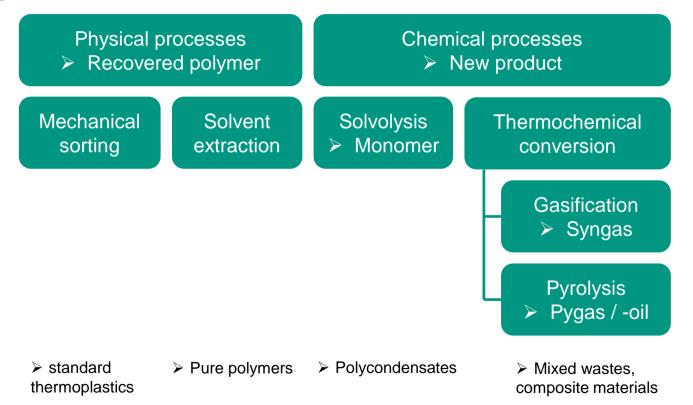


Chemical Recycling of Mixed Plastic Wastes

Dieter Stapf

59th Tutzing Symposium, October 26, 2021

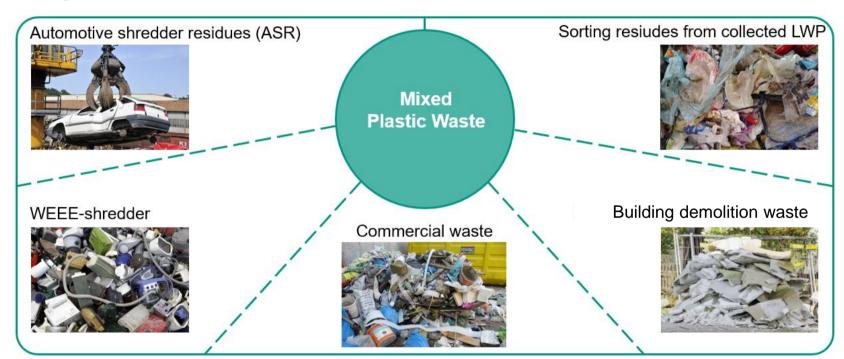
Plastics Production and Plastics Waste Generation


[million t / a]	EU 28+2*	Germany**	
Plastics production	61.8	19.9	
Plastics consumption	51.2	12.6	
Plastic waste	29.1	6.2	
- Landfill	7.2	< 0.1	
- Energy recovery	12.4	3.2	
- Recycling	9.4 (export 1.8)	2.9 (export: 0.6)	

^{*)} Lindner, C. et al.: Circular Economy of Plastics 2018 EU-28+2, Conversio Market & Strategy GmbH, Mainaschaff (2019)

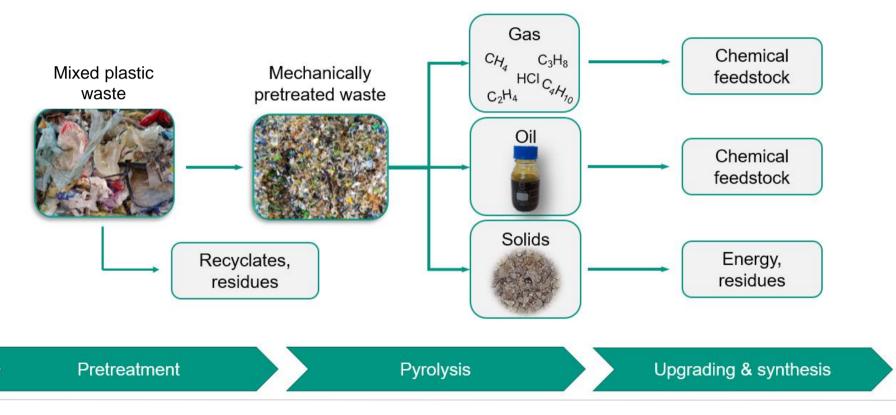
^{**)} Lindner, C., Schmitt, J.: Stoffstrombild Kunststoffe in Deutschland 2017, Conversio Market & Strategy GmbH, Mainaschaff (2018)

Recycling Processes for Plastic Waste and Key Products



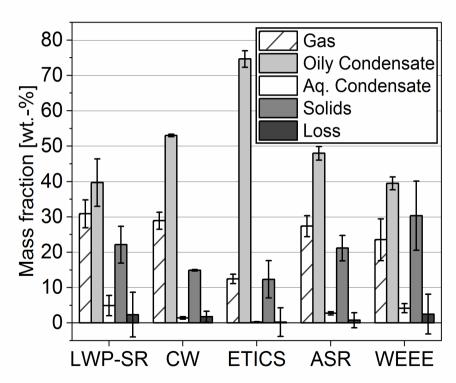
applied to:

Examples of Plastic Waste Produced


WEEE = Waste of Electrical and Electronic Equipment

LWP-SR = Sorting Residues from Light Weight Packaging Waste collected

ETICS = Thermal Insulation Compound System

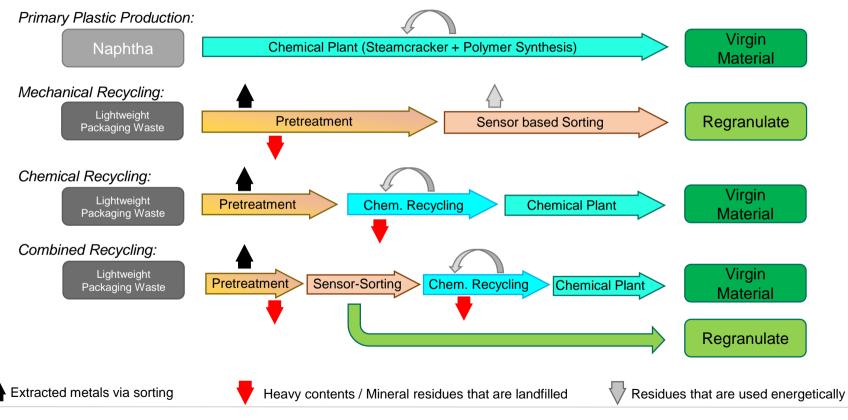

Recycling of Collected Plastic Waste - The Pyrolysis Value Chain Example

Pyrolysis Mass Balances

Zeller, M., et al.: Chemical recycling of mixed plastic wastes by pyrolysis. Chem. Ing. Tech. 2021, 93 (11), 1-9. https://doi.org/10.1002/cite.202100102

Carbon Recovery

Feedstock	Fraction of C-feed found back in oily condensate	
	[wt-%]	
LWP-SR	51.1	
CW	60.0	
ETICS (XPS)	74.6	
ETICS (EPS)	72.9	
ASR	57.5	
WEEE	60.5	



Feedstock	Energy demand for heating, melting, thermal degradation, evaporation		
	[% of feedstock higher heating value]		
LWP-SR	5.1		
CW	5.2		
XPS	4.9		
ASR	5.4		
WEEE	3.7		

Case: Recycling of Collected LWP-Waste

Comparison of Recovery Routes

LWP Waste Recycling Routes Compared to Primary Plastics Production of HDPE

Recycling scenario	Cost [€/kg _{Input}]	CED [MJ/kg _{Input}]	GWP [kgCO ₂ e/kg _{Input}]	Overall Carbon Recycled
Mechanical, 42% yield	-0.16	-18.1	0.2	42%
Mechanical, 22% yield	-0.08	-6.9	0.6	22%
Chemical recycling	-0.24	-15.9	0.3	59%
Combined recycling, mech. 42%	-0.29	-30.1	-0.2	74%
Combined recycling, mech. 22%	-0.25	-23.1	0.0	66%

Volk, R., et al.: Techno-economic Assessment and Comparison of Different Plastic Recycling Pathways - a German Case Study, Journal of Industrial Ecology, 2021, 1-20. https://doi.org/10.1111/jiec.13145

10

Conclusions

Technical assessment of combined mechanical and chemical recycling

Comparison of the production of plastics from fossil raw materials with the combined mechanical / chemical recycling of post-consumer waste, taking into account energy recovery

- **Costs:** Economic attractiveness of both, large scale mechanical and chemical recycling
- **Energy:** Mechanical and chemical recycling perform similar; advantageous over crude oil based products
- CO₂ emissions: Mechanical and chemical recycling perform similar; at high recycling rates advantegous over crude oil based products, today already
- Technology readiness: Scale-up and demonstration of feedstock recycling / virgin material recovery from mixed plastic wastes

11

Acknowledgement

Team KIT:

Institute for Industrial Production: Frank Schultmann, Christoph Stallkamp, Justus Steins, Rebecca Volk

Institute for Technical Chemistry: Hans Leibold, Niklas Netsch, Frank Richter, Dieter Stapf, Manuela Wexler, Savrina P. Yogish, Michael Zeller

Funded by:

12