
Extensible Graphical Editors for Palladio

Misha Strittmatter1, Michael Junker1, Kiana Rostami1,
Sebastian Lehrig2, Amine Kechaou1, Bo Liu1, Robert Heinrich1

1 Karlsruhe Institute of Technology (KIT)
{strittmatter | rostami | heinrich}@kit.edu

{michael.junker | amine.kechaou | bo.liu}@student.kit.edu

2 Paderborn University
sebastian.lehrig@uni-paderborn.de

Abstract

Palladio is an approach to design and performance
prediction of software architectures. An important
part of the Palladio’s tooling—the Palladio Bench—
are its graphical GMF-based editors. In contrast to
rudimentary tree-based editors, they enable a more
intuitive creation of models even for less experienced
developers. However, the maintenance of the GMF-
based editors has become cumbersome because the re-
quirement arose to support an increasing amount of
new language features.

In this paper, we present the new generation of
graphical editors for Palladio, which are based on
the Sirius editor framework. Further, we present a
concept of how to develop external extensions to the
graphical language, which can be plugged into the new
editors without the need to intrusively modify them.

1 Introduction

At the heart of the Palladio Approach [11] is the Pal-
ladio Component Model (PCM). The PCM is a meta-
model, which defines a language for the modeling of
component-based software architectures. Further, it
supports modeling of abstractions of the software ar-
chitecture’s quality with a focus on performance. For
better usability, there are graphical editors for the
PCM, which enable the user to develop diagrams vi-
sually. These were developed with the GMF editor
framework and come as part of Palladio’s tooling—
the Palladio Bench.

However, as the PCM evolved over time, extensions
to the PCM were created. New features were imple-
mented intrusively in the GMF editors, which led to a
growth of the editor specification or a branched devel-
opment. This was detrimental to the specifications’
long-term maintainability. In addition, new frame-
works arose that aspired to become GMF’s successor
(like Graphiti and Sirius). These innovations have
several advantages over GMF.

We reimplemented the graphical Palladio editors
using the Sirius framework. In this paper, we discuss

the advantages of these new editors and their plat-
form for users as well as developers (see Section 2).
This is a continuation of our work graphical editors
for Palladio [4] as well as modular, extensible tool-
ing [3]. In this paper, especially of interest is the ca-
pability of Sirius-based editors to be extended by ed-
itor fragments (see Section 3). This type of extension
aligns with our research about extensible and modu-
lar metamodels [9]. In Section 4, two exemplary editor
extensions to the Palladio Sirius editors are presented.
Section 5 concludes the paper.

Figure 1: The GMF-based System Editor

2 Benefits of the new Editors

The new Sirius-based PCM editors are a reimplemen-
tation of the GMF-based editors. With exception of
some features that are currently unsupported by sim-
ulators, the new editors cover all of the features of
the old editors and more. The new features include
modeling of data types in the repository, architec-
tural templates [6] and rudimentary profile [2] sup-
port. Further new user-beneficial features result from
the usage of Sirius. These include layer-based hiding
and unhiding of diagram content, improved layouting
and the customization of the look of graphical nodes.

Even unsaved model changes are now kept in sync
over multiple diagrams. Saving changes will no longer
discard all unsaved changes in other diagrams.

Implementing the editors with Sirius has many ad-
vantages for the development. Similar to GMF, a DSL
is used to specify the editors. However, with Sirius,
no code is generated from the specification, but it is
interpreted. This solves the problem of maintaining
manual changes in the code when the editors are re-
generated. In Sirius, the inflexibility that is caused by
not having generated code to modify, is alleviated by
providing extension points and the ability to extend
the specification afterwards. In contrast to an API-
driven editor framework like Graphiti [1], the DSL-
based approach greatly reduces development effort al-
though it may be a little less flexible.

Besides a lively community, a huge benefit of devel-
opment with Sirius is the support for dynamic evalu-
ation. An editor can be tested and used in the same
Eclipse instance as it is developed in. After saving,
changes to the editor specification immediately come
into effect in the editor. An exception to this are Ex-
ternal Java Actions, which are deposited in separate
plugins and have to be loaded in the Eclipse platform.
In contrast to GMF this is a great benefit because in
GMF it is necessary to first generate the editor code
and then start a new Eclipse to test the changes.

Another benefit is that Sirius supports editor ex-
tension. An editor specification can be referenced by
another editor specification, which can be located in
another plug-in. The extending editor specification
can then add new layers, which may contain new
graphical elements or even alter the visuals and be-
havior of existing ones. Being able to extend the
graphical language that is implemented by the Sirius
Editors enables us to support independent language
extension. The next section will present the poten-
tial of the extensibility of Sirius and relate types of
metamodel extensions to types of editor extensions.

3 External Editor Extension

Sirius offers the possibility to extend a diagram rep-
resentation by further layers without altering the im-
plementation of the base diagram intrusively. Anal-
ogously to metamodel extensions [2, 5], editor exten-
sions are also packaged in their own Eclipse plugins.
This is shown in Figure 2. The basic editor should not
know anything of its extensions. In addition, editor
extensions should not know each other except when an
extension extends another one. Although the figure
shows only one extension, the plugins of a metamodel
and all of its extensions form a directed acyclic graph.
The editor and its extensions mirror this structure.

In the remainder of this section, a brief explanation
is given on how different types of metamodel exten-
sions are mapped to editor extension types and how
the editor extensions are implemented with sirius. De-
tailed information as well as guidelines can be found

in the master thesis of Michael Junker [10].

PCM
Metamodel

PCM Editor

KAMP
Metamodel
Extension

KAMP
Editor

Extension

Metamodel
Layer

Graphical
Representation

Layer

extends

extends

visualizesvisualizes

Figure 2: Plugin Dependencies of the Base Metamodel
and Editor with Exemplary Extensions

Using the diagram extension feature of Sirius, a
new layer can be added to an existing editor. Within
this layer, new notation elements can be added and
existing ones can be altered. The extension model
(i.e., the instance of the metamodel extension) needs
to be added to the current diagram in order to work
with it. This is automatically accomplished for every
model that exists in the same modeling project as the
base metamodel instance loaded. For external model
files, a toolbar button can be implemented loading
the file and adding the model resource to the current
Sirius session.

If a new metaclass is added by a metamodel exten-
sion, this class can be represented as a new notation
element in the diagram extension. As the instances
of such new metaclasses are stored in external mod-
els, they can be retrieved using Java services. When
extending the palette or context menu, it is necessary
to take into account that the extended instances have
to be stored externally. In case the metamodel ex-
tension adds a further attribute or containment to ex-
isting metaclasses in the base metamodel, the import
mechanism of Sirius can be used to import an exist-
ing notation element. Furthermore, bordered nodes
can also be added to imported containers as well as
to nodes. It is also possible to change the style of
an existing element, e.g., if a new Boolean attribute
is added. This is done by adding conditional styles
to notation elements. Since the Sirius 4.0 release in
Eclipse Neon, extensions of the properties view are
also possible from within the viewpoint specification.
A last type of extension concerns references into the
metamodel extension or from the extension to the base
metamodel. Similar to adding a metaclass, references
can be represented as notation elements (in most cases
as connections).

4 Exemplary Editor Extensions

In the following, we present two extension of the new
Sirius editors. The first extension presents an editor to
support usage model extension for business processes,
while in the second one we show how to extend the
repository and system editor to visualize change im-
pact propagation.

4.1 Business Process

The Integrated Business Information Technology Im-
pact Simulation (IntBIIS) [7] is a Palladio extension,
which enables the users to model the interaction of
business processes and software systems. Business
processes are modeled as an extension of UsageModel
(i.e., BPUsageModel). A business process can be
modeled as a set of hierarchically nested activities.
An activity can in turn be an actor step, that an ac-
tor performs manually, or a system step, that is done
automatically. EntryLevelSystemCalls represent the
system steps in business processes. Furthermore, the
use of device resources in the business process can also
be modeled. A device resource is a device needed to
perform an actor step such as a forklift. Using loops
and branches the activities can be nested [7].

The new elements of the BPUsageModel should
also be available in a business process Layer of the
editors of usage model. To this end, we created a new
Sirius editor, in which we defined a new viewpoint for
BPUsagemodel. As the BPUsageModel is an exten-
sion of the UsageModel, we have to import elements
from the UsageModel. This way, the new elements of
the BPUsageModel can be used in the UsageModel.

4.2 Karlsruhe Architectural Maintaina-
bility Prediction (KAMP)

To predict the ripple effect of a change request in a
software system, the Palladio add-on Karlsruhe Archi-
tectural Maintainability Prediction (KAMP) [8] can
be used. To this end, the user of KAMP should
mark the initial change request based on a Palladio
model. The output of KAMP is a list of all arti-
facts (e.g., code or test cases), that are potentially af-
fected by the change. The task list contains all compo-
nents, interfaces, data types, provided role, required
roles, signatures, and assembly connectors that the
user should take into account when implementing the
change. However, it is more convenient for the user, if
she can observe the changing artifacts in a graphical
Palladio editor (e.g., by changing the color to red).

Using the diagram extension mechanism, we extend
the editors of the repository and the system model to
reflect the change in the editor of the modification-
marks model [8]. With the help of Java services, the
modificationmarks model can be accessed. We import
all changing elements (e.g., components or data types)
in a new layer. Using conditional styles, we can de-
fine a new style, that highlights the elements which
are affected by the change request.

5 Conclusion

In this paper, we presented the advantages of the new
graphical Sirius-based editors for Palladio. The im-
proved maintainability and ability to develop plug-
in-like extensions will lead to earlier graphical editor
support for new features. The ability to externally ex-
tend editors will prevent the core editors from degrad-

ing and by that ensures long-term maintainability. To
demonstrate the external extensibility, we presented
two exemplary extensions: modeling of business pro-
cesses, which interface with the Palladio usage mod-
els (IntBIIS) and visualization of change propagation
prediction (KAMP).

However, a lot of manual effort was put into the
GMF-based editors to polish their usability. The new
Sirius-based Palladio editors have not yet reached that
level of maturity. Therefore, the upcoming Palladio 5
release will include both, the new and the old editors.
More information about the new editors can be found
in our wiki1.

Acknowledgments
This work was partially funded by the Helmholtz Association
of German Research Centers. We’d like to thank Richard
Rhinelander for his valuable input.

References
[1] C. Brand et al. “Development of High-Quality Graphical

Model Editors”. In: Eclipse Magazine (2011).

[2] M. E. Kramer et al. “Extending the Palladio Compo-
nent Model using Profiles and Stereotypes”. In: Palla-
dio Days 2012 Proceedings (appeared as technical report).
KIT, Faculty of Informatics, 2012, pp. 7–15.

[3] M. Strittmatter et al. “Towards a Modular Palladio
Component Model”. In: Proceedings of the Symposium
on Software Performance: Joint Kieker/Palladio Days.
Vol. 1083. CEUR Workshop Proceedings, 2013, pp. 49–
58.

[4] C. Stritzke and S. Lehrig. “Why and How We Should Use
Graphiti to Implement PCM Editors”. In: Symposium on
Software Performance. Vol. 1083. CEUR, 2013, pp. 1–10.

[5] R. Jung et al. “A Method for Aspect-oriented Meta-
Model Evolution”. In: Proceedings of the 2Nd Workshop
on View-Based, Aspect-Oriented and Orthographic Soft-
ware Modelling. ACM, 2014, 19:19–19:22.

[6] S. Lehrig. “The Architectural Template Method: Design-
Time Engineering of SaaS Applications”. In: PhD Session
at the Advanced School on Service Oriented Computing.
2014.

[7] R. Heinrich et al. “Integrating business process simula-
tion and information system simulation for performance
prediction”. In: Software & Systems Modeling (2015),
pp. 1–21.

[8] K. Rostami et al. “Architecture-based Assessment and
Planning of Change Requests”. In: Proceedings of the
11th International ACM SIGSOFT Conference on Qual-
ity of Software Architectures. ACM, 2015, pp. 21–30.

[9] M. Strittmatter et al. “A Modular Reference Struc-
ture for Component-based Architecture Description Lan-
guages”. In: Proceedings of ModComp. CEUR, 2015,
pp. 36–41.

[10] M. Junker. “Flexible Graphical Editors for Extensible
Modular Meta Models”. MA thesis. Karlsruhe Institute
of Technology (KIT), 2016.

[11] R. H. Reussner et al. Modeling and Simulating Software
Architectures – The Palladio Approach. to appear. MIT
Press, 2016. 408 pp.

1https://sdqweb.ipd.kit.edu/wiki/PCM_Development/

Sirius_Editors

http://dx.doi.org/10.1007/s10270-015-0457-1
http://dx.doi.org/10.1007/s10270-015-0457-1
http://dx.doi.org/10.1007/s10270-015-0457-1
http://ceur-ws.org/Vol-1463/paper6.pdf
http://ceur-ws.org/Vol-1463/paper6.pdf
http://ceur-ws.org/Vol-1463/paper6.pdf
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
https://sdqweb.ipd.kit.edu/wiki/PCM_Development/Sirius_Editors
https://sdqweb.ipd.kit.edu/wiki/PCM_Development/Sirius_Editors

	Introduction
	Benefits of the new Editors
	External Editor Extension
	Exemplary Editor Extensions
	Business Process
	Karlsruhe Architectural Maintainability Prediction (KAMP)

	Conclusion

