
This is the accepted version of 10.1109/WF-IoT51360.2021.9595534. c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Evaluation of a Hypervisor-Based Smart Controller
for Industry 4.0 Functions in Manufacturing

Florian Schade∗, David Barton†, Jürgen Fleischer† and Jürgen Becker∗
∗Institute for Information Processing Technologies

†wbk Institute of Production Science
Karlsruhe Institute of Technology, Karlsruhe, Germany

Email: {florian.schade, david.barton, juergen.fleischer, becker}@kit.edu

Abstract—In machine tools, predictive maintenance and pro-
cess monitoring can help optimize the efficiency of production
systems by increasing machine availability, product quality, and
by early fault detection. When integrating new sensors to provide
data for such Industry 4.0 functions, the required interfaces and
processing capacity are not always available, especially when
upgrading existing production systems. An approach to face these
issues is the smart controller architecture for sensor integration
and data pre-processing. It uses a hypervisor to enable both fast
reaction to incoming data and the flexibility and driver support
of a Linux environment on a single platform. In this work, we
implement and evaluate this concept on a commercial off-the-
shelf (COTS) single-board computer in a real-world application.
We show how the platform can be used for the integration of a
state-of-the-art spindle monitoring sensor with an industrial edge
device. Finally, we investigate the achievable end-to-end latency
using the smart controller concept in comparison to a native
Linux setup both in general and with respect to the application.

Index Terms—edge computing, hypervisor, industrial control,
intelligent manufacturing systems, machine tools, monitoring,
predictive maintenance

I. INTRODUCTION

The fourth industrial revolution (Industry 4.0) and the
smart factory vision aim at enhancing automation, commu-
nication and monitoring of production systems to increase
their efficiency and flexibility. Common approaches to en-
hance efficiency include predictive maintenance and process
monitoring. Predictive maintenance is characterized by long-
term monitoring of sensor data and the detection of patterns
indicating the need for maintenance, for example by machine
learning methods. While not being time critical, complex data
processing software profits from the management features,
drivers, and modularity of general-purpose operating systems
(GPOS) such as Linux. Process monitoring, on the other hand,
is the online monitoring of the machining process. While the
computation often is less complex, a low latency between
sensor data capture and the monitoring system response is
highly relevant to enable functionality such as online process
optimization or failure detection and emergency shutdown.
When integrating the required sensors into new (greenfield)
or existing (brownfield) production systems, the required hard-
ware and software interfaces may not always be available.

To allow for low-effort adaption of interfaces, data pre-
processing, and for the integration of low-latency monitoring

functionality, a modular smart controller architecture for data
communication and computing has been proposed in [1].

In this work, we present how the smart controller concept
can be used on a commercial off-the-shelf single-board com-
puter for sensor integration in an industrial use case. We give
insight into the system and controller software architecture
and determine the achievable latencies both in the use case
and in a generic case. We evaluate end-to-end latencies, i.e.
the delay between an external input to the controller and the
corresponding output signal, thereby allowing for an estimate
of the performance in real-world applications.

II. RELATED WORK

Many researchers in the field of production science have
studied the integration of sensors into machine elements for
predictive maintenance and process monitoring, thus sensing
the condition of the machine and characteristics of the machin-
ing process. Recent examples include the use of an integrated
camera to determine the condition of ball screw drives by
Schlagenhauf et al. [2], the estimation of surface quality based
on acceleration measurements in a milling tool by Möhring et
al. [3], and the monitoring of tool wear using a combination
of vibration, cutting force, and power data by Zhang et al. [4].

In machine tools and other equipment for discrete manu-
facturing, the full potential of Industry 4.0 is far from being
achieved, as corresponding functions are often only found in
pilot projects and isolated systems [5]. Therefore, scalability,
ease of deployment, and reconfigurability are major challenges
on the path towards a wide application of digitization in in-
dustrial manufacturing, especially in the context of retrofitting
new functions to existing machines and within brownfield
factories. These challenges can be mitigated by designing
suitable architectures for data acquisition, communication, and
processing. The data processing required for Industry 4.0 func-
tions may be performed on an edge device [6], rely on cloud-
based computing, or be integrated in a seamless architecture
combining several computing domains as proposed by [7].
The choice depends on requirements including IT security,
protection of data and intellectual property (IP), data volume
and bandwidth, computing power, as well as latency. Barton
et al. [8] designed a retrofitting kit for Industry 4.0 functions,
in which the additional monitoring functions are installed as
applications on a separate edge computer. These applications

http://doi.org/10.1109/WF-IoT51360.2021.9595534


access data such as positions and motor currents from the
CNC unit (computer numerical control) via a local Ethernet
network in order to derive insights into the machining process
and display these in a web-based dashboard. Applications can
be installed and configured remotely thanks to a cloud-based
application management.

However, the most time critical functions, for example
an emergency stop on detecting a fault, are not covered by
the architectures described above. These require a dedicated
solution close to the field level of the Industry 4.0 architecture.
To allow for the integration of low-latency data processing
with a full-featured Linux OS environment on a single CPU,
a smart controller software architecture is proposed in [1]. It is
based on the Jailhouse hypervisor [9] to run both a Linux and
a real-time operating system (RTOS) in parallel and to isolate
them from each other. The proposed architecture is used and
evaluated in this work.

Previous performance evaluations involving hypervisors on
the Banana Pi were done by Toumassian et al. [10] and
Danielsson et al. [11]. Toumassian et al. evaluated the per-
formance overhead of hypervisors compared to a native Linux
setup. In their evaluation, the Jailhouse hypervisor shows the
lowest overhead at 0.04% while Xen hypervisor setups show
significantly higher values (21.6% and 7.4%, depending on
the scheduler). Danielsson et al. proposed a methodology
for quantifying the performance isolation between processor
cores. They use it to compare a Jailhouse-partitioned setup to
a Linux setup. Both investigate the overhead and isolation,
respectively, of hypervisors using Linux guests only and
did not consider mixed OS systems. In contrast, our work
evaluates the achievable latencies of a hypervisor-based mixed-
OS setup and compares them to a native Linux setup. Also, this
work is based on an industrial use case while the referenced
works use artificial benchmark applications.

While the smart controller concept proposes static separa-
tion of RTOS and GPOS, there are other approaches focusing
more on the dynamic and tight integration of real-time tasks
and best-effort Linux tasks. The Preempt-RT Linux patches
aim at making the Linux kernel itself real-time capable [12],
other approaches put all Linux threads under the control of a
supervising microkernel and thereby avoid extensive modifi-
cation of the Linux kernel itself. Examples are the RTAI [13]
and Xenomai [14] projects. An exemplary evaluation of such a
microkernel approach is presented in [15] where the interrupt
latency of an L4-microkernel-based system is shown. In these
cases, schedulers control the mixed execution of real-time and
best-effort tasks. Since we believe that a latency comparison
between static and dynamic approaches yields interesting
results, we evaluate the smart controller concept against a
Preempt-RT approach in Section IV-C.

III. USE CASE AND PROPOSED ARCHITECTURE

A. Industry 4.0 Testbed

Our approach is demonstrated on a Deckel Maho DMC 60H,
a machining center used for milling and drilling operations
in the manufacturing of metal parts, for example in the

machine building industry. Electric drives power the feed
axes responsible for moving the parts being machined and
the cutting tool. These drives and the necessary peripheral
equipment (e.g. tool change, clamping, coolant) are controlled
by a CNC unit, in this case a Siemens Sinumerik 840D sl. The
retrofitting kit for Industry 4.0, described briefly in Section II
and in more detail by Barton et al. [8], was implemented on
this machine. A Sinumerik Edge is used to run the retrofitted
local monitoring applications.

B. Retrofitting Industry 4.0 Functionality

To retrofit an overload detection and predictive maintenance
functionality to the main spindle of the machining center, a
new sensor shall be integrated, measuring spindle displace-
ment and tilt. This data can be used to derive the force
affecting the tool attached to the spindle.

The overload detection mechanism is intended to protect the
machine, especially the main spindle, and the workpiece from
damage. Overload may be caused by unintended contact with
obstacles (i.e. collision), unfavorable process parameters, or
previous damage to the tool. These conditions occur especially
frequently in the manufacturing of single parts or small series,
due to errors when programming tool paths or physically
setting up the machine (manual positioning of fixtures and
workpiece). Overload is characterized by the force affecting
the tool exceeding a defined threshold. Since this force is
related to the spindle displacement, for this evaluation this
can be reduced to a threshold comparison of the displacement
values. When an overload situation is detected, a machine
emergency stop shall be triggered. Since overload situations
are unexpected operating conditions which may cause damage,
the emergency stop needs to be triggered as soon as possible
after the beginning of the overload situation. As described in
[1], the acceptable latency is in the order of few milliseconds.

Predictive maintenance approaches such as a remaining
lifetime prognosis have more relaxed latency requirements.
Data may be acquired over long periods of time and then
analyzed offline or off-site (e.g. using cloud services).

The sensor to be integrated in our use case is the Schaeffler
SpindleSense sensor [16]. It measures axial and radial dis-
placements between a sensor ring attached to the spindle
housing and a measurement ring attached to the spindle shaft.
Its resolution is approx. 1 µm, measurement data is sampled at
1 kHz and provided via CAN bus (Controller Area Network).
Since neither the CNC unit nor the edge unit offers CAN
bus interfaces directly, a protocol conversion unit is needed.
While the sensor may provide internal data processing for
spindle monitoring, this is not used in our setup to maximize
flexibility.

C. Proposed System Architecture

Fig. 1 shows the overall system architecture of the ma-
chining center. The machine is controlled by a CNC unit as
described in Section III-A. It is connected to an industrial edge
unit via a local Ethernet network within the machine. The edge
device is connected to the shopfloor network and can be used



Fig. 1. Overall system architecture. Physical communication lines and buses
are depicted as dashed lines, logical communication links using arrows.
Communication links unrelated to the spindle sensor are marked gray.

to forward information to manufacturing execution systems
(MES) and cloud services.

The newly added spindle sensor is installed in the machine.
It is connected to a smart controller unit via CAN bus, which in
turn is connected to the machine-local Ethernet network and to
the machine control via a dedicated digital signal line to signal
an overload condition and thereby trigger an emergency stop.

The smart controller implements the protocol conversion
and data pre-processing to efficiently provide spindle sensor
data to the edge unit and runs low-latency data processing for
spindle overload detection. It checks for overload conditions
and sends a stop signal to the machine control when necessary.
In parallel, it filters and aggregates sensor data according to a
configuration received from the edge unit and then forwards
the aggregated data to that unit.

D. Proposed Smart Controller Architecture

Fig. 2 shows the smart controller hardware and software
components used to realize machine monitoring and data pre-
processing as well as their relation.

The Lemaker Banana Pi M1 single-board computer [17]
is used as hardware platform for the smart controller unit. It
features an Allwinner A20 SoC comprising two ARM Cortex-
A7 CPU cores, 1GB DDR3 RAM, and an integrated CAN
MAC peripheral among others. To interface the CAN bus, an
SN65HVD230 CAN transceiver is used.

As proposed in the smart controller concept, the Jailhouse
hypervisor is used to enable the concurrent execution of a
Linux OS (operating system) and the FreeRTOS real-time
OS (RTOS) and to control their access to system resources.
The OS run inside Jailhouse partitions, which are exclusively
assigned one CPU core each. Jailhouse is configured to grant
the RTOS partition exclusive access to the CAN controller,
the GPIO (general-purpose input/output) registers to issue the
stop signal, and to the respective registers of the clock control
units. For debugging and evaluation it is also granted access to
a UART peripheral (Universal Asynchronous Receiver Trans-
mitter) and further GPIO registers. Relevant CAN and UART
interrupts are routed to the RTOS partition. The remaining
hardware resources are assigned to the Linux partition. A
hardware timer module and memory for data exchange are
shared between the Linux and RTOS partitions.

In FreeRTOS, we implemented a CAN driver controlling the
Allwinner A20 CAN peripheral. A data acquisition task uses
it to receive CAN messages sent by the sensor. It parses the
sensor data, runs the overload detection, and then forwards

Fig. 2. Smart controller hardware/software stack. Arrows indicate component
usage.

it to the Linux partition. The overload detection signals an
overload condition if the spindle displacement in any direction
exceeds a defined threshold. In this case, a GPIO pin is set to
indicate the overload condition. This signal can be interpreted
by the machine control to stop the machine. Here, voltage
level shifting from the Banana Pi’s 3.3V levels to the machine
control digital I/O levels may be necessary. If the displacement
values along all axes are below the threshold, the GPIO pin
is reset, indicating normal operation.

Communication between the RTOS and Linux is realized
using a simplified variant of the RPMsg protocol. Our imple-
mentation is based on the RPMsg-Lite component [18]. It uses
shared memory for data exchange and the ivshmem interface
provided by Jailhouse to signal new data availability. The latter
is a virtual-PCI-based interface which can be used to trigger
inter-partition interrupts (IPI). On Linux, the data aggregation
application contains the RPMsg implementation and receives
these interrupts via the Linux Userspace I/O (UIO) drivers. It
then filters and aggregates the sensor data and then sends it
to the edge unit via Ethernet (ETH). The aggregation period
as well as filtering parameters can be defined by the edge unit
using configuration commands.

When combining information from multiple sources, e.g.
multiple sensors, data synchronization is important. Under
Linux, this can be achieved using clock synchronization proto-
cols such as NTP or PTP. In our setup, a common NTP server
is used for time synchronization between the edge unit and the
smart controller. However, since the sensor data is acquired by
the RTOS, time synchronization between Linux and RTOS
is needed. This is achieved by a shared hardware timer
unit serving as a common time base between the partitions.
Incoming sensor data is annotated with the timer value on
reception and then forwarded to Linux. There, the system-
wide sensor data timestamp is determined by considering the
offset between the current and annotated timer value.

IV. EVALUATION

One objective of this work is to determine the achievable
end-to-end latency of the smart controller concept on the
Banana Pi M1 platform. We used two scenarios for evaluation:

• Use-case-based evaluation: We measured the reaction
time of the smart controller unit in an industrial use case.



• Generic evaluation: We measured the reaction in a
simple, generic case and investigated the effect of system
load.

In both scenarios, the smart controller architecture is com-
pared to a native Linux approach where Linux is running
directly on the CPU without a hypervisor or RTOS.

A. Measurement Setup

To measure the reaction time of the smart controller, an
external measurement unit is used which generates input
signals to the smart controller and receives its output signal.
We use a Xilinx Zynq UltraScale+ ZCU102 evaluation board
comprising an FPGA, processor cores, hardware timer units,
CAN MAC peripherals, and a CAN transceiver, among others.
It supports 3.3V I/O and can thereby be connected directly
to the Banana Pi. The measurement unit is connected to the
smart controller CAN interface as well as to two digital I/O
lines as shown in Fig. 3.

B. Use-case-based Evaluation

To determine the end-to-end latency of the smart controller
in an industrial use case we connected the smart controller
unit to the measurement unit instead of the real spindle sensor
and machine control. The measurement unit simulates the
spindle sensor by sending CAN messages identical to the
sensor’s. For each measurement, the measurement software
first triggers the measurement unit’s CAN peripheral to send a
sensor message indicating displacement beyond the threshold.
The CAN peripheral confirms successful transmission by the
TXOK interrupt. In the corresponding interrupt handler of
the measurement software, a hardware timer is started. The
measurement software then polls the feedback line and stops
the timer when the signal value indicating overload is seen.
Based on the timer tick count, the delay is calculated.

To compare the smart controller concept against a native
Linux implementation, two setups were investigated:

• Smart Controller: The smart controller is implemented
as described in Section III-D.

• Native Linux: A native Linux implementation is used.
To make full use of the Linux features, a user space
application controls the GPIO pins, i.e. the stop signal,
using the libgpiod library. It uses the SocketCAN library
to interact with the CAN peripheral. Upon reception of a
CAN message, the threshold check is done and the stop
signal is set based on the result.

Table I shows the results of 1000 measurements. The smart
controller setup shows significantly lower latencies than the
Linux setup. This can be explained by the fact that the RTOS

Fig. 3. Measurement setup. Physical connections are depicted as gray dashed
lines, arrows indicate the data flow.

TABLE I
END-TO-END LATENCY FOR SENSOR CAN BUS MESSAGES,

1000 MEASUREMENTS PER SETUP

Evaluation Latency [µs]
Setup mean ± SD max min

Smart Controller 130± 8.3 182 125
Native Linux 12 107± 104 12 917 12 013

task has lower overhead when accessing GPIO and CAN pe-
ripherals due to less context switches and lean drivers as well
as less other threads waiting to be scheduled when compared
to a Linux user space application. For the Linux application,
these aspects together with context switches between kernel
and user mode, among others, lead to a high latency.

C. Generic Evaluation and the Effects of System Load

We compare the smart controller implementation to different
native Linux implementations concerning achievable latency
when reacting to external events and the influence of varying
load situations on this latency. A basic functionality is used
for this evaluation, serving as a generic, minimal example of
input data processing: As soon as a positive edge is received
on an external digital input line (TRIG line, e.g. from a light
barrier), a positive edge shall be output on an output line
(RESP line, e.g. the stop signal). While this functionality
would be redundant in most real-world applications, it serves
as a benchmark for the end-to-end latency caused by OS
overhead, scheduling effects, and hardware.

To measure the latency, the measurement unit sends a
positive edge on the TRIG line which is received by the
Banana Pi’s GPIO peripheral, triggering an interrupt. When
the edge is detected by the application software, i.e. the
interrupt handler is executed, it outputs a positive edge on the
RESP line. This is detected by the measurement unit, which
determines the delay between sending and receiving an edge.

For this evaluation a high precision measurement system
was used, realizing the measurement functionality in the FPGA
of the measurement unit. The measurement circuit consists of
a state machine, which is directly interfacing the measurement
lines and is controlling a counter. It is clocked at 500MHz and
therefore achieves a temporal resolution of 2 ns. To determine
the latency of the measurement system itself, the measurement
lines were connected directly to each other. This resulted
in a measurement of 18 ns and therefore can be neglected
given the measurement results. Using FPGA-based setups is
an established method for latency measurements in similar
applications, e.g. the OSADL Latency Box [19].

The following setups were evaluated:
1) Smart Controller: The smart controller implementation

as described in Section III-D. No CAN messages were
received during the measurement. An RTOS task is used
to monitor the TRIG signal and set the RESP signal.

a) The RESP signal is set directly in the IRQ handler.
b) The RESP signal is set by a high-priority RTOS

task which is woken by the IRQ handler.



TABLE II
END-TO-END LATENCY [µs] FOR DIGITAL INPUT SIGNALS, 1000 MEASUREMENTS PER SETUP

system idle system under load
mean ± SD max min mean ± SD max min

Smart Controller RTOS IRQ handler 89.3± 9.0 105.1 73.4 90.8± 14.4 264.2 70.4
RTOS task 136.3± 9.1 152.7 117.1 139.1± 20.3 543.3 118.1

Linux
IRQ handler 90.9± 9.9 213.7 73.0 101.8± 10.2 144.0 81.4

Threaded IRQ handler 138.0± 17.4 574.4 117.3 278.7± 139.4 1097.7 123.7
libgpiod 11 993± 287 20 430 11 888 179 289± 18 171 240 255 99 191

Linux (Preempt-RT) Threaded IRQ handler 158.6± 56.9 1928 121.3 165.5± 62.8 2093 107.9
libgpiod 27 593± 82.2 29 311 27 450 27 950± 208.9 29 882 27 510

2) Native Linux: Linux is running directly (natively) on
the CPU.

a) A kernel driver is used to monitor the TRIG signal,
the RESP signal is set directly in the IRQ handler.

b) A kernel driver is used to monitor the TRIG signal,
the RESP signal is set in a threaded IRQ handler.

c) A user space application is used to monitor the
TRIG signal and set the RESP signal. It uses the
libgpiod library to interact with the kernel’s GPIO
framework and its event loop to detect TRIG edges.

3) Native Linux (Preempt-RT): Linux with Preempt-RT
patches is running directly on the CPU. Implementa-
tions evaluated are the same as in setup 2. However,
implementation 2a could not be used with Preempt-RT
patches. It does not match the concept of Preempt-RT,
which includes handling IRQ handlers as threads.

We measured the latency with and without load on the
Linux OS for all setups. Load was induced using the
stress application [20]. To cause load on the CPU,
memory, and I/O, 10 workers spinning on a square root
function, 10 workers allocating and freeing 80MB mem-
ory each, and 10 workers causing I/O load by spinning
on sync() were launched using the parameters stress
-c 10 -m 10 --vm-bytes 80000000 -i 10.

Table II shows the results of 1000 measurements per setup
and load siuation. In idle state the smart controller imple-
mentations and Linux kernel module implementations show
similar latencies. For IRQ handler implementations they are
about 90 µs, for task/threaded IRQ handler implementations
about 137 µs. At the same time, the maximum latencies seen
for the smart controller setup are significantly lower than for
native Linux implementations (49% of the Linux latency for
IRQ, 27% for task/threaded IRQ).

Under high load, the mean latencies in the smart controller
setups increase just by few microseconds while for the Linux
kernel driver setups they increase by 12% (IRQ handler) and
102% (threaded IRQ). This may be caused by Linux kernel
code and modules which run in an IRQ context or disable
interrupts for some time, thereby postponing the reaction to
the TRIG signal. For threaded IRQs, delays may be explained
by additional scheduling overhead and other threads competing
for CPU time. Using Preempt-RT, a lower average latency can
be achieved under load.

Regarding the maximum latencies encountered during our
measurements, there where cases the smart controller setup
shows higher latencies than the native Linux setup. This was
seen for the IRQ handler implementations under load and
is reproducible. It may be caused by hardware specifics of
the Allwinner A20 chip. Follow-up experiments indicate that
this effect is related to the memory subsystem since it only
occurred when memory stress was involved. Without memory
stress, similar maximum latencies were measured.

As discussed in Section IV-B, there is a large difference in
latency when comparing user space implementations to smart
controller or Linux kernel module implementations. While
smart controller and kernel implementations lead to mean
latencies of approx. 90 µs to 160 µs without load and 90 µs
to 280 µs under load, user space implementations result in
latencies in the range of tens of milliseconds without load
and hundreds of milliseconds under load. Our experiments
show that using Preempt-RT patches significantly reduces
this impact of system load on user space implementations’
latencies, e.g. reducing their effect on the mean latency from
167ms to 357 µs.

V. DISCUSSION

Our evaluation shows that functionality realized in the
RTOS of the smart controller architecture shows significantly
lower reaction latencies than the same functionality imple-
mented as a native Linux user space application. This can be
explained by the overhead introduced by Linux. To avoid this
overhead, the functionality could be implemented as a Linux
kernel module. This allows for direct access to peripherals
without context switches between kernel and user mode and
leads to comparable latencies when the system is idle.

However, implementing functionality in the kernel allows
for full access to all memory in a native Linux setup, which
breaks memory isolation between applications running on the
CPU. This can be undesirable for security or IP protection
reasons, e.g. if software from different suppliers is integrated
in one system. Using a hypervisor enables the integration of
low-latency software in the RTOS partition while isolating it
from software running on Linux in kernel mode.

Under load, the smart controller concept leads to lower
average latencies when compared to Linux kernel module
implementations (50%–89% of the latencies measured using
native Linux). Soft real-time applications thereby profit from



the isolation provided by the hypervisor. However, RTOS
latencies are still influenced by the load on the Linux partition.
This is caused by interference between the CPU cores of the
hardware platform due to shared hardware ressources (e.g.
caches and buses). Follow-up experiments indicate that this
interference mainly coincides with memory load, indicating
that shared caches and memory buses may be a major cause.
This could be tackled at hypervisor level by applying cache-
aware techniques in memory partitioning, such as the cache
coloring approach presented in [21].

Regarding the industrial application, we presented an ar-
chitecture which we successfully used to integrate a spindle
sensor into an existing Industry 4.0 testbed (Section III). We
demonstrated in Section IV-B that the hypervisor-based archi-
tecture for the smart controller achieved an end-to-end latency
of 130 µs on average and at most 182 µs, while the native Linux
implementation had a latency of up to 12.9ms. Therefore,
the hypervisor-based architecture enables the requirements
of the application (reaction within few milliseconds) to be
met, unlike the Linux-based solution. The machining center
considered in this use case has a maximum travel speed
of 40m/min, under these conditions the maximum latency
corresponds to a traveled distance of up to 0.121mm in the
first setup and 8.61mm in the second setup.

VI. CONCLUSION

In this work we demonstrated how the smart controller
architecture proposed in [1] can be integrated in an indus-
trial use case. We then evaluated it both in this real-world
application and in a generic test to determine end-to-end
latencies to external events and compared this to native Linux
implementations. While the smart controller concept shows
significantly lower latencies when compared to native Linux
user space implementations of the same functionality, we
found that Linux-kernel-module-based implementations can
achieve similar mean reaction times as long as the system
is mostly idle. When the system is under load, however,
the smart controller approach shows lower mean latencies
compared to Linux kernel module implementations, making
it profitable for soft-real-time applications. Besides, while
the realization of functionality in kernel modules may break
application isolation requirements in native Linux setups, the
isolation between low-latency applications and others may
still be achieved when applying the smart controller concept.
For hard real-time applications, maximum latencies are rele-
vant. Here, the results are inconclusive concerning a potential
benefit of the smart controller concept over Linux kernel
module implementations. Therefore, next steps include further
investigation of the causes of interference between the CPU
cores on the hardware platform and the applicability of cache-
aware partitioning techniques.

ACKNOWLEDGMENT

This research and development project was funded by the
German Federal Ministry of Education and Research (BMBF)
under grant number 02P17X000. The I4TP project is managed

by the Project Management Agency Karlsruhe (PTKA). The
authors are responsible for the contents of this publication.

REFERENCES

[1] D. Barton, P. Gönnheimer, F. Schade, C. Ehrmann, J. Becker, and
J. Fleischer, “Modular smart controller for industry 4.0 functions in
machine tools,” Procedia CIRP, vol. 81, pp. 1331–1336, 2019.

[2] T. Schlagenhauf, C.-P. Feuring, J. Hillenbrand, and J. Fleischer, “Camera
based ball screw spindle defect classification system,” in Production at
the leading edge of technology, J. P. Wulfsberg, W. Hintze, and B.-A.
Behrens, Eds. Springer Berlin Heidelberg, 2019, pp. 503–512.

[3] H. C. Möhring, S. Eschelbacher, and P. Georgi, “Fundamental investiga-
tion on the correlation between surface properties and acceleration data
from a sensor integrated milling tool,” Procedia Manufacturing, vol. 52,
pp. 79–84, 2020.

[4] X. Y. Zhang, X. Lu, S. Wang, W. Wang, and W. D. Li, “A multi-sensor
based online tool condition monitoring system for milling process,”
Procedia CIRP, vol. 72, 2018.

[5] C. Schmitz, A. Tschiesner, C. Jansen, S. Hallerstede, and F. Garms,
“Industry 4.0: Capturing value at scale in discrete manufacturing.”

[6] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, “Edge
computing in iot-based manufacturing,” IEEE Communications Maga-
zine, vol. 56, no. 9, pp. 103–109, 2018.

[7] H. Mueller, S. V. Gogouvitis, A. Seitz, and B. Bruegge, “Seamless
Computing for Industrial Systems Spanning Cloud and Edge,” in 2017
International Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2017, pp. 209–216.

[8] D. Barton, R. Stamm, S. Mergler, C. Bardenhagen, and J. Fleischer,
“Industrie 4.0 Nachrüstkit für Werkzeugmaschinen: Modulare Lösung
für zustandsorientierte Instandhaltung und Prozessüberwachung [Indus-
try 4.0 retrofitting kit for machine tools: Modular solution for condition-
based maintenance and process monitoring],” WT Werkstattstechnik, vol.
110, no. 7-8, pp. 491–495, 2020.

[9] Jailhouse project. [Online]. Available: https://github.com/siemens/
jailhouse

[10] S. Toumassian, R. Werner, and A. Sikora, “Performance measurements
for hypervisors on embedded arm processors,” in 2016 International
Conference on Advances in Computing, Communications and Informat-
ics (ICACCI), 2016, pp. 851–855.

[11] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and M. Sjödin,
“Testing performance-isolation in multi-core systems,” in 2019 IEEE
43rd Annual Computer Software and Applications Conference (COMP-
SAC), vol. 1, 2019, pp. 604–609.

[12] The RTL Collaborative Project [Wiki]. [Online]. Available: https://wiki.
linuxfoundation.org/realtime/start

[13] RTAI - the RealTime Application Interface for Linux. [Online]. Avail-
able: https://www.rtai.org/

[14] Xenomai project. [Online]. Available: https://www.xenomai.org
[15] A. Lackorzynski, C. Weinhold, and H. Härtig, “Predictable low-latency

interrupt response with general-purpose systems,” in Proceedings of OS-
PERT2017, the 13th Annual Workshop on Operating Systems Platforms
for Embedded Real-Time Applications OSPERT 2017, 2017, pp. 19–24.

[16] Schaeffler Technologies AG & Co. KG, Schaeffler SpindleSense
(TPI 258). [Online]. Available: https://www.schaeffler.de/remotemedien/
media/ shared media/08 media library/01 publications/schaeffler 2/
tpi/downloads 8/tpi 258 de en.pdf

[17] Shenzhen LeMaker Technology Co., Ltd. Banana Pi specifications. [On-
line]. Available: http://www.lemaker.org/product-bananapi-specification.
html

[18] Rpmsg lite component. [Online]. Available: https://github.com/
NXPmicro/rpmsg-lite

[19] F. Gottschling and C. Emde, The OSADL Latency Measurement Box,
Open Source Automation Development Lab (OSADL) eG. [Online].
Available: https://www.osadl.org/uploads/media/OSADL-Latency-Box.
pdf

[20] stress project. [Internet Archive]. [Online]. Available: http://web.archive.
org/web/20190707055144/http://people.seas.harvard.edu/∼apw/stress/

[21] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna, “Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems,” in 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019, pp.
1–14.

https://github.com/siemens/jailhouse
https://github.com/siemens/jailhouse
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://www.rtai.org/
https://www.xenomai.org
https://www.schaeffler.de/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/tpi/downloads_8/tpi_258_de_en.pdf
https://www.schaeffler.de/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/tpi/downloads_8/tpi_258_de_en.pdf
https://www.schaeffler.de/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/tpi/downloads_8/tpi_258_de_en.pdf
http://www.lemaker.org/product-bananapi-specification.html
http://www.lemaker.org/product-bananapi-specification.html
https://github.com/NXPmicro/rpmsg-lite
https://github.com/NXPmicro/rpmsg-lite
https://www.osadl.org/uploads/media/OSADL-Latency-Box.pdf
https://www.osadl.org/uploads/media/OSADL-Latency-Box.pdf
http://web.archive.org/web/20190707055144/http://people.seas.harvard.edu/~apw/stress/
http://web.archive.org/web/20190707055144/http://people.seas.harvard.edu/~apw/stress/

	Introduction
	Related work
	Use case and proposed architecture
	Industry 4.0 Testbed
	Retrofitting Industry 4.0 Functionality
	Proposed System Architecture
	Proposed Smart Controller Architecture

	Evaluation
	Measurement Setup
	Use-case-based Evaluation
	Generic Evaluation and the Effects of System Load

	Discussion
	Conclusion
	References

