KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Likelihood Learning for 2-D Orientation Estimation Using a Fourier Filter

Pfaff, Florian ORCID iD icon 1; Li, Kailai ORCID iD icon 1; Hanebeck, Uwe D. 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Filters for circular manifolds are well suited to estimate the orientation of 2-D objects over time. However, manually deriving measurement models for camera data is generally infeasible. Therefore, we propose loss terms that help train neural networks to output Fourier coefficients for a trigonometric polynomial. The square of the trigonometric polynomial then constitutes the likelihood function used in the filter. Particular focus is put on ensuring that rotational symmetries are properly considered in the likelihood. In an evaluation, we train a network with one of the loss terms on artificial data. The filter shows good estimation quality. While the uncertainty of the filter does not perfectly align with the actual errors, the expected and actual errors are clearly correlated.


Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2021
Sprache Englisch
Identifikator ISBN: 978-1-6654-1427-2
KITopen-ID: 1000140182
Erschienen in Proceedings of the 24th International Conference on Information Fusion (Fusion 2021), Rustenburg, South Africa, 01.-04.11.2021
Veranstaltung 24th International Conference on Information Fusion (FUSION 2021), Rustenburg, Südafrika, 01.11.2021 – 04.11.2021
Schlagwörter Deep learning, likelihood learning, trigonometric polynomial
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page