuracy

(in %)

1 18.64 1.00 18.63 99

2 10.31 1.80 10.31 99

4 5.45 3.42 5.46 99

8 2.95 6.32 2.93 99

16 1.60 11.66 1.36 85

Table 6.3.: Simulations and Measurements Summary Using a Parallal-Loop-Action

Nevertheless, the evaluation shows us two things. First, the overhead mod-

elling approach can be used to signi�cantly increase the performance model

prediction accuracy—if used correctly. Second, �nding an overhead function,

without having measurements from an implementation, is an extremely

challenging task, which requires much experience in parallel computing and

is still error-prone. Therefore, we propose to use characteristic performance

curves to estimate the overhead function (see 𝐶𝐵4 in Chapter 7).

6.4.2. Goal-based Evaluation

In the next step, we evaluate the approach given the goal-ful�lment rate. We

anticipate that we will reach all the goals 𝐺1 to 𝐺4. A detailed discussion

follows:

𝐺1 E�ort: Our �rst goal was to reduce the modelling e�ort so that it is

no longer necessary to model every worker thread. In the proposed

language extension, the software architect can just de�ne the number

of worker threads. Within the parallel loop AT, a completion is used to

automatically generate the needed model and distribute the workload

equally among all worker threads (as an OpenMP loop would do).

However, this only works if the threads are identical. By de�nition,

introducing automatisation reduces the overall e�ort.
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𝐺2 Language Constructs: Our second goal—including all relevant infor-

mation, to model parallel behaviour for performance predictions—is

mostly ful�lled. We can prove that the goal is met by achieving a

satisfying performance prediction accuracy. However, in the future,

we need to discuss whether the level of abstraction is suitable. If not,

it might become necessary to add further information or to abstract

certain elements.

𝐺3 Support: The third goal required support for current simulators and

analysis tools while reducing the modelling e�ort and keeping the

complexity low. Since we decided against a meta-model extension

and use pro�ling and stereotyping mechanisms, we are at least in

theory able to use the full analysis support. However, currently, the

AT approach is only supported by SimuLizar [Leh18]—the default

simulator of Palladio. Moreover, the modelling e�ort is reduced by

supporting the software architect with semi-automatic and model

generation mechanisms. However, regarding clarity, we claim that

the language extension did not increase complexity. We provide proof

of this hypothesis in the empirical study (see Section 6.7).

𝐺4 Accuracy: Our fourth goal was to increase the prediction accuracy. If we

compare Table 6.1 with Table 6.3 it became clear that we signi�cantly

improved accuracy for two to eight worker threads and also increased

accuracy for 16 worker threads . With better overhead function, even

better results are possible.

6.4.3. Metrics-based Evaluation

Finally, we evaluate the approach using the evaluation criteria 𝐸1 to 𝐸4. For

this, we use the insights gained from the expert community. We consulted

multiple experts from di�erent German universities (e.g., TU Dresden - De-

partment VDR and ZIH, TU Chemnitz - Department of Software Engineering

and Operating Systems Group, HPI Potsdam, FZI Karlsruhe and KIT - De-

partment of Software Design and Quality). In the following, we discuss the

evaluation metrics in detail based on the results of the expert interviews:

𝐸1 Con�gurable: Due to the parameterizable character of the parallel loop

extension, the approach is highly �exible and straightforward to
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change. Therefore, the software architect can evaluate sets of con�g-

urations quickly.

𝐸2 Additional Information: As mentioned above, to use the parallel loop

AT, the software architect has to specify two additional parameters.

First is the number of worker threads, which is easy to set since a

reasonable value can be the number of cores in the CPU. Second is

the overhead function, which can be complex and hard to determine

without detailed knowledge of the program and parallel computing

in general.

𝐸3 E�ort: Regarding the e�ort of integrating the approach, we cannot give

a long-term answer because a comparison is missing (see Section

6.7). However, as described in 6.3.4.3, using the AT approach has the

advantage that the meta-model does not need to be changed, and

therefore all analysis support is still guaranteed. Further, using an AT

eases the modelling process for a software architect and reduces the

e�ort in general—as described in [LHB17].

𝐸4 Understandable: The usage and clarity of ATs in general is also dis-

cussed in [LHB17],but for our speci�c use case, we cannot provide a

de�nite statement. However, all of the experts interviewed agree that

the approach can be used without training—assuming the software

architect knows how to use ATs—and the underlying semantics are

implicit in the syntax. The empirical evaluation of the architectural

template catalogue, however, proves that even non-experts can use

and apply ATs correctly.

6.5. Building a Pattern Catalogue

After evaluating the above approach, we will use this approach in the upcom-

ing section to create a parallel architectural template catalogue, containing

the parallel behaviour patterns most often needed by software architects.

In the �rst part of the section, we focus on the research, collection, and

identi�cation of such relevant patterns. In the next section, we give a de-

tailed behaviour description for each pattern. Finally, we will visualise the

empirical study we used to evaluate the usability of the template catalogue.

122



6.5. Building a Pattern Catalogue

We will not further discuss the implementation details of the individual

patterns, but we will follow the approach described above. The full pattern

catalogue, along with the source code and further documentation of the

individual patterns, is available in the parallel AT catalogue repository on

GitHub
4
.

6.5.1. Pattern Identification

The �rst question we have to ask when building a pattern catalogue is:

which are the relevant patterns? To answer this question, we formulate

two sub-research questions: (𝑅𝑄1.1.1) Which parallel patterns already exist

in practice and (𝑅𝑄1.1.2) do they have similarities which allow them to be

categorised? To answer that question, we performed a structured literature

review in [SWD19]. The results of this study are presented in the course of

this section.

6.5.1.1. Search Method

To answer the 𝑅𝑄1.1.1, we performed a structured literature review and

followed this process:

1. Initial Set: We start the structured literature review by building an initial

set of parallel programming patterns that we already know. We took

most of these patterns from [MSM04].

2. Searching: In the next step, we used the initial set to query four di�erent

databases: ACM, IEEE, ScienceDirect and Google Scholar. We rejected

duplicates.

3. Screening: In the next step, we started from the top of the list and screened

each hit and then extracted pattern names and description. If a pattern

was already in our list, we ignored it.

4https://github.com/PalladioSimulator/Palladio-Addons-ParallelPerformanceCata

logue
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4. Abortion: Due to a large number of search results, we decided to con-

tinue step 3 until we encountered 20 consecutive papers with no new

patterns. The danger of this approach is that we most likely will not

�nd all existing patterns. However, we can be quite certain that we

cover the most relevant ones. This is good enough for building a

�rst version of a parallel architectural template catalogue. Extending

additional patterns later will not require much overhead.

After conducting the search, we ended up with 35 patterns. As we had

assumed, many of them follow the same concept but are named di�erently.

6.5.1.2. Pattern description

In the following, we give a short overview and a brief description of the 35

patterns we found, as reported in [SWD19]:

“Actors: Actors is a distributed parallel approach using a message-passing

interface. Actors communicate by sending messages that determine

the work�ow. We took a detailed look at the Actors approach for its

message-passing approach to parallelism. Details about this approach

can be found in section 2.1.3.

Fork/Join: The Fork/Join approach is a sharedmemory approach that divides

a problem over a certain size into smaller sub-problems, which then

compute the smaller tasks in parallel. After a parallel computation

step is �nished, the split tasks are joined. Details about this approach

can be found in section 2.1.3.

Parallel Loops: Parallel Loops is an approach used on index sets. By chang-

ing how the set is iterated, and in so doing, splitting the set into

smaller parts (i.e., only even/odd indices), thread-based parallelism is

achieved with little overhead. Thus it uses shared memory. Details

about this approach can be found in section 2.1.3.

Pipes & Filters: The Pipes & Filters approach uses components called �lters

that are connected by pipes. Filters can be used in parallel to speed

up the computation of high load-bearing tasks. It is a very modular

shared memory approach and thus distinguishes itself from other

patterns. Details about this approach can be found in section 2.1.3.

124



6.5. Building a Pattern Catalogue

Master Worker: A master thread is used to generate several worker threads,

each capable of recursively becoming a master thread. Worker threads

are assigned tasks on shared memory by the master and report back

upon �nishing a task to collect results. This pattern is very similar

and follows the same concept as the fork/join pattern.

Java Streams: Java Stream is a parallel approach that splits a collection of

shared memory into several streams and applies an ordered set of

operations on each stream, and �nishes by merging the streams into a

new, transformed collection. It is an application of the Pipes & Filters

approach [Mic19].

SPMD: Single Program Multiple Data. A set of Unit of Execution (UE)s run-

ning the same algorithms on di�erent subsets of data is decomposed

from an initial shared set of data. It can, for example, be used to

implement a Master Worker approach. It is not a pattern itself, but a

supporting structure [MSM04, p.216].

MPMD: Multiple Programs Multiple Data. This is like SPMD, but each sub-

problem of the initial shared data gets mapped onto a subset of the

unit of executions running the algorithms needed. It is not a pattern,

but a supporting structure [MSM04, p.216].

Map-Reduce: Map-Reduce allows a mapping procedure similar to a Stream’s

intermediate operations on a set of shared memory to work as a

�lter/sort. After a set of mapping procedures, a summary operation

(reduce) will �nish the task. For our purposes, a Map-Reduce approach

operates similarly enough to Parallel Streams that it does not need to

be described in detail [DG04].

Akka Actors: The Akka Actors is an implementation of the Actors model

using the Akka libraries, which allow for writing concurrent and

distributed systems. The Akka approach to actors is an instance of

the generic Actor model, and as such is not di�erent enough to be

considered a separate approach [HBS73].

Erlang Actors: The Erlang Actors is an implementation of the Actors model

using the functional programming language Erlang. Unlike Akka, it

does not rely on sending messages as objects, but the overall imple-

mentation of the Erlang Actors approach makes this another instance
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of the generic Actor model, and as such will not be considered an

approach.

Task Parallelism: Task Parallelism is a concept rather than a pattern. It fo-

cuses on distributing tasks (a set of operations) over multiple UEs with

the intent of calculating multiple tasks on the same shared memory

at the same time [MSM04, p.67].

Data Parallelism: Similar to Task Parallelism, Data Parallelism involves run-

ning di�erent sets of data on UEs with the same tasks. It, too, is more

of a concept than a pattern [MRR12, p.372].

Divide and Conquer: A concept that involves dividing an initial problem

into a set of subproblems before the computation is known as Divide

and Conquer. Is not a parallel pattern by itself [MSM04, p.76], but a

method of implementing parallelism.

Geometric Decomposition: Geometric Decomposition divides a set of data

not into a set of subproblems, but rather into chunks of regionally

close data such as one �nds in graphs. Similar to Divide and Conquer,

it is by itself also not a parallel pattern [MSM04, p.82].

Recursive Data: Along with Divide and Conquer and Geometric Decom-

position, Recursive Data is also not a pattern by itself, but a way of

dividing a set of data into subsets. It is especially useful for recursive

sets of data [MSM04, p.101].

The following patterns are found in [MRR12] and are duplicates of already

named patterns:

Nesting Patterns: Nesting Patterns is a compositional approach that de-

scribes a method of composing code using several approaches. It is

not a pattern in itself, but is applicable to most approaches.

Map Pattern: The Map Pattern applies a function using loops on every ele-

ment of a set of data A with a resulting set of data A’. It is used with

index sets and can be used on a single UE or on multiple UEs. On

multiple UEs it becomes an instance of the Parallel Loops approach

and as such will not be discussed.
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Stencil: The Stencil approach, similar to the Map Pattern, applies a function

on an index set, but instead of only working at single elements, it also

looks at neighbours of each index. As a variation of Map Pattern, it is

not considered distinct enough for our purpose.

Reduction: Not a pattern but a method of combining all elements in a col-

lection into a single element, Reduction can be executed in parallel.

Scan: Scan is similar to Reduction, but every step of the reduction produces a

new element that adds up to the partial reductions that were calculated

in the steps before. Not a pattern but a data management method, it

can be executed in parallel.

Recurrence: A specialisation of the Map and Stencil approaches, where

outputs of neighbouring indices can be used as additional input and

used in cases where elements of a set are not independent. A parallel

implementation of Recurrence also becomes an instance of the Parallel

Loops approach.

Superscalar Sequence: An approach where a serial sequence of tasks is not

dependent on order apart from data dependency, and as such can be

executed in a random sequence or in parallel. In theory, this concept

is practised in many parallel approaches.

Futures: Futures are a Fork/Join approach using heaps instead of stacks.

Workpile: Workpile is a modi�cation of the Map pattern. Each visited ele-

ment can generate new tasks that are added to the index set, allowing

recursive behaviour. It is very similar to parallel loops or sections.

Pack: The Pack approach is used to reduce the size of collections bymapping

unneeded values to zero. A data management approach, it is an

instance of a Map-Reduce approach.

Expand: Expand is similar to the Pack approach, but each element of a

collection can output any number of elements including zero. It is a

subset of the Map-Reduce approach.

Search: The Search approach �nds data in a shared set that �ts a given

criterion. It is considered a function that is part of the mapping

process in the Map-Reduce approach.
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Category Reduction: Category Reduction collects elements in a labeled col-

lection using a map function and reduces them to their categories. It

is an instance of a Map-Reduce approach.

Gather: Gather reads a sub-collection of data from another collection of

data. It is considered a map pattern, but works with "position" rather

than values inside of elements in a collection. The Stencil approach

uses this method to acquire a neighbourhood of values.

Scatter: Scatter is similar to Gather, but the input set of data is written to a

set of speci�ed write locations in parallel. Multiple variations exist

to deal with collisions. This is a data management function and not

a pattern in itself, and is too specialised to be part of this research.”

([SWD19], p.14-17)

The remaining four hits are SISD, SIMD, MIMD, and MISD and these are

not software behaviour patterns but hardware architecture styles. Thus we

ignore them as we build the taxonomy.

6.5.2. Pattern Categorisation

After collecting patterns and extracting characteristics, we went through

the result set again and started to group similar patterns. We named each

group according to the most common name and also introduced an addi-

tional dimension, the abstraction level. We added three levels of abstraction:

Algorithmic, Architectural, and Design Patterns. Figure 6.6 shows the result

by grouping architectural and design patterns for simpli�cation. For each

pattern, Figure 6.6 lists synonyms or implementation variants based on the

�ndings of the structured literature review. This list is not complete and

provides only an overview.

For a detailed explanation of the individual groups, see Section 2.3.

6.5.3. Pattern Selection

After we successfully categorised all patterns, we extracted the core be-

haviour from each group of patterns. For three out of the four groups, we

decided to realise a parallel AT, but decided against the message-passing
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Parallel Patterns

Architectural / Design Patterns Algorithmic Patterns

Master-Worker 
PatternMessage Passing Parallel Loops &
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Figure 6.6.:Categorisation of Parallel Patterns

pattern, for several reasons. The message-passing paradigm follows a di�er-

ent concept and assumptions, which are fundamentally di�erent from the

other three patterns, as well as the concept Palladio is based on (especially as

represented in Actors). Palladio builds upon the assumption of passive and

stateless components. However, an actor is a state-full and active component.

Ignoring this fact will lead to a violation of the Markovian properties, which

the Palladio simulations and analyses are based on. Therefore, we decided

against a realisation of the message-passing paradigm in an AT [SWD19].

For all the other patterns, we followed the proposed approach and realised a

corresponding parallel AT. We published the complete parallel pattern cata-

logue along with the source code in a Palladio sub-repository on GitHub
5
.

6.6. Formal Semantics for Parallel Behaviour in
the PCM

To create or use parallel modelling language elements, it is crucial to un-

derstand the semantics of their behaviour. Therefore, in the course of this

section we will explain the semantics of the most relevant parallel languages

elements in the PCM and the semantics of the parallel ATs. To do so, we will

use a formal speci�cation with the help of HQPNs (see Section 2.5).

We start by explaining the mapping of fundamental PCM components to

Hierarchical Queuing Petri Nets (HQPN), which was developed by Koziolek

5https://github.com/PalladioSimulator/Palladio-Addons-ParallelPerformanceCatalogue
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in [Koz08]. Koziolek de�ned semantic behaviour for most of the PCM ele-

ments. However, we will discuss only the loop and asynchronous fork at

this point, which we later reuse for our parallel ATs. For a full de�nition

of all fundamental elements of the PCM, we refer to Koziolek’s dissertation

[Koz08].

Second, we introduce a mapping for asynchronous loops, which was not

done by Koziolek.

Third, we discuss mapping the parallel behaviour to QPNs in general. Based

on that, we will evaluate and compare the semantic behaviour of the parallel

ATs (from [FH18]) to the expected parallel behaviour.

6.6.1. Mapping of general PCM Components

All elements used in the following are part of the Palladio SEFF, which

describes the behaviour of the software model. For the sake of simplicity,

we only use subnets (QPN) of the HQPN.

Within our HQPN each token represents a single user or request within our

system. The token’s colour is a complex data type named TokenData (see Lst.

6.2). It contains:

• VarList: A list of currently valid parameter characterisations.

• CompParList: A list of currently valid parameter characterisations

speci�ed as component parameters.

• LoopList: A list of loop iterations. When a token enters a loop, the

loop iteration number is set in the list to show the number of

iterations that remain.

• GuardList: A list of branching guards. The PN uses them to

calculate probability distributions with stochastic dependencies.

• TokenID: A unique ID for each token. The ID can be used to merge

tokens after they have been split and �re them into subnets.

In the followingwe adhere to Koziolek’s semantics and refer to the TokenList

as a. For further details on mapping the processing resources, stochastic

expressions, and distributions, see [Koz08].
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c o l o r VarSpec = produc t s t r i n g ∗ s t r i n g ;

c o l o r V a r L i s t = l i s t VarSpec ;

c o l o r CompParLis t = l i s t VarSpec ;

c o l o r LoopL i s t = l i s t i n t ;

c o l o r Gua rdL i s t = l i s t s t r i n g ;

c o l o r TokenId = i n t ;

c o l o r TokenData = produc t V a r L i s t ∗ CompParLis t ∗

LoopL i s t ∗ Gua rdL i s t ∗ TokenId ;

Listing 6.2:Colour of a token, called TokenData (cf. [Koz08])

6.6.1.1. PCM Loop

Figure 6.7a shows the mapping of a PCM Loop Component (on the top as

PCM description) to a QPN (below). The QPN contains the loop head and

body. After entering the loop, the �rst transition 𝑡1 is to evaluate the loop

iteration (in case it is not a constant value, but a distribution or stochastic

expression). The transition 𝑡1 adds the loop iteration integer as a list instead

of an integer to the LoopList. The reason for this is that the loop can be

executed recursively nested, and the token needs to memorise all the loop

counters. The head of the list gives the current iteration count.

Based on that value, either transition 𝑡3 (counter = 0) or 𝑡2 (counter > 0) �res.

If 𝑡2 �res, the token will be �red in a subnet 𝑝𝑖𝑑2, which represents the loop

body. As soon as the token returns from the subnet, 𝑡4 �res, 𝑎3 decreases the

loop counter, and the token enters the loop head. Finally, when 𝑡3 is reached,

𝑎4 removes the counter from the list of loop iteration integers and the token

is placed in the successor of the loop (i.e., 𝑝𝑖𝑑3).

6.6.1.2. PCM Asynchronous Fork

Asynchronous Forks spawn new threads without synchronising them in

the end. Each thread terminates independently of the others. Figure 6.7b

illustrates the behaviour for the given PCM speci�cation (above).

First, the transition 𝑡1 �res a copy of the current token into multiple places

in QPN 𝑝𝑖𝑑𝑖 , each representing a forked behaviour. During 𝑡1, the values of

the current token are modi�ed in a way that the ID ℎ stays unique. For that,
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a number 𝑖 is added for each forked behaviour. The rest of the values stay

the same. At the end of each forked behaviour, the transition 𝑡2 - 𝑡𝑛 �ushes

the copied token. To continue, the transition 𝑡1 �res an additional token to

the successor, represented here by 𝑝𝑖𝑑𝑛+1.

6.6.1.3. PCM Synchronous Fork

In contrast to asynchronous forks, in synchronous forks the control �ow

spawns threads and waits for them to �nish before continuing with the next

steps. Figure 6.7b illustrates the behaviour and describes the PCM.

In general, the QPN looks very similar to the asynchronous forks, so in the

following, we only go into the two main di�erences.

First, instead of the transition 𝑡2 to 𝑡𝑛 (in asynchronous forks), which �ushes

the token after the forked behaviour has �nished, for synchronous forks we

have one transition 𝑡2, which only �res if there is a token available in each

place 𝑝𝑖𝑑2 to 𝑝𝑖𝑑𝑛 . If that is true, 𝑡2 �res and places a token in the successor

of the synchronous fork—in our case 𝑝𝑖𝑑𝑛+1. The token that is placed in the

successor place is a merged copy of 𝑎2 to 𝑎𝑛 . Further, the ID ℎ is modi�ed so

that 𝑖 is removed. Thus the ID is reset to the original value before entering

the fork, and remains unique.

The second di�erence to the asynchronous forks is when and how to pass

the token to the successor. While for the asynchronous forks, the transi-

tion 𝑡1 immediately passes a token to the successor, the transition in the

synchronous forks does not and only passes the tokens into the forked be-

haviours. The successor is added in the end, and the transition 𝑡2 triggers the

successor. In that way, we ensure that all forked behaviours have �nished

before continuing.

6.6.2. Mapping of Parallel Behaviour to QPN

In this section, we discuss the behaviour of parallel loops, sections, and

blocks. Since no native PCM elements represent these concepts, we give

the PCM descriptions based on the parallel AT extensions introduced above.
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The description should re�ect the way common frameworks like openMP
6

have implemented these concepts.

6.6.2.1. Parallel Loops

Behaviour: Parallel loops are a parallelisation concept known from di�er-

ent parallel programming paradigms like OpenMP. Put simply, a parallel

loop executes each loop iteration in a separate thread. With the help of a

thread pool, the scheduler assigns each thread (worker thread) to a physical

core and can execute in parallel. A requirement for the many scenarios is

that the threads are data independent or that the dependence is explicitly

de�ned. Data independent means that the read and write operation of each

thread does not in�uence the others. A typical example to illustrate the

behaviour of parallel loops is our running instance of a matrix multiplication

[FH16]. Assuming we have two matrices (10x10) we want to multiply, this

would result in a total number of 1000 multiplications to perform. Using,

for example, OpenMP parallel loops with a thread pool size of 8, this would

split the workload for each thread equally, resulting in 125 calculations per

thread.

A parallel loop can either be synchronous (often used when distributing

workloads and realising a master-worker pattern [MSM04]) or asynchronous

(i.e., implementing an observer pattern).

PCM Instance: Given the above behaviour description of a parallel loop, it

is similar to a fork action in PCM. It has a successor and a forked behaviour.

Since the behaviours are all equal, specifying it once is enough. In addition

to the fork action, information about the thread pool size and the number of

iterations is required. For synchronous forks, a passive resource is needed

as well. A passive resource can be used to implement require and release

behaviours, i.e., for mutexes [Koz08].

Mapping: For the mapping of the behaviour description to QPN, we dis-

tinguish between two di�erent kinds of parallel loops: Synchronous and

asynchronous loops, which are shown in Figure 6.8.

6
OpenMP – https://www.openmp.org/
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Asynchronous Parallel Loop: The QPN for asynchronous parallel loops is

a combination of a loop and an asynchronous fork. It starts similarly to a

fork with the transition 𝑡1, which �res two tokens. One token is �red in the

place of the successor 𝑝𝑖𝑑𝑛+1, which can then continue, and another token is

�red into the place of the loop behaviour. The id of the token is altered and

increased (𝑎1). Following the description of a loop (see Figure 6.7a), the next

step evaluates the loop iteration. In this case, two evaluations are done. One

is for the outer loop, which forks the new threads. Here the value equals the

value of the given thread pool size. The evaluation of the iteration literal

speci�es the second loop iteration value and then divides it by the thread

pool size, to share the workload equally. It is added to the LoopList. Based

on that former value, the loop either continues or �nally goes to 𝑡4. If the

loop continues, 𝑡3 �res two tokens, one into the subnet 𝑝𝑖𝑑𝑛 , with an adjusted

id (cf. Section 6.6.1.2), and one to 𝑝𝑖𝑑3 with an adjusted loop counter. After

that, the loop condition is re-evaluated. Further, the subnet 𝑝𝑖𝑑𝑛 represents a

normal loop as characterised in Section 6.6.1.1. Finally, when a subnet has

�nished, 𝑡5 destroys the token.

Synchronous Parallel Loop: In contrast to the asynchronous parallel loop, the

synchronous one does not continue until all tokens have returned from all

subnets. For that reason, there is no fork action in the beginning, and the

QPN starts with the evaluation of the loop iteration, which again equals the

value for the thread pool size. The loop execution behaves the same way

as the asynchronous loop does. In contrast to asynchronous loops, where

tokens are �ushed after returning from subnets, in the synchronous loop the

tokens are passed on. The transition 𝑡4 �res a token into two places: 𝑝𝑖𝑑5 and

𝑝𝑖𝑑6. Further, 𝑝𝑖𝑑5 shows a passive resource and 𝑋 indicates the number of

created tokens. Therefore, whenever a subnet �nishes and the token returns,

𝑡4 �res and increases the number of tokens in the places. Subsequently, the

original token with the corresponding colour is placed in the 𝑝𝑖𝑑5, and the

loop iteration counter is removed from the token’s colour. Finally, transition

𝑡5 �res if there are the number of 𝑛 tokens in the place 𝑝𝑖𝑑6. The value of 𝑛

is equal to the value of the thread pool size. Thus, the transition 𝑡5 �res if all

subnets have been returned. Further, the transition 𝑡5 adjusts the value of

the id �eld, removes the added identi�er for the subnet 𝑖 , and restores the

value to its original value.
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Please note that to provide a useful example, we modelled the passive re-

source (𝑝𝑖𝑑6) along with the require (𝑥 ) and release (𝑛) actions explicitly. It is

also possible to combine it with 𝑝𝑖𝑑5.

6.6.2.2. Parallel Sections and Blocks

Behaviour: Parallel sections or blocks refer to a speci�c area in the source

code that is either explicitly marked for parallel execution (i.e., parallel

sections in OpenMP) or implicitly allows multiple executions of the same

block. The former behaves similarly to a loop. Most of the time, a parallel

section is used to split the workload based on a task set or data structure.

The block is speci�ed by the same behaviour, but can have di�erent input

parameters. It can be a method that is called by multiple threads.

PCM Instance: In the PCM a block, which can be called multiple times from

di�erent threads, is modelled with a simple fork action and therefore can

be either synchronous or asynchronous. Due to the similarities of a parallel

section to a parallel loop, there is no additional concept in PCM, and on an

abstract level, it can be handled in the same way as a parallel loop.

Mapping: The mapping of PCM Instances for parallel sections to QPN is

performed in a way very similar to the mapping of parallel loops. The only

di�erence is that the subnet will not be of type loop, but arbitrary types. This

means that it is not the loop characterisation that is passed to the subnet, but

an adjusted version of the VarList, describing the workload for the speci�c

subnet. For blocks, the mapping is the same as for forks. Due to these highly

similar concepts, we will skip a full description at this point.

6.6.3. Evaluation of the Mapping of Parallel ATs to QPN

In the following, we evaluate the correctness of the behaviour of the parallel

loop ATs based on the running example. As described in Section 6.5, the

parallel ATs need to map all elements to the given PCM instances. Since

loops, sections, and blocks are very similar, the parallel AT method maps

all kinds of parallel behaviour (loops, sections, or blocks) to a fork-join
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scenario (see Figure 6.3). Therefore, we can use the existing mapping of

forks to QPNs to express the formal semantics. To show that this is a valid

approach, we elaborate on a thought experiment. For that, we assume a

synchronous parallel loop, which should calculate a matrix multiplication

with the matrices of size 10𝑥10. So, in total 1000 multiplications have to be

performed. Further, we assume each multiplication takes 1𝑚𝑠 on a two-core

system. In theory, sequentially executing the multiplication takes 1𝑠 . Using

a synchronous parallel loop (as described in Section 6.6.2) needs additional

information about the number of worker threads. Assumewe use twoworker

threads for the two-core system. The behaviour of the synchronous loop

splits into two separate threads, which share the workload equally. That

means each worker thread needs to perform 500 multiplications and needs

500𝑚𝑠 . Since we assume two cores, the overall execution time is 500𝑚𝑠 ,

because both threads can run in parallel. Now let us consider the parallel AT:

Here we use the parallel loop action (see Figure 6.3a) and specify the number

of replications to be 1000, the thread pool size is two, and the resource

demand for one calculation is 1𝑚𝑠 on the CPU. The parallel AT approach

now maps this to a fork behaviour with two parallel threads, which needs to

be synchronised in the end. The resource demand for each internal action is

still the same 1𝑚𝑠 on the CPU. But this time, it is multiplied by the number

of repetitions divided by the number of worker threads (i.e., it shares the

workload equally). In this case, each internal action takes 500𝑚𝑠 , and the

total run-time is 500𝑚𝑠 .

This demonstrates that the response time behaviour is the same. For this, in

future work, we plan to provide mathematical proof based on QPNs.

6.6.4. Upshot

In this section, we formally de�ned the semantic behaviour of the funda-

mental parallel language concepts fork and parallel loop. This will not only

help to create and use new parallel language concepts, but it also helps to

understand the parallel ATs. At this point, we only explain fork and parallel

loop, since the other two parallel ATs—Master-Worker-Pattern and Pipes

and Filters—are mapped and build upon the same basic constructs as the

parallel loop.
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6.7. Empirical Evaluation of the Parallel AT
Catalogue

Now that we have all the parts of a parallel AT catalogue complete (process

to enhance modelling languages, pattern selection, behaviour descriptions,

and �nally the catalogue itself), we still need to evaluate 𝑅𝑄1.3—Does the

architectural template catalogue support software architects in the task to

create accurate performance prediction models e�ciently?

We have already shown how we can use an overhead function to increase

accuracy. In this section, we want to evaluate the e�ciency and usability of

the approach. Since both quality aspects are hard to determine, we set up

an empirical user study. This study was part of the work we conducted in

[Zah20], and we present a summary in the following subsection.

6.7.1. Experiment Design

To conduct a user study, we decided to go with a controlled user experiment.

The controlled experiment gives us the advantage of minimising variance and

disturbing side e�ects and gives us the opportunity to change the experiment

variables according to our needs [RH09]. Further, it allows us to perform

statistical analyses on our measurements [WRH+12]. To determine and

specify the necessary metrics, we use a Goal-Question-Metric (GQM) [CR94]

plan to de�ne goals, questions, and metrics.

In total we derive four goals from the given 𝑅𝑄1.3. Figure 6.9 shows the

GQM-tree.

For each goal, we formulate the corresponding question, the metric we want

to measure to answer the question, and the hypotheses we have regarding

the outcome. With questions two to four, we would like to determine which

metrics to measure during the user study. So we measure the time partici-

pants will need to ful�l a task, the number of errors they make, and the time

they need to �x mistakes. In contrast to that, we answer question one by

evaluating a questionnaire that each participant completes.

139



6. CB1: Parallel Architectural Pattern Catalogue

RQ1.3: Does the architectural template catalogue support software architects in 
the task to create accurate performance prediction models efficiently

Improve the usability 
of Palladio 

Increase the 
efficiency of SA

Make Palladio less 
error-prone

Reduce the time SA 
need to fix errors

Questionnaires Task completion time Number of errors Time spent in errors

Participants rate the 
usability of the parallel 

ATs higher than the 
standard toolkit.

With the help of the 
parallel ATs the SA 
can complete the 
tasks much faster.

The SAs are making 
fewer errors when 

using the parallel ATs.

With the use of 
parallel ATs SAs 

reduce the time spent 
in errors

Goals

Questions

Metrics

Hypothesies

Do the parallel ATs 
help to improve the 

usability of Palladio?

Do the parallel ATs 
improve the efficiency 
of a SA when using 

Palladio?

Do the parallel ATs 
reduce the number of 
errors a SA makes?

Can the parallel ATs 
reduce the time a SA 
needs to fix an error?

I II III IV

Figure 6.9.:Goals, Hypotheses, Questions, and Metrics of the User Study

6.7.1.1. Conduction Process

Given the above GQM-Plan, we developed an experiment design and study

process. Figure 6.10 shows the experiment design. It contains three phases:

Phase0 –Warm-up: During this phase, we �rst want to recruit participants.

To get the most reliable results, we aim to have a mix of diverse participants.

Their experience with performance engineering should range from none to

expert. Finding experts will be more di�cult since they are rare. However, if

we can show that beginners using the parallel AT catalogue are better (in

terms of the above questions) than experts who are not using the parallel

AT catalogue, we can make a strong statement, even with only a moderate

sample size.

The next step during warm-up is to train the participants. During this step,

we will teach each participant the requirements to ful�l the task, as well as

educate them on the tool we want to use. Since we do not want to measure

how well participants can learn new tools, we do not monitor this step in

any way. However, we provide feedback, answer questions, and ensure that

all participants complete the training.
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The last step is to split the participants into two test groups. Both groups

should be equal in size and experience level. Hence, each group should

contain the same number of experts, advanced users, and beginners.

Phase 1: In the �rst phase, the participants are assigned to groups and

scenarios. Each group has to complete the same scenarios. However, the

order in which they should use the parallel AT catalogue di�ers. Group A

needs to complete scenario I with the standard toolkit, while group B uses

the parallel AT catalogue to do so.

During the execution of scenario I we measure the overall time, the number

of errors, and the time each participant spends on errors (Appendix A.3

shows the sheet we use to take the measurements). After completing the

task, each participant has to �ll out a questionnaire (see Section 6.7.1.3).

Phase 2: The last phase is similar to the �rst one. This time the participants

get a second scenario, and we switch tasks for the groups. Thus, group A

has to use the parallel AT catalogue and group B the standard toolkit. This

way we can rule out any learning e�ects participants may show during the

completion of the �rst scenario. We again measure the times and errors.

Afterwards, participants have to �ll out a questionnaire again, and �nally,

we interview them.

6.7.1.2. Scenario Selection

In addition to the above-formulated GQM-Plan and process, we also need a

scenario. The scenario will be presented to the participants, and they will

have to solve the task afterwards.

The �rst scenario involves the running example of the matrix multiplications

and is fully described in Appendix A.3 Scenario II.

The second scenario describes a parallel search strategy to �nd literature in

a literature database (see Appendix A.3 Scenario 1 for a full description).

Both scenarios have in common that they need to fork multiple threads that

are performing a similar task. For each thread, there is some overhead for
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Phase I
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Figure 6.10.:Overview of the User Study

forking and synchronisation. Besides that, the threads are independent of

each other.

We ensure that both scenarios could bemodelled in Palladio with andwithout

the parallel AT catalogue.

6.7.1.3. Questionnaire

To capture general information about the participants and to rate the usability

of the parallel AT catalogue, we design a three-part questionnaire that each

participant has to �ll out. In the �rst part, we ask for general information

about the participant, like their current degree, their level of expertise with

performance engineering, and their experience with Palladio. Based on this

information we design the user groups A and B and aim for a balanced

group.

The second part contains four short questions, which have to be �lled twice

by the participants—once after each scenario. Here we ask about the di�culty

of the scenario, how they would rate their own performance, the amount of

work they had to do, and how they would rate the usability of the standard

toolkit/parallel AT catalogue for the scenario.
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The third part contains a total of six questions. The �rst three are about

the usability and speed of the parallel AT catalogue in comparison to the

standard toolkit. In the �rst three the participants are asked to use a scale

from one to seven. The latter three are free text �elds, where the participants

give their �nal thoughts about general aspects of the experiment. Appendix

A.3 shows the full experiment lea�et with all questions, scenario descriptions,

and information provided to the participants.

6.7.1.4. Analysis Process

To answer questions two to four, we can consider the measurements we

took o� time and number of errors during the experiments. However, to

answer question one, on usability, we have to consider participant feedback.

In the questionnaire, the participants can rate the usability of di�erent items,

using a scale divided into seven levels. We can now translate the levels

in a numerical schema ranging from one to seven. For each question, we

calculate the mean value.

Now that we have numerical values for all questions and thus our metrics

for the hypothesis and goals, we can directly analyse some of them. Thus,

we perform a t-test with a con�dence level of 95% regarding each hypothe-

sis, which will allow the con�dent approval or rejection of the respective

hypothesis.

6.7.2. Study Conduction

In conducting the controlled user study, we strictly follow the experiment

design. We were able to recruit 16 participants from di�erent areas and

with varying levels of experience. In total, we recruited nine beginners, �ve

advanced users, and two experts. We split the 16 participants into two groups

of eight people each and tried to balance the groups as best as possible. After

that, we trained the participants. Due to time con�icts, we were not able to

train all participants at once and had to conduct several sessions.

We conducted the actual experiment with scenario A and B in a separate

session, where we invited the participants individually. The individual
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6. CB1: Parallel Architectural Pattern Catalogue

sessions gave us the chance to monitor the participants better and to measure

personal values more accurately.

In the next section, we will elaborate on the results.

6.7.3. Study Results & Reporting

In the following, we will brie�y report on the result of the study and only

give relevant information. However, we have made all raw data publicly

available
7
.

After conducting the study, we were confronted with a set of measurements.

First, we will look at the measurements we took during the study. For this, Ta-

ble 6.4 summarises the result. The table shows all participants (�rst column),

the measurements we took for the task with the standard toolkit (second

to fourth columns), and the measurements for the parallel AT catalogue

(columns �ve to seven).

In the summary section at the bottom of the table, the following characteris-

tics are immediately noticeable, even without a detailed analysis:

Uncompleted tasks: Using the standard toolkit, two participants were not

able to ful�l the task. Neither participant was a beginner, and one was

an expert. We interviewed both participants and learned that they

had tried to �nd a scripted or semi-automatic solution, which was not

possible in the given time frame.

Performance increase: Comparing the mean completion time of the stan-

dard toolkit and the parallel AT catalogue shows that the parallel AT

catalogue is on average more than three times faster.

Number of errors: The mean number of errors shows us two things. First,

the participants make less than one error in average—in both scenarios.

Even though the average number of errors is lower when using the

parallel AT catalogue, we would have assumed a much higher error

rate for the standard toolkit. This may indicate that we could have

used a more complex scenario. The second observation is that the

mean error rate is only slightly lower when using the parallel AT

7
Raw Data: https://doi.org/10.5281/zenodo.3755339
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6. CB1: Parallel Architectural Pattern Catalogue

catalogue. This indicates that the extension is not helping to reduce

the number of errors.

Time spent in errors: However, when considering the mean time spent in

errors, we can assume that the errors are easier to �x when using the

parallel AT catalogue.

Next, we look at questions �ve to seven from the questionnaire. Figure 6.11

displays the results in a likert plot.

All three plots show a strong tendency toward the parallel AT catalogue.

We found that 74,5% of all participants rated their performance with the

parallel AT catalogue as fast or better, while only 12% would say the same of

the standard toolkit. At the same time 69% rate their performance as equally

slow when using the standard toolkit.

Additionally, 81% of the participants rate the amount of work required to

ful�l the task as “little” when using the extension. None says it is too much.

In contrast to that, all participants agree that the amount of work with the

standard toolkit is much (19%) or too much (81%).

Finally, 94% of the participants rate the usability of the parallel AT catalogue

as good and only 6% rate it as somewhat bad. In contrast to these numbers,

the majority of the participants rate the usability of the standard toolkit as

bad (13%) or very bad (69%) when it comes to parallel behaviour.

In addition to the evaluation by sight, we also performed a t-test evaluation

for all of the goals, research questions, and corresponding hypotheses (see

Figure 6.9), even though we are aware that the validity of t-tests is very

limited, given the small sample size of 16 participants. To perform the

t-test we followed the de�nition given by [WRH+12], formulated all 𝐻0

hypotheses, and used a con�dence interval of 95% in combination with a

one-sided distribution table
8
.

After performing the t-test, we can reject the 𝐻0 hypotheses for goal I (im-

proved usability measured by the questionnaire) and goal II (increased e�-

ciency measured by the time needed). Thus, we have signi�cant proof that

the parallel AT catalogue increases the usability of Palladio when it comes to

8http://math.mit.edu/~vebrunel/Additional%20lecture%20notes/t%20(Student’s)%
20table.pdf
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Figure 6.11.: Liker Plots of Questions Five to Seven [Zah20]
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modelling parallel behaviour and increases the e�ciency (reduces the time

needed) of SA in creating models that include parallel behaviour. Regarding

goal III (make Palladio less error-prone) and goal IV (reduce time in errors),

we were not able to reject the 𝐻0 hypotheses.

6.8. Transferability and Limitations

6.8.1. Transferability of the Parallel AT Catalogue

The parallel architectural template catalogue provides a set of the most

common parallel patterns. It enables software architects to use parallel

constructs in their software models quickly, easily, and e�ciently.

Even though we focus on model-based performance prediction and therefore

on languages like the PCM, we think that the approach is highly transferable.

The PCM uses a UML-like syntax and semantics. Further, the AT method

uses UML pro�les to include the languages extension. Thus, transferring

the approach to pure UML or to any other UML-like languages is easily

doable.

Additionally, we did not do any domain speci�c pattern selection. Therefore,

all of the identi�ed, characterised, and realised patterns are of high value not

only for software performance prediction, but for all computer science.

On the down side, we have to say that we included performance-speci�c

attributes, like the overhead function modelling, in our patterns. These

domain-speci�c characteristics are a valuable contribution to software per-

formance engineers; however, they might not be of high relevance for other

domains.

6.8.2. Limitations of the Parallel AT Catalogue

Even though the parallel AT catalogue, the parallel pattern taxonomy, and

the formal semantics for parallel behaviour are of great bene�t to software

architects, we need to consider the limitations of this approach as well.
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Parallel AT Process: In Section 6.3 we introduced and evaluated a process to

include parallel patterns into modelling languages for performance

predictions. Further, we were able to enhance the modelling lan-

guage PCM to include speci�c characteristics of parallel behaviour.

To develop this process we used the running use case example (ma-

trix multiplication) and the state-of-the-art domain speci�c language

(PCM). The underlying paradigm of the example is thread-based par-

allelisation and the PCM uses a UML-like syntax. Therefore, when

using another paradigm (like message-passing) or another domain

speci�c language (which is not UML-based), the process needs to be

re-evaluated.

Pattern Catalogue: In the pattern catalogue we only included patterns that

can be represented in a thread-based parallelisation paradigm. Pattern

like AKKA Actors, which use a message-passing paradigm, were

not included, since they will break the markovian properties of the

underlying simulations.

Further, we did not include high-level parallelisation approaches,

which are above the SEFF (software behaviour), and we explicitly

excluded parallel components (e.g., in parallel executed container,

services, etc.).

Visualisation: The approach is intended to support SAs. Therefore, we fo-

cused on a graphical language. Even though the PCM can be converted

into any textual representation through model-to-model transforma-

tion, the design decisions we made might not hold true for a textual

representation.

Evaluation: Even though the results of the empirical evaluation of the par-

allel AT catalogue favour the approach, the small sample size is an

issue and can o�er only weak statistical proof.

6.9. Summary of CB1

In this chapter, we described the contributions we made with respect to

the requirement 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔. To do so, we �rst identi�ed the research need.

Second, we showed that the current process of modelling parallel behaviour
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6. CB1: Parallel Architectural Pattern Catalogue

for performance prediction with the help of state-of-the-art performance pre-

diction tools (e.g., Palladio) is not only error-prone but also time-consuming.

In addition to that, the predictions are innacurate as well.

In the next step, we formulated the research goal: To support software archi-

tects with an e�cient way to express parallel behaviour in software models

along with the necessary characteristics. Next, we created a method to en-

hance current modelling languages to include parallel patterns with the help

of the architectural template method [Leh18]. While creating the method,

we carefully evaluated di�erent diagrams, view types, and enhancement

concepts. To make a proof of concept, we used our running example (the

matrix multiplication) and created the �rst parallel AT for the PCM. The

evaluation of the working example veri�ed the approach, and we ware able

to:

1. increase the prediction accuracy by using an overhead function,

2. increase the e�ciency through automatisation (use of AT), and

3. keep the function support of simulators and solvers.

Testing the approach encouraged us to continue building a full parallel archi-

tectural template catalogue. To do so, we performed a structured literature

search to �nd 35 parallel patterns. We extracted the core characteristics of

these patterns and created a taxonomy with �ve root patterns (see Figure 6.6).

Out of this we successfully created a parallel AT catalogue which supports 4

out of 5 root patterns.

Finally, we conducted a controlled user study, in which we were able to

empirically and signi�cantly con�rm that the parallel AT catalogue increases

the e�ciency and usability of the Palladio approach to modelling parallel

software behaviour.

To wrap up, we can answer our research question as follows:

𝑅𝑄1.1: Are software architects able tomodel even simple parallel
concepts of highly parallel systems in an e�cient way? Thereby,
SAneeds to focus on abstract performance relevant attributes on
architectural level during early design time.
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6.9. Summary of CB1

Answer: In an empirical user study using a controlled experiment, we
were able to show that current state-of-the-art tools do not support
SA in an e�cient way.

𝑅𝑄1.2: Are software architects able tomodel the parallel software
behaviour of an application with the help of current modelling
languages, so that (a) the relevant performance characteristics
are captured and expressed, and (b) all necessary information
for performance evaluation is covered?

Answer: SA are currently not able to model (a) all relevant characteristics
of parallel software, which results in (b) inaccurate performance
predictions for parallel software in multicore environments.

𝑅𝑄1.3: How can software architects be supported in the task of
creating accurate performance prediction models e�ciently?

Answer: With the help of a parallel AT catalogue SAs can be supported
in creating performance prediction models more quickly and with
a higher user acceptance (usability). Furthermore, they can use
the concept of overhead modelling to increase the accuracy of the
predictions.

𝑅𝑄3.1: Are current simulation-based performance prediction ap-
proaches capable of predicting the performance of parallel and
highly parallel systems accurately?

Answer: The experiments we performed in [FH16; FSH17] show that cur-
rent state-of-the-art performance prediction approaches are up to
80% o� when trying to predict the response-time for parallel appli-
cations in multicore environments
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6. CB1: Parallel Architectural Pattern Catalogue

With the parallel AT catalogue presented in this chapter, we make a signif-

icant contribution for SAs who want to make more accurate performance

predictions for parallel software more quickly. The contribution also resolves

and ful�ls requirement 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔.
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Parallel Behaviour

In this chapter, we will continue the research from contribution CB1 (see

Chapter 6) and still focus on 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔.

In CB1, we presented a pattern catalogue extension for Palladio, providing

the most relevant parallel patterns. We included a concept in the modelling

process, which allows the SA to model the overhead and speedup behaviour

with the help of performance curves. The biggest challenge here is to specify

the overhead model, since this task requires a lot of experience and additional

knowledge of the software and hardware.

Therefore, in this chapter, we investigate parallel performance-in�uencing

factors (PPiFs), set up experiment-based performance evaluation, and extract

performance curves for parallel application.

The overall goal is to extract and cluster characteristic performance curves,

which can be provided to the SA. By the help of the performance curves, we

want to enable SAs to easily de�ne overhead functions and thereby further

increase the performance prediction accuracy.

Figure 7.1 shows the structure and the research method followed in this

section.

First of all, we are going to de�ne the problem space, followed by the de�ni-

tion of the research goals and evaluation criteria. Next, we will investigate

PPiFs, which we will use in the next steps to design the experiment setup.

We will analyse the results from the experiment executions to extract perfor-

mance curves, which we will integrate into Palladio. Finally, we will evaluate

the approach using SPEC benchmarks.
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1. Defining Problem 
Space

3. Identifying 
Performance-

influencing Factors

4. Experiment Design 
and Setup

6. Analysis and 
Clustering

7. Integrating 
Performance Curves 

into Palladio

List of 
PPiFs

Perfor-
mance 
Curves

Speedup 
Curves

List of 
Goals and 
Evaluation 

Criteria

2. Goals and 
Evaluation Criteria

5. Experiment 
Execution

8. Performance Curve 
Evaluation

Figure 7.1.:Overview of the Research Method for Contribution CB2

As a result of this contribution, we present (1) 14 lessons learned from

the experiments and (2) deliver twelve performance curves to the SA. The

performance curves represent the six most relevant software behaviours and

increase the predictive power of Palladio. Thereby, we are able to increase

the prediction accuracy up to 72% for the benchmark applu311.

Please note that signi�cant parts of the work from steps one to three have

been reviewed and published in [FBKK19]. In addition, the remaining steps

are currently under review in [FSK+20].

Further, all results, raw data, and implementation details have been

made available online:

Section 7.3 Load Test Generator Based on ProtoCom:

https://doi.org/10.5281/zenodo.3828432

Section 7.4 Experiment Raw Data:

https://doi.org/10.5281/zenodo.3855492
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Section 7.5 Performance Curves:

https://github.com/PalladioSimulator/Palladio-Addons-P

arallelPerformanceCatalogue

Section 7.7 Performance Curve Evaluation:

https://doi.org/10.5281/zenodo.4081091

7.1. Problem Space

As we have learned so far, the performance of parallel applications relies on a

complex set of factors. Often these factors are interconnected and therefore,

it is a tricky task to tell how PPiFs will a�ect the overall performance of

an application without executing and measuring it. But even given the

measurements, it is still a challenging and time-consuming task to determine

the e�ect of each Parallel Performance-in�uencing Factor (PPiF).

In Chapter 6, we proposed an abstract approach to include speedup behaviour

of parallel applications with the help of performance curves in the perfor-

mance prediction models, by de�ning an overhead function. At the same

time, we realised that de�ning these performance curves is a time-consuming

and challenging task, which needs experience and additional knowledge of

the software and hardware.

7.1.1. Idea

To save the SA the e�ort of specifying the overhead function, we want to

provide the SA performance curves, which contain relevant PPiFs.

Figure 7.2 shows an example of a speedup curve based on the PPiFs’ worker

threads and resource demand type (see Chap. 5 for detailed information on

the resource demands).

The diagram contains �ve di�erent examples with an individual speedup

behaviour characteristic for each case. This example can be mapped one-to-

one to a two-dimensional performance curve.
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Figure 7.2.:Measurements of Speedup Functions for Di�erent Resource Demands on

a 40-Core System with Enabled Hyper-threading

Our idea is to integrate such performance curves into Palladio. That way the

SA only needs to specify, e.g., the thread number and the resource demand

type. The solver takes the performance curves into account and calculates

the speedup behaviour based on the reference curve. In Section 5.1.7 we

discussed a set of algorithms which can be exempli�ed to a resource demand

type. We will use these alogrithms in the course of the chapter to investigate

the resource demand types.

7.1.2. Problem Specification

Having a closer look at the topic, it becomes clear that de�ning perfor-

mance curves is no straightforward task, and we have to overcome a set of

challenges:

𝐶1 Interdependent: Often PPiFs are interconnected and it is di�cult to iso-

late a single performance-in�uencing factor for evaluation, e.g., cache,

memory bandwidth, and memory. Researching individual PPiFs and

making the right deduction is a challenge.

𝐶2 Variants of Behaviours: The speedup behaviour can strongly vary and

depend on the demand. As displayed in Figure 7.2 e.g., MandelSet con-
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tinues to increase performancewhile the speedup of CountingNumbers

decreases after a while. Identifying and clustering adequate types is a

challenge.

𝐶3 Types of PPiFs: The variety of PPiFs ranges from �xed hardware-speci�c

in�uencing factors, such as L1, to �exible software speci�c in�uencing

factors, like thread pool size. Finding and selecting the right set of

PPiFs is a major challenge.

Given these challenges we derive the following goals:

𝐺1 Relevant PPiFs: First of all, we want to determine the most relevant

PPiFs.

𝐺2 Complete Set: Second, we need to provide a complete set of performance

curves, either multiple ones or a single multi-dimensional one. The

aim here is to have a performance curve for each speci�c demand—e.g.,

Mandel Set.

𝐺3 Behaviour Matching: For each speci�c demand, we need a performance

curve that matches the behaviour as accurately as possible. Thereby,

we do not aim for 100% accuracy, since the actual behaviour can vary

for each implementation. We consider predictions that di�er no more

than 20% to be perfect, and a variation of 40% to be acceptable, as

this value already greatly bene�ts the overall accuracy of parallel

performance predictions.

Given these goals, we can derive two metrics to evaluate the �nal perfor-

mance curves:

𝐸1 Fitting: How close is the performance curve to the actual behaviour?We

can get this value by comparing the performance curves to measure-

ments form the executions.

𝐸2 Completeness: How many speci�c demands can we cover with our set

of provided performance curves? To evaluate 𝐸2, we plan to use

benchmark sets. The more benchmarks we can cover, the better.

Taking the challenges, goals, and evaluation metrics into account, we can

de�ne the research method next.
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7.1.3. Research Method

To estimate the performance curves, we combine the approach of experiment-

based performance model derivation proposed by [Hap08] and the process

of extracting performance curves by [WHW12]. This process is displayed in

Figure 7.1. Concretely, we �rst want to determine a set of relevant PPiFs by

scanning the literature and conducting expert interviews. Next, we rank the

PPiFs and start to build a performance curve for the most relevant ones. If

we are satis�ed, we continue; if not, we consider additional PPiFs.

For each PPiF, we set up an experimental design to monitor and measure

the behaviour of the software performance. In our case, we focus only on

the execution time, speci�cally, the speedup behaviour. From the measure-

ments, we perform statistical analysis and clustering to determine a set of

the relevant performance curves. Finally, we integrate them into Palladio,

utilising overhead functions, and evaluate their accuracy.

The research method, along with the collection of the PPiFs, was published,

reviewed, and accepted in [FBKK19]. Besides that, major portions of the

measurements were gained in collaboration with student projects [Gre19].

7.2. Parallel Performance-influencing Factors

The �rst step towards performance curves is to identify a list of potential

PPiFs. To do so, we perform a literature review and interview experts from

di�erent domains, like SPE, HPC, and operating system domain. Next, we

prioritise the PPiFs based on the results from the expert interviews.

In the following, we �rst present the outcome of the PPiFs-collection and

the interviews. Afterwards, we rank the list based on the insights we gained

during the discussions.

7.2.1. PPiFs Collection

The following list of PPiFs represents the outcome of a literature review

[Söh18] and expert interviews we performed. For the latter, we interviewed
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four software performance experts within our department, seven HPC ex-

perts from the University of Dresden, Hasso-Plattner Institute, and Karlsruhe

Institute of Technology (KIT), and three experts on parallel execution in

embedded systems from the University of Chemnitz.

The following list is quoted verbatim from [FBKK19]; it is categorised into

two groups (con�gurable and �xed PPiFs) and contains the subset of all

PPiFs that the experts agreed on:"

7.2.1.1. Configurable PPiFs

Con�gurable factors are properties which can be directly con�gured or in�u-

enced by the software developer and therefore adjusted to the given hardware

or scenario. Often auto-tuners are used to �nd the best con�guration for

these properties on a given system.

Parallelisation Strategy: The parallelisation strategy describes the paralleli-

sation paradigm or pattern used, e.g., Java Threads with a master-

worker pattern, OpenMP, or ACTORS.

Thread Pool Size: The thread pool size speci�es the number ofworker threads.

Typically, software threads are mapped to worker threads and then

to hardware threads. Only worker threads are active.

Number of Threads: This is the number of total spawned threads in the

application. In other words, in a Java application spawning, a thread

for each task executed in parallel is possible. By using a thread pool,

these threads are scheduled.

So�ware Caches: Software caches can in�uence the performance of the

software signi�cantly.

Data Locality: Usually, data is stored in the memory belonging to the core

which �rst touches/creates the data. So this core has the optimal

latency to access the data while other cores have signi�cantly higher

latency.
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7.2.1.2. Fixed PPiFs

In contrast to con�gurable PPiFs, �xed PPiFs are given by the considered

application or the infrastructure used, and cannot be in�uenced by the

software developer.

Type of Resource Demand: The type of resource demand is given by the

kind of task performed on the CPU, i.e., processor-intensive tasks (like

calculating Fibonacci numbers) or I/O-intensive tasks (like sorting an

array).

Memory Design: Memory design is a hardware-speci�c characteristic and

de�nes the layout of CPUs, caches, andmainmemory. It also describes

how these components are interconnected.

Memory Bandwidth: Memory bandwidth speci�es the characteristics of the

interconnections of the memory design, i.e., how many lanes are

available, what is the total throughput, and how many components

share the connection." [FBKK19]

We do not claim this list to be complete, but it does contain the relevant

factors for parallel execution that we located in literature, and abtained from

the expert interviews.

7.2.2. Prioritising

Now that we have the list of PPiFs at hand, we need to prioritise the list. The

prioritisation is essential to decide which factor to take into account �rst.

Considering all factors at once increases the e�ort signi�cantly and makes

both the extraction of performance curves as well as the decision for the SA

more complex.

So we not only take into consideration the e�ect of the factors, but also

the challenge for the SA to retrieve this information. Table 7.1 shows the

prioritised list worked out with the expert board.

Highest ranked are the threads and the thread pool size. It seems logical that

these two factors in�uence performance the most and directly. We could

also add the number of hardware cores here, but we included that in the
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Prio. PPiF Prio. PPiF

1. Number of Threads 5. Memory Design

2. Thread Pool Size 6. Memory Bandwidth

3. Type of Resource Demand 7. Software Caches

4. Parallelisation Strategy 8. Data Locality

Table 7.1.: Prioritised list of PPiFs after ranking by experts

thread pool size. If there is no multicore hardware available, considering

threads would not make sense. Even though context switches are a relevant

factor as well, this topic is already covered by J. Happe [Hap08].

Next, we rank the type of resource demand, because the board agreed upon

the fact that the kind of operation has a direct impact on the parallelisability

of the problem, and therefore on its speedup. In contrast to that, the decision

regarding the parallelisation strategy is not as clear. The board agreed that

the paradigm used to parallelise an application a�ects performance. But

the committee could not decide on the level of impact. The main argument

against a high ranking was that, correctly implemented, all paradigms result

in a good speedup behaviour.

For factors �ve to eight, the board again agreed on their impact, especially

that data locality and caches have a high impact on the speedup behaviour.

However, we rank data locality low, because it is hard for the SA to consider

that in architectural models. Further, we ignored software caches for now.

7.3. Experiment-Based Performance Evaluation

In this section, we describe the experimental design and setup, the hardware

environments, the experiment results, and the extraction of the performance

curves.
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7.3.1. Experiment Design

The outline of the experiment is sketched in Figure 7.3. Thereby the �rst

step is to get and generate typical resource demands. For this purpose we

use ProtoCom
1
(see Section 2.4.2.1).

Figure 7.3.:Overview of Experiment Setup using ProtoCom as Resource Demand

Factory [FBKK19]

ProtoCom: ProtoCom provides �ve di�erent types of basic resource de-

mands: Mandel set, sorting arrays, counting numbers, calculating primes,

and calculating Fibonacci numbers. In addition to that, we implemented one

additional demand—multiply matrices—and adjusted other demands, like

sorting array, to be able to specify the array size. All implementations of the

resource demands are given in Appendix A.2.

ProtoCom enables us now to generate work packages of the six speci�c

primitive resource demands. The advantage of using ProtoCom is that we

can specify the exact runtime (i.e., �ve seconds) of these packages in a

given environment [BDH08]. We use this characteristic to generate several

independent work packages of the same resource demand, which have zero

1https://sdqweb.ipd.kit.edu/wiki/ProtoCom
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interdependencies. Thus, we can guarantee a pure workload on the CPU

without communication, waiting, or locking side e�ects.

Parallelisation: In the next step, we take these generated packages, add

them to a queue, and build a parallelisation approach around it. In total, we

support four parallel paradigms: Java Threads, Java Streams, OpenMP, and

AKKA ACTORS.

Each paradigm can take the queue and execute it in parallel. Thereby, we

can specify the thread pool size and can measure the pure execution time of

the queue-execution step.

Finally, we can generate a runnable jar �le, which can be executed with the

desired parameter set on the target platform. The complete source code is

available online
2
.

Experiment Execution: In the last step, we take the runnable jar �le and

deploy it on the target platform. For each platform, we performmultiple runs,

always changing only one parameter: Thread pool size or parallelisation

paradigm. We run each con�guration multiple times and vary the thread

pool size from one to three times the number of physical cores available on

that platform.

While performing each run, we measured not only the runtime but also

the cache behaviour. Since measuring low-level metrics in this way is not

supported by the JVM, we used PAPI API
3
and perf

4
.

7.3.2. Experiment Environment

To investigate the behaviour of di�erent hardware environments, we per-

formed our experiment on multiple target platforms. The characteristics of

all machines used are displayed in Table 7.2. We use three dedicated servers

of di�erent dimensions. The smallest has 12 physical cores and the largest

96 physical cores.

2
Load Test Generator: https://doi.org/10.5281/zenodo.3828432

3http://icl.cs.utk.edu/papi/
4https://perf.wiki.kernel.org/index.php/Main_Page
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7.4. Measurements and Results

We execute the above-described experiment setting for all 96 variations.

The variations include the six resource demands, the four parallelisation

paradigms, and the four di�erent hardware settings. Thereby, we measure

the execution time as well as the L2, L3, and main memory access where

possible
5
.

We execute all experiments for all the demands with a package execution

time of 0.2𝑠 . Thereby, we con�gure the total amount of packages for each

hardware individually, always three times the number of available cores.

Using the same number of packages for all the four hardware settings would

mean having to pick the highest value. This would result in very long

execution times on smaller hardware environments.

In total, we end up with over 70,000 measurements in over 800 experiment

runs. Due to this extensive amount of data, we are not able to show and

discuss all the results in detail. In this section, we present the results for the

server in Stuttgart only, which are exemplary. The results for the hardware

in Potsdam and the multi-node cluster (cloudbw) are attached in Appendix

A.4. Even though we only show the results from Stuttgart here, we discuss

noteworthy results of all the experiments.

A full description of the experiment setup, execution, and discussion is

available in the supervised student thesis [Gre19]. Further, all results and

raw data are publicly available online
6
.

7.4.1. Result Report Server Stuttgart

For the sake of understanding, we �rst separate the performance/speedup

and the memory behaviour aspect. Thus, we �rst report the performance of

the individual experiment runs concerning the thread pool size. Later, we

have a closer look at memory behaviour, and �nally, we bring both aspects

together.

5
Not all hardware supports reading the performance counter for L1, L2, and L3 cache

6
Experiment results raw data: https://doi.org/10.5281/zenodo.3855492
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7.4.1.1. Performance Behaviour

Figure 7.4 shows the measurements using a speedup chart for the di�erent

parallelisation paradigms and resource demands. The x-axis indicates the

number of used worker threads. This number represents the number of

active threads (i.e., the thread pool size). While each worker thread is directly

mapped to a processing unit, the threads in the system are assigned using

the thread pool to worker threads.

The y-axis displays the speedup. We calculate this value based on the ex-

ecution time of a single thread application (i.e., by using only one worker

thread). To increase the readability of the diagrams, only every sixth data

point is displayed. The line between the data points represents the skipped

values.

The �rst area from the left (from 0 to 96 worker threads) indicates the �eld

where each worker thread can be mapped to a physical core. The second area

from the left (from 97 to 192) shows the �eld where, due to hyper-threading,

each worker thread can be mapped to a virtual core. The third area from the

left (from 193 to 576) represents the area where we increased the number

of worker threads even further. In this area, not all worker threads can

be directly mapped to cores, which means that the scheduler either has

to switch tasks, and therefore handle context switches, or suspend worker

threads until a core is free.

At this point, we notice three characteristics:

1. The speedup behaviour of AKKA Actors di�ers a lot from the

behaviour of the other paradigms. The root cause of this can either

be an implementation error, or a characteristic of the framework.

Since we double-checked the implementation multiple times in code

reviews, we assume the root cause to be in the AKKA Actors

framework. Due to this fact, we will not consider the results for the

AKKA Actor framework in the following.

2. For each of the three areas, we see di�erent behaviours for all

demands. While in the �rst area (0 to 96 worker threads) the speedup

is close to a linear behaviour for all of the demands, there is a spread

of the speedup in the second area (97 to 192 worker threads). On the

one hand, I/O-intensive tasks like Mandel Set (lots of small read and
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(a) Speedup Curve for all Demands Using Java Threads

(b) Speedup Curve for all Demands Using Pyjama (OpenMP)

(c) Speedup Curve for all Demands Using Java Streams

(d) Speedup Curve for all Demands Using AKKA Actors

Figure 7.4.: Speedup for Di�erent Parallelisation Paradigms [Gre19]
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write operations) can bene�t from hyper-threading and continue to

speed up. Even though the speedup is not as great as before, it is still

linear. On the other hand, a processor-intensive task, like calculating

primes or Fibonacci numbers, cannot bene�t much from

hyper-threading and stays constant. Further, very I/O-intensive tasks,

like sorting arrays or calculating matrices, show a rather bad

performance in area two, compared to hardware environments with

smaller core numbers. A hypothesis here is that due to cold caches

and unfortunate memory architectures, the hyper-threading e�ect is

abrogated. Noteworthy is the decreasing performance of the

counting numbers demand as well. In the third area (from 193), we

can see a performance stagnation with low tendency to a

performance degression.

3. Ignoring AKKA Actors, the speedup behaviour of the individual

demands does not di�er much for the paradigms. For example, the

speedup curve for the Mandel Set demand is similar for Java threads,

Java streams, and pyjamas. Thus, we can say that the paradigm used

does not have a great impact on the speedup behaviour. An outlier

here is the sorting arrays demand, but only for Java streams.

7.4.1.2. Memory Behaviour

Besides the performance of the parallelisation paradigms and resource de-

mands, we also measure memory behaviour. Here we measure the L2 and

L3 cache miss ratio and the total number of cache accesses. Again, due to

the extensive amount of data, we focus in the following only on the mea-

surements taken from the dedicated server in Stuttgart, the parallelisation

paradigm Java threads, and limit the scope to the L2 and L3 cache accesses

and miss rate.

Figure 7.5a and 7.5b show the cache miss ratio for the L2 and L3 caches.

Thereby, the x-axis shows the number of used worker threads again. The

y-axis shows the percentage of cache misses (a lower number is better). In

addition to that, Figure 7.6a and 7.6b show the total number of cache accesses

for L2 and L3 on the y-axis.
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(a) L2 Cache Hit/Miss Rate for all Demands Using Java Threads

(b) L3 Cache Hit/Miss Rate for all Demands Using Java Threads

Figure 7.5.:Cache Miss Rate for Java Threads on the Server in Stuttgart [Gre19]
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(a) Total L2 Cache Accesses for all Demands Using Java Threads

(b) Total L3 Cache Accesses for all Demands Using Java Thread

Figure 7.6.:Cache Accesses for Java Threads on the Server in Stuttgart [Gre19]

The measurements give us detailed insights on memory behaviour. We

highlight the following characteristics:

1. On all machines for all resource demands, but only for Java threads,

we can observe a high cache miss rate on L2 cache for a low number

of worker threads. As indicated in Figure 7.5a, the optimal cache miss

ratio is achieved when all cores are utilised. One reason for this is

that the L2 cache is core speci�c and not shared. Therefore, the more

cores we can utilise, the more cache we have available. Thus, the

total amount of cache size increases. Again the sorting array demand

is an outlier for this observation.

2. All other parallelisation paradigms have rather constant cache miss

rates on L2.

3. Considering the L3 cache, the sorting array demand has more cache

misses, when increasing the worker threads.
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4. The matrix multiply demand �ts completely in the cache and needs

no main memory accesses.

5. As shown in Figure 7.6a and 7.6b the Mandel Set, Fibonacci and

calculating primes demands have very few L3 cache accesses.

Therefore, we can assume that all data for these demands �t in L1

and L2. This e�ect is even more visible on smaller hardware.

6. Multiply matrix demand has signi�cantly more L3 cache references.

7.4.2. Comparison of Parallelisation Paradigms

In the next step, we compare the performance for all hardware, resource

demands and parallelisation paradigms. For this, we focus on each resource

demand type and compare the performance of the parallelisation paradigms.

We make the comparison for each hardware separately.

We notice that for each resource demand, the speedup behaviour is similar—

no matter which parallelisation paradigm we use. Here we have to note the

unexplainable behaviour of the AKKA Actor implementation again, which

we neglect in the comparison.

On the one hand, this is surprising, because we assumed that the paralleli-

sation paradigm has an impact on the speedup behaviour. On the other

hand, we do not compare the absolute performance. That means that the

parallelisation paradigm can have an impact on the absolute performance,

but scales similarly.

Further, we notice that we achieved a very good overall speedup. This is

because we used the packages from Protocom, which are independent and

place the parallelisation paradigm on top.

7.4.3. Comparison Server

Next, we are interested in how the hardware setting in�uences the speedup

behaviour. To analyse it, we �rst need to normalise the results for all ma-

chines. Normalising means we divide the number of worker threads by the

number of available physical cores. Further, we describe the speedup as a
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(a) Comparison of the Four Hardware Environments Using Java Threads and the

Mandel Set Demand

(b) Comparison of the Four Hardware Environments Using Java Threads and the

Count Number Demand

Figure 7.7.:Comparison of the Four Hardware Environments Exempli�ed by Using

Java Threads, Mandel Set, and Count Number Demand

relative value in percent. In theory, a speedup of 100% is possible. As an

example, if we take the large server in Stuttgart, which has 96 physical and,

due to hyper-threading, 192 virtual cores, a speedup of 100% would mean

utilising all virtual cores optimally and achieving an absolute speedup of

192. In Figure 7.7 we use the results from Mandel Set (best speedup) and

the count number (worst speedup) demand to exemplify the results of the

comparison while using Java threads.

First, we focus on Figure 7.7a, which shows the speedup behaviour for the

four di�erent hardware environments using the Mandel Set demand and

Java threads. This demand performed the best in all the experiments, and

shows the best parallelisation characteristics. As we can see, the server in

172



7.4. Measurements and Results

Stuttgart and the small server in Potsdam show the best and almost identical

behaviour. The big server in Stuttgart shows a slightly better behaviour

before the number of physical cores are hit (up to one). However, in area

two (from one to two) it cannot bene�t as much from hyper-threading. The

multi-node server (bwCluster) shows the weakest performance. However,

for all three areas, all machines show the same characteristics. Only the

gradient of the charts di�ers.

Next, we focus on Figure 7.7b. This �gure shows the speedup behaviour for

the four di�erent hardware environments using the count number demand

and Java threads. This demand showed the worst speedup behaviour in all

the experiments. Having a look at the diagram, we notice four peculiarities:

First, the speedup in area one (zero to one) is almost alike for all environ-

ments. Second, on the hardware in Stuttgart, speedup already �attens at

around 0.8 or 80 cores (see also Figure 7.4a). Third, three out of four show

decreasing performance in area 2 (one to two). While the small hardware

in Potsdam and the multi-node cluster show similar behaviour, the server

in Stuttgart underperforms, and the big server in Potsdam shows no per-

formance decreases at all. Fourth, in the third area, all hardware shows the

same behaviour again.

In summary, we can state that there are slight di�erences when considering

speedup behaviour among all the di�erent hardware environments. How-

ever, the essential characteristic is mostly the same. This is an important

observation, because it allows us to extract performance curves from our

measurements regardless of the hardware used. Further, we will be able to

generalise the performance curves for all kinds of general-purpose hardware

environments using a similar architecture.

7.4.4. Lessons Learned

After we conducted the experiments and displayed the key results of the

measurements, we can state interesting insights. These insights are not only

relevant for our research question and the next step—extracting performance

curves—but also show informative facts about parallel computing in general.

In the following, we list all relevant aspects:
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𝐿1: We never achieved a perfect speedup (speedup equals the total number

of physical or virtual cores), which con�rms our hypothesis 𝐻2.3, that

there are further performance-in�uencing factors in a system beyond

the pure number of physical cores.

𝐿2: In area one, where all worker threads can directly map to the CPU

cores, we see a similar behaviour for all demands and parallelisation

paradigms on all devices, and close to linear speedup.

𝐿3: In area two, where all worker threads can directly map to virtual

cores, we can see that only I/O-intensive tasks are able to bene�t

from hyper-threading and gain additional speedup. The processor-

intensive tasks do not speed up any more. Very I/O-intensive tasks

even lose performance due to hyper-threading. We assume a lot of

context switches, cold caches, and busymemory buses to be the reason

for this.

𝐿4: The AKKA Actor framework shows an inexplainable, strange, and bad

parallelisation behaviour. The root cause for this, we assume, is in

the implementation. Due to this fact, we neglect this parallelisation

paradigm for further considerations.

𝐿5: Besides the AKKA Actors, all other parallelisation paradigms show a

similar speedup behaviour. This observationwas surprising for us, and

contrary to hypothesis 𝐻2.1. Therefore, we say that the parallelisation

paradigm has no great impact on the performance.

𝐿6: Even though we were able to show that the hardware architecture has

an impact on the overall speedup behaviour and therefore con�rm

hypothesis 𝐻2.2, the impact of the hardware architecture was medium

to low. Again, we did not consider the absolute performance, but the

relative speedup behaviour.

𝐿7: The cache behaviour for each resource demand is characteristic for the

number of worker threads—regardless of which paradigm or hardware

is used. Both the hardware and the paradigm in�uence the intensity

of the cache miss rate, but the overall characteristic remains. For

example, the cash-miss rate for the sorting array demand increases

for a higher number of worker threads.
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𝐿8: The counting number demand shows exorbitantly bad speedup be-

haviour for all paradigms in all environments. The speedup behaviour

becomes worse the more cores are utilised. Further, counting numbers

contradict bene�ts from hyper-threading.

𝐿9: While most paradigms show a dynamic in the L2 and L3 cache miss

behaviour, the Java stream demand surprises with a rather constant

cache miss rate for L2 and L3 caches. Further, in comparison to other

demands (e.g. Java threads), which show a better cache hit rate for a

higher number of worker threads, there is no noticeable di�erence in

the speedup behaviour of Java streams.

𝐿10: The Mandel Set, calculating primes, and also Fibonacci demand show

a comparably low number of cache references. For example, on the

hardware in Stuttgart using the Java threads paradigm and 196 worker

threads, the sorting array demand has 910 times more L3 cache ref-

erences than the Mandel Set demand. Demands with low cache ref-

erences show a better speedup behaviour, especially during hyper-

threading.

𝐿11 Thus, demands with I/O intensive tasks like the Mandel Set demand,

where all data �ts into the core-speci�c cache (L1 and L2, can bene�t

from hyper-threading most and show the best speedup behaviour.

𝐿12 I/O intensive tasks, like sorting array or multiply matrix demands, show

a better relative speedup behaviour on smaller machines than on

larger ones. We assume the reason for this is the limited memory

bandwidth. On large machines where many cores can be utilised,

the I/O demand is much higher than on smaller machines, e.g., if an

application needs to read in total 10 Gbyte of data from the memory.

𝐿13 The multi-node system (bwUniCluster) shows the worst speedup be-

haviour, in comparison to dedicated hardware.

𝐿14 We were not able to observe any impact of the CPU frequencies, nor of

the cache sizes on the speedup behaviour.
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7.5. Extracting Performance Curves

In the course of this section, we describe the process of extracting per-

formance curves from the measurements. Due to the massive amount of

measurements, we follow a structured method to extract the data. This pro-

cess consists of four steps: normalisation, clustering, staging, and extraction.

We describe each step in detail in the following.

7.5.1. Normalisation

First of all, we decide to abstract from the actual measurements. To do so,

we create speedup curves for each experiment run. As a reference for the

speedup curve, we always use measures from the single-thread run. That

way, we do not need to compare actual measurements with each other, but

have a more abstract view on the data.

Next, we face the challenge of comparing measurements from di�erent

machines. Since each hardware environment has distinct characteristics

and a di�erent number of cores, the maximal possible speedup di�ers as

well. To still be able to compare measurements from di�erent machines,

we need to normalise the data. As a normalisation factor, we used the

number of cores available in each setting. As described in Section 7.4.3 we

divide both the speedup and the number of worker threads by the number of

available cores in the system. As a result, we get normalised values for all the

machines, which we are able to compare. Figure 7.7 gives one example for

the parallelisation paradigm: Java threads and the resource demand Mandel

set. As depicted in the �gure, the speedup of the machine in Stuttgart is

almost the same as the small machine in Potsdam. For example, the x-axis

value of 2 stands for the use of 192 worker threads in Stuttgart and 24 worker

threads in Stuttgart. In both cases, this is twice as much as the number of

physical cores. Both achieve a relative speedup of 85%, which is an absolute

speedup of 160 in Stuttgart and 20 in Potsdam.
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7.5.2. Clustering

After we are able to compare all measurements with each other, we have to

perform clustering to get the curves which behave similarly. In our case, we

perform amanual clustering based on the observations of the speedup curves.

As shown in Figure 7.4, all demands have unique behaviour. Therefore, the

�rst cluster criteria are the resource demand type. Next, we compare the

speedup behaviour for the given hardware environment and parallelisation

paradigm for each demand type. As stated in Lesson 𝐿5, we can con�rm that

the choice of the parallelisation paradigm has no signi�cant impact on the

speedup behaviour. Thus, we do group by parallelisation paradigm. However,

as stated in Lesson 𝐿4, we assume a bug in the AKKA Actors framework

caused the unnatural behaviour. Therefore, we neglect these measurements

for further consideration.

A greater impact on the behaviour has the choice of hardware environment—

as illustrated in Figure 7.7. For all but the counting number demand, the

di�erence between the four environments lies in a corridor of maximum 30%.

Thereby, the dedicated servers do behave similarly, and only the virtualised

bwUniCluster behaves di�erently. Thus, we decide to separate virtualised

and dedicated systems.

7.5.3. Staging

Besides clustering, we noticed that the speedup behaviour di�ers sharply

when reaching speci�c numbers of worker threads. Therefore, we introduced

three stages. The three stages align with the three areas in the previously

shown diagrams. Stage one starts with one worker threads and goes up to

the number of physical cores, the second stage goes from here to the number

of virtual cores, and the third stage goes from here until in�nity.

7.5.4. Extraction

In the �nal step, we extract the performance curves from each cluster and

stage. To do so, we use linear regression. Thereby, we consider all speedup
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𝑓 (𝑥) for Stage
Demand Type 1 2 3

CountNumbers 0.438𝑥 −0.171𝑥 + 0.572 −0.0038𝑥 + 0.230

MatrixMultiplication 0.412𝑥 0.043𝑥 + 0.357 −0.0148𝑥 + 0.472

FibonacciNumbers 0.452𝑥 0.026𝑥 + 0.417 0.00341𝑥 + 0.456

PrimeNumbers 0.449𝑥 0.096𝑥 + 0.333 0.00140𝑥 + 0.536

SortArray 0.407𝑥 0.151𝑥 + 0.252 −0.0129𝑥 + 0.573

MandelSet 0.458𝑥 0.314𝑥 + 0, 206 0.00940𝑥 + 0.791

Table 7.3.: Extracted Performance Curves for Dedicated Machines Based on the

Speedup Behaviour of the Demands

curves in a cluster and stage, take the average, and extract a linear func-

tion using regression. For the �rst two stages, we gain very �tting curves

(r-value above 0.90 for a con�dence interval of 0.95). For the third stage,

the variance of the measurements is higher. Thus, the resulting curves

are not as �tting (r-values between 0.3 and 0.87). Table 7.3 shows the per-

formance curves for dedicated machines for each demand type and stage

(Appendix A.2 shows the performance curves for virtualised hardware). Ad-

ditionally, Figure 7.8 visualises the performance curves. The x-value is the

normalised value of the worker threads (𝑤𝑜𝑟𝑘𝑒𝑟𝑇ℎ𝑟𝑒𝑎𝑑𝑠/𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐶𝑜𝑟𝑒𝑠).
The y-value gives the relative speedup concerning the maximal possible

speedup (𝑠𝑝𝑒𝑒𝑑𝑢𝑝/𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝐶𝑜𝑟𝑒𝑠).

7.5.5. Using Performance Curves: An Example

The SA can nowuse the above performance curves to correct the performance

predictions—not only from Palladio, but from any performance prediction

tool. To utilise the performance curves, the SA needs information about the

available cores in the system, the number of worker threads, and the kind of

resource demand. For example, assume we have a dedicated machine with 30

physical cores, using 45 worker threads, and have a resource demand-type

which is close to the sorting array demand. First, we have to calculate the

normalised x-value: 𝑥 = 45/30, which is 1.5. After checking Table 7.3, we

pick the following performance curve: 𝑓 (𝑥) = 0.131𝑥 + 0.250.
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Figure 7.8.:Comparison of the Four Hardware Environments Using Java Threads and

the Mandel Set Demand

Inserting the above values, we end up with: 𝑓 (1.5) = 0.131 ∗ 1.5 + 0.250,

which is 0.45. This is the relative speedup calculated by the performance

curve (absolute is 27).

In contrast, Palladio assumes a linear speedup which is in our example

45 (absolute) or 0.75 (relative). So we can now correct any performance

prediction given from Palladio by the factor 0.6. For example, imagine our

Palladio simulation takes 200𝑠 . We multiply the Palladio result with the

factor and end up with an output of 120𝑠 .

Of course, this is a lot of manual e�ort. Therefore, in the next section we

discuss integrating performance curves into Palladio for automated calcula-

tions.

7.6. Palladio Integration

To integrate the performance curves into Palladio, we need to alter the

performance predictions. One way of doing so is to include the performance

curves into the simulators. Another way, which we follow here, is to use the

overhead concept introduced in CB1.
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Figure 7.9.: Pro�le Example for Parallel For-loop

In short, we alter the parallel patterns to include the performance curves

directly into the patterns. Further, we use the QVT-o transformations to

automatically estimate the right overhead, add it to the model, and run the

simulations.

In the following, we brie�y discuss changes made to the pro�les and the

di�erence in the work�ow for the SA. The full implementation details and the

source code are available in the git repository of the parallel AT catalogue.

7.6.1. Profile Extension

To include the performance curves into the parallel ATs, we �rst need to

alter the pro�les of each AT. Figure 7.9 shows the �nal AT given the parallel

loop AT.

We include three new enum types, enabling the SA to choose whether to

use a custom overhead function, a custom performance curve, a pre-de�ned

performance curve, or no overhead model at all. The �rst enum de�nes
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Figure 7.10.: Property View of the Applied Parallel Loop AT

whether to use a performance curve or not, the second enum speci�es

which demand-type curve to choose, and the third one whether to use the

performance curves for virtual or dedicated hardware. Further, we add the

required �elds for a custom performance curve.

7.6.2. Workflow Adaptation

To use the performance curves, the SA �rst needs to model the software,

hardware, and usage model as normal. Next, the SA needs to apply a parallel

AT from the parallel pattern catalogue. Figure 7.10 shows the property view

of the applied catalogue. Here, the SA can choose to use a performance curve

and picks the desired curve for his resource demand and hardware type. If

desired, he can also input his own performance curve.

After setting all properties, the SA can run the simulation using experi-

ment automatisation. Within the QVT-o transformation, the properties are

interpreted, the correct performance curve is picked, and the overhead is

added.

7.6.3. OVT-o Transformation

Running the simulations with the AT method extension, will call the QVT-o

script of the parallel AT and trigger the m2m transformation, before the

actual simulation takes place.
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We altered the QVT-o scripts to now automatically calculate the correct

overhead by picking the right overhead function for the given con�guration.

The calculation of the overhead happens according to the example given

above (see Section 7.5.5). We transform the time units in resource demand

and add the resource demand as overhead by adding an internal action to

the model.

The source code of the QVT-o implementation and the code for the perfor-

mance curves is available online in our git-repo
7
.

7.7. Evaluation

In the following section, we evaluate the performance curves using a set of

SPEC benchmarks. To do so, we describe the experimental setup and the

method in the �rst part. Later we report on the results.

7.7.1. Method

To research the usability of the performance curves, we compare the perfor-

mance prediction to the measurements taken from real executions. To cover

a broad set of scenarios, we use SPEC benchmarks. SPEC o�ers three bench-

mark suites for parallel applications: MPI 2007, OMP2012, ACCEL. OMP2012

uses an OpenMP implementation of 13 di�erent applications which cover

a comprehensive set of application types. ACCEL focuses on GPUs, and

therefore uses OpenCL implementations. MPI 2007 uses MPI as a means to

parallelise and focus HPC systems. Thus, ACCEL and MPI2007 do not �t our

domain, and we decide to use OMP2012.

To compare the measurements with the predictions, we �rst group the ap-

plication within the benchmark suite according to the demand type we

assume they have. Thereby, we use the documentation provided by SPEC.

To give an example, the documentation of the benchmark suite bt311 reads

as following: “BT is a simulated CFD application that uses an implicit al-
gorithm to solve 3-dimensional (3-D) compressible Navier-Stokes equations.

7https://github.com/PalladioSimulator/Palladio-Addons-ParallelPerformanceCata

logue
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7.7. Evaluation

The �nite di�erences solution to the problem is based on an Alternating Di-
rection Implicit (ADI) approximate factorization that decouples the x, y and z
dimensions. The resulting systems are Block-Tridiagonal of 5x5 blocks and are
solved sequentially along each dimension.”8. Because the characteristics are
similar to the MatrixMultiplication demand, we assign bt311 to the group

of MatrixMultiplication. Table 7.4 shows the mapping of the benchmark

applications to the expected demands.

Demand Type Benchmark

PrimeNumbers botsalgn

MandelSet smithwa

MatrixMultiplication nab, bt311, fma3d, swim, bwaves, kdtree,

CountNumbers md, botsspar, applu311

FibonacciNumbers imagick, ildbc

SortArray

Table 7.4.:Mapping of benchmark applications to expected demand types

After the mapping, we execute all benchmarks on our hardware. Thereby,

we increase the number of worker threads step by step, from one up to twice

the number of physical cores
9
. Figure 7.11 shows the speedup curves for all

benchmark applications within the benchmark suite. We can see that the

maximum speedup for each application varies from 7 to 44. Further, we can

see di�erent behaviour characteristics for all applications.

8
https://www.spec.org/auto/omp2012/Docs/357.bt331.html

9
Unfortunately, we were not able to run the benchmark ildbc due to technical issues.

183



7. CB2: Performance Curves for Parallel Behaviour

Figure 7.11.: Speedup Curves for the Applications from the OMP2012 Benchmark

Suite

Next, we model the scenario using the parallel architectural template cat-

alogue and the performance curves in Palladio. Our models consist solely

of a single parallel loop and one internal action. We use the measurements

from the sequential run to calibrate the CPU resource demand for the inter-

nal action, and specify the parameters of the parallel loop accordingly (e.g.,

number of worker threads, and demand type). In a �nal step, we compare

the measurements from the execution with the simulation results.

Due to the extensive runtime of the benchmarks, we are only able to test one

hardware setting. Therefore, we choose the more comprehensive system in

Potsdam (40 physical cores—see Table 7.2), since it is a mid-range system

and covers the characteristics of the smaller system and the machine in

Stuttgart.

In the following, we present the results. To foster understandability and

presentation style, we show only the accuracy of the predictions and not

the actual runtimes. All measurements, simulation results, raw data, and

performance curves are available online
10
.

10https://doi.org/10.5281/zenodo.4081091
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7.7. Evaluation

7.7.2. Results

In the following, we discuss the results of the experiment and the simulation.

We will not present any raw data, but rather focus on the processes data.

Table 7.5 shows the individual benchmarks from left to right. From top

to bottom, the di�erent number of worker threads are displayed. Further,

we distinguish between the pure Palladio approach (top) and the Palladio

approach using ATs and performance curves.

Each cell contains information about the inaccuracy of the approach. Thereby

we compared the simulated runtime with the measurements and we calculate

the accuracy di�erence as following:

𝑃𝐸𝑟𝑟𝑜𝑟 =
(𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 − 𝑡𝑟𝑢𝑛𝑡𝑖𝑚𝑒 )

𝑡𝑟𝑢𝑛𝑡𝑖𝑚𝑒

∗ 100 (7.1)

The closer the number is to zero, the more precise is the prediction. For

example, if we measure a runtime of 100𝑚𝑠 and have a prediction of 80𝑚𝑠

the prediction error is −20%. The minus indicates that the prediction is

underestimated.

In our goal 𝐺3, we aim for performance predictions that do not di�er more

than 40% of the actual measurements. Thus, we colour cells with inaccuracy

below 40% green. As we see, the pure Palladio approach is accurate for a low

number of worker threads. However, it becomes more inaccurate for higher

numbers.

In contrast, the performance curves approach is able to satisfy our 40% limit

in half the cases. Further, Table 7.6 shows the increase in accuracy compared

to the pure Palladio approach. We calculated these values by the following

equation:

Δ𝑃𝐸𝑟𝑟𝑜𝑟 = |𝑃𝐸𝑟𝑟𝑜𝑟 (𝑃𝑎𝑙𝑙𝑎𝑑𝑖𝑜) |−|𝑃𝐸𝑟𝑟𝑜𝑟 (𝑃𝑒𝑟 𝑓 𝐶𝑢𝑟𝑣𝑒) | (7.2)

We can use simple subtraction to calculate the delta in the prediction error

since the divisor is the same for 𝑃𝐸𝑟𝑟𝑜𝑟 (𝑃𝑎𝑙𝑙𝑎𝑑𝑖𝑜) and 𝑃𝐸𝑟𝑟𝑜𝑟 (𝑃𝑒𝑟 𝑓 𝐶𝑢𝑟𝑣𝑒).
However, for the same reason, we can only compare the results within a col-

umn with each other and cannot compare values from di�erent columns.
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7. CB2: Performance Curves for Parallel Behaviour

As we see, we can increase the accuracy signi�cantly for a large number of

worker threads (more than ten) and even for a low number we are in eight

out of twelve cases more precise. Additionally to the tables, we provide a

visualisation of the values for the best and the worst scenario in Appendix

A.4.4.

Please note that the values in Table 7.6 are only intended to show in which

cases the performance curves perform better and in which cases they perform

worse than the pure Palladio approach. Due to the nature of relative values,

and the fact that each column has a di�erent divisor, a comparison of the

values is not valid.

Overall, the measurements show that the use of performance curves dra-

matically contributes to the accuracy aspect of performance predictions.

However, they also show that we have not yet captured all PPiFs. Especially

demands which show a low speedup and thus are bad to parallelise are

ultimately not captured in the performance curves. Identifying additional

PPiFs, measuring their in�uence, and deducting more precise performance

curves is still an open challenge and remains for future work.

At this point, we can present a total of twelve performance curves which

already greatly improve the performance prediction capabilities of tools like

Palladio. Further, we provide integration into Palladio. Thus, we enable the

SA to e�ciently use the performance curves and bene�t from more accurate

prediction results.

7.8. Assumptions & Threats to Validity

To conclude our results from the evaluation and to put the results in perspec-

tive, we discuss assumptions made and threats to validity in the following.

Therefore, we list each assumption or threat and discuss it in detail.

Monitoring Overhead: During the execution of all experiments, we moni-

tored only one PPiF at a time (e.g., response time, L1, L2, L3, etc.).

Thereby we use di�erent tools to monitor the runtime (e.g., perf or

PAPI). The usage of these tools puts overhead on the system and

might in�uence performance factors, or even have an impact on the
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7. CB2: Performance Curves for Parallel Behaviour

PPiFs under review. Thus, we were able to observe higher runtime

and worse speedup when monitoring memory behaviour.

Memory Bandwidth Even though we acknowledge the importance of mem-

ory bandwidth, we did not measure the throughput and utilisation of

the memory bus, due to the challenging character.

Interdependencies: When analysing the results, we only looked at one PPiF

at the time and neglected interdependencies, although we are aware

that this might be a naive assumption.

Synthetic Demands: We choose in favour of synthetic demands, because

synthetic demands are easier to handle, and thus, they are suited to re-

searching PPiFs. However, their behaviour di�ers from real demands,

especially for medium numbers of worker threads. Therefore, they are

not perfectly suited to extract performance curves from. Even though

we achieved promising results when pulling performance curves from

the synthetic demands, future research has to look into the use of real

demands.

Hardware: We used four di�erent kinds of hardware environments. Even if

we try to have a homogeneous test environment, we make observa-

tions that we currently cannot explain, and are bound to the hardware.

Further experiments on di�erent hardware environments might help

to gain additional insights.

Use Cases: We evaluated our performance curves against the SPEC perfor-

mance benchmarks. However, to thoroughly verify the performance

curves, we need to assess them against real, or rather, business use

cases.

High Abstraction: The use of performance curves adds additional load to

the performance models. Thereby, the load is very abstract and does

not map to speci�c PPiFs. Thus, even if we achieve better predictions,

the explainability of the models su�ers.

Overhead Modelling: During the integration of the performance curves into

Palladio, we used the overhead function modelling approach from

the parallel patterns. This approach adds additional demand (i.e.,

CPU demand) to the model to emulate the overhead. So the CPU

shows a higher utilisation. In reality, this might not be accurate,
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because the overhead could also come from waiting conditions. Thus

the simulations might show higher CPU utilisation than the actual

system.

Over-interpretation of Results: In Table 7.6, we indicated the accuracy gain

of the performance curves in contrast to the pure Palladio approach.

Thereby we subtracted the relative values in Table 7.5, which is theo-

retically possible because the divisor of both values is the same. We

decided to display the values in Table 7.6 in this way, to give an im-

pression of the number of cases in which the performance curves

perform better. However, a comparison of the values from di�erent

columns would lead to wrong or over-interpretation of the results,

because each column has a di�erent divisor (see. Section 7.7.2).

7.9. Summary of CB2

In this chapter, we researched performance curves for parallel applications

in multicore environments. Thereby, we worked on the ful�lment of require-

ments 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔, 𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 , and 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 .

In the course of the chapter, we �rst performed a structured literature review

in combination with expert interviews to identify the most relevant PPiFs.

Next, we conducted extensive experiments to (a) evaluate the impact of PPiFs

on performance and (b) collect measurements to extract performance curves.

During the experiments, we researched di�erent hardware environments

and parallelisation paradigms as well.

As a result, we present 14 lessons learned from the experiments. Additionally,

we deliver a set of twelve performance curves to the SA. The performance

curves represent the most relevant software behaviours. Combining the

performance curves with performance prediction approaches such as the

PCM, we show that the accuracy of parallel application predictions increases

greatly. Thus, we provide an instrument to the SA that helps to improve

accuracy of model-based performance predictions on an architectural level

for parallel applications in multicore environments.

To evaluate the performance curves, we use a standardised benchmark suite—

SPEC OMP2012—and compare the predictions from Palladio (containing the
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7. CB2: Performance Curves for Parallel Behaviour

performance curves) with the measurements we took from executing the

benchmark on a medium-sized multicore environment. We show that the

performance curves increase the accuracy for all cases in which we use a

high number of worker threads (equal to the number of virtual cores) and,

in 19 out of 24 cases, of a low number of worker threads—when compared

to the default Palladio approach.

In a nutshell, we are able to answer our research question as follows:

𝑅𝑄2.1: How do highly parallel applications behave in massive
parallel environments (multicore systems) regarding response
time (speedup), memory access rates (L1, L2, L3, RAM usage),
and memory bandwidth utilisation?

Answer: In over 800 experiments we took 70,000 measurements. Thereby,
we monitored the response time and memory accesses of the systems.
Using these measurements we extracted the twelve performance
curves given in Table 7.3 to describe the behaviour.

𝑅𝑄2.2: What factors in�uence performance the most in highly
parallel applications?

Answer: In Table 7.1 we listed the top eight performance-in�uencing fac-
tors we identi�ed via structured literature review, expert interviews,
and our experiments.

𝑅𝑄2.3: Does the choice of parallelisation strategy have a signi�-
cant impact on behaviour?

Answer: The experiments show slight di�erences in the performance of the
individual parallelisation paradigms. However, these di�erences are
not signi�cant for all thread-based paradigms. The only paradigm
that diverges is the AKKA Actors implementation. Here we assume
issues in the framework coding.
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𝑅𝑄2.4: Do highly parallel applications show similar behaviour,
which can be described by one ormultiple performance curves?

Answer: In Table 7.3 we present performance curves for all the research
resource demands. We used linear regression to extract the curves
from the measurements. Thus, the curves describe the average
behaviour for each demand type on all the tested machines.

𝑅𝑄3.2: What are the missing characteristics of software
behaviour that must be included in performance prediction
models (performance-in�uencing factors) to enable simulation-
based performance prediction approaches to accurately predict
the performance of parallel applications?

Answer: Table 7.1 shows the top eight most performance-in�uencing fac-
tors, gained from structured literature reviews, expert interviews,
and experimenting.

Finally, we can verify or falsify our hypothesis as follows:

𝐻2.1: The speedup and performance behaviour of highly paral-
lel applications depends heavily on the chosen parallelisation
strategy or paradigm.

Reject: The choice of parallelisation strategy does not have a high impact
on behaviour.

𝐻2.2: The hardware architecture (e.g., number of CPU cores,
memory bandwidth, memory hierarchies) of the execution envi-
ronment has a strong impact on the performance of the parallel
applications.

Accept: We measured di�erences in the normalised speedup for all the
machines. Thus, we can verify that the hardware architecture has
an impact on the performance. The biggest noticeable di�erence is
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7. CB2: Performance Curves for Parallel Behaviour

between virtualised hardware and dedicated systems. Virtualised
hardware shows worse performance.

𝐻2.3: The speedup of a parallel application is not only in�uenced
by the number of cores available in a system but also by addi-
tional hardware speci�c performance-in�uencing factors.

Accept: In Table 7.1 we listed the top eight performance-in�uencing factors
we identi�ed.
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8. CB3: Meta-Model Extension for
the PCM to Include Memory
Architectures

Single-metric hardware performance models, which only consider CPU

speed as a relevant characteristic, have proven insu�cient. Therefore, we

research the e�ect of additional metrics like memory architecture, hierar-

chies, and bandwidth in this chapter and focus on the requirements 𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ,

𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 , and 𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 .

In the previous chapter, we researched the in�uence of worker threads, cores

utilisation, resource demand type, and parallelisation paradigms. Thereby,

we observed the cache behaviour and cache access. In this section we con-

tinue to research the next PPiFs: memory design and memory bandwidth

(see Tab 7.1).

To do so, we extend the PCM, adopt the solvers, and update the editors of

the Palladio bench. Thereby, we follow the research process illustrated in

Figure 8.1.

In the course of this chapter, we �rst de�ne the problem space and the re-

search goal, introduce the idea behind the approach, and set the evaluation

criteria. Next, we research the problem space of memory hierarchies to iden-

tify relevant elements to include in the meta-model. Afterwards, we discuss

meta-model extension strategies and perform the extension. To support

the new meta-model features, we extend the editors (tree-editor and Sirius-

editor) and the simulators (SimuLizar). Finally, we evaluate the approach in

an experiment-based manner and compare the new performance predictions

to the earlier ones without consideration of memory bandwidth.
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1. Defining Problem 
Space

3. Identifying relevant 
Meta-Model Elements

4. Meta-Model 
Extension

6. Enhance Simulizar 7. Experiment based 
Evaluation

List of 
Elements

Graphical 
Editors

List of 
Goals and 
Evaluation 

Criteria

2. Goals and 
Evaluation Criteria

5.Adaption of Editors 
(Tree and SimuLizar) 8. Result Reporting

Eval-
uationSimuLizar

Figure 8.1.:Overview of the Research Method for Contribution CB3

As a contribution we (1) give detailed insights into the behaviour of par-

allel applications, (2) provide a meta-model extension for the PCM, which

included memory hierarchies, (3) provide a SimuLizar extension to simulate

memory hierarchies, and (4) lay out four modelling approaches with di�erent

strengths and weaknesses.

As a result, we can show that the four memory model approaches increase

the performance prediction accuracy of Palladio. Each model works excep-

tionally well under certain circumstances. Overall, we present the cache-line

model, which has the best overall performance prediction power and in-

creases the accuracy of up to 57%. Thus, in the best case, the prediction error

is below 15%.

Signi�cant results of this chapter were acquired while collaborating on the

supervision of student theses by [Gru19] and [Tru20]. Further, insights from

the �rst two steps of the research method were reviewed and published in

[GF19].
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We make all data, meta-models, code, and plugin extensions online

available:

Section 8.3 Meta-Models and Palladio Plugin:

https://github.com/PalladioSimulator/Palladio-Addon-Me

moryHierarchy

Section 8.4 Evaluation and Results:

https://doi.org/10.5281/zenodo.4094588

8.1. Problem Space

In this chapter, we research the impact ofmemory architectures of amulticore

CPU on the overall performance. Thereby, we follow the hypothesis that

for modern complex multicore CPUs, not only the clock rate but also the

memory bus is a bottleneck. Further, we assume that the sizes and utilisation

of the caches have a signi�cant impact on the overall performance of highly

parallel applications [BDH08; BKR09; FBKK19; FH16].

Prototype—Using Network-Links as Memory Bandwidth Model: In [GF19],

we research the impact of a simple memory model by using network links

to emulate the data transfer. By observing and measuring the memory

utilisation of a real application, we were able to calibrate the model and to

increase the performance predictions up 26% for a 16-core machine.

The insights from the prototype encourage us to further investigate memory

hierarchies and to properly include them into the PCM.

Research Goal and Idea: The research in this chapter focuses on the ful�l-

ment of two goals:

𝐺1: SAs shall be able to model memory hierarchies in the hardware model

and specify the memory access behaviour in the software model.
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𝐺2: Given these additional model elements, the solver shall give more accu-

rate performance predictions for parallel applications.

Since we know that the memory bus has a great impact on the performance

[GF19], we aim to include a concept very similar to network links for the

memory bus. However, we need to face and overcome the following chal-

lenges:

𝐶1: We need to identify further PPiFs for memory architecture via a litera-

ture search.

𝐶2: Given the PPiFs, we need to determine required meta-model elements

and include them into the meta-model.

𝐶3: The PCM solvers need to be adapted to be capable of interpreting the

new meta-model elements.

ResearchMethod: To achieve our goals, we continue to follow the experiment-

based performance model derivation method [Hap08] and iteratively extend

the meta-model. To evaluate the results, we compare the current PCM and

solvers with the extended ones and compare the simulation results to the

results from the experiments for our running use cases. Thereby, we only

focus on a single evaluation criterion:

𝐸1 : The accuracy of the new performance predictions needs to be better

than the current ones—better meaning closer to the real measurements

from the experiments.

8.2. Meta-Model Extension

In the following, we describe the meta-model extension in detail. To achieve

the �nal model, we follow the method of experiment-based performance

prediction [Hap08]. That way, we go through the process of modelling

four times, adapting solvers and editors, and evaluating [Tru20] the results.

Nevertheless, we describe only the �nal result in the following.

196



8.2. Meta-Model Extension

First, we will research the required model elements. Next, we discuss dif-

ferent strategies to extend a meta-model, along with their advantages and

disadvantages. Finally, we describe the changes to the PCM in detail.

8.2.1. Meta-Model Elements

To identify the required model elements, we use the identi�ed PPiFs (see

Table 7.1) as a starting point and choose to include caches, main memory,

and the memory bus. At �rst, it seems reasonable to include all PPiFs, along

with all attributes, and thus have a model which is as close as possible to the

real-world objects. However, having such a meta-model would increase the

complexity by far and the SA would not be able to handle the architectural

design.

Thus, we follow the general de�nition of modelling by [Sta73] and the goal-

driven modelling approach by Koziolek for qualitative modelling [RBH+16].

Therefore, we de�ne the following three properties for our modelling ap-

proach:

Pragmatism: Currently, Palladio simulations for multicore CPUs result in

a linear speedup correlating to the number of cores. However, real

executions show non-linear speedup. Therefore, our goal is to model

thememory behaviour on an abstract level to capture the performance-

relevant factors and represent the non-linear speedup behaviour, or

at least parts of it.

Representation: Models are always the representation of something, i.e. a

mapping or representation of natural or arti�cial originals—it can be

a model itself. In our case, we want to represent the performance-

relevant attributes of memory architectures. Thus, we focus on the

timing-related aspects and not on the resource demands, such as

memory utilisation.

Reduction: Describes properties that can be simpli�ed or ignored in the

model. In our case, all memory hierarchy attributes that do not con-

tribute to the pragmatism should be neglected. Following 𝐶2, the

challenge is to identify negligible attributes. Here we rely on litera-

ture and experiments to determine these negligible attributes.
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In the following, we describe each of the PPiFs we consider, and give the

�rst set of relevant attributes for the meta-model:

Cache: Modern multicore CPUs have multiple caches on di�erent levels

(see Section 2.2). Modern CPUs have L1, L2, and L3. However, in our

performance prediction models, we consider arbitrary cache levels.

Whenever an application requires data, the cache is hierarchically

queried until the required data is found. In the worst case, the main

memory needs to be read. For each cache we de�ne the following:

Size: The cache sizes are an important factor for the cache e�ective-

ness. However, considering the size for performance prediction

would lead to a full cache simulator, which can easily become

very complex, not only to implement, but also for the SA to

specify. Therefore, we decided not to consider the cache size in

our models, but to focus on the cache hit or miss rate. Thus, we

abstract the cache behaviour.

Hit-rates: The cache hit-rate gives the probability that a cache request

will be ful�lled (e.g., 40%). In case a cache hits, we assume an

immediate delivery of the results with no delay. In case of a

cache miss, the next cache has to be queried, and the cache

updates its cache page, which puts additional demand on the

bus.

Page-size: The size of the cache page is relevant to specify because in

case of a cache miss, the whole cache page will be updated and

needs to be fetched from the main memory. Thus, each cache

miss puts additional demand on the memory bus.

Type: Caches can be shared or private. Common architectures have

private L1 and L2 caches, while the L3 cache is shared [Sch08].

Only a single core can access private caches. Shared caches can

be accessed by multiple or all caches.

Main Memory (DRAM): The main memory is the last point of access if all

previous caches fail to provide the required data. For our model, we

assume that the size of the main memory is in�nite and that all data

are available.
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Memory Bus: The memory bus interconnects the CPU cores, L1, L2, L3, and

the main memory. In our model, we assume that the bus always

connects two parts (e.g., L2 and L3). To determine the performance

characteristics of the memory bus, we use the following attributes.

Latency: Memory latency is the time between initiating a request

for data and the beginning of the actual data transfer. In our

models, we neglect the latency, becausewe assume that latencies

are very low and do not have a major impact on the overall

performance. However, we include it in the meta-model for use

in the future.

Bandwidth /Throughput: Describes the maximum throughput of the

bus being fully utilised—burst rate (e.g., 12 GB/s).

Dynamic: Due to the architecture and composition of cores, caches,

memory, and bandwidth, the maximum throughput of the mem-

ory bus can vary according to the number of cores used. In

general, the overall throughput increases with usage of more

cores, due to additional resources (e.g., buses) becoming avail-

able. This is especially true if a new NUMA node is utilised (see

Section 2.2). Since we do not consider unique architectures like

ccNUMA, but want to provide an abstract model, which the

SA can use for all kind of architectures, we need to provide an

abstract attribute to specify this behaviour.

Composition: The composition of the elements mentioned earlier is a critical

factor, and we need to consider the composition of all elements in the

meta-model. Thus we assume that cores, caches, and main memory

can be connected via a memory bus to arbitrary architectures.

To clarify the choice of PPiFs and attributes and to further follow the argu-

mentation line, we have to explain a set of assumptions we made.

L1: L1 is usually divided into instruction and data cache. However, we

assume that the impact is rather low, so we ignore the operation and

handle L1 as a normal cache.

NUMA: Multicore CPUs di�er in NUMA nodes (see Section 2.2). The access

time from a CPU to a memory element within the NUMA node is

faster than accessing data located in another NUMA node. Since we
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consider the modelling of NUMA nodes too complex, we ignore these

e�ects for now. Later we will have to re-evaluate this decision.

Reading time: We do not consider the cache or memory access times or the

latencies of the caches or main memory.

Swap Operations: As stated above, we only consider timing e�ects and no

memory utilisation. Thus, we assume the main memory to be in�nite.

However, this is not true for the real system and can have a huge

impact, especially for memory-consuming applications on systems

with comparatively low memory. In such environments, it might

happen that the memory size is not enough to store all the required

data; if that happens, the memory controller stores data on the hard

drive and swaps data between memory and hard drive if needed. Since

access to the hard drive is a lot slower, this can have a performance

impact. Nevertheless, we ignore this scenario for now, because we

consider it to be an exception, since modern architectures come with

a large amount of main memory.

Complex Cache Behaviour: The behaviour of caches follows complex rules,

including invalidation cache pages, synchronous reads, and keeping

cache coherence. For example, it is possible to have the same data in

two di�erent L2 caches. If one value is changed, the cache page of the

other cache needs to be invalidated and the cache page needs to be

updated. The memory controller ensures cache coherence. This is a

complex process, which (when addressed in the models) would result

in complex models. To keep the models simple, we do not consider

this behaviour for now.

Reads &Writes: The typical operations on the memory are reads and writes.

Both operations have slightly di�erent latencies [Gru19]. However,

for now, we consider them as equal and do not distinguish between

the operations.

8.2.2. Meta-Model Extension Strategies

Before we start to model the above elements into the meta-model, we �rst

need to discuss extension strategies. In general, there are two possible ways

to extend the PCM.
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The �rst is a full PCM extension. In a full meta-model extension, we model

the changes and new elements directly into the PCM. After altering the

PCM, we need to release a new version. Advantages of this approach are

that all model elements are in one place, and it is straightforward and easy

to follow. However, on the downside, a new release of PCM has a long-range

impact. For example, we cannot guarantee that all solvers and tools can

handle the new version.

Therefore, we favour a second approach, in which we use Pro�les and

Stereotypes [FV04] to extend the PCM. That way, we can model our memory

model and all elements in a separate model. Using pro�les and stereotypes,

we can link our new model elements into the PCM. The advantages of this

approach are that we do not need to release a new PCM version, but can

provide the memory models and pro�les as a plugin. Solvers and tools which

cannot handle the new elements ignore those. Thus, we can guarantee

downward compatibility. On the downside, this approach becomes unusable

if we need to alter many already existing elements. However, in our scenario,

this is not the case.

8.2.3. Hardware Model Extension

In the following, we detail the extension of the meta-model. For this, we

�rst look at the extension of the meta-model to enable the SA to model

the hardware characteristics in the hardware model. To do so, we pick an

entry point and lay out the meta-model. In the next section, we explain

the changes to the work�ow and adaptations of the software model. In the

software model, the SA needs to specify the memory behaviour, e.g., memory

accesses.

8.2.3.1. Entry Point

Given the current version of the PCM (version 4.2.0), we identify multiple

elements which we can use as an entry point for the extension:

ProcessingResourceSpecification: The ProcessingResourceSpecification

contains the information on the processing resources. This entry

point is suitable because we can reuse the prede�ned resources CPU,
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HDD, and Delay and add our processing type for the memory hi-

erarchy. However, to fully support the characteristics of memory

hierarchies, we need to add elements for the hierarchical structure.

Further, a ProcessingResourceSpecification requires a processing

rate and a scheduling policy, which do not apply to memory ele-

ments. To avoid ambiguity in our models, we decided against the

ProcessingResourceSpecification.

ResourceContainer: The resource container is the more general model ele-

ment. It can contain a ProcessingResourceSpecification and other

hardware-related characteristics. From the modelling aspect it has no

disadvantages. Thus, we choose it as an extension point.

As described in the previous section, we choose a pro�le-based extension

strategy. Given the ResourceContainer as starting point, we can now start

to model our meta-model extension. Figure 8.2 shows the applied pro�le to

the ResourceContainer. It maps our meta-model extension (MemoryHier-

achyMetamodel) into the already existing PCM element (ResourceContainer).

In the next section, we explain the memory meta-model mapped into the

resource container.

Figure 8.2.:Overview of the Pro�le Extension of the ResourceContainer

8.2.3.2. Modelling the Memory Hierarchy

Design Rationale During the design of the memory meta-model, we follow

the Palladio design principles and approaches. Therefore, we align our

modelling to existing elements or reuse them if possible. This brings two

bene�ts: First, the SA is familiar with the modelling concept; second, the

simulation logic of existing elements can be reused or adapted only slightly.

202



8.2. Meta-Model Extension

When analysing the PCM (Version 4.2), we identi�ed two elements which

we can reuse:

ResourceContainer: A ResourceContainer represents a server. It can be

speci�ed with multiple ProcessingResourcesSpecifications, which

are further speci�ed as a ProcessingResourceTypes (e.g., CPU, HDD,

or Delay). These three ProcessingResourceTypes are currently pre-

de�ned in Palladio. However, it is also possible to add additional

resource types (e.g., memory). Moreover, for ProcessingResources-

Specifications it is possible to specify the processing rate (e.g., CPU

cycles), the scheduling policy (e.g., processor sharing), and the num-

ber of replicas, which can be used to specify the number of CPU cores

on a server. As described above, the ResourceContainer is our entry

point, and therefore we will reuse it as it is.

LinkingResource: A LinkingResource represents network links. Network

links connect ResourceContainers. The LinkingResource can be speci-

�ed with CommunicationLinkingSpecifications, which can have dif-

ferent CommunicationLinkResourceTypes, similar to the Processing-

ResourceType. Palladio also o�ers the prede�ned LAN Communication-

LinkResourceType. Furthermore, it is possible to specify throughput

and latency in the CommunicationLinkingSpecifications. This con-

cept is very close to the memory bandwidth. Thus we reuse it to

model the memory bus.

In the following, we introduce the meta-model extension. Thereby, we focus

only on the extension part—the memory architecture.

Memory Meta-Model Figure 8.3 shows the �nal meta-model extension. At

the top of the �gure, the MemoryHierarchyContainer represents the top-level

element and the entry point. Each container can have multiple Memory-

HierarchyResourceEnviroments. Each environment consists of multiple

memory elements (i.e., caches or main memory) and a set of connections (i.e.,

the memory bus). Further, each environment has an entry point, which de-

�nes the entry point of the memory architecture. Both the starting point and

the memory element are of the type LinkableMemoryHierarchyResources.
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MemoryHierarchyResourceEnvironment

MemoryCache

cacheHitRate : EDouble = 0.0
isPrivateCache : EBoolean = false

MemoryHierarchyLinkingResourceSpecification

numberOfReplicas : EInt = 1
communicationLinkingResourceType_MemoryHierarchyLinkingResourceSpecification : CommunicationLinkResourceType
latency_MemoryHierarchyLinkingResourceSpecification : PCMRandomVariable
throughput_MemoryHierarchyLinkingResourceSpecification : PCMRandomVariable

MemoryHierarchyLinkingResource

MemoryHierarchyContainer

CacheStartingPoint

LinkableMemoryHierarchyResources

[0..*] memoryCache_MemoryHierarchyResourceEnvironment

[0..*] memoryHierarchyLinkingResource_MemoryHierarchyResourceEnvironment[1..1] cpuStartingPoint_MemoryHierarchyResourceEnvironment

[1..1] memoryHierarchyLinkingResourceSpecification_MemoryHierarchyLinkingResource

[1..1] hierarchySuccessor_MemoryHierarchyLinkingResource

[1..1] hierarchyPredecessor_MemoryHierarchyLinkingResource

[0..*] memoryHierarchyEnvironment_MemoryHierarchyContainer

Figure 8.3.:Meta-Model Extension Containing the New Elements for the Memory

Hierarchy

We decided on this way of modelling because (a) it aligns with the net-

work link layout, and (b) we are more �exible for extensions and further

adaptations.

The memory element has two attributes. The cacheHitRate describes the

possibility of a request to result in a cache hit. The isPrivateCache de�nes

whether the cache is private or shared by other elements in the architecture.

A memory element is connected to another element via a MemoryHierarchy-

Linking Resource. A linking resource always connects two linkable memory

resources—one as successor and one as the predecessor. Further, the linking

resource has a speci�cation.
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The MemoryHierarchyLinkingResourceSpecification has in total four at-

tributes, which are all adapted from the network linking resource. The

number of replicas de�nes the total number of busses available. The latency

describes the time between the initial request for data and the data transfer;

the throughput describes the maximum data transfer capacity of the link.

With this extension, the SA is now able to specify the memory characteristics

in the hardware model. Next, the SA needs to specify the memory behaviour

in the software model.

8.2.4. Modelling Memory Behaviours

To utilise the memory architecture speci�ed in the hardware model, the

SA has to set the memory behaviour in the software model as well. In the

following, we discuss the extension of the software model and the adaptation

of the work�ow.

8.2.4.1. Resource Demanding Calls

To specify resource demands (e.g., CPU or HDD or memory demands) the SA

requires a model element that can name speci�c resources. In the PCM these

elements are named Calls and are speci�ed in the SEFF (see Section 2.4.2.1).

For the memory resource demand, we evaluate existing calls to check their

reusability. In total, we evaluate six call actions:

ExternalCall: The external call is used to specify the communication be-

tween components. In contains information about the parameters

passed to an API and the data size. Since the external call always refer-

ences an OperationRequiredRole, which is the interface speci�cation

of the calling component, this call is not suitable for our purposes.

Even thoughwe could allow the SA to specify the OperationRequired-

Role in the sense that he can set the memory level directly, the SA

should not set the memory hierarchy manually.

Acquire/ReleaseAction: Acquire and release actions are used in the PCM to

allocate passive resources. Willnecker et al. [WBKK15] used passive

resources to simulate the memory demand for garbage collection
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in Java applications. However, since we are not interested in the

memory consumption of the system, but more in the delay generated

by memory architectures, we do not consider these calls further.

InfrastructureCall: Infrastructure calls introduced by [Hau09] behave sim-

ilarly to external calls, but these calls also represent architectural

levels. Thus, infrastructure calls are used when calling a lower-level

component that runs on the same hardware. It is not suitable for the

same reasons that we reject external calls.

InternalAction: The internal action represents an actionwithin a component,

e.g., a code instruction. Each action can have resource demands like

CPU or HDD. For our memory model, a speci�cation of memory

demand here makes sense as well.

InternalCallAction: The InternalCallAction is used tomodel nested Resource-

DemandingInternalBehaviour, e.g., a Java method that has several

private sub-methods. We did not consider this call further, since it

does not give additional be�ts for us and is not supported by the

current simulator versions and editors
1
.

ResourceCall: The resource call is another call that enables us to call re-

source demands. In contrast to internal action, the resource call allows

a �ne-grained speci�cation of the resource demands. For example, it

is possible to de�ne di�erent demands for reading and writing oper-

ations for HDD. Due to this characteristic, the resource call is best

suited for specifying memory behaviour, because it might become

necessary to separate read and write requests.

Given the evaluation of the discussion, we have to choose the abstraction

level on which we want the SA to model the memory behaviour:

low: If we want the SA to specify the memory demand on a low level, along

with the speci�c cache to access, the infrastructure call will be the

best choice.

medium: If we want the SA to specify the memory demand more abstractly

but still allow us to separate between reading and writing operations,

the resource call will be the best choice.

1https://jira.palladio-simulator.com/browse/PALLADIO-32
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high: If we want the SA to specify the memory demand abstractly and only

enable her to de�ne the demand in a parametric manner, the internal

action is the best choice.

Because we are convinced that the separation of reads and writes is essential

when researching the performance impact of memory architectures, we

chose in favour of the resource call.

8.2.4.2. Integration of Memory Calls into the SEFF

In the current version of Palladio, it is not possible to modify an existing

resourceCall action to handle a customised behaviour inside the simulation,

so we have to implement a workaround. Thus, we use the chid-extenders (or

sub-classing)
2
, which we can use non-invasively (e.g., not changing the PCM)

to create a clone of the resourceCall, which we use within the simulation

to implement our custom behaviour. At the same time, we propose a code

change
3
, which enables the customisation of resourceCalls. Therefore, this

should be just a temporary solution.

8.3. Adaptation of PCM Solvers

Enabling the SA to model the memory hierarchies in the hardware model

and the memory behaviour in the software model is only part of the solu-

tion. In the next step, we need to adapt the PCM solvers so that they can

interpret and analyse the new model elements. Palladio contains a number

of di�erent solvers (see Section 2.4.2.1). In the following, we brie�y describe

the adaptation of SimuLizar, the current default simulation-based solver. We

give only a high-level description of the process and implemented behaviour.

We do not give detailed information on the implementation. For this we

refer to [Tru20] and the code
4
.

2https://ed-merks.blogspot.com/2008/01/creating-children-you-didnt-know.html
3https://jira.palladio-simulator.com/projects/SIMUCOM/issues/SIMUCOM-97?filte

r=allopenissues
4https://github.com/PalladioSimulator/Palladio-Addon-MemoryHierarchy
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To realise the recognition of the memory hierarchy, we use the observer ex-

tension point. All observers, like ResourceEnvironment, ResourceContainer,

NetworkLinks, and ProcessingResources, are called, and representative Java

classes are created. These Java classes are all stored into the model registry

class that can be used to look up and access these elements during the

simulation.

The PCMStartInterpretationJob—which is the simulation entry point—

inside SimuLizar consists of two phases: (1) set up and (2) simulation. During

the set-up, the initialise () method of all classes that use the model observer

extension point is called. In this phase, the MemoryHierarchyObserver class

looks for ResourceContainer elements that have the ResourceContainerWith-

MemoryHierarchy stereotype applied. Next, it searches, creates, and stores

objects representing the modelled memory hierarchy structure into a Memory-

HierarchyRegister class. The MemoryHierarchyRegister stores all neces-

sary information about the memory hierarchy structure. Therefore, we

use the register to look up all the required memory hierarchy information

during the simulation. In the simulation, the memory demand is speci-

�ed with the InternalActionWithMemory model element, which is a sub-

class of the InternalAction and has no di�erence from the InternalAction.

The only di�erence is de�ned in the memory hierarchy ecore model—not

the PCM ecore model. That way, and with the help of the rdse�-switch

extension point, which can delegate the interpretation of a call that is

not inside the Se�Package to other plugins that support this extension

point (e.g., the InternalActionWithMemory), the call is delegated into the

MemoryHierachyCallAwareSwitch of the memory hierarchy. Next, we can

process the call here as we desire. In short, the MemoryHierarchyObserver is

used to search for ResourceContainer, which contains memory hierarchy

elements. Additionally, this class is responsible for creating necessary objects

for simulation and for storing them in the MemoryHierarchyRegistry. During

the simulation, the memory demand is reduced based on hit/miss-rate, and

the updated demand is then simulated through the next MemoryHierarchy-

LinkingResource. Unfortunately, we cannot reuse NetworkLink implemen-

tations, because SimuLizar has no support for them. Thus, we use the Net-

workLink code from SimuCom to implement The MemoryHierarchyLinking-

Resource.

In contrast to NetworkLinks, the MemoryHierarchyLinkingResource does

not do round trips. To model the memory hierarchy, each core has its link
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to the L1 and L2. For example, if we consider a 96-core server, a total of

192 linking objects are created during the simulation phase. To guarantee

performant simulations, we added a modi�ed version of the FCFC-scheduler,

which can simultaneously handle multiple instances, instead of only one at

a time.

8.4. Adaptation of Modelling Editors

While the default Eclipse tree editors are part of Eclipse EMF and provide

an out-of-the-box approach to edit the memory model, we aim to include

the modelling in the Palladio work�ow. Because Palladio is using Sirius
5
to

visualise the PCM graphically, we need to adopt the Sirius editors as well. In

the following, we brie�y describe the changes we made. Thereby we follow

the Palladio style guides
6
.

To extend the editors, we create two new plugin projects. One contains the

.odesign �le. The other has additional Java code to perform more complex

actions.

In the .odesign �le we have to specify two elements (see Figure A.22): The

graphical elements and the tools. The graphical elements contain the nodes

and edges. Here we de�ne e.g., the memory cache element and the memory

predecessor and successor link. The tools de�ne the action the editor can

perform on the model elements, e.g., double click, creating new elements,

etc. (see Figure A.23).

Additionally, we use external Java actions to provide more complex edi-

tor features. For example, we use a dialog view to let the SA specify the

throughput with the help of a stochastic expression (see Figure A.24).

To use the extended editor and diagram, the SA needs to enable the correct

viewpoint (i.e., SeffWithMemoryHierarchy).

5https://www.eclipse.org/sirius/
6https://sdqweb.ipd.kit.edu/wiki/PCM_Development/Sirius_Editors
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8.5. Evaluation of PCM Extension

To assess the usability of the memorymodel extension, we use an experiment-

based approach based on the matrix multiplication example (see Section 5).

Figure 8.4 gives an overview of the evaluation approach.

Running 
Memtest86

Preparing Use 
Case Example: 

Matrix 
Multiplication

Run Matrix 
Multiplication 
in Stuttgart

Run Matrix 
Multiplication 
in Potsdam 

Large

Run Matrix 
Multiplication 
in Potsdam 

Small

Modelling the 
Hardware 

Model

Modelling 
Software 
Behaviour

Analysing Perf 
Files

Running 
Simulations

Comparing 
Results

Memory 
Band-
width
Data

Runnable 
.jar

Measur-
ments

Cache-
Hit-Rates

Simu-
lation 

Results

Figure 8.4.:Overview of the Evaluation Process for CB3

In a �rst step, we execute Memtest86
7
on our target hardware. This way, we

get information about memory bandwidth, which we use to calibrate our

performance model (i.e., the hardware speci�cation). Next, we implement

and execute the matrix multiplication example in our test environment.

Thereby, we execute a di�erent version with di�erent matrix sizes. In this

step, we also monitor the cache hit rates, which we use to calibrate our

models further. In a common performance prediction process, the SA does

not have this information at hand and needs to estimate the cache hits. But

since we want to evaluate the performance models, we decide to use the

information at hand to reduce the error-proneness. Finally we simulate

the models and compare the measurements with the predictions from the

simulations.

7https://www.memtest86.com/
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Since we are following the method of experiment-based performance pre-

diction [Hap08], we iterate multiple times over the process of performance

model creation. In total, we have four iterations, and in each one we create

a performance model with speci�c properties. We present and discuss all

models in the course of the evaluation.

We provide all results, raw data, and performance models in an online

repository
8
. Further, we provide the extension as a Palladio plugin

9
.

8.5.1. Experiment Setup

To set up the experiment, we �rst implement the matrix multiplication use

case given the characteristics in Chapter 5 and the implementation we used

in [FH16]. To parallelise the application, we use Pyjama [GS13], as we did

in the previous chapter. We decided against using the synthetic demands

from ProtoCom, because this time we want to provoke as many inter-thread

communications as possible.

We executed the implementation of the three dedicated systems described

in Table 7.2. We did not use the BWUniCluster. Due to the virtualised

environment, it is not possible there to run perf or collect the performance

properties we need for calibrating the model.

On each system, we performmultiple runs of the experiment. In each run, we

change the number of worker threads, starting with one (sequential run) and

increasing the number stepwise, up to twice the number of physical cores.

Additionally, we consider two di�erent matrix sizes. In the �rst scenario, we

multiply matrices with a dimension of 3000x3000. In the second scenario,

we consider a more massive matrix of 7000x7000. We use this scenario to

guarantee that a matrix does not �t into caches. The system in Stuttgart has

a particularly large cache space, so to force main memory accesses, we use

larger matrix sizes.

For each con�guration and scenario, we execute multiple runs (100 for the

small and 50 for the large scenario) to eliminate variances and side e�ects.

Due to the low standard deviation, we only consider the mean value in

8https://doi.org/10.5281/zenodo.4094588
9https://github.com/PalladioSimulator/Palladio-Addon-MemoryHierarchy

211

https://doi.org/10.5281/zenodo.4094588
https://github.com/PalladioSimulator/Palladio-Addon-MemoryHierarchy


8. CB3: Meta-Model Extension for the PCM to Include Memory Architectures

the following. Further, we recorded all performance counters during the

execution using perf.

8.5.2. Model Calibration

For modelling and simulating the use case we use PCM nightly version (pre-

release PCM 4.3.0), Eclipse 2019-09 Modelling Tools, and OpenJDK 11.0.2 on

a Windows 10 machine with 16𝐺𝐵 RAM and 4𝑥3.2𝐺𝐻𝑧 Intel CPU.

Further, we reused the model from [FH16] and [Gru19] and made slight mod-

i�cations and applied the required calibration. In the following, we describe

the modi�cation and the calibration of the memory hierarchy model:

Repository Model: Since we use the same example as in [FH16], we can

reuse the repository diagram completely. The most relevant element in the

repository model is the MatrixMultiplicationComponent, which provides

the method multiplyMatrix. As we use the resourceCall, we additionally

need to specify the resourceCallRole for the MultiplyMatrixComponent.

We store the required resource for the call in the MemoryHierarchyPlugin,

and we can access it via the pathmap mechanism. Figure 8.5 shows the model

for the repository diagram.

<<Interface>>
IMatrixMultiplicator

void multiplyMatrix(int matrixASizeM, int matrixASizeN, int matrixBSizeI, int matrixBSizeJ)

<<Interface>>
IExperimentHandler

void simulateMatrix(int matrixASizeM, int martixASizeN, int matrixBSizeI, int matrixBSizeJ)

<<BasicComponent>>
MatrixMultiplicator

SEFFCompartment

IMatrixMultiplicator.multiplyMatrix

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

IMemoryHierarchy<MemoryHierarchyBusInterfaceComLinkResourceType>

<<BasicComponent>>
ExperimentHandler

SEFFCompartment

IExperimentHandler.simulateMatrix

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Requires>>
Required_IMatrixMultiplicator_ExperimentHandler

<<Provides>>
Provided_IMatrixMultiplicator_MatrixMultiplicator

<<Provides>>
Provided_IExperimentHandler_ExperimentHandler

Figure 8.5.: Repository Model for the Matrix Multiplication Use Case
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SEFF Model: Inside the SEFF diagram, we specify the actual behaviour of

the multiplication. Since we use di�erent hardware and thread numbers as in

[FH16], we need to remodel this diagram—but keep the concept. We assume

that the Pyjamas implementation of OpenMP splits the load equally on all

threads. Thus, we use fork action, which contains 192 ForkBehaviours. Each

behaviour includes a fraction of the actual load. Since the manual modelling

of all 192 ForkBehaviours is time-intensive and error-prone, we can use the

parallel loop AT from the parallel pattern catalogue (see Chapter 6). We use

the measurements from the sequential run to calibrate the CPU demand.

Thereby we separated CPU demands as good as possible from memory

hierarchy demands. To achieve this, we also used the measurements we gain

from perf (see Appendix A.5.2 for more information).

Additionally, we specify the resource call for the memory behaviour here

and use the values provided by perf. Figure 8.6 shows the model for a

two-threaded application using the fork action.

ResourceEnvironment Model: The modelling of the resource environment

is straightforward and follows the example of [FH16]. However, we decided

against using the exact schedulers from [Hap08] because for short response

times, the exact scheduler implementation always adds a constant of 100𝑚𝑠

to the simulation results. That can a�ect the simulation accuracy too much—

especially for low prediction values.

Most important is that we add the stereotype for the memory hierarchy

here.

MemoryHierarchy Model: The memory hierarchy model contains the new

diagram type we included to model the memory hierarchy. Thus, we need

to model it from the sketch. Figure 8.7 shows the �nal model.

We have to specify all attributes for the model elements identi�ed in Section

8.2.1. We calibrate the values as follows:

Cache hit rate: To calculate the hit rate, we use the measurements from

perf. Since the cache hit rate varies for each con�guration of worker

threads, we have to adjust the value for each experiment.

213



8. CB3: Meta-Model Extension for the PCM to Include Memory Architectures

<<ForkAction>>
Parallel actions

<<SynchronisationPoint>>

<<InternalAction>>
Matrix CPU demand action thread1

ResourceDemand

0.0000029455242049426813*matrixASizeM.VA ...

FailureOccurenceDescription

InfrastructureCall

ResourceCall

<<InternalActionWithMemoryCall>>
Matrix memory hierarchy demand action thread1

ResourceDemand

FailureOccurenceDescription

InfrastructureCall

ResourceCall

readFromMemoryHierarchy:4.12454486E12/2

<<InternalAction>>
Matrix CPU demand action thread2

ResourceDemand

0.0000029455242049426813*matrixASizeM.VA ...

FailureOccurenceDescription

InfrastructureCall

ResourceCall

<<InternalActionWithMemoryCall>>
Matrix memory hierarchy demand action thread2

ResourceDemand

FailureOccurenceDescription

InfrastructureCall

ResourceCall

readFromMemoryHierarchy:4.12454486E12/2

Figure 8.6.: SEFF Model for the Matrix Multiplication Use Case with Two Threads.

Cache isPrivate attribute: We establish whether a cache is private or shared

from the CPU speci�cation. In our case, L1 and L2 are private and L3

is shared.
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<<MemoryHierarchyEnvironment>>
Memory hierarchy for MatrixMultiplicator Server ID: _BAexhagpEeq6upfiooscTw

<<Core>>
Core

<<MemoryLinkingResource>>
Core-L1-Link

MemoryHierarchyLinkResourceSpecification

Latency: 0
Throughput:81196000
NumberOfReplicas:12

<<MemoryLinkingResource>>
L1-L2-Link

MemoryHierarchyLinkResourceSpecification

Latency: 0
Throughput:37816000
NumberOfReplicas:12

<<MemoryLinkingResource>>
L2-L3-Link

MemoryHierarchyLinkResourceSpecification

Latency: 0
Throughput:24469000
NumberOfReplicas:12

<<MemoryLinkingResource>>
L3-DRAM-Link

MemoryHierarchyLinkResourceSpecification

Latency: 0
Throughput:7873000
NumberOfReplicas:1

<<MemoryCache>>
L1d-Cache

Hit Rate: 0.9605808093
Private Cache: true

<<MemoryCache>>
L2-Cache

Hit Rate: 0.6815399011
Private Cache: true

<<MemoryCache>>
L3-Cache

Hit Rate: 0.6463735087
Private Cache: false

<<MemoryCache>>
DRAM(Main Memory)

Hit Rate: 1.0
Private Cache: false

Figure 8.7.: Repository Model for the Matrix Multiplication Use Case

Memory link throughput: We use the measurements form memtest86 to get

the memory link throughput for each hardware environment.

Memory link latency: We have not yet considered latency. Thus, we set this

value to zero.

Memory link replicas: Set to the number of physical cores, since we assume

that each core has its own memory bus. This value also represents

the upper boundary, so hyper-threading introduces new virtual cores

but no additional memory links.

With the calibrated model we described, we can perform the simulations. In

the next section, we compare the simulation results and the measurements

and discuss the outcome.

8.5.3. Results

To make the process of how we gain the results and the designs compre-

hensible, we discuss the outcome of the modelling and simulation for each

iteration. In total, we have four iterations; iteration 0 describes the state

before we include the memory model and iteration three a complex model

with only a low accuracy increase. After the discussion of the four iterations

and models, we make a comparison of all models in the next section. To

better follow the result description for the individual iterations, we refer to

the �gures of the comparison in the next paragraph (see Figure 8.8).
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8.5.3.1. Iteration 0: Default Palladio Model

Overview: The default Palladio model contains no memory attributes and

represents our starting point. Modelling a parallel system (e.g., the matrix

multiplication) follows the example in [FH16]. Here we use a fork action

to specify the software behaviour of each OpenMP thread individually. To

calibrate the CPU demand, we use the measurements to form the sequential

run.

Model Modifications: None

Results:

12-Core System: The accuracy stays below an error of 20% for up to ten

worker threads (for both the small and large use case). Afterwards,

the prediction error continuously increases up to 55% for 24 worker

threads. The predicted speedup is linear from one to 24.

40-Core System: The simulations predict a linear speedup as well. But the

matrix multiplication scales on the 40-core system are worse than

on the 12-core. Thus, the prediction accuracy is even worse and

reaches an inaccuracy of more than 20% already when using four

cores (small use case) or two cores (extensive use case). For 80 threads,

the inaccuracy increases up to 65% for the extensive use case.

96-Core System: This e�ect becomes even more severe for the large system,

which shows a maximum inaccuracy of almost 80% for 192 worker

threads.

8.5.3.2. Iteration 1: Read-Data Model

Overview: The read-data model takes the amount of data required for the

matrix multiplication into account. Further, it takes into account the di�erent

cache levels and the time needed to transfer the data from caches or main

memory to the core.

Using this model, we have two options. First, we apply the memory hierar-

chy values to the model and do not cache the values for the CPU demand.
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However, in the execution of the sequential run, we already consider a data

transfer and cache hit rates—even if not explicitly. Thus, the second and

more appropriate option is to also adjust the CPU demand by querying the

data transfer demand.

Model Modifications:

Knowledge: Information about total data transferred.

ResourceCalls with memory demand in each ForkBehaviour and memory

hierarchy model.

Memory Hierarchy: Setting of all attributes in the memory model diagram.

Results: For all systems and all use cases, the read-data model gives a more

accurate prediction. However, the overall accuracy is only slightly better

than the pure Palladio approach.

8.5.3.3. Iteration 2: Cache-Line Model

Overview: Because the accuracy of the read-data model is low, we further

investigate a more re�ned grain memory model. In the cache-line model,

we consider the fact that a cache miss will not only fetch the required data

from the next memory level, but will also load a full cache line. In the above

model, we assume a data transfer of 4𝑏𝑦𝑡𝑒𝑠 in case of a miss. In this model,

we assume a transfer of 64𝑏𝑦𝑡𝑒𝑠 instead.

Model Modifications:

Knowledge: Pure CPU demand.

Internal Action: Recalibrated CPU demand.

MemorryHierarchyLink: Throughput of MemoryHierarchyLinks that trans-

fer cache lines is divided by 16.

L3 Cache is set to private.
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Results:

12-Core System: While the previous models overestimate the performance,

the cache-line models underestimate the performance for both the

small and large use case. However, the prediction error decreases

greatly for the small use case: 5% o� for 12 and 20% o� for 24 worker

threads. For the large use case, the error increases up to an inaccuracy

of 60% for 24 worker threads.

40-Core System: On this machine, the cache-line model shows the best

results. It still overestimates the performance, but is in all cases more

accurately than the other models. For the small use case, it has a

prediction error of 27% for both 40 and 80 worker threads. For the

large use case, the prediction error is 28% (for 40 worker threads) and

decreases to 11% for 80 threads.

96-Core System: Considering the 96-core system, the cache-line model be-

haves similarly to the read-data model. For lower thread numbers the

read-data model is slightly more accurate, while for a number higher

or equal to the core size the cache-line model is a bit better. In general,

the cache-line models show an error of 53% for 96 worker threads and

an error of 58% for 192 threads.

8.5.3.4. Iteration 3: Cache-Line-Scaling-DRAMModel

Overview: Beyond the cache-line model, we investigated further and in-

cluded the scaling e�ects of the memory bus between L3 and main memory,

too. The bandwidth scaling is dependent on the number of threads used.

Therefore, we used the measurements taken by perf to calibrate the model

further and adjusted the throughput of the memory link accordingly.

Model Modification: Throughput between L3 and DRAM is modi�ed de-

pending on the numbers of worker threads.
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Results:

12-Core System: For the large use case, the cache-line-scaling DRAM model

works very well with a prediction error of only 3% for 12 and 11% for

24 worker threads. However, for the smaller use case, the model is

worse than the previous model and similar to the read-data model.

40- and 96-Core System: Also on these systems the model behaves worse

than the cache-line model and similar to the read-data model for both

the small and the large use case.

8.5.4. Result Summary

Mean Prediction Error

Server Experiment
Variation

Palladio-
Default
[%]

Read-
Data
[%]

Recalibrated-
Read-Data
[%]

Cache-
Line
[%]

Cache-Line-
Scaling-DRAM
[%]

3000x3000 27.1 16.2 20.7 15.3 19.612-Core
7000x7000 28.0 17.5 21.0 61.4 6.5

3000x3000 35.1 26.1 32.4 15.8 32.340-Core
7000x7000 54.3 46.9 51.8 29.8 50.3

3000x3000 43.9 (36.2) 41.8 37.9 41.496-Core
7000x7000 42.1 34.0 40.2 37.5 40.4

Table 8.1.:Mean Prediction Error for the Di�erent Use Cases and Modelling Ap-

proaches

Figure 8.8 shows all the above models in direct comparison for the two use

cases. The diagrams show the prediction error in percentage. The closer a

value is to zero, the more accurate the predictions are. In addition to that, we

provide more detailed diagrams and the speedup curve in Appendix A.5. For

example, we provide models where we did not limit the memory links to the

physical core size. Thus, we assumed that hyper-threading also increases

the number of replicas for a memory link.

As we can see from Figure 8.8, di�erent models behave best in di�erent

scenarios. Thus, there is not one model that beats all. However, we are

interested in the prediction of a highly parallel application. So if we ignore

low numbers of worker threads (e.g., lower than the number of physical

219



8. CB3: Meta-Model Extension for the PCM to Include Memory Architectures

1 2 4 6 8 10 12 14 16 18 20 22 24
# of threads

0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Pr
ed

ict
io

n 
er

ro
r i

n 
%

Response time prediction error on 12Core3000

Experiment  
Palladio-Default 
Read  

Recalibrated-Read  
Cache-Line  
Cache-Line-Scaling-DRAM  

1 2 4 6 8 10 12 14 16 18 20 22 24
# of threads

0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Pr
ed

ict
io

n 
er

ro
r i

n 
%

Response time prediction error on 12Core7000

Experiment  
Palladio-Default 
Read  

Recalibrated-Read  
Cache-Line  
Cache-Line-Scaling-DRAM  

1 8 16 24 32 40 48 56 64 72 80
# of threads

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Pr
ed

ict
io

n 
er

ro
r i

n 
%

Response time prediction error on 40Core3000

Experiment  
Palladio-Default 
Read  

Recalibrated-Read  
Cache-Line  
Cache-Line-Scaling-DRAM  

1 8 16 24 32 40 48 56 64 72 80
# of threads

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Pr
ed

ict
io

n 
er

ro
r i

n 
%

Response time prediction error on 40Core7000

Experiment  
Palladio-Default 
Read  

Recalibrated-Read  
Cache-Line  
Cache-Line-Scaling-DRAM  

1 16 32 48 64 80 96 112 128 144 160 176 192
# of threads

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Pr
ed

ict
io

n 
er

ro
r i

n 
%

Response time prediction error on 96Core3000

Experiment  
Palladio-Default 
Read  

Recalibrated-Read  
Cache-Line  
Cache-Line-Scaling-DRAM  

1 16 32 48 64 80 96 112 128 144 160 176 192
# of threads

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Pr
ed

ict
io

n 
er

ro
r i

n 
%

Response time prediction error on 96Core7000

Experiment  
Palladio-Default 
Read  

Recalibrated-Read  
Cache-Line  
Cache-Line-Scaling-DRAM  

Figure 8.8.:Comparison of Prediction Models: Prediction Error in % for all Machines

and Use Cases
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cores), we can see that the cache-line model shows the best accuracy for all

(except 12-core large use case) scenarios. For example, the cache-line model

increases the accuracy for the maximum thread number and lies between

32% for the worst case (96-core system and small use case) and 89% for the

best case (40-core system large use case).

Table 8.1 gives a full overview of the mean prediction error. The smaller the

value, the more accurate the prediction. Bold values are the most accurate

models for each row. We neglect the values for the read-data model because

as we explained above, it uses a misleading calibration and considers memory

e�ects twice. The mean prediction error is averaged for all thread variation.

Thus, we cannot compare the error of the 96-core server with the 40-core

server directly. That is because from 96 threads and up, measurements are

only taken in steps of 8.

As we can see in the table for each scenario, we can �nd a model with a mean

error below 40% and all models are more accurate than the default Palladio

approach—except the cache-line model with the large use case. However,

we are more interested in high values of worker threads. Considering the

diagrams, we see that especially the accuracy of the 96-core system is inferior.

This can have two reasons: (1) We did not capture all relevant characteristics

in the memory model, or (2) there are other PPiFs that in�uence the perfor-

mance. Given our current state of research, we believe the latter to be true.

Especially e�ects such as data access, locks, and sequential parts of applica-

tions impact the parallelisation capabilities of highly parallel applications,

and are not considered in the current models.

8.5.5. Discussion and Lessons Learned

During the creation of the meta-model extension and the experiment execu-

tion, we learned valuable insights that we want to share. Thus, we describe

noteworthy lessons in the following.

Exact Scheduler: At �rst, we tried to use the exact scheduler developed

by [Hap08]. However, we noticed that the implementations add an

arbitrary but constant value of 100𝑚𝑠 for short runtimes (below 200𝑚𝑠)

to the predictions. This interferes with the result of the speedup for

a large number of worker threads. On the other end, for very long
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execution times, the exact scheduler seems not to add any demand at

all.

Speedup: We used a small and extensive data set for the matrix multipli-

cation because we assume the large data set puts more pressure on

the memory architecture. Further, we expect to see this e�ect in the

speedup. For the 12-core and 40-core systems, we did see the e�ect.

However, on the 96-core system, the large data set showed a better

speedup behaviour. That was surprising for us, and we can only

assume that the cache architecture of the 96-core system is more ef-

fective than for the other two systems—also in prefetching necessary

data.

Accuracy: Usually, the more cores we utilise the lower the response time is.

However, this also means that a small absolute inaccuracy results in a

sizeable relative inaccuracy. So, if we see �uctuations in the measure-

ments (e.g., when garbage collection kicks in), we also see a temporary

but signi�cant �uctuation in the accuracy. Thus, we learned that the

visualisation of the speedup curve is an excellent human-readable

way to visualise the data and to detect errors manually.

DRAM Accesses: The main memory access is one of the most cost intensive

operations. Thus, cache strategies try to avoid main memory accesses.

As a consequence for us, it is most important to determine the number

of main memory accesses as closely as possible.

SystemUtilisation: Some combinations of worker threads have a more pos-

itive e�ect on the performance than others. We assume the reasons

lie in the NUMA nodes. Whenever a new NUMA node is used, more

cache is available. On the other hand, for the data exchange, that

means that data transfer to another NUMA node is more expensive.

Hyper-Threading: We researched the e�ect of hyper-threading on the mem-

ory models. We assume that virtual cores do not have private caches,

nor do they increase the memory bus. Physical cores, on the other

hand, have private caches and thus increase the overall cache size and

memory bandwidth in the system. However, for the cache-line model,

the separation of virtual and physical cores does not have an impact.

Cache-Line Model: The cache-line model works best for most cases. Es-

pecially on the 12-core and 40-core systems, the prediction results
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are of good quality. Thus, it is all the more interesting that for the

96-core system, the prediction is so low. Obviously, we are missing

performance-relevant factors. These factors might have something

to do with memory bandwidth. For example, we did not research

prefetchers, memory bandwidth latency or inter-core connections,

which certainly have an impact on performance. However, it is more

likely that they are of another nature and not bound to the memory

hierarchy. Future work will have to look into that.

8.6. Threats to Validity & Limitations

To put the results in the right perspective, we discuss assumptions made

and threats to validity in the following. Thereby, we distinguish between

internal and external validity.

Internal Validity: Internal validity describes the validity of the speci�c

experiment setting on which the response time prediction depends. Thus,

we need to name three factors: the execution and measuring of the memory

hierarchy utilisation, the experiment execution time, and the implementation

of the simulation.

Multiple unforeseeable factors in�uence the execution time of the matrix

multiplication. For example, we generate the matrix with random numbers.

However, a matrix with many zeros can be calculated faster due to the

internal processor optimisations. Also, we did not pin threads to cores but

relied on the operating system’s scheduler. So, threads could switch to other

cores—which results in cold caches. Further, operating system interruptions

can in�uence execution time. To minimise the e�ects, we executed each run

multiple times and used mean values.

When taking the measurements, we increased the number of worker threads

continuously. The execution of the experiments for all thread numbers would

have resulted in very long execution times. Thus, we increased the thread

number in steps, choosing a step size of four for numbers below 96 and a

step size of 8 for numbers above 96. This is re�ected in the calculation of the
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mean error. Thus, we cannot directly compare the mean prediction error for

the 96-core machine with the other machines.

Another threat to internal validity is the use of perf. Perf reads a low-level

performance counter from the hardware to get, e.g., cache access rates. These

performance counter events can vary between hardware vendors. For exam-

ple, we are not able to read the L1-dCache-store. Even though the use of a

performance counter was our only chance to get low-level information and

is a common approach, the measurements might not be comparable between

the hardware. Further, the use of monitoring applications puts additional

overhead on the system, and can in�uence performance in general.

The next aspect we need to consider but have no in�uence on, is the Turbo-

Boost or auto-throttling. Depending on the core’s temperature, modern CPUs

throttle down the CPU clock frequency. Thus, the CPU becomes slower. We

did not investigate these e�ects, but monitored the CPU temperature during

the experiments.

Finally, we have to discuss the model itself. During the meta-model creation

process, we abstracted the architecture of the multicore CPUs signi�cantly.

Thereby, we neglected characteristics to make the model more comfortable

to handle. However, it is possible to neglect performance-relevant aspects

(e.g., prefetching or cache optimisation). One result of this might be the low

accuracy of large multicore systems (e.g., a 96-core system). Following up

on this, PPiFs is a task for future research.

External validity: The external validity describes whether the �ndings can

be generalised outside the scope of this paper.

For now, we assume that the memory hierarchy model we developed can be

generalised, because we analysed various CPU architectures upfront. The

generalisation includes not only CPUs but also GPUs, even though we only

focused on CPUs.

A more relevant threat is the evaluation scenario. In this work, we provide a

proof-of-concept evaluation of the memory hierarchy model and the solvers.

Thereby we used only one use case (i.e., the matrix multiplication), one

programming language (i.e., Java), and one parallelisation paradigm (i.e.,
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Pyjamas). However, a broader set of use cases, algorithms, languages, and

complex applications is required to make more generalisable assumptions.

Finally, there are some minor threats, which go along with a controlled

experiment. For example, we did not research how a system under load, with

a complex application stack and multiple services running, will impact the

memory architecture.

8.7. Summary of CB3

In the course of this chapter, we focused on the requirements 𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ,

𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔, and 𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 and researched an approach to consider memory

hierarchies in performance predictions. To do so, we �rst identi�ed PPiFs

for memory hierarchies and their attributes. Next, we mapped the PPiFs

to model elements and attributes, and included a memory hierarchy model

in the PCM using a pro�le-based extension. Afterwards, we extended the

editors to enable the SA to utilise the new model elements. Finally, we

extended the current default simulator SimuLizar to interpret the added

model elements and to take them into account during the simulations.

To evaluate the meta-model extension, we executed a matrix multiplication

use case with di�erent matrix sizes. At the same time, we modelled and

simulated the use case and compared the measurements with the predictions.

As a contribution of this chapter, we present:

1. Detailed insights into the memory behaviour of parallel applications.

2. A meta-model extension containing relevant model elements to

model memory hierarchies.

3. A SimuLizar extension to interpret the model elements.

4. Four memory model approaches for di�erent scenarios and with

di�erent prerequisites and levels of detail.

As a result of the contribution, we can show that the four memory model

approaches increase the performance prediction accuracy of Palladio. Each

model works exceptionally well under certain circumstances. Overall, we
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favour the cache-line model, which has the best overall performance predic-

tion power and increases the accuracy up to 57%. Thus, in the best case, the

prediction error is below 11%.

However, the overall prediction for large systems and a high number of

worker threads is still low with over 60% prediction error. We assume here

the impact of further PPiFs, e.g., e�ects like data access, locks, and sequential

parts of the application. To investigate these PPiFs is a challenge for future

work.

To sum up, we can answer our research question:

𝑅𝑄3.3: Can modelling the additional performance-in�uencing
factors improve the overall accuracy of performance predic-
tion?

Answer: We introduced a memory hierarchy model and included it for
evaluation into the PCM. The results show that modelling the
memory hierarchy helps in all cases to increase the performance
predictions compared to the pure Palladio approach. For systems up
to 40 cores, we even gained results that satis�ed our requirements
𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 .
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In this chapter, we introduce a di�erent approach to tackle the require-

ments 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 by using and integrating already available CPU

simulators into the Palladio approach.

CPU simulators are often used by hardware vendors to benchmark their

architectures [AS16]. CPU simulators have the advantage of re�ecting the

exact behaviour of speci�c CPUs, ranging from the CPU times up to the

utilisation of the individual CPU registers. At the same time, this precise

prediction of the behaviour comes at the cost of very long simulation times.

Further, to utilise the simulators, we either need to provide a runnable

application or the trace �les of an execution.

Nevertheless, we are convinced that researching the integration of CPU

simulators into the Palladio approach is bene�cial, worth the e�ort, and

can reveal new insights into the characteristics of parallel applications in

multicore environments. Figure 9.1 shows the research approach and the

structure of this chapter.

In the next section, we �rst explain the problem space, identify challenges,

research questions, and set the goals. After that, we perform a structured

literature search to identify available multicore CPU simulators, followed by

an evaluation of all simulators. The assessment also includes the selection of

suitable simulators. In the next section, we investigate extension strategies

for Palladio. In combination with the selected CPU simulator, we prototype

an extension process. Finally, we perform a use case evaluation and discuss

the results and future work.

As a result, we provide a proof of concept approach, which we evaluate with

the help of the bank account use case example (see Section 5.2.1). We are able

to show that by using CPU simulators, the non-linear speedup behaviour is
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Figure 9.1.:Overview of the Research Method for Contribution CB4

present in the performance predictions. However, the predictions underesti-

mate the performance by far. This indicates that the input model is missing

relevant characteristics.

Please note that signi�cant contributions described in this chapter were part

of collaborative student research projects [Det20; Gra18]
1
.

Additionally, we published all accompanying data (e.g., documentation

on CPU simulator’s docker �les, implementations, evaluation data)

online:

https://zenodo.org/badge/latestdoi/282948837

9.1. Problem Space

As we learned from the research in CB1 to CB3, predicting the behaviour of

parallel applications is highly complex and depends on many PPiFs. In CB3

1
Please check them as well for further information, especially on implementation details.
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we research the impact of PPiFs. Thereby, we looked only at one PPiFs at

the time, knowing that the PPiFs in�uence each other.

Therefore, in the following, we research the integration of CPU simulators

into the Palladio approach. CPU simulators predict the behaviour of an

application on speci�c hardware in detail [AR06] and also consider side and

cross e�ects of PPiFs.

9.1.1. Idea and Goal

To re�ect the complex interaction of multiple PPiFs, we integrate existing

exact multicore CPU simulators into the Palladio approach and utilise them

as third-party model solvers.

To do so, we use Palladio’s software, hardware, and usage models as input

for the CPU simulators. Once we fetch the results from the simulators, we

play them back into the Palladio Bench for further analysis.

In detail, we research and evaluate two di�erent approaches:

Trace-based: We use SimuCom to extract the stack trace �les. Next, we use

the trace �le as input for trace-based CPU simulators.

Source Code-based: We utilise ProtoCom to generate a Java jar �le from

the PCM. We use this jar �le as input for source code-based CPU

simulators.

9.1.2. Problem Specification

To successfully reach our research goal, we have to answer a set of ques-

tions:

𝑅𝑄𝑠𝑖𝑚1 Which CPU multicore simulators are available? First, we need to

know which CPU simulators exist and which purpose they serve. For

this, we perform a structured literature search.

𝑅𝑄𝑠𝑖𝑚2 What are their advantages and disadvantages? To be able to pick the

appropriate CPU simulator, we not only need to know which ones

exist, but also which advantages and disadvantages they have.
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𝑅𝑄𝑠𝑖𝑚3 Is it possible to connect these simulators to Palladio and does the PCM
provide enough data for the simulators? To utilise the simulators

from the Palladio Bench, we have to develop an integration strategy.

Thereby we need to meet the requirements of the simulator.

𝑅𝑄𝑠𝑖𝑚4 If so, are the predictions more accurate? Even if we can make use

of CPU simulators, we have to make sure that the results we can

gain from the simulators (based on the PCM input models) are more

accurate than existing predictions.

To answer these research questions, we follow the researchmethod illustrated

and explained above (see Figure 9.1).

9.2. Overview of Multicore CPU Simulators

In this section, we give an overview of multicore CPU simulators. In a

�rst step, we de�ne the research strategy to �nd simulators in literature.

Second, we give a short overview of all the simulators found, including their

strengths and weaknesses. Finally, we present an overview, categorisation,

and analysis of the simulator.

To follow the section, we recommend reading the section on CPU simulators

in Chapter 2.4.1 �rst.

9.2.1. Search Strategy

To answer the research question 𝑅𝑄𝑠𝑖𝑚1, we conduct a structured literature

search. Since we assume the number of available CPU simulators to be

low to moderate, we perform a simple keyword search using �ve databases

(Google Scholar, IEEE explore, Research Gate, Science Direct and IBS BW).

The keywords we use are multicore, cpu and simulator, which we combine

into the single search term multicore cpu simulator.

In a second step, we perform snowballing to reveal additional simulators

taken from related work.

230



9.2. Overview of Multicore CPU Simulators

We limit our result set to (a) multicore simulators, which are (b) not older

than ten years (last update). Further, we have a set of requirements. So we

are looking for CPU simulators, that:

1. can simulate Java applications

2. are suited for ISA x86, the most common architectures.

3. can be run under either Windows, MacOS, or Linux.

After conducting the search strategy, we sustained ten multicore CPU simu-

lators.

Figure 9.2 gives an overview of the found simulators, categorising the sim-

ulators based on their capability to simulate Java applications and ISA x86

architectures.

CPU Multicore Simulators

able to simulate
Java Applicationsable to Simulate

ISA x86

Multi2Sim

MaxSim

Tejas-
Java

Gem5
for

ARM

Gem5

Sniper

MARSSx86

zSim

Graphite 
Tejas

Figure 9.2.:Overview of multicore CPU simulators [Gra18]

In the following, we characterise all remaining simulators brie�y. Thereby,

we start with trace-based simulators and continue with source code-based

simulators.
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To characterise all simulators, we used available literature, set up, and ran

example projects for all simulators. Thereby, we used Docker to handle

dependencies and guarantee simple reuse. A description of how to run

the Docker �les is available in [Gra18] and all �les are publicly available

online
2
.

9.2.2. Trace-based Simulators

We only found one CPU simulator that takes trace �les as input.

Tejas: Tejas
3
is a multicore simulator designed by the Indian Institute Of

Technology (IIT). It is entirely written in Java and was released in 2015

[SKK+15].

Figure 9.3 gives an overview of the main characteristics of Tejas. The di-

mensions of the spiderweb diagram are explained in detail in Section 2.4.1.

The more a simulator ful�ls a dimension, the closer the point is to the outer

circle.

Figure 9.3.: Tejas Feature Net [Gra18]

The developer follows a cycle-accurate trace-driven approach. However, the

core Tejas implementation requires two input �les: �rst, the con�guration

2
https://doi.org/10.5281/zenodo.3961930

3http://www.cse.iitd.ac.in/tejas/
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�le; second, an executable �le. This makes the core Tejas implementation a

source code-based simulator. Further, like most other simulators, the Tejas

approach uses the Intel PinTool. However, this tool only works with C++

code.

To support Java code, there exists an extension call Tejas Java
4
. Instead of

the Intel PinTool, it uses the common Jikes RVM5
. With the help of the Jikes

RVM, it is possible to provide a trace �le as input. Tejas Java can create stats

and an output trace, which can be used as an input �le for the original Tejas

simulator.

9.2.3. Source Code-based Simulators

In the following, we brie�y characterise the remaining CPU simulators. All

of these are source code-based, and they need at least two input �les: �rst,

the simulator’s con�guration �le and second, a compiled Executable and

Linking Format (ELF) �le.

Sniper: Sniper
6
is developed by a cooperation between the Ghent Univer-

sity and the Intel ExaScience Lab. Like most CPU simulators, it relies on the

Intel Pin Tool and thus supports only C++ applications.

Figure 9.4 shows the characteristics of Sniper.

Sniper is a timing-based simulator, using a hybrid cycle simulation model.

The hybrid model enables Sniper to skip speci�c cycles and gives a perfor-

mance gain. Sniper is highly suited to simulate OpenMP applications.

zsim: Another CPU simulator has been developed by the Massachusetts

Institute of Technology and Trustees of Standford University and further

modi�ed by MIT—zsim
7
.

Figure 9.5 gives an overview of the characteristics of zsim.

4http://www.cse.iitd.ac.in/tejas/tejas_java/
5https://www.jikesrvm.org/
6http://snipersim.org/
7https://github.com/s5z/zsim
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Figure 9.4.: Sniper Feature Net [Gra18]

Figure 9.5.: zsim Feature Net [Gra18]

Zsim aims to simulate systems with up to 1,000 cores, and therefore they

choose an execution-driven, user-level approach [SK13b]. zsim can simulate

multi-thread and client server applications, and supports C++, Java, Scala

and Python.

MaxSim: MaxSim
8
is a simulator built upon the Maxime VM and the zsim

simulator. Therefore, the feature net looks similar (see Figure 9.6).

In contrast to most other simulators, MaxSim uses the Maxine VM instead

of the Intel PinTool. This enables MaxSim to simulate Java applications as

8https://github.com/beehive-lab/MaxSim
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Figure 9.6.:MaxSim Feature Net [Gra18]

well. Further, the Maxine VM is capable of interpreting Java �les newer than

JDK 7.

Gem5: Gem5
9
is the fusion of the previous projects Michigan m5 and the

Wisconsin GEMS. Scientists mainly use it for performance measurements

and analysing computer architectures [BGOS12].

Figure 9.7.:Gem5 Feature Net [Gra18]

Figure 9.7 shows the feature net of Gem5 and indicates that Gem5 is an

emulation-based simulator for x86 ISA architectures. Gem5 o�ers a set of

9http://www.gem5.org/
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ARM ISA options, which gives much freedom. The emulation comes at the

cost of performance and accuracy since Gem5 is not cycle-accurate.

However, Gem5 o�ers direct support of Java benchmarks.

MARSSx86: In contrast to Gem5, MARSSx86
10
is a cycle accurate full system

simulator for x86 multicore ISAs.

The purpose of MARSSx86 is to have an e�cient and straightforward com-

plete system simulator [PAG11b]. Even though the full source code is avail-

able on GitHub, it is written in C code, and development ended in 2012.

Figure 9.8 shows the full feature net of the simulator.

Figure 9.8.:MARSSx86 Feature Net [Gra18]

Multi2Sim: The purpose of Multi2Sim
11
is to support computer architects

in the task of developing new architectures. Its primary goal is to verify the

correctness and feasibility of new hardware designs [UJM+12].

Figure 9.9 shows the feature net of the simulator. It indicates that Multi2Sim

is very versatile. Besides the capability of simulating x86 ISA, it can also

simulate ARM and GPUs.

10http://marss86.org/
11http://www.multi2sim.org/
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Figure 9.9.:MultiSim Feature Net [Gra18]

9.2.4. Evaluation and Selection

After conducting the search, we execute an assessment of the simulators.

Thereby, we evaluate nine criteria. We are able to determine �ve of them

by reading documentation or studying the corresponding literature. For the

remaining four, we set up the simulators and use benchmark testing. In the

following, we explain each criterion and how it is accessed.

ISA x86 Support: This is a yes or no attribute that describes whether the

simulators support ISA x86, which are the most common architec-

tures for desktop PCs nowadays. We get this information from the

documentation

Coding Language: This attribute gives the programming language in which

the simulator is written. We get this information from the documen-

tation, literature, or by looking at the code repository.

Intel Pin Tool: This is a yes or no attribute. It describeswhether the simulator

uses the Intel Pin Tool. We get the information from the documenta-

tion

Input Type: This attribute describes the kind of input the simulator needs.

We distinguish between trace �le and runnable input. Further, we list

the supported programming languages.
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Processor Model: This attribute describes the supported processor models.

We distinguish between in order (IO) and out-of-order (OOO). We

gain this information from the documentation.

The following four characteristics cannot be extracted from literature, and are

gained from setting up the simulator and running a benchmark example. All

characteristics are raised by the execution of a single-use case, and therefore

have limited power and are objectively biased. Nevertheless, we provided

them as an indicator and an internal comparison.

Setup Di�iculty: Describes how much work and time is needed to set up

the environment and simulator until the �rst simulation result can be

achieved. We also include time for �xing dependencies and running

a hello world example. We measured the total time and gave the

simulators with the highest time the attribute high, and the ones with

the lowest the attribute low.

Community Support: Describes how active the community behind the sim-

ulator is and if they provide support. For the �rst, we looked at the

dates of the last commit. For the latter, we sent a question to the

community. If we received an answer within two weeks, we rate the

community support high. Otherwise, low.

Configurability: This attribute describes how much freedom the simulator

o�ers for con�guration. We gain the information partly from the

documentation, partly from testing.

Accuracy: Describes how accurate the predictions of the simulator are. To

estimate the accuracy, we run each simulator with the following

o�cial benchmark SPLASH-2, PARSEC [BKL08], and SPEC CPU-

2006
12
. Since these are common benchmarks, we can �nd results for

some simulators and benchmarks already in the literature. In total, we

use the values found in literature, and run the benchmarks multiple

times on our own, calculating the average absolute accuracy error.

For all simulators and characteristics, Table 9.1 provides an overview. Given

that overview of available multicore CPU simulators, we are able to answer

𝑅𝑄𝑠𝑖𝑚1. Moreover, the overview of their advantages and disadvantages

answers 𝑅𝑄𝑠𝑖𝑚2.

12https://www.spec.org/cpu2006/
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Given our description, evaluation, and testing, we nominate the simulator

MaxSim for source code analysis and the simulator Tejas Java for trace �le

analysis, as promising candidates.

In the following, we sketch the process for including source code-based and

trace �le-based simulators into the PCM work�ow.

9.3. Palladio Extension Strategies

In the last section, we provided an overview of all available multicore CPU

simulators. We sketched their characteristics and brie�y described advan-

tages and disadvantages.

With this knowledge, we will design two strategies to include trace-driven

and source code-driven CPU simulators into the Palladio approach. For

both procedures, we will �rst theoretically describe how inclusion could

work. Next, we provide a proof-of-concept evaluation with a CPU simulator

most suited for the scenario. Finally, we will discuss the limitations of each

strategy and further challenges to tackle.

9.4. Trace-driven Strategy

Since the Palladio models contain information on an abstract architectural

level, the trace-driven inclusion strategy sounds most promising. The general

idea follows the concept to extract the stack traces from one of the Palladio’s

solver engines. In the next step, we use the traces as input �les for the CPU

simulators and run the simulations. Finally, we play back the results from

the simulators to the solver.

Figure 9.10 exempli�es this process. As shown, we do not use any additional

information besides the already existing Palladio models. As a solver en-

gine, we propose SimuCom, because SimuCom uses m2t transformations to

generate simulation code, which provides resource demand traces. In the

following, we have a detailed look at the SimuCom solver and the ways to

extract traces.
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9.4. Trace-driven Strategy

Developers 

SimuCom
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Simulator
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FILE
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PCM Instance

Figure 9.10.: Inclusion Strategy Using SimuCom and Trace-driven Multicore CPU

Simulators [Gra18]

9.4.1. SimuCom

As explained in Section 2.4.2.4, the SimuCom approach follows a m2t trans-

formation approach to generate simulation code out of PCM instances. The

SimuCom framework uses and executes the simulation code to simulate the

system.

As part of the suitability check and analysis of SimuCom, we identi�ed two

possible extension points in the source code of the SimuCom Framework

(see Appendix A.6.1).

The �rst extension point (see Listing A.7 in Appendix A.6.1) hooks into the

getScheduledResource-method. At this point, the processed-demand traces

are available.

The second extension point (see ListingA.8) hooks into the ExperimentRunner.

At this point, the stochastic simulation starts. Here, the idea is to get the

event traces and hand them over to the CPU simulator.

9.4.2. Discussion

Unfortunately, we are not able to implement the trace-driven approach

without immense e�ort and without changing either SimuCom or Tejas
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signi�cantly. The main reason for this is that most multicore CPU simulators

do not accept trace �les. The only exception is the Tejas simulator.

However, the trace �les provided by SimuCom are not suitable for analysis

with Tejas, because they lack more detailed information about software and

hardware. SimuCom only provides resource-demand traces, but Tejas needs

additional information about the CPU architecture, memory addresses, and

operations.

In a nutshell, we believe that the trace-driven approach is still worthy of

future research. However, CPU simulators are designed to help CPU design-

ers evaluate the design of a CPU architecture, and therefore require much

low-level information and return very detailed information about the status

and behaviour of the CPU. For our purposes, this information is too detailed,

and, at the same time, we are not able to provide the amount of input data

required, since we use Palladio to look at architectural design.

So, for future research, we propose having a look at high-level multicore

thread simulators, if available, or extending the current state-of-the-art

Palladio simulator, SimuLizar. Thereby, we can use the insights of the CPU

simulators and also use their libraries like JIKES or Maxine VM.

9.5. Source Code-Driven Strategy

Realising that the trace-driven approach does not work out of the box, we

have a closer look at the source code-based approach. Figure 9.11 lays out

the source code-based approach. As in the trace-driven approach, we use

a PCM instance as a starting point. This time, however, we do not use a

simulator to generate the trace, but use ProtoCom to create a runnable Java

SE performance prototype.

We feed the performance prototype to the CPU simulator and play the

results back to the Palladio Bench. In Figure 9.11, we show the removal of

all Java RMI calls and other overhead. This step is required, since most CPU

simulators cannot handle RMI calls well.
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Developers 
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Java SE
Performance

Prototype
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RMI and other

overhead

PCM Instance

Figure 9.11.: Inclusion Strategy Using ProtoCom and Source Code-base Multicore

CPU Simulators [Gra18]

9.5.1. Removal of Java RMI Communication

Removing the Java RMI communication from the ProtoCom performance

prototype meant a manual adaptation of the generated source code and the

elimination of all the features coming with Java RMI calls (e.g., the simulation

of distributed systems).

However, this step is necessary, because all the remaining CPU simulators

(which support Java �les) were not able to successfully run RMI calls. The

underlying engines Jikes RVM or Maxine VM do not support Java RMI calls,

and even with the help of the engine developers, we were not able to include

this feature in a reasonable amount of time. Thus we have to remove all RMI

calls to proceed.

To still be able to run the prototype, we unravel the RMI communication

stack trace and include a new class calling the required methods not via

method invocation, but by simply calling the required method in the speci�c

order (for further implementation details, please see Appendix A.6.2).

The removal of the RMI calls is only possible due to our simple use case, and

would result in a complex task for larger, distributed, or more advanced use

cases.
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9.5.2. ProtoCom Calibration

To be able to run the simulations locally but still get the correct results

for the target system, we �rst need to calibrate the ProtoCom performance

prototype.

Therefore, we execute a calibration run, which includes the simulation of a

Java prototype. The prototype performs a �xed number of, e.g., Fibonacci

demand operations on the target system. We use the measurements to create

a calibration table. With the help of the calibration table, we are now able

to execute the simulations locally, while getting the correct results for the

target system.

9.5.3. Discussion

In the above sections, we have sketched a method to use a PCM instance as

input for ProtoCom, generate a runnable performance prototype, and use

the prototype as input feed for multicore CPU simulators.

However, this process is not straightforward, contains a lot of manual adap-

tations, and only works for speci�c use cases. One of the major drawbacks is

the lack of support for Java RMI calls by the CPU simulator’s engine. Further,

the bene�t of the simulator itself is questionable, since only two simulators

(MaxSim/zsim and Tejas) support Java applications at all, and their accuracy

(11.2% and 18.77%) is medium for real applications, which means we can

assume that the accuracy drops even further when generating performance

prototypes out of abstract architectural models.

Nevertheless, we were able to sketch the process of including CPU simulators

into the Palladio process, and therefore successfully answered 𝑅𝑄𝑠𝑖𝑚3.

9.6. Execution and Use Case Evaluation

To answer the �nal research question 𝑅𝑄𝑠𝑖𝑚4, we perform a use case eval-

uation of the source code-based approach using the multicore simulator
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MaxSim. All results, con�guration �les, Docker containers, and measure-

ments are publicly available
13
.

9.6.1. Use Case and Process

As a use case, we use a complex example of the bank account use case (see

Section 5.2.1). We decide to use this example for multiple resources:

1. We performed a performance prediction of this use case and received

a very poor accuracy of 63% for 16 cores in [FSH17].

2. We assume the reasons for this poor accuracy lie in the complex

interaction of di�erent PPiFs, which CPU simulators are supposed to

handle well.

3. With an error of 11.2%, the use of MaxSim should signi�cantly

improve the accuracy of the predictions.

The process we follow to evaluate the CPU Simulator approach is straight-

forward. We use the measurements taken in [FSH17] as ground truths. This

gives us (a) the measurements from implementation and execution of the

use case, (b) the results of the Palladio simulation, without any extensions,

and (c) the PCM models for the use case.

In the next step, we use the PCM models to generate the performance pro-

totype using ProtoCom. Next, we adopt the prototype as described above,

remove all RMI calls, and perform the ProtoCom calibration process to run

the simulations for the target system locally. After that, we feed the pro-

totype to the MaxSim simulator, and �nally, we compare the results from

the simulator to the measurements and Palladio simulation results from

[FSH17].

9.6.2. Setup

The setup phase contains two actions: the setup of the simulator and the

calibration of ProtoCom.

13https://zenodo.org/badge/latestdoi/282948837
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9.6.2.1. MaxSim Setup

During the setup, we have to con�gure the CPU simulator. The con�guration

includes specifying the characteristics of the CPU architecture. The listing

in Appendix A.9 shows the full con�guration �le for MaxSim. It includes the

speci�cation of the L1, L2, and L3, as well as the speci�cation of the number

of cores and clock rates.

9.6.2.2. ProtoCom Calibration

To calibrate the local ProtoCom instance for the target system, we created a

sample calibration project with a synthetic ProtoCom resource demand (e.g.,

calculating Fibonacci numbers). In this project, we speci�ed the number

of calculation iterations to 1, 000, 000, 000 and executed the project on the

target system. The execution takes around 25.7𝑠 (see Appendix A.6.4 for

more detailed information).

With this information, we can adjust the ProtoComs calibration table and

include the information into the performance prototype.

9.6.3. Execution &Measurements

Due to a version change in Palladio and Java, we re-executed the simulations

with Palladio using the same values and experiment setup as in [FSH17]. We

get the same results and continue with the execution. Unfortunately, we are

not able to re-run the experiments on the hardware, since it is not available

any more. Therefore, we have to rely on our previous measurements.

Table 9.2 shows the measurements from [FSH17], the simulation results using

SimuCom, and the simulation results usingMaxSim for one to sixteen worker

threads. The upper part of the table contains the result for 500 transactions

(small use case) and the lower part the results for one million transactions

(large use case).

Further, Figure 9.12 visualises the results using bar and scatter charts.
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9. CB4: CPU Simulators

(a) Small Use Case (b) Large Use Case

Figure 9.12.:Chart based visualisation of the measurements for small and large use

cases

9.6.4. Discussion

Given the results of the experiment, the �rst thing to notice is the overall

poor accuracy of MaxSim. Even for sequential scenarios, the results are

very inaccurate. Overall, MaxSim performs a lot better for the small use

case (accuracy up to 76%), but performs very poorly for the large use case

(accuracy up to 2.50%). Hence, we can answer the question 𝑅𝑄𝑠𝑖𝑚4 and are

not able to provide more accurate results with the use of CPU simulators.

248



9.6. Execution and Use Case Evaluation

Second, we noticed as—pointed out in [FSH17]—the super-linear speedup of

real execution for two and four worker threads.

Third, when looking at the speedup behaviour (cmp. Figure 9.12) we can see

that the CPU simulator captures the behaviour of the real application, but is

o� by a factor of 10 to 20. In contrast, we see that SimuCom applies a linear

speedup.

To wrap it up, CPU simulators are used to benchmark a CPU architecture

design. To do so, they give very detailed information on the behaviour

and characteristics of a CPU. In the past, they were able to show that they

work with high accuracy. However, to work properly, they need detailed

information and runnable source code. So we assume that the reasons we

got such inaccurate results are the following:

Missing Model Information: Palladio is used to analysing software architec-

tures. Therefore, they rely on an abstract design of software, hard-

ware, and user behaviour. These models abstract a lot of detailed

information. The absence of this information can highly in�uence the

performance prototype and therefore, the multicore CPU simulator.

Besides, we do not model any multicore speci�cs in Palladio.

Simplified Model: To be able to create architectural models in Palladio, it

is often necessary to abstract. Even if we have a correct source code

implementation, we are going to lose information in the process of

model creation.

Use Case: We chose the bank account use case, as it seemed suited for this

approach, even though we pointed out the challenges in modelling

this use case in Palladio and running it using ACTORS or OpenMP in

[FH16; FSH17]. In retrospect, the selection of another use case or a

parallel performance benchmark would have been more appropriate.

Measurements: Since the hardware we used in the beginning became in-

accessible, we had to trust the previous measurements, and could

not validate them. From the time the measurements were taken until

the simulations were carried out, dependencies and the Java version

changed, which could have in�uenced the outcome.

Incomplete CPUModel: CPU simulators are based on complex CPU models.

For each CPU, we had to create the model by ourselves, due to the
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absence of precon�gured models. This process is time-consuming

and prone to errors. Small changes can lead to signi�cant changes

in the simulation results. To avoid errors, we used the information

provided by the CPU vendors and tried our best to create accurate

CPU models.

Artificial Load: The CPU load generated by ProtoCom is arti�cial. ProtoCom

supports �ve di�erent types. In our case, we used the default setting

and created the performance prototype with a Fibonacci demand.

Each demand has speci�c characteristics (processor intensive vs. I/O

intensive). However, for the complex use case, a single demand type

might be not su�cient.

9.7. Summary of CB4

In this chapter, we discussed the possibilities to integrate multicore CPU

simulators, used by hardware engineers, into the Palladio approach. To do

so, we �rst executed a structured literature review to �nd the current state

of the art in CPU simulators. Next, we evaluated each CPU simulator, carved

out its strengths and weaknesses, presented the results in an overview table

(see Section 9.1), and showed how they can be used by SA for performance

predictions. In a second step, we sketched out the integration process of

both trace-driven and source code-driven CPU simulators into the Palladio

work�ow.

Finally, we implemented and executed the source code-driven approach by

using the CPU simulator MaxSim. Unfortunately, the results we received

were very inaccurate and performed on average even worse than before. In

the above section, we discussed the reasons for the inaccuracy. Two reasons

we think have the most substantial in�uence are (a) the example use case

used, and (b) the abstract input model.

When continuing the research, we �rst need to evaluate the results by the

use of a second scenario. Further, we will try to use another CPU simulator

based on another engine (Jikes RVM vs. Maxine VM). However, there is an

even more signi�cant challenge to face. All of the CPU simulators we tested

cannot handle any Java �les built with Java 1.8 or above. This technical
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limitation and the fact that the CPU simulator engine cannot simulate Java

RMI calls makes it close to impossible to continue research at the moment.

In conclusion, we answer our research questions (see Chapter 3) as follows:

𝑅𝑄4.1: CanCPUSimulators be used by software architects to eval-
uate the response time of parallel architectural designs?

Answer: We were able to show that it is possible to transform the architec-
tural models into a performance prototype, which we again can use
as input for multicore CPU simulators to determine the response or
execution time of a parallel application.

𝑅𝑄4.2: How would the integration of CPU simulators alter the
process of performance predictions?

Answer: In Section 9.3 we sketched two approaches to include CPU simu-
lators into the performance prediction work�ow: (1) a trace-driven
approach, (2) a source code-driven approach. In both cases, we use
the PCM without additional information as a starting point. Next,
we transform the PCM by the use of solvers either into a trace�le
or a performance prototype, which we �nally use as input for the
multicore simulators.

𝑅𝑄4.3: Does the use of CPU Simulators increase the performance
prediction accuracy for parallel applications in multicore envi-
ronments?

Answer: We implemented the source code-driven approach to evaluate
the accuracy of the performance prediction using multicore CPU
simulators. Thereby, we used a complex use case example, the Bank
Transaction Example (see Section 5.2.1). The prediction accuracy of
this approach for the given example was very inaccurate, with an
accuracy from 2.50% to 15.29%, and up to 54% worse than the pure
Palladio approach.
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Therefore, we have to reject our hypothesis 𝐻4: CPU simulators—used in
other domains (e.g., hardware vendors)—can help to improve the predictions
for parallel applications on multicore CPUs.
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10. Evaluation

In the previous four chapters, we presented in detail the four contributions

of this thesis. Along with a detailed description, we provided an extensive

discussion about the bene�ts and limitations, and evaluated each contribution

individually. In this chapter, we pick up our overall research goal (see Chapter

3), show how the contributions can be combined, give an overview of the

research questions we answered, and show the contribution of this work

given the requirements from Chapter 1.

10.1. Combination of Contributions

Even though we previously considered each contribution individually, a

combination of the contributions is possible and even desirable. Thus, we

will discuss whether and how a combination is possible.

10.1.1. Combination of CB1

In CB1 (Chapter 6) we researched the capabilities of the PCM language

to express parallel behaviour. As a result, we provide a lightweight meta-

model extension using the AT method and provide a pattern catalogue to

quickly include common parallel patterns into the software models. The

main characteristic of the lightweight extension is that we do not alter the

core meta-model, and can map all new language elements to already existing

ones. Thus, we ensure that all existing simulators and extensions can still

handle the models. Further, this makes it theoretically possible to combine

the parallel architectural pattern catalogue with all the other contributions.

In the following, we brie�y sketch what a combination would look like.
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Combination with CB2 In CB2 (Chapter 7) we researched the behaviour of

parallel applications and the in�uence of PPiFs on performance. Further, we

extracted performance curves to capture the characteristics of di�erent types

of resource demands. We included the performance curves into Palladio to

enable the SA to increase the performance prediction without modelling the

characteristics of parallel applications in detail.

In Section 7.6, we show how we integrated the performance curves into

Palladio using the parallel pattern catalogue. Thus, this indicates that the

combination of the two contributions is not only easily possible, but is even

necessary in order to use the performance curves in Palladio.

Combinationwith CB3 In CB3 (Chapter 8) we extended the PCM to include

memory architectures of CPUs into the PCM. Thereby, we extended the

software and hardware models, as well as the simulator SimuLizar.

For a combination of CB1 and CB3, we have to have a detailed look at the

SEFF diagram: To consider memory accesses, we altered the internal action

element so that we can specify the memory access needed. To successfully

use the pattern catalogue in combination, we have to ensure that during the

QVT-o transformation (1) the internal action is copied with all attributes, and

(2) thememory access demand is adjusted for each copied instance. Currently,

the �rst requirement is ful�lled. The latter has not yet been implemented.

However, an adaptation is easily possible, if we assume that the total memory

access demand is spread equally amongst all threads, spawned by the parallel

AT.

Combination with CB4 In CB4, we present a prototype approach to use a

multicore CPU simulator as a solver for the PCM. Even though we achieved

predictions of low accuracy with CPU simulators, a combination of CB1 and

CB4 is possible without further actions.

As described in the Chapter 6 (CB1), we ensure that all solvers still work

due to the lightweight meta-models extension. Therefore, we can use both

sketched strategies (trace-based and source code-based) in combination with

the parallel pattern catalogue. Since the pattern catalogue focuses on the

softwaremodels, using the extensionwill lead to faster creation of themodels,

but will not a�ect accuracy.
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10.1.2. Combination of CB2

We can use the developed performance curves to adjust the performance

predictions, e.g., by adding additional resource demands to the model or by

calculating the di�erence to the linear speedup. To gain the performance

curves, we performed extensive experiments and used the measurements to

extract performance curves using linear regression. Thus, the performance

curves include a lot of implicit e�ects going on during parallel execution.

Given that, we have a look at the combination of the remaining two contri-

butions and discuss whether a combination makes sense.

CombinationwithCB3 While extracting the performance curves, we looked

at various attributes: Number of worker threads, number of physical and

virtual cores, performance (i.e., speedup), and the type of resource demand.

While using the measurements from the experiments to extract the per-

formance curves, we captured e�ects implicitly, such as synchronisation,

caching, or idling. Thus, a combination of the performance curves with the

memory bandwidth model is, in theory, possible.

In Section 8.5, we conclude that the cache-line memory model is the most

�tting one. In the following, we brie�y describe the results when combining

the cache-line model with the performance curves. Thereby we use the

matrix multiplication example as a reference use case. To gain the combined

values, we �rst simulate the cache-line model as described in Chapter 8.

Afterwards, we apply the performance curves manually, as described in

Section 7.5.5.

Figure 10.1 shows the prediction error when combining the cache-line model

with the matrix multiplication performance curve. Further, the �gure shows

the error for the di�erent hardware and use case settings.

In addition to that, the following Table 10.1 shows the mean prediction

error.

Looking at the pure values shows that the combined model works for the 40-

core system and the 96-core system. However, it brings an accuracy decrease

for the 12-core system. The interpretation of this observation is as follows:

the performance curve always assumes an additional overhead. In the case
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Figure 10.1.: Prediction Error for the Combined Approach: Matrix Multiplication

Performance Curves and Cache-line Memory Model

Mean Prediction Error

Server Experiment
Variation

Cache-
Line
[%]

Cache-Line +
Perf Curve
[%]

Improvement
[%]

3000x3000 15.30 43.53 -28.2312-Core
7000x7000 61.40 91.78 -30.38

3000x3000 15.80 11.83 3.9740-Core
7000x7000 29.80 21.82 7.98

3000x3000 37.90 24.14 13.7696-Core
7000x7000 37.50 22.34 15.16

Table 10.1.:Comparision of Cache-Line and Cache-Line with Performance Curvees

of the 12-core system, the cache-line model was already underestimating

performance. Thus, by adding the performance curve, we increased the

underestimation andmade the predictions worse. For the other two cases, the

opposite is true. The cache-line model overestimated system performance
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under test. So, by adding the performance curves, we added additional

overhead and increased the accuracy of the prediction.

In general, we do not suggest combining the memory model with the perfor-

mance curve. The main reason for this is that while taking the measurements

for the performance curves, we measured memory e�ects as well—even

though the measuring was implicit by measuring the overall performance.

Thus, both models, the performance curves and the memory model, include

memory e�ects. Combining them would mean taking this e�ect into account

twice. The increase in accuracy of the larger systems was only a lucky

coincidence resulting from adding to inaccurate prediction approaches.

Instead of a combination of the two approaches, we suggest investigating the

e�ects of PPiFs more in-depth, and making either approach more accurate.

Combination with CB4 More interesting is a combination of the perfor-

mance curves with the CPU simulator approach. Even though the perfor-

mance curves do include most characteristics we want the CPU simulators

to evaluate, we learned that our current input models are too abstract for the

multicore CPU simulators to provide accurate results. Here the performance

curves can give a boost. Using the performance curves with the parallel

architectural pattern catalogue will result in adding additional overhead as

internal action to the model.

Evaluating whether these models will result in more accurate predictions

using the multicore CPU simulators is an open task and remains for future

work.

10.1.3. Combination of CB3 and CB4

The remaining combination is the combination of the PCM extension for

memory hierarchies and the use of multicore CPU simulators.

Unfortunately, a combination is currently not possible, because neither the

SimCom solver (used for the trace-driven approach) nor ProtoCom (for

the source code-based approach) supports interpretation of the memory

hierarchy extension. Thus, there is no method to feed the memory models

into the CPU simulators.
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CB1 CB2 CB3 CB4
CB1 - X (X) X
CB2 X - X X
CB3 (X) X - 7
CB4 X X 7 -

X– is suitable

(X) – needs minor adaptation

7 – not supported

Table 10.2.: Summary of working combinations

Nevertheless, researching performance prototypes such as those created

by ProtoCom, which includes the information from the memory hierar-

chy model and therefore memory accesses and cache behaviour, sounds

promising and is an open challenge for future work.

To summarise the possible combinations, Table 10.2 gives an overview of

which combinations are suitable.

10.2. Research Goal Evaluation

In the introduction (see Chapter 1), we motivated the problem for perfor-

mance prediction arising from multicore CPUs and highly parallel software.

We identi�ed �ve requirements that we need to ful�l to enable accurate

performance predictions for parallel applications in multicore environments.

In Chapter 3, we de�ned the following research goal of this thesis:

Research Goal (𝑅𝐺): Improving the accuracy, usability, and applica-

bility of model-based QoS predictions concerning the performance of

parallel applications in multicore environments.

Next, we re�ned the requirements given the RG and raised four research

questions.
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In this section, we evaluate whether we achieved each research goal. There-

fore, we will �rst answer the research question, discuss whether the require-

ments were satis�ed, and �nally, assess whether the RG was achieved.

10.2.1. Answering the Research Questions

Because the research questions map to the contributions, each research

question has already been discussed in the corresponding chapter. Therefore,

we will not discuss them here again. However, in Appendix A.7, we provide

a condensed version of the questions and our answers.

10.2.2. Assess Requirement Fulfilment

After going through the research questions and their answers, we revisit

the following requirements we initially set up. In this step, we show which

contribution did ful�l the requirements. Also, we lay out open tasks and

challenges for future work.

10.2.2.1. Assess𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔

𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 : Software architects shall be able to express concurrency in soft-
ware models, which describe software behaviour. This includes highly
concurrent software, which can consist of multiple hundreds or even thou-
sands of concurrently executed threads.

With the help of the parallel architectural template catalogue (see Chapter 6),

we provide an easy-to-use approach for the SA to quickly include massive

parallel behaviour. Thereby, the parallel AT catalogue includes four abstract

design patterns. The SA can use the four patterns to model the behaviour of

32 out of 35 common parallelisation patterns we identi�ed in a structured

literature review.

Further, we introduced a PCM extension to enable the SA to specify the

memory accesses and memory data consumption (see Chapter 8).
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Open Tasks: The remaining three patterns are based on message passing,

which we have not yet considered. Therefore, two open tasks are: (1) include

message-passing concepts (e.g., MPI or Actors); (2) include inter-thread

communication. When designing the pattern catalogue, we focused on the

speci�cation of the thread behaviour. Up to now, we have not included

inter-thread communication, which can in�uence the software behaviour,

e.g., due to waiting conditions.

10.2.2.2. Assess𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑎𝑛𝑑 𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 : In case the single metric—CPU speed—is no longer su�cient
to cover all the performance relevant aspects for multicore systems,
the software architect shall be able to specify additional performance-
in�uencing factors (e.g., memory bandwidth, cache behaviour, or the
memory architecture) needed.

𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 : The performance prediction models shall include relevant
performance-in�uencing factors and re�ect the additional complexity.

To tackle this requirement, we provide two solutions strategies. First, we

extended the PCM to include the memory architecture (see Chapter 8). That

way the SA is now able to specify the L1, L2, L3, main memory, and memory

bandwidth in the hardware model. Further, he can de�ne the memory

accesses and memory consumption in the software model.

The second strategies are to use performance curves. The performance

curves we extracted from extensive experimentation (see Chapter 7) include

additional PPiFs in an abstract way. The SA can use one out of six pre-

de�ned performance curves to consider additional PPiFs in the performance

predictions.

Open Task: As shown in Chapter 8, considering memory architectures in

the performance predictions already helps improve accuracy. However, to

be even more precise, we need to consider additional metrics. So, open for

future work is investigating the PPiFs that have not yet been considered,

and stepwise including the most relevant ones.
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10.2.2.3. Assess𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠

𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 : The solvers, used to interpret and analyse the models, need to be
capable of processing and evaluating the adapted software, hardware, and
performance models.

In CB3 (see Chapter 8), we adopted the solver SimuLizar, in a way that the

solver can interpret and analyse the memory architecture model. For CB1

and CB2 no adaptation of the solver was required, since we did not alter the

PCM here.

Open Tasks: Currently there remains no open task here. If we tackle

the previously stated open task, we might need to reconsider altering the

solvers.

10.2.2.4. Assess𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 : The performance predictions need to align with the real and
measurable behaviour of the software to an extent that is useful for the
software architect.

In CB2, CB3, and CB4 we faced the requirement and aimed for an improve-

ment of performance predictions. With both CB2 and CB3 we can provide

an approach that greatly increases the accuracy of performance predictions

for parallel applications—up to 98% in the best case when using performance

curves, and up to 93% accuracy in the best case when using memory mod-

elling.

Open Task: Even though we can increase the predictions, there is still room

for improvement. On the one hand, we need to include further PPiFs into

the memory models and consider pre-fetching, inter-core communication,

and latencies. On the other hand, we need more �ne-grain performance

curves.
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10.2.3. Assess the Research Goal Fulfilment

Given the answers to the research questions and the requirement assess-

ment, we can state that this work has contributed to the improvement of

performance predictions for parallel applications in multicore environments.

Thereby we have provided better software (i.e., including memory accesses),

hardware (i.e., including memory hierarchies), and performance prediction

models (i.e., adopting SimuLizar, using CPU Simulators, and providing per-

formance curves). Further, we have contributed to the usability aspect by

providing a parallel architectural template catalogue.

Even though we have identi�ed several open questions for future work, we

did achieve our research goal, contribute to the domain of SPE, and enable

(and improve) performance predictions for parallel applications in multicore

environments.
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In the �nal chapter, we recap the most important insights given in the con-

tributions CB1 to CB4. Thereby, we brie�y summarise the method, �ndings,

and outcome. Further, in this chapter we discuss the open challenges and

remaining tasks for future work in detail. We do not discuss threats to va-

lidity separately. However, we did discuss the threats to validity for each

contribution in detail in the corresponding chapters, and refer to the sections

6.8 (CB1), 7.8 (CB2), 8.6 (CB3), and 9.6.4 (CB4).

11.1. Conclusion

Software-rich applications dominate our daily life more and more. These

applications ful�l complex and tasks critical to safety. Therefore, it is es-

sential that the application comply with high-quality standards and meet

SLO. To ensure high-quality standards, we have to develop software in an

engineering-like manner.

One aspect of software engineering is model-based performance prediction,

in which software architects model software architectures, enrich the models

with performance-relevant information, and use analytical or simulation-

based solvers to predict quality attributes, such as performance on architec-

tural drafts during the early design phase. Current state-of-the-art model-

based performance prediction approaches can give accurate predictions for

even complex systems. To do so, they consider the user’s behaviour, software

behaviour, and hardware characteristics. For the latter, they only consider

CPU-speed as a single metric.

However, modern processor architectures consist of multiple CPU cores,

complex memory architectures, and extensive optimisation mechanisms.

To fully utilise such multicore architectures, software developers have to
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develop the software in a parallel manner, which is even more complicated

and makes an engineering-like approach more relevant than ever. However,

since model-based performance prediction approaches only consider CPU

speed—which by now is no longer the only limiting factor—the accuracy

of predictions for parallel applications in multicore environments su�ers

greatly.

To support SA in making accurate performance predictions for parallel

applications, we researched applications for parallel performance predic-

tions in this thesis. Thereby we faced the requirements 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔, 𝑅𝑚𝑒𝑡𝑟𝑖𝑐 ,

𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 , 𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 , and 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (see Chapter 1).

As a contribution regarding the requirement 𝑅𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔, we present a paral-

lel performance pattern catalogue to the SA (see Chapter 6). The pattern

catalogue enables the SA to (a) specify the behaviour of highly parallel appli-

cations in software models, and (b) to reduce the time and e�ort needed.

As a contribution regarding the requirement 𝑅𝑚𝑒𝑡𝑟𝑖𝑐𝑠 , we present a memory

meta-model which includes the most relevant memory hierarchy character-

istics (see Chapter 8). Further, we included the meta-model as a meta-model

extension in the PCM, and provided graphical editors to the SA to model

memory hierarchies in the hardware model, and memory behaviour in the

software models.

As a contribution regarding the requirement 𝑅𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 , we present a set

of performance curves to the SA (see Chapter 7). The performance curves

re�ect the speedup behaviour of the six most common resource demand

types. Thus, with the help of the performance curves, the SA can consider

the speedup behaviour of a parallel application in the prediction models.

Thereby, the performance curves can be quickly added and provide a high-

level view of complex correlation.

As a contribution regarding the requirement 𝑅𝑠𝑜𝑙𝑣𝑒𝑟𝑠 , we extended a per-

formance prediction solver SimuLizar to interpret and analyse the memory

meta-model (see Chapter 8). Thus, we enabled the SA to analyse complex

memory hierarchies typical in multicore CPUs. Further, we give a proof-

of-concept approach on how to include CPU simulators in the work�ow of

performance predictions (see Chapter 9)

Finally, as a contribution regarding the requirement 𝑅𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , we evaluated

the performance curves, memory hierarchy modelling, and CPU simulators
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against various use cases. As a result, we are able to show that both the

memory hierarchy modelling and the performance curves contribute to the

predictive power. Thereby, both approaches contribute and work best in

speci�c scenarios. We can achieve an accuracy of up to 98% in the best case

when using performance curves, and up to 93% accuracy in the best case

when using memory modelling.

So, to wrap it up, we provide new tools to the SA’s silver box. These tools

enable him to model the behaviour of highly parallel systems in software

performance models, let him specify the characteristics of multicore en-

vironments in the hardware performance model, and give him enhanced

model-based performance solvers to achieve more accurate performance

predictions for parallel applications in multicore environments.

These tools help SAs to create and evaluate high-quality software architec-

tures, which meet the SLOs, already during the design phase.

11.2. Future Work

In the course of this thesis, we researched multiple approaches to enable

the software architect to better handle performance prediction for parallel

applications. Even though we answered all our research questions and made

a signi�cant step in the direction of requirements ful�lment, we also raised

new questions, research ideas, and an approach to be even better in the

sense of requirement ful�lment. In the following, we brie�y sketch the open

challenges left for future work. Thereby, we group the items according to

the contributions.

CB1: Parallel Architectural Template Catalogue In CB1, we researched the

modelling language capabilities regarding their suitability for similar be-

haviour. As a result, we introduced a parallel pattern catalogue based on the

AT method. In the �rst step, we only focused on thread-based patterns.

Thus, a challenge for future work is to investigate other patterns that also

represent parallelisation paradigms, such as message passing (e.g., MPI or

Actors).
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Futher, the current approach supports an abstract method to include the

overhead of parallel applications (e.g., forking or synchronisation). With

performance curves, we give the SA a tool to make the overhead estimation

simple. However, di�erent tool and language support is desirable to reduce

the abstraction level, and to make it more precise.

Additionally, the current approaches neglect inter-thread communication,

even though inter-thread communication is a relevant PPiF as well. Thus, an

additional challenge is to include concepts to simplify the complex patterns of

inter-thread communication, and to �t them into the modelling languages.

When it comes to evaluation, the empirical study already gives strong evi-

dence. However, further studies with larger sample sizes and more complex

use cases could help to collect additional insights.

CB2: Parallel Performance Curves In the evaluation of CB2, we saw that

performance curves already improve the predictive power of performance

prediction approaches. However, depending on the scenario, the prediction

error is still higher than our overall goal of 20%. Thus, we need to reconsider

the choice of PPiFs and the use of synthetic demands in future work. Fur-

ther, a more �ne-grained categorisation or other performance curves could

contribute to a better result.

Further, a model which allows the SA to specify the sequential and parallel

part of an application (e.g., following Amdahl’s law) and the speci�cation of

the I/O and processor-intensive share (e.g., a demand type which contains

20% of I/O-intensive and 80% of processor-intensive demands) would be

bene�cial for a better characterisation of resource demands.

Another aspect is evaluation. We evaluate the approach using the SPEC

benchmark, which covers a comprehensive set of representative demands.

However, using a real-world example, e.g., simulations for material science,

might o�er further insights.

CB3: Memory Model Extension for the PCM In CB3, we extended the PCM

to include memory hierarchies and memory behaviour. Due to the very

complex characteristics of memory behaviour, this is one of the most chal-

lenging endeavours. The approach we present in CB3 is a �rst step, in which
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we simpli�ed some of the complex interaction of hardware, software, and

controller.

By simplifying (abstracting) the memory e�ects, we did not consider data

locality, workload balance and NUMA nodes. To give an example for the

latter, each NUMA node has its own architecture, which is characterised by

a fast bandwidth. However, when accessing the data from another NUMA

node, another much slower bandwidth is used. This can greatly a�ect per-

formance. Next, we included the concept of latency in our models, but did

not further investigate latency e�ects in memory. We also did not explore

snooping or cache-coherency e�ects. Thus, by setting memory bandwidth

latencies and considering cache coherency e�ects, the performance predic-

tions could bene�t. Additionally, current CPUs use pre-fetchers to avoid

cache misses and to give performance boosts. We considered these e�ects in

the abstract form of cache hit rates, but a more proactive approach might

be needed. Finally, we have not yet combined the memory model with the

parallel AT catalogue. A combination would give the SA additional comfort

and freedom.

When it comes to evaluation, we conducted a level 1—proof of concept

evaluation—using one use case. This evaluates the memory model extension,

but the scienti�c power regarding the prediction accuracy is relatively weak.

Thus, further comparisons with more complex examples will help to make

more �ne-grained models, and give a better understanding of the predictive

power.

CB4: CPU Simulators In CB4, we adopted the Palladio Bench work�ow to

transform the PCM models in a running performance prototype, which we

then fed into multicore CPU simulators to gain more accurate performance

predictions. The approach seems very promising. However, the results we

achieved were often highly inaccurate.

A signi�cant challenge for future work is adaptability. Only a few CPU

simulators support native Java applications as input, and the ones that do

require a Java version below 1.8. This results in signi�cant compatibility

issues.
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11. Conclusion & Future Work

Nevertheless, we rate the insights we gained as very relevant. Therefore,

transferring the concepts from CPU simulators at least to some extent into

performance simulators, such as SimuLizar, sounds very promising.

Further, a factor involved in the low accuracy could be the simpli�ed PCM

models. Thus, including additional model elements, as we did in CB3, might

lead to better results when also adopting ProtoCom.

Also, the evaluation was carried out with a single use case, and served as

a proof-of-concept evaluation. We might achieve better results and further

insights by using additional use cases.
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A.1. Publications & Supervised Theses

In the context of this doctoral project, we published a number of peer-

reviewed publications including conference papers, journals, workshops,

and posters. Figure A.1 indicates (in blue) the publications for each area of

the thesis.
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Figure A.1.: Publications:[FBKK19; FH16; FH18; FHLB17; FKB18; FKHB19; FSH17;
GF19], Theses: [Det20; Gra18; Gre19; Gru19; Gru20; Söh18; Sta17; SWD19; Tru20;

Yoo19; Zah20]
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Further, a number of student thesis were supervised by the author of this

thesis. We highlight the supervised theses (in grey) and map each one to the

areas it addresses.

A.2. Implementations of Resource Demands in
Protocom

A.2.1. Fibonacci Numbers

In comparison to the example given in Chapter 5, Protcom uses an iterative

approach (see Lst. A.1). This implementation does not focus on a speci�c

Fibonacci number, but on the number of Fibonacci calculations performed

(given bei the iterationCount).

1 private long fibonacci(double iterationCount) {

2 long i1 = 1;

3 long i2 = 1;

4 long i3 = 0;

5 for (long i = 0; i < iterationCount; i++) {

6 i3 = i1 + i2;

7 i2 = i1;

8 i1 = i3;

9 }

10 return i3;

Listing A.1: Implementation of the Fibonacci demand in Protocom

A.2.2. Mandel Set

1 private void drawMandelbrot(long init) {

2 // Date d1 = new Date();

3 int n = (int) init;

4 float m = n;

5 int x, y;

6 for (y = -n; y < n; y++) {

7 // System.out.print("\n");

8 for (x = -n; x < n; x++) {

9 if (iterate(x / m, y / m) == 0) {

10 // System.out.print("*");

11 } else {

12 // System.out.print(" ");

13 }
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14

15 }

16 }

17 // Date d2 = new Date();

18 // long diff = d2.getTime() - d1.getTime();

19 // System.out.println("\nJava Elapsed " + diff / 1000.0f);

20 }

21

22 private int iterate(float x, float y) {

23 float cr = y - 0.5f;

24 float ci = x;

25 float zi = 0.0f;

26 float zr = 0.0f;

27 int i = 0;

28 while (true) {

29 i++;

30 float temp = zr * zi;

31 float zr2 = zr * zr;

32 float zi2 = zi * zi;

33 zr = zr2 - zi2 + cr;

34 zi = temp + temp + ci;

35 if (zi2 + zr2 > BAILOUT) {

36 return i;

37 }

38 if (i > MAX_ITERATIONS) {

39 return 0;

40 }

41 }

42 }

Listing A.2: Implementation of the Mandel Set demand in Protocom

A.2.3. Sorting Arrays

1 public SortArrayDemand(final int arraySize) {

2 super(-3, 0, 3, 10000, 50);

3 this.arraySize = arraySize;

4 this.values = new double[this.arraySize];

5 final Random r = new Random(SEED);

6 for (int i = 0; i < this.values.length; i++) {

7 this.values[i] = r.nextDouble();

8 }

9 }

10

11 public SortArrayDemand() {

12 this(DEFAULT_ARRAY_SIZE);

13 }

14

15 private void sortArray(final int amountOfNumbers) {

16 final int iterations = amountOfNumbers / this.arraySize;

17 final int rest = amountOfNumbers % this.arraySize;

18 for (int i = 0; i < iterations; i++) {
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19 final double[] lotsOfDoubles = getArray(this.arraySize);

20 Arrays.sort(lotsOfDoubles);

21 }

22 final double[] lotsOfDoubles = getArray(rest);

23 Arrays.sort(lotsOfDoubles);

24 }

Listing A.3: Implementation of the Sorting Array demand in Protocom

A.2.4. Calculate Prime Demand

1 private long calculatePrime(double numberNextPrimes) {

2

3 boolean isPrime = true;

4 long currentNumber = number;

5 long primesFound = 0;

6 long currentDivisor;

7 long upperBound;

8

9 while (primesFound < numberNextPrimes) {

10 // test primality of currentNumber

11 currentDivisor = 2;

12 upperBound = currentNumber / 2;

13 while ((currentDivisor < upperBound) && (isPrime)) {

14 isPrime = currentNumber % currentDivisor != 0;

15 currentDivisor++;

16 }

17 // count primes and continue

18 if (isPrime) {

19 primesFound++;

20 }

21 // prepare for next iteration

22 isPrime = true;

23 currentNumber++;

24 }

25 return currentNumber;

26 }

Listing A.4: Implementation of the Sorting Array demand in Protocom

A.2.5. Counting Numbers Demand

1 private void countNumbers(double countTo) {

2 for (long j = 0; j < countTo; j++) {

3 if (k > 100000) {

4 k = 0;

5 }

6 k += j;
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7 }

Listing A.5: Implementation of the Counting Numbers demand in Protocom

A.2.6. Matrix Multiplicationn Demand

1 private static final int DEFAUL_MATRIX_SIZE = 500;

2 private final double matrixA[][];

3 private final double matrixB[][];

4 private final int matrixSize;

5

6 public MultiplyMatrixDemand(int matrixSize) {

7 super(-3, 0, 3, 10000, 50);

8 this.matrixSize = matrixSize;

9

10 matrixA = new double[matrixSize][matrixSize];

11 matrixB = new double[matrixSize][matrixSize];

12

13 fillMatrixRandom(matrixA);

14 fillMatrixRandom(matrixB);

15

16 }

17

18 public MultiplyMatrixDemand() {

19 this(DEFAUL_MATRIX_SIZE);

20 }

21

22 private void multiplyMatrix(final long numberOfMultiplications) {

23 double resultMatrix[][] = new double[matrixSize][matrixSize];

24 long numberOfPerformedMultiplications = 0;

25

26 while (numberOfPerformedMultiplications < numberOfMultiplications) {

27 for (int i = 0; i < matrixA.length; i++) {

28 for (int k = 0; k < matrixB.length; k++) {

29 for (int j = 0; j < matrixA.length; j++) {

30 if(numberOfPerformedMultiplications < numberOfMultiplications) {

31 resultMatrix[i][j] = resultMatrix[i][j] + matrixA[i][k] * matrixB[k][j];

32 numberOfPerformedMultiplications++;

33 }else {

34 return;

35 }

36 }

37 }

38 }

39 }

40 }

Listing A.6: Implementation of the Matrix Multiplication demand in Protocom
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A.3.1. Blank User Study Leaflet—Group A
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re

 

s
y
s
te

m
. T

h
e
 re

s
o
u
rc

e
 e

n
v
iro

n
m

e
n
t w

h
e
re

 th
e
 s

y
s
te

m
 is

 d
e
p
lo

y
e
d
 h

a
s
 a

 

C
P

U
 w

ith
 a

 p
ro

c
e
s
s
in

g
 ra

te
 o

f 2
0
0
 a

n
d
 4

 n
u
m

b
e
r o

f re
p
lic

a
s
 a

n
d
 th

e
 w

h
o
le

 

s
y
s
te

m
 is

 d
e
p
lo

y
e
d
 o

n
 a

 s
in

g
le

 c
o
n
ta

in
e
r. In

 th
e
 u

s
a
g
e
 s

c
e
n
a
rio

, a
 s

in
g
le

 

c
a
ll o

f th
e
 s

e
a
rc

h
 m

e
th

o
d
 is

 s
ta

rte
d
 w

ith
 a

 c
lo

s
e
d
 w

o
rk

lo
a
d
 o

f o
n
e
 u

s
e
r a

n
d
 

n
o
 th

in
k
 tim

e
. 

 T
a

s
k

 A
 (S

ta
n

d
a

rd
 to

o
lk

it): 

In
 th

e
 p

ro
je

c
t th

a
t y

o
u
 re

c
e
iv

e
 e

v
e
ry

 d
ia

g
ra

m
 is

 c
o
m

p
le

te
 e

x
c
e
p
t th

e
 S

E
F

F
 

D
ia

g
ra

m
 o

f th
e
 b

a
s
ic

 c
o
m

p
o
n
e
n
t. Y

o
u
r ta

s
k
 is

 to
 c

o
m

p
le

te
 th

e
 S

E
F

F
 

D
ia

g
ra

m
.  

    

Q
u

e
s
tio

n
n

a
ire

 
  Q

u
e

stio
n

s re
gard

in
g U

se
 C

ase
 Sce

n
ario

 1
: 

4
. 

H
o

w
 w

o
u

ld
 yo

u
 rate th

e d
ifficu

lty o
f th

e task in
 U

se C
ase Scen

ario
 1

? 

very easy   □
  □

  □
  □

  □
  □

  □
   very h

ard
 

 
5

. 
H

o
w

 w
o

u
ld

 yo
u

 rate yo
u

r p
erfo

rm
an

ce regard
in

g th
e task in

 U
se C

ase 
Scen

ario
 1

? 

very slo
w

   □
  □

  □
  □

  □
  □

  □
   very fast 

 
6

. 
H

o
w

 w
o

u
ld

 yo
u

 rate th
e am

o
u

n
t o

f w
o

rk req
u

ired
 fo

r co
m

p
letin

g th
e task in

 
U

se C
ase Scen

ario
 1

? 

to
o

 little   □
  □

  □
  □

  □
  □

  □
   to

o
 m

u
ch

 

 
7

. 
H

o
w

 w
o

u
ld

 yo
u

 rate th
e u

sab
ility o

f th
e stan

d
ard

 to
o

lkit regard
in

g th
e 

m
o

d
elin

g o
f p

arallel b
eh

avio
rs an

d
 yo

u
r u

ser exp
erien

ce w
ith

 it? 

very b
ad

   □
  □

  □
  □

  □
  □

  □
   very go

o
d
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U
s
e

 C
a
s
e

 S
c
e

n
a

rio
s
 a

n
d

 M
o

d
e

lin
g

 T
a

s
k
s
 

 U
s

e
 C

a
s

e
 S

c
e

n
a

rio
 2

 
 S

ta
rt w

ith
 re

a
d

in
g

 th
e
 u

s
e
 c

a
s
e
 d

e
s
c
rip

tio
n

 a
n

d
 th

e
n

 p
ro

c
e
e
d

 w
ith

 th
e
 

ta
s
k
. 

 U
s
e
 C

a
s
e

 D
e
s
c
rip

tio
n

: 

T
h
e
 s

o
ftw

a
re

 in
 th

is
 u

s
e
 c

a
s
e
 is

 u
s
e
d
 in

 m
a
c
h
in

e
 le

a
rn

in
g
 in

 o
rd

e
r to

 s
p
e
e
d
 

u
p
 c

o
m

p
le

x
 c

a
lc

u
la

tio
n
s
. It m

u
ltip

lie
s
 tw

o
 1

6
x
1
6
 m

a
tric

e
s
 a

n
d
 th

e
 

m
u
ltip

lic
a
tio

n
 is

 e
x
e

c
u
te

d
 in

 p
a
ra

lle
l w

h
e
re

 e
a
c
h
 ro

w
 o

f th
e
 re

s
u
ltin

g
 m

a
trix

 

is
 c

a
lc

u
la

te
d
 in

 a
 s

e
p
a
ra

te
 th

re
a
d
. W

ith
 th

e
 g

iv
e
n
 s

iz
e
 o

f th
e
 m

a
tric

e
s
, th

is
 

re
s
u
lts

 in
 1

6
 th

re
a
d
s
. T

h
e
 s

o
ftw

a
re

 c
o
n
s
is

ts
 o

f o
n
e
 c

o
m

p
o
n
e
n
t a

n
d

 o
n
e
 

p
ro

v
id

in
g
 in

te
rfa

c
e
. T

h
e
 in

te
rfa

c
e
 d

e
c
la

re
s
 th

e
 m

u
ltip

ly
 m

e
th

o
d
 a

n
d
 th

e
 

c
o
m

p
o
n
e
n
t im

p
le

m
e
n
ts

 it. T
h
e
 m

u
ltip

lic
a
tio

n
 o

p
e
ra

tio
n
 fo

r o
n
e
 o

f th
e
 

re
s
u

ltin
g
 ro

w
s
 re

q
u
ire

s
 1

2
5
 C

P
U

 re
s
o
u
rc

e
s
. E

a
c
h
 th

re
a
d
 a

ls
o
 re

q
u
ire

s
 5

 

C
P

U
 re

s
o
u
rc

e
s
 fo

r th
e
 s

y
n
c
h
ro

n
iz

a
tio

n
 o

v
e
rh

e
a
d
 re

s
u
ltin

g
 fro

m
 th

e
 c

re
a
tio

n
 

a
n
d
 th

e
 s

ta
rt o

f th
e
 th

re
a
d
. E

x
a
c
tly

 o
n
e
 in

s
ta

n
c
e
 o

f th
e
 c

o
m

p
o
n
e
n
t a

n
d
 th

e
 

in
te

rfa
c
e
 a

re
 p

re
s
e
n
t in

 th
e
 s

o
ftw

a
re

 s
y
s
te

m
. T

h
e
 re

s
o
u
rc

e
 e

n
v
iro

n
m

e
n
t 

w
h
e
re

 th
e
 s

y
s
te

m
 is

 d
e
p
lo

y
e
d
 h

a
s
 a

 C
P

U
 w

ith
 a

 p
ro

c
e
s
s
in

g
 ra

te
 o

f 2
5
0
 a

n
d
 

4
 n

u
m

b
e
r o

f re
p
lic

a
s
 a

n
d
 th

e
 w

h
o
le

 s
y
s
te

m
 is

 d
e
p
lo

y
e
d
 o

n
 a

 s
in

g
le

 

c
o
n
ta

in
e
r. In

 th
e
 u

s
a
g
e
 s

c
e
n
a
rio

, a
 s

in
g
le

 c
a
ll o

f th
e
 m

u
ltip

ly
 m

e
th

o
d
 is

 

s
ta

rte
d
 w

ith
 a

 c
lo

s
e
d
 w

o
rk

lo
a
d
 o

f o
n
e
 u

s
e
r a

n
d
 n

o
 th

in
k
 tim

e
. 

 T
a

s
k

 B
 (P

a
ra

lle
l P

e
rfo

rm
a

n
c

e
 C

a
ta

lo
g

u
e

): 

In
 th

e
 p

ro
je

c
t th

a
t y

o
u
 re

c
e
iv

e
 e

v
e
ry

 d
ia

g
ra

m
 is

 c
o
m

p
le

te
 e

x
c
e
p
t th

e
 S

E
F

F
 

D
ia

g
ra

m
 o

f th
e
 b

a
s
ic

 c
o
m

p
o
n
e
n
t. T

h
e
 file

s
 re

q
u
ire

d
 fo

r th
e
 e

x
p
e
rim

e
n
t 

a
u
to

m
a
tio

n
 a

re
 a

ls
o
 c

o
m

p
le

te
. Y

o
u
r ta

s
k
 is

 to
 c

o
m

p
le

te
 th

e
 S

E
F

F
 D

ia
g
ra

m
 

a
n
d
 to

 a
p
p
ly

 th
e
 P

a
ra

lle
l L

o
o
p
s
 A

T
.  

   

Q
u

e
s
tio

n
n

a
ire

 
 

  Q
u

e
stio

n
s re

gard
in

g U
se

 C
ase

 Sce
n

ario
 2

: 

1
. 

H
o

w
 w

o
u

ld
 yo

u
 rate th

e d
ifficu

lty o
f th

e task in
 U

se C
ase Scen

ario
 2

? 

very easy   □
  □

  □
  □

  □
  □

  □
   very h

ard
 

 
2

. 
H

o
w

 w
o

u
ld

 yo
u

 rate yo
u

r p
erfo

rm
an

ce regard
in

g th
e task in

 U
se C

ase 
Scen

ario
 2

? 

very slo
w

   □
  □

  □
  □

  □
  □

  □
   very fast 

 
3

. 
H

o
w

 w
o

u
ld

 yo
u

 rate th
e am

o
u

n
t o

f w
o

rk req
u

ired
 fo

r co
m

p
letin

g th
e task in

 
U

se C
ase Scen

ario
 2

? 

to
o

 little   □
  □

  □
  □

  □
  □

  □
   to

o
 m

u
ch

 

 
4

. 
H

o
w

 w
o

u
ld

 yo
u

 rate th
e u

sab
ility o

f th
e P

arallel P
erfo

rm
an

ce C
atalo

gu
e     

regard
in

g th
e m

o
d

elin
g o

f p
arallel b

eh
avio

rs an
d

 yo
u

r u
ser exp

erien
ce w

ith
 

it? 

very b
ad

   □
  □

  □
  □

  □
  □

  □
   very go

o
d

 

 
 Q

u
e

stio
n

s re
gard

in
g th

e
 P

aralle
l P

erfo
rm

an
ce

 C
atalo

gu
e

: 

5
. 

 H
o

w
 w

o
u

ld
 yo

u
 rate th

e u
sab

ility o
f th

e P
arallel P

erfo
rm

an
ce C

atalo
gu

e in
 

co
m

p
ariso

n
 to

 th
e stan

d
ard

 to
o

lkit?  

                 □
  □

  □
  □

  □
  □

  □
 

 

   

sign
ifican

tly b
etter 

an
d

 easier th
an

 th
e 

stan
d

ard
 to

o
lkit 

w
o

rse th
an

 th
e 

stan
d

ard
 to

o
lkit 
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Q
u

e
s
tio

n
n

a
ire

 
 

 

6
. 

H
o

w
 w

o
u

ld
 yo

u
 rate th

e fo
llo

w
in

g statem
en

t:    

"Th
e P

arallel P
erfo

rm
an

ce  C
atalo

gu
e in

tro
d

u
ces a very sign

ifican
t sp

eed
-u

p
 

regard
in

g th
e m

o
d

elin
g o

f p
arallel b

eh
avio

rs." 

false
   □

  □
  □

  □
  □

  □
  □

   tru
e 

 
7

. 
W

o
u

ld
 yo

u
 reco

m
m

en
d

 th
e

 u
sage o

f th
e P

arallel P
erfo

rm
an

ce C
atalo

gu
e to

 
o

th
er u

sers o
f P

allad
io

? 

d
efin

itely n
o

   □
  □

  □
  □

  □
  □

  □
   d

efin
itely yes 

 Fin
al th

o
u

gh
ts 

8
. 

W
h

at d
id

 yo
u

 like ab
o

u
t th

e u
ser exp

erim
en

t? 

_____________
____

_____________
____

_____________
____

_____________
 

_____________
____

_____________
____

_____________
____

_____________
 

_____________
____

_____________
____

_____________
____

_____________
 

9
. 

W
h

at d
id

 yo
u

 n
o

t like ab
o

u
t th

e
 u

ser exp
erim

en
t?  

_____________
____

_____________
____

_____________
____

_____________
 

_____________
____

_____________
____

_____________
____

_____________
 

_____________
____

_____________
____

_____________
____

_____________
 

1
0

.   W
h

at w
o

u
ld

 yo
u

 im
p

ro
ve ab

o
u

t th
e P

arallel P
erfo

rm
an

ce C
atalo

gu
e? 

_____________
____

_____________
____

_____________
____

_____________
 

_____________
____

_____________
____

_____________
____

_____________
 

_____________
____

_____________
____

_____________
____

_____________
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C
o

n
tro

lled
 U

se
r Stu

d
y: U

sab
ility an

d
 Efficien

cy 

Evalu
atio

n
 o

f th
e

 P
aralle

l P
e

rfo
rm

an
ce C

atalo
gu

e
 

Exte
n

sio
n

 fo
r th

e
 P

allad
io

-B
en

ch
 

U
ser Stu

d
y Leaflet 

 G
en

eral In
fo

rm
atio

n
: 

In
 th

is exp
erim

en
t yo

u
 w

ill b
e m

o
d

elin
g p

arallel b
eh

avio
rs in

 P
allad

io
. Th

e 

exp
erim

en
t co

n
tain

s tw
o

 u
se case scen

ario
s an

d
 each

 sce
n

ario
 co

n
tain

s o
n

e 

m
o

d
elin

g task. Fo
r each

 task yo
u

 w
ill h

ave 3
0

 m
in

u
tes. In

 o
rd

er fo
r yo

u
r 

p
articip

atio
n

 to
 b

e su
ccessfu

l yo
u

 h
ave to

 w
o

rk o
n

 b
o

th
 tasks. Yo

u
 m

o
d

elin
g 

so
lu

tio
n

 is co
rrect w

h
en

 a sim
u

latio
n

 o
f th

e m
o

d
el starts an

d
 fin

ish
es su

ccessfu
lly. 

Even
 if yo

u
 are n

o
t ab

le to
 ach

ieve a w
o

rkin
g m

o
d

el in
 th

e given
 tim

e, yo
u

r 

su
b

m
issio

n
 still co

u
n

ts an
d

 yo
u

r p
articip

atio
n

 w
ill b

e co
u

n
ted

 as su
ccessfu

l. W
h

ile 

yo
u

 are co
m

p
letin

g th
e m

o
d

elin
g tasks, yo

u
r task co

m
p

letio
n

 tim
e, n

u
m

b
er o

f 

erro
rs, an

d
 tim

e sp
en

t in
 erro

rs w
ill b

e reco
rd

ed
 an

d
 n

o
ted

. A
t certain

 p
o

in
ts 

d
u

rin
g th

e stu
d

y, yo
u

 w
ill en

co
u

n
ter q

u
estio

n
s fro

m
 th

e q
u

estio
n

n
aire

 w
h

ich
 yo

u
 

h
ave to

 an
sw

er b
efo

re p
ro

ceed
in

g w
ith

 th
e n

ext task. 

 In
tro

d
u

cto
ry q

u
estio

n
s: 

1
. 

Yo
u

r cu
rren

t acad
em

ic d
egree is:      _____

_____________
____

________
 

 

2
. 

H
o

w
 w

o
u

ld
 yo

u
 rate yo

u
r exp

erien
ce in

 th
e field

 o
f p

erfo
rm

an
ce 

en
gin

eerin
g? 

n
o

n
e   □

  □
  □

  □
  □

  □
  □

   exp
ert 

 

3
. 

H
o

w
 w

o
u

ld
 yo

u
 rate yo

u
r exp

erien
ce w

ith
 P

allad
io

 b
efo

re th
e co

n
d

u
ctio

n
 o

f 

th
is exp

erim
en

t?  

n
o

n
e   □

  □
  □

  □
  □

  □
  □

   exp
ert 

C
o
n
s
e
n
t F

o
rm

 
  D

E
S

C
R

IP
T

IO
N

:  Y
o

u
 a

re
 in

v
ite

d
 to

 p
a

rtic
ip

a
te

 in
 a

 re
s
e

a
rc

h
 s

tu
d

y
 o

n
 d

iffe
re

n
t m

o
d

e
lin

g
 to

o
ls

 

in
 th

e
 P

a
lla

d
io

-B
e

n
c

h
 to

o
l.  

  T
IM

E
 IN

V
O

L
V

E
M

E
N

T
:  Y

o
u
r p

a
rtic

ip
a
tio

n
 w

ill ta
k
e
 a

p
p

ro
x
im

a
te

ly
 6

0
 m

in
u

te
s
. 

   D
A

T
A

 C
O

L
L

E
C

T
IO

N
: F

o
r th

is
 s

tu
d
y
 y

o
u
 w

ill m
o

d
e

l u
s
e
 c

a
s
e
 s

c
e

n
a

rio
s
 in

 P
a

lla
d
io

. D
u

rin
g

 th
e
 

m
o

d
e

lin
g
 p

ro
c
e

s
s
, m

e
tric

s
 s

u
c
h
 a

s
 ta

s
k
 c

o
m

p
le

tio
n

 tim
e

, n
u
m

b
e

r o
f e

rro
rs

 a
n
d

 tim
e
 s

p
e
n

t in
 e

rro
rs

 

w
ill b

e
 m

e
a
s
u

re
d
. A

ls
o

, y
o

u
 w

ill n
e
e

d
 to

 fill in
 a

 q
u
e

s
tio

n
n
a

ire
.  

  R
IS

K
S

 A
N

D
 B

E
N

E
F

IT
S

: N
o
 ris

k
 a

s
s
o
c
ia

te
d
 w

ith
 th

is
 s

tu
d
y
. T

h
e
 c

o
lle

c
te

d
 d

a
ta

 is
 s

e
c
u

re
ly

 s
to

re
d
. 

W
e
 d

o
 g

u
a
ra

n
te

e
 n

o
 d

a
ta

 m
is

u
s
e
 a

n
d
 p

riv
a

c
y
 is

 c
o

m
p

le
te

ly
 p

re
s
e

rv
e

d
. Y

o
u
r d

e
c
is

io
n
 w

h
e
th

e
r o

r 

n
o
t to

 p
a
rtic

ip
a
te

 in
 th

is
 s

tu
d
y
 w

ill n
o
t a

ffe
c
t y

o
u
r g

ra
d

e
 in

 s
c
h

o
o

l.  

   P
A

R
T

IC
IP

A
N

T
’S

 R
IG

H
T

S
:  If y

o
u
 h

a
v
e

 re
a
d
 th

is
 fo

rm
 a

n
d

 h
a
v
e

 d
e
c
id

e
d
 to

 p
a
rtic

ip
a
te

 in
 th

is
 

p
ro

je
c
t, p

le
a
s
e

 u
n
d

e
rs

ta
n
d

 y
o

u
r p

a
rtic

ip
a
tio

n
 is

 v
o

lu
n

ta
ry

 a
n
d

 y
o

u
 h

a
v
e

 th
e
 rig

h
t to

 w
ith

d
ra

w
 

y
o

u
r c

o
n

s
e

n
t o

r d
is

c
o

n
tin

u
e

 p
a
rtic

ip
a
tio

n
 a

t a
n

y
 tim

e
 w

ith
o

u
t p

e
n

a
lty

 o
r lo

s
s

 o
f b

e
n

e
fits

 

to
 w

h
ic

h
 y

o
u

 a
re

 o
th

e
rw
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A.3.3. Blank Measurement Protocol
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A.4. Additional Performance Factor Measurements

A.4.1. Speedup Behaviour

A.4.1.1. Server Potsdam Small

(a) Speedup Curve for all Demands Using Java Threads

(b) Speedup Curve for all Demands Using Pyjama (OpenMP)

Figure A.2.: Speedup for Threads and OpenMP [Gre19]
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A.4. Additional Performance Factor Measurements

(a) Speedup Curve for all Demands Using Java Streams

(b) Speedup Curve for all Demands Using AKKA Actors

Figure A.3.: Speedup for Streams and Actors [Gre19]
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A.4.1.2. Server Potsdam Large

(a) Speedup Curve for all Demands Using Java Threads

(b) Speedup Curve for all Demands Using Pyjama (OpenMP)

Figure A.4.: Speedup for Threads and OpenMP [Gre19]
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A.4. Additional Performance Factor Measurements

(a) Speedup Curve for all Demands Using Java Streams

(b) Speedup Curve for all Demands Using AKKA Actors

Figure A.5.: Speedup for Streams and Actors [Gre19]
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A.4.1.3. Multi Node Cluster – BW Cloud

(a) Speedup Curve for all Demands Using Java threads

(b) Speedup Curve for all Demands Using Pyjama (OpenMP)

Figure A.6.: Speedup for Threads and OpenMP [Gre19]
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A.4. Additional Performance Factor Measurements

(a) Speedup Curve for all Demands Using Java Streams

(b) Speedup Curve for all Demands Using AKKA Actors

Figure A.7.: Speedup for Streams and AKKA Actors [Gre19]
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A.4.2. Cache Behaviour

A.4.2.1. Uni Stuttgart – L2 Cache

(a) L2 Cache Behaviour for Pyjama (OpenMP)

(b) L2 Cache Behaviour for Java Streams

(c) L2 Cache Behaviour for AKKA Actors

Figure A.8.: L2 Cache Behaviour [Gre19]
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A.4. Additional Performance Factor Measurements

A.4.2.2. Uni Stuttgart – L3 Cache

(a) L3 Cache Behaviour for Pyjama (OpenMP)

(b) L3 Cache Behaviour for Java Streams

(c) L3 Cache Behaviour for AKKA Actors

Figure A.9.: L3 Cache Behaviour [Gre19]
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A.4.2.3. Server Potsdam Large – L2 Cache

(a) L2 Cache Behaviour for Threads

(b) L2 Cache Behaviour for Pyjama (OpenMP)

Figure A.10.: L2 cache behaviour for Threads and OpenMP [Gre19]
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A.4. Additional Performance Factor Measurements

(a) L2 Cache Behaviour for Java Streams

(b) L2 Cache Behaviour for AKKA Actors

Figure A.11.: L2 Cache Behaviour for Streams and Actors [Gre19]
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A.4.2.4. Server Potsdam Large – L3 Cache

(a) L3 Cache Behaviour for Pyjama (OpenMP)

(b) L3 Cache Behaviour for Pyjama (OpenMP)

Figure A.12.: L3 Cache Behaviour for Threads and OpenMP [Gre19]
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A.4. Additional Performance Factor Measurements

(a) L3 Cache Behaviour for Java Streams

(b) L3 Cache Behaviour for AKKA Actors

Figure A.13.: L3 Cache Behaviour for Streams and AKKA Actors [Gre19]
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A.4.2.5. Server Potsdam Small – L2 Cache

(a) L2 Cache Behaviour for Threads

(b) L2 Cache Behaviour for Pyjama (OpenMP)

Figure A.14.: L2 Cache Behaviour for Threads and OpenMP [Gre19]
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A.4. Additional Performance Factor Measurements

(a) L2 Cache Behaviour for Java Streams

(b) L2 Cache Behaviour for AKKA Actors

Figure A.15.: L2 Cache Behaviour for Streams and AKKA Actors [Gre19]
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A.4.2.6. Server Potsdam Small – L3 Cache

(a) L3 Cache Behaviour for Threads

(b) L3 Cache Behaviour for Pyjama (OpenMP)

Figure A.16.: L3 cache behaviour Threads and Streams [Gre19]
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A.4. Additional Performance Factor Measurements

(a) L3 Cache Behaviour for Java Streams

(b) L3 Cache Behaviour for AKKA Actors

Figure A.17.: L3 cache behaviour for Streams and AKKA Actors [Gre19]
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A.4.2.7. Multi Node Cluster (BW Cloud) – L3 Cache

(a) L3 Cache Behaviour for Threads

(b) L3 Cache Behaviour for Pyjama (OpenMP)

Figure A.18.: L3 Cache Behaviour for Threads and OpenMP [Gre19]
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A.4. Additional Performance Factor Measurements

(a) L3 Cache Behaviour for Java Streams

(b) L3 Cache Behaviour for AKKA Actors

Figure A.19.: L3 Cache Behaviour for Streams and AKKA Actors [Gre19]
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A.4.3. Performance Curves

A.4.3.1. Performance Curve for Dedicated Hardware

𝑓 (𝑥) for Stage
Demand Type 1 2 3

CountNumbers 0.438𝑥 −0.171𝑥 + 0.572 −0.0038𝑥 + 0.230

MatrixMultiplication 0.412𝑥 0.043𝑥 + 0.357 −0.0148𝑥 + 0.472

FibonacciNumbers 0.452𝑥 0.026𝑥 + 0.417 0.00341𝑥 + 0.456

PrimeNumbers 0.449𝑥 0.096𝑥 + 0.333 0.00140𝑥 + 0.536

SortArray 0.407𝑥 0.151𝑥 + 0.252 −0.0129𝑥 + 0.573

MandelSet 0.458𝑥 0.314𝑥 + 0, 206 0.00940𝑥 + 0.791

Table A.1.: Extracted Performance Curves for Dedicated Machines based on the

Speedup Behaviour of the Demands

A.4.3.2. Performance Curves for Virtualised Hardware
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A.4. Additional Performance Factor Measurements

𝑓 (𝑥) for Stage
Demand Type 1 2 3

CountNumbers 0.374𝑥 −0.052𝑥 + 0.445 −0.0002𝑥 + 0.336

MatrixMultiplication 0.334𝑥 0.0520𝑥 + 0.332 −0.0006𝑥 + 0.373

FibonacciNumbers 0.357𝑥 0.0096𝑥 + 0.359 0.03220𝑥 + 0.280

PrimeNumbers 0.353𝑥 0.0610𝑥 + 0.308 0.00322𝑥 + 0.425

SortArray 0.241𝑥 0.1480𝑥 + 0.095 0.01800𝑥 + 0.404

MandelSet 0.349𝑥 0.1830𝑥 + 0.184 0.00870𝑥 + 0.532

Table A.2.: Extracted Performance Curves for Virtualised Machines Based on the

Speedup Behaviour of the Demands
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A.4.4. Performance Prediction Error

(a) Prediction of the Palladio and Performance Curves in Compression to

the Measurements for the Best Case imagick

(b) Prediction of the Palladio and Performance Curves in Compression to

the Measurements for the Worst Case md
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A.4. Additional Performance Factor Measurements

(a) Prediction of the Speedup for the Approaches Palladio and Performance

Curves in Compression to the Measured Speedup for the Best Case imagick

(b) Prediction of the Speedup for the Approaches Palladio and Performance

Curves in Compression to the Measured Speedup for the Worst Case md
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A.5. Memory Hierarchy Models

A.5.1. Sirius Extension for Memory Hierarchy Model

Figure A.22.: Screenshoot of the .odesign File for the Memory Hierarchy [Tru20]
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A.5. Memory Hierarchy Models

Figure A.23.: Screenshot of the Memory Hierarchy Editor with Palette Showing

Elements That Can Be Added to the Diagram [Tru20]
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Figure A.24.: Screenshot of the Memory Hierarchy Editor with an Edit Dialog [Tru20]

Figure A.25.: Screenshot of the .odesign File for the Se�WithMemoryHierarchy View-

point [Tru20]
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A.5. Memory Hierarchy Models

Figure A.26.: Screenshot of the Sirius Viewpoint Setting with the Viewpoints SEFF

and Se�WithMemory-Hierarchy Activated [Tru20]
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A.5.2. CPU andMemory Demand Calibration

To get the pure CPU demand (without memory hierarchy demand), we

used the measurements we took from the sequential execution and the perf

measurements. The intension in extracting the pure CPU demand is, that

when considering the measurements from a sequential run, it contains both

the CPU demands and the memory hierarchy demand. So, if we had used

the measurements form a sequential run also for the multicore models, we

would have also considered memory hierarchy demands. Thus, by modelling

memory hierarchy demands explicitly—as we do in CB3—and not using the

pure CPU demands, we would have considered memory hierarchy demands

twice.

To extracted the pure CPU demands from the sequential measurements,

we use the perf measurements and calculate the demand by the following

formula:

𝐷𝑒𝑚𝑎𝑛𝑑𝐶𝑃𝑈 = 𝑡𝑖𝑚𝑒𝑠𝑖𝑛𝑔𝑙𝑒𝑇ℎ𝑟𝑒𝑎𝑑 − 𝑡𝑖𝑚𝑒𝑚𝑒𝑚𝑜𝑟𝑦𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 (A.1)

To estimate the 𝑡𝑖𝑚𝑒𝑚𝑒𝑚𝑜𝑟𝑦𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 we use two di�erent formulas: one for

non-cache-line models and one for cache-line models.

A.5.2.1. Memory Time for Non-Cache-Line Models

For non-cache-line models, we assume the transfer of Java integers. Thus,

we assume 4 bytes. We multiply the 4 bytes with the measured cache access

times (load-operations) from perf and divide it by the memory bandwidth.

The formula is the following:

𝑡𝑖𝑚𝑒𝑚𝑒𝑚𝑜𝑟𝑦𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 =(
𝑙𝑜𝑎𝑑𝑑𝑐𝑎𝑐ℎ𝑒 × 4

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿1
+ 𝑙𝑜𝑎𝑑𝐿2 × 4

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿2
+ 𝑙𝑜𝑎𝑑𝐿3 × 4

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿3
+ 𝑙𝑜𝑎𝑑𝐷𝑅𝐴𝑀 × 4

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐷𝑅𝐴𝑀

)
(A.2)

or:
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𝑡𝑖𝑚𝑒𝑚𝑒𝑚𝑜𝑟𝑦𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 =

4 ×
(

𝑙𝑜𝑎𝑑𝑑𝑐𝑎𝑐ℎ𝑒

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿1
+ 𝑙𝑜𝑎𝑑𝐿2

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿2
+ 𝑙𝑜𝑎𝑑𝐿3

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿3
+ 𝑙𝑜𝑎𝑑𝐷𝑅𝐴𝑀

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐷𝑅𝐴𝑀

)
(A.3)

A.5.2.2. Memory Time for Cache-Line Models

In case we consider cache-line models, we do not multiply with 4 bytes but

use the cache-line size. Only for the data transfer between the CPU registers

and the L1 cache we assume a lower data-rate of the actual values (i.e., 4

bytes integer). In all the hardware systems we consider the cache-line size is

64 bytes.

Thus, the following formula is used:

𝑡𝑖𝑚𝑒𝑚𝑒𝑚𝑜𝑟𝑦𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 =

𝑙𝑜𝑎𝑑𝑑𝑐𝑎𝑐ℎ𝑒 × 4

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿1
+ 𝑠𝑖𝑧𝑒𝑐𝑎𝑐ℎ𝑒𝐿𝑖𝑛𝑒

×
(

𝑙𝑜𝑎𝑑𝐿2

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿2
+ 𝑙𝑜𝑎𝑑𝐿3

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿3
+ 𝑙𝑜𝑎𝑑𝐷𝑅𝐴𝑀

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐷𝑅𝐴𝑀

) (A.4)
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A.5.3. Results HPI Small (12 Cores)
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A.5.4. Results HPI Large (40 Cores)
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A.5.5. Results Stuttgart (96 Cores)
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A.6. CPU Simulator

A.6. CPU Simulator

A.6.1. Extension Points to Connect Trace-drive CPU
Simulators to Palladio

A.6.1.1. SimCom Extension Point A

Listing A.7: de.uka.ipd.sdq.simucomframework.resources.ScheduledResource –

getScheduledResource()

1 private IActiveResource getScheduledResource(final SimuComModel simuComModel,

2 final String sensorDescription) {

3

4 IActiveResource scheduledResource = null;

5 // active resources scheduled by standard scheduling techniques

6 if (getSchedulingStrategyID().equals(SchedulingStrategy.FCFS)) ||

7 (getSchedulingStrategyID().equals(SchedulingStrategy.PROCESSOR_SHARING)) ||

8 (getSchedulingStrategyID().equals(SchedulingStrategy.DELAY)) {

9 ...

10 } else {

11 scheduledResource = getModel().getSchedulingFactory().createResourceFromExtension(

12 getSchedulingStrategyID(), getNextResourceId(), getNumberOfInstances());

13 }

14

15 if (scheduledResource instanceof SimuComExtensionResource) {

16 // The resource takes additional configuration that is available in the SimuComModel object

17 // As the scheduler project is currently SimuCom-agnostic, we use the

18 // SimuComExtensionResource class to initialize the resource wit a SimuCom-related object.

19 ((SimuComExtensionResource) scheduledResource).initialize(simuComModel);

20 }

21 return scheduledResource;

22 }
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A.6.1.2. SimuCom Extension Point B

Listing A.8: de.uka.ipd.sdq.simucomframework.ExperimentRunner – run()

1 public static double run(SimuComModel model, long simTime) {

2 // ...

3 setupStopConditions(model);

4

5 // measure elapsed time for the simulation

6 double startTime = System.nanoTime();

7

8 ISimulationControl simulationControl = model.getSimulationControl();

9 simulationControl.start();

10

11 return System.nanoTime() - startTime;

12 }
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ProtoCom: Java SE RMI
 Prediction Prototype  

RMI Registry Usage Scenarios System Container / Server 

Assembly Model Allocation Model Resource
Environment Usage Scenario 

PCM
Instance

Figure A.30.: PCM in�uence on the SE RMI Prediction Prototpye [Gra18]

Figure A.31.: Sequence Diagram for Initialisation and Assembly using RMI [Gra18]

A.6.2. SimulatorBuilder Class

A.6.3. MaxSim Config File

Listing A.9:MaxSim: Hardware Con�guration – 8Cores[Gra18]
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Figure A.32.: Sequence Diagram for Prototype without RMI [Gra18]

sim = {

maxTo t a l I n s t r s = 1000000000000 L ;

phaseLength = 1 0 0 0 0 ;

s t a t s P h a s e I n t e r v a l = 1 0 0 0 0 ;

po i n t e rTagg ing = t r u e ;

f f R e i n s t r umen t = t r u e ;

l o gT o F i l e = t r u e ;

} ;

sy s = {

c a che s = {

l 1 d = {

a r r ay = {

type = " Se tAssoc " ;

ways = 8 ;

} ;

c a che s = 8 ;

l a t e n c y = 4 ;

s i z e = 3 2 7 6 8 ;

} ;

l 1 i = {

a r r ay = {

type = " Se tAssoc " ;

ways = 4 ;
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} ;

c a che s = 8 ;

l a t e n c y = 3 ;

s i z e = 3 2 7 6 8 ;

} ;

l 2 = {

a r r ay = {

type = " Se tAssoc " ;

ways = 8 ;

} ;

c a che s = 8 ;

l a t e n c y = 6 ;

c h i l d r e n = " l 1 i | l 1 d " ;

s i z e = 2 6 2 1 4 4 ;

MAProfCacheGroupId = 0 ;

} ;

l 3 = {

a r r ay = {

hash = "H3 " ;

type = " Se tAssoc " ;

ways = 1 6 ;

} ;

banks = 8 ;

c a che s = 1 ;

l a t e n c y = 3 0 ;

c h i l d r e n = " l 2 " ;

s i z e = 3 3 5 5 4 4 3 2 ;

MAProfCacheGroupId = 1 ;

} ;

MAProfCacheGroupNames = " l 2 | l 3 " ;

} ;

c o r e s = {

ha swe l l = {

c o r e s = 1 6 ;

dcache = " l 1 d " ;

i c a c h e = " l 1 i " ;

type = "OOO" ;

} ;

} ;

[ . . . ]

l 3 = {

banks = 1 6 ;

c a che s = 1 ;

l a t e n c y = 3 0 ;

c h i l d r e n = " l 2 " ;

s i z e = 6 7 1 0 8 8 6 4 ;

} ;
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A.6.4. ProtoCom Calibration

Listing A.10:MaxSim: Calibration Run-Con�g [Gra18]

p r o c e s s 0 = {

command = " . / maxine / com . o r a c l e . max . vm . n a t i v e / g ene r a t ed / l i n u x /maxvm \

−XX:+ MaxSimExitFFOnVMEnter \

−XX:+ MaxSimEnterFFOnVMExit \

−XX:+ MaxS imPro f i l i ng \

−XX:+ MaxS imPr in tPro f i l eOnVMExi t \

−cp / us r / l o c a l / s r c / c a l i b r a t i o n T o o l . j a r

me . g r a e f . s e b a s t i a n . b a ch e l o r . t h e s i s . Main " ;

s t a r t F a s t F o rwa r d e d = t r u e ;

syncedFas tFo rward = " Never " ;

} ;

Listing A.11:MaxSim: Calibration Results [Gra18]

# zs im s t a t s

===

roo t : # S t a t s

c on t en t i on : # Conten t ion s imu l a t i o n s t a t s

domain −0 : # Domain s t a t s

t ime : 25707115262 # Weave s imu l a t i o n t ime

t ime : # S imu l a t o r t ime breakdown

i n i t : 5369536005

bound : 8900122799609

weave : 1629998320947

f f : 2072018500

[ . . . ]

phase : 5500137 # S imu l a t ed phases

ha swe l l : # Core s t a t s

haswe l l − 0 : # Core s t a t s

c y c l e s : 55001375142 # S imu l a t ed unha l t ed c y c l e s

[ . . . ]

haswe l l − 1 : # Core s t a t s

c y c l e s : 0 # S imu l a t ed unha l t ed c y c l e s

cCyc l e s : 0 # Cyc l e s due to c on t en t i o n s t a l l s

[ . . . ]
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A.7. Research Questions and Answers

Due to the fact, that the research question map to the contributions, we

already discussed each research question in the corresponding chapter of

the contribution. For the sake of better overview, we brie�y summarise the

outcome and answer to each research question in the following again.

A.7.0.1. 𝑅𝑄1: Modelling of parallel performance relevant behaviour in
massive parallel environments

𝑅𝑄1.1:Are software architects able to model even simple parallel
concepts of highly parallel systems in an e�cient way?

Answer: We could show during an empirical user study using a controlled
experiment, that current state of the art tool do not support SA in
en e�cient way.

𝑅𝑄1.2: Are software architects able tomodel the parallel software
behaviour of an application with the help of current modelling
languages, so that (a) the relevant performance characteristics
are captured and expressed, and (b) all necessary information
for performance evaluation is covered?

Answer: SA are currently not able to model (a) all relevant characteristics
of parallel software, which results in (b) inaccurate performance
predictions for parallel software in multicore enviorments.

𝑅𝑄1.3: How can software architects be supported by the task to
create accurate performance perdition models e�ciently?

Answer: By the help of a parallel AT catalogue SAs can be supported to
create performance prediction models faster and with a higher user
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acceptance (usability). Further they can use the concept of overhead
modelling to increase the accuracy of the predictions.

A.7.0.2. 𝑅𝑄2: Performance behaviour of highly parallel applications in
massive parallel environments:

𝑅𝑄2.1: How do highly parallel applications behave in massive
parallel environments (multicore systems) regarding response
time (speedup), memory access rates (L1, L2, L3, RAM usage),
and memory bandwidth utilisation?

Answer: In over 800 experiments we took 70,000 measurements. Thereby,
we monitored the response time and memory accesses of the systems.
Using these measurements we extracted the twelve performance
curves given in Table 7.3 to describe the behaviour.

𝑅𝑄2.2: What factors in�uence performance the most in highly
parallel applications?

Answer: In Table 7.1 we listed the top eight performance-in�uencing
factors we identi�ed by a structured literature reviews, expert in-
terviews, and the experiments.

𝑅𝑄2.3: Does the choice of parallelisation strategy have a signi�-
cant impact on behaviour?

Answer: The experiments show slight di�erences in the performance of the
individual parallelisation paradigms. However, these di�erences are
not signi�cation for all thread-based paradigms. The only paradigm
that diverges is the AKKA Actors implementation. Here we assume
issues in the coding of the framework.
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𝑅𝑄2.4: Do highly parallel applications show similar behaviour,
which can be described by one ormultiple performance curves?

Answer: In Table 7.3 we present performance curves for all the research
resource demands. We used linear regression to extract the curves
form the measurements. Thus, the curves describe the average
behaviour for each demand type on all the tested machines.

Finally, we can verify or falsify our hypothesis as follows:

𝐻2.1: The speedup and performance behaviour of highly paral-
lel applications depends heavily on the chosen parallelisation
strategy or paradigm.

Reject: The chose of the parallelisation strategy does not have a high
impact on the behaviour

𝐻2.2: The hardware architecture (e.g., number of CPU cores,
memory bandwidth, memory hierarchies) of the execution envi-
ronment has a strong impact on the performance of the parallel
applications.

Accept: We measured di�erences in the normalised speedup for all the
machines. Thus, they can verify that the hardware architecture has
an impact on the performance. The biggest noticeable di�erence is
between virtualised hardware and dedicated systems. Virtualised
hardware show worse performance.

𝐻2.3: The speedup of a parallel application is not only in�uenced
by the number of cores available in a system but also by addi-
tional hardware speci�c performance-in�uencing factors.

Accept: In Table 7.1 we listed the top eight performance-in�uencing factors
we identi�ed
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A.7.0.3. 𝑅𝑄3: Performance Prediction Models

𝑅𝑄3.1: Are current simulation-based performance prediction ap-
proaches capable of predicting the performance of parallel and
highly parallel systems accurately?

Answer: The experiments we performed in [FH16; FSH17] show that cur-
rent state of the art performance prediction approaches are up to 80%
o� when trying to predict the response-time for parallel applications
in multicore environments

𝑅𝑄3.2:If not, what are the missing characteristics of software be-
haviour that must be included in performance prediction mod-
els (performance-in�uencing factors)?

Answer: Table 7.1 shows the top eight most performance-in�uencing fac-
tors, we gained from a structured literature reviews, expert inter-
views, and experimenting.

𝑅𝑄3.3: Can modelling the additional performance-in�uencing
factors improve the overall accuracy of performance prediction?

Answer: We showed that booths, the use of performance curves, which
are an abstract representation of the PPiFs, and the modelling of
memory hierarchies help to improve the performance predictions
for parallel applications in multicore environments. Thereby we
achieve an accuracy up to 89% for certain scenarios. That result is
by 57% more accurate than the pure Palladio approach.
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A.7.0.4. 𝑅𝑄4: CPU Simulators

𝑅𝑄4.1: CanCPUSimulators be used by software architects to eval-
uate the response time of parallel architectural designs?

Answer: We were able to show, that it is possible to transform the archi-
tectural models into a performance prototype. Which we again can
use as input for multicore CPU simulators to determine the response
or execution time of a parallel application.

𝑅𝑄4.2: How would the integration of CPU simulators alter the
process of performance predictions?

Answer: In Section 9.3 we sketched two approaches to include CPU simu-
lators into the performance prediction work�ow: (1) a trace-driven
approach, (2) a source code-driven approach. In both cases we use
the PCM without additional informations as starting point. Next,
we transform the PCM by the use of solvers either into a trace-�le
or a performance prototype, which we �nally use as input for the
multicore simulators.

𝑅𝑄4.3: Does the use of CPU Simulators increase the performance
prediction accuracy for parallel applications in multicore envi-
ronments?

Answer: We implemented the source code-driven approach to evaluate
the accuracy of the performance prediction using multicore CPU
simulators. Thereby, we used a complex use case example the Bank
Transaction Example (see Sec. 5.2.1). The prediction accuracy of
this approach for the given example was with an accuracy from
2.50% to 15.29% very inaccurate and up to 54% worse than the pure
Palladio approach.
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Therefore, we have to reject our hypothesis 𝐻4: CPU simulators—used in
other domains (e.g, hardware vendors)—can help to improve the predictions for
parallel applications on multicore CPUs.
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