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Summary: 

Forests are key components of Earth’s water and carbon cycles. As the predominant plant life 

form on land, they shape ecosystem functioning and biodiversity and provide key ecosystem 

services for human well-being. As autotrophic organisms, trees take up atmospheric CO2 and use 

it for growth or transport it in form of carbohydrates to their heterotrophic organs, for example to 

sustain function maintenance of the roots. However, they must face a trade-off, since the uptake 

of one CO2 molecule can cost more than 200 water molecules. Trees are able to channel water 

from the soil through roots, stems and branches to compensate for this loss. Current climate 

change developments increase the likelihood of extreme weather events such as longer periods 

of drought, flooding and more frequent heatwaves. Therefore, it is likely that trees may face soon 

unprecedented climate conditions. The resulting stress intervenes strongly in fundamental plant 

processes by reducing the availability of soil water and by increasing atmospheric water demand 

through a rise in temperature. 

However, trees are not completely helplessly at the mercy of environmental conditions. They may 

modify their growth processes to minimize the damage caused by unfavorable environmental 

conditions to a certain level. Examples of such adaptation are the ability to modify the stomata 

density and shape so that water loss is limited. The affinity and activity of enzymes can be 

modified to optimize the stress limited metabolism. The stability and solubility of macromolecules 

can be improved at low water potential by specific adaptation of hydrophobic exclusion 

mechanisms using compatible osmolytes. Under conditions of deficiency, carbohydrate reserves 

(i.e. starch, soluble sugars) can be adapted to enable the plant to survive longer periods of stress. 

The study of this wide variety of dynamic plant stress responses has led to many advances in 

plant physiology. Findings on how the physiology of stress -e.g. by heat or drought, affects 

photosynthesis and growth are currently used for the interpretation of remote sensing data in 

forest inventory or for crop breeding strategies. They may also be used to parameterize process-

based models in order to anticipate forest responses to unprecedented climate conditions. 

At the beginning of this work in 2015, the reactions of the forest to extreme events and combined 

stress conditions were already visible. Apart from short-term laboratory experiments, which 

provide valuable insights into the responses of individual stressors, and some impressive free-air 

carbon dioxide enrichment (FACE) experiments, which are only gradually yielding long-term 

observational data, very little research has focused on the systematic mechanistic response of 

trees to a combination of stressors (e.g. heatwaves together with drought). Rarely are subsequent 
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recovery and adaptation processes systematized and how these processes are influenced by 

elevated CO2 concentrations (e[CO2]). 

This doctoral thesis is intended to shed light on the less considered multiple stress-CO2 

interactions. As part of a larger international project "Climate feedbacks and benefits of semi-arid 

forests" (CliFF) the focus is on the drought tolerant conifer Pinus halepensis (Miller), also called 

Aleppo pine. Two separate experiments were conducted to answer the following research 

questions: 1) How do gas exchange, carbon allocation and regeneration of tree seedlings change 

after repeated isolated periods of heat or drought or a combination of both (Chapters 2 and 3)? 

2.) What is the potential of very high atmospheric [CO2] to influence heat stress responses and 

the carbon balance of drought-acclimatized versus well-watered P. halepensis seedlings (Chapter 

4)? 

It has been shown that a combination of heat and drought can increase stress through various 

interactions. These may lead to increased mortality in the pine seedlings compared to heat stress 

alone. Strict regulation of a plant's water balance by stomata closure at the expense of 

evaporative cooling caused the surface temperatures of needles to rise. Similarly, reduced 

photosynthesis and water availability limited root carbon allocation, which reduced root vitality. 

Tree mortality occurred with a delay with respect to the immediate stress, indicating that the 

impact of stress may persist even after it has subsided. Therefore, increases in heatwave 

temperatures, as predicted for the next decades may have disproportionate and delayed impacts 

on semi-arid forests. It appears that in regions where trees have evolved to cope with pervasive 

drought, even a single heatwave exceeding a certain threshold (probably above 47°C needle 

temperature) can have far-reaching detrimental effects. 

Secondly, the dynamics of emissions of biogenic volatile organic compounds (BVOC) from pine 

seedlings showed clear stress-specific reactions. Decreases in acetone emissions with 

decreasing soil water content and transpiration were clear indicators of drought. All other 

measured emitted components reacted exponentially to increasing temperatures during heat 

stress (maximum 43°C). Monoterpenes and methyl salicylate showed reduced temperature 

sensitivity during the second heatwave, which was not reflected in a similar decrease of their 

internal pools. Emissions (methanol, monoterpenes, methyl salicylate and acetaldehyde) 

differentiated between dying and surviving seedlings days before signs of reduced vitality in water 

and carbon exchange became visible. These results could mean that the decision whether a 

seedling dies or not depends on individual early stress physiology and that emission rates within 
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stress periods are not comparable due to acclimatization. They also give rise to the opportunity 

to screen the tree`s vulnerability to stress before damage occurs. 

Thirdly, the 18-month cultivation of Aleppo pines under e[CO2] of about 870 ppm had a stimulating 

effect on tree biomass (+40%), while the seedlings maintained higher water-use efficiency (WUE) 

during a heatwave of 10 d (25 °C, 30 °C, 35 °C, 38 °C, 40 °C). Drought stress initially enhanced 

the e[CO2] effect on the WUE until the stomata completely closed at higher temperatures. Under 

e[CO2], net carbon uptake was stimulated, largely due to a reduced respiratory rate. As 

temperature increased, photosynthesis decreased while respiration peaked between 31-34 °C, 

resulting in net carbon losses above 30 °C independent of [CO2]. Increased [CO2] had only a 

modest effect on the stress response of the primary metabolome, which differed between roots 

and needles. This implies first, that the effect of [CO2] on the physiological responses of trees 

decreases with stress intensity, such as hot drought, and second that respiration rates adapt to 

heat stress conditions within days regardless of [CO2]. 

In summary, it could be shown that even a highly drought tolerant pine species quickly reaches 

its limits when exposed to higher maximum temperatures and that drought together with 

heatwaves disproportionately increase their stress effect. Even effects that are caused by very 

high CO2 concentrations are quickly masked by heat-drought stress, although they possibly 

reduce the individual water consumption of trees along a temperature gradient. Under future 

conditions with higher frequencies of heatwaves, this will possibly lead to trees becoming net 

sources of CO2 more often. 

Zusammenfassung: 

Wälder sind Schlüsselkomponenten des Wasser- und Kohlenstoffkreislaufs der Erde. Als 

autotrophe Organismen nehmen Bäume CO2 auf und nutzen es für ihr Wachstum oder 

transportieren es in Form von Kohlenhydraten zu ihren heterotrophen Organen, beispielsweise 

zur Funktionserhaltung der Wurzeln. Sie müssen jedoch einen Kompromiss eingehen, da die 

Aufnahme eines CO2-Moleküls mehr als 200 Wassermoleküle kosten kann. Bäume sind in der 

Lage, Wasser aus dem Boden durch Wurzeln, Stämme und Äste zu leiten, um diesen Verlust 

auszugleichen. Die aktuellen Entwicklungen des Klimawandels erhöhen die Wahrscheinlichkeit 

extremer Wetterereignisse wie längere Dürreperioden, Überschwemmungen und häufigere 

Hitzewellen. Daher ist es wahrscheinlich, dass Bäume schon bald beispiellosen 

Klimabedingungen ausgesetzt sein könnten. Der daraus resultierende Stress greift stark in 
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grundlegende Pflanzenprozesse ein, indem er die Verfügbarkeit von Bodenwasser verringert und 

den atmosphärischen Wasserbedarf durch einen Temperaturanstieg erhöht. 

Doch Bäume sind den Umweltbedingungen nicht völlig hilflos ausgeliefert. Sie können ihre 

Wachstumsprozesse modifizieren, um die durch ungünstige Umweltbedingungen verursachten 

Schäden auf ein bestimmtes Maß zu minimieren. Beispiele für eine solche Anpassung sind die 

Fähigkeit, Spaltöffnungsdichte und -form zu modifizieren, sodass der Wasserverlust begrenzt 

wird. Die Affinität und Aktivität von Enzymen kann verändern werden, um den Stoffwechsel zu 

optimieren. Die Stabilität und Löslichkeit von Makromolekülen kann bei niedrigem 

Wasserpotential durch gezielte Anpassung hydrophober Ausschlussmechanismen mit Hilfe 

kompatibler Osmolyte verbessert werden. Unter Mangelbedingungen können 

Kohlenhydratreserven (d.h. Stärke, lösliche Zucker) angepasst werden, um der Pflanze zu 

ermöglichen, längere Stressperioden zu überdauern. Die Untersuchung dieser großen Vielfalt 

dynamischer pflanzlicher Stressreaktionen hat zu vielen Fortschritten in der Pflanzenphysiologie 

geführt. Erkenntnisse darüber, wie die Stressphysiologie - z.B. durch Hitze oder Dürre - die 

Photosynthese und das Wachstum beeinflusst, werden gegenwärtig für die Interpretation von 

Fernerkundungsdaten bei der Waldinventur oder für Pflanzenzuchtstrategien verwendet. Sie 

können auch zur Parametrisierung von prozessbasierten Modellen verwendet werden, um die 

Reaktionen des Waldes auf beispiellose Klimabedingungen vorherzusehen. Zu Beginn dieser 

Arbeiten im Jahr 2015 waren die Reaktionen des Waldes auf Extremereignisse und kombinierte 

Stressbedingungen bereits sichtbar. Abgesehen von kurzfristigen Laborexperimenten, die 

wertvolle Einblicke in die Reaktionen einzelner Stressoren geben, und einigen beeindruckenden 

Freiluft-Experimenten zur Kohlendioxidanreicherung (FACE), die erst allmählich langfristige 

Beobachtungsdaten liefern, hat sich nur sehr wenig Forschung auf die systematische 

mechanistische Reaktion von Bäumen auf eine Kombination von Stressoren (z.B. Hitzewellen 

zusammen mit Trockenheit) konzentriert. Selten werden nachfolgende Erholungs- und 

Anpassungsprozesse systematisiert und wie diese Prozesse durch erhöhte CO2-Konzentrationen 

(e[CO2]) beeinflusst werden. 

Diese Doktorarbeit soll Licht auf die weniger beachteten multiplen Stress-CO2-Wechselwirkungen 

werfen. Als Teil eines größeren internationalen Projekts "Climate feedbacks and benefits of semi-

arid forests" (CliFF), liegt der Schwerpunkt auf der trockenheitstoleranten Konifere Pinus 

halepensis (Miller) bzw. Aleppokiefer. Zwei unabhängige Experimente wurden durchgeführt, um 

die folgenden Forschungsfragen zu klären: 1.) Wie verändern sich Gasaustausch, 

Kohlenstoffverteilung und Regeneration von Sämlingen nach wiederholten Hitze- oder 
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Trockenperioden oder einer Kombination aus beiden Stressoren (Kapitel 2 und 3)? 2.) Welches 

Potenzial hat sehr hohes atmosphärisches [CO2], um die Hitzestress-Antworten und die 

Kohlenstoffbilanz von dürreakklimatisierten gegenüber ausreichend versorgten Aleppokiefern-

Sämlingen zu beeinflussen (Kapitel 4)? 

Es hat sich gezeigt, dass eine Kombination von Hitze und Dürre den Stress für die Sämlinge 

durch verschiedene Wechselwirkungen verstärken kann. Diese können zu einer erhöhten 

Sterblichkeit der Sämlinge im Vergleich zu isoliertem Hitzestress führen. Die strenge Regulierung 

des Wasserhaushalts durch das Schließen der Spaltöffnungen auf Kosten der 

Verdunstungskühlung, führte zu einem Anstieg der Oberflächentemperaturen der Nadeln. In 

ähnlicher Weise schränkten die verminderte Photosynthese und die limitierte 

Wasserverfügbarkeit den Kohlenstofftransport zur Wurzel ein, was deren Vitalität verringerte. 

Mortalität trat mit einer Verzögerung gegenüber dem unmittelbaren Stress auf, was darauf 

hindeutet, dass die Auswirkungen von Stress auch nach dessen Abklingen andauern können. 

Daher kann ein Anstieg der Temperaturen von Hitzewellen, wie er für die nächsten Jahrzehnte 

vorhergesagt wird, unverhältnismäßige und verzögerte Auswirkungen auf semiaride Wälder 

haben. Es scheint, dass in Regionen, in denen sich Bäume entwickelt haben die durchdringender 

Dürre ertragen, selbst eine einzige Hitzewelle die einen bestimmten Schwellenwert 

(wahrscheinlich über 47°C Nadeltemperatur) überschreitet, weitreichende schädliche 

Auswirkungen haben kann. 

Zweitens zeigte die Dynamik der Emissionen biogener flüchtiger organischer Verbindungen 

(BVOC) der Pinien Sämlinge deutliche stressspezifische Reaktionen. Verringerungen der Aceton 

Emissionen mit abnehmendem Bodenwassergehalt und Transpiration waren deutliche 

Dürreindikatoren. Alle anderen gemessenen emittierten Komponenten reagierten exponentiell auf 

steigende Temperaturen während des Hitzestresses (maximal 45°C). Monoterpene und 

Methylsalicylat zeigten während der zweiten Hitzewelle eine verminderte 

Temperaturempfindlichkeit, die sich nicht in einem ähnlichen Rückgang ihrer internen 

Sprosspools niederschlug. Emissionen (Methanol, Monoterpene, Methylsalicylat und 

Acetaldehyd) unterschieden sich zwischen absterbenden und überlebenden Keimlingen, Tage 

bevor Anzeichen einer verminderten Vitalität im Wasser- und Kohlenstoffaustausch sichtbar 

wurden. Diese Ergebnisse könnten bedeuten, dass die Entscheidung, ob ein Sämling stirbt oder 

nicht, von der individuellen frühen Stressphysiologie abhängt und dass die Emissionsraten 

innerhalb von Stressperioden aufgrund von Akklimatisation nicht vergleichbar sind. Die 
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Ergebnisse eröffnen auch eine Möglichkeit, Stressanfälligkeit vor einsetzender Schädigung der 

betroffenen Bäume direkt im Feld zu messen. 

Drittens hatte der 18-monatige Anbau von Aleppokiefern unter e[CO2] von ca. 870 ppm eine 

stimulierende Wirkung auf die Baumbiomasse (+40%), während die Setzlinge bei einer Hitzewelle 

von 10 d (25°C, 30°C, 35°C, 38°C, 40°C) eine höhere Wassernutzungseffizienz (WUE) 

aufrechterhalten konnten. Trockenstress verstärkte zunächst den e[CO2]-Effekt auf die WUE, bis 

sich die Spaltöffnungen bei höheren Temperaturen komplett schlossen. Unter e[CO2] wurde die 

Netto-Kohlenstoffaufnahme stimuliert, was weitgehend auf eine verminderte Atmungsrate 

zurückzuführen war. Stieg die Temperatur, nahm die Photosynthese ab, während die Atmung 

zwischen 31-34 °C ihren Höhepunkt erreichte, was unabhängig von [CO2] zu Netto-

Kohlenstoffverlusten über 30 °C führte. Erhöhtes [CO2] hatte nur einen bescheidenen Effekt auf 

die Stressantwort des Primärmetaboloms das sich in Wurzel und Nadel unterschied. Diese 

Ergebnisse implizieren erstens, dass die Wirkung von [CO2] auf die physiologischen Reaktionen 

der Bäume mit der Stress-Intensität, wie z.B. heißer Trockenheit, abnimmt, und zweitens, dass 

sich die Atmungsraten innerhalb von Tagen unabhängig von [CO2] an Hitzestress Bedingungen 

anpassen. 

Zusammenfassend konnte gezeigt werden, dass selbst eine ausgesprochen trockentolerante 

Pinien Art schnell an ihre Grenzen gerät, wenn sie höheren maximal Temperaturen ausgesetzt 

sind und dass sich Dürre und Hitzewellen disproportional in ihrer Stresswirkung verstärken. 

Erhöhte CO2 Konzentrationen können möglicherweise den Individuellen Wasserverbrauch von 

Bäumen verringern, dieser Effekt wird jedoch selbst unter stark erhöhten Konzentrationen schnell 

von Trockenstress maskiert. Dies wird möglicherweise dazu führen, dass Bäume auch unter 

zukünftigen Bedingungen bei einem relativ geringen Temperaturanstieg zu netto Quellen für CO2 

werden. 
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Acronyms and Abbreviations: 

A  carbon assimilation by photosynthesis 

Aleppo Pine Pinus helepenis (Miller) 

(B)VOC (biogenic) volatile organic compound 

C  Carbon 

°C  degrees Celsius 

Ca  atmospheric CO2 concentration 

Ci  leaf internal CO2 concentration 

DOY  Day of year 

E  evapotranspiration 

e[CO2]  elevated atmospheric CO2 concentration 

a[CO2]  ambient atmospheric CO2 concentration, refers to ±400 ppm 

FACE  free air carbon dioxide enrichment 

Gs  conductance (stomata) 

gDW  gramme dryweight 

H2Odd  deionized “double distilled” water 

HPLC  High pressure liquid chromatography 

k(M)PA kilo (mega) pascale 

µ(m)mol micro (mili)mole 
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1 General Introduction 

1.1  Forests are challenged by climate change 

By means of their mere biomass, forests bear a huge potential to feedback with the atmosphere 

mitigating or enhancing climate change (Bonan 2008; Kreidenweis et al. 2016; Walker et al. 2020; 

Zemp et al. 2017). Until today, they act as a central terrestrial carbon sink, which may have re-

assimilated about one third of the yearly anthropogenic fossil fuel emissions (Friedlingstein et al. 

2019; Keenan and Williams 2018; Le Quéré et al. 2018). Although the potential of forests to 

remove CO2 from the atmosphere is immense (Bastin et al. 2019; Doelman et al. 2020; Law et al. 

2018; Yosef et al. 2018), the estimate of their actual value as tool for natural carbon storage is 

critically discussed (Grainger et al. 2019). Concurrent land-use (Arneth et al. 2017; Kreidenweis 

et al. 2016), relatively short (one to three decades) carbon turnover rates (Pugh et al. 2020) and 

challenges due to unfavorable climatic conditions may raise uncertainty of the future development 

of the carbon sink potential. 

Atmospheric CO2 has almost doubled since preindustrial times (before 1900) (Friedli et al. 1986; 

Yan et al. 2019a). This has led to an increase in average temperatures of 0.75°C–0.99°C (Allen 

et al. 2018; Folland et al. 2018). An increase in global temperatures in turn increases the likelihood 

of extreme-weather events (Baker et al. 2018; Seneviratne et al. 2012; Ummenhofer and Meehl 

2017) as for example heatwaves (Frank et al. 2015; Giorgi and Lionello 2008; Meehl et al. 2000; 

Yi et al. 2015). These heatwaves commonly occur in combination with reduced precipitation, 

which is predicted to result in extraordinary hot drought phases with tremendous implications for 

forest carbon and water cycling (Breshears et al. 2005; Brodribb et al. 2020; Frank et al. 2015; 

Isson et al. 2020; Reichstein et al. 2013; Wu et al. 2020). 

According to the latest projections of the development of carbon emissions, the most likely climate 

scenario is an increase in temperature between +3°C (RCP4.5) and +4.5°C (RCP8.5) until the 

end of the century (Schwalm et al. 2020). The +4.5°C temperature increase refers to an estimated 

atmospheric CO2 concentrations between 794 ppm and 1142 ppm (Collins et al. 2013). Even if 

the world emissions could be limited to keep world warming below 3°C in the next 50 years 

(Hausfather and Peters 2020), this will result in local temperature peaks that will exceed ambient 

temperatures by 2 to 5 degrees periodically (Perkins-Kirkpatrick and Gibson 2017; Seneviratne 

et al. 2012). 

If these projections prove to hold true, a dystopic picture might be imagined, as for today a 1°C 

temperature increase already results in forests suffering from health degradation and widespread 
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tree mortality (Adams et al. 2010; Allen et al. 2010; Allen et al. 2015; Anderegg et al. 2012; 

Williams et al. 2013) across boreal (Grandpré et al. 2018; Michaelian et al. 2011; Yi et al. 2013), 

temperate (Ciais et al. 2005; Neumann et al. 2017; van Mantgem and Stephenson 2007), tropical 

(Aleixo et al. 2019; Fontes et al. 2018; Johnson et al. 2018; McDowell et al. 2018) and semi-arid 

regions (Kauwe et al. 2020; Klein et al. 2019; McDowell et al. 2016). Interestingly, these 

observations may culminate in a trend of largest (e.g. oldest) trees in a system dying first (Trouillier 

et al. 2019). Another trend can be found in conifers being apparently more vulnerable to droughts 

and heatwaves than broadleaf trees (McDowell et al. 2016; Wang et al. 2020) because of delayed 

physiological responses and gradual weakening (DeSoto et al. 2020; Zweifel et al. 2020), which 

make especially older pines vulnerable to other stressors (Seidl et al. 2017; Stephenson et al. 

2019). 

Atmospheric CO2 is the main substrate for photosynthesis, hence, it is influencing the 

performance and the well-being of trees directly. For instance, higher [CO2] allow trees to reduce 

stomatal conductance and to improve water-use efficiency (Ainsworth and Rogers 2007; 

Wullschleger et al. 2002). This is because CO2 diffusion inside the photosynthetic apparatus is 

supported and saturation of ribulose-bisphosphate carboxylase (Rubisco) is enhanced (Bowes 

1991; Farquhar et al. 1980). To study the physiological responses of trees to elevated [CO2], free 

air carbon dioxide enrichment (FACE) experiments have been conducted from 1990 onward. 

These experiments revealed striking water saving potentials in elevated [CO2] environment 

(Ainsworth and Long 2005; Battipaglia et al. 2013; Kauwe et al. 2013) and on global scale, 

increase in atmospheric [CO2] was shown to enhance the proportion of anthropogenic CO2 re-

fixed into forests and other land-ecosystems (Walker et al. 2020). However, this observed 

fertilization effect of CO2 was found to be highly dependent on tree age, species and ecosystem 

equilibrium status (e.g. sink strength) (Calfapietra et al. 2003; Dawes et al. 2010; Jiang et al. 2020; 

Körner et al. 2005; Körner 2006; Walker et al. 2019). The beneficial effects on biomass gain may 

also be limited by other parameters like nutrient availability (Fleischer et al. 2019; Körner 2006; 

Leakey et al. 2009; Walker et al. 2020). Thus, being able to anticipate to what extent the beneficial 

effects of CO2 may continue, or even alleviate the negative effects of climate extremes is an 

urgent, but also challenging topic to study. 

Regarding the aspect of increasing demand in renewable energy, forestry, CO2 mitigation 

strategies and ecosystem functionality in general, it is crucial to understand the physiological 

responses of trees to combined stressors and in combination with elevated [CO2] (e[CO2]). This 
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also includes the underlying mechanisms to eventually find a strategy to mitigate negative climate 

effects. 

1.2 Strategies of trees to respond to heat and drought stress 

Trees are prone to unfavorable conditions, but they are not defenseless. They have developed a 

multitude of strategies to cope with stress, mitigating or preventing stress specific damages (Haak 

et al. 2017; Harfouche et al. 2014; Niinemets 2010; Saijo and Loo 2020; Shaar-Moshe et al. 2019; 

Teskey et al. 1987). One of the most critical stress situations for trees are exceptional long drought 

periods, which disrupt trees from their water supply at the soil matrix and threatens them to dry 

out (Körner 2019). 

1.2.1 Drought 

The diffusion driven uptake of CO2 through the leaf stomata causes unavoidable water losses 

from the water saturated mesophyll to the dryer atmosphere. To replace the transpired water, 

trees have to extract water from the soil, which is transported in the xylem by means of the 

cohesion-tension mechanism (Dixon and Joly 1895). This mechanism is driven by capillary forces 

and adhesive molecule interactions and the water potential difference between the soil and the 

atmosphere (Jensen et al. 2016). Drought stress affects the water homeostasis and functionality 

of all tree organs as extraction of water by the roots is strongly limited, let alone under conditions 

of high vapor pressure deficits (VPD, low saturation vapor pressure of the air). This results in 

negative water pressures in the xylem, which trees strives to keep in a narrow range via regulation 

of stomatal aperture (typically between -0.5 and -2 MPa for P. halepensis (David-Schwartz et al. 

2016; Klein et al. 2011; Oliveras et al. 2003)). If the water potential reaches critical thresholds 

(species specific, typically between -2 and -3 MPa) the probability increases that water molecules 

as well as dissolved gases transit into gas phase and are causing embolisms that most likely can 

only be compensated through growth of new xylem especially in the case of conifers (Brodribb 

and Cochard 2009; Rehschuh et al. 2020). 

If embolism formation cannot be avoided during prolonged drought periods, xylem hydraulic 

conductance declines and turgidity of cells is lost. Further dehydration can also cause cell lysis 

(the rupture of the cell membrane from the rigid cell wall) (Hincha et al. 1987; Lang-Pauluzzi 

2000). To avoid embolism formation, trees can close the leaf stomata (Brodribb et al. 2017) and 

decrease non-stomatal transpiration by thickening the leaf cuticle wax layer (Shepherd and 

Wynne Griffiths 2006). During prolonging drought conditions, the reduction of photosynthetic 

capacity due to stomatal closure may lead to metabolic imbalance as carbohydrates are being 
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consumed, which potentially affects the capability of the plant metabolome to sustain stress 

responses for a long time. (Gentine et al. 2016; Sevanto et al. 2014; Tomé et al. 2014). 

The functioning of the tree’s metabolism depends on sufficiently amounts of free water. 

Biochemistry processes of the cells depend on diffusion velocity, which is a function of viscosity 

(McCall et al. 1959; Schafer and Barfuss 1980) and hence the amount of water solvent. 

Furthermore, interactions between water molecules and proteins as well as membrane lipids 

serve for the correct development of lipid micelles and the functional shape of proteins (Chandler 

2005; Kauzmann 1959). These interactions (e.g. hydrophobic effect, hydrogen bonds) can be 

manipulated by adding or removing solutes from the cytoplasm. All organisms, also trees, are 

using the accumulation of such compatible osmolytes to counter adverse effects of low water 

potentials (Yancey 2005). As these metabolites are accumulated in high amounts, they have to 

be non-toxic and used as an alternative carbon source. A collection of metabolites that comprise 

these conditions are amino acids (e.g. prolin) (Cyr et al. 1990; Verbruggen and Hermans 2008), 

sugars (e.g. threhalose, polysaccharides) (Hincha et al. 2007; Iordachescu and Imai 2008; Leslie 

et al. 1995) and alcohols (e.g. cyclitols) (Merchant et al. 2006; Nguyen and Lamant 1988). 

Furthermore, the synthesis of amino acids and sugars is energetically costly and may help to 

scavenge a surplus of reduced electron acceptor molecules to prevent the formation of reactive 

oxygen species during stress (Couée et al. 2006; Kruger and Schaewen 2003; Rizhsky et al. 

2004). 

1.2.2 Heat 

In contrast to the water conserving strategies during drought stress, high temperatures can 

increase water losses to the atmosphere due to rising vapor pressure deficit (VPD). If enough 

water is available, trees have been reported to keep stomata open during heatwaves, sustaining 

high transpiration rates and achieving a substantial cooling effect (Drake et al. 2018; Kauwe et al. 

2018; Urban et al. 2017a). However, on molecular levels, high temperatures increase membrane 

fluidity (Los and Murata 2004) and accelerate enzyme reactions (Daniel and Danson 2013). When 

temperatures reach a critical threshold (Niinemets 2018; Teskey et al. 1987), membranes can get 

leaky (Bajji et al. 2001; Saelim and Zwiazek 2000) and lose integrity while proteins denature and 

become functionless (Daniel et al. 2008). 

Especially membrane lipids are targets of reactive oxygen species (Stark 2005) which are 

produced during heat stress, forming toxic byproducts and messenger molecules that induce 

stress responses (Mittler et al. 2012). The tolerated temperature range of enzymes can be 

increased by the expression of small heat shock proteins that act as chaperones and stabilize the 
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three-dimensional structure of proteins (Al-Whaibi 2011; Hamilton 2001; Richter et al. 2010) and 

by the accumulation of compatible osmolytes (Hamilton 2001; Jaindl and Popp 2006). The 

temperature tolerance of membranes can be increased for instance by integrating more saturated 

fatty acids into the membrane bilayer (Quinn 1988). 

Another typical response to high temperatures is the emission of biogenic volatile organic 

compounds (BVOC) (Joó et al. 2011; Kleist et al. 2012; Loreto and Schnitzler 2010). They are 

products of the primary- as well as of the secondary metabolism and are thought to play a key 

role in stress signaling (Kivimäenpää et al. 2020). Some, for instance isoprene, play a role as 

antioxidants or act membrane stabilizing (Velikova et al. 2011). The response of biogenic volatile 

organic compounds to temperature is well captured (Grote et al. 2019; Guenther et al. 1993; 

Harley et al. 2014; Niinemets and Reichstein 2002; Staudt et al. 2017), while their kinetics during 

multi-stress exposure and repeated stress (e.g. heatwaves together with drought) is less clear 

(Bamberger et al. 2017; Kleist et al. 2012). Furthermore, changes in emissions that precede 

mortality are of high interest but not yet well represented for trees and forests. As for grasses, 

BVOC emissions are known as indicator for drying and degrading biomass (Gouw et al. 1999). A 

similar knowledge related to trees and forests, as for instance the distinct relationship of 

temperature gradients to monoterpene emissions (Jardine et al. 2017), might be used as a tool 

to screen larger areas for severe stress and mortality risk, or for better understanding of air 

chemistry during and after largescale forest degradation (Geddes et al. 2016). 

1.2.3 Heat-drought 

High temperatures and low water availability often co-occur under natural conditions during 

summer drought spells or during extreme heatwaves. The combination of these stressors is 

especially dangerous for trees (Bertini et al. 2011; Ciais et al. 2005; Schuldt et al. 2020). During 

a heat wave, drought stress may be amplified as a result of increasing evaporative demand. On 

the other side, drought induced stomata closure may lead to higher leaf temperatures due to 

suppressed evaporative cooling (Chaves et al. 2016; Drake et al. 2018; Fontes et al. 2018). Thus, 

the combinations of heat and drought stress challenges the metabolic stress response of trees 

and may induce responses that are not found when trees are stressed by only one stressor 

(Correia et al. 2018). Similar to the trait off between water loss prevention, carbon uptake and 

cooling capacity (Ruehr et al. 2016), the metabolism may face conflicting strategies (Rizhsky et 

al. 2004). 

From a carbon balance perspective, high temperatures increase the carbon turnover and 

respiration of the trees (Gauthier et al. 2014; Patterson et al. 2018; Ruehr and Buchmann 2010). 
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Both, drought and heat, reduce the photosynthetic capacity of the leaves on enzyme activity level 

(Demirevska-Kepova and Feller 2004; Parry et al. 2002) and also on the level of photosystem 

efficiency (Dreyer et al. 2001; Duarte et al. 2016; Kitao et al. 2000; Nellaepalli et al. 2014; Tang 

et al. 2007). Furthermore, a more rapid decrease of solubility of CO2 (Ku and Edwards 1977a) 

and the decreasing specificity of Rubisco to CO2 with increasing temperatures (Jordan and Ogren 

1984; Ku and Edwards 1977b). Thus, the fixation of O2 instead of CO2 through Rubisco increases 

with temperature, which additionally lowers carbon yields under stressful conditions. Under 

conditions, where energy needed for maintenance surpasses carbon fixation rates the carbon 

balance can become zero or even negative (Ciais et al. 2005; Zhao et al. 2013). If trees manage 

to adapt their maintenance effort to the new stress conditions (Drake et al. 2019b; Reich et al. 

2016), carbon gain and carbon loss may however reach a new equilibrium (Atkin and Tjoelker 

2003; Kolb et al. 2013; Larigauderie 1995) allowing the trees to recover (Ruehr et al. 2019). 

As introduced in Chapter 1.1, high CO2 concentrations have the potential to affect not only the 

carbon supply but also the water balance of trees. This raises the question whether increased 

atmospheric CO2 concentrations could support tree growth under drier conditions and whether 

these positive effects can be maintained at higher temperatures.  

1.3 CO2 and stress mitigation 

CO2 influences plant performance at many physiological interfaces of the tree. Higher CO2 levels 

increase photosynthesis and decrease stomatal conductance (Ainsworth and Rogers 2007; 

Dusenge et al. 2019). Higher photosynthesis rates feedback on carbohydrate levels and other 

metabolites (Körner et al. 2005; Li et al. 2018). Water balance of the tree is influenced by CO2 

dependent stomata closure, which can reduce water loss through transpiration (Dusenge et al. 

2019; Leakey et al. 2009). Both, metabolic changes and better water retention can increase 

growth rates of trees in e[CO2] (Bowes 1991; Gamage et al. 2018; Hussain et al. 2001; Klein et 

al. 2016a; Körner et al. 2005; Major and Mosseler 2019). Some of the mechanisms that explain 

how CO2 can change the physiological network of trees and its response to stress are examined 

below. 

1.3.1 Elevated [CO2] increases leaf internal [CO2] 

Higher atmospheric concentrations (Ca) accelerate diffusion of CO2 molecules into the stomatal 

space and the photosynthetic active cells (Ci). High Ci on the other side can reduce stomatal 

aperture (Dusenge et al. 2019; Engineer et al. 2016; Medlyn et al. 2001), which decreases 

transpiration (E) and stomatal conductance (gs). Although a decrease in gs can increase water-

use efficiency (WUE) (Kauwe et al. 2013; Leakey et al. 2009; Wullschleger et al. 2002), which is 
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especially beneficial under drought conditions, lower evaporative cooling capacity under e[CO2] 

can increase leaf temperatures and may be disadvantageous during heatwaves and drought 

(Bauweraerts et al. 2013; Fauset et al. 2019; Konrad et al. 2020; Peterhansel and Maurino 2011). 

Besides the effect on WUE, the maximum rate at which photosynthesis performs is also affected 

by Ci (Bowes 1991). The central enzyme of the Calvin cycle ribulose-1,5-bisphosphate 

carboxylase (Rubisco) has not only specificity to CO2 but also to O2 (Jordan and Ogren 1984; Ku 

and Edwards 1977b). Adding O2 instead of CO2 to ribulose-1,5-bisphosphate (C5) produces one 

molecule phosphoglycolate (C2), which is toxic and has to be expensively recycled, and one 

molecule phosphoglycerate (C3) (instead of two molecules phosphoglycerate C3). Carbon is lost 

during this process (“photorespiration”) and redox-equivalents have to be invested to detoxify 

byproducts (Peterhansel and Maurino 2011). Thus, saturation of Rubisco activity increases CO2 

fixation efficiency and net photosynthesis (Anet). Some studies show, that this effect can even be 

sustained at higher temperatures (Pan et al. 2018), which would improve plant performance 

during heat stress. Others show that the nutrients level of the plants plays an important role 

(Hymus et al. 2001) as protein or chlorophyll may be limiting (Hymus et al. 2002). 

1.3.2 Enhanced carbon gain sustains more biomass and affects tree allometry 

Plant growth is the main process that causes a positive carbon balance in trees and positively 

feeds back with both, Anet and respiration (R). Higher WUE and higher Anet under e[CO2] usually 

increases biomass production in trees (Ainsworth and Long 2005; Jiang et al. 2020; Körner 2006). 

As biomass increases, also R increases, which might accelerate carbon turnover under e[CO2] 

(Jiang et al. 2020). Some studies show that under e[CO2] biomass specific R is downregulated 

(Drake et al. 1999; Gonzalez-Meler et al. 2004), indicating reduced maintenance costs. The 

carbon to nitrogen ratio (C:N) typically increases (Cotrufo et al. 1998; Li et al. 2018; Runion et al. 

1999) as trees accumulate nonstructural carbon (NSC), phenolic components (Holopainen et al. 

2018; Peñuelas and Estiarte 1998) and increase cell wall thickness (Prendin et al. 2017; Richet 

et al. 2012), which dilutes N on plant level, while proteins are downregulated (Bloom et al. 2002) 

and nitrate assimilation inhibited (Bloom et al. 2002; Wujeska-Klause et al. 2019). Reduction of R 

may alleviate maintenance costs during heat and drought stress, while more biomass might 

counter positive e[CO2] effects on E and R. 

CO2 not only affects gross biomass production but also allocation of carbon and allometry within 

the tree (Jiang et al. 2020). Shoot growth and leaf biomass are increased (Ainsworth and Long 

2005; Calfapietra et al. 2003; Jiang et al. 2020; Leakey et al. 2009; Trugman et al. 2019) together 

with fine root mass (Bader et al. 2009; Norby et al. 2004; Pregitzer et al. 1995) and the formation 
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of root hair (Niu et al. 2011). Especially a spatial distribution change (Duursma et al. 2011; Piñeiro 

et al. 2020) may have relevance for tree’s access to nutrients and water during prolonged drought. 

Mechanisms behind this pattern are discussed as being higher carbohydrate levels feedback with 

plant hormones (Geng et al. 2016; Niu et al. 2011). Another trigger for fine root growth may be a 

higher N demand due to CO2 fertilization (Norby et al. 2010). Furthermore, cell differentiation and 

cell division have been shown to be changed by CO2 directly via HCO2 responsive proteins 

(Engineer et al. 2014; Engineer et al. 2016), increasing the rate of cell division (Masle 2000), 

affecting xylem architecture (Hao et al. 2018; Prendin et al. 2017) and leaf stomata distribution 

(Higaki et al. 2020; Lawson and Matthews 2020; Woodward and Kelly 1995). At this point the 

ambivalence of the role of CO2 in trees becomes apparent, since a higher leaf to sapwood area 

can hinder short-term acclimatization to heatwaves and drought events (Trugman et al. 2019). 

1.3.3 Elevated CO2 alters the redox state of the metabolome  

High atmospheric [CO2] was discussed to reduce stress caused by heat and drought at several 

metabolic levels (Zinta et al. 2014). These effects are caused by increases in carbon status and 

relaxations in the metabolic redox state, which are mediators of physiologic stress response 

(Foyer and Noctor 2011; Noctor et al. 2014; Noctor and Mhamdi 2017). Elevated CO2 was found 

to increase base level of carbohydrate derived messenger molecules (Mhamdi and Noctor 2016), 

for instance salicylic acid, while the reduced amount of reactive oxygen species (ROS) are 

expected to interfere with stress sensing and signaling reducing the overall stress responsiveness 

of the plant (AbdElgawad et al. 2016; Cassia et al. 2018). The carbohydrate metabolism as well 

as photorespiration pathways are crosslinked with the amino acid metabolism (Eisenhut et al. 

2017; Peterhansel and Maurino 2011; Wujeska-Klause et al. 2019). Thus, changes in the amino 

acid composition and the synthesis of compatible osmolytes may be expected and have been 

found in several studies (Bloom et al. 2002; Dietterich et al. 2015; Geng et al. 2016; Misra and 

Chen 2015; Noguchi et al. 2015). The consequences of these changes are not fully understood, 

but they may affect protein synthesis, host-pathogen as well as host-symbiont relationships and 

last but not least human nutrition. 

1.4 Semi-arid forest ecosystems – Pinus halepensis in the Yatir forest in Israel 

Semi-arid forest ecosystems are especially vulnerable to decreasing rainfall and increasing 

extreme heatwaves recurrence (Goldstein et al. 2000; Gonzalez et al. 2012; Liu et al. 2013; 

Sivakumar et al. 2005). Semi-arid environments are defined by an accentuated seasonality that 

can be described as a hot (or very cold) dry season when evapotranspiration surpasses the 

amount of precipitation and a moist season in which precipitation equals, or surpasses 
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evapotranspiration. In regard to this, (Fischer and Turner 1978) mentioned that growth and 

assimilation in semi-arid ecosystems is mainly concentrated on the short spring period, when 

temperatures are favorable and water availability is highest. Although such ecosystems are well 

adapted to seasonal changes (Arneth et al. 2006; Churkina and Running 1998; Tatarinov et al. 

2015), it is highly intuitive to think of future situations of extreme long-lasting drought events and 

heatwaves that disturb this synchronized system – which could lead to long lasting negative 

effects on forest resilience and productivity. 

In the vast quantity and diversity of semi-arid-regions all over the world, the Yatir forest located in 

the southeast of Israel, is a unique example of a Pinus halepensis (Miller) dominated forest 

planted at the norther edge of the Negev desert (Fig. 1.1; Flux-Net tower position: IL-Yat, 650 m 

a.s.l., 31°20’49.2’’N, 35°03’07.2’’E). It is characterized by an extraordinary small amount of 

precipitation, on average 200–300 mm per year, concentrated between October and April - 

following long periods without precipitation during summer and solar irradiation comparable to 

regions within the Sahara desert, that can reach up to 2000 µmol m-2s-1 radiation load (Klein et 

al. 2016b; Preisler et al. 2019; Rotenberg and Yakir 2010; Tatarinov et al. 2015). 

 

Figure 1.1: Impressions of the Yatir forest plantation (left) and the measurement site inside the 

forest in reach of the flux tower (right). Pictures are from a site visit in March 2016 during the wet 

season (own pictures).  

Periodically occurring “Hamsin” events, which are characterized by up to seven days of extreme 

heat, are typically occurring several times during spring and early summer. (Tatarinov et al. 2015) 

showed that these heatwaves, which often reach up to 35°C resulting in a vapor pressure deficit 

of up to 6 kPa, occur when productivity is highest and are reducing carbon uptake and canopy 

conductance. This may cause additional stress on the trees before the onset of the seasonal 
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summer drought (Stangler et al. 2016; Tatarinov et al. 2015; Thomas et al. 2009). The extreme 

conditions at the Yatir forest site probably represent the dry edge timberline of P. halepensis 

(Grünzweig et al. 2009), increased tree mortality was found recently in response to extraordinary 

dry years (Klein et al. 2019; Preisler et al. 2019). 

Following questions emerge: Does the Yatir forest has a future in regard to increasing extreme 

temperatures and even less precipitation than it receives nowadays? Is P. halepensis able to 

profit from higher [CO2] under these conditions? 

1.5  Aims and structure of the thesis 

This thesis is part of a collaborative research project that aims to elucidate the “climate feedback 

and benefits of semi-arid forests (CliFF, YA 274/1-1; SCHM 2736/2-1)” funded by the German 

Research foundation (DFG) within its German-Israeli Project Cooperation program. The CliFF 

project has been done in a close collaboration of the Karlsruhe Institute of Technology (KIT) and 

the Weizmann Institute of Science (WIS). The overall aim of the project is to investigate the impact 

of semi-arid forests on the Earth's climate from chemical, biological and meteorological 

perspectives using experimental and modeling approaches. 

Within the CliFF project my thesis aims on (1) quantifying the impact of extreme heatwaves 

during drought on the physiology of Aleppo pine (Pinus halepensis) seedlings and (2) 

understanding the role of future high CO2 concentrations on plant performance and in 

altering physiological responses to single and multiple stress. 

 

With this thesis I aim to shed light on how opportunities and limitations of Aleppo pine seedlings 

might change under future climate conditions. More specific, the perspective range of 

environmental conditions was set to extreme heat, and moderate soil drought. Soil drought was 

Figure 1.2: A:Ci plot of P. halepensis seedlings 

grown for 9 months at elevated CO2 (turquoise 

triangles) and ambient CO2 (red circles). Ribbons 

depict 95% confidence interval of R package 

ggplot2 default loess (locally weighted scatter-plot 

smother) function fit (colored lines). Data are single 

measurements of five seedlings per CO2 treatment. 
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introduced to the setup because a characteristic of this semi-arid region is the long precipitation-

free period from May to October. The forest site experiences heatwaves (“Hamsin” periods) quite 

regularly during spring (see (Tatarinov et al. 2015), which have clear consequences for carbon 

and water cycling. Hence, we designed an experiment that mimicked repeating “Hamsin” events. 

To assess the response of Aleppo pine to elevated CO2, we decided to use extremely high CO2 

concentrations following the RCP8.5 scenario for 2100 (Collins et al. 2013; Schwalm et al. 2020). 

We did so to increase a possible mitigating effect of CO2 on the trees stress response. This was 

given because 900 ppm represents a concentration that is near the saturation point of the 

seedlings photosynthetic systems (Fig. 1.2). 

The study has been done in two separately designed experiments. The first experiment was to 

define stress thresholds that included tree death and post-stress recovery and included 

measurements of seedlings gas exchange, VOC emissions and metabolites. The second 

experiment was designed to provide insight into the differences of stress responses of drought-

acclimated and sufficiently watered seedlings along a temperature gradient that were grown in 

either ambient (400 ppm) or strongly elevated CO2 (900 pm) environments. In this experiment the 

entire carbon balance of the seedlings could be quantified and alongside an array of primary 

metabolites measured. 

Setup 1: The repeated heatwave approach 

The first experiment (2016) was set up to define stress thresholds of tree seedlings (P. halepensis, 

Mill) that were exposed to extreme heat and moderate drought, allowing for seedling recovery as 

well as mortality under ambient CO2 conditions (~400 ppm). Environmental drivers where adapted 

to resemble conditions at a semi-arid P. halepensis plantation site in Israel (Yatir forest) during 

growth conditions for 10 months. Two dry heatwaves were initiated in Mai and June 2016, adding 

+5 °C to the maximum heatwave temperatures. The recovery and stress limits were assessed on 

the basis of biogenic volatile organic compound (BVOC) emission via proton transfer reaction 

mass spectrometry (PTRMS), primary metabolism stress responses and plant-level physiological 

adaption. These parameters were derived from lab analyses and online gas exchange 

measurements.  

Setup 2: Heatwave responses of Aleppo pine at ambient and elevated [CO2] 

The second experiment (2017) was prepared to decipher the role of high atmospheric [CO2] on 

the seedlings’ stress response. All seedlings used in this study where grown from seeds either 

under elevated [CO2] (~900 ppm) or under ambient [CO2] (~400 ppm) experiencing the same 
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environmental conditions regarding radiation, temperature and humidity (soil and air). Half of the 

cohort was adapted to drought supposedly to result in growth retention and substantial 

physiological adaption. This threshold was taken from the results of the first setup (2016). All 

seedlings were exposed to a slow (2d) temperature gradient ramp from 25 °C to 40 °C. Separated 

net photosynthesis and autotrophic respiration of each seedling was used to calculate tree carbon 

uptake. Needle tissue as well as root tissue samples were taken to screen the primary 

metabolome for effects of elevated [CO2] and drought alongside of a heat gradient. Carbon 

balance during stress response was derived from simultaneous shoot and root gas exchange 

measurements and metabolic stress response was analyzed in tissue samples via time-of-flight 

gas chromatography mass spectrometry (Tof-GCMS). 

This led to my working hypotheses: I) An increase of 5 °C (RCP8.5) in heatwave maxima 

threatens semi-arid forests (exemplary study adapting Yatir-forest stand environmental 

conditions on P. halepensis seedlings). II) Exposition to multiple types of stressors (heat, 

drought, and heat-drought) changes physiological stress response on gas exchange and 

metabolic levels. II b) Therefore, it will be possible to assign volatile organic compound signals 

from the seedlings to either heat or drought and multi-stress scenarios. III) Increased [CO2] can 

improve the growth and water-use efficiency of trees, as temperature increases, higher 

carbon storage facilitates metabolic acclimation to heat and drought.
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2 Heatwaves alter carbon allocation and increase mortality of Aleppo Pine under dry 
conditions. 

____________________________________________________________________________ 

This chapter has been published as: Birami B., Gattmann M., Heyer AG., Grote R., Arneth A., 

Ruehr NK. (2018): Heat waves alter carbon allocation and increase mortality of Aleppo Pine 

under dry conditions. Frontiers in Forests and Global Change 1: 1285. 

doi: 10.3389/ffgc.2018.00008. 

____________________________________________________________________________ 

Abstract 

Climate extremes are likely to occur more frequently in the future, including a combination of 

heatwaves and drought. The responses of trees to combined stress, as well as post-stress 

recovery are not fully understood, yet. This study was designed to investigate the responses of 

semi-arid Pinus halepensis seedlings to moderate drought, heat and combined heat-drought 

stress, as well as post-stress recovery. The seedlings were grown under controlled conditions 

and exposed to two 4-day-long heatwaves, reaching air temperature maxima of 42 °C and vapor 

pressure deficit (VPD) of 7 kPa. Day- and nighttime canopy gas exchange was measured and 

differences in shoot and root allocation of non-structural carbohydrate (NSC) compounds (soluble 

sugars, starch, cyclitols and carboxylic acids). Fluorescence parameters, nitrate levels, proline 

content and shoot water potential (ψ) provided additional indicators for stress severity and 

recovery performance. During the heatwaves, net photosynthesis and stomatal conductance 

decrease immediately. 

This decline was modest under well-watered conditions, with transpiration and dark respiration 

rates remaining high and despite reductions in root NSC content, trees recovered following heat 

release. This was not the case in the heat-drought treatment, where stress resulted in mortality 

and the few surviving seedlings showed stress symptoms, persistent in reduced gas exchange 

rates and low root NSC content, while leaf nitrate and proline remained elevated three weeks 

after heat release. Shoot ψ indicated that hydraulic failure was not the reason for mortality in the 

heat-drought seedlings, but most likely the low transpiration rates, which resulted in needle 

temperatures >47 °C during heat stress (c. 6 °C above air temperature). In summary, we could 

demonstrate that heatwaves in combination with moderate drought can either result in mortality 

or, if the seedlings survive, in delayed recovery. This highlights the potential of an increase in heat 

wave temperatures to trigger forest decline in semi-arid regions. 
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2.1 Introduction  

Forest dieback related to climate extremes has been observed in most regions of the world (Allen 

et al. 2010; Anderegg et al. 2012; Anderegg et al. 2015). In particular heatwaves combined with 

drought, which are increasing in frequency and duration (Meehl and Tebaldi 2004; Schär 2015), 

could be a major trigger of tree mortality (Allen et al. 2015; Williams et al. 2013), yet our 

understanding of physiological processes within trees to such extremes is scarce.  

Trees tightly regulate stomatal conductance (gs) to balance water supply and water loss. The 

close coordination between leaf water potential (ψ) and gs during drought conditions has been 

reported manifold (Anderegg et al. 2018; Burghardt and Riederer 2003; Jarvis 1976; Klein and 

Niu 2014; Ripullone et al. 2007), while the responses of gs to changes in evaporative demand, 

particular in combination with high temperatures is less clear. During experimental heat wave 

conditions, gs has been found to decline (Drake et al. 2018; Duarte et al. 2016; Ruehr et al. 2016; 

Tatarinov et al. 2015) or to be not affected (Ameye et al. 2012) or to even increase (Urban et al. 

2017a; Urban et al. 2017b). Despite such differences in stomatal responses, most heatwave 

studies have found transpiration (E) to increase under high soil water content. At first, this seems 

counterintuitive, but can be explained by increases in evaporative demand, which stimulates E 

and cooling of the leaf, even though stomata close partially.  

Increased E causes water-use efficiency (WUE) to sharply decrease, because photosynthesis 

typically declines at high temperatures (Ameye et al. 2012; Drake et al. 2018; Duarte et al. 2016; 

Ruehr et al. 2016; Tatarinov et al. 2015; Urban et al. 2017a), which results in a pronounced 

carbon-water decoupling during heatwaves (Drake et al. 2018). The underlying reasons for the 

strong decline of photosynthesis under heat stress are manifold and include decreases in gs 

(Ruehr et al. 2016), reduced performance of the photosynthetic apparatus (Ameye et al. 2012; 

Urban et al. 2017a), or a combination of both (Duarte et al. 2016), but also increased 

photorespiration or photosynthetic inhibition play an important role (Teskey et al. 2015). High 

temperatures affect key enzymes like Ribulose-bisphosphate-carboxylase directly (Haldimann 

and Feller 2004), cause inactivation or denaturation of integral proteins and increase membrane 

leakage as well as cellular lesions (Hays et al. 2001; Hüve et al. 2011; Quinn 1988; van Meer et 

al. 2008; Watson 2015). Temperature thresholds resulting in permanent photosynthetic and 

whole-leaf damage are reported to range between 40 °C and 50 °C (Colombo and Timmer 1992; 

Hüve et al. 2011; Niinemets 2018; O'Sullivan et al. 2017; Rätsep et al. 2018), whereas the exact 

threshold depends on species, the duration of exposure, water availability and adaptive metabolic 

responses. 
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Besides direct tissues damage, temperature increments affect tree C allocation dynamics (Ruehr 

et al. 2016; Zhao et al. 2013). Because respiration typically increases with temperature, C loss 

can become larger than C uptake (Zhao et al. 2013) and NSC reserves in trees may deplete. In 

addition, shoot-to-root allocation patterns are sensitive to stress. While reduced C transport from 

shoots to roots under drought conditions has been observed (Blessing et al. 2015; Ruehr et al. 

2009; Zang et al. 2014), C allocation towards roots can increase under high temperatures 

(Blessing et al. 2015). However, it remains unclear how such changes in C allocation between C 

compounds and tissues may affect the stress resilience of trees. For instance, C compounds such 

as proline or sugar alcohols can prevent protein denaturation at high temperatures (Hamilton 

2001; Jaindl and Popp 2006) and maintaining large NSC reserves will be critical to sustain high 

respiration rates. This indicates a potentially important role of the primary C metabolism in 

mitigating long-term damages and hence could influence post-stress recovery. It can be 

speculated that besides actual tissue damage, the amount of C maintained during stress could 

be a driving force of repair mechanisms (Galiano et al. 2017), but to date not much is known on 

post-stress  C metabolism of trees. 

Following stress release, the ability of trees to recover from heatwaves depends on stress 

severity, which is directly influenced by heat exposure as found for the recovery of photosynthesis 

(Hüve et al. 2011). If heatwaves are additionally combined with drought, evaporative cooling is 

diminished and canopy temperature increases (Scherrer et al. 2011). This should then accelerate 

stress-induced damage and has the potential to further delay post-stress recovery. Semi-arid 

regions are at particular risk because air temperatures are already high and a few degrees of 

warming have the potential to quickly surpass critical levels, especially when evaporative cooling 

is typically low (Liu et al. 2013; Rotenberg and Yakir 2010). In particular the regeneration in semi-

arid forests might be jeopardized, because seedlings are most vulnerable to desiccation due to 

low water storage and rooting depth (limited water supply), while they are growing close to the 

soil surface, which exposes them to excessively high temperatures (Kolb and Robberecht 1996).  

The present study investigates the impacts of high temperatures under well-watered and drought 

conditions on seedlings of Pinus halepensis, originating from one of the driest pine forest 

plantations in the world, located in the Negev desert (Rotenberg and Yakir 2010). In this region, 

short heatwaves frequently occur, with instantaneous responses of the forest’s carbon and water 

cycling (Tatarinov et al. 2015). If temperatures are further increasing, as predicted for this region, 

and precipitation during winter decreases (Giorgi and Lionello 2008; Tabari and Willems 2018), 

the trees might be pushed beyond their stress tolerance limits and the survival of this unique 
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forest might be at risk. Thus, to increase understanding of Aleppo pine’s responses to extreme 

heatwaves and the recovery from stress, shoot gas exchange, fluorescence parameters, and 

some primary metabolites in shoots and roots were determined. In particular the following 

research questions were adressed: 1) How is shoot gas exchange and water-use efficiency 

affected during heatwaves with or without drought and do the responses of gs, photosynthesis 

and E differ with increasing vapor pressure deficit? 2) What are the main drivers of C compound 

and metabolite dynamics and their allocation between shoots and roots? 3) Are heat and heat-

drought stress responses fully reversible post-stress or does mortality occur? 

2.2 Material and Methods 

2.2.1 Plant cultivation and initial pre-treatment conditions 

Pinus halepensis (Miller) seedlings were grown from seeds in a scientific greenhouse facility in 

Garmisch-Partenkirchen, Germany (732 m a.s.l., 47°28’32.87’’N, 11°3’44.03’’E). The origin of the 

seed material is a 50-year-old Aleppo pine plantation in Israel (Yatir forest). Cones of trees were 

sampled growing in close-proximity to a meteorological station and flux tower (IL-Yat, 650 m a.s.l., 

31°20’49.2’’N, 35°03’07.2’’E). About 2–4 weeks after germination of seedlings in Germany, the 

seedlings were transferred to 1 L pots each, containing a mixture (2:8) of quartz sand (0.7 mm 

and 1-2 mm) and vermiculite (ca. 3 mm) with 2 g of slow-release fertilizer (Osmocote® Exact + 

TE 3-4-month fertilizer 16-9-12+2MgO+TE, Everis International B.V., Heerlen, The Netherlands). 

Three months before starting the experiment, 7 months-old seedlings were planted in larger pots 

(2.5 L) containing a mixture of 1:2:1 quartz sand (1-2 mm): quartz sand (Dorsolit 4-6 mm): 

vermiculite (3 mm) with 6 g of slow-release fertilizer added (Osmocote® Exact +TE 5-6-month 

fertilizer 15-9-12+2MgO+TE). Potted seedlings were irrigated regularly, starting with 0.1 L per 

week, which was later adapted to meet increased water demand of the growing seedlings to 0.15 

L per week. 

Seedlings were grown under average light intensity of 693 ± 324 µmol m-2s-1 (supplemented by 

sodium vapor greenhouse lamps, T-agro 400 W, Philips) and temperatures and humidity adapted 

to 10-year monthly-averaged day and night air temperature and relative humidity measured at the 

Yatir forest site (see Supplement, Table S2.1). One month before the start of our experiment, 

seedlings were gradually acclimated from average daytime temperatures of 18 °C (night: 12 °C) 

to 25 °C (night: 15 °C). This is close to the 10-year average measured at Yatir forest during May, 

when the occurrence of short heatwaves is typically observed (Tatarinov et al. 2015). 

Seedlings were assigned randomly either to a control, drought, heat or heat-drought treatment 

with 30 seedlings per group. To maintain ambient air temperature and relative humidity in the 
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control and drought treatment, while conducting heatwaves in the heat and heat-drought 

treatment, the seedlings were placed in two adjacent, but individually controllable compartments 

of the greenhouse facility. 

2.2.2 Environmental variables 

Air temperature and relative humidity sensors (CS215, Campbell Scientific Inc., Logan, Utah, US, 

enclosed in aspirated radiation shields type 43502, Young, Traverse City, MI, USA) and 

photosynthetic active radiation (PAR) (PQS 1, Kipp & Zonen, Delft, The Netherlands) were 

measured continuously at canopy height in each greenhouse compartment. Carbon dioxide 

concentration was monitored with a CO2 probe (GMT 222, Vaisala, Helsinki, Finland). Soil water 

content was measured automatically in 10 pots per treatment using substrate-specific calibrated 

probes (10HS, Decagon Devices, Inc., WA, USA). All environmental sensors produced half-hourly 

data that were recorded with data loggers (CR1000, Campbell Scientific, Inc. USA).  

Soil moisture is given as relative soil water content (RSW) as follows: 

 RSW= 100* 
(SWCsample−SWCmin)

(SWCmax−SWCmin)
  (1) 

where SWCsample is the actual volumetric soil water content, SWCmin is the minimum volumetric 

soil water content after drying the soil for 48 h at 60 °C. SWCmax is the soil water content at 

maximum water holding capacity, which was about 200 cm3 L-1 (20 % v/v) for our substrate.  

2.2.3 Experimental conditions 

Aleppo pine seedlings exposed to heat and heat-drought treatments were subjected to two 

heatwaves of 4 days each (April 27th – April 30th and May 7th – May 10th, 2016). We simulated 

heatwaves by a gradual temperature increase over 2 days, reaching a maximum during the 

following 2 days, according to observations in the Yatir forest (Tatarinov et al. 2015). In order to 

test how projected further temperature increases of 2 to 6 °C in the Mediterranean region 

(Seneviratne et al. 2012) might affect survival of tree seedlings, we chose to set 5 °C higher air 

temperature maxima than have been reported so far (Tatarinov et al. 2015). This resulted in a 

maximum of 43.1 °C during the first heat wave and 42.4 °C during the second heat wave. Relative 

humidity (RH) during the heatwaves was kept between 20 and 40 %, which corresponded to a 

similar air water content as under ambient temperature conditions. This resulted in a pronounced 

increase of VPD up to 7.5 kPa during the heatwaves (Fig. 2.1A and B), corresponding to 

observations in the Yatir forest (Tatarinov et al. 2015). In total, extreme air temperatures above 

40 °C and VPD > 6 kPa were maintained for 10 hours during the first heat wave and 12 hours 
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during the second heat wave. Dark-phase (PAR < 10 µmol m-2s-1) temperatures reached 33.0 °C 

during the first- and 32.9 °C during the second heatwave with a total exposure time of 13 hours 

above 30 °C for each heatwave. Outside light was supplemented by sodium vapor lamps, 

resulting in an average PAR of 416 ± 105 µmol m-2s-1 during the course of the experiment (Fig. 

2.1C). Irrigation of the seedlings was adapted to maintain targeted soil water availability. During 

the initial control conditions and during the recovery at the end of the experiment, seedlings were 

watered to a RSW of 40-50 % (about 0.15 L three-times per week), which is similar to the average 

wet season condition of the Yatir forest site (pers. com. Yakir Preisler). One week before the start 

of the first heat wave, irrigation was withheld in the drought and heat-drought treatment (for four 

days) until a RSW of about 15 % was reached (Fig. 2.1D). This RSW was maintained by watering 

with 0.05 L three-times per week. One week after release of the second heat wave, all plants 

were irrigated to reach similar RSW conditions of 40-50 %. 

In order to avoid a possible influence on the seedlings from positioning within the greenhouse the 

position of the seedlings was altered randomly every two weeks during the initial growth phase. 

Later, during the experimental phase, after the seedlings were transferred to two separate 

greenhouse compartments, the seedlings were placed spatially interspersed in a randomized 

block design. During this phase, seedling position was unchanged because automated shoot 

cuvettes for gas exchange measurements (see section 2.4) and soil moisture sensors were 

permanently installed. However, it has been shown that environmental control of our greenhouse 

facility is exceptionally close (Ruehr et al. 2016). Differences in daily-averaged RH between the 

greenhouse compartments were below 3 % (ΔPAR < 6 %) when heatwaves were not applied in 

this experiment. Slightly larger differences in air temperature were detected before the first heat 

wave (c. 1.0 °C), which could be reduced to 0.2 °C during the remainder of the experiment. 
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Figure 2.1 Environmental conditions during the course of the experiment. Shown are (A) air 

temperature, (B) vapor pressure deficit and (C) photosynthetic active radiation. Colored lines 

depict daily mean values of two sensors at canopy height (control: black, heat: red), shaded area 

give daily minimum and maximum values. (D) Relative soil water content (rSWC) are treatment 

averages (n=10) per day. The shaded area is mean ±1 SE. Dotted lines show begin and end of 

drought phase, grey shaded areas indicate duration of the two heatwaves. 

 

2.2.4 Gas exchange measurements 

Net photosynthesis (Anet), night respiration (Rdark) and light phase transpiration (Eday) of Pinus 

halepensis shoots were measured with an automated cuvette system, described previously 

(Bamberger et al. 2017; Duarte et al. 2016). Highly UV-transmissive acrylic glass tubes (PMMA 

Saalberg, 30L: 18W) were placed around tree shoots (n = 4 per treatment). The bottom side of 

each cuvette was sealed by an acrylic glass cap, which could be taken apart for insertion of the 

seedling. Remaining gaps between tree stem and cap were sealed using plastic putty (Teroson, 

Düsseldorf, Germany). Each cuvette was supplied with a photodiode for PAR spectrum (G1118, 

Hamamatsu Photonics, Hamamatsu, Japan) and cross-calibrated with high-precision PAR 
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sensors (PQS 1, Kipp & Zonen, Delft, the Netherlands). For temperature measurements, each 

cuvette was equipped with a previously calibrated thermocouple (5SC-TTTI-36-2M, Newport 

Electronics GmbH, Deckenpfronn, Germany). Air mixing within the cuvettes was maintained by a 

fan (412 FM, ebm-papst GmbH & Co. KG, Mulfingen, Germany). The cuvettes were measured 

sequentially for 10 minutes each. After the distal cap had closed automatically, reference air of 

known CO2 and H2O concentration at a rate of 5 L min-1 was supplied to the cuvettes. The flow 

rate was controlled by a digital mass flow controller (F-201CZ–10K, Bronkhorst, Ruurlo, 

Netherlands). The measurement air (reference) was generated by an oil-free compressor (SLP-

07E-S73, Anest Iwata, Yokohama, Japan) with an Ultra Zero Air generator (Ultra Zero Air GT, LNI 

Schmidlin SA, Geneva, Switzerland). CO2 and water vapor (nebulizing evaporation pump, LCU 

Liquid Calibration Unit, Ionicon, Innsbruck, Austria) was supplied at a constant rate to the air 

stream, resulting in a CO2 concentration of 438 ± 3 µmol mol-1 and a water vapor concentration 

of 6.5 ± 0.1 mmol mol-1 on average during the experiment.   

The slight overpressure that was deliberately generated during each measurement prevented 

outside air from entering the system. The overpressure and relative air tightness of our system 

resulted in a sample air stream of 1 to 3 L min-1. Concentration changes between reference and 

sample air (each provided with 0.5 L min-1) were measured using a LI-7000, which was connected 

to a LI-840 (both LI-COR Inc., Lincoln, NE, USA) for absolute concentration measurements of the 

reference air stream. The sample cells of the two instruments were all supplied with an air stream 

of 0.5 L min-1 each. The LI-840 and LI-7000 were zero and span calibrated before the start of the 

experiment and the two measurement cells of the LI-7000 were matched weekly.  

As an additional quality check, one cuvette per greenhouse compartment was left empty and 

allowed detecting any offset between the reference and sample air not caused by plant gas 

exchange. The concentration differences were small (CO2: 0.4 [-0.2, 1.2] µmol mol-1 in median 

with lower and upper quartiles; H2O 0.07 [0.05, 0.12] mmol mol-1 with lower and upper quartiles) 

and were removed by subtraction upon data analysis. After each measurement cycle, the system 

was flushed with reference air for 1 minute. For flux calculation the last 180 s per measurement 

were used if the following criterion for stability was met: change in [CO2] < 0.5 µmol s-1 and change 

in [H2O] < 0.5 mmol s-1. In total, 94 % of the measurements were used for flux calculations.  

Gas exchange rates were calculated following an open chamber approach. In brief, (Eday) was 

derived as follows: 
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 Eday =  
𝑚 ̇ ∆𝑊

Arealeaf∗(1− 
𝑊sample

1000
)
   (2) 

Where ṁ is mass flow [mol s-1] into the cuvettes, ΔW the difference of water vapor in reference- 

and sample air stream [mol mol-1], Wsample the water vapor concentration of the sample air [mol 

mol-1] and Arealeaf [m2] the half-sided needle area of the shoot.  

CO2 gas exchange fluxes separated into Anet and Rdark were calculated by: 

 Anet (Rdark) = −
�̇�∗ ∆CO2

Arealeaf
− 

CO2 sample∗𝐸

1000
  (3) 

With ΔCO2 as the difference in [CO2] between reference and sample air stream [mol mol-1], 

CO2sample carbon dioxide concentration of the sample air stream [mol mol-1]. 

gs was calculated by: 

  gs = 
𝐸(1000−

𝑊leaf+𝑊sample

2
 )

𝑊leaf−𝑊sample
   (4) 

  Wleaf
 = 

𝑒sat leaf

𝑝
∗  1000    (5) 

With stomatal conductance gs in mol m-2s-1, saturated vapor pressure of the leaf with esat leaf = esat 

in bar and atmospheric pressure p in kPa. (Duarte et al. 2016) showed that the ventilation 

generated by the fans in the cuvettes allowed well air mixing and thus boundary layer for the 

calculation of gs could be neglected. In order to determine changes in WUE during heat stress, 

apparent water-use efficiency WUEa and intrinsic water-use efficiency WUEi were derived using 

the following equations: 

  WUEa = 
𝐴net

𝐸day
     (6) 

  WUEi = 
𝐴net

𝑔s
     (7)  

WUEa is driven by fixation of CO2 and loss of H2O at leaf level, which is mostly driven by 

atmospheric parameters (VPD), concentration differences of CO2 and H2O in the air and gs. Thus, 

WUEa provides a measure for the water cost of fixed carbon. WUEi provides a measure for leaf 

physiological changes when normalized to stomatal response. Thus, WUEi allows to compare 

treatments independently of environmental drivers e.g. VPD and is related to the difference 

between atmospheric [CO2] and mesophyll [CO2]. This parameter can provide insight into 

photosynthetic carbon fixation efficiency (Bonan et al. 2014; Wieser et al. 2018). 
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2.2.5 Chlorophyll fluorescence 

Chlorophyll fluorescence was measured with a portable photosynthesis system (LI-6400XT, LiCor 

Bioscience, Lincoln, NE, USA) supplemented with a fluorescence head (6400-40 Leaf Chamber 

Fluorometer, LiCor Bioscience, Lincoln, NE, USA). Chlorophyll fluorescence was measured on 4 

seedlings per treatment before the start of the treatments, just one day after the second heat 

wave had ended and three weeks later during recovery. Measurements were conducted between 

9 am and 1 pm at a leaf temperature of 25 °C and reference [CO2] of 400 μmol mol-1. Needles 

were clamped into the leaf cuvette fully covering the cuvette area (2 cm2). Needles were 

acclimated to actinic light with optimal PAR (1200 μmol m-2s-1, pre-determined from light response 

curves) with a blue light proportion of 10 % for several minutes. As soon as changes in 

fluorescence intensity (F) ceased to values <5, F was considered stable and the measuring 

sequence was initiated. First, chlorophyll fluorescence at actinic light (F’s) was measured as a 

steady state value, then needles were briefly exposed to a saturating flash of >7000 μmol m-2s-1 

and maximum fluorescence (F’m) was measured. This was followed by a fast switch from actinic 

light to far red radiation. This so-called dark pulse allowed measurement of minimum chlorophyll 

fluorescence (F’0). The photochemical parameters effective photosystem II quantum yield (ΦPSII), 

maximum light adapted quantum yield of the photosystem II (F`v/F`m), coefficients of 

photochemical fluorescence quenching (qP) and relative electron transfer rate (ETR) were 

calculated using standard procedures.  

2.2.6 Biomass sampling and sample preparation 

Entire seedlings were sampled on three occasions during the course of the experiment: pre-stress 

(April 20th), at the last day of the second heat wave (Mai 10th) and three weeks later, i.e., after 

recovery (Mai 30th). During each sampling campaign, a minimum of six seedlings per treatment 

(including dead seedlings as well, see below) were sampled according to a randomized block 

design. All plant material containing needles above the former cotyledons was assigned as shoot, 

all plant material below the first roots as root material. Stems were collected but were not used in 

this study. Additionally, all plant samples were weighted, photographed, and immediately frozen 

in liquid nitrogen. Time of harvest was between 1 pm and 2 pm. Prior to freezing, water potential 

measurements of shoots (ψshoot) were conducted on some seedlings using a pressure chamber 

(Model, 600 PMS-Instruments, Albany, OR, USA); after a droplet of water appeared at the cut 

surface, the pressure was slowly released to avoid damage of the tissues. Roots and shoots were 

ground to fine powder in liquid nitrogen with mortars and pestles. Samples were divided into 

aliquots and stored at -80 °C for further analysis. Dry weight was assessed gravimetrically by 
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drying samples for 48 h at 60 °C. In total, 23 control, 22 drought, 28 heat and 28 heat-drought 

treated seedlings were sampled. For each sampling campaign metabolites were analyzed in root 

and shoot tissues and averaged per treatment. Results from dead seedlings were treated 

separately. 

2.2.7 Seedling mortality 

Stress severity resulted in death of seedlings in the heat and heat-drought treatment. Seedlings 

were not actively monitored for signs of mortality during the two heatwaves (except for the gas 

exchange measurements, see Fig. 2.2), but mortality was detected upon two biomass sampling 

campaigns (stress, recovery). Visual examination showed that the canopy appeared dry and had 

lost most of their greenness in some likely dead individuals. Because detecting mortality from 

visual examination might be observer biased, a second criterion based on absolute shoot water 

content was introduced. In seedlings that looked quite healthy and green, absolute shoot water 

content was between 58 % and 70 %, while shoot water content in the other seedlings ranged 

from 8.2 % to 46.7 % (Fig. S2.2). The canopy of these seedlings also appeared (after analyzing 

the photographs, for example see Fig. S2.1) dry and had lost their greenness. However, we like 

to highlight that the decline in shoot water content was unlikely the reason of death (e.g., seedlings 

of the well-watered heat treatment died as well, but ψshoot did not indicate water stress in the 

surviving seedlings, see Fig. 2.3), but rather a consequence: after the shoots were permanently 

damaged and the majority of needles and/or roots no longer functional, water supply ceased and 

the shoots began to desiccate. 
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Figure 2.2 Time-series of shoot gas exchange in Pinus halepensis seedlings (n=4 per treatment). 

Shown are daily averages per treatment of (A) net photosynthesis (Anet), (B) dark respiration 

(Rdark), (C) transpiration E, (D) stomatal conductance gs, (E) apparent water-use efficiency (WUEa) 

and (F), intrinsic water-use efficiency (WUEi). Shoot gas exchange of seedlings that died during 

the course of the experiment in the heat (n=1) and heat-drought treatment (n=3) is indicated by 

dotted lines. The shaded areas around the mean represent ±1 SE. The two heatwaves are 

depicted by the light grey areas. The duration of drought is indicated by vertical intermitted lines. 

 

This phenomenon was supported by dendrometer data (Fig. S2.3). Here, stem dehydration 

indicated by diameter shrinkage of dying seedlings was observed to occur after the heatwaves. 

Thus, in summary visual examination together with shoot water content data allowed us to 

separate living and dead seedlings. This step was a necessary prerequisite before analyzing the 

gas exchange and metabolite data. 
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Figure 2.3 Shoot water potential (ψshoot) in 

control, drought, heat, heat-drought trees is 

given before stress (before), after the second 

heat wave (stress) and 3 weeks after stress 

(recovery). The error bars are ±1 SE (n=6, but 

heat-drought treatment during stress and 

recovery n=3). Treatment differences from the 

control are given (*P≤0.05). 

 

 

 

 

2.2.8 Analysis of Carbohydrates 

Analysis of NSC in shoot and root samples was done following the approach reported by (Brauner 

et al. 2014) based on extraction using boiling ethanol (80%v/v), which was defined as standard 

method for sugar extraction recently ((Quentin et al. 2015). Extracts were analyzed by HPLC 

(Dionex DX-500 HPLC system, Thermo Scientific) using pulsed amperometric detection by a gold 

electrode (Dionex ED Au, Thermo Scientific). Soluble sugar compounds (inositol, pinitol, glucose, 

fructose, sucrose) were separated by a PA1 column (Dionex CarboPac PA–1, Thermo Scientific). 

Myo-inositol and D-pinitol were co-eluted by our chromatographic method and therefore are 

referred to cumulative as cyclitols. Glucose, fructose and sucrose are treated together as soluble 

NSC because single components responded in the same direction to the treatments applied. 

Remaining extracts were stored at -20 °C.  

Starch extraction was modified according to (Hoch et al. 2003). Remaining pellets from soluble 

sugar extraction were suspended in 1 ml of deionized water (H2Odd), heated to 95 °C for 45 

minutes and then cooled to 30 °C before 1 ml of amyloglucosidase reagent (10 mM acetate Buffer 

pH 4.5, 1 mg ml-1 amyloglucosidase) was added. Glucose-oxidase reagent was added containing 

2 U ml-1 horse radish peroxidase, 5 U ml-1 glucose oxidase and 0.1 mg ml-1 o-Dianisidin. Samples 

were kept at 30 °C for 2 hours, then the reaction was stopped with 5 N HCL and absorption was 

measured at 540 nm photometrically (Ultrospec 2000 UV/VIS Spectrophotometer, Pharmacia 

Biotech). 

Analysis of carboxylic acids (malic-, fumaric-, citric acid), extracted into hot water, was done as 

reported by (Brauner et al. 2014), again using HPLC (Dionex DX-500 HPLC system, Dionex 

IonPac AS11-HC, Thermo Scientific) coupled to a suppressor (Dionex AERS 500 Carbonate 
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Electrolytically Regenerated Suppressor, Thermo Scientific) with detection by conductivity 

(Dionex ED, Thermo Scientific). On the same chromatogram, nitrate, phosphate, sulfate and 

chloride were detected as well.  

2.2.9 Proline 

Proline in shoot and root tissues was analyzed following (Rienth et al. 2014). In brief, 25 mg of 

frozen sample powder was extracted for 10 minutes in 1 ml H2Odd at 4 °C and centrifuged (13000 

rpm for 15 min). 500 µl of supernatant was added to 500 µl of concentrated Formic acid and 

vortexed for 5 minutes. 500 µl of Ninhydrin reagent was added (3 % Ninhydrin in 

Dimethylsulfoxide). Samples were heated (100 °C for 15 minutes) and immediately cooled on ice 

and then centrifuged (at 13000 rpm for 1 min). Absorption of the supernatant was measured at 

520 nm (Ultrospec 2000 UV/VIS Spectrophotometer, Pharmacia Biotech).  

2.2.10 Needle surface temperature 

Needle surface temperature was measured optically by an infrared camera system (PI 450, 

Optris, Germany) and analyzed using the manufacturer’s software. Recordings were taken at the 

last day of the second heat wave between 1 pm and 4 pm of at least four individuals per treatment. 

Air temperature during the measurements was used to correct for background radiation. 

Emissivity of P. halepensis needles was set to 0.97 according to (Monod et al. 2009). 

2.2.11 Calculation of osmotic pressure potential 

Osmotic pressure potential was calculated using the van’t Hoff osmotic pressure equation for 

aqueous mixed electrolyte solvents: 

 Π= M*i*R*T      (8) 

where Π is the osmotic pressure potential Pa (kg m-1 s-1), M is the molar fraction of all measured 

osmotic active components (cumulative) including total C, proline, nitrate, sulfate and phosphate 

concentrations. R is the ideal gas constant (8.31445 kg m2 mol-1K-1s.2 at standard temperature of 

25 °C). The van’t Hoff factor i represents the degree of dissociation of each solute component. 

We calculated with fully dissociated solute components for the case that a salt would dissociate 

into two ions (eg. iglucose = 1, initrate = 2).  

2.2.12 Statistics and Data-analysis 

This study focuses on treatment differences from the control and treatment effects on metabolite 

concentrations, which were analyzed separately per sampling period (pre-stress, stress and 

recovery) by analysis of variance (ANOVA). Samples that were considered as “dead” have not 
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been integrated into the analysis. The effect size of treatments compared to the control was 

calculated as a percent treatment effect (D): 

 D = 100* 
(meant−meanc)

meanc
    (9) 

where meant is the treatment average and meanc is the average of the control, the standard error 

(SE) of the treatment effect (DSE) was calculated as follows: 

 DSE = 100* √((
1

meanc
) ∗  SEt)

2

+ ((
meant

meanc
2) ∗ SEC)

2

 (10) 

with SEt and SEc are the SE of treatments or control. Because shoot gas exchange was measured 

on the same seedlings throughout the experiments, treatment effects were assessed with linear 

mixed-effects models, which account for the repeated sampling in time design. All data processing 

and statistical analysis was done using R version 3.2.2 (R Core Team 2015), extended with the 

“lme4” package (Bates et al. 2015) for linear mixed-effects models.  

2.3. Results 

2.3.1 Stress intensity and mortality  

Heatwaves resulted in pronounced death and caused 5 seedlings (23 %) in the heat treatment 

and, 15 seedlings (68 %) in the heat-drought treatment to die. The surviving seedlings showed 

only a moderate reduction in ψshoot (Fig. 2.3). Thus, it is unlikely that hydraulic failure was a cause 

of mortality. However, needle temperatures were affected differently by the treatments. While 

needle temperatures in the control and heat treatment were above ambient air temperatures 

(control: +3.4 °C, heat: +3.1 °C), needle temperatures in the drought and heat-drought treatment 

was even higher (drought: +5.2 °C, heat-drought: +5.7 °C; Table 2.1). Thus, the on average 2.6 

°C higher shoot temperature under heat combined with drought might have resulted in elevated 

mortality rates, as needle temperature became excessive (>47 °C). Although the exact time point 

of mortality was not investigated in each of the seedlings, the continuous gas exchange 

measurements pointed to the end of the first heat wave (Fig. 2.2 intermitted lines) as daytime gas 

exchange rates did not recover, but declined even further. A possible death indicator was when 

shoot Rdark reached values close to zero. This appeared to be the case approximately one week 

after the end of the last heat wave (Fig. 2.2C) and agrees with the continuous diameter 

measurements (Fig. S2.3). Since the seedlings continued to dry out after death, the shoot water 

content was below 49 % at biomass sampling two weeks later, which agreed with our death 

criterion (see Methods section). 
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Table 2.1: Comparison of needle temperature (Tneedle) between treatments. Measurements were 

done using an infrared camera at the end of the second heat wave when air temperature was 

40.8–42.1 °C in the heat and heat-drought treatment and 25.1–25.4 °C in the control and drought 

treatment. Shown are treatment averages, standard error (±1 SE) and temperature difference 

between needle and air temperature. 

 

Treatment 

 

Tneedle [°C] 

 

SE 

 

Δ°C (Tneedle - Tair) 

 

Control 

  

28.6  

 

0.63 [n=6] 

 

3.4 

 

Drought 

 

30.7 

 

0.33 [n=4] 

 

5.2 

 

Heat 

 

45.3 

 

0.75 [n=6] 

 

3.1 

 

Heat-drought 

 

47.2 

 

0.57 [n=4] 

 

5.7 

 

2.3.2 Shoot gas exchange and chlorophyll fluorescence during stress and recovery 

In the surviving seedlings, large differences in shoot gas exchange were observed between the 

treatments (see Table S2.3 for linear mixed effect model results). While Anet and Rdark in drought-

treated seedlings decreased proportionally (Fig. 2.2A and B), we found contrasting responses 

under high temperature stress. Most markedly, in both the heat and heat-drought treatment, a 

sharp decline in Anet was contrasted by a pronounced increase in Rdark (heat: +101 %, heat-

drought: +35 %, P≤ 0.001) during the first heat wave. In the surviving heat-drought seedling, the 

increase in Rdark during the first heat wave was not observed during the second heat wave and 

Rdark did not reach control levels through the remainder of the experiment (-49.8 %, P≤ 0.001). In 

contrast, the heat-treated seedlings maintained high Rdark rates, and Anet recovered 

instantaneously after the second heatwave had ended. 

Canopy transpiration was strongly affected by the two heatwaves and increased markedly in the 

heat treatment, while water deficit resulted in a reduction of Eday in the heat-drought treatment 

(Fig. 2.2C). In both treatments, the changes in Eday were accompanied by decreasing gs (Fig. 

2.2D). Because Anet appeared coupled to gs but uncoupled from Eday during heat wave conditions, 

WUEa declined sharply while WUEi remained relatively unchanged, but slightly increased in the 

surviving heat-drought seedling post-stress (P≤ 0.001) (Fig. 2.2E and f). 
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Figure 2.4 Changes in shoot gas exchange in response to VPD for surviving trees. Given are day-

time (A) transpiration Eday, (B) stomatal conductance gs and (C) net photosynthesis Anet in the 

control (n=4), drought (n=4), heat (n=3), heat-drought (n=1) treatment during before stress and 

heat wave conditions. Data are bin-averaged in VPD classes of 0.5 kPa (10 am to 7 pm). 
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The relationships of shoot gas exchange with VPD (Fig. 2.4) revealed striking differences between 

drought and well-watered seedlings. In the heat treatment, a decline in gs was particularly visible 

during the initial increase in VPD (0.5 to 3 kPa), while gs remained surprisingly constant at higher 

VPD. This resulted in increasing Eday, while photosynthesis remained constant over a temperature 

range between 32 °C and 42 °C. In the heat-drought treatment, the decline of gs indicated stomatal 

closure at a VPD of about 3.5 kPa, tightly limiting Eday and Anet. 

 

 

Figure 2.5 Changes in chlorophyll fluorescence parameters during stress and recovery relative to 

before stress conditions. Parameters shown are: (A) effective photosystem II quantum yield 

(ΦPSII), (B) maximum quantum yield of the photosystem II (F`v/F`m), (C) coefficients of 

photochemical fluorescence quenching (qP), (D) relative electron transfer rate (ETR). The error 

bars are ±1 SE (n=4, but heat-drought treatment during recovery n=3). The intermitted lines 

provide comparison to before stress conditions. Significant treatment differences from control are 

given (*P≤0.05). 

 

The impairment of the photosynthetic apparatus under heat-drought stress was clearly visible in 

all measured chlorophyll fluorescence parameters one day after the last heat wave (Fig. 2.5), 

where ΦPSII showed the strongest decline with 78 % compared to the control treatment (ANOVA, 

P≤ 0.001). The parameters also reflected the reduced, but continuing photosynthetic activity in 

the heat and drought treatment, in which small but not significant reductions were observed. The 

apparent recovery of all chlorophyll fluorescence parameters in the heat-drought treatment should 
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be interpreted with caution, because data are reported on the remaining intact needles of three 

surviving seedlings 20 days following heat release. However, needles of dead seedlings which 

were measured, did neither assimilate nor respire and had light-adapted fluorescence values of 

zero (data not shown). 

2.3.3 Non-structural carbohydrates  

We found no distinct stress responses of NSC concentrations in shoots (Fig. 2.6 A, C, E, G) 

(slightly reduced starch content in the heat treatment, ANOVA, P ≤ 0.05), while soluble NSC and 

starch contents in roots declined in response to heat and heat-drought stress (Fig. 2.6 B and D) 

(see Table S2.4 for ANOVA results). Heat-drought caused a dramatic depletion of soluble sugars 

(-97 %, 2.4 µmol gDW-1) and starch (-98 %, 0.8 µmol gDW-1). Carboxylic acids and cyclitols were 

also significantly affected by heat-drought stress, causing an overall reduction in total C of 83 % 

compared to the control (ANOVA, P≤ 0.001).  

During recovery, heat-drought treated seedlings showed a significant increase in carboxylic acids 

and cyclitols in shoots (Fig. 2.6 E, G) (ANOVA, P≤ 0.001). While in the heat and in the heat-

drought treatment root soluble NSC and starch increased during recovery close to control values 

(Fig. 2.6 B, D), in the heat-drought treatment total C remained significantly reduced (-85 %, 

ANOVA, P≤ 0.001). In dying seedlings, NSC contents did not recover (Fig. 2.6) and starch storage 

in shoots and roots was close to depletion. 
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Figure 2.6 Changes in non-structural carbohydrates (NSC) for shoot and root tissues during stress 

and recovery relative to before stress conditions. Shown are (A, B) soluble NSC (glucose, 

fructose, sucrose), (C, D) starch (E, F) carboxylic acids (malate, fumarate, citrate), (G, H) cyclitols 

(myo-inositol, D-pinitol) and (I, J) total carbohydrates (given as C6 equivalents of the shown 

metabolites) for control, drought, heat, heat-drought and dead seedlings. The error bars are ±1 

SE (n=6, but heat-drought during stress and recovery n=3, dead heat samples n=5, dead heat-

drought samples n=15). The intermitted lines provide comparison to before stress conditions. 

Significant treatment differences from control are given (*P≤0.05). See Table S2.2 for absolute 

concentrations. 
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2.3.4 Proline, nitrate and osmotic potential 

The amino acid proline can act as osmolyte, antioxidative defense and membrane stabilizing 

molecule (Szabados and Savoure 2010). We found its concentration to increase in shoots of heat 

and heat-drought treated seedlings during stress and recovery (Fig. 2.7 A, B). Dead seedlings 

showed accumulation of proline during both sampling campaigns. Proline content in roots was 

much smaller, and no clear response to the treatments was found. 

Shoot nitrate content, proposed here as an indirect measure for N assimilation, was 2 to 4 times 

higher during stress (ANOVA, P≤ 0.01) than prior to stress conditions in heat and heat-drought 

seedlings. Following recovery, nitrate content in the heat treatment decreased to control levels, 

while it remained elevated in the heat-drought treatment (ANOVA, P≤ 0.05). No obvious effect of 

the treatments on root nitrate was visible (Fig. 2.7 D). Again, the dead seedlings showed highest 

concentrations and no decline during recovery. 

The osmotic potential (Π) of shoots remained relatively constant in all treatments throughout the 

experiment. Π in roots showed a tendency to decrease in the drought treatments whereas root 

NSC declined (Fig. 2.6H). The reason for this was reduced root water content (Table S2.2). A 

decrease in tissue water content results in more concentrated cytosolic and apoplastic fluids and 

therefore Π becomes more negative. 
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Figure 2.7 Changes in (A, B) proline, (C, D) nitrate concentrations and osmotic potential Π (E, F) 

in shoots and roots during stress and recovery compared to before stress conditions for control, 

drought, heat, heat-drought and dead seedlings. Osmotic potential was calculated from measured 

solutes and tissue water content using the van`t Hoff equation. The error bars are ±1 SE (n=6, 

but heat-drought treatment during stress and recovery n=3). The intermitted line provides 

comparison to before stress conditions. Significant treatment differences from control are given 

(*P≤0.05). In dead seedlings, when changes exceed axis scaling, the mean value was placed 

below the SE. 
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2.4.  Discussion 

2.4.1 High temperature and mortality 

The exact cause of seedling mortality is not clear, but likely relates to the high shoot surface 

temperatures, which became excessive when transpiration ceased, mainly in the heat-drought 

treatment. According to the high-resolution dendrometer data measured on a few seedlings (Fig. 

S2.3), seedlings in the heat-drought treatment most likely died right after the last day of the first 

heat wave and desiccated rapidly afterwards. In contrast, seedlings in the heat treatment showed 

strong stem diameter declines (and thus death) only after the second heat wave had ended. Such 

a delay in stress response might indicate that cellular damage (e.g., in needles, roots and/or 

cambium cells) accumulates with delay (as has been observed after high temperature stress, e.g. 

(Hüve et al. 2011) until critical levels are reached beyond which tree functioning cannot longer be 

maintained. This was also described as indirect damage by Colombo and Timmer (1992). The 

differences in the time point of mortality between heat and heat-drought treatments might reflect 

dosage effects of the experienced heat stress. 

The reduced transpiration in the heat-drought treatment (c. 0.5 mmol m-2s-1) versus the heat 

treatment (c. 2 mmol m-2s-1) at a VPD of 4 kPa and 42 °C air temperature resulted in 2.6 °C higher 

needle temperatures at the end of the second heatwave (Table 2.1). Such an increase in leaf 

temperature has also been observed in mature forests when drought-exposed trees were 

compared to well-watered trees (Scherrer et al. 2011). In regard to the pronounced mortality under 

heat-drought as observed in our experiment, leaf cooling could have been crucial for survival as 

leaf temperatures had reached 47 °C, a critical value for tissue damage in conifers (Bigras 2000; 

Colombo and Timmer 1992). The importance of evaporative cooling at lower VPD was examined 

recently (Urban et al. 2017a) in Pinus taeda. The study showed that seedlings were able to keep 

stomata open and to maintain high transpiration rates. This resulted in lower leaf heating. 

According to a field experiment on Eucalyptus parramattensis by (Drake et al. 2018), leaf surface 

heating was reduced by 2.8°C on average because transpiration was maintained at high rates 

even at temperatures > 43°C. 

The ability of the pine seedlings to cool via transpiration was found to fail under the water limiting 

conditions applied here, which led to excessive surface temperatures when no other cooling 

mechanism was available. Under field conditions, leaf cooling can originate from transport of 

sensible heat via high wind speed or convective air flow. Such upward flow conditions and cooling 

of forest canopy have been shown at the Yatir forest (Eder et al. 2015; Rotenberg and Yakir 

2011), where the seed material for this study originates from. However, for seedlings growing 
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close to the soil surface where wind speed and convective exchange is lower, this cooling 

mechanisms should be less effective whereas soil surfaces can heat up tremendously (Kolb and 

Robberecht 1996). The authors found that under such conditions, seedlings with higher stomatal 

conductance were more likely to survive. This compares well to our findings, where trees with low 

Eday and gs died, while seedlings that maintained generally higher Eday rates survived (Fig. 2.2). 

In summary, the high temperatures experienced by the seedlings in the heat and heat-drought 

treatment caused pronounced stress, likely resulting in membrane and protein damage causing 

higher mortality in trees with lower evaporative cooling capacity.  

2.4.2 Stress severity and impairment of N assimilation 

The intensity of the heat and heat-drought stress was not only reflected in high mortality rates, 

but  further indicated by highly elevated proline contents (Szabados and Savoure 2010; 

Verbruggen and Hermans 2008). Proline was not upregulated in response to the applied drought, 

which was rather mild, as stomata did not close completely and ψshoot remained well above critical 

values for xylem embolism formation (Dadshani et al. 2015; David-Schwartz et al. 2016; Delzon 

et al. 2010; Klein et al. 2011; Oliveras et al. 2003). Therefore, we suggest that proline was of 

minor importance as osmoprotectant, which is in line with not increased Π of shoots during 

drought. Proline may also accumulate under salinity stress (Hamilton 2001; Hayat et al. 2012), 

which seems not relevant in our case, but interestingly a quadratic relationship between shoot 

chloride content and proline concentrations was found (Fig. S2.4). This might have been caused 

by increased uptake of chloride by roots at high temperatures ((Turner and Lahav 1985). Proline 

upregulation under heat stress is reported as beneficial for plants due to its role as protein 

stabilizer (e.g. complex II of mitochondrial electron transport chain; (Hamilton 2001). Moreover, 

proline synthesis serves as an efficient NADPH scavenger to regenerate NADP+ (Hayat et al. 

2012; Szabados and Savoure 2010; Zhang et al. 2015) and to prevent radical production in the 

thylakoid electron transfer chain (Kramer et al. 2004). This mechanism might enhance ETR by 

regenerating electron acceptors, and thus, can reduce oxidative stress. Indeed, we found ETR, 

calculated from chlorophyll fluorescence measurements, unaffected in the heat treatment, while 

ETR was strongly reduced in the heat-drought treatment. Thus, the membrane and protein 

stabilizing ability of proline could not prevent photo inhibition at the time of highest needle 

temperatures in the heat-drought treatment (>47 °C).  

We also found elevated levels of nitrate in shoots of heat and heat-drought stressed Aleppo pines, 

while nitrate levels in roots did not change, which might indicate heat-induced inactivation of leaf 

nitrogen assimilation. Decreased nitrate reductase activity has been observed to occur at 
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temperatures above 40 °C in cereals (Onwueme et al. 1971; Pal et al. 1976), and after heat 

release, nitrate activity can quickly recover. A fast recovery of N assimilation in Aleppo pine two 

days after stress release may also be concluded from the drop in leaf nitrate content (see Fig. 

2.7), while in the dead seedlings nitrate levels remained highly elevated (> 900 %). 

2.4.3 Metabolic responses towards heat-drought stress 

The degree of stress and reduction in gas exchange were reflected in root NSC concentrations. 

In the heat-drought treatment, soluble NSC, starch, carboxylic acids and cyclitols declined to a 

larger extend than in the heat treatment although root zone temperatures were similar in both 

treatments (data not shown).  Likely, the more pronounced reduction in C uptake in the heat-

drought treatment supposedly decreased phloem transport (Ruehr et al. 2009; Sevanto 2014, 

2018) , which caused the observed strong depletion of soluble sugars and starch storage in roots. 

Total NSC levels were  close to zero in the roots of the heat-drought seedlings, which may indicate 

critical C shortage in roots, limiting the otherwise high maintenance respiration in roots at high 

temperatures (Jarvi and Burton 2018; Tjoelker 2018). This could have potentially affected root 

functionality and hence contributed to the observed large mortality rates under heat-drought.  

Changes in lipids, which can be critical for C supply during stress were not measured. In particular 

in pine trees, lipids (triglycerides) together with cyclitols are reported to be a large carbon storage 

pool (Hoch et al. 2003; Piispanen and Saranpaa 2002), and this pool can easily be channeled 

into the Tri-carboxylic-acid cycle especially during extreme stress (Fischer et al. 2015). This might 

partly explain the weak responses of carboxylic acids under heat and heat-drought, whereas root 

NSC was depleted. Furthermore, carboxylic acids together with cyclitols, in sum, did surpass or 

at least equal the concentration of the typically measured NSC (starch, sucrose, glucose and 

fructose; Table S2.2), and hence should be considered as important plant carbohydrate pools.  

Carboxylic acids exert key functions in the regulatory network of plants. Tri-carboxylic-acid cycle 

(TCA) intermediates are important for the generation of ATP, and thus key in respiratory 

processes. Additionally, they can provide carbon skeletons for amino acids and carbohydrates 

(Fernie et al. 2004). An increase in carboxylic acids during recovery might indicate enhanced 

investment into provision of carbon skeletons for maintenance and repair mechanisms. For heat-

drought treated seedlings this could also mean that carboxylic acids accumulated because Rdark 

was reduced. Similar upregulation of TCA intermediates was recently reported for eucalypts in 

response to heat and drought (Correia et al. 2018). 
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While shoot soluble NSC did not decline, shoot Rdark was much lower during the second as 

compared to the first heat wave and during the period of recovery. Presumably, available C for 

respiration was not limited in the heat-drought treatment at this stage because of actively 

maintained high sugar levels. This can be concluded from the upregulation of compatible solutes, 

including cyclitols during recovery. A similar pattern has also been observed in Scots pine where 

newly assimilated carbohydrates were allocated to cyclitols during recovery from drought (Galiano 

et al. 2017). Only heat-drought was associated with an increase in cyclitols during recovery, which 

might be explained by the very high needle temperatures that were found in this treatment. 

Various enzymes are expected to be protected by cyclitols against heat denaturation (Jaindl and 

Popp 2006). 

Reports on NSC concentrations during drought have often been found to be inconclusive and to 

differ between species. In all species, hydraulic failure is lethal, but not all drought-induced 

lethality is connected to NSC depletion (Adams et al. 2017) and NSC concentrations during 

drought were found to increase, decrease or remain static in a wide range of tree species 

(Hartmann and Trumbore 2016). Information on isolated heat effects on NSC of tree seedlings is 

scarce and might depend on heat dosage rather than temperature maxima. It has been postulated 

that high temperatures lead to an increase in shoot NSC (Sevanto and Dickman 2015). Marias et 

al. (Marias et al. 2017) has found a similar response, with sugars in shoots increasing, when 

coffee plants have been exposed to a heat pulse (49°C for 45 min). This is in stark contrast to 

what we have observed during a longer but less intense heat wave, where NSC in shoots 

remained relatively constant, while roots NSC declined in the heat and heat-drought treatment. In 

accordance, a five days heat wave of about 40 °C did also not change NSC concentrations in 

leaves of Eucalyptus globulus, but when drought was added NSC concentrations declined 

(Correia et al. 2018). To conclude this section, the primary metabolism of Aleppo pine shoots 

appears to be highly buffered against deviations even under extraordinary stressful conditions. In 

contrast, the root metabolism decouples from the source supply under mild drought and/or 

extreme heatwaves and is clearly affected under stress combination. These changes in allocation 

patterns, especially in response to heat combined with drought, might be a sign of the plants 

approach to preserve source functionality at the cost of sink integrity. 

2.4.4 Photosynthetic inhibition and recovery from acute heat stress 

Water availability during heatwaves seems to be a key factor of survival (Bauweraerts et al. 2014; 

Ruehr et al. 2016), in parts at least related to evaporative cooling capacity (Drake et al. 2018) and 

the performance of the photosynthetic apparatus, as indicated by leaf fluorescence. While in heat-
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drought trees chlorophyll fluorescence parameters (ΦPSII, F`v/F`m, qP and ETR) decreased 

strongly, the decline was less obvious in the heat treatment one day after the last heat wave had 

ended. A decline in ΦPSII indicates a saturation of the electron transfer chain, bearing the risk of 

oxidative stress (Murchie and Lawson 2013). In the investigated Aleppo pine seedlings, other 

reasons for the reduction of ΦPSII like the capacity of the harvesting complexes, can be neglected 

because of their pigment`s stability above 60 °C (Rätsep et al. 2018), and because the critical 

temperatures that causes disaggregation of the light harvesting complex typically lie above 50 °C 

(Nellaepalli et al. 2014; Tang et al. 2007). ETR, on the other hand, largely depends on thylakoid 

membrane integrity, which is disturbed at much lower temperatures of about 38 °C (Bukhov et al. 

1999; Havaux et al. 1996). Dark adapted maximum operating efficiency Fv/Fm is widely used for 

the estimation of stress severity (Murchie and Lawson 2013). In this experiment, only F`v/F`m in 

light adapted state is available for interpretation. This parameter decreases with increasing non-

photochemical quenching (Murchie and Lawson 2013), which means the dissipation of excess 

energy by heat. Together with the hypothesis of a saturated photosystem and reduced ETR, this 

provides evidence for stress-induced limitations of processes downstream of the photosynthetic 

apparatus. These processes downstream of the photosynthetic apparatus like enzymatic 

processes, substrate or thylakoid integrity might have been affected by the heat treatments. 

Although we did not measure direct photosynthetic damage, there is increasing evidence that 

thresholds for irreparable/slowly recoverable damage are typically reached at temperatures > 

45°C (Hüve et al. 2011), with higher or lower thresholds in tropical or artic regions (O'Sullivan et 

al. 2017). 

The apparent small decline of chlorophyll fluorescence parameters in the heat treatment, 

measured one day after the last heat wave had ended, may either reflect a relative mild 

impairment of the photosynthetic apparatus, or indicate a fast recovery of chlorophyll fluorescence 

parameters one day after the acute stress. Fast recovery responses of photosynthetic parameters 

after acute heatwaves (when water was not limiting) were also observed in herbaceous plants, 

as well as in some tree species and typically relate to temperatures < 45°C (Ameye et al. 2012; 

Guha et al. 2018; Hüve et al. 2011). By contrast, we did not observe complete recovery of ΦPSII 

in the few surviving heat-drought seedlings, which had been exposed to needle temperatures > 

47°C. 
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2.4.5  Canopy gas exchange affected by high temperatures, atmospheric demand and soil 
drought 

Heat stress, which induces high atmospheric demand has been reported to result in (partial) 

stomatal closure (Ameye et al. 2012; Bauweraerts et al. 2013; Duarte et al. 2016; Garcia-Forner 

et al. 2016; Ruehr et al. 2016). In our study, we found that stomata did not fully close in the heat 

treatment even when extreme vapor pressure deficits of > 6 kPa were reached. Indeed, partial 

stomatal closure was enough to maintain midday stem WP at moderate levels of -1.2 MPa 

(measured at the last day of the second heat wave), indicating that the xylem water transport was 

operating under non-harmful conditions. Under the same atmospheric conditions, but reduced 

irrigation in the heat-drought treatment, the stress on the hydraulic system of the seedlings was 

larger (-1.8 MPa) and stomata were almost fully closed to prevent any further drop in ψshoot, and 

hence embolism formation. Separating the effects of high temperature and VPD on stomatal 

responses is challenging. In experiments with temperature rise independent of VPD, gs could 

even increase (Urban et al. 2017a; Urban et al. 2017b). A temperature-driven increase in gs might 

simply reflect enhanced water loss along with rising temperatures without any further opening of 

stomata aperture, or could reflect an active cooling mechanism that prevents further closing of 

stomata. Active leaf cooling seems to be reasonable (Drake et al. 2018; Urban et al. 2017a; Urban 

et al. 2017b), but the underlying mechanisms have not been detected yet.  

Anet and Eday were uncoupled during the heatwaves, resulting in a strong decline in WUEa. Both, 

Anet and Eday showed slightly different response pattern during the first and the second heat wave 

with a less pronounced decrease in Anet in the former and a less pronounced increase in Eday 

during the latter, which resulted in similar amplitudes of WUEa decrease in both heatwaves. Even 

Rdark showed this kind of response dampening during the second heat wave, especially in the 

surviving heat-drought seedling. A similar decline in the amplitudes of gas exchange rates in 

response to repeated heatwaves were reported in various other tree species (Duarte et al. 2016; 

Guha et al. 2018) and were linked with cellular damage that decreased heat wave resilience.  

Thus, trees were able to fully recover following heat release, but under combined heat-drought 

stress WUEi remained increased during recovery along with elevated levels of compatible solutes. 

The increase in WUEi however, was at the cost of reduced transpiration which resulted in higher 

needle surface temperatures. In particular, shoot-to-root C allocation patterns changed 

dramatically under heat-drought stress, which was reflected by an accumulation of compatible 

solutes (cyclitols) and TCA intermediates (carboxylic acids) in shoots, while non-structural 

carbohydrates declined dramatically to values close to zero in roots and did hardly recover once 

stress was released. 
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2.5 Conclusion 

The combination of heat and drought stress affected Aleppo pine seedlings differently than 

drought or heat alone. This was not restricted to the stress periods per se, but became clear post-

stress through high mortality rates and delayed recovery of the surviving seedlings. The observed 

delay in recovery and pronounced mortality in the heat-drought treatment clearly demonstrated 

that physiological stress responses can continue after environmental stress has been released. 

Moreover, it showed that a tight regulation of a plant’s water balance via stomatal closure at the 

cost of evaporative cooling can result in excessive needle temperatures under the experimental 

conditions applied here. The exact cause of death is not clear, but extreme needle temperatures 

(> 47°C) may have either directly damaged shoot tissues via cell necrosis or may have indirectly 

affected root vitality via reduced C translocation to roots. In summary, we conclude that increases 

in heat wave temperatures, as predicted to occur during the next decades, can have disastrous 

effects in a dry environment. It seems that in semi-arid forests where drought is a common 

phenomenon, even a single heat wave that surpasses a given threshold (probably above 47 °C 

needle temperature) may have widely detrimental effects. 
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3 Heatwaves and seedling death alter stress-specific emissions of volatile organic 
compounds in Aleppo pine. 

____________________________________________________________________________ 
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death alter stress-specific emissions of volatile organic compounds in Aleppo pine. Oecologia. 
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Abstract: 

Biogenic volatile organic compounds (BVOC) play important roles in plant stress responses and 

can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs 

have been studied extensively, insights in emission responses to repeated stress and recovery 

are widely absent. Therefore, we studied the dynamics of shoot gas exchange and BVOC 

emissions in Pinus halepensis seedlings during an induced moderate drought, two four-day-long 

heatwaves and the combination of drought and heatwaves. We found clear stress-specific 

responses of BVOC emissions. Reductions in acetone emissions with declining soil water content 

and transpiration stood out as a clear drought indicator. All other measured BVOC emissions 

responded exponentially to rising temperatures during heat stress (maximum of 43°C), but 

monoterpenes and methyl salicylate showed a reduced temperature sensitivity during the second 

heatwave. We found that these decreases in monoterpene emissions between heatwaves were 

not reflected by similar declines of their internal storage pools. Because stress intensity was 

extremely severe, most of the seedlings in the heat-drought treatment died at the end of the 

second heatwave (dark respiration ceased). Interestingly, BVOC emissions (methanol, 

monoterpenes, methyl salicylate and acetaldehyde) differed between dying and surviving 

seedlings, already well before indications of a reduced vitality became visible in gas exchange 

dynamics. In summary, we could clearly show that the dynamics of BVOC emissions are sensitive 

to stress type, stress frequency and stress severity. Moreover, we found indications that stress-

induced seedling mortality was preceded by altered methanol, monoterpene and acetaldehyde 

emission dynamics. 

3.1 Introduction: 

Climate change is expected to cause not only higher temperatures and a higher variability of 

precipitation, but also to produce more frequent and more intense extreme events such as 

heatwaves and drought spells (Baldwin et al. 2019; Kornhuber et al. 2019). This is likely to 
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intensify forest degradation as has been already observed in many areas world-wide (Anderegg 

et al. 2019; Brodribb et al. 2020; Hartmann et al. 2018a). In particular the co-occurrences of high 

temperatures and low water availability seems to damage tree growth and trigger mortality (Choat 

et al. 2018; Hartmann et al. 2018b; Ruehr et al. 2019; Williams et al. 2013). Nevertheless, the 

specific mechanisms of this phenomenon are still heavily discussed, since it is unclear how 

drought and heat effects interact and when stress-induced mortality actually occurs (Hammond 

et al. 2019; Hartmann et al. 2018b). 

At the onset of severe droughts, trees initially react by closing their stomata to prevent excessive 

water loss, which in turn leads to suboptimal leaf internal carbon dioxide concentrations (Ci) and 

eventually limits photosynthesis (Anet) (Brunner et al. 2015; Gupta et al. 2020). As drought 

intensifies, the water potential of the conductive xylem can drop below a species-specific critical 

threshold (Anderegg et al. 2019; Ruehr et al. 2019), followed by embolism impairing water 

transport. At this point, the probability of drought-induced mortality increases (Hammond et al. 

2019) because living tissue becomes dehydrated (Körner 2019). If the stress is not lethal, the 

organism requires carbon for repair and/or recovery processes, which is why individuals might 

still die sometime after the stress ceased, if sufficient reserves are not available (Ruehr et al. 

2019). 

High temperatures have the potential to increase physiological drought stress by increasing the 

vapor pressure deficit (VPD) of the surrounding air, which then leads to an increase in water loss 

by transpiration (E) (Panek and Goldstein 2001). Heat stress is amplified by limited water 

availability because a reduced evaporation limits the possibility for cooling the leaf surface (Ruehr 

et al. 2016; Williams et al. 2013). High temperatures will first speed up biochemical reactions, 

reducing the lifetime of proteins and causing imbalances primarily in the energy providing 

pathways (light assimilation, photosynthesis, respiration) (Niinemets 2018). Apart from higher 

resource requirements, this response enhances the formation of harmful reactive oxidative 

species (ROS) (Escandón et al. 2016; Song et al. 2014). Finally, a very high temperature may 

well lead to direct membrane damages, induce necrosis and eventually tissue senescence 

(Colombo and Timmer 1992; Daniell et al. 1969; Hüve et al. 2011) and can also lead to mortality 

(Birami et al. 2018). 

Apart from opening stomata to increase evaporative cooling, which increases the risk of 

dehydration, the production of biogenic volatile organic compounds (BVOC) is another response 

to cope with abiotic stress (Spinelli et al. 2011). In particular terpenoids such as isoprene, 

monoterpenes (MT), and sesquiterpenes (SQT) play important roles in detoxifying reactive 

substances, regardless if these are taken up or formed internally in response to heat or radiation 
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(Nogués et al. 2015; Vickers et al. 2009). A second protective mechanism is the stabilization of 

membranes that is established by incorporation of isoprene or MT (Loreto et al. 1998; Mahajan 

et al. 2019). In addition, it seems that isoprenoids could also act as signaling molecules inducing 

a network of transcription factors that may play a role for stress tolerance (Harvey and Sharkey 

2016). 

Under stress conditions, new BVOCs may be emitted, or constitutively emitted BVOCs may 

increase several-folds above their unstressed rates (Guidolotti et al. 2019; Joó et al. 2011; Yáñez-

Serrano et al. 2019). Such stress-induced BVOC emissions can either originate from de novo 

biosynthesis or are previously formed compounds, which had been stored in specific structures 

(e.g. MT from resin ducts in coniferous species) (Ghirardo et al. 2010; Turan et al. 2019). Typically 

damage-released compounds besides isoprene, mono- and sesquiterpenes, are green leaf 

volatiles, methanol and acetaldehyde as well as methyl salicylate (MeSa) (Guidolotti et al. 2019; 

Joó et al. 2011). 

Thus, with the ongoing rise of temperatures as well as increased frequency and intensity of 

heatwaves and drought spells, changes in BVOC emissions can be expected. While most volatile 

emissions have been found to generally increase with temperature (Niinemets et al. 2010), this 

effect is less clear in response to drought and emissions patterns differ with species and drought 

intensity. Some authors found that emissions are increased at mild drought stress, while a 

chronic, prolonged drought decreases emissions (Dani et al. 2015; Eller et al. 2016; Llusià et al. 

2016). However, significant amounts of MT emissions were still found in Aleppo pines at very dry 

conditions where photosynthesis was already dramatically reduced (Seco et al. 2017). So, not 

only the intensity but also the composition of emissions is likely to change, particular under 

extreme events, which would influenced vegetation-climate interactions (Harper and Unger 2018; 

Sporre et al. 2019). BVOCs take part in air chemistry processes and affect regional ozone 

concentration as well as aerosol abundance, with secondary impacts on cloud formation and 

radiation balance (Porter and Heald 2019; Zhao et al. 2017). Globally, BVOCs reduce the 

abundance of radicals in the air and thus increase the longevity of greenhouse gases, i.e. 

methane (Fuentes et al. 2001; Monson and Holland 2001). Hence, elucidating the variety of 

BVOC emission responses to different intensity, elongation, and frequency of stress conditions is 

needed. 

Monoterpenes can be found in most conifers, becoming a main compound of resin, stored in large 

amounts in specialized resin ducts (Celedon and Bohlmann 2019; Turner et al. 2019). Despite 

representing large storage pools (up to 0.8% of the dry needle matter, (Vanhatalo et al. 2018)), it 

has been found that in Scots pine 10 - 58% of the emitted MT can still be synthesized de novo 
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from freshly fixed atmospheric carbon (Ghirardo et al. 2010; Kleist et al. 2012). Similarly, about 

half of MT measured in Aleppo pine in spring were estimated to be light dependent (Llusià et al. 

2016).Apart from specialized storages, MT can be stored non-specifically as glycosylates in micro 

vesicles, or be integrated in biological membranes (Nagegowda 2010; Yazaki et al. 2017), and 

even accumulate in epicuticular wax layers (Joensuu et al. 2016). From these unspecific storages, 

MT can be directly released. Apart from MT, typically stress-induced terpenoids are 

sesquiterpenes (SQT), which play a role in plant-to-plant signaling in tree defense strategies 

against insects and pathogens (Joó et al. 2011; Kleist et al. 2012). 

In addition to terpenoid emissions, a relatively large amount of BVOCs are oxygenated 

compounds that originate from various biochemical pathways (Grote et al. 2019). The most 

abundant in the atmosphere is methanol (Jacob 2005), which is formed mainly during cell wall 

development and can act as a stress signal transmitter (Dorokhov et al. 2018). Other short-chain 

volatile organic compounds (VOC) are derived downstream of glycolysis from either pyruvate or 

acetyl-CoA (Fall 2003; Grote et al. 2019), during anoxic stress conditions (Kelsey et al. 2011; 

Kreuzwieser et al. 1999), indicating substrate overflow mechanisms (Karl et al. 2002). Thus, 

acetaldehyde, ethanol and acetone are often produced in roots, phloem or cambial tissues 

(Kimmerer and Stringer 1988; Rissanen et al. 2020) where they remain dissolved until they reach 

the leaves via the transpiration stream within the plant (Rissanen et al. 2018). Some of them, 

especially methanol and acetaldehyde are indicators of high metabolic activity, often found when 

tissue damage occurs (Fall et al. 1999; Kreuzwieser et al. 1999; Loreto et al. 2006; Portillo-

Estrada et al. 2015; Turan et al. 2019). 

Dependencies of constitutively emitted BVOCs on temperature have been described extensively 

(Grote et al. 2014; Guenther et al. 1993; Niinemets et al. 2002), while deficits still exist in 

representing stress-induced BVOC emissions. Particularly, the emission responses to repeated 

heat stress under well-watered or drought exposed conditions have not received much attention 

so far. BVOC emission might be affected by potential acclimation responses and the production 

of compounds might be limited by decreasing carbon supply (Jud et al. 2016; Vanzo et al. 2015). 

In case of storage-released terpenoids, the storage capacity might decline and limit emissions 

during repeated and/or long-term heat stress (Schurgers et al. 2009). Finally, it remains unknown 

if BVOC emissions of coniferous trees prone to death differ from surviving trees, and hence may 

provide a death-preceding indicator of mortality. 

In order to investigate BVOC responses to heat and combined heat-drought stress, we selected 

Aleppo pine, a tree species common to the dry and semi-arid regions in the Mediterranean area 

(Mauri et al. 2016). The seedlings used here originate from the Yatir forest in Israel, an Aleppo 
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pine plantation at the border to the Negev desert. Based on the literature, we hypothesize that 1) 

Aleppo pine will change BVOC emissions quantitatively and qualitatively under a combined heat 

and drought stress and that this response differs from that to only one of these stresses. 2) 

Emission bouquets differ between first and repeated stress caused by a reduction of storage 

compounds. 3) If stress induces seedling mortality, the emission is different from those of 

surviving seedlings. 

3.2 Materials and Methods 

3.2.1 Plant cultivation 

Aleppo pine (Pinus halepensis, Miller) seedlings were cultivated from seeds in a controlled 

greenhouse environment in Garmisch-Partenkirchen, Germany (732 m a.s.l., 47°28’32.87’’N, 

11°3’44.03’’E). Seed material originated from five different trees in a 55-year-old Aleppo pine 

plantation in Israel (Yatir forest, IL-Yat, 650 m a.s.l., 31°20’49.2’’N, 35°03’07.2’’E). The genetic 

heritage is not clear (Schiller and Atzmon 2009), but due to high levels of heterozygosity, seedling 

offspring may be referred to as a mixed F1 population (Atzmon et al. 2004; Korol and Schiller 

1996). Seedlings (4 weeks old, July 2015) were transplanted to 1 L pots containing mineral 

substrate (2:8) of quartz sand (0.7 mm and 1-2 mm) and vermiculite (ca. 3 mm) with 2 g of slow-

release fertilizer (Osmocote® Exact + TE 3-4 months fertilizer 16-9-12+2MgO+TE, Everis 

International B.V., Heerlen, The Netherlands). Seven-month-old seedlings (January 2016) were 

planted in larger pots (2.5 L) containing mineral substrate (1:2:1) of quartz sand (1-2 mm): quartz 

sand (4-6 mm): vermiculite (3 mm) and 6 g of slow-release fertilizer (Osmocote® Exact +TE 5-6 

month fertilizer 15-9-12+2MgO+TE).Air temperature and relative humidity (RH) during cultivation 

(Table S3.1) were set to mimic the monthly mean of temperature and humidity data of the Yatir 

forest (averaged over ten years) as described previously (Birami et al. 2018). The position of the 

seedlings within the greenhouse compartment was iterated randomly in order to avoid any 

positioning effect (Fig 3.1). Nine-month-old seedlings were divided into four treatments in March 

2016: control, heat, drought and heat-drought one month before initiating the heatwave 

experiment (experiment in April 2016, Fig 3.1). Therefore, 30 seedlings each of the control and 

drought treatments, as well as the heat and heat-drought treatments were placed into two 

adjacent environmentally-controlled compartments using a randomized block design (Birami et 

al. 2018; Ruehr et al. 2016). Substrate-specific calibrated moisture sensors (10HS, Decagon 

Devices, Inc., WA, USA) have been installed (n=10 per treatment). Per treatment, four seedlings 

each were equipped with a gas exchange cuvette (n=4 per treatment; see method section 2.3 for 
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details). Therefore, iteration of the seedlings’ placement during the experimental phase was no 

longer possible. 

 

Figure 3.1 Experimental timeline: from Aleppo pine seedling germination until drought was 

initiated and two heat experiments (each 4 d) were conducted 10 months later. During the 

cultivation phase all seedlings were grown in one of the climate-controlled greenhouse 

compartments and positioning among seedlings was regularly iterated. Before the stress 

experiment was initiated the seedlings were randomly placed in two separate greenhouse 

compartments to conduct heatwave scenarios. In each treatment, four seedlings were placed in 

light transmitting gas exchange cuvettes coated with Teflon on the inside. In the heat and heat-

drought treatment seedlings died due to overheating during the course of the experiment, mostly 

during the short recovery phase between heatwave 1 (H1) and heatwave 2 (H2) (see Birami et 

al. 2018 for details). Note that also seedlings placed in the gas exchange cuvettes died: one 

seedling in the heat treatment and three seedlings in the heat-drought treatment. 

 

3.2.2 Experimental setup 

Seedlings of the heat and heat-drought treatment were exposed to two heatwaves with stepwise 

increasing temperatures and vapor pressure deficit (VPD) (Fig S3.1). The heatwaves were 

designed to mimic naturally occurring few day-long heatwaves in the Yatir forest typically 

occurring during early summer (Tatarinov et al. 2015). In our experiment, each heatwave had a 

duration of 4 days (April 27th – April 30th and May 7th – May 10th, 2016) and temperature was 

increased during the first three days. The temperature level of the third day was repeated on the 

fourth day with a maximum of 42.8 °C during the first heatwave (H1) and 42.2 °C during the 

second heatwave (H2; see Table 3.1, Fig S3.1). 
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Table 3.1 Air temperature (TAir) and vapor pressure deficit (VPD) before, during the two heatwaves 

and after. Averages (±1SD) and minima and maxima are given for each day of the heatwaves 

and for the periods before, between and after the heatwaves. Note minima occurred during night-

time (8h), maxima during day-time (16h). 

  TAir [°C]  VPD [kPa] 

  Min Mean Max  Min Mean Max 

 Before 11.1 18.3±2.7 24.8  0.2 1.1±0.4 2.3 

Heat- 

wave I 

Day 1 14.4 21.3±3.9 27.1  0.5 1.7±0.7 2.9 

Day 2 17.7 28.2±4.5 33.7  1.1 2.8±1 4.3 

Day 3 25.2 33.5±5 42.8  1.8 4.1±1.7 7.4 

Day 4 17.9 33.5±7 42.2  1.2 4.2±1.9 7.1 

 Between 15.7 20.7±3 27  0.6 1.4±0.5 2.6 

Heat- 

wave II 

Day1 17.0 26±4.8 32.1  0.9 2.4±1 3.9 

Day2 18.6 31.4±6.5 40.2  1.1 3.7±1.7 6.4 

Day3 25.8 34±5.4 41.5  1.9 4.2±1.7 6.9 

Day4 17.8 33.4±6.7 42.2  0.9 3.9±1.8 6.9 

 After 16.7 21.5±2.9 26.5  0.6 1.4±0.5 2.5 

 

The trajectories of two heatwaves differed slightly, with the second heatwave reaching 

temperatures >40°C already at day two (compared to day three during H1). Note that the 

seedlings enclosed in cuvettes for BVOC and gas exchange measurements (see section 2.3, Fig 

S3.2), experienced higher temperatures after the lid of the cuvettes closed automatically (on 

average 3.8±1 °C at the end of the 10 min measurement cycle; 3-times per day). The average 

light intensity was 416 ± 105 µmol m-2 s-1 during day-time and water vapor in the greenhouse 

compartments and gas exchange cuvettes was kept constant, which resulted in 20-40 % RH and 

an increase of VPD to a maximum of 7.5 kPa during the heatwaves in the greenhouse 

compartment, similar to VPD conditions at the Yatir forest during heatwave periods in early 

summer (Tatarinov et al. 2015). The one-month drought period was initiated (DOY 114) 4 days 

before the first heatwave (DOY 118-121) and ended (DOY 138) 7 days after the second heatwave 

(DOY 128-131). Irrigation was reduced to a relative substrate water content (rSWC) of about 15 



                                                                           BVOC Emission during Heatwaves and Mortality 

 
49 

% in the drought and heat-drought treatment, while it was kept between 40-50 % under well-

watered and control conditions (Fig S3.1). 

3.2.3 Gas exchange and BVOC emission analyses 

A custom-made, open chamber system, which has been previously described (Bamberger et al. 

2017; Birami et al. 2018; Duarte et al. 2016), was used to automatically measure gas exchange 

and BVOC emissions from the shoots of the seedlings as follows. Randomly selected seedlings 

(n = 4 per treatment) were distributed spatially within each greenhouse compartment and their 

shoots were placed permanently in transparent cuvettes (Fig S3.2a) made from acrylic glass 

tubes (6.65 L PMMA, Saalberg GmbH, Feldkirchen, Germany). Dismountable acrylic glass caps 

on the downward-facing side allowed to install the cuvette at the seedlings stem. The inside of 

the cuvettes had been coated with chemical inert foil FEP (fluorinated ethylene propylene, PTFE 

Spezialvertrieb, Stuhr, Germany), Small gaps between the stem and the cuvette were sealed with 

plastic putty (Teroson, Henkel Adhesives, Düsseldorf, Germany) to minimize gas leakage. A fan 

(412 FM, ebm-papst GmbH & Co. KG, Mulfingen, Germany) guaranteed well-mixing of the air 

inside the cuvettes. To assess environmental conditions, each cuvette was equipped with a 

calibrated photo diode (G1118, Hamamatsu Photonics, Hamamatsu, Japan), a calibrated 

thermocouple (5SC-TTTI-36-2M, Newport Electronics GmbH, Deckenpfronn, Germany). 

The 18 cuvettes (n = 4 per treatment, n=2 for empty background) were measured continuously in 

an automated sequence as follows. After the distal cap of the cuvette had closed, a constant air 

stream (5 L F-201CZ-10K, Bronkhorst, Ruurlo, the Netherlands) of clean air with on average 438 

± 3 µmol mol-1 [CO2] and 6.5 ± 0.1 mmol mol-1 [H2O] was supplied for 10 min. Zero air was 

generated by using an oil-free compressor (SLP-07E-S73, Anest Iwata, Yokohama, Japan) 

connected to an Ultra Zero Air generator (Ultra Zero Air GT, LNI Schmidlin SA, Geneva, 

Switzerland). CO2 was supplied from a gas cylinder and water vapour was added to the air stream 

via a nebulizing evaporation pump (LCU Liquid Calibration Unit, Ionicon, Innsbruck, Austria). The 

air supply was channeled through a main tubing made of stainless-steel tubing (3/8-inch 

Swagelok, Ohio, USA) coated with SilcoNert (Silco Tek GmbH, Bad Homburg, Germany) and gas 

flow to the cuvettes was controlled by two 2/2-way solenoid valves with a PTFE housing (0121-

A-6, 0-FFKM-TE, Bürkert, Ingelfingen, Germany) and PTFE tubing (ScanTube GmbH, Limburg, 

Germany). The detailed schematic of the measurement system can be found in Bamberger et al. 

(2017). For background measurements, two empty cuvettes (one each for the control and heat 

treatment) were measured during each measurement cycle and the recorded data was subtracted 

from the measurements containing seedlings (Birami et al. 2018). 
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Differences in [CO2] and [H2O] between reference air and measurement air leaving the cuvettes 

were recorded differentially via a LI-7000 connected to a LI-840 (both LI-COR Inc., Lincoln, NE, 

USA). Net CO2 exchange (Anet, Rdark), transpiration (E) and stomatal conductance (gs) were 

calculated as previously described in Birami et al. (2018). BVOC fluxes were measured with a 

high sensitivity proton-transfer-reaction (quadrupole) mass spectrometer (PTR-(Q)MS, IONICON, 

Innsbruck, Austria). The PTR-MS was operating at standard conditions with a drift tube pressure 

of 2.3 mbar and a drift tube voltage of 600 V. More detailed settings of the instrument can be 

found in Bamberger et al. (2017). Volatile compounds were detected on protonated nominal mass 

ratios (m z-1) and quantified using a defined VOC mixture (14 components in nitrogen) of standard 

gas (#24182-650 IONICON, Innsbruck, Austria). PTR-MS calibration was performed at ambient 

humidity with a liquid calibration unit (LCU, IONICON, Innsbruck, Austria) on a weekly basis using 

a four-step calibration routine at mole fractions of 7.5, 5, 2.5 and 0 ppb. 

Average sensitivity and limit of detection for each compound measured are given in Table 3.2. 

Since there was no representative for the GLV (e.g. z-3-hexenal) in our standard gas mixture, the 

sensitivity for C6H10O on m z-1 99 was estimated to be on average 3.15 ± 0.13 ncps ppb-1, derived 

from the average sensitivity of xylene and toluene (the compound in the standard mixture being 

closest to m z-1 99 to consider for the transmission efficiency of the quadrupole mass filter) 

multiplied by 0.33, its known fractionation patterns (33% on m z-1 99) (Fall et al. 1999). This was 

corrected for reaction rate coefficient k of z-3-hexenal derived from Cappellin et al. (2012) for a 

E:N ratio of 120 Td (ktoluene= 2.08 ;kxylene= 2.27;kz-3-hexenal= 3.25). The limit of detection for m z-1 99 

is hence not given. The sensitivity for C8H8O3 m z-1153 (on average 4.96 ± 0.33 ncps ppb-1) was 

derived from a liquid calibration using a calibration mixture of methyl salicylate (A0366376, CAS: 

119-36-8, ACROS Organics, New Jersey, USA) in H2O (Type 1, MilliQ® Direct8, Merck KGaA, 

Darmstadt, Germany) (7.8 ppb, 5.2 ppb, 2.6 ppb, 1.3 ppb and 0 ppb). Isoprene could not be 

distinguished from 2-methyl-3-butene-2-ol (MBO) with our method, hence we did not investigate 

this compound in detail an address it as “isoprene + MBO”. Ethanol could not be detected in 

satisfactory quality and was hence not further interpreted (see limit of detection Table 3.2). 

To ensure that concentrations of volatiles represented steady state conditions, emissions were 

calculated from the last 360 sec per 10 minutes measurement (cout, c0), given that the stability 

quality criteria was full-filled and backflow from the cuvettes was > 0.3 L min-1. Linear regression 

data were used to assess stability of the signal using an upper boundary for the regression slope 

≤ 3 (
√〈𝑠〉

𝛿𝑡
) , where 〈𝑠〉 is the average signal from the analyzer in cps and 𝛿𝑡 is the length of the time 
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interval used for averaging in s. Note: the term √〈𝑠〉 is given by the Poison-Noise of the analyzer. 

The fluxes of volatile compounds (Eν in nmol m-2s-1) were calculated from the concentration 

differences of air leaving the cuvette cout and the concentrations leaving an empty chamber c0 

(Niinemets et al. 2011) as follows 

 𝐸𝑣 = (𝑐out − 𝑐O)
𝑓

𝑙a
       (1) 

with the flowrate 𝑓 in mol s-1 to each cuvette and the projected leaf area of the seedlings 𝑙a in m2 

(Birami et al. 2018). The projected leaf area was derived from photographs taken during the 

experiment and estimated through needle color thresholds (Fig S3.2b). The projected area was 

linearly extrapolated. 

Table 3.2 Sensitivity and standard deviation (±1SD) (normalized counts per second per ppb of 

primary ions H3O+ and H2OH3O+ within volume, ncps ppbv-1) and limit of detection of all measured 

compounds in the calibration standard averaged over all weekly calibration cycles. For calculation 

of the apparent fluxes, linear interpolation within two calibration cycles was used, hence the table 

presents a guideline example for the procedure. BVOC analysed are highlighted with an asterisk. 

BVOCs not present in the calibration standard (#24182-650 IONICON) are in italic and their 

respective sensitivities were calculated as described in the methods. Note that m81 was not used 

in the analyses. 

 
 

Mass fragment Sensitivity Limit of detection 

Compound  ncps ppbv-1 ppbv 

Methanol * 33 9.55 ± 0.35 0.35 ± 0.05 

Acetaldehyde * 45 14.57 ± 0.63 0.11 ± 0.04 

Ethanol 47 0.80 ± 0.11 3.52 ± 0.56 

Acetone * 59 15.77 ± 1.12 0.06 ± 0.02 

Isoprene (MBO’s) 69 5.10 ± 0.46 0.09 ± 0.03 

Monoterpene fragments  81 5.25 ± 0.76 0.07 ± 0.02 

Toluene 93 6.66 ± 0.89 0.08 ± 0.02 

Hexenal * 99 3.15 ± 0.13 NaN   

O-Xylene  107 6.11 ± 0.98 0.11 ± 0.04 

Monoterpene (α-pinene) * 137 1.65 ± 0.37 0.13 ± 0.04 

Methyl Salicylate * 153 4.96 ± 0.33 0.08 ± 0.02 
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3.2.4 Endogenous monoterpene and sesquiterpene measurements 

To determine the impacts of two consecutive heatwaves on the pools of endogenous MT and 

SQT, six additional seedlings per treatment were sampled between 1 pm and 3 pm at the last day 

of the second heatwave. The lower part of the seedlings’ stem was removed and the samples 

(mainly needles and twigs) were immediately frozen in liquid nitrogen and ground in porcelain 

mortars to a fine powder and stored at -80 °C until further processing. MT and SQT were analyzed 

similarly as done before (Ghirardo et al. 2010; Vanhatalo et al. 2018). One mL of hexane 

(SupraSolv for GCMS, Merck Chemicals GmbH, Germany) containing 859.3 pmol µL-1 of δ-2-

carene as the internal standard was added as a solvent to 50 mg of the ground and still frozen 

plant material in 2 mL gas-tight amber glass vials (Merck) and extracted at 4 °C for 3 h in 

continuous shaking. Samples were incubated overnight at 5 °C, and the supernatant was 

transferred into a new 2 mL glass vial using a 1 mL gas-tight syringe (Hamilton). Finally, 1 µL per 

sample was analyzed by thermo-desorption (TD) gas chromatography mass spectrometry (GC-

MS) (Ghirardo et al. 2012). The TD-GC-MS was run and GC-MS data were evaluated as reported 

elsewhere (Ghirardo et al. 2020). Each sample was analyzed in triplicates and medians were 

taken from technical replicates. Final endogenous MT or SQT content was related to dried plant 

material, by weighing for each individual sample, a subsample of the freshly ground and frozen 

plant powder before and after oven drying at 60°C for 48 hours. 

3.2.5 Data analyses and statistics 

In order to visualize how BVOC emissions vary across treatments, we performed a canonical 

correspondence analysis (CCA, (TerBraak 1986)) between normalized emission rates, treatment 

and experimental period. CCA allows to test for the significance of each of the ordination axis, as 

well as for the influence of factors and cofactors. Monte Carlo permutations (here n = 1000) were 

performed in order to assess if the variability explained by the model is higher than the variability 

explained by a randomly generated set of variables (Oksanen 2011). BVOC emission rates were 

daily-averages that were normalized to pre-stress conditions per individual seedling to reduce the 

effect of biologic variance. Two separated analyses were performed on the surviving seedlings 

only (excluding m81, m93, m107, see Table 3.2): i) pre-stress vs. first heatwave, and ii) first 

heatwave vs. second heatwave. CCA analyses was done using the “Vegan” package, V2.5-6 

(Oksanen et al. 2013). 

Linear mixed effect models (lme, R packages: “lme4”, “nlme” and “MuMIn”) were used to test for 

dependencies of BVOC emissions, gas exchange on rSWC or temperature and treatment (fixed 

effects). Seedling was considered as a random effect. Temporal auto-correlation was accounted 
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by including a first order Auto-Regressive model in the lme (Box et al. 2016). AICc criteria (Akaike 

information criterion corrected for a small sample size) was used to select for the most 

parsimonious model (i.e., best model with as few predictive variables as possible), with a 

threshold for acceptation of 2, based on (Burnham and Anderson 2004). When the most 

parsimonious model was identified, a pseudo R2 was calculated both for the fixed and the 

combined fixed and random effects and confidence intervals (CI) given (Nakagawa et al. 2013). 

Normality of the residuals and homoscedasticity were visually inspected. 

During the course of the experiment three of the continuous measured seedlings (BVOC, gas 

exchange) in the heat-drought and one in the heat-treatment died due to overheating (Birami et 

al. 2018). Hence, treatment-specific analyses of BVOC emissions were done using the surviving 

seedlings only (heat-drought n=1, heat n=3, drought n=4, control n=4). The impact of dying and 

death on BVOC emissions was analyzed by grouping the heat and heat-drought seedlings into 

surviving (n=4) and dying (n=4). In case to overcome tree-specific differences in absolute 

emission rates, we normalized the data to a tree-specific median derived from before stress-

conditions (110-114 DOY), which was for instance done when analyzing mortality responses. 

Treatment-averaged absolute emission rates per experimental period can be found in the 

Supplement (Table S3.4) and are given in Figure 3.4. 

3.3 Results 

3.3.1 BVOC emission during heatwaves and drought 

Because extreme temperatures were reached during the heatwaves, three of the continuously 

monitored seedlings in the heat-drought, and one in the heat treatment died. Because the dying 

seedlings experienced different BVOC emissions, we concentrate here on the surviving seedlings 

first. The emission patterns of the Aleppo pine seedlings in the heat n=3 and heat-drought (n=1) 

treatment responded similar to heat stress (Fig 3.2a). High temperatures predominantly increased 

emissions of MT and methanol compared to pre-stress conditions. Further, we found the 

emissions of methyl salicylate and hexenal to increase modestly in response to the heatwave. 

Interestingly, the drought treatment alone did at first not result in a distinct BVOC response (Fig 

3.2a), only with progression of the experiment and increasing soil drought (Fig 3.2b). 
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Figure 3.2 a) Pre-stress and treatment-specific stress responses of six selected BVOC emissions 

of the surviving Aleppo pine seedlings (methanol, acetaldehyde, acetone, hexenal, 

monoterpenes, methyl salicylate). Shown as a canonical correspondence analysis (CCA; for 

details see Data analysis and statistics section) to test for different responses of BVOC emissions 

of control (blue), drought (green), heat (magenta) and heat-drought (red) seedlings for pre-stress 

(P, lighter color) and first heatwave (H1, darker, corresponding color) conditions. b) Comparison 

of treatment-specific BVOC emission responses between the first (H1) and the second heatwave 

(H2). Colored areas depict the 95% confidence interval ellipsoid per treatment and period. 

Dependencies between the compounds (loadings) and the canonical variates (treatment) are 

shown for methanol, acetaldehyde, acetone, hexenal, monoterpenes and methyl salicylate. Note 

that emissions are only given for the surviving seedlings (heat: n=3, heat-drought: n=1, control: 

n=4, drought: n=4). 

3.3.2 Sensitivity of acetone emissions to soil water availability 

Here we focus on the impact of drought stress on BVOC emissions and found one distinct 

response. We found acetone to co-vary with soil water content (Fig 3.3) and its emissions to 

decrease at low water availability (see also Fig 3.2b). We found that a 10 % decrease in rSWC 

results in a 10 % (5-14 % CI; derived from lme) decrease in acetone emissions compared to well-

watered conditions. Furthermore, both gs and transpiration were included in the lme model, with 

acetone emissions being better explained by transpiration (pseudo-R²fixed = 0.39) than by gs 

(pseudo-R2
fixed

 = 0.1). Hence, changes in acetone emission were most likely caused by soil water 

availability and tree water flux. As we observed that acetone emissions from our potting-medium 

were negligible (< 3 % of average acetone emission rates from well-watered seedlings; data not 



                                                                           BVOC Emission during Heatwaves and Mortality 

 
55 

shown), acetone was most likely produced in the root tissues and transported to the shoots via 

the transpiration stream. No other BVOC showed a clear drought response (Fig 3.2, Table S3.4). 

 

 

Figure 3.3 Dynamics of daily-averaged relative soil water content (rSWC [%], blue triangles) and 

acetone emissions during drying and re-wetting shown for the drought (n = 4; open red circles) 

and heat-drought (n = 1; grey solid circles) treatment. Acetone emissions are given relative to the 

pre-stress for measurements when PAR ≥ 100 (open filled red circles present daily-averages 

combining both treatments). Colored lines are added to visualize the overall development and 

represent a trigonometric best-fit using non-linear regression: α*sin(ω*(x+ϕ))+C with x being DOY 

and starting parameters (α, ω, ϕ, C). 

3.3.3 Impact of repeated heatwaves on gas exchange and BVOC emissions 

We investigated the impact of repeating heatwaves on the temperature response of BVOC 

emissions and gas exchange in the surviving Aleppo pine seedlings (Fig 3.4). Anet peaked at about 

21.5 °C when VPD had reached 1.8 kPa (increase in temperature exponentially increased VPD 

following (VPD = exp (0.066(T)-0.85), R2 = 0.94 of log-transformed function, Fig S3.3b), while gs 

decreased to tightly regulate seedling water loss. In contrast, all observed BVOC emissions, 

except acetone (Fig 3.4h), increased with increasing temperatures exponentially (Figure 3.4c-g). 

It is notable that although gs decreased in response to the heatwaves, E (Fig S3.3a) followed an 

exponential temperature response with slightly lower transpiration rates during the second 

heatwave. 

MT and methanol represented the highest emission rates during heat exposure (Fig 3.4c and d). 

However, an altered temperature relationship became most obvious for MT and MeSa during the 
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second heatwave after exposure to the first heatwave. To test for differences in responses of 

emissions to temperature, separate lme were computed for MT and MeSa for the first- (H1) and 

the second heatwave (H2). Although the intercepts of the most parsimonious lme did not differ 

(overlapping 95% CI, implying similar response amplitudes), the response slope to temperature 

was reduced markedly (MT, H1: 0.26 [0.21-0.31 CI], H2:0.11 [0.08-0.13 CI]; MeSa, H1:0.001 

[0.0009-0.0013 CI], H2:0.0006 [0.0004-0.0008 CI]), which shows that the same temperature does 

not induce the same emission signal during repeated stress. Methanol, hexenal and acetaldehyde 

did not show a change in heat response between heatwaves. Acetone did not show clear 

temperature dependencies (Fig 3.4h). 

We further studied the endogenous MT pools to test the hypothesis that changes in emission 

patterns might be a consequence of the depletion of MT storages. Total endogenous MT pools 

did not decrease in plants exposed to two heatwaves, compared to seedlings grown under control 

conditions (Fig 3.5a). The same picture emerged when calculating the total MT pool per average 

seedling (heat: 148±30SE mg, control: 173±40SE mg based on the molar weight of a-pinene of 

136.2 g mol-1). This was in contrast to the cumulative MT emissions during the two heatwaves 

(DOY 114-131) which summed up to 28.1±4.4SE mg (Table S3.2), and would hence account for 

a 19.7±1.2SE % decrease of the total pool (as derived above). Considering specific compounds, 

we did not observe a significant impact of heat stress on any of the 14 MT measured (Table S3.2). 

Notably, the overall content of stress-induced SQT compounds (sum of 14) tended to increase 

compared to the control seedlings (P = 0.07, TukeyHSD, Fig 3.5b). 
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Figure 3.4 Differences in temperature responses of gas exchange and BVOC emissions during 

the first (filled circles, light green) and second heatwave (triangles, lilac) of the surviving Aleppo 

pine seedlings in the heat treatment (n=3). Data are given for PAR ≥ 100 µmol m-2s-1 including 

several days before heatwave initiation. a) Temperature (T) responses of photosynthesis (Anet) 

and b) stomatal conductance (gs,) are shown and the regression lines depict second order 

exponential functions (exp(a+b(T)+c(T)2)). c) The temperature responses of monoterpenes, d) 

methanol, e) methyl salicylate, f) hexenal, g) acetaldehyde and h) acetone are depicted by 

exponential functions (exp(b(T)+c). Shaded areas depict the 95 % confidence intervals of the 

fitted functions. Note that VPD increased exponentially with temperature: VPD=exp(0.66(T)-0.85) 

(R2 = 0.94 of log-transformed function). The transparent data points are single measurements, 

while the solid symbols are bin-averages (10-50°C by 10°C) and shown for clarity.  
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Figure 3.5 Concentrations of a) endogenous monoterpenes and 

b) sesquiterpenes in green shoots of control and heat-treated 

Aleppo pine seedlings sampled at the last day of the second 

heatwave (n = 6 per treatment). The box plots depict the median, 

lower, and upper quartiles (25th–75th percentiles). 

 

3.3.4 Impacts of tree mortality on BVOC emissions 

The stress intensity, in particular in combination of heat stress 

with drought, resulted in pronounced seedling mortality due to 

overheating. This overheating was more pronounced in the 

heat-drought treatment due to the lack of evaporative cooling 

and needle temperatures of 47°C were reached (Birami et al. 

2018). As a consequence, some of the seedlings that were 

constantly monitored for BVOC emissions died: one in the heat 

treatment and three in the heat-drought treatment. The first indication for a reduced vitality of the 

seedlings can be seen in net photosynthesis (Anet) and transpiration to reach zero between the 

two heatwaves (Fig 3.6; horizontal grey bars) (Birami et al. 2018). However, we found clear 

differences in the emission rates between surviving and dying seedlings already much earlier. We 

found particularly strong responses in acetaldehyde (Fig 3.6d, TukeyHSD: P ≤ 0.05) and MT (Fig 

3.6b, TukeyHSD: P ≤ 0.05) emissions, which were much higher during the first heatwave in the 

later dying compared to the surviving seedlings. Interestingly, these emissions also remained 

elevated during the first recovery period (between heatwaves). For methanol (Fig 3.6a) and MeSa 

(Fig 3.6c) emissions we found similar responses, albeit with a shift to increased emissions of the 

dying seedlings during the second heatwave. A clear indication for the death of the seedlings was 

the moment when dark respiration ceased (Fig 3.6, black bar represents when shoot respiration 

reached zero). This was directly after the end of the second heatwave. Further, analysis of shoot 

water content at the end of the experiment confirmed the differentiation in mortality and surviving 

seedlings. Surviving seedlings had an absolute shoot water content of 64.2±2 %, while the water 

content in the dead seedlings averaged at 24.2±13 % (Birami et al. 2018). 
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Figure 3.6 Responses of a) methanol, b) methyl salicylate, c) monoterpene and d) acetaldehyde 

emissions during seedling mortality. The emission data are shown relative to pre-stress derived 

from daily-averages (for measurements when PAR ≥ 100) per seedling, separated in surviving 

(green, n = 4; including 3 seedlings from the heat and 1 seedling from the heat-drought treatment) 

and dying (white, n = 4; including 1 seedling from the heat and 3 seedlings from the heat-drought 

treatment). The two heatwaves are highlighted by a solid colored background (DOY 118-121; 

128-131). Horizontal grey bars mark the time course on when either daily-averaged transpiration 

or net photosynthesis or both of the dying seedlings reached zero. The time when dark respiration 

reached zero and seedlings were clearly dead is indicated by the black horizontal bars. Daily-

averaged emission data was derived for measurements of PAR ≥ 100.  
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3.4 Discussion 

Impacts of two consecutive heatwaves on BVOC emissions and gas exchange.  

We found a strong stimulation of BVOC emissions during two consecutive heatwaves. 

Monoterpene, methanol, MeSa, hexenal and acetaldehyde emissions increased exponentially 

with increasing temperatures. In particular MT emissions showed a sharp increase between 30–

43 °C. In contrast, acetone was insensitive to changes in temperature but responded to soil water 

availability (see below). Monoterpene emissions are known to respond strongly to temperature 

increase by release from specific storage pools depending on diffusion parameters and volatility 

(Kleist et al. 2012; Peñuelas and Llusià 1999; Staudt et al. 2017), including leaves and stems 

(Vanhatalo et al. 2020). On the other hand, MT emissions of pines have been shown to originate 

to more than 50 % directly from photosynthetic products under stressed conditions (Ghirardo et 

al. 2010; Taipale et al. 2011). In our experiment, the response of MT emissions of surviving 

seedlings to temperature was considerable weaker during the second heatwave (emission rates 

at a specific temperature were about 50 %, and maximum emission tended to be lower than during 

the first heatwave). With this respect, the results from our study agree well with previous studies 

on MT and MeSa emissions in Scots pine (Kleist et al. 2012), which reported a down-regulation 

of emissions during consecutive heatwaves. Such a response may indicate depletion of storages 

or could point towards metabolic adjustments of volatile biosynthesis. 

The MT storage in plants, formed by specialized organs such as resin ducts, is typically large. In 

our investigations, we have found the monoterpene content to be 1.3 % of dry weight in shoot 

biomass of Aleppo pine seedlings (Table S3.5), similar to those of dried needle biomass of Scots 

pine (0.8 %) reported by Vanhatalo et al. (2018). Usually, a depletion of such a large storage is 

unlikely to happen in short time (few days), as it did not occur in two years old needles after MT 

emissions of an entire season (Vanhatalo et al. 2018). However, the depletion of MT storages 

has been proposed as a possible mechanism if plant tissue is exposed to high temperatures over 

a longer period (days to months) (Schurgers et al. 2009) and are shown to be reduced after 4 

years of heat treatment (+3.5 °C) compared to non-treated Douglas fir saplings (Snow et al. 2003). 

Our measurements showed that the overall MT pools remained unaffected, although the 

cumulative MT emissions during both heatwaves was expected to deplete approximately 20 % of 

the total endogenous MT pool of the heat-treated seedlings (Table S3.5). This implies that MT’s 

are de novo produced and directly released during heatwaves. Possibly, de novo MT production 

was impaired along with photosynthesis during the first heatwave and this caused lower MT 

emission during the second heatwave, compared to the first one. Although older investigations 
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could not find a significant contribution of emission from de novo biosynthesis for Aleppo pine 

(Peñuelas and Llusià 1999), more recent studies indicate that the contribution could be around 

50 % (Llusià et al. 2016) and might be as high as 70 % in 3-4 year old trees (Staudt et al. 2017). 

It has also been shown that MT biosynthesis in general is sensitive to stress which also negatively 

affects Anet - such as drought - (Kleist et al. 2012; Lüpke et al. 2017) since the plastidic 

intermediate for the terpenoid synthesis is closely connected to photosynthesis (Ghirardo et al. 

2014). Another explanation for the observed burst of MT during the heatwaves may be that those 

emissions originated from MT pools of non-specialized structures such as the lipid phase of 

cellular compartments and membranes (Joensuu et al. 2016; Nagegowda 2010; Yazaki et al. 

2017). Overall their amount is small compared to the pool in specific storage tissue such as resin 

ducts (Ormeño et al. 2011), but might face less diffusive resistance and can readily enter the gas 

phase. Following this, intra membrane or cuticular MT are likely to be primarily released during 

the first heatwave and were not refilled before the second heatwave, contributing to the overall 

smaller emission rates. Hence, we have no information about the actual compartmentation of the 

endogenous MT, de novo synthesized MT may have prevented total pool depletion and a delayed 

refilling of the non-specialized pools may have reduced the emissions during the second 

heatwave. As reported in poplar, membrane collapse caused by severe heat stress may as well 

cause such a burst of several BVOC, including MT (Behnke et al. 2013). 

Methyl salicylate emissions, which are known to increase under stress in many tree species 

(Filella et al. 2006; Joó et al. 2011), also showed an altered temperature-response during the 

second heatwave. While MeSa has been shown to be released under biotic stress, it has also 

been related to drought (Karl et al. 2008; Scott et al. 2019). As a signal-transmitting metabolite, 

MeSa is freshly mobilized from precursor molecules (Heil and Ton 2008). The reduced 

temperature-response of emissions during the second heatwave might thus indicate a 

suppression of enzymatic activity and might support the hypothesis that, at least, parts of the 

observed MT burst is caused by de novo production. Suppression of MeSa mobilization from 

salicylic acid at high temperatures has been previously reported (Shulaev et al. 1997), while in a 

study on Arabidopsis thaliana thermal pre-treatment (38 °C) induced salicylic acid accumulation 

(non-volatile form of MeSa) that caused thermotolerance of the plants at 47 °C (Clarke et al. 

2004).  

Overall, we could show that consecutive heatwaves alter the temperature-sensitivity of MT and 

MeSa emissions and that these changes are not related to any declines of pools in specific 

structures. Instead, the decrease in responsiveness seems strongly related to a reduced 
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metabolic activity, possibly due to reduced enzyme production or increased damage of metabolic 

production chains. 

Impact of drought on BVOC emissions 

Previously observed responses of BVOC emissions to water availability are inconclusive in the 

case of Aleppo pine. Some studies report MT emissions to decrease with drought (Blanch et al. 

2007; Llusià et al. 2016), while others report increases (Llusià et al. 2008). Overall, the emission 

response might particularly depend on the severity and duration of drought, increasing at first 

under mild drought but decreasing with drought progression (Ormeño et al. 2007). In our 

experiments, we could not observe drought-specific responses of MT emissions, which, however, 

might be due to a physiological adjustment that reduced MT emissions already under non-

stressed conditions. The same response has been shown for mature trees at the same site, which 

is different to stands under less extreme conditions (Llusià et al. 2016), indicating that the 

adjustment origins from genetic rather than morphological changes. 

On the other hand, we found that reduced acetone emissions were indicative for drought 

conditions. Acetone represented one of the most abundant volatile compounds emitted. Acetone 

probably originated from the root tissue and was then transported to the shoots of the seedlings 

as long as soil water availability is sufficient. This is similar to what has been reported for Aleppo 

pine stands (Filella et al. 2009) and is also supported by studies demonstrating that the emissions 

of water soluble short-chained compounds depends on E (Rissanen et al. 2018). Acetone is the 

smallest ketone of the anoxic fermentation chain derived from Acetyl-CoA that is metabolized 

either from pyruvate or fatty-acid oxidation (Fall 2003; Grote et al. 2019) and is indeed easily 

water-soluble. It was found to be an indicator for flooding in roots of trees from the Amazonian 

floodplains (Bracho-Nunez et al. 2012). In temperate and boreal forests, acetone emissions have 

been generally related to water availability (Janson and Serves 2001; Shao and Wildt 2002). 

Acetone is thus a likely candidate for an indicator of drought-stress particularly for coniferous 

forests. This largely supports our first hypothesis that responses of specific BVOC emissions can 

be directly linked to the type of stress. Where MT emissions were found to be strongly induced 

by heat stress, acetone emissions were found to decline under drought. 

Methanol as an indicator for lethal stress 

At the end of the experiment, four of the seedlings constantly monitored for gas exchange and 

BVOC emission died (heat: n = 1; heat-drought: n = 3). Mortality was more pronounced in the 

group of heat-drought-stressed seedlings, possibly due to damages from higher leaf temperatures 
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caused by reduced evaporative cooling (> 47 °C, (Birami et al. 2018)). While the exact time of 

death is challenging to determine, gas exchange data show that Anet and E reached zero between 

the two heatwaves (Table S3.3) and that shortly afterwards also dark respiration stopped, 

indicating that shoots became metabolically inactive. We found an increase of methanol emission 

in dying (but not in surviving) seedlings one day before this occurrence, while otherwise the 

emission rate was relatively stable as highlighted before (Seco et al. 2015). To the best of our 

knowledge it is the first time that changes in emission patterns of BVOCs were directly linked to 

heat-induced mortality. 

It has been commonly observed that emission of green leave volatiles and oxygenated VOCs 

such as methanol increase during heat stress (Kleist et al. 2012). This has been particularly 

reported under high temperatures and limited water supply (Filella et al. 2009; Jardine et al. 2015). 

Methanol is produced in considerable amounts during cell wall formation, released by pectin 

methylesterases (PMEs), allowing to adjust the rigidity of the cell walls. Heat stress (35-65 °C) in 

turn, was reported to activate apoplastic PMEs (Wu et al. 2018). While methanol is being cleaved 

from pectine, Ca2+ is being released, which passes the cell membrane and starts a cascade of 

intracellular stress signals (Dorokhov et al. 2018; Wu et al. 2018). Thus, excess in methanol 

production can be a sign of active growth processes, or be the consequence of the demethylation 

of several methylated compounds (e.g. DNA, RNA, histones, and other proteins) occurring after 

cell damage and oxidative stress as it was reviewed by Kim et al. (2015). The co-occurrence of a 

substantial increase in the emissions of lipoxygenase products such as hexenal (Fig S3.3) with 

high methanol fluxes (Fig 3.6a), provides a strong indication that methanol emissions were related 

to cell and membrane damages. Indeed, after membrane disruption, lipoxygenase products are 

formed when the fatty acid substrates trapped in the cell membrane get in contact with cytosolic 

enzymes. In turn, the concomitant but stronger methanol emissions might be a reliable indicator 

of lethal heat dosage (Turan et al. 2019). 

Excessive MT and acetaldehyde emissions anticipate higher sensitivity to stress 

Monoterpene and acetaldehyde emissions of seedlings that died after the first heatwave were 

distinct from surviving seedlings, albeit photosynthetic rates were not showing apparent 

differences between dying and surviving individuals until the first day of stress release (Table 

S3.3,S3.4 (Birami et al. 2018)). Susceptible seedlings showed a tendency of higher emissions in 

MeSa, 69 m z-1 (which is an unknown compound that could either be isoprene or MBO, Fig 

S3.3a), and hexenal (Fig S3.3b). 
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MeSa and hexenal have been previously depicted as stress sensing and stress signaling 

molecules (Tawfik et al. 2017; Wu et al. 2018). Acetaldehyde emissions, however, were found to 

be closely related to stomatal conductance in Aleppo pine (Filella et al. 2009; Seco et al. 2008). 

This is in contrast to our results, where increasing temperatures decreased stomatal conductance 

both in surviving and dying seedlings, while acetaldehyde emission rates increased independent 

of gs. Increased acetaldehyde production may result from a possible pyruvate substrate overflow 

mechanism during times of sudden changes in light intensity, when downstream processes of 

carbohydrate reduction are limited (Karl et al. 2002). Carbohydrate metabolism can also be limited 

by temperature stress, which is supported by similarities between the metabolic response to 

anoxia and high temperatures, both inducing anoxic fermentation pathways (Pucciariello et al. 

2012) that eventually result in acetaldehyde formation (Kreuzwieser et al. 1999). Formation and 

production not necessarily results in immediate emission, nonetheless, acetaldehyde is released 

when terminal cell damage occurs (Behnke et al. 2013; Fall et al. 1999; Loreto et al. 2006; Portillo-

Estrada et al. 2015; Turan et al. 2019). Interestingly, also the surviving seedlings showed a higher 

emission rate of acetaldehyde at the end of the second heatwave, indicating i) that some damages 

occurred also in the surviving seedlings which might have been fatal in a third heatwave, and ii) 

that acetaldehyde might be a better sensitivity indicator than MT alone. 

Still, it is difficult to explain why the dying seedlings had higher acetaldehyde and MT emissions 

before and after actual mortality happened (Fig 3.6b and d) although similar observations have 

been made on different plants or tissues. For example, high emissions of acetaldehyde and other 

oxygenated VOCs have been reported during the process of grass drying (Gouw et al. 1999). 

Also, active dehydrogenases that might produce acetaldehyde have been found in dry heartwood 

(Tohmura et al. 2012) and during industrial drying of pinewood (McDonald et al. 2002). In all 

cases, it was assumed that acetaldehyde emissions were caused by enzymatic or microbial 

remnant activity or oxidative decomposition of cellulose i.e., resin components. Regarding the 

increased MT emissions, it should be considered that the absolute magnitude of emissions from 

the dying seedlings (55.2±21.7 mg) doubled the cumulative emissions from surviving heat-treated 

seedlings (28.1±4.4 mg). This would relate to an approximate loss of about 35 % in relation to the 

stored compounds (Table S3.5), if assume the pool size of an average seedling. Therefore, and 

because no seedlings died during the same period, it is unlikely that resin ducts have been 

significantly damaged and were the origin of the MT burst. However, decreased membrane 

integrity of more sensitive individuals may have facilitated the release of non-specific MT. 

Furthermore, MT precursors can be formed in the plastidic methylerythritol phosphate pathway 

(MEP) (Zeidler and Lichtenthaler 2001). As the MEP pathway is promoted under heat and light 
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stress (Harley et al. 1998), and is well coupled to the abscisic acid sensing network (Asad et al. 

2019), increased synthesis of MT by dying seedlings could be explained by a higher stress 

sensitivity. In summary, we found that the onset of lethal stress induces a distinct BVOC emission 

composition, which was already detectable about 14 days before mortality actually occurred. This 

indication of mortality started considerably earlier than any clear trend in gas exchange rates. 

Concluding, we found VOC emissions from Aleppo pine seedlings to respond specifically to 

stress-type and stress-frequency. The reduced temperature sensitivity of monoterpene emissions 

during a second heatwave was not related to storage depletion in shoot tissues, but likely caused 

by stress-induced impairment of de novo synthesis and intra-tissue localization. Moreover, we 

found a distinct response in MT, acetaldehyde emissions to precede seedling mortality with 

methanol as indicator for lethality under heat and combined heat-drought stress. We did, however, 

not investigate different ontogenetic stages, which means that a species might acclimate to 

heatwaves and drought conditions and that emission responses of adult individuals might differ 

from those of seedlings. In fact, eddy-covariance measurements in different Aleppo pine stands 

indicate that emissions at the Yatir forest are smaller than at stands with less extreme conditions 

(Seco et al. 2017), which could be interpreted as a long-term acclimation. Understanding these 

signals, might help optimizing management for stress mitigation in precision farming or tree 

planting (Kravitz et al. 2016; Lüttge and Buckeridge 2020), and pave the way to new conceptual 

modelling frameworks towards characterizing stress severity related to tree mortality. 
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4 Hot drought reduces the effects of elevated CO2 on tree water use efficiency and carbon 
metabolism  

____________________________________________________________________________ 

This chapter has been published as: Birami, B., Nägele, T., Gattmann, M., Preisler, Y., Gast, 

A., Arneth, A. and Ruehr, N.K. (2020), Hot drought reduces the effects of elevated CO2 on tree 

water‐use efficiency and carbon metabolism. New Phytol, 226: 1607-1621. 

doi:10.1111/nph.16471 

____________________________________________________________________________ 

Summary 

(1) Trees are increasingly exposed to hot droughts due to [CO2]-induced climate change. 

However, the direct role of [CO2] in altering tree physiological responses to drought and heat 

stress remains ambiguous. 

(2) Pinus halepensis (Aleppo pine) trees were grown from seed under ambient (421 ppm; a) or 

elevated (867 ppm; e) [CO2]. The 1.5-year-old trees, either well-watered or drought-treated during 

one-month, were transferred to separate gas exchange chambers and temperature gradually 

increased from 25°C to 40°C over a 10 d period. Continuous whole-tree shoot and root gas 

exchange measurements were supplemented by primary metabolite analysis. 

(3) Elevated [CO2] reduced tree water loss, reflected in lower stomatal conductance, resulting in 

a higher water-use-efficiency throughout amplifying heat stress. Net C uptake declined strongly, 

driven by increases in respiration peaking earlier in the well-watered (31–32°C) than drought (33–

34°C) treatments unaffected by growth [CO2]. Further, drought altered the primary metabolome, 

while the metabolic response to [CO2] was subtle and mainly reflected in enhanced root protein 

stability. 

(4) The impact of e[CO2] on tree stress responses were modest and largely vanished with 

progressing heat and drought. We therefore conclude that increases in atmospheric [CO2] cannot 

counterbalance the impacts of hot drought extremes in Aleppo pine. 
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4.1 Introduction 

Forests are exposed to a rapidly changing climate world-wide and extreme weather events such 

as heatwaves and drought spells are predicted to increase in frequency and severity as 

atmospheric [CO2] is rising (Coumou and Rahmstorf 2012). This has pronounced impacts on 

forest carbon and water cycling (Williams et al. 2013), particular in already water-limited 

ecosystems (Choat et al. 2018). Yet, the interacting effects of elevated [CO2] (e[CO2]) with 

extreme environmental conditions such as drought, heat stress and the combination of both, on 

tree stress resistance are far from clear. 

Heatwaves during extended drought periods can be a main cause of forest decline (Anderegg et 

al. 2012). Hot droughts are particular stressful because evaporative demand  is high, while water 

availability is low and trees need to tightly regulate water loss (Ameye et al. 2012; Birami et al. 

2018; Ruehr et al. 2016). This typically induces stomatal closure to maintain the integrity of the 

water transporting system (Tyree and Zimmermann 2002). Simultaneously carbon (C) 

assimilation rates decline, while C is needed to support osmoregulation and cellular maintenance 

(Hartmann and Trumbore 2016; Hsiao 1973; Huang et al. 2012). Therefore, a C imbalance can 

arise under progressing stress, which triggers a cascade of metabolic adjustments. 

A driving force of metabolic activity in plants is respiration (R). Typically, about 30–80% of the 

daily photosynthetic C gain is released back to the atmosphere (Atkin and Tjoelker 2003). During 

stressful conditions, the amount of respiration to assimilation can change dramatically and trees 

can become a net source of CO2. It has been shown that the C loss in trees subjected to higher 

temperatures and increasing drought is larger and occurs earlier than under cooler conditions. 

This was due to R continuing at relatively high rates while assimilation started to decline earlier in 

drought-treated trees grown under 35°C compared to 25°C (Zhao et al. 2013). Other work has 

shown that R can strongly increase under rapid warming, even in combination with drought, until 

rates drop at very high temperatures (Gauthier et al. 2014). In contrast, if trees are exposed to 

elevated growth temperatures, R typically acclimates, nearly offsetting the effect of the warming 

(Drake et al. 2019a; Reich et al. 2016). Although much research has focused on the temperature 

relationship of R, we have little mechanistic understanding to predict how R will respond to day-

long heatwaves, let alone in combination with drought and/or changes in [CO2]. 

Increasing atmospheric [CO2] may affect tree stress responses through a variety of plant 

physiological processes. For instance, e[CO2] often suppresses photorespiration and dark 

respiration (Drake et al. 1999; Dusenge et al. 2019), while stimulating C assimilation and 

productivity under non-stressful conditions (Ainsworth and Long 2005; Ainsworth and Rogers 
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2007; Ameye et al. 2012; Simón et al. 2018; Zinta et al. 2018). Alongside with increases in C 

uptake, stomatal conductance (gs) typically declines (Eamus 1991). This reduction in gs 

corresponds with a larger leaf-intercellular [CO2] concentration (Ci), stimulated photosynthesis 

and increased plant water-use-efficiency (WUE) – the ratio of C uptake via assimilation per unit 

water loss from transpiration (Lavergne et al. 2019). 

Increases in WUE under e[CO2] have been observed in many studies (Eamus 1991), particular 

in water-limiting environments (Wullschleger et al. 2002). However, the combined effects of 

e[CO2] stress responses during extreme heat and/or drought stress have rarely been investigated 

and results remain inconclusive. For instance, e[CO2] could not mitigate extreme drought stress 

(withholding water until mortality occurred) in Pinus radiata and Callitris rhomboidea (Duan et al. 

2015) or in Eucalyptus globullus when +240 ppm CO2 was combined with a constant +4°C 

warming (Duan et al. 2014), while it alleviated extreme heat stress in Pinus taeda and Quercus 

rubra (Ameye et al. 2012) and Larrea tridentata (Hamerlynck et al. 2000). 

A more comprehensive picture on the interacting effects of e[CO2] on plant stress performance 

could be gained through a whole tree C perspective – integrating sink and source responses 

(Dusenge et al. 2019; Ryan and Asao 2019). Moreover, investigating changes in the primary 

metabolism could allow to identify some of the underlying mechanisms (Mohanta et al. 2017; Xu 

et al. 2015). For instance, e[CO2] can increase sugar and starch concentrations, which might 

buffer plant C losses during drought via enhanced C supply and/or improved osmoregulation 

(Ainsworth and Long 2005; Ainsworth and Rogers 2007) as well as may reduce oxidative stress 

(Zinta et al. 2014). However, e[CO2] may also affect the carbon-to-nitrogen (CN) stoichiometry 

and N dilution as has been observed, resulting in decreased protein and amino acid 

concentrations  (Johnson and Pregitzer 2007; Poorter et al. 1997). A decrease in protein content 

may affect assimilation and R rates (Drake et al. 1999; Dusenge et al. 2019; Xu et al. 2015), could 

dampen stress-induced upregulation of amino acids important for osmoregulation (Zinta et al. 

2018) and may affect the abundance of heat-shock proteins and therefore plant thermotolerance 

(Coleman et al. 1991; Huang et al. 2012; Zhang et al. 2018). Hence e[CO2] can trigger metabolic 

processes which may directly interact with tree drought and heat stress responses. Yet results 

remain inconclusive because we miss an integrated understanding of the interactive effects of 

e[CO2] and stress on the C balance and primary metabolism of trees. 

Here we provide novel insights into the impacts of e[CO2] on whole-tree, shoot and root stress 

responses in Aleppo pine saplings originating from a semi-arid forest at the arid timberline 

(Grünzweig et al. 2009). To elucidate the effects of [CO2] in combination with drought and heat 
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stress on physiological responses, we combined measurements of whole-tree C balance, WUE 

and primary metabolites. More specifically, our hypotheses were: i) e[CO2] increases 

photosynthesis which results in a larger net C uptake maintained during heat stress, ii) WUE 

increases proportionally with atmospheric [CO2] this increase can be maintained during heat 

stress but not during hot drought when stomata are closed, and iii) the tree metabolic response 

to temperature is suppressed under e[CO2], reflected in a concurrent change in respiratory activity 

and primary metabolites. 

4.2 Material and Methods 

4.2.1 Plant material 

Pinus halepensis (Miller) saplings were grown from seeds for 18 months under ambient CO2 (c. 

420 ppm) or e[CO2] (c. 870 ppm, within range of RCP 8.5 for 2100, (Pachauri et al. 2014)) in a 

scientific glasshouse facility in Garmisch-Partenkirchen, Germany (732 m a.s.l., 47°28’32.87’’N, 

11°3’44.03’’E) with highly UV transmissive glass (70%). The origin of the seed material is a 50-

year-old Aleppo pine plantation in Israel (Yatir forest). Cones of trees were sampled growing in 

close-proximity to a meteorological station and flux tower (IL-Yat, 650 m a.s.l., 31°20’49.2’’N, 

35°03’07.2’’E). 

In the following the experimental design of the study is explained in detail from the germination of 

the seedlings until the 18-month-old saplings were transferred into separate tree gas exchange 

chambers (see Fig. 4.1). Seeds germinated on vermiculite in two transparent growth chambers 

either under ambient atmospheric CO2 (a[CO2]) or e[CO2] . About 10 weeks after germination, in 

July 2016, the seedlings were transferred to pots (5 x 5 x 5 cm, 0.125 l) containing a C-free potting 

mixture of 1:1:0.5 quartz sand (0.7 mm and 1-2 mm), vermiculite (c. 3 mm) and quartz sand 

(Dorsolit 4-6 mm) with 1 cm of expanded clay (8-16 mm) as a drainage. Seedlings were fertilized 

with 2 g of slow-release fertilizer (Osmocote® Exact 3-4M 16-9-12+2MgO+TE, ICL Specialty 

Fertilizers, The Netherlands) supplemented by liquid fertilizer (Manna® Wuxal Super, Wilhelm 

Haug Gmbh & Co. KG, Germany). 

Placement of the seedlings within the two growth chambers was randomized every second week, 

and to overcome a possible chamber effect, the CO2 treatments were iterated in monthly intervals 

between the chambers (Fig. 4.1). After the saplings were 7-month-old they were placed in two 

glasshouse compartments referring either to a[CO2] and e[CO2] conditions and 10 month old 

seedlings were individually transferred to larger pots (4.5 l) for a second time. The potting mixture 

was again a C-free substrate of 1:1:2 vermiculite (3-6 mm), coarse (4-6 mm) and fine quartz sand 

(2-3 mm) with 1 cm of expanded clay (8-16 mm) as a drainage. 5 g of slow-release fertilizer 
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(Osmocote® Exact Standard 5-6M 15-9-12+2MgO+TE, ICL Specialty Fertilizers, The 

Netherlands) was added to the mixture and supplemented by liquid fertilizer, phosphate and 

magnesium addition once. Incoming light from outside was supplemented with plant growth-lamps 

(T-agro 400 W, Philips, Hamburg, Germany) and the saplings were irrigated regularly to 

saturation. A possible effect of the placement within the glasshouse was again overcome by 

iterating the CO2 treatments between the two glasshouse bays, four times before the start of the 

heat stress experiment in September 2017 (Fig. 4.1). 

Atmospheric CO2 differed largely between the glasshouse compartments (421±105 ppm in a[CO2] 

and 867±157 ppm in e[CO2] on average, increase in [CO2] of 106 % during growth period), while 

all other growth conditions were kept similar (see Fig. S4.1). Moisture sensors (10HS, Decagon 

Devices, Inc., WA, USA; calibrate to potting substrate) and an automated drip irrigation system 

were installed (Rain Bird, Azusa, CA, USA) when seedlings were 15-month-old. The irrigation 

was adapted to result in a relative substrate water content (RSWC) of 50% (Fig. S4.2) close to 

the soil water content in the Yatir forest during spring conditions. RSWC was calculated as follows: 

RSWC = 100* 
(SWCsample−SWCmin)

(SWCmax−SWCmin)
 (1) 

SWCmax in g g-1 is the maximum amount of water hold by the substrate (e.g. field capacity). SWCmin 

in g g-1 was set to 0 and SWCsample is the measured substrate water content, which was derived 

from the calibrated moisture sensors. 

When seedlings were about 17 months old, half of the seedlings from each CO2 treatment were 

randomly selected and assigned to a drought treatment (D). In the drought trees, irrigation was 

slowly reduced to maintain daily-averaged RSWC at c. 10%, while RSWC in the well-watered 

trees (W) was maintained at 50%, leading to a pronounced decrease in water potential. Two sets 

of seedlings from each of the four treatments (a[CO2]W, e[CO2]W, a[CO2]D, e[CO2]D) were 

randomly selected 40 d and 50 d after drought had been initiated (Fig. 4.1), transferred to custom-

build separate tree gas exchange chambers (see below) and exposed to increasing heat stress 

(n=4 per treatment) for a period of 10 days. 
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Figure 4.1 Experimental timeline from seedling (Pinus halepensis) germination until two heat 

experiments (each 10 d) were conducted 18 months later. The initiation of the CO2 (e[CO2]: dark 

blue, a[CO2]: light blue) and drought  treatments (orange) is also shown. Seedlings of the four 

treatments (a[CO2]W, e[CO2]W, a[CO2]D, e[CO2]D) were randomly selected and transferred to 

the gas exchange chambers where temperature was step-wise increased (25°C, 30°C, 35°C, 

38°C, 40°C) and above- and belowground gas exchange measured. The heat experiment was 

repeated with a new set of seedlings to increase number of replicates to 8 per treatment. Note 

that one gas exchange chamber per treatment was left blank to serve as a quality control. The 

yellow dotted lines depict iteration of the CO2 treatments between two growth chambers or two 

glasshouse bays. 

4.2.2 Tree gas exchange chambers 

4.2.2.1 Chamber system 

We developed a tree gas-exchange system with 20 separate chambers divided in an above- and 

belowground compartment to continuously measure the exchange of H2O and CO2. Each of the 

20 aboveground compartments were individually temperature-controlled (Fig. 4.2). The 

aboveground and belowground compartments were separated and gas tightness between the 

above- and belowground compartment was ensured after enclosing the tree stem. For details on 

the set-up and constant air supply of the tree gas exchange system see Notes S4.1. 
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Figure 4.2 Whole tree gas exchange system separated in an above- and belowground 

compartment, shown exemplary for one chamber (n=20 in total). The arrows indicate the direction 

of flow. The air supply to the chambers is given in black (Airsupply) and the sample air is given in 

green color (Airsample). The Li-840 measured absolute [CO2] and [H2O] connected to a Li-7000 to 

measure differences between Airsupply and Airsample. Note that trees (Pinus halepensis) were potted 

in C-free substrate and the belowground CO2 efflux is therefore interpreted as root respiration. 

The chamber system was installed in the glasshouse and outside light was supplemented with 

plant growth lamps (T-agro 400 W, Philips, Hamburg, Germany). Canopy light conditions inside 

each chamber were measured automatically with a photodiode (G1118, Hamamatsu Photonics, 

Hamamatsu, Japan), which had been cross-calibrated with a high-precision PAR sensor (PQS 1, 

Kipp & Zonen, Delft, the Netherlands). Root-zone conditions were monitored with temperature 

sensors (TS 107, Campbell Scientific, Inc. USA) and moisture sensors (10HS, Decagon Devices, 

Pullman, USA). These data were logged half-hourly (CR1000, Campbell Scientific, Inc. USA). 

4.2.2.2 Gas exchange measurements 

The gas exchange chambers were constantly supplied with an air stream (Airsupply) of either 408 

ppm or 896 ppm CO2. Sample air (Airsample) was drawn at a rate of 500 ml min-1 and each seedling 
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was measured once every 80 min using differential gas analysis. We used two gas analyzers, the 

analyzer measuring absolute [CO2] and [H2O] (LI-840, Li-cor, Lincoln, USA) was connected to a 

differential gas analyzer (Li-7000, Li-cor, Lincoln, USA) quantifying [CO2] and [H2O] differences 

between Airsupply and Airsample. The data was logged at 10 s intervals. The gas analyzers have been 

calibrated following the manufacture’s recommendation. 

To eliminate any offset between Airsupply and Airsample not caused by plant gas exchange, empty 

aboveground and belowground compartments (n=1 per treatment, four in total) containing C-free 

potting substrate only, were measured and offsets (on average +0.33±1.2 ppm CO2 and 

0.02±0.05 ppt H2O in the aboveground compartments) removed accordingly. Differences in CO2 

were slightly larger in the belowground compartments (c. +2 ppm on average) and may refer to 

some microbial activity in the potting substrate. 

Gas exchange fluxes of CO2 and H2O were calculated from the concentration differences between 

Airsupply and Airsample. Plant water loss via transpiration (E) [mol s-1] was calculated as 

E =  
𝑚 ̇ (𝑊𝑠𝑎𝑚𝑝𝑙𝑒−𝑊𝑠𝑢𝑝𝑝𝑙𝑦)

(1−𝑊𝑠𝑎𝑚𝑝𝑙𝑒 )
  (2) 

where ṁ is air mass flow [mol s-1] into the chamber compartment, Wsample the water vapor 

concentration of the Airsample [mol mol-1], Wsupply the water vapor concentration of the Airsupply  [mol 

mol-1]. 

From daytime E and water vapor concentrations we determined stomatal conductance (gs) [mol 

s-1] as follows  

gs = 
𝐸(1000−

𝑊leaf+𝑊sample

2
 )

𝑊leaf−𝑊sample
  (3) 

where Wleaf [mol mol-1] is derived from the ratio of saturation vapor pressure (kPa) at a given air 

temperature (°C) and the atmospheric pressure. This approach, which neglects boundary layer 

conductance, is suitable under well-coupling as confirmed by negligible temperature differences 

between chamber and tree canopy (<1°C, see Table S4.1).  

CO2 gas exchange [mol s-1], i.e. net photosynthesis (ANet), shoot respiration (Rshoot) and root 

respiration (Rroot), were calculated as 

CO2 flux = −�̇�(𝐶sample − 𝐶 supply) − (𝐸 𝐶 sample)  (4) 
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with Csample being the [CO2] of the Airsample [mol mol-1], Csupply the [CO2] of the Airsupply [mol mol-1] 

and E to correct for dilution through transpiration [mol s-1]. In the case of Rroot (where sample air 

was dried) the water vapor dilution term became negative. The daily net C uptake per tree [mg C 

tree-1 day-1] was calculated based on daily-averaged ANet and R as follows 

CNet = ANet – (RShoot + RRoot) (5) 

In order to determine changes in whole tree water-use-efficiency (WUE), apparent WUEa was 

derived using the following equation: 

WUEa = 
𝐴net

𝐸day
  (6) 

Table 4.1: Needle, shoot, root, total tree biomass, needle area and total soluble C (calculated as 

carbon equivalents of all measured metabolites) for 1.5-year-old Pinus halepensis seedlings are 

given as treatment averages ±1SE (n = 16 per treatment) at the end of the experiment (post-

stress). Significant differences between treatments were derived from ANOVA followed by 

TukeyHSD and are given in upper-case letters (P<0.05). 

Treatment Needle  Root  Wood  Total 

 [g DW] 

a[CO2]W 33.4 ± 1.0  A 51.1 ± 1.4  B 15.4 ± 0.6  A 99.9 ± 2.1   A 

e[CO2]W 47.6 ± 1.5  B 66.7 ± 1.9  D 24.5 ± 1.2  B 138.8 ± 2.1 B 

a[CO2]D 33.3 ± 1.5  A 43.6 ± 1.2  A 15.8 ± 0.9  A 92.7 ± 2.9   A 

e[CO2]D 47.5 ± 1.4  B 60.0 ± 2.2  C 24.2 ± 1.4  B 131.6 ± 4.5 B 

 

Treatment Needle Area Soluble C 

  

 [cm2] [µmol gDW-1]   

a[CO2]W 1296 ± 38    A 1090 ± 209 A   

e[CO2]W 1925.3 ± 84 B 847± 79      A   

a[CO2]D 1414.6 ± 60 A 2623 ± 454 B   

e[CO2]D 2052.5 ± 65 B 2578 ± 349 B   
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To allow comparison of tissue gas exchange activity between treatments and because root 

surface area was not available, we calculated gas exchange rates per shoot (i.e., needle and 

woody tissues) or root dry weight (DW), if not stated otherwise. The percentage share of soluble 

carbon from tissue biomass was small (<4%, Table S4.2), hence we refrained from taking 

normalization to soluble C into account. Tree biomass was determined at the end of the 

experiment and separated into needles, roots and woody tissues before drying at 60°C for 48 h 

(Table 4.1). 

4.2.3 Heat stress experiment 

Responses of shoot and root gas exchange with increasing temperature and evaporative demand 

were assessed continuously using the tree gas exchange system as described in section 2.2 and 

Notes S4.1. 

In brief, randomly selected seedlings were placed into separate gas exchange chambers (n=4 

per treatment, Fig. 4.1). The chambers containing one tree each were positioned next to each 

other in a randomized block design. The heat stress experiment was repeated in order to double 

the numbers of replicates per treatment. Each heat experiment lasted 10 d and after the initial 2 

d at 25°C (20°C night-time), temperature was increased stepwise every second day to the 

following day-time temperatures: 25°C, 35°C, 38°C and 40°C (Fig. 4.3a). We refrained from 

temperatures above 40°C as tree mortality has been found to strongly increase in Aleppo pine 

seedlings above this threshold particular in combination with drought (Birami et al. 2018). As 

during a typical heatwave in the Yatir forest (Tatarinov et al. 2015), vapor pressure deficit (VPD) 

increased alongside increasing temperature, and this increase was slightly larger in the drought-

treated saplings due to low E (Fig. 4.3c). Photosynthetic active radiation (PAR) was kept relatively 

constant between gas exchange chambers and daily-averages were 456±140 µmol m-2s-1. To 

overcome some of the light limitations (saturating PAR for photosynthesis was at 1200 µmol m-

2s-1) day-time length was set to 16 h, well above the average summer day length in Yatir forest.  

Irrigation was controlled to maintain the RSWC of well-watered trees at c. 50% and of drought-

trees at c. 10% (Fig. 4.3). The irrigation amount did not differ between the [CO2] treatments 

(a[CO2]W and e[CO2]W: 300 ml d-1; a[CO2]D and e[CO2]D: 50 ml d-1) and drought-treated 

seedlings reached a midday needle water potential (ψmidday) indicating stomatal closure (Table 

4.2, Fig. S4.3). 
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Figure 4.3 Environmental drivers during the heat stress experiment (Pinus halepensis) given per 

treatment. Air temperature (TAir, a), soil temperature (TSoil, b), vapor pressure deficit (VPD, c) and 

relative substrate water content (RSWC, d) are shown. Data are treatment-averages during 

daytime (lines including symbols) or nighttime (lines) and the shaded areas are ±1 SD (n=8). 

Daytime is defined as PAR>100 and nighttime as PAR = 0. Note the temperature difference 

between day- and nighttime was not constant due to technical limitations but was kept within 7 to 

10 °C. 

4.2.4 Sample preparation 

We sampled needle tissue for analysis of primary metabolites at the last day of the following 

temperature levels: 25, 35, 38 and 40°C. To avoid disturbance of belowground fluxes, root 

biomass was only sampled at 25°C (additional set of saplings, not used for the experiments) and 

at 40°C. Sampling took place in the afternoon between 15–16 h and samples were immediately 

frozen in liquid nitrogen, stored at -80°C until ground to fine powder in liquid nitrogen before 

freeze-drying for 72 hours with cooling aggregate at -80°C and sample temperature at -30°C 

(Alpha 2-4 LSC, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany). 
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The freeze-dried samples were stored in the dark in closed vials at room temperature and 

analyses of primary metabolites were completed within 2 months (Fürtauer et al. 2019). For 

details on analysis of primary metabolites via gas chromatography coupled to time-of-flight mass 

spectrometry (Fürtauer et al. 2016; Weiszmann et al. 2018) and protein content via Bradford 

assay ((Fürtauer et al. 2018) please see the Notes S4.2. 

4.2.5 Statistical data analysis 

Data processing, analysis and statistics were carried out using R version 3.5.2 (R Core Team 

2018). Gas exchange measurements of each chamber were carefully inspected prior to analyses 

and day- or nighttime fluxes outside 1.5 times the interquartile range (above the upper quartile 

and below the lower quartile) per temperature were considered outliers. This removed on average 

3.8% of CO2 and 5.7% of H2O gas exchange data. 

Primary metabolites were scaled to standard deviation before treatment effects in needles and 

roots at 25°C were visualized by hierarchical clustering (R packages: ‘ggplot2’ and ‘cluster’ 

(Maechler et al. 2018; Wickham 2016)). Further, the overall changes in the primary metabolome 

depending on tissue, treatment and temperature were analyzed after centering of the scaled data 

via principal components analysis (PCA). 

Treatment effects on biomass, gas exchange rates and metabolites at specific temperature levels 

were tested using ANOVA and differences between treatments were revealed by post-hoc 

analysis (TukeyHSD). Treatment and Temperature dependencies of gas exchange fluxes and 

metabolites (fixed effects) were checked by implementing a linear mixed effect model (‘lmerTest’, 

(Kuznetsova et al. 2017). In order to account for temporal autocorrelation, tree was accounted as 

a random factor. Using the reduced sample size AIC criteria (Akaike 1974; Giraud 2015) the most 

parsimonious model was selected with or without tree as random factor, and the treatment and 

temperature effect included with and without interaction. We report a pseudo-R2 (pR2) for the 

selected model (‘MuMln’, (Barton 2019). Homoscedasticity and normality of residuals were 

checked and if applicable, loge-transformation applied. 

To analyze differences in the temperature relationship of ANet we applied an exponential decay 

function (y=e-bx), in case of respiration (R), we fitted a second-order polynomial function following 

(Gauthier et al. 2014). 

𝑅 = 𝑒(a+b𝑇+c𝑇2)  (7) 
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The uncertainty of all fitted functions are given as 95% confidence intervals derived from first-

order Taylor expansion using the ‘propagate’ package (Spiess 2018). 

4.3 Results 

4.3.1 Tree biomass 

Differences in above- and belowground biomass were distinct after growing P. halepensis 

seedlings for more than one year under a[CO2] of 421 ppm or e[CO2] of 867 ppm (Table 4.1). A 

doubling of atmospheric [CO2] increased total tree biomass by 35%. This increase was particularly 

pronounced in woody tissues (stem and twigs, +47%) and to a lesser extend in needles (+26%). 

The one-month drought period had no obvious effect on aboveground biomass, but reduced 

belowground biomass under ambient (-15%) and e[CO2] (-11%). The amount of non-structural 

carbohydrates in total biomass varied between 1.5–3.5% and was slightly larger under drought 

with no clear trend of [CO2] (Table S4.2). 

4.3.2 Tree gas exchange 

Impacts of [CO2] and drought 

Elevated [CO2] affected gas exchange rates expressed per tissue DW (Table 4.2, see also Fig. 

4.4). Under well-watered conditions and at ambient temperature (25°C), R was lower in e[CO2]W 

compared to a[CO2]W trees. In addition, e[CO2] reduced gs and E, which resulted in an increase 

of WUE (Table 4.2), while ANet was largely unaffected (Table 4.2). Under drought, the effect of 

[CO2] on WUE was pronounced with Ci being increased near stomatal closure allowing for a 

higher ANet (Table 4.2). The positive effect of e[CO2] on biomass, Ci and WUE was also reflected 

in daily net C uptake (i.e. tree C balance) but the degree did depend on water supply. While in 

the well-watered trees net C uptake tended to double under e[CO2], drought trees were able to 

maintain a small C sink if grown under e[CO2] (Table 4.2). 
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Figure 4.4 Gas exchange dynamics with increasing heat stress under ambient or elevated [CO2] 

in drought or well-watered Pinus halepensis trees. Shown are hourly-averages per tree and 

treatment of net photosynthesis (ANet; a), shoot dark respiration RShoot; b) and day- (10 h to 18 h) 

or nighttime (23 h to 4 h) root respiration (RRoot; c–d). The temperature response of ANet was fitted 

with an exponential decay function and respiration data fitted to a second-order polynomial 

function (see Eq. 6). The temperature at the respiratory peak is highlighted. The shaded areas 

depict the 95% confidence intervals of the fitted functions. Note gas exchange data is expressed 

per DW shoot or root tissue. 
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Table 4.2: Gas exchange rates at 25°C expressed per tissue dry weight and tree net C uptake for 

1.5-year-old Pinus halepensis seedlings are given as treatment averages ±1SE (n= 8 per 

treatment). Tree net C uptake is the sum of photosynthesis (ANet) minus respiration (R). Midday 

needle water potential ψmidday is given and was measured at the time of tissue sampling for 

metabolite analysis. Significant differences between treatments were derived from ANOVA 

followed by TukeyHSD and are given in upper-case letters (P<0.05). 

Treatment E gs ANet Rdark 

 [µmol s-1g-1] [mmol s-1g-1] [nmol s-1g-1] [nmol s-1g-1] 

a[CO2]W 3.29 ± 0.15 B 0.38±0.04 B 15.3±1.3 B 7.4±0.3 B 

e[CO2]W 2.03 ± 0.28 D 0.23±0.07 B 16.5±2.2 B 6±0.2    C 

a[CO2]D 0.66 ± 0.17 A 0.08±0.01 A 3.4±1.1   A 3.9±0.4 A 

e[CO2]D 0.67 ± 0.16 A 0.04±0.02 A 6.7±1.2   C 4.2±0.3 A 

 

Treatment 

 

Ci 

 

WUE 

 

net C uptake 

 

Needle ψmidday 

 [µmol mol-1] [µmol mmol-1] [mg d-1 tree-1] [MPa] 

a[CO2]W 263 ± 3   A 4 ± 0.3    A 165.1 ± 29.8 AC -1.49 ± 0.07 A 

e[CO2]W 612 ± 5   C 7.2 ± 0.5 B 379.2 ± 68.8 C -1.15 ± 0.04 A 

a[CO2]D 287 ± 11 A 3.4 ± 0.7 A -73.2 ± 18.3  B -2.68 ± 0.3   B 

e[CO2]D 482 ± 14 B 9.4 ± 1.3 B 23.2 ± 38.7   AB -1.83 ± 0.2   A 

 

Heat stress responses altered by [CO2] and drought 

Increasing temperatures affected VPD accordingly (Fig. 4.3c) and we found pronounced 

responses in gas exchange of the well-watered seedlings. ANet declined with temperature 

irrespective of the [CO2] (Fig. 4.4a). This was contrasted by initially increasing C loss via RRoot and 

RShoot until a respiratory peak has been reached and respiration rates began to decline (Fig. 4.4b-

c). This respiratory peak was reached 2–4°C later and at lower rates in the drought-treated 

saplings. The trees’ net C uptake reacted accordingly with a sharp initial decrease, which then 

leveled-off at increasing heat stress (30–35°C; Fig. 4.5). The effects of e[CO2] were not distinct 
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but data showed a tendency of whole-tree net C losses to be observed at slightly higher 

temperatures under both well-watered and drought conditions. 

 

Figure 4.5 Temperature responses of the whole tree carbon balance (i.e., net C uptake) in Pinus 

halepensis seedlings per tree (a) and DW biomass (b). Shown are daily-averages per treatment 

(a[CO2]W, e[CO2]W, a[CO2]D, e[CO2]D). Whole tree net C uptake was derived from hourly 

photosynthesis and respiration data per seedling (Eq. 5). Note that positive numbers reflect a 

daily net C gain while negative numbers are a net C loss. The shaded areas are ±1 SE (n=8). 

A pronounced interaction of e[CO2] with heat stress became clear in a constantly lower E (lme: 

pR2=0.89; TukeyHSD, P<0.05) but higher WUE (lme: pR2=0.81; TukeyHSD, P<0.05) with 

increasing temperatures under well-watered conditions. This was due to a tight stomatal control 

in the e[CO2]W trees (Fig. 4.6a-b, Table S4.3). The picture changed dramatically when heat stress 

was combined with drought and the water-saving effect of e[CO2] quickly subsided at 

temperatures >30°C coinciding with stomatal closure. Interestingly, the Ci :Ca ratio seemed largely 

unaffected by the [CO2] and remained almost constant throughout the experiment (Fig. 4.6d, 

excluding Ci>Ca). 
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Figure 4.6 Treatment responses of transpiration (E; a), stomatal conductance (gs; b), apparent 

water use efficiency (WUEa; c) and the ratio of intercellular to ambient [CO2] (CiCa
-1; d) with 

increasing temperature. Data points are daily-averaged values per temperature level and tree 

(between 10 am and 4 pm). WUEa and CiCa
-1 are given for Ci ≤ Ca. The relationships of hourly 

WUE and gs with temperature are given in Fig S4.4. 

4.3.3 Primary metabolites 

Impacts of [CO2] and drought 

The primary metabolism in roots and needles was clearly distinct irrespective of treatment (Fig. 

4.7; metabolite profile at 25°C). We found inositol pathway intermediates (e.g., myo-inositol, 

pinitol), poly-amines and aromatic amino acids to dominate in needle tissues, while 

monosaccharides, TCA intermediates (e.g. malate) and amino acids of the glutamate and 

aspartate family were higher concentrated in roots. 
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Figure 4.7 Principle component analysis (PCA) of all quantified 38 primary metabolites in shoot 

and root tissues at 25°C (filled symbols) and at 40°C (open symbols) per treatment. Polygons 

indicate treatment clustering. The smaller insert visualizes overall changes in root (brown 

symbols) and needle (green symbols) tissues irrespective of treatment and temperature. Note 

that all metabolite data was scaled to standard deviation (see Methods). Metabolite abbreviations 

are: Glucose (Gluc), Fructose (Fruc), Galactose (Gal), Sucrose (Suc), Trehalose (Treh), Maltose 

(Malt), Melibiose (Mel), Rafinose (Raf), Myo-Inositol (Inos), Pinitol (Pini), Galactinol (Galact), 

Threitol (Threi), 2-Oxoglutarate (Oxoglu), Oxaloacetate (Oxaloac), Citrate (Citr), Malate (Mal), 

Succinate (Succi), Fumarate (Fum), Pyruvate (Pyruv), Threonate (Thrnate), Glutamate (Glu), 

Glutamine (Gln), Aspartate (Asp), Asparagine (Asn), Glycine (Gly), Alanine (Ala), Serine (Ser), 

Isoleucine (Ile), Leucine (Leu), Valine (Val), Threonine (Thr), Proline (Pro), Lysine (Lys), 

Methionine (Met), Tyrosine (Tyr), Phenylalanine (Phe), Tryptophane (Trp), Putrescine (Putr). 
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In addition, we found the metabolic responses to drought larger than the [CO2] effect as reflected 

in the clustering (Fig. S4.5). For instance, monosaccharides (lme: pR2=0.74) and sucrose (lme: 

pR2=0.43) were clearly enhanced under drought, accompanied by increased levels of proline in 

both needles (lme: pR2=0.47, TukeyHSD, P<0.05) and roots (lme: pR2=0.69, TukeyHSD, P<0.05). 

Further, increased levels of branched-chain amino acids and amino acids of the glutamate and 

aspartate families were found in drought treatments (e.g. glutamine, needle lme: pR2=0.59, root 

lme: pR2=0.77, TukeyHSD, P<0.05). A distinct response of the primary metabolome to e[CO2] 

under drought was remarkably absent in roots, while e[CO2] showed a tendency to mitigate 

metabolic responses to drought in needle tissues. 

Heat stress responses affected by [CO2] and drought 

The temperature increase from 25°C to 40°C affected the primary metabolome in needles and 

roots differently (Fig. 4.7). A general trend in needle tissues was the decrease of carboxylic acids 

(lme: pR2=0.47) and an increase of sugar alcohols (e.g., pinitol, lme: pR2=0.65 and galactinol, 

lme: pR2=0.59), while myo-inositol decreased (lme: pR2=0.25, TukeyHSD, P<0.05). Secondary 

metabolite precursors such as putrescine (lme: pR2=0.37,), tyrosine and phenylalanine also 

increased with temperature (lme: pR2=0.6-0.84) relatively uniform among treatments. Responses 

to increasing temperatures became most obvious in the root tissues (Fig. 4.7), where we found 

amino acids (glutamine, asparagine, alanine, serine, threonine, valine and isoleucine) to 

accumulate with rising temperatures (lme: pR2=0.6-0.8). This increase was marked under a[CO2] 

in both drought and well-watered trees along with a decline in root protein (lme, pR2 = 0.38, Fig. 

4.8 t). In contrast, needle protein increased above 35°C in all treatments (Fig. 4.8 t) particular 

under e[CO2]D (lme: pR2= 0.23, TukeyHSD, P<0.05). In addition, treatment-specific responses to 

temperature were found in monosaccharides (lme: pR2=0.74) where drought resulted in an 

accumulation of monosaccharides in needles (TukeyHSD, P<0.05; Fig. 4.8 a-b). In the well-

watered treatments, we found monosaccharides to decline in roots (Fig. 4.8 c–d, lme: pR2= 0.70, 

TukeyHSD, P<0.05). This decline tended to be larger in trees grown under a[CO2]. 
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Figure 4.8 Heat stress responses of selected primary metabolites and protein content in leaves 

and roots. Shown are treatment-averages of sucrose and the sum of monosaccharides (glucose, 

fructose and galactose; a–d), malate and the sum of carboxylic acids (citrate, malate, fumarate, 

succinate, oxoglutarate, oxaloacetate; d–g), pinitol and the sum of sugar alcohols (myo-inositol, 

pinitol, threitol, galactinol; h–k,), glutamate synthase amino acids (GOGAT) and the sum of all 

measured amino acids including putrescine (l–o) and protein content (p–t). The shaded areas are 

±1 SE (n=8). 
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4.4 Discussion 

4.4.1 Tree C balance under e[CO2] 

Aleppo pine trees, grown for 1.5 years under e[CO2] exhibited a larger biomass than trees grown 

under a[CO2]. We cannot exclude limiting effects on growth due to the size of the pots, which 

were lower than what has been previously recommended (Poorter et al. 2012). Nevertheless, we 

found clear differences in root biomass, and e[CO2] to stimulate root growth in agreement with 

many other studies (for a meta-analysis of FACE studies see (Nie et al. 2013). The observed 

overall larger biomass of e[CO2] trees in our study tended to result in a larger net C gain (i.e., net 

photosynthesis minus respiration; on average +120% per tree). To exclude the CO2-induced 

biomass stimulation on these results, we expressed gas exchange rates per tissue DW. Based 

thereon we did not find e[CO2] to increase C-fixation rates, as ANet was quite similar between both 

[CO2] treatments (Table 4.2) and carboxylation efficiency was unchanged (data not shown). 

Hence the stimulation of the seedlings’ net C gain in the e[CO2]W treatment was not driven by 

increased photosynthesis but due to an apparent reduction of RShoot and RRoot under e[CO2] (-23% 

on average). It is noteworthy that under drought conditions [CO2] did not affected respiration rates. 

The responses of R to e[CO2] can be highly variable (Dusenge et al. 2019). Some studies find R 

to be insensitive to [CO2] while others find it to either increase or decrease (Ainsworth and Long 

2005; Aspinwall et al. 2017; Drake et al. 1999; Dusenge et al. 2019; Gauthier et al. 2014; 

Gonzalez-Meler et al. 2004; Xu et al. 2015). Our study adds new evidence that e[CO2] reduces 

RShoot or RRoot per tissue DW (day- and nighttime) during non-stressful conditions. 

Correspondingly, we also did not find an upregulation of respiratory substrates such as sugars in 

response to e[CO2]. A likely explanation for reduced dark respiration in response to rising [CO2] 

may involve lower protein turnover due to N dilution from increases in non-structural 

carbohydrates or other organic compounds (Xu et al. 2015), yet in our study, the C : N ratio at 

25°C derived from the sum of primary metabolites did not differ (Table S4.2). However, we found 

evidence that e[CO2] reduced protein content in needle and root tissues at control temperature. 

Indeed, the CO2-effect (at 25°C) disappeared when expressing RShoot per protein content. 

Because protein turnover is highly energy demanding, a lower protein content of plants under 

e[CO2] could reduce the respiratory costs of tissue maintenance (Drake et al. 1999), and may 

contribute to increased net C uptake under well-watered conditions. 
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4.4.2 Temperature acclimation of respiration affects tree C balance and is modulated by 
drought and [CO2] 

The response of R to slowly increasing temperatures and VPD did not follow temperature kinetics 

of a single enzyme, which is exponential  in a physiological temperature range (Bond-Lamberty 

et al. 2004; Michaletz 2018). In contrast, we found R to acclimate to several days of heat stress. 

Moreover, we found that day-time R at 40°C was close to the initial rates at 25°C. This is in stark 

contrast to studies conducting fast temperature curves, which typically find respiratory peaks to 

occur at much higher temperatures (e.g. (Gauthier et al. 2014). However, an acclimation of leaf 

R to elevated growth temperatures has been reported in many instances (Drake et al. 2019a; 

Reich et al. 2016) and RShoot has been shown to decline during consecutive heatwaves (Birami et 

al. 2018). Likely explanations for the early down-regulation of RShoot and RRoot which we have 

found in response to heat stress are: i) reduced respiratory demand due to down-regulation of 

growth and maintenance R, ii) adenylate restriction caused by ATP turnover decline and/or iii) 

reduced C availability (O'Leary et al. 2019). While our study cannot support R to be limited by 

reduced C availability as for instance carboxylic acids did not decrease in root tissues, we can 

clearly show that Aleppo pine trees are able to regulate respiratory losses to maintain a new 

equilibrium between C loss and uptake (Fig. 4.4). This was reflected in the whole-tree C balance 

stabilizing at an almost constant rate between 35°C and 40°C with larger net C loss under drought 

conditions. An homeostatic linkage between photosynthesis and respiration to temperature has 

been suggested by a recent synthesis on a large number of studies (Dusenge et al. 2019). 

The impacts of e[CO2] on R vanished with increasing heat stress in the well-watered trees and 

after the respiratory peaks were reached, on average 1–2°C later under e[CO2], R did not differ 

between the [CO2] treatments anymore. However, the effect of drought delaying the timing of the 

respiratory peak was more pronounced. R was initially lower under drought until maximum rates 

were reached about 2–6°C later than in the well-watered trees. The subsequent decline in R 

under drought was less pronounced so that R of the drought and well-watered treatments 

converged. A similar delay of the respiratory peak in response to drought (although at much higher 

temperatures) has been found during rapid-warming of Eucalypt leaves (Gauthier et al. 2014). In 

accordance to (Gauthier et al. 2014) we found a declining ratio of ANet to R but no indications for 

C depletion. In summary, this indicated that treatment differences (e.g., drought or [CO2]) in R 

were distinct at 25°C, but quickly subsided after maximum temperatures were surpassed. The 

underlying reasons are not clear, but strikingly the trees maintained a new equilibrium between 

ANet and R, and whole-tree net C loss in the well-watered treatments was <0.1% DW d-1 and in 

the drought treatments <0.2% DW d-1, independent of the [CO2]. 
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4.3 Responses of WUE to elevated [CO2], heat and drought stress 

The apparent lack of a [CO2] effect on net C uptake under stress was counterbalanced by a very 

consistent water saving strategy, largely maintained throughout all temperature steps, (Table S3). 

In the well-watered, e[CO2] trees, E remained constant with increasing VPD and temperature. 

This was reflected in an improved WUE under e[CO2], which increased proportional with 

atmospheric [CO2] under well-watered conditions. Moreover, this increase in WUE was not only 

maintained but apparently increased with rising temperatures (25°C: +77%, 30°C: 94%, 35°C: 

95%, 40°C: 133% on average) and therefore agrees with our second hypothesis. Several 

strategies are reported to control WUE in plants (Lavergne et al. 2019) and under rising Ca, three 

scenarios are typically proposed in which leaves maintain either: constant Ci, constant Ca–Ci, or 

constant Ci : Ca ((Saurer et al. 2004). A variety of studies have reported constant Ci : Ca as a 

response to e[CO2] during drought or other abiotic stresses (Ainsworth and Long 2005; Gimeno 

et al. 2016; Kauwe et al. 2013). This agrees with our study, where Ci : Ca remained almost constant 

over the entire experimental temperature gradient in the well-watered seedlings. Constant Ci : Ca 

could indicate a feedback control on gs from photosynthetic activity, for instance via temperature-

induced downregulation of Rubisco (Crafts-Brandner and Salvucci 2000). We observed similar Ci 

: Ca patterns in the drought treatments, with a tendency for a larger increase in WUE at 25°C. 

This water saving effect naturally disappeared when stomata closed almost fully at 30°C. Thus, 

hot drought quickly diminishes any water saving effect of e[CO2]. 

4.4 Plant stress responses affected by elevated [CO2] 

Whole tree gas exchange of H2O and CO2 revealed some interacting [CO2] responses during 

drought and heat stress, most pronouncedly reflected in increased WUE. However, we found the 

benefits of e[CO2] to vanish under more extreme heat or combined heat-drought stress. Recently 

it has been shown that extreme drought can counterbalance any beneficial [CO2] effects on C 

dynamics and water relations (Duan et al. 2013; Duan et al. 2015). In addition, more detrimental 

effects and larger leaf senescence in trees grown under e[CO2] compared to a[CO2] have been 

found during a hot drought event occurring naturally (Warren et al. 2011). The underlying 

mechanisms are not yet understood, but excessive leaf-temperature stress under e[CO2] due to 

lower gs (and lower E) are thought to be a possible explanation, increasing thermal stress (Bassow 

et al. 1994; Warren et al. 2011). As the well-mixed conditions inside the tree chambers in our 

study omitted large differences in surface needle temperatures (Table S4.1), we can excluded 

additional heating of e[CO2] trees affecting metabolic stress responses. 
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Underlying mechanisms for the rather modest effect of [CO2] on tree stress performance might 

be reflected in metabolic adjustments in needles and roots. Generally, we found the primary 

metabolome of roots and shoots to differ, which can be explained by the presence or absence of 

chemical pathways in specialized tissues like plastids (Li et al. 2016). Elevated [CO2] tended to 

mitigate the drought response at 25°C in needle tissues, which fits well to overall water saving 

strategy (e.g. WUE, see Table 4.2). However, the response to heat stress was distinct but not 

altered by e[CO2]. For instance, we found myo-inositol to decline as typical precursor of osmotic 

active substances like pinitol and galactinol (Nishizawa et al. 2008). 

Together with proline these metabolites contribute to thermostability of membranes and proteins 

(Nishizawa et al. 2008; Zinta et al. 2018). In contrast to needles, root metabolites showed distinct 

responses to stress, as seen in highly elevated levels of soluble sugars and amino acid increase 

with heat and drought stress. The apparently larger drought sensitivity of roots was also reflected 

by a lower root biomass but higher overall metabolite C content compared to the well-watered 

trees (Table 4.1), indicating that root growth halted during drought and available C was mainly 

invested into osmoregulation. Possible explanations may involve reduced C transport from source 

to sink tissues (Brauner et al. 2018; Ruehr et al. 2009) and a larger hydraulic vulnerability of roots 

(Johnson et al. 2016). 

We found some indications for e[CO2] to potentially mitigate stress-induced metabolic responses, 

in agreement with others (Zinta et al. 2014; Zinta et al. 2018). In particular, e[CO2] seemed to 

lessen the heat-induced changes in monosaccharides and amino acids in roots. Similarly, (Zinta 

et al. 2018) reported a dampened response of sugars and amino acids to combined heat-drought 

stress in Arabidopsis thaliana grown under e[CO2]. Hence, the larger increase in amino acid 

concentrations in roots from trees grown under a[CO2] in our study could be triggered by protein 

degradation, which was suggested by a decline in protein content while asparagine accumulated 

(Brouquisse et al. 1992). Heat stress has been found to decrease root protein content, as protein 

degradation rates at high temperatures typically exceed protein synthesis (Huang et al. 2012). A 

larger protein stability is assumed to improve the thermotolerance of plants but may come at a 

cost of increased maintenance. Interestingly, we found a larger stability of root protein content 

under e[CO2] with heat stress, but the average root protein content as well as Rroot at 40°C did not 

differ between a[CO2]W and e[CO2]W. This may indicate an active downregulation of protein 

turnover in a[CO2] trees to reduce the C cost of maintenance respiration. Counterintuitively, we 

found protein content in needle tissues to increase at temperatures ≥35°C in all treatments. It is 

noteworthy that e[CO2] trees, which had a lower protein content at 25°C, exhibited a relatively 
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larger increase in protein content with heat stress. This increase in soluble protein might be due 

to an upregulation of heat-shock proteins (Aspinwall et al. 2019) to prevent failure of the 

photosynthetic apparatus (Escandón et al. 2017) or could be caused by N remobilization for 

Rubisco, which can explain up to 30% of changes in total protein (Warren and Adams 2001). In 

summary, we found the stress response of the primary metabolome to be highly tissue-specific 

and to be largely independent of growth [CO2] in contrast to our third hypothesis. However, we 

detected some indications for a slightly enhanced thermotolerance under e[CO2] reflected in a 

larger upregulation of needle proteins and improved stability of root proteins, at the expense of 

lower amino acid accumulation. 

4.5 Conclusion 

Growing Aleppo pines for 18 months under e[CO2] of c. 870 ppm had a stimulating effect on tree 

biomass (+40%), but did not result in larger tree water loss due to reductions in stomatal 

conductance reflected in a nearly proportional increase in WUE maintained throughout a 10 d 

heatwave (25°C, 30°C, 35°C, 38°C, 40°C). Drought stress initially amplified the e[CO2] effect on 

WUE until stomata closed at higher temperatures. Considering the tree C balance, we found a 

stimulation of the net C uptake under e[CO2] largely due to reduced tissue respiration alongside 

lower protein content. Nevertheless, respiration responded independent of [CO2] to heat stress 

with an initial increase followed by a decline above 31–34°C. Photosynthesis decreased 

simultaneously and the trees started to lose C above 30°C, irrespective of [CO2]. Elevated [CO2] 

had only a modest effect on the stress response of the primary metabolome which differed among 

tissues. Interactive effects between [CO2] and heat stress became visible via lower protein 

degradation in roots under e[CO2] indicating an improved thermotolerance. In summary, we could 

show that a doubling of atmospheric [CO2] has little influence on Aleppo pine seedling responses 

to heat, drought or hot drought stress. While our study is restricted to physiological responses of 

seedlings the results have implications for model development, which are two-fold: 1) the effect 

of atmospheric [CO2] on tree physiological responses decreases with stress intensity such as hot 

drought and 2) respiration acclimates to heat stress within days and the relationship with 

temperature is independent of [CO2] but altered by drought. In order to more accurately assess 

mitigating effects of e[CO2] on drought stress responses of Mediterranean-type forests, e[CO2] 

induced changes of whole tree C allocation affecting tree water uptake and water loss need to be 

considered. 
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5 Synthesis 

Environmental drivers that shaped ecosystems within climate zones are changing much faster 

than tree adaption, which works at the timescale of decades and centuries (Walker and Wardle 

2014). This is why stress resilience and acclimation to extreme events define the success of tree 

populations (like Pinus halepensis) or determine their displacement by better adapted vegetation 

(Gonzalez et al. 2010; Higgins et al. 2016; O'Sullivan et al. 2017; Vicente-Serrano et al. 2013). 

The interplay of negative and positive drivers of plant performance, as reviewed, is not always 

easy to conclude. This knowledge should equip us with the determination and the proper collateral 

to evaluate future conditions. This thesis aimed to (1) quantify the impact of extreme heatwaves 

during drought on the physiology of Pinus halepensis seedlings and (2) understand the role 

of future high CO2 concentrations on plant performance and in altering physiological 

responses to single and multiple stress. 

An increase of 5 °C in heatwave maxima threatens P. halepensis seedlings in a Yatir forest 

climate. 

Chapter 2 (Setup 2016) successfully showed that a combination of heat and drought 

synergistically weakens P. halepensis seedlings, causing high mortality rates together with 

delayed recovery of C pools and photosynthesis following stress release. The C balance and 

storage are directly linked to stress severance as high temperatures reduce source capacity due 

to downregulated photosynthesis, while drought limits sink strength of the roots due to a disruption 

of long-distance phloem transport. Furthermore, moderate drought aggravated the water budget 

of heat stressed trees, rendering evaporative cooling impossible, which accelerated heat damage 

on leafs. A temperature threshold could be defined (47 °C), at which leaf temperature of the 

seedlings surpassed the point of recovery. These findings may raise uncertainty to the future of 

the Yatir forest, if extreme event temperatures raise further without having more water available. 

Exposition to multiple types of stressors changes physiological stress response on gas 

exchange and metabolic levels. 

The findings of both Setups 2016 and 2017 support this statement. In Setup 2016, an increase in 

compatible osmolytes in needle tissue opposed a strong decline in root carbon pools, while single 

stress exposition to heat resulted in less severe changes in cyclitols and non-structural carbon. 

While drought led to a dose dependent decline in acetone emissions due to metabolic 

downregulation, monoterpenes, methanol and methyl-salicylate where strong indicators for heat 

stress. These findings support the assumption that it is possible to assign volatile organic 
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compound signals (and metabolic adjustments) from the seedlings to either heat or drought 

and multi-stress scenarios Furthermore, the stress response to the second heatwave was less 

sensible to temperatures, which implies that acclimation to heat is mirrored in the BVOC bouquet. 

Models that compute such responses should be applied accordingly as the tree’s stress history 

seems to be of immediate importance for BVOC emission. Extremely high monoterpene, 

methanol and acetaldehyde emissions were found to precede tree mortality. This finding could be 

important for air chemistry in large forest areas and also for the data interpretation during tree 

mortality assessment. 

The more thorough metabolic analysis in 2017 revealed strong connections between soluble 

carbon in the needles of heat and drought stressed seedlings, which where even pronounced in 

an e[CO2] environment. Here, roots did not show strong effects as one month of drought 

acclimation increased their basal levels of mono- and disaccharides. However, without drought 

acclimation, these were quickly consumed with increasing temperatures – which can be 

compared to the findings in 2016 where roots depleted from soluble carbon when stress was 

applied short-term. Here, we may have observed the difference between drought acclimation 

(2017) and sudden drought introduction (2016) during an extreme event. One month of drought 

acclimation of the metabolome seemed to prime the seedling’s roots for better C storage due to 

reduced activity. Heat, however, had a pronounced effect on the amino acid composition – 

together with increasing extractable protein in the needles and decreasing protein in the roots. 

Heat, both in 2016 and 2017 experiments, showed to interfere with the nitrogen metabolism and 

the nitrogen availability in the tissues and higher [CO2] does not seem to have large mitigating 

effects here. 

Increased [CO2] can improve the growth and water-use efficiency of trees, as temperature 

increases, higher carbon storage facilitates metabolic acclimation to heat and drought. 

The thesis results could not prove this hypothesis and even partly rejects it. Elevated [CO2] 

showed clear advantages when it came to WUE and stomatal conductance. However, these 

advantages only translated to an increased C balance, when the seedling were subjected to 

temperatures below 30 °C. This might conclude in a strict biomass to water equilibrium, which 

means that a certain amount of biomass needs a minimum of available water, which has to be 

distributed on tree level. This water threathold is dependent on the basal non-stress stomatal 

conductance (lower in e[CO2]). When temperature increases, this increases water demand and 

an increase in respiratory carbon losses establishes a new carbon equilibrium. This may be 

supported by recent findings of (Gattmann et al. 2021), where a clear C storage increase under 



                                                                             Synthesis 

 
94 

e[CO2] opposed no advantages in seedling survival under e[CO2]. All of the available water was 

used both by seedlings growing at a[CO2] and at e[CO2] due to increased leaf biomass in the 

latter, resulting in better WUE at leaf level, but no survival advantage due to any water saving.The 

findings of this thesis ad to the picture of an energy buffered but water limited system in the soil-

plant-atmosphere continuum. Mild to moderate drought attenuates growth and reduce productivity 

of trees. This may be alleviated by higher CO2 levels, which are able to extend the seedling’s 

growth optima to a certain degree by budgeting the available amount of water and their biomass. 

However, if drought stress intensifies and interplays with high temperatures the combination of 

stressors override the positive effects of e[CO2] on the primary metabolome and gas exchange 

fluxes. 

There are limits to the extent of adaption (phylogenetic development) and acclimation (eco-

physiological response) of trees. On the one side, limits may be inherited species specific and 

may vary largely depending on their genetic setup that restricts geographic distribution (Chevin 

et al. 2010; Donoghue 2008; Janz et al. 2010; Lancaster and Humphreys 2020; Wang et al. 2018). 

On the other side, trees are more or less limited by the ability to supply their photosynthetic organs 

with enough water, to serve for the evaporative demand of the atmosphere. Even plant height is 

limited by the maximal water potential differences between soil, plant and air (Kanduč et al. 2020; 

Koch et al. 2004; Niklas and Spatz 2004), which allows water rising up the xylem elements within 

a tree stem. In this context, e[CO2] may lead to faster tree growth but not to trees that are more 

resistant to hydraulic stresses (Duan et al. 2018). 

5.1 Contextual Classification of the Results 

What can we learn from a greenhouse experiment? 

Advantages and limitations of greenhouse experiments: First of all, experiments in a greenhouse 

facility allow for a tight control of environmental drivers, which is extremely difficult in the field. 

Upscaling is only possible if different sources and experimental results are considered. In this 

work, the greenhouse setup allowed a detailed control of abiotic parameters, which are similar 

(Birami et al. 2018), but never exactly the same as under field conditions (Yatir forest) (Preisler et 

al. 2019; Tatarinov et al. 2015). Being detached from the natural environment allows for the 

simulation of different water availability scenarios, as well as for extreme temperature changes. 

Preparing the e[CO2] experiments with seedlings which germinated and grew under the higher 

[CO2] from start eliminated the CO2 fertilization effect that was found in free air experiments 

(FACE) until trees reached a new equilibrium state in the new environment (Körner 2006). Thus, 

the history of a field experiment individual is often unknown, while individuals used in a 
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greenhouse share ideally the same. The limitation of highly controlled greenhouse setups is that 

seedlings can only yield approximations of the physiological capacity of adult trees, while the 

responses to stress may be faster in seedlings as they can’t rely on large carbon and water 

reserves that larger trees may have, which buffer stressful conditions (Gentine et al. 2016; Grote 

et al. 2016; Hartmann et al. 2018c). On the one side, lab experiments allow for resolving isolated 

effect of, for instance, extremely high temperatures on a single individual (e.g. see (Colombo and 

Timmer 1992)), which can hardly be extracted from a whole ecosystem in the field. On the other 

side, field experiments are the ideal setup to elucidate the interactions of system components 

(soil, microbes, and plants) (e.g. see (Jiang et al. 2020) or also (Preisler et al. 2019)). 
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5.2 Observations and Outlook 

The growth effects of [CO2] on plants have been recognized since the early 1900 (Blackman 

1905) and were further discussed in the context of “Liebig`s law of the minimum” (Browne 1942; 

Norby et al. 1986), meaning that the most limiting nutrient may constrain plant growth no matter 

how much of other essential parameters are supplied. About a century and more than +100 ppm 

[CO2] later, a global leaf area increase due to increasing atmospheric CO2 being framed in the 

context of “world greening” (Donohue et al. 2013), which describes the increase of satellite sensed 

green biomass cover derived from visual index (VI) satellite observations. These observations 

were traced back to CO2 fertilization effects (Donohue et al. 2013; Zhu et al. 2016) but are critically 

discussed (Keenan et al. 2020) as large fractions are caused by massive human management 

(Chen et al. 2019) or by the increase of vegetation periods in cold regions due to warming (Xu et 

al. 2013; Zhu et al. 2016). Uncertainties arise in vegetation parameterization and methodology 

(Smith et al. 2019; Walther et al. 2016; Yan et al. 2019b) especially in dry environments were 

effects variation of CO2 are thought to be strongest (Smith et al. 2019). 

However, findings supporting the hypothesis that the fertilizing CO2 effect has reached its 

maximum are accumulating (Peñuelas et al. 2017), as other environmental drivers like too high 

temperatures and low water availability emerge limiting. Stress physiology of plants is complex 

and characterized by concurrent networks that may explain the non-uniform response of plants 

to CO2. The stress physiology of plants growing under elevated [CO2] only begins to be revealed 

and is not yet fully implemented in vegetation models (Albrich et al. 2020), though would improve 

the correct interpretation of large scale observations. Hence natural conditions seldom resemble 

optimum conditions and plants are constantly exposed to pathogens and other elicitors, the 

findings of this thesis have to be interpreted as CO2 effects on vegetation should not be 

overestimated and are further constrained by stress severity. Thus, aside from CO2 and water 

limitations, maximum heat dosage could be most limiting for long-term tree performance. 
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7. Appendices 

Table S2.1: Greenhouse facility plan for the temperature control by temperature steps of 3 hours for 

the light phase and 6 hours for the dark phase. Values of each temperature step are derived from field 

measurements at the Yatir forest measurement site (Israel, monthly mean over 10 years 2004 – 2014). 

T [°C] 

hour of day 

Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec 

0-6 8.9 10.1 11.6 14 16.3 18.9 18.7 19.4 18.2 16.4 13 10 

6-9 8.5 10 11.9 15.1 18.8 21.6 20.4 20.6 19.1 17 13.1 9.8 

9-12 11.6 13.3 15.7 18.7 22.5 25.7 24.6 25.2 23.7 21.4 17.2 13.2 

12-15 13.7 15.4 18.1 21.3 25.1 28.7 27.8 28.6 26.7 23.9 19.1 15.1 

15-18 12.6 14.5 17.1 20.3 23.8 27.4 26.7 27.2 24.9 21.8 17.3 13.5 

18-20 10.5 12.1 14.1 17.2 20.4 23.9 23.3 23.6 21.4 18.9 14.9 11.5 

20-0 9.7 10.9 12.5 15.2 18 20.9 20.5 21.1 19.5 17.5 13.9 10.7 



   

B 
 

Table S2.2: Averages (upper table) and Standard error of mean (lower table) of all analyzed metabolites and parameters except of gas 

exchange measurement data. Values of metabolites are in µmol gDW-1, Water potential (WP) is in MPa. Needle water content (NW) and root 

water content (RW) are in [g%]. Status depicts a numerical value for living (1) and dead (0) seedlings. “Part” depicts shoots (N) and roots 

(R). 

Treatment Harvest Part Status NW RW Glucose Fructose Sucrose Cyclitols Citrate Malate Fumarate Nitrate Sulfate Phosphate Proline Starch sNSC CS totalC WP PhiPSII FvFm qP qN ETR -Π

C I N 1 65.2 68.0 29.5 24.9 118.8 346.4 64.4 33.1 29.4 1.3 31.9 35.6 15.1 77.5 292.0 106.1 874.8 -1.1 0.21 0.45 0.46 49.09 112.38 1.73

C II N 1 66.1 66.8 15.4 14.6 72.7 285.7 69.5 44.8 27.7 1.7 37.9 38.3 15.4 33.5 175.5 117.9 647.6 -0.66 0.18 0.46 0.40 1.86 98.01 1.45

C III N 1 63.5 61.9 42.4 40.0 97.7 232.3 50.6 36.0 30.3 2.1 27.1 35.3 11.9 56.9 277.9 94.8 752.4 -0.98 0.21 0.47 0.46 1.84 116.10 1.88

C I R 1 65.2 68.0 5.1 4.9 31.1 187.8 33.3 11.9 18.3 92.5 65.8 33.6 38.1 30.0 72.3 53.4 347.7 NA NA NA NA NA NA 0.88

C II R 1 66.1 66.8 6.9 4.9 39.4 155.8 30.3 14.4 13.4 105.6 61.4 29.9 26.4 20.3 90.6 48.8 318.6 NA NA NA NA NA NA 0.88

C III R 1 63.1 64.2 5.9 4.1 20.2 169.4 24.6 10.2 9.5 128.8 75.9 29.6 2.2 7.8 50.4 37.7 267.1 NA NA NA NA NA NA 1.01

CD I N 1 65.5 67.3 33.3 27.4 109.5 400.4 67.2 37.0 32.6 1.1 39.7 33.0 12.0 83.1 279.8 113.6 949.7 -0.96 0.19 0.45 0.42 1.82 99.72 1.72

CD II N 1 63.8 53.5 42.9 28.9 75.3 123.0 74.6 52.8 29.8 1.6 46.4 52.5 17.0 13.1 222.4 129.7 508.6 -1.45 0.13 0.43 0.31 1.72 69.63 1.54

CD III N 1 63.6 56.9 32.8 29.6 103.6 189.8 47.0 27.6 31.3 1.0 33.6 29.1 10.7 25.6 269.7 86.2 636.8 -1.06 0.18 0.44 0.42 1.78 96.05 1.51

CD I R 1 65.5 67.3 6.3 6.4 34.1 173.9 25.3 12.1 15.9 93.9 56.2 28.7 31.9 32.7 81.0 44.0 334.0 NA NA NA NA NA NA 0.86

CD II R 1 63.8 53.5 5.5 3.1 19.5 104.9 24.7 11.9 7.9 123.1 77.6 35.7 12.3 8.5 47.6 38.0 182.3 NA NA NA NA NA NA 1.48

CD III R 1 63.9 54.6 7.1 5.1 17.4 133.1 28.8 11.1 6.8 105.0 66.7 25.4 1.9 16.9 47.0 40.8 237.8 NA NA NA NA NA NA 1.29

H III N 0 28.8 58.0 55.1 49.8 24.7 315.2 78.4 69.4 34.4 31.9 81.5 75.2 95.0 5.8 154.3 147.6 626.4 NA NA NA NA NA NA 12.43

H III R 0 28.8 58.0 2.2 1.6 0.1 69.8 2.6 1.9 1.4 159.8 48.7 8.7 2.3 0.4 4.1 4.8 79.0 NA NA NA NA NA NA 1.15

H I N 1 65.8 67.3 39.2 24.3 113.5 449.6 65.4 40.8 29.0 1.2 21.0 35.2 12.4 105.6 290.5 112.0 1021.6 -1.05 0.19 0.43 0.44 1.77 102.47 1.80

H II N 1 64.9 61.7 39.9 31.5 54.1 354.1 95.5 67.0 29.0 5.3 55.6 41.7 31.4 12.8 179.6 159.5 667.3 -1.17 0.12 0.43 0.29 1.80 60.65 1.54

H III N 1 63.4 61.9 24.4 22.6 93.5 188.8 75.0 43.2 41.4 1.8 39.9 36.9 31.9 50.0 234.0 131.4 635.6 -1.26 0.21 0.46 0.46 1.78 98.00 1.60

H I R 1 65.8 67.3 7.6 6.9 38.8 124.7 24.0 11.6 17.3 96.7 58.9 25.3 24.7 28.6 92.0 43.2 291.0 NA NA NA NA NA NA 0.80

H II R 1 64.9 61.7 1.8 2.3 7.9 109.7 19.5 6.8 8.8 126.6 58.0 22.5 17.6 3.9 19.7 29.9 164.6 NA NA NA NA NA NA 0.94

H III R 1 63.4 61.9 4.5 3.6 16.3 185.5 20.6 8.1 5.1 133.6 74.1 23.5 1.9 11.3 40.7 29.4 267.0 NA NA NA NA NA NA 1.14

HD II N 0 36.3 24.8 46.6 30.0 84.7 140.5 89.8 44.0 23.4 16.3 78.5 51.9 119.6 2.8 246.1 134.8 556.7 NA NA NA NA NA NA 5.94

HD III N 0 13.6 43.0 49.1 44.4 52.6 334.2 87.6 52.8 22.4 8.0 41.5 54.0 75.7 2.7 198.6 137.7 679.6 NA NA NA NA NA NA 25.40

HD II R 0 36.3 24.8 4.8 2.2 3.0 140.1 16.4 7.0 5.6 161.8 72.4 27.2 3.9 2.4 12.9 24.8 180.7 NA NA NA NA NA NA 5.85

HD III R 0 13.6 43.0 1.0 0.3 0.2 75.5 3.6 1.8 1.9 138.0 66.1 15.2 0.9 0.5 1.8 6.1 83.8 NA NA NA NA NA NA 1.78

HD I N 1 63.4 62.0 64.9 31.1 92.1 370.0 72.9 45.3 26.4 2.5 28.6 33.3 13.5 70.7 280.2 120.7 871.0 -1.08 0.22 0.44 0.50 1.80 116.71 1.81

HD II N 1 61.8 34.1 29.5 22.0 58.4 225.5 100.1 50.7 23.7 7.4 40.1 39.3 32.0 19.9 168.3 149.7 617.0 -1.77 0.04 0.17 0.14 1.30 24.66 1.87

HD III N 1 62.4 47.8 65.6 68.1 108.9 550.5 100.9 60.4 45.9 4.5 24.0 52.3 88.6 15.6 351.4 171.7 1108.3 -1.40 0.13 0.35 0.34 1.77 105.54 2.00

HD I R 1 63.4 62.0 4.8 4.9 21.3 90.1 15.7 5.3 10.5 59.0 35.4 18.1 20.3 16.6 52.3 26.2 186.0 NA NA NA NA NA NA 0.64

HD II R 1 61.8 34.1 0.5 0.4 0.7 36.7 10.3 3.2 3.0 80.9 28.3 18.7 4.4 0.8 2.4 14.5 54.4 NA NA NA NA NA NA 1.43

HD III R 1 62.4 47.8 4.4 3.6 10.0 51.3 17.5 5.4 3.9 164.6 81.3 21.5 2.0 4.6 28.1 23.7 107.7 NA NA NA NA NA NA 1.91

Treatment Harvest Part Status NW RW Glucose Fructose Sucrose Cyclitols Citrate Malate Fumarate Nitrate Sulfate Phosphate Proline Starch sNSC CS totalC WP PhiPSII FvFm qP qN ETR -Π

C I N 1 0.7 2.2 4.8 4.9 7.2 70.2 6.9 2.6 3.8 0.3 6.2 2.1 3.5 17.4 17.0 10.3 83.8 0.1 0.0 0.0 0.0 47.3 11.8 0.08

C II N 1 0.7 1.9 3.5 5.0 21.4 35.1 13.3 5.0 1.4 0.3 8.3 2.9 3.7 10.0 50.0 16.7 40.7 0.0 0.0 0.0 0.0 0.0 5.9 0.07

C III N 1 0.8 2.5 7.0 6.8 4.8 39.2 8.9 4.9 2.6 0.5 3.8 4.5 1.9 13.1 14.7 12.5 70.9 0.1 0.0 0.0 0.1 0.0 9.0 0.07

C I R 1 0.7 2.2 0.5 1.0 2.9 34.3 8.0 2.4 2.3 17.5 13.3 4.0 14.9 9.5 7.0 10.9 43.9 NA NA NA NA NA NA 0.07

C II R 1 0.7 1.9 2.7 2.2 6.9 14.0 5.2 4.5 1.1 18.9 12.6 4.4 3.5 6.8 17.9 7.5 37.8 NA NA NA NA NA NA 0.09

C III R 1 0.7 1.5 1.0 0.6 2.1 19.9 2.8 2.1 1.5 15.1 10.9 2.6 0.2 1.5 5.6 4.5 23.0 NA NA NA NA NA NA 0.08

CD I N 1 0.6 1.9 6.9 6.7 12.8 60.7 9.6 3.6 2.5 0.2 8.1 3.6 2.7 26.1 21.2 12.3 86.5 0.0 0.0 0.0 0.0 0.0 1.9 0.11

CD II N 1 0.8 1.6 13.9 9.1 9.0 51.3 9.3 4.6 2.2 0.4 9.0 8.1 3.7 3.7 39.5 10.5 30.7 0.2 0.0 0.0 0.0 0.0 5.1 0.08

CD III N 1 0.4 2.0 4.4 2.8 10.5 24.5 3.2 2.8 1.7 0.2 3.3 1.0 1.8 11.5 18.0 4.8 25.9 0.1 0.0 0.0 0.0 0.0 3.4 0.05

CD I R 1 0.6 1.9 1.2 1.5 3.9 23.4 2.8 2.6 2.1 13.0 8.3 3.9 2.9 9.8 10.5 4.9 44.8 NA NA NA NA NA NA 0.07

CD II R 1 0.8 1.6 1.8 1.1 4.1 7.2 1.9 1.1 0.9 16.8 11.7 4.3 2.2 1.5 9.2 2.4 27.4 NA NA NA NA NA NA 0.23

CD III R 1 0.5 2.0 0.9 0.5 1.6 13.3 4.9 2.0 1.1 9.3 5.7 2.7 0.4 3.2 4.5 6.7 16.9 NA NA NA NA NA NA 0.07

H III N 0 6.4 4.3 17.6 25.1 6.1 60.6 13.2 9.8 7.3 10.9 19.8 12.7 19.2 1.2 52.3 22.9 26.6 NA NA NA NA NA NA 3.11

H III R 0 6.4 4.3 1.5 1.6 0.1 40.1 2.4 1.6 0.4 31.6 7.3 2.1 2.0 0.0 3.3 3.7 46.8 NA NA NA NA NA NA 0.53

H I N 1 0.3 2.0 4.5 2.8 8.6 47.4 9.2 4.6 0.7 0.2 6.5 4.7 2.4 29.2 20.7 12.0 67.6 0.1 0.0 0.0 0.0 0.0 6.0 0.08

H II N 1 1.0 2.8 8.6 4.6 2.5 77.7 22.5 23.9 6.4 1.1 8.1 9.9 13.6 2.9 13.8 42.1 137.6 0.1 0.0 0.0 0.0 0.1 10.7 0.19

H III N 1 0.6 1.5 4.1 1.1 5.9 28.5 10.4 6.2 2.0 0.3 2.8 1.8 8.2 22.4 12.0 15.0 27.2 0.1 0.0 0.0 0.0 0.1 8.2 0.08

H I R 1 0.3 2.0 1.4 1.1 4.9 22.2 2.2 2.0 4.1 13.0 9.5 2.5 2.4 3.9 11.4 5.5 38.2 NA NA NA NA NA NA 0.06

H II R 1 1.0 2.8 0.3 0.5 1.9 29.7 3.7 2.8 1.5 14.9 11.0 2.4 1.7 1.0 4.5 4.7 34.4 NA NA NA NA NA NA 0.11

H III R 1 0.6 1.5 0.7 0.6 1.7 25.8 3.2 1.7 1.0 10.3 5.8 2.4 0.2 2.9 4.4 4.2 31.4 NA NA NA NA NA NA 0.13

HD II N 0 2.1 3.1 8.3 3.7 20.1 58.6 11.7 7.1 2.3 10.5 20.4 10.0 38.8 0.6 38.8 16.5 69.5 NA NA NA NA NA NA 1.15

HD III N 0 2.6 1.8 14.0 12.7 7.1 110.7 7.1 6.5 2.1 3.1 10.7 6.4 17.2 1.4 31.3 10.4 131.0 NA NA NA NA NA NA 4.70

HD II R 0 2.1 3.1 3.0 1.3 2.3 51.9 3.5 3.3 0.4 14.4 15.2 2.3 1.1 1.2 8.8 5.2 55.1 NA NA NA NA NA NA 1.05

HD III R 0 2.6 1.8 0.1 0.1 0.2 22.7 1.6 0.7 0.4 30.7 10.4 0.7 0.4 0.1 0.4 2.3 24.8 NA NA NA NA NA NA 0.31

HD I N 1 0.7 2.4 29.3 8.9 20.1 26.9 15.5 7.1 1.8 0.7 7.0 3.3 5.1 25.8 62.2 19.1 50.6 0.1 0.0 0.0 0.0 0.0 8.5 0.21

HD II N 1 0.6 3.0 4.2 4.6 9.4 102.8 15.5 6.8 2.1 2.9 3.9 3.9 6.6 13.5 12.5 18.5 110.4 0.1 0.0 0.1 0.1 0.1 13.8 0.12

HD III N 1 1.0 3.3 32.8 32.8 16.1 94.4 36.9 15.5 7.3 2.5 11.0 26.6 51.0 10.8 91.9 51.0 237.8 0.1 0.1 0.1 0.1 0.1 7.3 0.09

HD I R 1 0.7 2.4 0.8 1.0 3.6 19.2 1.5 1.2 2.3 10.6 6.1 2.8 2.0 4.7 8.6 3.2 33.2 NA NA NA NA NA NA 0.08

HD II R 1 0.6 3.0 0.5 0.4 0.7 36.7 4.1 1.4 1.0 29.4 16.4 6.6 1.7 0.2 2.4 5.3 42.8 NA NA NA NA NA NA 0.49

HD III R 1 1.0 3.3 1.1 0.8 4.8 15.6 4.8 1.3 0.3 65.9 17.6 1.2 0.5 3.4 9.0 5.7 15.6 NA NA NA NA NA NA 0.80



 

C 
 

Table S2.3: Linear mixed effect model output that tested for interaction of the treatment group 

(drought, heat, heat-drought) and the experimental time-period (before stress, heat wave 1, heat 

release 1, heat wave 2, heat release 2, wet recovery) against the control. Experimental time-

periods are equivalent to the visually highlighted experimental condition in Fig. 1 (main text). 

Chamber identity and day of year were assigned to random effects. Significance codes are 

depicted as follows: p ≤ 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1. Non-significant differences are 

marked with “n.s.”. 

  

value SE t-statistics significance

(Intercept) 11.95 1.01 11.85 ***

drought 1.34 1.88 0.71 n.s.

heat -0.03 1.49 -0.02 n.s.

heat-drought -1.66 1.88 -0.89 n.s.

heat wave 1 0.81 0.99 0.82 n.s.

heat release 1 -0.28 0.90 -0.31 n.s.

heat wave 2 1.06 0.99 1.07 n.s.

heat release 2 -2.29 0.81 -2.82 **

wet recovery -2.55 0.82 -3.13 **

drought:heat wave 1 -7.98 1.05 -7.59 ***

heat:heat wave 1 -5.26 0.85 -6.19 ***

heat-drought:heat wave 1 -5.63 1.10 -5.14 ***

drought:heat release 1 -9.75 1.06 -9.17 ***

heat :heat release 1 -3.60 0.85 -4.24 ***

heat-drought:heat release 1 -6.04 1.07 -5.66 ***

drought:heat wave 2 -11.38 1.05 -10.86 ***

heat:heat wave 2 -8.02 0.85 -9.41 ***

heat-drought:heat wave 2 -9.48 1.15 -8.27 ***

drought:heat release 2 -8.59 0.91 -9.40 ***

heat:heat release 2 -1.39 0.74 -1.89 .

heat-drought:heat release 2 -5.40 0.95 -5.67 ***

drought:wet recovery -6.97 0.94 -7.44 ***

heat:wet recovery 0.23 0.73 0.32 n.s.

heat-drought:wet recovery -3.67 0.93 -3.96 ***

Assimilation [A net]



 

D 
 

 

value SE t-statistics significance

(Intercept) -0.95 0.18 -5.34 ***

drought -0.03 0.25 -0.10 n.s.

heat 0.07 0.27 0.28 n.s.

heat-drought 1.53 0.40 3.84 **

heat wave 1 -0.12 0.17 -0.70 n.s.

heat release 1 -0.05 0.15 -0.33 n.s.

heat wave 2 -0.01 0.17 -0.07 n.s.

heat release 2 0.04 0.14 0.32 n.s.

wet recovery 0.00 0.11 0.01 n.s.

drought:heat wave 1 0.18 0.23 0.80 n.s.

heat:heat wave 1 -1.11 0.25 -4.46 ***

heat-drought:heat wave 1 -1.91 0.36 -5.32 ***

drought:heat release 1 0.37 0.21 1.75 .

heat :heat release 1 -0.56 0.23 -2.44 *

heat-drought:heat release 1 -1.16 0.34 -3.40 ***

drought:heat wave 2 0.69 0.23 3.00 **

heat:heat wave 2 -0.79 0.25 -3.19 **

heat-drought:heat wave 2 -1.26 0.35 -3.63 ***

drought:heat release 2 0.46 0.19 2.46 *

heat:heat release 2 -0.28 0.20 -1.37 n.s.

heat-drought:heat release 2 -0.98 0.29 -3.44 ***

drought:wet recovery 0.28 0.15 1.81 .

heat:wet recovery -0.18 0.17 -1.09 n.s.

heat-drought:wet recovery -1.02 0.24 -4.22 ***

Respiration [R night]



 

E 
 

 

 

value SE t-statistics significance

(Intercept) 1.71 0.21 8.10 ***

drought 0.22 0.41 0.53 n.s.

heat -0.33 0.33 -1.00 n.s.

heat-drought -0.29 0.41 -0.71 n.s.

heat wave 1 0.35 0.14 2.54 *

heat release 1 0.27 0.13 2.08 *

heat wave 2 0.67 0.14 4.83 ***

heat release 2 -0.06 0.12 -0.51 n.s.

wet recovery 0.01 0.12 0.07 n.s.

drought:heat wave 1 -1.57 0.20 -8.02 ***

heat:heat wave 1 0.91 0.16 5.71 ***

heat-drought:heat wave 1 -0.27 0.20 -1.31 n.s.

drought:heat release 1 -1.81 0.20 -9.10 ***

heat :heat release 1 -0.44 0.16 -2.81 **

heat-drought:heat release 1 -1.19 0.20 -5.99 ***

drought:heat wave 2 -2.21 0.20 -11.31 ***

heat:heat wave 2 0.09 0.16 0.59 n.s.

heat-drought:heat wave 2 -1.52 0.21 -7.09 ***

drought:heat release 2 -1.57 0.17 -9.20 ***

heat:heat release 2 0.00 0.14 0.00 n.s.

heat-drought:heat release 2 -1.01 0.18 -5.69 ***

drought:wet recovery -1.40 0.17 -7.99 ***

heat:wet recovery 0.27 0.14 2.01 *

heat-drought:wet recovery -0.78 0.17 -4.53 ***

Transpiration [E day]



 

F 
 

 

value SE t-statistics significance

(Intercept) 10.92 2.30 4.75 ***

drought 4.88 3.23 1.51 n.s.

heat 0.82 3.49 0.23 n.s.

heat-drought 8.58 5.11 1.68 n.s.

heat wave 1 1.27 1.51 0.84 n.s.

heat release 1 1.41 1.36 1.03 n.s.

heat wave 2 -2.01 1.51 -1.33 n.s.

heat release 2 -1.17 1.23 -0.95 n.s.

wet recovery -1.33 1.01 -1.31 n.s.

drought:heat wave 1 -7.62 2.01 -3.79 ***

heat:heat wave 1 -0.85 2.18 -0.39 n.s.

heat-drought:heat wave 1 -13.70 3.15 -4.35 ***

drought:heat release 1 -10.89 1.83 -5.94 ***

heat :heat release 1 -1.96 1.99 -0.98 n.s.

heat-drought:heat release 1 -16.79 2.98 -5.63 ***

drought:heat wave 2 -8.15 2.01 -4.06 ***

heat:heat wave 2 -2.88 2.18 -1.32 n.s.

heat-drought:heat wave 2 -15.78 3.05 -5.18 ***

drought:heat release 2 -8.62 1.64 -5.27 ***

heat:heat release 2 1.35 1.76 0.76 n.s.

heat-drought:heat release 2 -14.77 2.50 -5.92 ***

drought:wet recovery -4.59 1.34 -3.42 ***

heat:wet recovery -2.56 1.46 -1.75 .

heat-drought:wet recovery -14.83 2.11 -7.02 ***

Stomatal conductance [g s]



 

G 
 

 

  

value SE t-statistics significance

(Intercept) -0.14 0.01 -19.12 ***

drought 0.01 0.01 0.52 n.s.

heat -0.02 0.01 -1.53 n.s.

heat-drought 0.02 0.01 1.13 n.s.

heat wave 1 0.01 0.01 1.25 n.s.

heat release 1 0.00 0.01 0.41 n.s.

heat wave 2 0.00 0.01 -0.52 n.s.

heat release 2 -0.01 0.01 -0.83 n.s.

wet recovery 0.00 0.01 -0.67 n.s.

drought:heat wave 1 -0.08 0.01 -5.55 ***

heat:heat wave 1 0.03 0.01 2.71 **

heat-drought:heat wave 1 -0.02 0.02 -1.43 n.s.

drought:heat release 1 -0.09 0.01 -6.23 ***

heat :heat release 1 -0.02 0.01 -2.03 *

heat-drought:heat release 1 -0.07 0.01 -4.96 ***

drought:heat wave 2 -0.08 0.01 -5.58 ***

heat:heat wave 2 0.03 0.01 2.10 *

heat-drought:heat wave 2 -0.05 0.02 -3.40 ***

drought:heat release 2 -0.08 0.01 -6.24 ***

heat:heat release 2 0.00 0.01 0.02 n.s.

heat-drought:heat release 2 -0.04 0.01 -2.76 **

drought:wet recovery -0.07 0.01 -5.42 ***

heat:wet recovery -0.01 0.01 -1.34 n.s.

heat-drought:wet recovery -0.07 0.01 -5.55 ***

Intrinsic water-use-efficiency [WUEi]



 

H 
 

Table S2.4: Results of Analysis of Variance Analysis (ANOVA) for metabolites and chlorophyll 

fluorescence parameters. Analysis was done to reveal differences between the treatments and 

the control within a sampling period (post-stress, recovery). Significance is given with: 0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ and n.s (not significant). 

 Estimate Std. Error t value Pr(<|t|) Significance 

Part: Needles Period: Stress Metabolite: sNSC 

Intercept 175.487 34.769 5.047 7.16e-05 *** 
Drought 46.922 51.179 0.917 0.371 n.s. 
Heat 4.083 49.171 0.083 0.935 n.s. 
Heat-Drought -7.219 63.480 -0.114 0.911 n.s. 

 Metabolite: Starch 

Intercept 33.513 7.050 4.754 0.000107 *** 
Drought -20.404 10.377 -1.966 0.062639 n.s. 
Heat -20.714 9.654 -2.146 0.043738 * 
Heat-Drought -13.572 11.691 -1.161 0.258720 n.s. 

    Metabolite: CS 

Intercept 117.86 28.35 4.157 0.000446 *** 
Drought 11.87 41.73 0.284 0.778904 n.s. 
Heat 41.60 38.82 1.072 0.296076 n.s. 
Heat-Drought 31.86 47.02 0.678 0.505419 n.s. 

    Metabolite: Cyclitols 

Intercept 285.74 60.42 4.729 0.000128 *** 
Drought -162.77 88.93 -1.830 0.082167 n.s. 
Heat 68.34 85.45 0.800 0.433203 n.s. 
Heat-Drought -60.27 100.19 -0.602 0.554264 n.s. 

    Metabolite: totalC 

Intercept 647.57 93.79 6.904 1.05e-06 *** 
Drought -138.96 138.06 -1.006 0.326 n.s. 
Heat 19.71 128.43 0.153 0.880 n.s. 
Heat-Drought -30.56 171.25 -0.178 0.860 n.s. 

    Metabolite: Nitrate 

Intercept 1.6923 1.0855 1.559 0.13394 n.s. 
Drought -0.1414 1.5978 -0.088 0.93033 n.s. 
Heat 3.6216 1.4864 2.436 0.02382 * 
Heat-Drought 5.7304 1.8001 3.183 0.00447 ** 

    Metabolite: Proline 

Intercept 15.397 8.969 1.717 0.101 n.s. 
Drought 1.572 13.203 0.119 0.906 n.s. 
Heat 16.048 12.282 1.307 0.205 n.s. 
Heat-Drought 16.648 14.874 1.119 0.276 n.s. 

    Parameter: WP 

Intercept -0.6600 0.1478 -4.466 0.000390 *** 
Drought -0.7900 0.2001 -3.948 0.001151 ** 
Heat -0.5067 0.2001 -2.532 0.022186 * 
Heat-Drought -1.1067 0.2413 -4.586 0.000304 *** 

    Parameter: qP 

Intercept 0.40319 0.04961 8.128 3.2e-06 *** 
Drought -0.08941 0.07015 -1.275 0.22660 n.s. 
Heat -0.11655 0.07015 -1.661 0.12253 n.s. 
Heat-Drought -0.25835 0.07015 -3.683 0.00313 ** 

    Parameter: ETR 

Intercept 98.010 9.913 9.887 1.07e-07 *** 
Drought -28.384 13.299 -2.134 0.050986 * 
Heat -37.362 13.299 -2.809 0.013921 * 
Heat-Drought -73.353 14.018 -5.233 0.000127 *** 

    Parameter: PhiPSII 

Intercept 0.18484 0.02091 8.840 1.33e-06 *** 



 

I 
 

Drought -0.05043 0.02957 -1.705 0.1138 n.s. 
Heat -0.06021 0.02957 -2.036 0.0644 n.s. 
Heat-Drought -0.14334 0.02957 -4.847 0.0004 *** 

    Parameter: Fv`/Fm` 

Intercept 0.45935 0.04173 11.008 1.26e-07 *** 
Drought -0.03290 0.05901 -0.558 0.587414 n.s. 
Heat -0.03210 0.05901 -0.544 0.596490 n.s. 
Heat-Drought -0.28669 0.05901 -4.858 0.000393 *** 

    Parameter: -Π 

Intercept 1.45354 0.12355   11.765 1.36e-09 *** 
Drought 0.08364 0.17472    0.479    0.6383 n.s. 
Heat 0.08677 0.17472    0.497    0.6258 n.s. 
Heat-Drought 0.41590 0.21399    1.944    0.0687 n.s 

      

Part: Needles Period: Post-Stress Metabolite: sNSC 

Intercept 277.863 22.147 12.546 1.55e-12 *** 
Drought -8.204 29.713 -0.276 0.7847 n.s. 
Heat -43.866 30.438 -1.441 0.1615 n.s. 
Heat-Drought 73.586 42.408 1.735 0.0946 n.s. 

    Metabolite: Starch 

Intercept 56.949 15.135 3.763 0.000791 *** 
Drought -31.380 21.404 -1.466 0.153760 n.s. 
Heat -6.979 21.990 -0.317 0.753326 n.s. 
Heat-Drought -41.303 31.506 -1.311 0.200519 n.s. 

    Metabolite: CS 

Intercept 94.782 13.090 7.241 6.99e-08 *** 
Drought -8.544 18.513 -0.462 0.64799 n.s. 
Heat 36.582 19.020 1.923 0.06466 n.s. 
Heat-Drought 76.944 27.250 2.824 0.00865 ** 

    Metabolite: Cyclitols 

Intercept 232.31 33.00 7.041 1.17e-07 *** 
Drought -42.49 46.66 -0.911 0.370 n.s. 
Heat -43.55 47.94 -0.908 0.371 n.s. 
Heat-Drought 318.21 68.69 4.633 7.57e-05 *** 

    Metabolite: totalC 

Intercept 752.42 59.40 12.666 1.25e-12 *** 
Drought -115.61 79.70 -1.451 0.1589 n.s. 
Heat -116.82 81.64 -1.431 0.1644 n.s. 
Heat-Drought 355.85 113.75 3.128 0.0043 ** 

    Metabolite: Nitrate 

Intercept 2.0951 0.5173 4.050 0.000388 *** 
Drought -1.0836 0.7131 -1.520 0.140219 n.s. 
Heat -0.2633 0.7316 -0.360 0.721739 n.s. 
Heat-Drought 2.4061 1.0346 2.326 0.027802 * 

    Metabolite: Proline 

Intercept 11.950 8.673 1.378 0.179191 n.s. 
Drought -1.244 12.266 -0.101 0.919970 n.s. 
Heat 19.962 12.602 1.584 0.124418 n.s. 
Heat-Drought 76.689 18.055 4.248 0.000216 *** 

    Parameter: WP 

Intercept -0.9800 0.1002 -9.785 2.31e-07 *** 
Drought -0.0800 0.1416 -0.565 0.5818 n.s. 
Heat -0.2800 0.1416 -1.977 0.0697 n.s. 
Heat-Drought -0.4200 0.1874 -2.242 0.0431 * 

    Parameter: qP 

Intercept 0.460310 0.0567840 8.106 5.76e-06 *** 
Drought -0.04475 0.08030 -0.557 0.588 n.s. 
Heat 0.000849 0.0803047 0.011 0.992 n.s. 
Heat-Drought -0.12076 0.0867390 -1.392 0.191 n.s. 

    Parameter: ETR 



 

J 
 

Intercept 116.097 7.807 14.872 1.27e-12 *** 
Drought -20.049 11.491 -1.745 0.0957 n.s. 
Heat -18.102 10.409 -1.739 0.0967 n.s. 
Heat-Drought -10.557 14.253 -0.741 0.4671 n.s. 

    Parameter: PhiPSII 

Intercept 0.214833 0.027599 7.784 8.47e-06 *** 
Drought -0.03192 0.039031 -0.818 0.4308 n.s. 
Heat -0.00485 0.039031 -0.124 0.9033 n.s. 
Heat-Drought -0.08084 0.042159 -1.918 0.0815 n.s. 

    Parameter: Fv`/Fm` 

Intercept 0.46536 0.02735 17.014 3.01e-09 *** 
Drought -0.02417 0.03868 -0.625 0.5448 n.s. 
Heat -0.01024 0.03868 -0.265 0.7960 n.s. 
Heat-Drought -0.11225 0.04178 -2.687 0.0212 * 

    Parameter: -Π 

Intercept 1.88320  0.08254   22.817 3.44e-14 *** 
Drought -0.36916 0.09920   -3.722    0.0017 ** 
Heat -0.2804 0.10655   -2.632    0.0175 * 
Heat-Drought 0.11664 0.14296    0.816    0.4258 n.s. 

      

Part: Roots Period: Stress Metabolite: sNSC 

Intercept 90.57 10.82 8.371 3.95e-08 *** 
Drought -42.95 15.93 -2.697 0.013497 * 
Heat -70.83 14.82 -4.781 0.000101 *** 
Heat-Drought -88.22 17.94 -4.917 7.30e-05 *** 

    Metabolite: Starch 

Intercept 20.279 3.752 5.404 2.32e-05 *** 
Drought -11.739 5.523 -2.125 0.04559 * 
Heat -16.415 5.138 -3.195 0.00436 ** 
Heat-Drought -19.526 6.223 -3.138 0.00497 ** 

    Metabolite: CS 

Intercept 48.838 5.293 9.228 7.77e-09 *** 
Drought -10.878 7.791 -1.396 0.177230 n.s. 
Heat -18.978 7.247 -2.619 0.016049 * 
Heat-Drought -34.346 8.777 -3.913 0.000799 *** 

    Metabolite: Cyclitols 

Intercept 155.83 23.14 6.735 1.49e-06 *** 
Drought -50.98 35.84 -1.422 0.17034 n.s. 
Heat -46.12 31.68 -1.456 0.16100 n.s. 
Heat-Drought -119.14 38.37 -3.105 0.00558 ** 

    Metabolite: totalC 

Intercept 318.64 34.07 9.353 6.17e-09 *** 
Drought -136.36 50.15 -2.719 0.012857 * 
Heat -154.02 46.65 -3.301 0.003398 ** 
Heat-Drought -264.20 56.50 -4.676 0.000129 *** 

    Metabolite: Nitrate 

Intercept 105.64 17.76 5.948 6.65e-06 *** 
Drought 17.50 26.14 0.669 0.511 n.s. 
Heat 20.95 24.32 0.861 0.399 n.s. 
Heat-Drought -24.75 29.45 -0.840 0.410 n.s. 

    Metabolite: Proline 

Intercept 26.419 2.392 11.047 3.30e-10 *** 
Drought -14.141 3.520 -4.017 0.000624 *** 
Heat -8.785 3.275 -2.683 0.013938 * 
Heat-Drought -22.010 3.966 -5.550 1.66e-05 *** 

    Parameter: -Π 

Intercept 0.87905  0.19369    4.539 0.000179 *** 
Drought 0.60329  0.28510    2.116 0.046454 * 
Heat 0.06231  0.26522    0.235 0.816521 n.s. 
Heat-Drought 0.55576  0.32119    1.730 0.098250 n.s. 
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Part: Roots Period: Post-Stress Metabolite: sNSC 

Intercept 50.441 4.848 10.405 3.98e-11 *** 
Drought -3.414 6.856 -0.498 0.6224 n.s. 
Heat -9.716 7.044 -1.379 0.1787 n.s. 
Heat-Drought -22.330 10.091 -2.213 0.0352 * 

    Metabolite: Starch 

Intercept 7.809 2.537 3.078 0.00463 ** 
Drought 9.101 3.588 2.536 0.01706 * 
Heat 3.496 3.687 0.948 0.35110 n.s. 
Heat-Drought -3.208 5.282 -0.607 0.54855 n.s. 

    Metabolite: CS 

Intercept 37.737 5.133 7.352 5.25e-08 *** 
Drought 3.021 7.259 0.416 0.680 n.s. 
Heat -8.290 7.458 -1.112 0.276 n.s. 
Heat-Drought -14.062 10.684 -1.316 0.19 n.s. 

    Metabolite: Cyclitols 

Intercept 169.36 18.97 8.930 1.1e-09 *** 
Drought -36.30 26.82 -1.353 0.18678 n.s. 
Heat 16.12 27.56 0.585 0.56327 n.s. 
Heat-Drought -118.10 39.48 -2.991 0.00574 ** 

    Metabolite: totalC 

Intercept 267.1153 22.7984 11.716 2.61e-12 *** 
Drought -29.3553 32.2418 -0.910 0.37034 n.s. 
Heat -0.1547 33.1253 -0.005 0.99631 n.s. 
Heat-Drought -159.462 47.4586 -3.360 0.00226 ** 

    Metabolite: Nitrate 

Intercept 128.835 14.895 8.650 2.14e-09 *** 
Drought -23.8135 21.064 -1.130 0.268 n.s. 
Heat 4.743 21.641 0.219 0.828 n.s. 
Heat-Drought 35.778 31.005 1.154 0.258 n.s. 

    Metabolite: Proline 

Intercept 2.2307 0.2844 7.843 1.53e-08 *** 
Drought -0.3072 0.4022 -0.764 0.451 n.s. 
Heat -0.3189 0.4132 -0.772 0.447 n.s. 
Heat-Drought -0.2175 0.5921 -0.367 0.716 n.s. 

    Parameter: -Π 

Intercept 1.0134   0.1486    6.821 2.07e-07 *** 
Drought 0.2765   0.2101    1.316     0.199 n.s. 
Heat 0.1277   0.2159    0.591     0.559 n.s. 
Heat-Drought 0.9002   0.3093    2.911     0.007 ** 
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Table S2.5: Results of multiple comparison test (Tukey HSD) calculated from ANOVA tables that 

yielded significant treatment effects. Listed below are the extracted adjusted p ≤ 0.05 for all groups 

within a “Harvest”. “Part” depicts plant organ (Shoot = N, Root =R), “Harvest” depicts period (II = 

post-stress, III = recovery). 

Treatment Part Harvest Metabolite p adj 

     

HD-C N II Nitrate 0.0214659 

HD-CD N II Nitrate 0.0222330 

CD-C N II WP 0.0056924 

HD-C N II WP 0.0015601 

HD-C N II qP 0.0143740 

H-C N II ETR 0.0596938 

HD-C N II ETR 0.0006491 

HD-CD N II ETR 0.0206220 

HD-C N II PhiPSII 0.0019557 

HD-CD N II PhiPSII 0.0370529 

HD-C N II Fv`/Fm’ 0.0019203 

HD-CD N II Fv`/Fm’ 0.0049181 

HD-H N II Fv`/Fm’ 0.0048043 

H-C R II sNSC 0.0005420 

HD-C R II sNSC 0.0003950 

H-C R II Starch 0.0209324 

HD-C R II Starch 0.0237123 

HD-C R II CS 0.0041108 

HD-C R II Cyclitols 0.0263386 

CD-C R II totalC 0.0575419 

H-C R II totalC 0.0165367 

HD-C R II totalC 0.0006926 

CD-C R II Proline 0.0032292 

HD-C R II Proline 0.0000913 

HD-H R II Proline 0.0128814 

HD-H N III sNSC 0.0429869 

HD-C N III CS 0.0406311 

HD-CD N III CS 0.0196521 

HD-C N III Cyclitols 0.0004180 

HD-CD N III Cyclitols 0.0000787 

HD-H N III Cyclitols 0.0000903 

HD-C N III totalC 0.0210000 
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HD-CD N III totalC 0.0012667 

HD-H N III totalC 0.0014140 

HD-CD N III Nitrate 0.0102790 

HD-C N III Proline 0.0011698 

HD-CD N III Proline 0.0009742 

HD-H N III Proline 0.0213430 

HD-CD N III -Π 0.0076173 

HD-H N III -Π 0.0407579 

HD-C R III Cyclitols 0.0277008 

HD-H R III Cyclitols 0.0115458 

HD-C R III totalC 0.0114547 

HD-CD R III totalC 0.0487846 

HD-H R III totalC 0.0128068 

HD-C R III -Π 0.0333670 
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Figure S2.1: Visual verification of living 

(A, B) and dead (C, D) seedlings. 

Pictures where taken during the 

harvesting periods (pre-stress, stress 

and recovery). Due to unfavorable light 

conditions we applied automated white 

correction and automated color 

correction. 

 

 

 

 

 

Figure S2.2: Percent of shoot water 

content depicted per treatment. Water 

content is given as percentage of fresh 

weight (FW). Seedlings were considered 

dead if the shoot water content declined 

below 55%. 
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Figure S2.3: Stem diameter increment increase of Pinus halepensis seedlings subjected to either 

control (black hollow squares), drought (blue hollow circles), heat (red squares) or heat-drought 

(green triangle). The two heat waves are depicted by the grey areas. The drought phase is 

indicated by grey vertical dotted lines. The error bars are ±1 SE (n=3). 

  



 

P 
 

 

Figure S2.4: Relationships between proline accumulation in µmol gDW-1 and peak area change 

of Cl-1 signal per gDW. Values are means of harvesting period (pre-stress, stress, recovery) and 

treatment (control, drought, heat, heat-drought) with ±1SE. Values represent all samples per 

group without division in living or dead seedlings. We used Cl-1 peak area because we did not 

quantify this ion with standard rows.  
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Table S3.1 Shown are daily intervals of environmental control parameters of the glasshouse 

facility. Values depict Monthly averages ±1SE of half hourly data during the cultivation of the P. 

halepensis seedlings 

Interval Temperature Relative humidity Photos. active radiation 

Hour of 
day 

Month Year 
[°C] [%] µmol m-2s-1 

0-6 7 2015 17.8 ± 1.3 74.8 ± 3.6 46.6 ± 122.4 

6-9 7 2015 22.5 ± 1.3 60.3 ± 5.2 710.1 ± 359.3 

9-12 7 2015 24.4 ± 0.9 50.9 ± 2.3 1044.8 ± 353.1 

12-15 7 2015 23.9 ± 1.2 54.5 ± 6.4 834 ± 478.2 

15-18 7 2015 21.9 ± 1.2 64.6 ± 6.4 385.3 ± 324.9 

18-21 7 2015 19.5 ± 1.4 73.1 ± 5.1 8.1 ± 57.6 

21-0 7 2015 17.9 ± 1.4 75.3 ± 4.1 0 ± 0.6 

0-6 8 2015 16.3 ± 2.1 74.7 ± 3.9 14.3 ± 77.8 

6-9 8 2015 22 ± 2.6 60.9 ± 9.7 658.3 ± 586.9 

9-12 8 2015 25.1 ± 1.4 48.3 ± 7.1 975.8 ± 319.7 

12-15 8 2015 25.7 ± 1.9 48.9 ± 6.4 925.8 ± 611.2 

15-18 8 2015 23 ± 1.8 59.2 ± 5.9 299 ± 208.4 

18-21 8 2015 19.5 ± 1.8 72 ± 6 0 ± 19 

21-0 8 2015 17.4 ± 1.8 74.1 ± 4.7 0 ± 0.9 

0-6 9 2015 14.8 ± 2.6 68.1 ± 5.3 0 ± 37.6 

6-9 9 2015 19.9 ± 3.4 58.5 ± 9.9 621.6 ± 546.6 

9-12 9 2015 24.6 ± 3.1 45.5 ± 8.2 935 ± 651.5 

12-15 9 2015 24.8 ± 2.7 44.3 ± 5.6 910.7 ± 603.8 

15-18 9 2015 20.5 ± 2.7 57 ± 7.3 184.5 ± 255.2 

18-21 9 2015 16.2 ± 1.3 68.2 ± 5.3 0 ± 0.9 

21-0 9 2015 15 ± 1.7 68.6 ± 4.4 0 ± 1.1 

0-6 10 2015 16.6 ± 0.5 61.9 ± 4.6 0 ± 11.6 

6-9 10 2015 19.8 ± 2.2 55.9 ± 7.6 316.9 ± 238.4 

9-12 10 2015 22.9 ± 2.6 47.2 ± 7.3 660.5 ± 245.6 

12-15 10 2015 21.7 ± 2 52.4 ± 5 728.1 ± 576.8 

15-18 10 2015 18.6 ± 1.2 62.7 ± 4.2 55.9 ± 114.9 
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18-21 10 2015 16.3 ± 0.3 64.1 ± 4.7 0 ± 0.1 

21-0 10 2015 15.8 ± 0.1 63.9 ± 4.9 0 ± 0.3 

0-6 11 2015 13.7 ± 1.2 58 ± 4.5 0 ± 2.1 

6-9 11 2015 16.3 ± 1.8 49.9 ± 8.9 140 ± 225 

9-12 11 2015 19.8 ± 2.6 38.8 ± 8.1 501.7 ± 250.2 

12-15 11 2015 20.4 ± 2.3 39.3 ± 10.3 331.1 ± 231.3 

15-18 11 2015 18.4 ± 1.5 49.2 ± 10.8 0 ± 27.2 

18-21 11 2015 15.2 ± 1.4 57.1 ± 6.4 0 ± 0 

21-0 11 2015 13.9 ± 1.3 57.9 ± 4.9 0 ± 0.4 

0-6 12 2015 12.5 ± 0.6 50.7 ± 3 0 ± 2.5 

6-9 12 2015 15.8 ± 1.2 39.5 ± 4.3 56.2 ± 63.9 

9-12 12 2015 18.2 ± 1.9 34.9 ± 8.6 292.3 ± 150.8 

12-15 12 2015 19.6 ± 1.4 33.5 ± 7.8 190.7 ± 111.8 

15-18 12 2015 18.4 ± 1 38.4 ± 4.7 0 ± 15.7 

18-21 12 2015 13.1 ± 0.8 46.9 ± 6.3 0 ± 0 

21-0 12 2015 12 ± 0.2 47.8 ± 6.3 0 ± 0.2 

0-6 1 2016 9.9 ± 1.8 54 ± 4.7 0 ± 2.1 

6-9 1 2016 13.1 ± 1.9 48 ± 6.8 76 ± 111.3 

9-12 1 2016 17.3 ± 3.1 43.6 ± 10.7 443.2 ± 274.3 

12-15 1 2016 18.1 ± 3.8 44.2 ± 11.9 332.6 ± 246.1 

15-18 1 2016 15 ± 2.4 50 ± 7.7 2.6 ± 40.5 

18-21 1 2016 11.4 ± 1.3 53.1 ± 6.9 0 ± 1.1 

21-0 1 2016 10.2 ± 1.4 53 ± 6.3 0 ± 1.1 

0-6 2 2016 8.9 ± 1.5 55.2 ± 5.1 0 ± 1.6 

6-9 2 2016 13.4 ± 2.8 50.8 ± 5.6 158.5 ± 160.1 

9-12 2 2016 19 ± 3.7 40.9 ± 11.1 585.2 ± 240.5 

12-15 2 2016 19.8 ± 4.9 37.1 ± 12.4 414.7 ± 170.7 

15-18 2 2016 14.9 ± 2.6 47.9 ± 8.1 52.2 ± 104 

18-21 2 2016 10.6 ± 1.7 52.2 ± 5.8 0 ± 0.8 

21-0 2 2016 9.1 ± 1.3 53.9 ± 5.1 0 ± 0.8 
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Table S3.2: List of all TD-GC-MS quantified endogenous terpenoids from biomass samples of 

only surviving seedlings at the end of the second heatwave (n=6 per treatment, Control, Heat). 

Monoterpenes and Sesquiterpenes were summarized in MT_sum and SQT_sum. Values are 

averages ± 1SE. These data were used to generate Fig 5 in the main document. 

Component Control Heat 

Monoterpene [µmol gDW-1] 

Tricyclene 0.87 ± 0.04 0.84 ± 0.07 

a-Pinen 47.26 ± 2.50 44.14 ± 3.12 

Camphene 0.33 ± 0.01 0.31 ± 0.02 

Sabinen 0.94 ± 0.21 0.76 ± 0.15 

b-Pinen 2.42 ± 0.54 3.23 ± 0.87 

Myrcen 2.39 ± 0.70 1.98 ± 0.70 

d-3-carene 26.80 ± 5.80 28.62 ± 4.50 

Limonen 1.88 ± 0.21 2.10 ± 0.09 

b-Phellandren 1.65 ± 0.05 1.71 ± 0.12 

g-Terpinene 0.34 ± 0.07 0.33 ± 0.06 

a-Terpinolene 3.19 ± 0.70 2.94 ± 0.53 

allo-Ocimene 0.07 ± 0.01 0.03 ± 0.01 

Bornylacetate 0.98 ± 0.19 0.49 ± 0.26 

03_Geranylacetate 0.25 ± 0.05 0.22 ± 0.10 

Sesquiterpene [µmol gDW-1] 

02_SQT 0.01 ± 0.00 0.02 ± 0.01 

01_d-Elemene 0.19 ± 0.04 0.11 ± 0.04 

02_b-Elemene 0.76 ± 0.20 1.23 ± 0.16 

03_b-Cubebene 0.88 ± 0.19 1.06 ± 3.15 

Caryophyllene+SQT 40.72 ± 5.46 60.77 ± 4.56 

05+06_b-
Cubebene+ trans-b-
Farnesene_S 

1.03 ± 0.19 0.85 ± 0.12 

03_SQT 0.16 ± 0.06 0.59 ± 0.13 

07_e-Muurolene 0.33 ± 0.07 0.26 ± 0.05 

a-Humulene 7.10 ± 0.96 10.96 ± 0.87 

04_SQT 1.14 ± 0.26 0.77 ± 0.18 

09_a-Muurolene 7.58 ± 1.08 7.72 ± 0.83 

05_SQT 0.36 ± 0.06 0.24 ± 0.05 

11_cis-alpha-
Bisabolene 

0.18 ± 0.02 0.33 ± 0.03 

01_Elemol 3.09 ± 0.74 2.78 ± 0.42 

MT_sum 95.68 ± 6.68 86.76 ± 5.88 

SQT_sum 71.52 ± 5.96 85.59 ± 7.67 
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Table S3.3: Shown are Transpiration E, net photosynthesis Anet and stomatal conductance gs for 

the different treatments control (C), drought (D), heat (H), heat-drought (HD) and seedlings that 

died (dead) during the heatwave experiment. Values are experimental phase averages of daily 

averages per seedling (nC=4, nD=4, nH=3, nHD=1, ndead=4) with ±1SE given. 

Experimental 
Phase 

Treatment Status 
E Anet gs 

mmol m-2s-1 µmol m-2s-1 mmol m-2s-1 

Reference  dead 1.03 ± 0.02 8.88 ± 0.18 53.0 ± 1.2 

Heatwave 1  dead 0.95 ± 0.08 3.62 ± 0.77 23.2 ± 3.8 

Recovery  dead 0.17 ± 0.02 0.91 ± 0.18 6.2 ± 0.9 

Heatwave2  dead 0.11 ± 0.02 -0.09 ± 0.09 1.5 ± 0.3 

Recovery  dead 0.03 ± 0.01 0.10 ± 0.06 1.1 ± 0.2 

Rewetting  dead 0.02 ± 0.00 -0.04 ± 0.01 0.6 ± 0.1 

Reference C alive 1.50 ± 0.06 10.63 ± 0.34 75.5 ± 3.7 

Heatwave 1 C alive 1.83 ± 0.13 11.32 ± 0.77 80.4 ± 8.0 

Recovery C alive 1.75 ± 0.12 10.39 ± 0.64 73.8 ± 6.3 

Heatwave2 C alive 2.01 ± 0.19 10.93 ± 1.10 72.3 ± 8.8 

Recovery C alive 1.41 ± 0.10 8.19 ± 0.55 55.1 ± 5.0 

Rewetting C alive 1.41 ± 0.08 7.80 ± 0.39 51.7 ± 3.4 

Reference D alive 1.68 ± 0.08 10.99 ± 0.45 77.2 ± 3.4 

Heatwave 1 D alive 1.25 ± 0.19 8.08 ± 1.05 47.6 ± 6.9 

Recovery D alive 0.83 ± 0.11 5.70 ± 0.74 30.2 ± 4.5 

Heatwave2 D alive 0.86 ± 0.16 5.18 ± 0.92 25.6 ± 4.8 

Recovery D alive 0.80 ± 0.10 5.09 ± 0.61 26.1 ± 3.3 

Rewetting D alive 1.38 ± 0.14 7.36 ± 0.56 45.9 ± 4.3 

Reference H alive 1.33 ± 0.07 11.31 ± 0.58 70.8 ± 3.0 

Heatwave 1 H alive 2.51 ± 0.35 7.01 ± 1.25 52.0 ± 6.3 

Recovery H alive 1.08 ± 0.16 7.14 ± 0.87 41.8 ± 5.7 

Heatwave2 H alive 2.05 ± 0.32 4.28 ± 0.65 29.7 ± 4.4 

Recovery H alive 1.06 ± 0.16 6.42 ± 0.94 38.6 ± 6.1 

Rewetting H alive 1.30 ± 0.13 7.58 ± 0.74 43.2 ± 4.5 

Reference HD alive 1.47 ± 0.07 10.61 ± 0.38 80.9 ± 3.7 

Heatwave 1 HD alive 1.56 ± 0.23 5.70 ± 2.14 38.1 ± 13.0 

Recovery HD alive 0.48 ± 0.03 3.98 ± 0.43 20.6 ± 2.8 

Heatwave2 HD alive 0.50 ± 0.05 1.50 ± 0.21 7.9 ± 0.7 

Recovery HD alive 0.34 ± 0.05 2.56 ± 0.38 11.4 ± 1.8 

Rewetting HD alive 0.66 ± 0.04 4.40 ± 0.17 21.6 ± 1.0 
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Table S3.4: Shown are all continuously analyzed BVOCs for the different treatments control (C), 

drought (D), heat (H), heat-drought (HD) and seedlings that died (dead) during the heatwave 

experiment. Values are Experimental Phase averages of daily averages per seedling (nC=4, nD=4, 

nH=3, nHD=1, ndead=4) with ±1SE given. 

Experimental 
Phase 

Treat Status 
m33 m45 m59 m99 m137 m153 

nmol m-2s-1 nmol m-2s-1 nmol m-2s-1 nmol m-2s-1 nmol m-2s-1 nmol m-2s-1 

Reference   dead 0.25 ± 0.02 0.03 ± 0.01 1.30 ± 0.07 0.010 ± 0.001 0.47 ± 0.07 0.003 ± 0.000 

Heatwave 1   dead 0.99 ± 0.24 0.06 ± 0.01 1.24 ± 0.18 0.025 ± 0.004 3.71 ± 1.13 0.012 ± 0.002 

Recovery   dead 0.88 ± 0.24 0.01 ± 0.00 0.98 ± 0.17 0.010 ± 0.002 1.57 ± 0.29 0.003 ± 0.001 

Heatwave2   dead 4.39 ± 1.24 0.38 ± 0.15 1.41 ± 0.40 0.045 ± 0.013 8.32 ± 2.93 0.022 ± 0.008 

Recovery   dead 0.36 ± 0.07 0.13 ± 0.02 0.39 ± 0.06 0.009 ± 0.002 0.98 ± 0.16 0.003 ± 0.001 

Rewetting   dead 0.39 ± 0.06 0.19 ± 0.03 0.36 ± 0.04 0.010 ± 0.001 0.74 ± 0.16 0.002 ± 0.001 

Reference C alive 0.41 ± 0.02 0.04 ± 0.00 1.41 ± 0.11 0.014 ± 0.002 0.41 ± 0.06 0.003 ± 0.000 

Heatwave 1 C alive 0.58 ± 0.05 0.05 ± 0.01 1.89 ± 0.27 0.020 ± 0.002 0.38 ± 0.06 0.005 ± 0.001 

Recovery C alive 0.58 ± 0.05 0.04 ± 0.01 1.51 ± 0.21 0.017 ± 0.002 0.31 ± 0.05 0.005 ± 0.001 

Heatwave2 C alive 0.81 ± 0.07 0.07 ± 0.01 1.56 ± 0.34 0.025 ± 0.003 0.49 ± 0.07 0.006 ± 0.001 

Recovery C alive 0.55 ± 0.05 0.05 ± 0.01 1.27 ± 0.17 0.012 ± 0.001 0.39 ± 0.08 0.005 ± 0.001 

Rewetting C alive 0.56 ± 0.04 0.06 ± 0.01 1.27 ± 0.15 0.017 ± 0.001 0.71 ± 0.08 0.006 ± 0.001 

Reference D alive 0.48 ± 0.03 0.04 ± 0.00 1.83 ± 0.16 0.019 ± 0.002 0.70 ± 0.12 0.004 ± 0.000 

Heatwave 1 D alive 0.47 ± 0.08 0.04 ± 0.01 1.47 ± 0.22 0.016 ± 0.004 0.58 ± 0.08 0.003 ± 0.000 

Recovery D alive 0.27 ± 0.05 0.03 ± 0.01 0.49 ± 0.07 0.011 ± 0.004 0.27 ± 0.04 0.003 ± 0.000 

Heatwave2 D alive 0.37 ± 0.10 0.05 ± 0.02 0.41 ± 0.09 0.011 ± 0.003 0.32 ± 0.06 0.002 ± 0.000 

Recovery D alive 0.27 ± 0.04 0.04 ± 0.01 0.45 ± 0.08 0.007 ± 0.002 0.23 ± 0.04 0.003 ± 0.001 

Rewetting D alive 0.53 ± 0.06 0.03 ± 0.00 1.01 ± 0.10 0.010 ± 0.002 0.42 ± 0.04 0.006 ± 0.001 

Reference H alive 0.29 ± 0.02 0.03 ± 0.01 1.61 ± 0.15 0.012 ± 0.002 1.28 ± 0.17 0.004 ± 0.001 

Heatwave 1 H alive 1.56 ± 0.41 0.10 ± 0.03 2.27 ± 0.37 0.028 ± 0.009 4.33 ± 1.16 0.019 ± 0.005 

Recovery H alive 0.43 ± 0.08 0.01 ± 0.01 0.87 ± 0.18 0.013 ± 0.003 1.01 ± 0.24 0.002 ± 0.000 

Heatwave2 H alive 1.63 ± 0.28 0.13 ± 0.04 1.50 ± 0.28 0.031 ± 0.008 2.35 ± 0.46 0.013 ± 0.003 

Recovery H alive 0.33 ± 0.04 0.03 ± 0.01 1.23 ± 0.17 0.006 ± 0.001 0.31 ± 0.04 0.002 ± 0.000 

Rewetting H alive 0.35 ± 0.04 0.03 ± 0.01 1.65 ± 0.17 0.008 ± 0.002 0.53 ± 0.06 0.002 ± 0.000 

Reference HD alive 0.33 ± 0.02 0.01 ± 0.01 1.07 ± 0.06 0.007 ± 0.003 1.03 ± 0.12 0.004 ± 0.001 

Heatwave 1 HD alive 0.93 ± 0.25 0.05 ± 0.01 1.62 ± 0.34 0.023 ± 0.006 4.32 ± 1.00 0.013 ± 0.003 

Recovery HD alive 0.15 ± 0.06 -0.02 ± 0.01 0.27 ± 0.03 
-

0.001 
± 0.005 0.39 ± 0.06 0.000 ± 0.001 

Heatwave2 HD alive 0.93 ± 0.57 0.15 ± 0.17 0.55 ± 0.06 0.031 ± 0.025 1.14 ± 0.16 0.001 ± 0.001 

Recovery HD alive 0.08 ± 0.01 0.01 ± 0.01 0.20 ± 0.04 0.002 ± 0.004 0.07 ± 0.01 0.000 ± 0.000 

Rewetting HD alive 0.21 ± 0.03 0.01 ± 0.01 0.68 ± 0.06 0.000 ± 0.003 0.20 ± 0.04 0.001 ± 0.000 
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Table S3.5 Shoot biomass, leaf area (half-sided) and monoterpene (MT) pools and emissions 

from the surviving heat-treated (H, HD) and control (C) seedlings measured in the gas exchange 

chambers. Cumulative MT emissions are shown from the first day of heatwave 1 to the last day 

of heatwave 2. Endogenous MT pools were scaled to the seedling-level using the median of the 

MT pool per heat and control treatment multiplied by the biomass per seedlings. Note that 

seedlings in the cuvettes and seedlings analyzed for MT pools were not the same because whole 

seedlings where sampled – Biomass of the cuvette seedlings (shoot [g]) was taken at the end of 

the experiment. 

Treatment Cuvette 
num. 

Shoot  
[g] 

MT pool 
[mg] 

MT Emission 
[mg] 

Emission % 
from total pool 

H 8 16.02 189 34.18 18.1 
H 11 9.65 114 25.72 22.5 
H 16 17.53 207 35.94 17.4 
HD 12 6.51 80 16.67 20.8 
C 2 21.79 284 13.78 4.9 
C 5 13.58 177 10.01 5.6 
C 10 9.05 118 2.13 1.8 
C 13 8.61 112 4.72 4.2 
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Figure S3.1: Overview of the environmental drivers during the heatwave experiment. Shown are 

air temperature (a) and photosynthetic active radiation PAR (b) of the heat (red) and non-heat 

(blue) treatments. Relative substrate water content rSWC (c) is shown for control (blue), drought 

(green), heat (magenta) and heat-drought (red) with n=10 per treatment. Data are shown as daily 

averages and standard deviation (±1SD) for (a, c) and for the 16 hours light period in (b). This is 

a modified figure previously published in (Birami et al. 2018). 
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Figure S3.2: Experimental setup together with a gas exchange cuvette placement example (a), 

and example photographs, which were taken from seedlings to derive their projected leaf area 

(b). Red squares are 1 cm² each to calibrate for the estimated needle area. Area was estimated 

using the software ImageJ, color threshold was adjusted with method “RemyiEntropy”, RED, HSB, 

Hue:60/113, Saturation:40/255, Brightness: 35/130.  
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Figure S3.3: Differences in temperature responses of Transpiration (E, a)) and vapor pressure 

deficit (VPD, b)) between the first (filled circles, light green) and second heatwave (triangles, lilac) 

of Aleppo pine seedlings is depicted by exponential functions (exp(b(T)+c). Data are 

measurements of the surviving heat-treated seedlings (n=3) for PAR ≥ 100 µmol m-2s-1 including 

several days before each heatwave to investigate a larger temperature range. Shaded areas 

depict the 95% confidence intervals of the fitted functions. Larger shapes depict bin-averaged 

data. Note that VPD increased exponentially with temperature: VPD=exp(b(T)+c, with b= 

0.066[0.0658-0.0669 CI95%] and c=-0.85[-0.08678 - -0.0829 CI95%], R2 = 0.94 of log-

transformed function. 
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Figure S3.4 Responses of Isoprene + MBO (a) and hexenal (b) emissions during tree mortality. 

The data is presented as boxplots derived from daily-averages per seedling, separated in 

surviving (green, n=4) and dying (white, n=4). The two heatwaves are highlighted by a solid 

colored background (DOY 118-121; 128-131 Horizontal grey bars mark the time course on when 

daily-averaged transpiration and net photosynthesis of the dying seedlings reached zero. Dark 

respiration ceased is indicated by black horizontal bars (asymptotic approximation to 0). Data 

shown originate from the seedlings of the heat and heat-drought treatment. Daily-averages of 

emission data is for PAR ≥ 100 

  



 

AA 
 

 

Fig. S4.1 Growth conditions of Aleppo pine seedlings during 30-month are shown separately for 

the two CO2 treatments: e[CO2] (900 ppm, blue triangle) and a[CO2] (400 ppm, light blue circle). 

The shaded areas depict standard error of mean (±1 SE). Averages are weekly means of daily 

average daytime data (PAR>10). Seedlings were grown under average light intensity of 

670.8±143 µmol m-2s-1 a[CO2] and 650.1±134 e[CO2] (supplemented by sodium vapor glasshouse 

lamps, T-agro 400 W, Philips) and average day-time temperatures were 21.29±1.7°C a[CO2], 

21.23±1.6°C e[CO2] and humidity 69.9±9% a[CO2], 70.4±12% e[CO2]. Average atmospheric CO2 

concentration was 421±71 ppm a[CO2] and 867±124 ppm e[CO2]. 
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Fig. S4.2 Soil moisture conditions in 2017 when drought was initiated are shown in percent of 

relative substrate water content (RSWC) averaged per treatment: e[CO2]D (red triangle), e[CO2]W 

(blue triangle), a[CO2]D(orange circle) a[CO2]W (light blue circle). The shaded areas depict 

standard error of mean (±1 SE, n=6). Dotted vertical lines depict beginning of drought (DOY 230) 

and start and end of the two consecutive heatwave experiments (DOY 270/281/292). The 

irrigation was adapted to result in a relative substrate water content (RSWC) of 50%. Drought-

treated seedlings were acclimated for a minimum of 40 days to drought (drought ambient [CO2], 

a[CO2]D: 15.2±7.9%, drought elevated [CO2], e[CO2]D: 12.7±9.7%). RSWC before onset of 

drought did not differ between the treatments (TukeyHSD, P≥0.1).   
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Fig. S4.3 Temperature responses of midday needle water potential (ψneedle, MPa) measured via 

pressure chamber (Model, 600 PMS Instruments, Albany, OR, USA). The treatments e[CO2]D 

(red triangle), e[CO2]W (blue triangle), a[CO2]D(orange circle), a[CO2]W (light blue circle) are 

given as averages. The shaded areas depict standard error of mean (±1 SE, n=8) with asterisk 

highlighting differences between treatments (TukeyHSD, P≤0.05, temperature steps calculated 

separately. 
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Notes S4.1 Tree gas exchange chamber system 

Each of the 20 aboveground compartments were individually temperature-controlled (Fig.4.2). 

The aboveground and belowground compartments were separated using a polyamide plate (1 

cm thick; Sahlberg, Feldkirchen, Germany) containing an opening (1.5 x 15 cm) for the tree stem. 

After the tree stem was inserted, a double-sealed polyamide spacer and additional plastic putty 

(Teroson, Düsseldorf, Germany) ensured gas tightness between the above- and belowground 

compartment. The root compartment consisted of cylinders made from opaque polyvinyl chloride 

(30 cm inner diameter and 20 cm height) and was equipped with two ventilators (252N, ebm-

papst, St. Georgen, Germany). The aboveground chamber material was made from cylinders of 

highly light transmitting transparent acrylic glass (PMMA XT, Sahlberg, Feldkirchen, Germany) 

with an inner diameter of 29 cm and a flexible height of 35–55 cm.  Temperature conditions inside 

the chambers were controlled using fast-response thermocouples (5SC-TTTI-36-2M, Newport 

Electronics GmbH, Deckenpfronn, Germany) and through an individual cooling system. Each 

cooling system consisted of two radiators (NexXxoS XT45, Alphacool International GmbH, 

Braunschweig, Germany) equipped with four small fans (Mini Kaze 60 mm, Scythe, Tokyo, 

Japan). The radiators were connected to an individual pump, which controlled the inflow of 

coolant. To avoid condensation inside the chambers, the temperature of the coolant was 

maintained 2-5°C above the pre-determined dew point temperature.  

The air supply (Airsupply) to the chambers was delivered by an oil-free screw compressor (SLD-S 

7.5, Renner Kompressoren GmbH, Güglingen, Germany) coupled with a condensation trap 

(DFX9, FST GmbH, Essen, Germany) and adsorption columns (DPS 8 MZ, FST GmbH, Essen, 

Germany). Almost CO2-free air (dew point -60°C) was constantly adjusted to pre-defined [CO2] 

(F-201CV-500, Bronkhorst, Ruurlo, Netherlands) and [H2O] using an evaporator mixer (CEM W-

303B-330-K, Bronkhorst, Ruurlo, Netherlands) combined with two mass flow controllers for mixing 

water with air (M13-RGD-33-O-S and F-201CZ 10K-RAD-99-K, Bronkhorst, Ruurlo, Netherlands). 

A static mixer (SVMW-J-19/19-10-C, Schumacher Verfahrenstechnik GmbH, Germany) ensured 

adequate mixing and two major air streams of 150 l min-1 (F-203AV-M50-RGD-99-V and D-6370-

HGD-CC-AV-99-D-S-DF, Bronkhorst, Ruurlo, Netherlands) at either 408 ppm or 896 ppm CO2 

were generated and delivered to each aboveground compartment at 10 l min-1 and to each 

belowground compartment at 5 l min-1 (GZ-32461-56 and -52, Cole-Parmer GmbH, Wertheim, 

Germany). 
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Sample air (Airsample) was drawn by a pump at 500 ml min-1 (NMP830KNDC, KNF Neuberger 

GmbH, Freiburg, Germany). Airsample from the belowground compartments was dried (Nafion® 

tubing, Gasmet Technologies GmbH, Karlsruhe, Germany) to avoid condensation. Four selector 

valve units (EUTA-SD16MWE, Vici AG International) and two three-way valves (0330, Bürkert 

GmbH & Co. KG, Ingelfingen, Germany) were used to switch between chambers and 

compartments and thus each seedling was measured once every 80 min using differential gas 

analysis. 

 

Notes S4.2 Primary metabolite and protein analyses 

Primary metabolite concentrations were absolutely quantified via gas chromatography coupled to 

time-of-flight mass spectrometry (GC-ToF-MS) applying a previously published protocol (Fürtauer 

et al. 2016, Weiszmann et al. 2018). 2–4 mg of powdered freeze-dried samples were extracted 

twice with a methanol-chloroform-water mixture (MCW, 5:2:1, v:v:v). Subsequently, pellets were 

extracted in 80% ethanol at 80°C for 30 min. Phase-separation was induced by addition of H2Odd. 

Polar phases were combined and dried in a vacuum concentrator (ScanVac, LaboGene, Allerød, 

Denmark). Derivatization of dried extracts was done via methoximation (90 min at 30°C, 

Methoxyamine hydrochloride in pyridine) and silylation (30 min at 37°C, N-Methyl-N-

(trimethylsilyl)-trifluoroacetamide). GC-ToF-MS analysis was conducted on an Agilent 6890 gas 

chromatograph (Agilent Technologies®, Santa Clara, USA) and separation of metabolites was 

achieved on an Agilent column HP5MS (length:30 m, diameter: 0.25 mm, film: 0.25 µm). The 

system was coupled with a LECO Pegasus® GCxGC-TOF mass spectrometer (LECO 

Corporation, St. Joseph, USA). For GC analysis, initial oven temperature was 70°C for 1 min, 

followed by a 9°C min−1 ramp with end temperature of 330°C which was held constant for 8 min. 

Data acquisition rate of the MS method was 20 spectra sec−1 and detector voltage was 1550 V. 

The acquisition delay was 5.5 min and the detected mass range was 40 to 600 m:z. Deconvolution 

of the total ion chromatogram and peak integration was performed using the software LECO 

Chromatof® (LECO Corporation, St. Joseph, USA). Absolute quantification of selected 

metabolites was done by calibration standards (five concentrations for each recorded metabolite). 

A pooled sample (n=8) of the 25°C step of the temperature response experiment was used as a 

technical control for each treatment. In each quantification method run (extraction, analysis, peak 

quantification, n=4), a complete set of samples per seedling (25°C, 35°C, 38°C, 40°C, root and 

needle samples) was processed. 
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To detect protein degradation with increasing stress, we analyzed protein amount using a 

standard protocol ((Fürtauer et al. 2018). Plant powder (freeze-dried, 15–30 mg) was suspended 

in 600 µl Urea-Extraction buffer (8M, HEPES 50mM, pH 7.8) and extracted on a shaker for 2 h. 

Ice-cold acetone with 0.5%  -Mercaptoethanol (proteomic grade, VWR International LLC, USA) 

was added to 300 µl of supernatant (10000 g, 10 min.) in a reaction tube (LoBind 2 ml, Eppendorf 

GmbH, Germany) and stored for 15 h at -20°C. Protein was sedimented (12000 g 15 min) and 

washed twice with 1.8 ml ice-cold methanol and once with 1.8 ml ice-cold acetone. Finally, protein 

was sedimented once more (14800 g, 10 min) and dried in a vacuum concentrator (Concentrator 

5301, Eppendorf GmbH, Germany) before suspending in 60 µl of urea buffer (8 M, HEPES 50 

mM, pH 7.8). The final quantification of protein [µg g-1] was done with Bradford Assay (Coomassie 

Protein Assay Kit, Thermo Scientific, USA). 

 

Fig S4.4 Temperature responses of water use efficiency (WUEa, a) and stomatal conductance 

(gs, b) are given per treatment. Data are hourly-averages per seedling during day-time (10 am to 

4 pm). The lines were fitted using second-order polynomial functions. The shaded areas depict 

the 95% confidence intervals of the fitted functions.  
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Fig S4.5 Metabolite responses per treatment and tissue are shown by a clustered dendrogram 

analysis with a scaled heat map of all quantified metabolites during control conditions (25 °C). 

Data is given as medians (n = 4). Colors depict Euclidian distances between weighted metabolite 

concentrations (scaled concentrations normalized to SD, see Methods). 
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Table S4.1 Needle temperatures measured with an infrared camera at the last day of the 

experiment (15 – 16 pm). Data are treatment averages (±1 SD). 

Tair  e[CO2]W  a[CO2]W  e[CO2]D  a[CO2]D  

 [°C] 

39.9±0.6 41.1±0.8 40.6±0.4 41.4±0.5 40.8±0.7 

 

Table S4.2 Percentage share in soluble carbon (C) and soluble nitrogen (N) of gram Tissue dry 

weight. Values are given in Treatment averages ±1SE for 25°C and 40°C. Differences between 

the means are given via capital letters (TukeyHSD, P≤0.05). 

Treatment Temperature Tissue C  N  

  [°C]   %[gDW]  %[gDW]  

a[CO2]W 25 Needle 1.62±0.39 A 0.003±0.0006 A 

a[CO2]D 25 Needle 2.67±0.47 A 0.005±0.0008 A 

e[CO2]W 25 Needle 1.92±0.44 A 0.003±0.0004 A 

e[CO2]D 25 Needle 2.23±0.44 A 0.002±0.0002 A 

a[CO2]W 40 Needle 1.51±0.34 A 0.004±0.0005 A 

a[CO2]D 40 Needle 2.49±0.81 A 0.005±0.0008 A 

e[CO2]W 40 Needle 1.78±0.41 A 0.003±0.0007 A 

e[CO2]D 40 Needle 3.78±0.7 A 0.003±0.0003 A 

           

a[CO2]W 25 Root 2.69±0.41 AC 0.004±0.0009 A 

a[CO2]D 25 Root 3.36±0.6 AD 0.008±0.0015 AB 

e[CO2]W 25 Root 1.78±0.28 AC 0.003±0.0005 A 

e[CO2]D 25 Root 3.07±0.42 AD 0.007±0.0015 AB 

a[CO2]W 40 Root 1.31±0.25 BC 0.011±0.0049 AB 

a[CO2]D 40 Root 3.15±0.54 AC 0.018±0.0051 B 

e[CO2]W 40 Root 1.02±0.09 BC 0.006±0.0012 A 

e[CO2]D 40 Root 3.09±0.54 AD 0.012±0.0017 AB 
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Table S4.3 Treatment averages of daily tree transpiration given per temperature step.  

Tair  e[CO2]W  a[CO2]W  e[CO2]D  a[CO2]D 

 [ml d-1 tree-1] 

25 °C 186 204 53 37 

30 °C 184 190 18 19 

35° C 185 214 23 25 

38 °C 195 262 25 22 

40 °C 211 269 24 20 
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