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Remarks on Notation
Throughout this thesis, vector-valued quantities are written in bold letters while real and
complex numbers as well as scalar functions are not. Vectors are generally assumed to be
column vectors unless explicitly written out horizontally. The magnitude of a vector is
denoted by the non-bold version of the same letter. Random variables are denoted with
capital letters, whereas their instantiations are denoted in lower case. Partly due to the
interdisciplinary subject of this thesis, some of the used symbols denote more than one
quantity (listed below). In those cases, the meaning should be derived from context.

� equality relationship that is true by de�nition
≈ approximately equal
← assignment

t continuous time or discrete time step (sometimes ti is used for clarity)
E particle energy
E electric �eld (magnitude is written as |E |)
v particle velocity (v � |v |) or state-value
q particle charge or �rst generalized longitudinal coordinate or action-value
p particle momentum or second generalized longitudinal coordinate

Q bunch charge or array estimate of action-value function qπ or q∗
I bunch current I � Q frev
V voltage or array estimate of state-value function vπ or v∗
VRF accelerating voltage (RF voltage)
V0 amplitude of RF voltage
д vacuum gap (vertical distance between plates in the parallel plates model)
h half vacuum gap h � д/2

αc momentum compaction factor
α step-size parameter (learning rate)
β ratio of particle velocity v and speed of light c
γ Lorentz factor or discount factor

ψ (z,E, t ) charge distribution in the longitudinal phase space
ψ̂ (z,E, t ) normalized charge distribution in phase space ψ̂ (z,E, t ) � ψ (z,E, t )/Q
ρ (z, t ) longitudinal bunch pro�le
ϱ (z, t ) normalized bunch pro�le ϱ (z, t ) � ρ (z, t )/Q
ρ (E, t ) energy pro�le
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F (x ) Fourier transform F (x ) = x̃ (ω) =
∫ ∞
∞ x (t )e−iωt dt

F−1(x̃ ) inverse Fourier transform F−1(x̃ ) = x (t ) = 1
2π

∫ ∞
∞ x̃ (ω)eitω dω

Pr{X =x } probability that a random variable X takes on the value x
X ∼ p random variable X distributed according to p (x ) � Pr{X =x }
E[X ] expectation of a random variable X , i.e., E[X ] � ∑

x p (x )x
avg[X ] sample average of a random variable X , i.e., avg[X ] � 1

n

∑n
i=1 xi

At action at time t (random variable)
a a particular action (instantiation)
A short for A(s ), set of all actions available in state s
π (s ) action taken in state s under deterministic policy π
π (a |s ) probability of taking action a in state s under stochastic policy π

w,wt d-dimensional vector of weights underlying an approximate value function
v̂ (s,w ) approximate value of state s given weight vector w
µ (s ) on-policy distribution over states
x (s ) vector of features visible when in state s
w>x inner product of vectors, w>x � ∑

i wixi

θ ,θ t d′-dimensional parameter vector of target policy
π (a |s,θ ) probability of taking action a in state s given parameter vector θ
πθ policy corresponding to parameter θ
J (θ ) performance measure for the policy πθ
Aπ (s,a) advantage of taking action a in state s under policy π

{x } set of possible x-values {x } � X � {x | for x ∈ X}
{x } × {y} Cartesian product {x } × {y} � X × Y � {(x ,y) | for x ∈ X and y ∈ Y}
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1. Introduction
At the time this thesis is written, the world �nds itself amidst and partly in the process
of recovering from the COVID-19 pandemic caused by the SARS-Cov-2 virus. One major
contribution to the worldwide e�orts of bringing this pandemic to an end are the vaccines
developed by di�erent research teams all around the globe. Produced in a remarkably
short time frame, a crucial �rst step for the discovery of these vaccines was mapping out
the atomic structure of the proteins making up the virus and their interactions. Due to
the bright X-rays required in the process, synchrotron light sources play an active role in
the ongoing e�orts of accomplishing that goal [1]. Synchrotron light sources are particle
accelerators that are capable of providing intense electromagnetic radiation by accelerating
packages of electrons, called bunches, and forcing them on curved trajectories. Besides the
support of research on the SARS-Cov-2 virus, the remarkable properties of synchrotron
radiation lead to a multitude of applications in a variety of scienti�c �elds such as materials
science, geology, biology and medicine. As a special form of synchrotron radiation, this
thesis is concerned with the coherent synchrotron radiation (CSR) generated by short
electron bunches in a storage ring. At wavelengths larger than the size of the emitting
electron structure, the particles within a bunch radiate coherently. This coherent emission
of synchrotron radiation scales with the number of involved particles and can thus enhance
the intensity of the emitted radiation by several orders of magnitude. As a consequence,
modern synchrotron light sources, such as the Karlsruhe Research Accelerator (KARA) at
the Karlsruhe Institute of Technology (KIT), are deliberately operating with short bunch
lengths to extend the radiated CSR spectrum to higher frequencies and to increase the
intensity of the emitted radiation. Yet, the continuous reduction of the bunch length at
high beam intensities eventually leads to complex longitudinal dynamics caused by the
self-interaction of the electron bunches with their own emitted CSR. This phenomenon,
generally referred to as micro-bunching or micro-wave instability, can lead to the formation
of dynamically changing micro-structures within the charge distribution of the electron
bunches and thus to a �uctuating emission of CSR. Moreover, it can cause oscillations
of the bunch length and the energy spread, which can be detrimental to the operation
of a synchrotron light source. On the other hand, as electron structures smaller than the
full electron bunch, the micro-structures created by the instability lead to an increased
emission of CSR at frequencies up to the THz frequency range. The instability can thus also
be bene�cial for a variety of applications that rely on intense radiation in that particular
frequency range.

Over the past years, the micro-bunching instability has been extensively studied at the
KIT storage ring KARA and other synchrotron light sources. Facilitated by the development
of novel diagnostics and simulation tools, the instability and the underlying longitudinal
beam dynamics were observed and analyzed in great detail and across a large range of
machine parameters. Building upon the gained insights and experience with the instability,
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1. Introduction

the work summarized in this thesis takes these e�orts one step further by approaching
the topic of control over the occurring micro-bunching dynamics. In a careful analysis of
the perturbation generated by the CSR self-interaction, an e�ective method of in�uencing
the formation of micro-structures is identi�ed and the resultant opportunities of exerting
control over these dynamics are pursued. As indicated above, the bene�ts of extensive
control over the micro-bunching instability are twofold. A practical method of mitigating
the CSR-induced perturbation at an electron storage ring would extend the regime of
stable operation to shorter bunch lengths and higher bunch currents. As illustrated in the
context of the COVID-19 pandemic, particle accelerators in general and synchrotron light
sources in particular are instruments that facilitate basic scienti�c research in various
domains. An extension of the sustainable beam properties that can be provided to external
experiments is thus a major bene�t. Additionally, successful mitigation of the micro-
bunching instability would expand the capabilities to optimize for related beam properties,
at existing facilities, but also for future synchrotron light sources. On the other hand,
a deliberate and controlled excitation of the micro-structures can amplify the intensity
of the CSR emitted in the frequency range corresponding to the spatial extent of the
structure and could thus be used to tailor the emission of CSR to dedicated experiments.
In an attempt to support these complementary objectives, the presented work is mainly
concerned with �nding direct ways of interacting with the micro-structure formation
process in order to in�uence the beam dynamics in either direction. For the objective of
mitigating the micro-bunching dynamics, which turns out to be the more challenging task,
the necessity for dynamic adjustments of the applied control signal naturally motivates
the use of reinforcement learning (RL) methods. The general task is thus formalized as an
RL problem and di�erent state-of-the-art algorithms are applied to solve the underlying
control problem. The pursued approach towards micro-bunching control at electron storage
rings is developed and tested on the basis of simulation data and its feasibility veri�ed in
�rst experiments at KARA.

After this introduction, the content of this thesis is divided into eight further chapters.
While chapter 2 covers the required fundamentals of accelerator physics, the concept
of coherent synchrotron radiation and the micro-bunching instability are introduced
in chapter 3. Beyond a description of the driving mechanism underlying the instability
and its characteristic features, the chapter also contains a brief summary of existing
mitigation techniques and prior e�orts to in�uence the micro-bunching dynamics. As a
substantial part of the developed approach to micro-bunching control relies on the use
of reinforcement learning methods, chapter 4 provides an introduction to the general
subject and covers a selection of modern RL algorithms. In an analysis of the longitudinal
dynamics underlying the micro-bunching instability and the relation between individual
particle trajectories and collective motion, the theoretical basis for the control pursued in
the thesis is derived in chapter 5. As the necessity of dynamic control directly motivates
the use of reinforcement learning methods, chapter 6 formalizes the general task as a
reinforcement learning problem. The main results obtained by applying the developed
methods in simulations are presented in chapter 7. While these results verify the general
feasibility of extensive micro-bunching control, further challenges regarding the stability
and generalization of the achieved RL-based control are discussed in the �nal section.
Although the full implementation of the developed methods at KARA was beyond the
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scope of this thesis, chapter 8 presents a range of �rst experiments to verify the feasibility
in practice. The thesis �nally concludes with a brief summary and outlook towards future
work in chapter 9.
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2. Fundamentals of Accelerator
Physics

Nothing happens until something moves.

— Albert Einstein

The main objective of the work summarized in this thesis was to identify and pursue
an avenue towards control of the micro-bunching dynamics which occur in electron
storage rings under speci�c operating conditions. As modern storage rings tend to be quite
complex systems, this chapter aims to provide some of the most relevant fundamentals of
accelerator physics. For a more exhaustive and detailed introduction it is referred to the
existing textbooks, e.g. [2, 3].

2.1. Charged Particles in Electromagnetic Fields
In order to accelerate particles, or more precisely to increase their kinetic energy, they
have to be subjected to an external force. Of the four fundamental forces: gravity, the
weak and the strong force, and the electromagnetic force, only the latter is suitable for the
technical requirements of a typical particle accelerator. A particle with charge q which is
moving with velocityv in external electromagnetic �elds is subject to the Lorentz force

F L = q (E +v × B) , (2.1)

where E and B denote the electric and the magnetic �eld, respectively. During its motion
from position r 1 to r 2, the particle gains the energy

∆E =

∫ r2

r1

F L dr = q
∫ r2

r1

(v × B + E) dr . (2.2)

As dr andv are parallel, the term (v × B) dr vanishes and Eq. (2.2) can be simpli�ed to

∆E = q

∫ r2

r1

E dr = q ∆V , (2.3)

where ∆V is the potential di�erence induced by the electric �eld. The energy gain of
the particle is thus independent of the magnetic �eld, the desired acceleration has to be
achieved solely through the use of electric �elds. Nonetheless, magnetic �elds are still
essential for the operation of particle accelerators as they are used to de�ect and focus the
particle’s trajectory. As the force induced by a constant magnetic �eld is perpendicular to
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2. Fundamentals of Accelerator Physics

the particle’s velocity, it bends the path of motion and, in the absence of further e�ects,
leads to a circular trajectory. In that case, the Lorentz force acts as the centripetal force

Fc = FL ⇒ mv2

R
= qvB , (2.4)

wherem denotes the particle’s mass and R is the radius of the trajectory. For relativistic
particles, where the velocity is close to the speed of light v ≈ c , the force induced by a
magnetic �eld is typically much stronger than what can be realized via electric �elds.
Hence, for storage rings operating at relativistic energies, electric �elds are used to increase
the particle’s energy whereas bending and focusing of the beam is achieved via magnetic
�elds.

2.2. Electron Storage Rings
Around the 1920s, the �rst machines to accelerate particles generally used a static electric
�eld induced between two electrodes. Driven by the desire for higher particle energies,
several di�erent designs were conceived in order to increase the maximum achievable
voltage. Ultimately, though, this approach is limited by an e�ect known as corona discharge,
which describes a spark-over between the electrodes and leads to the collapse of the high
voltage. In later machines, and in most modern particle accelerators, this limitation is
overcome by the use of an alternating voltage. As the electric �eld is varying, this brings
with it the necessity to carefully control the timing of the particle’s passage through the
accelerating section. Typically, one aims to expose the particle to the sinusoidal voltage

VRF(t ) = V0 sin(2πfRFt + φ0) , (2.5)

at a designated phase φs, which increases the particle energy by

∆E = qV0 sin(φs) . (2.6)

Here, the accelerating voltage is de�ned by the amplitude V0, the radio frequency (RF)
fRF and the initial phase φ0. The required electric �eld is usually realized in an RF cavity,
a special type of metallic resonator which can generate a standing wave at its resonant
frequencies. In a linear accelerator, several of these accelerating structures are arranged
along a straight line, where each additional passage further increases the particle’s energy
by the same amount. In principle, one can achieve arbitrarily high energies with this
approach. In practice, however, the growing size and the involved costs quickly restrict
such e�orts. A more e�cient approach is to use magnetic �elds to force the particles on a
circular orbit on which they repeatedly pass through the same accelerating structure. Yet,
to keep the accelerated particles in a �xed aperture, one has to consider the dependency of
the trajectory on the particle energy. For relativistic particles, Eq. (2.4) yields the bending
radius

R =
E

qcB
, (2.7)

which means, in a constant magnetic �eld, particles with higher energy will travel on a
trajectory with a larger radius. This can be addressed in di�erent ways, yielding several
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2.3. Synchrotron Radiation

types of circular particle accelerators. One such machine is the synchrotron, which achieves
a constant radius by ramping up the magnetic �eld strength synchronously to the rising
particle energy. In order to maintain a �xed phase for the acceleration process, the radio-
frequency fRF in Eq. (2.5) has to be an integer multiple of the revolution frequency

fRF = h frev , (2.8)

where h is the so-called harmonic number. A particle which passes the accelerating
structure at a phase that signi�cantly deviates from the design phase φs, e.g. because
of perturbations along its trajectory, will be decelerated and eventually hit the vacuum
chamber wall. Thus, the particle beam in a synchrotron cannot be continuous. Instead,
particles can only be accumulated in small packages, the so-called bunches, around the
valid phases. Nonetheless, it is common to refer to the total amount of particles or charge
in the machine as the beam current

Ibeam � Qtotal frev . (2.9)

Analogously, one de�nes the bunch current

I � Qbunch frev . (2.10)

As discovered during the 1950s, one major bene�t of the synchrotron is that it can
be operated as a storage ring, in which particles are stored at a constant energy. This
facilitates the accumulation of high beam currents and is particularly convenient for a
range of use cases. Most notably, it enables particle colliders to achieve high collision
rates which is of the utmost importance in particle physics experiments, e.g. the search
for new elementary particles. The usage of electrons in these experiments leads, due to
their point particle nature, to clean collisions and thus allows for precise measurements.
Yet, it was quickly discovered that the accelerated electrons lose a part of their energy
during every revolution by emitting electromagnetic waves. As this phenomenon was
�rst observed at the General Electric 70MeV synchrotron [4], the detected radiation was
named synchrotron radiation.

2.3. Synchrotron Radiation
In the years after its discovery, synchrotron radiation was treated as a by-product of
high energy particle accelerators and its characteristics were studied parasitically at these
machines. Over time though, the exceptional properties of this type of radiation were
realized and in 1968 the �rst dedicated storage ring for the production of synchrotron
radiation began its operation [5]. The �rst generation of synchrotron light sources made
use of the radiation that is emitted in the main bending magnets. This is also the case for the
second generation of machines where the transverse beam size was minimized to improve
the spatial resolution in experiments. Nowadays, in machines of the third generation, so-
called insertion devices are installed into the machines to produce additional synchrotron
radiation with improved horizontal focusing and higher photon �ux.

7



2. Fundamentals of Accelerator Physics

(a) Emission of synchrotron radiation in a bend-
ing magnet

2/γ

R

(b) Synchrotron radiation cone

Figure 2.1.: (a) During their de�ection in a bending magnet, electrons emit synchrotron
radiation tangential to their path of motion. (b) The radiation is emitted in a
narrow cone with an opening angle that is determined by the particle energy.
Figure adapted from [2].

The synchrotron radiation, due to the de�ecting force of a bending magnet, is emitted
in a narrow cone tangential to the trajectory of the electron beam, as illustrated in Fig. 2.1.
For relativistic energies, the cone’s half opening angle is approximately given by

Θcone ≈ 1/γ , (2.11)

with the relativistic Lorentz factor γ = 1/
√
1 − β2 and β = v/c . In case of the KIT storage

ring KARA with electron energies between 0.5GeV and 2.5GeV, the full opening angle
is between 0.41mrad and 2.04mrad. The strong focusing of the emitted photon beam is
one of the properties that distinguishes synchrotron light sources from more conventional
ways to produce electromagnetic radiation. The instantaneous power emitted by a single
electron passing through a bending magnet is given by [2]

Ps =
e2c

6πε0
1

(mec2)
4
E4

R2 , (2.12)

with the elementary charge e , the electron rest mass me, and the dielectric constant of
vacuum ε0. During a full revolution, the electron typically passes several of these bending
magnets and loses the energy

∆E =

∮
Ps dt =

1
frev

Ps =
2πR
c

Ps , (2.13)

which has to be compensated by the RF system of the storage ring. Owing to the narrow
angle of emission, the radiation is observed in short electromagnetic pulses and the radiated
power spectrum depicted in Fig. 2.2 covers a broad range of frequencies. It can be described
by [6]

P (ω) =
Ps
ωc

S

(
ω

ωc

)
, (2.14)
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2.4. Longitudinal Beam Dynamics

108 1010 1012 1014 1016 1018 1020
10−29

10−28

10−27

10−26

10−25

ωc/2π

f = ω/2π (Hz)

P
(ω

)
(W
/H

z)
0.5GeV (injection energy)
1.3GeV (short-bunch mode)
2.5GeV (standard operation)

Figure 2.2.: Radiated power spectrum P (ω) of a single electron passing through a bending
magnet (R = 5.559m) for the typical beam energies at KARA. The green dashed
line marks the critical frequency ωc at injection energy, it divides the power
spectrum into two sections of equal integrated radiation power.

where ωc = 3cγ 3/2R denotes the critical frequency, which divides the power spectrum
into two sections of equal integrated radiation power∫ ωc

0
P (ω) dω =

∫ ∞

ωc

P (ω) dω = 1
2Ps . (2.15)

The spectral function S is given by

S (ξ ) =
9
√
3

8π ξ

∫ ∞

ξ
K5/3(ξ ) dξ , (2.16)

where K5/3 denotes the modi�ed Bessel function. Finally, the combined, incoherent emis-
sion of all electrons within a bunch yields the incoherent power spectrum

PISR(ω) = NeP (ω) , (2.17)

where Ne is the number of electrons, which is typically around 109 at KARA.

2.4. Longitudinal Beam Dynamics
With each passage through a bending magnet, and with each revolution in a storage ring,
the accelerated electrons lose a part of their energy in the form of synchrotron radiation.
In order to maintain a constant beam energy and a �xed trajectory, this energy loss has

9



2. Fundamentals of Accelerator Physics

RF system

δp < 0 δp > 0

δp = 0

(a) Orbits for deviating momenta

φs

Vs

V0

δp = 0
δp < 0

δp > 0

∆φ ∝ ∆t

φ

V

(b) RF voltage at di�erent phases

Figure 2.3.: Principle of phase focusing. (a) Compared to the orbit of the synchronous
particle (red line), particles with a lower momentum travel on a shorter orbit
(green line), whereas a higher momentum increases the path length (blue line).
(b) Depending on their arrival time in the accelerating structure, particles are
exposed to a di�erent voltage and thereby gain di�erent amounts of energy.
This results in a focusing e�ect towards the momentum and phase of the
synchronous particle. Figure adapted from [2].

to be compensated by the accelerating RF system. A particle, which gains exactly that
amount of energy in the accelerating section that is radiated o� during one full revolution
in the storage ring, is called synchronous particle. Corresponding to the design energy, it
holds the reference momentum ps and passes the RF system precisely at the synchronous
phase φs . Any particle with a non-zero momentum deviation

δp � (p − ps)/ps , (2.18)
is subject to a di�erent de�ection in the bending magnets and therefore travels on a
deviating orbit. According to Eq. (2.7), a lower momentum leads to a smaller bending
radius and a shorter orbit. Meanwhile, the change in velocity is negligible for the ultra-
relativistic particle energies considered in this thesis. A particle with δp < 0 thus arrives
earlier in the accelerating structure, is exposed to a higher voltage and gains more energy.
Vice versa, a particle with higher momentum has a longer path, arrives later and gains less
energy. Combined, this results in a focusing e�ect which restores the deviating particles
towards the synchronous phase. The overall concept is known as phase focusing and
illustrated in Fig. 2.3. The relation between the deviation in orbit length

δL � (L − Ls)/Ls , (2.19)
and the momentum deviation is de�ned as the momentum compaction factor

αc �
δL

δp
. (2.20)
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2.4. Longitudinal Beam Dynamics

As a smaller momentum compaction factor leads to a stronger longitudinal compression
around the synchronous particle, it has a direct impact on the length of the electron
bunches in a storage ring. For the short-bunch operation mode at KARA, the magnet optics
are thus adjusted such that the momentum compaction factor is decreased by more than a
full order of magnitude, which is why it is also referred to as low-alpha mode.

In consequence of the restoring e�ect of phase focusing, particles with deviating mo-
menta perform a longitudinal oscillation around the synchronous particle, the so-called
synchrotron motion. For small deviations from the synchronous phase

ϕ � φ − φs , (2.21)

it can be described by the equation of motion [3]

ϕ̈ +
2
τd
ϕ̇ + ω2

s,0 ϕ = 0 , (2.22)

with the longitudinal damping time τd and the nominal synchrotron frequency

fs,0 =
ωs,0
2π = frev

√
eV0h cos(φs)

2πβ2E

(
1
γ 2
− αc

)
. (2.23)

The damping term in Eq. (2.22) is related to the energy dependent emission of synchrotron
radiation, which counteracts large deviations from the synchronous particle. As the damp-
ing time is typically much larger than the oscillation period, it has only a small e�ect on
the phase oscillation and may be neglected. In that case, particles which deviate from
the synchronous phase are subject to a linear restoring force generated by the RF system
and perform perfectly harmonic oscillations (illustrated in Fig. 2.4a). While deviations in
phase and energy are damped on average, the quantized emission of photons by individual
electrons is a statistical process which simultaneously introduces as spread in the energy
distribution of the bunch. In the equilibrium between quantum excitation and radiation
damping, the energy distribution assumes a Gaussian shape with a standard deviation
referred to as the natural energy spread [3]

σδ ,0 =
σE,0
E
=

√
55 ~c

32
√
3mec2

γ 2R

Jz
, (2.24)

with the longitudinal damping partition number Jz ≈ 2. This spread in the energy dis-
tribution is, via the momentum compaction factor, also transfered to a spread along the
longitudinal coordinate

z � − βc

2πhfrev
ϕ , (2.25)

and is analogously referred to as the natural bunch length

σz,0 =
�����

c

2πβ fs,0

(
1
γ 2
− αc

) ����� σδ ,0 . (2.26)
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Figure 2.4.: (a) Driven by the restoring force of the RF system, o�-momentum particles
perform oscillations around the position and energy of the synchronous particle.
(b) Radiation damping and quantum excitation lead to a Gaussian equilibrium
distribution of particles in the longitudinal phase space.

The equilibrium charge distribution in the longitudinal phase space, spanned by the
particle energy and longitudinal position relative to the synchronous particle, is thus a
two-dimensional Gaussian as shown in Fig. 2.4b. The integral of the phase space density
ψ (z,E) over the longitudinal coordinate yields the energy distribution or energy pro�le

ρ (E) =

∫ ∞

−∞
ψ (z,E) dz , (2.27)

with the standard deviation given by Eq. (2.24). Analogously, by integrating over the
energy one obtains the longitudinal bunch pro�le

ρ (z) =

∫ ∞

−∞
ψ (z,E) dE . (2.28)

While the synchrotron motion is nearly harmonic and the equilibrium distribution is
Gaussian, there are many sources of perturbations and deviations from this idealized
case in a real particle accelerator. These lead to a more complex synchrotron motion and
deformations of the charge distribution in the longitudinal phase space. Moreover, in
non-equilibrium cases, the charge distribution may also vary over time.
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3. Collective E�ects
In the case of all things which have several parts and in which the totality is not, as it
were, a mere heap, but the whole is something beside the parts, there is a cause; [. . .]

— Aristotle, Metaphysics

A description of the motion of a single particle under the in�uence of external �elds, as
outlined in chapter 2, is a �rst step to understand the dynamics in a particle accelerator. Yet,
in order to accurately describe the longitudinal dynamics of even a single bunch of particles,
it is often not su�cient to regard the beam as a collection of individual, non-interacting
particles. Particularly at high intensities, the interaction of the beam with its immediate
surroundings generates non-negligible electromagnetic �elds. These so-called wake �elds
act back on the beam and perturb its motion. The micro-bunching instability is the result
of such a perturbation, generated collectively by the electrons within a bunch. This chapter
introduces a formalism to describe the temporal evolution of the charge distribution under
the in�uence of additional wake �elds. Furthermore, it provides a thorough description of
the micro-bunching instability and its characteristics. A more general treatment of the
subject of collective beam instabilities can be found in [7].

3.1. Vlasov-Fokker-Planck Equation
Given the large number of particles within a bunch, it is convenient to describe collective
e�ects by modeling the charge distribution with a normalized density function

ψ̂ (z,E, t ) � ψ (z,E, t )/Q with Q =

∫ ∞

−∞

∫ ∞

−∞
ψ (z,E, t ) dzdE , (3.1)

instead of considering individual particles. By introducing the generalized coordinates

q � z/σz,0 and p � (E − Es)/σE,0 , (3.2)

the charge distribution can be described in the dimensionless longitudinal phase space
spanned by q and p, where the origin marks the position of the synchronous particle.
Assuming a linear momentum compaction factor and a linear accelerating voltage, the
Hamiltonian of the unperturbed system is given by

H0 =
1
2

(
q2 + p2

)
, (3.3)

which describes a one-dimensional oscillator and corresponds to the perfectly harmonic
particle oscillations at the synchrotron frequency illustrated in Fig. 2.4a. If the system
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3. Collective E�ects

is conservative, that is, in the absence of damping and di�usion e�ects, the temporal
evolution of the charge distribution can be described by the Vlasov equation [7]

∂ψ̂

∂Θ
+
∂H
∂p

∂ψ̂

∂q
− ∂H
∂q

∂ψ̂

∂p
= 0 , (3.4)

whereΘ = fs,0t denotes the time in multiples of the nominal synchrotron period. Following
the notation in [8], the Vlasov-Fokker-Planck (VFP) equation

∂ψ̂

∂Θ
+
∂H
∂p

∂ψ̂

∂q
− ∂H
∂q

∂ψ̂

∂p
=

1
fs,0τd

∂

∂p
*,pψ̂ +

∂ψ̂

∂p
+- , (3.5)

introduces additional terms on the right-hand side to account for the e�ects of radiation
damping and quantum excitation. Collective e�ects can be included as a perturbation to
the Hamiltonian

H = H0 +Hc with Hc =
e frev
σE,0 fs,0

∫ ∞

q
Vc(q

′, t ) dq′ , (3.6)

where Vc denotes the potential induced by the collective e�ect during a full revolution in
the storage ring and scales with the charge involved in the interaction.

3.2. Coherent Synchrotron Radiation
The incoherent synchrotron radiation power in Eq. (2.17) is calculated as the sum of the
single particle emission of all contributing electrons. Besides the mere number of particles,
the emitted radiation also depends on their distribution within the bunch. If the size of the
emitting structure, that is, the length of the electron bunch, is in the order of the emitted
wavelength (σz/λ ≈ 1) or even smaller, the particles radiate coherently. This e�ect can
greatly enhance the intensity of the emitted radiation at the low frequency end of the
spectrum as shown in Fig. 3.1. The radiated power spectrum of the coherent synchrotron
radiation (CSR) is given by [3]

PCSR(ω) = Ne(Ne − 1) |ϱ̃ (ω) |2P (ω) , (3.7)

with the Fourier transform of the normalized bunch pro�le

ϱ̃ (ω) = F (ϱ (t )) =
1
Q

∫ ∞

−∞
ρ (t )e−iωt dt . (3.8)

The combination of the coherent and incoherent emission �nally yields the total radiated
power spectrum

Ptot(ω) = PISR(ω) + PCSR(ω) = Ne
[
1 + (Ne − 1) |ϱ̃ (ω) |2

]
P (ω) . (3.9)

Because of the quadratic dependency of Eq. (3.7) on the number of electrons within
the bunch, the coherent emission of synchrotron radiation can increase the intensity of
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3.2. Coherent Synchrotron Radiation
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Figure 3.1.: The coherent emission at wavelengths longer than the bunch length, that is, at
frequencies below c/σz , leads to a radiated power that exceeds the incoherent
synchrotron radiation power by several orders of magnitude. However, the
emitted CSR power drops o� rapidly at higher frequencies. The shown power
spectra are calculated for an exemplary Gaussian-shaped electron bunch with
σz/c = 5 ps and Ibunch = 1mA in the short-bunch operation mode of KARA
(E = 1.3GeV, R = 5.559m).

the emitted radiation by several orders of magnitude. As the frequency range covered
by the CSR power spectrum directly depends on the bunch length, this creates a clear
incentive to push for shorter bunch lengths in the operation of modern synchrotron light
sources. However, the increased spatial compression eventually gives rise to a strong
self-interaction of the electron bunch with its own emitted CSR, which causes complex
longitudinal dynamics and limits the minimal achievable bunch length. The interaction
of the electron bunch with the self-generated CSR is possible because of the marginally
shorter path of a photon propagating on a straight line compared to the curved path of the
electron bunch in a bending magnet, as illustrated in Fig. 3.2. In this way, the coherent

Figure 3.2.: The curved trajectory of an electron bunch in a bending magnet enables the
self-interaction of the bunch with its own emitted CSR. By traveling on a
straight line, the emitted photons can catch up with the electrons at the head
of the bunch.
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3. Collective E�ects
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Figure 3.3.: CSR parallel plates impedance for di�erent vacuum gaps. It describes the self-
interaction of an electron bunch with its own emitted CSR under the shielding
e�ect of the surrounding vacuum chamber walls. A reduced vacuum gap leads
to a stronger shielding, which shifts the cut-o� frequency due to the beam
pipe to higher frequencies. The beam pipe installed at KARA has a total height
of д = 32mm (red curves).

synchrotron radiation emitted by the tail of the bunch catches up with the electrons at
the head and causes an energy transfer. This self-interaction is conveniently described by
an impedance ZCSR(ω) in the frequency domain. Due to the enormous complexity of an
exhaustive analytical description, one resorts to approximations of the beam’s immediate
surroundings. As implied by its name, the free space model [9] neglects any shielding
e�ects by the beam pipe and assumes a circular motion of the electron bunch in vacuum.
However, it is crucial to consider the interaction with the vacuum chamber walls as,
in this way, the generated wake �eld may also e�ect the tail, not just the head of the
bunch. To account for the e�ects of the surrounding vacuum chamber, the parallel plates
model introduces two inde�nitely extending, perfectly conducting horizontal plates. An
approximation for the resulting CSR parallel plates impedance illustrated in Fig. 3.3 can be
found in [10, 11]

ZPP
CSR(ω) ≈

4π221/3R
ε0cд

(
ω

ωrev

)−1/3 ∑
p

[
Ai′(up )Ci′(up ) + upAi(up )Ci(up )

]
, (3.10)

with the Airy functions Ai and Bi, Ci = Ai − i Bi, the vacuum gap д between the parallel
plates and

up =
π2(2p + 1)2R2

22/3д2

(
ω

ωrev

)−4/3
. (3.11)
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3.3. Vlasov-Fokker-Planck Solver

While the parallel plates model is a simplistic description of the beam pipe’s shielding
e�ect, and additional sources of impedances contribute to the actual beam dynamics in
a storage ring, Eq. (3.10) provides a solid basis for describing the in�uence of the CSR
wake �eld on the longitudinal dynamics of an electron bunch. Given an expression for the
impedance, one obtains the CSR-induced wake potential via

VCSR(q, t ) =
Q

2π

∫ ∞

−∞
ϱ̃ (ω, t )ZCSR(ω)eiωq dω . (3.12)

This additional potential continuously acts back on the electron bunch and causes a
perturbation of the simple longitudinal dynamics discussed in the previous chapter. At
high bunch currents, this e�ect eventually gives rise to the micro-bunching instability
introduced in section 3.4.

3.3. Vlasov-Fokker-Planck Solver
While there is no analytic solution to the VFP equation for the full Hamiltonian de�ned by
Eq. (3.6) and Eq. (3.12), it can be solved numerically on a discretized grid. To that end, the
charge density function ψ̂ (q,p) is modeled as a two-dimensional discretized distribution
in the longitudinal phase space. Given an initial distribution, the VFP equation is solved
iteratively in small time steps to simulate the temporal evolution of the charge distribution
under the given boundary conditions. At each time step, the longitudinal bunch pro�le can
be calculated by integrating over the generalized energy coordinate. Following Eq. (3.7)
one obtains the CSR power spectrum and via Eq. (3.12) the CSR wake potential, which
determines the evolution of the charge distribution in the subsequent time step.

Based on the approach in [12], the simulation code Inovesa [11] is a relatively new,
massively parallelized implementation of such a VFP solver. Its fast runtime allows for
extensive simulation studies using merely standard desktop PCs. With the approximation
of the shielding e�ect via the CSR parallel plates impedance de�ned in Eq. (3.10), the gen-
erated simulation data has shown high qualitative and good quantitative agreement with
measurements at KARA [11, 13, 14]. This is an essential �nding for the work summarized
in this thesis as it renders Inovesa a tool which can be used for two major purposes: First
and foremost, it enables dedicated studies to advance the understanding of the longitudinal
dynamics underlying the micro-bunching instability. Secondly, considering the overarch-
ing objective of extensive control over the micro-bunching dynamics, it can be used to
test di�erent interactions with the beam and allows for the development of a feedback
system in a well-de�ned, low-noise environment.

3.4. Micro-Bunching Instability
Electron storage rings which provide a short-bunch mode or operate at high bunch currents
typically observe a threshold current above which the energy spread of the beam increases
abruptly and the emitted radiation starts to �uctuate. At bunch currents clearly above the
threshold, the emitted CSR power and other observed beam properties like the bunch length
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3. Collective E�ects

and the energy spread display a characteristic bursting behavior. Owing to these sawtooth-
shaped bursts, the phenomenon was initially referred to as sawtooth instability [15] or
bursting CSR [16]. Over the last two decades it has been observed at a wide range of
facilities [16–29]. It was quickly realized that the observed bursts were accompanied by a
fast beam instability and a model to explain these e�ects was proposed in [30]. Nowadays,
it is generally accepted that the observed behavior is caused by the formation of micro-
structures within the bunch arising from the self-interaction of the beam with its own
emitted CSR [31]. For typical beam pipes with a diameter of several millimeters, the
interaction with the beam, as described by Eq. (3.12), happens primarily in the microwave
frequency range. In more recent work, the dynamics are thus referred to as a microwave
instability (crucial part of the impedance) or as micro-bunching instability (emphasizing the
dynamics within the bunch). Throughout this thesis, the term micro-bunching instability
is used.

3.4.1. Driving Mechanism
As the CSR-induced wake potential de�ned in Eq. (3.12) scales with the total charge in-
volved in the interaction, its e�ect on the longitudinal beam dynamics is heavily dependent
on the bunch current. While, at low currents, the strength of the wake potential is small
compared to the accelerating RF potential, it grows with increasing current and eventually
builds up to a signi�cant perturbation. The sum of the approximately linear RF potential
and the CSR wake potential yields the e�ective potential which the electrons are exposed
to during a full revolution in the storage ring

Ve� (q, t ) � VRF(q) +VCSR(q, t ) . (3.13)

Although the interaction with the respective �elds occurs at di�erent locations in the
storage ring, that is, the RF cavities and the bending magnets, averaging over one revolution
is reasonable as the synchrotron motion happens at a much slower time scale than a single
passage of the storage ring (fs,0 � frev). For bunch currents below the instability threshold,
the in�uence of the CSR wake potential leads to a deformation of the longitudinal charge
distribution. Yet, for small bunch currents, an equilibrium between the charge distribution
and the resultant CSR wake potential is reached, leading to a stationary charge distribution
and wake potential

ψ (z,E, t ) = ψ (z,E) and VCSR(z, t ) = VCSR(z) . (3.14)

Above the threshold current, however, this is no longer the case. Instead, the continuous
CSR self-interaction loop illustrated in Fig. 3.4 leads to a permanently varying charge
distribution with dynamically forming and evolving micro-structures in the longitudinal
phase space. As the CSR wake potential is derived from the bunch pro�le, the resultant
perturbation of the e�ective potential is continuously varying as well. At large currents,
this volatile interplay between charge distribution and CSR wake potential leads to a
self-ampli�cation of the micro-structures forming within the bunch. As the small longitu-
dinal structures represent a high-frequency contribution to the Fourier transformed bunch
pro�le, they overlap with higher values of the CSR impedance and may thereby yield
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Figure 3.4.: Principle of CSR self-interaction. Given a charge distribution in the longitu-
dinal phase space (upper left), one obtains the bunch pro�le (lower left) by
integrating over the energy. A Fourier transformation, multiplication with the
CSR impedance and subsequent inverse Fourier transformation yield the CSR
wake potential (lower right). The additional wake potential causes a perturba-
tion of the e�ective potential (upper right), which a�ects the particles’ energy
gain during a full revolution in the storage ring. In this way, the CSR wake
potential acts back on the bunch and alters the charge distribution in phase
space.

relatively large contributions to the CSR wake potential. This additional part of the wake
potential can drive the formation of new micro-structures or enhance the already existing
structures in the longitudinal phase space. The synchrotron radiation emitted by a bunch
undergoing such dynamics is also continuously varying. As the CSR spectrum in Eq. (3.7)
is directly dependent on the bunch pro�le, spontaneous growth of micro-structures in the
longitudinal phase space can lead to a burst of radiation at photon frequencies correspond-
ing to the spatial extent of the structure. As a consequence of the ampli�cation gained by
coherent emission this generally also increases the total power radiated by the electron
bunch.
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3. Collective E�ects

The volatility of the driving mechanism that generates the micro-bunching instability is
one of the reasons why control of these dynamics is a challenging and delicate endeavor.

3.4.2. Characteristic Features
The nature of the CSR self-interaction illustrated in Fig. 3.4 and the scaling of the CSR wake
potential with bunch current lead to a few characteristic features of the micro-bunching
instability. The current dependency is thereby not limited to a mere instability threshold,
but creates rich longitudinal dynamics at higher currents. A concise but distinctive depic-
tion of the current dependency is given by the exemplary CSR power spectrogram shown
in Fig. 3.6. Here, the CSR power time signal

PCSR(t ) =

∫ ω2

ω1

PCSR(ω, t ) dω , (3.15)

shown for an exemplary bunch current in Fig. 3.5, is calculated for each current and the
magnitude of its Fourier transform is displayed as a horizontal line to create the overall
spectrogram. The color code is de�ned by the spectral intensity and thus indicates the most
dominant �uctuation frequencies. The CSR power signal in Eq. (3.15) is directly correlated
to the evolution of the micro-structures within the bunch as, at each point in time, the
CSR power spectrum in Eq. (3.7) is determined by the longitudinal bunch pro�le. Any shift
of the �uctuation frequencies thus corresponds to a change in the temporal evolution of
the charge distribution in the longitudinal phase space. The most notable di�erences, as
pointed out below, mark transitions into di�erent regimes of the instability, which may
serve as a useful categorization of the occurring micro-bunching dynamics. Although
these dynamics are dependent on di�erent machine parameters like the beam energy,
the accelerating voltage or the momentum compaction factor, the discussed qualitative
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Figure 3.5.: CSR power time signal PCSR(t ) for the exemplary bunch current I = 115 µA
(left) and the magnitude of its Fourier transform |P̃CSR | (right).
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Figure 3.6.: Exemplary CSR power spectrogram, which highlights the dependency of the
occurring micro-bunching dynamics on the bunch current. The simulation
settings used to generate the shown data correspond to the short-bunch mode
at KARA and can be found in appendix A.1 (data set D1). The instability
threshold is found at Ith = 109 µA with an initial �uctuation frequency of
fms = 20.19 kHz. The vertical lines below the threshold current are multiples
of the synchrotron frequency (fs,0 = 7 kHz) and indicate minor bunch length
oscillations.

characteristics are always observed in both, simulations and measurements, albeit the
exact numerical values may di�er [32].

Threshold Current

Regarding the practical operation of electron storage rings and the design of new facilities,
the most relevant property of the micro-bunching instability is the threshold current,
roughly at Ith = 110 µA in Fig. 3.6. Although the instability generally doesn’t cause sudden
beam losses, the longitudinal charge distribution and several derived beam properties start
to �uctuate above the instability threshold which may be detrimental to the performance of
an accelerator. To reach the required beam stability, it is often desirable to operate at bunch
currents below the instability threshold. Then again, the micro-bunching dynamics above
the threshold provide intense coherent radiation which may be delivered to dedicated
experiments. In any case, precise knowledge of the threshold current is crucial in practical
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applications. It has thus been studied theoretically using the VFP formalism, arriving at a
predictive model for the instability threshold [8]

Ith =
8π2ε0meγc

2 fs,0σδ ,0σ
4/3
z,0

eR1/3

(
ath + bth R

1/2σz,0h
−3/2) , (3.16)

where h = д/2 is the half vacuum gap and the parameters ath = 0.5 and bth = 0.12 are
determined by a �t to simulated data. Measurements and simulations at BESSY II and
MLS [33] as well as KARA [34] have shown good agreement with Eq. (3.16), further
validating the model. It is worth noting that for a given beam energy and a �xed geometry
(bending radius R and vacuum gap д), the predicted threshold current is solely de�ned by
the nominal synchrotron frequency fs,0 and the natural bunch length σz,0. Alternatively,
it is determined by a combination of any two parameters in {

fs,0,σz,0,αc,V0
}. In practice,

the measured values of V0 and fs,0 are used to arrive at the desired con�guration of the
storage ring.

Regular Bursting Regime

Besides some multiples of the synchrotron frequency, there are no particularly prominent
frequencies visible below the instability threshold in Fig. 3.6, which is a consequence
of the mostly stationary charge distribution. This changes above the threshold current
where a single dominant frequency emerges around 20 kHz. The presence of one dominant
frequency in the spectrogram corresponds to a sinusoidal CSR power signal, shown for
the exemplary bunch current I = 115 µA in the upper part of Fig. 3.7. While the main
frequency may be accompanied by some of its higher harmonics, this behavior is always
observed directly above the threshold and is a characteristic feature of the micro-bunching
instability. Simultaneously, the bunch length and the energy spread display a similar
behavior, but are opposite in phase. This can be explained by the rotation of the charge
distribution in phase space due to the synchrotron oscillation described by the harmonic
part of the Hamiltonian in Eq. (3.3). For example, after a rotation of an otherwise stationary
distribution by ninety degrees, the distribution displays the same characteristics in the
other dimension, respectively.1 The corresponding temporal evolution of the bunch pro�le
is illustrated in the lower part of Fig. 3.7. While the bunch pro�le still has a roughly
Gaussian shape, there are small deformations visible around the center of the bunch. By
subtracting the average bunch pro�le

ρ (z) �
1
n

n∑
i=1

ρ (z, ti ) , (3.17)

only the non-stationary part remains

∆ρ (z, ti ) � ρ (z, ti ) − ρ (z) , (3.18)

which reveals a periodic sequence of minima and maxima. It is worth noting that these
extrema are most pronounced at the head of the bunch (0 < z/σz,0 < 2) and coincide with
1 Owing to the symmetry of the standard deviation as the square root of the second central moment, that

is, σ [ρ (z)] = σ [ρ (−z)] and σ [ρ (E)] = σ [ρ (−E)].
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Figure 3.7.: Regular bursting regime (I = 115 µA). Directly above the instability threshold,
the emitted CSR power, the bunch length and the energy spread all display a
sinusoidal oscillation corresponding to the single dominant frequency in the
CSR power spectrogram in Fig. 3.6. These �uctuations are a consequence of
the micro-structures arising in the charge distribution, which can be seen in
the temporal evolution of the bunch pro�le shown in the lower part of the
�gure. The subtraction of the average bunch pro�le reveals a distinct periodic
sequence of minima and maxima.
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Figure 3.8.: Snapshot of the charge distribution in phase space in the regular bursting
regime (left). The deformations of the distribution are emphasized by the
subtraction of the temporal average, revealing a characteristic pattern of micro-
structures (right).

the minima and maxima of the CSR power signal. All these observations are generated
by the dynamic evolution of micro-structures in the longitudinal phase space. Figure 3.8
shows a snapshot of the charge distribution, again with the average distribution

ψ (z,E) �
1
n

n∑
i=1

ψ (z,E, ti ) , (3.19)

being subtracted
∆ψ (z,E, ti ) � ψ (z,E, ti ) −ψ (z,E) , (3.20)

to reveal the occurring micro-structures. Because of synchrotron motion, the structures
rotate in phase space and due to the CSR self-interaction continuously evolve over time.
Yet, in this regime directly above the threshold current, the micro-structures propagate in
a self-sustaining and highly repetitive manner. At each point in time, the micro-structures
generate a wake potential which further maintains the present structure. Except for the
rotation in phase space and the growth of the micro-structures during their motion from
the tail to the head of the bunch, the charge distribution remains mostly constant. After a
fraction of the synchrotron period, when the next micro-structure reaches the head of the
bunch, the charge distribution is almost identical to before. The time it takes this process to
complete corresponds to the oscillation period of the CSR power signal in Fig. 3.7 and the
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3.4. Micro-Bunching Instability

singular dominant frequency in Fig. 3.8. It will thus be referred to as the micro-structure
frequency, initially at about fms = 20 kHz in Fig. 3.6. The maximum emission of CSR is
reached when the state of the micro-structures in phase space is such that it leads to the
largest structures on the bunch pro�le. This typically occurs when two micro-structures
are lined up in their projection on the longitudinal axis, leading to the largest contributions
to the bunch pro�le after integrating over the energy. Because of the consistent, periodic
nature of the dynamics and the sinusoidal CSR power signal directly above the threshold
current, it will be referred to as the regular bursting regime throughout this thesis.

Sawtooth Bursting Regime

With increasing bunch current the micro-structure frequency in Fig. 3.6 slowly shifts
to higher values until it eventually branches out into several contributing frequencies.
Simultaneously, there are low frequency contributions emerging at the left edge of the
�gure (see appendix A.2 for a logarithmically scaled frequency axis). This marks the
transition to the sawtooth bursting regime illustrated in Fig. 3.9. Here, the CSR power
is emitted in sawtooth-shaped bursts with a relatively slow repetition rate, typically in
the range of fburst ∈ [0, 1] kHz. These bursts are accompanied by an initially decreasing
bunch length and energy spread right until the onset of the burst, where both values
increase rapidly and eventually reach a maximum shortly after the peak in CSR power
emission. At this point in time the charge distribution in phase space is relatively broad
and subsequently shrinks again due to radiation damping. Once the bunch length reaches a
minimum value, the next burst occurs and the cycle starts anew. The lower part of Fig. 3.9
shows again the corresponding evolution of the bunch pro�le. While the pro�les are
relatively smooth in-between bursts, there are strong deformations visible which coincide
with the bursts in CSR emission. The subtraction of the average bunch pro�le reveals
again a number of minima and maxima which are most pronounced during the CSR bursts
and are washed out immediately afterwards. These dynamics are again generated by the
formation and evolution of micro-structures in the longitudinal phase space. The shorter
the bunch, the stronger the CSR wake potential, which eventually causes the formation of
micro-structures very similar to those occurring in the regular bursting regime, as can be
seen in Fig. 3.10. In this case though, the arising micro-structures and the corresponding
wake potential lead to a self-amplifying e�ect, causing the micro-structures to rapidly
grow in amplitude. Eventually, the micro-structures reach a maximum amplitude which
can no longer be supported by the corresponding wake potential. The micro-structures
thus smear out in phase space leading to a smooth but broadened charge distribution.

It is worth pointing out that the main di�erence to the regular bursting regime is the
dynamic growth of the micro-structures over several synchrotron periods. The resulting
deformation of the charge distribution is quite comparable, though larger in amplitude,
and the underlying driving mechanism in the form of CSR self-interaction is the same.
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Figure 3.9.: Sawtooth bursting regime (I = 185 µA). At large currents above the instability
threshold, the CSR power is emitted in sawtooth-shaped bursts, in this case with
a repetition rate of fburst = 0.47 kHz. The fast jitter on the signal is caused by
the propagation of the occurring micro-structures in phase space at frequencies
in the range of fms ∈ [19, 25] kHz. The bunch length and the energy spread
increase rapidly during the CSR bursts and are damped afterwards until the
onset of the next burst is reached. These dynamics are generated by micro-
structures which arise in the charge distribution for short enough bunch
lengths and quickly grow in amplitude, causing the increased emission of CSR.
After reaching a maximum amplitude, the micro-structures are washed out
again leading to a relatively smooth charge distribution in-between the CSR
bursts.
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Figure 3.10.: Snapshot of the charge distribution in phase space in the sawtooth bursting
regime (left). The subtraction of the temporal average reveals very similar
micro-structures compared to Fig. 3.8, though with a signi�cantly larger
amplitude (right).

Short-Bunch-Length Bursting Regime

In some cases, when operating at very small bunch lengths, an additional instability region
below the threshold current described by Eq. (3.16) can be observed at KARA. This was
already predicted by the theoretical work in [8] and referred to as a weak instability
considering its dependence on the longitudinal damping time. It has subsequently been
studied in systematic measurements and simulations for KARA, MLS and BESSY II [33, 35]
and, though the simulated thresholds were found to be slightly higher than the measured
values, the overall behavior is in good agreement. The beam dynamics in this regime
are generally comparable to the behavior above the main instability threshold, as one
also observes distinct frequencies due to the occurrence of similar micro-structures in
the longitudinal charge distribution. However, it is worth noting that the micro-structure
frequency in this regime is typically found around the second harmonic of the nominal
synchrotron frequency, whereas in the regular bursting regime, it varies. This corresponds
to a deformation of the charge distribution which is similar to a quadrupole mode as was
found during studies for the SLC damping rings [36] as well as for KARA [37].
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3.4.3. Mitigation Techniques
Over the course of the past twenty-�ve years, various e�orts towards mitigation of the
micro-bunching instability have been undertaken. Nonetheless, to this day, the instability
still poses a critical limitation to the operation of electron storage rings with high bunch
currents. Although the development of a theoretical description in the VFP formalism and
systematic experimental studies have led to a better understanding of the phenomenon,
mitigation techniques are still limited to relatively crude and invasive techniques. One of the
�rst attempts to mitigate the instability was the re-design of the entire vacuum chamber of
the SLC damping rings and a thorough revision of the design of principal vacuum chamber
components for DAΦNE [36]. While a reduction of the impedance budget is a very e�ective
approach, decreasing the strength of the CSR wake potential and therefore increasing
the threshold current, this is quite a drastic measure to mitigate the instability at existing
machines and poses a major limitation for the design of new synchrotron light sources.
Another way to reduce the strength of the CSR self-interaction is to lengthen the electron
bunch. This can be achieved in several ways, for example by increasing the momentum
compaction factor or by heating the bunch to increase the energy spread [38]. While the
former requires a re-design of the magnetic lattice and thereby limits the capabilities to
optimize for other beam parameters, the latter simultaneously deteriorates the transverse
beam properties. Yet another way to lengthen the bunch is through the RF system, e.g.,
by using an RF phase modulation or harmonic cavities. In experiments with a strong
RF phase modulation at the second harmonic of the synchrotron frequency [39–41], the
electron bunch could even be split in two smaller bunchlets leading to a more stable
beam. Ultimately, though, the lengthening of the bunch is also not ideal as it limits the
capabilities for time-resolved experiments. If there is signi�cant coupling between the
longitudinal and the transverse plane it may also a�ect the transverse beam properties.
This is particularly relevant in the development of future di�raction-limited synchrotron
light sources of the fourth generation, where the transverse beam size is several orders of
magnitude smaller than its longitudinal counterpart. Moreover, there are ongoing studies
at KARA to explore the advantages and drawbacks of operating at negative momentum
compaction factor, as this may allow a reduction of sextupole magnet strengths in future
facilities [42]. Yet, as reported in [43], the current-dependency of the bunch length is
found to di�er signi�cantly from the operation at positive momentum compaction factor,
which may lead to a lower threshold of the micro-bunching instability. In a more recent
attempt to mitigate the instability [44], a linear feedback between the measured CSR power
and the accelerating voltage was used at SOLEIL to continuously act on the bunch via
the RF system. The approach succeeded in mitigating the sawtooth-shaped CSR bursts
at lower bunch currents, creating beam dynamics which resemble those in the regular
bursting regime. This can also be achieved via di�erent ways of reducing the relative
strength of the CSR self-interaction, for example by reducing the accelerating voltage or
the momentum compaction factor, which shifts the threshold current and the di�erent
instability regimes to higher currents. The approach pursued in this thesis di�ers from
its predecessors as it does not attempt to reduce the strength of the CSR wake potential,
but tries to cope with its e�ects on the beam dynamics by counteracting the most crucial
parts of the CSR-induced perturbation. It does so by addressing the phenomenon in a more
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subtle way, aiming to smoothen the micro-structures that form in the longitudinal charge
distribution without lengthening the bunch. The general concept is derived from a careful
analysis of the perturbed synchrotron motion under the in�uence of CSR self-interaction
discussed in chapter 5 and formalized as a reinforcement learning problem in chapter 6.
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4. Reinforcement Learning
I believe there is no philosophical high-road in science, with
epistemological signposts. No, we are in a jungle and �nd our way
by trial and error, building our road behind us as we proceed.

— Max Born, Experiment and Theory in Physics

Machine learning (ML) is a sub�eld of computer science which emerged around the 1950s.
In its most general sense, the term refers to the computational task of identifying patterns
in data, which usually, but not necessarily, informs some form of decision process when
confronted with an unseen problem. Especially over the last decade, machine learning
techniques have increasingly found their way into real world applications deeply impacting
a large variety of industrial �elds. As the capabilities of these algorithms are utilized more
e�ectively across a growing number of domains, machine learning is widely perceived
as one of the most disruptive technologies of our time. Ambitious applications in health
care, �nance, web-based services and autonomous driving are likely to not only transform
their respective domains, but society at large. Scienti�c research in general and physics in
particular are no exception to this development. In fact, the general approach of collecting
data to design and inform models which predict the behavior of complex systems is a
remarkable commonality of the two disciplines. Yet, one apparent distinction is the general
aspiration in physics to not only build powerful models, but to simultaneously develop
an understanding about the underlying mechanisms. Contrary to this, ML models are
commonly quite opaque with respect to the human capability to understand the precise way
data patterns are recognized and exploited. Reconciliation of these con�icting aspects is a
major challenge for a broader application of ML techniques in modern physics. However,
the issue may be addressed in di�erent ways, e.g., by selecting and re�ning ML approaches
which are more suitable for the demands in physics or by improving the means of analysis
regarding the trained models. In any case, as scienti�c research becomes more and more
data-driven, ML techniques can be expected to grow into a cornerstone of modern physics.
Some of the recent developments and opportunities in the physical sciences are reviewed
in [45], and speci�cally for particle accelerators in [46].

Machine learning approaches are typically divided into three basic categories according
to their learning paradigms: supervised learning, unsupervised learning and reinforcement
learning. The three sub�elds aim to tackle di�erent classes of problems and mainly di�er in
the way directives are given to guide the respective training process. Supervised learning
operates under the premise of existing examples with inputs and outputs, where the latter
is determined by some form of supervisor, also called the teacher. Based on the provided
data, the goal is to learn a general function which maps inputs to outputs and may thus be
applied to make predictions on new inputs. The key di�erence in unsupervised learning is
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that there are no given target outputs, that is, no supervisor. Operating solely on some form
of input, the goal is to discover intrinsic structure within the data. Successful applications
of unsupervised learning may reveal hidden patterns and thereby provide new information
about the data or guide a subsequent decision process. While the learning paradigm of
supervised learning may be described as learning by example, unsupervised learning
could be interpreted as learning by observation [47]. Reinforcement learning (RL) di�ers
from the other two sub�elds by not requiring a pre-existing data set. Instead, the learning
process is based entirely on the interaction with a dynamic environment. Thereby, the
goal is de�ned as the maximization of a scalar reward signal and all learning takes place
in an iterative process based on the general concept of trial-and-error search. Although
machine learning terms are notoriously di�cult to de�ne, a more thorough attempt at
describing the domain of reinforcement learning is made in the next section.

As will become clear after the chapters 5 and 6, the general task of micro-bunching
control can be approached quite e�ectively from a reinforcement learning perspective. The
following chapter therefore provides a brief introduction to the �eld, speci�es the formal
de�nition of an RL problem and covers a selection of modern RL algorithms. The treatment
and notation throughout this thesis is largely based on [48], which is an excellent textbook
that covers the subject in much more detail. The chapter concludes with a brief review of
ongoing RL e�orts in the �eld of accelerator physics and future opportunities.

4.1. De�ning Aspects
Reinforcement learning is the computational approach to goal-directed learning from
interaction. The learner or decision maker, usually called the agent, iteratively interacts
with an environment while seeking to improve its behavior, as illustrated in Fig. 4.1. At
each time step t , the agent perceives the current situation, the state St of the environment
and performs an action At . Based on the chosen action, the agent receives a scalar reward
Rt+1 and �nds itself in a new state St+1. The agent’s overall goal is de�ned as to maximize
the cumulative reward over time.

Agent Environment

action At

state St

reward Rt

St+1

Rt+1

Figure 4.1.: Reinforcement learning is based entirely on the interaction between an agent
and an environment. At each iteration, the agent receives a state St and reward
Rt and executes an action At . Figure adapted from [48].
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One may think about the reward as analogous to the experiences of pleasure and pain
in biological systems, where a pleasurable response may reinforce a certain behavior
(carrot-and-stick principle). In that sense, reinforcement learning is largely inspired by
and probably the closest ML has gotten to the form of learning that is exercised by humans
and other animals. It thus has long-standing connections to the �elds of neuroscience and
psychology, which remain an active area of research.

A key issue that reinforcement learning is concerned with is the trade-o� between
exploration and exploitation. To discover which strategy yields the highest cumulative
reward, the agent has to exploit the knowledge gained by prior experience, but simultane-
ously needs to explore new actions to improve upon its current strategy. As the brute force
method of testing all possible strategies is almost never feasible, the agent has to progres-
sively favor the actions it considers best to narrow down the problem while maintaining
su�cient exploration to further improve its decisions.

Moreover, as the overall objective is de�ned by the maximum cumulative reward, the
RL agents have to be able to plan ahead and consider giving up immediate reward at the
bene�t of a total amount of reward which is higher, but delayed in time. In that sense, they
are capable of making sacri�ces in the present to improve their chances of reward in the
future.

As the training data is generated by the agent’s interaction with the environment, the
data is sequential and typically not independently and identically distributed. Particularly
when neural networks are involved, modern RL algorithms thus incorporate measures to
reduce the correlation between samples in order to improve the training process.

Another de�ning aspect of reinforcement learning is that it explicitly considers the
whole problem of �nding an optimal strategy in a dynamic and potentially stochastic
environment. This distinguishes reinforcement learning from other types of machine
learning, which typically operate on more narrow problem de�nitions. The overall problem
reinforcement learning is concerned with is not just a subproblem in the overarching
endeavor to reach arti�cial intelligence (AI). In its most general form, the RL problem is
the AI problem [49].

From the very beginning, reinforcement learning has also had a close and mutually
bene�cial relationship with games. That is partly because of the relative ease with which
many games, from the simplest to the most complex, can be framed as a formal RL problem.
The reward as some form of score, the state as the current board position and the legal
moves as the available actions are frequently applicable, straightforward de�nitions of the
essential RL elements. On the one hand, games o�er rich and challenging test scenarios for
the development and re�nement of RL algorithms. On the other hand, RL-based approaches
have led to some of the most powerful computer-based players ever created, which has
had a lasting impact on the way these games are played at the highest level. An early
example is Samuel’s checkers player from 1959 [50], which was pioneering work that
already made use of fundamental RL concepts like temporal-di�erence learning. Perhaps
some of the historically most in�uential work for the application of reinforcement learning
in games was the development of TD-Gammon in 1992 [51], which combined temporal-
di�erence learning with neural networks to achieve grandmaster level of play in the
game of backgammon. Only recently in 2016, an RL-based program called AlphaGo [52]
managed to beat one of the world’s best human players in the game of Go. Owing to
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the enormous search space and the di�culty to de�ne a position evaluation function,
achieving mastery in the game of Go was viewed as a grand challenge for AI and it was
expected to take many years more to reach this level of play. AlphaGo managed to defy
the odds by combining supervised learning from human expert games with reinforcement
learning from games of self-play. It built upon the success of TD-Gammon and recent
progress that had been made on playing Atari games with an algorithm called DQN [53],
which made use of deep convolutional neural networks. AlphaGo combined these concepts
with a novel version of Monte Carlo tree search to improve its selection of moves. A year
later, the exceptional performance of AlphaGo was even surpassed by a revised version of
the program called AlphaGo Zero [54]. In contrast to its predecessor, AlphaGo Zero used
no human data or expertise beyond the basic rules of the game and learned exclusively
from self-play reinforcement learning. The universality of the used approach allowed
a generalized version, named AlphaZero [55], to simultaneously achieve superhuman
performance in the games of chess and shogi, as well as Go. As a consequence of the strict
focus on self-play in training, these programs didn’t merely di�er in pro�ciency from
human play, but also in their style of play. Particularly in the game of Go, this has led
to a process of questioning and rethinking of long-standing, well-established Go theory,
which intriguingly, is an example of humans learning from a black box type ML system,
discussed in more detail in appendix A.3. The remarkable success of AlphaGo has clearly
led to a new wave of attention for the �eld in recent years.

To conclude this section, the following quotation from [48] summarizes the core idea
and some of the most de�ning aspects of reinforcement learning:

“Reinforcement Learning is learning what to do – how to map situations to
actions – so as to maximize a numerical reward signal. The learner is not
told which actions to take, but instead must discover which actions yield the
most reward by trying them. In the most interesting and challenging cases,
actions may a�ect not only the immediate reward but also the next situation
and, through that, all subsequent rewards. These two characteristics – trial-
error-search and delayed reward – are the most distinguishing features of
reinforcement learning.”

4.2. Formal De�nitions
In all applications of machine learning, and especially in the case of reinforcement learning,
it is of the utmost importance to have a precise de�nition of the problem that one is
concerned with. Only in that case can general theoretical statements be derived and
di�erent algorithms be compared in their performance. This section thus formalizes the
RL problem in a mathematical sense and introduces some of the core terminology that is
used to discuss the di�erent aspects of solution methods.

The interaction between the agent and the environment, illustrated in Fig. 4.1, is formally
described as a Markov decision process (MDP). An MDP is the mathematical formalization
of a sequential decision process in which actions in�uence not just immediate rewards,
but also the subsequently encountered situations or states, and through that also future
rewards. The involved decisions thus require a trade-o� between immediate reward and
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the long-term perspective, that is, delayed reward. Over a sequence of discrete time steps
t = 0, 1, 2, 3, . . . , the agent iteratively receives a state St ∈ S of the environment and is
tasked with the decision to chose an action At ∈ A. After the starting state and the �rst
action, and in part as a consequence of its decisions, the agent also receives a numerical
reward Rt ∈ R ⊂ R. The experience collected by the agent is thus always a sequence
starting with

S0,A0,R1, S1,A1,R2, S2,A2,R3, . . . . (4.1)

The transition from one state to another accompanied by a certain reward can be described
by a probabilistic function that determines the dynamics of the MDP. For a particular pair
of values, s′ ∈ S and r ∈ R, the probability for those values occurring at time step t is

p (s′, r | s,a) � Pr{St =s′,Rt =r | St−1=s,At−1=a
}
, (4.2)

with ∑
s ′∈S

∑
r∈R

p (s′, r | s,a) = 1 for all s ∈ S and a ∈ A . (4.3)

This probabilistic function, which is conditioned only on the immediately preceding
state and action, St−1 and At−1, fully characterizes the dynamics of the environment. The
restriction of the function to depend only on the preceding time step is known as the
Markov property, which is best viewed as a condition on the state:

A state signal that succeeds in retaining all relevant information (regarding
the future) is said to be Markov, or to have the Markov property.

This is a pivotal formal condition of all RL problems, which ensures that the agent has
su�cient information about the environment to make its decisions. As the transition
dynamics of the environment do not, for any situation encountered, depend on its history,
knowledge of the current state is su�cient to choose that action which optimizes the
future reward. Intuitive examples, where the Markov property is easily ful�lled, are the
games of Go and chess. At any point in these games, all that matters for the best course
of action and the outcome of the game is the current position on the board, not how it
came about.1 In contrast, �nding a state de�nition which satis�es the Markov property
can be more di�cult in card games. In those games it is frequently important to track
which cards were played already and which remain hidden in the players’ hands or in
the deck. All of this needs to be accounted for by a valid de�nition of the state. Yet, in
many real world examples, the agent’s perception of the environment may be restricted to
some form of sensory input, which results in imperfect information. Even in cases where
the considered system may be fully described by an MDP with a state de�nition that
satis�es the Markov property, these states may only be partially observable to the agent.
In a partially observable Markov decision process (POMDP), which is a generalization
of an MDP, the agent receives only observations Ot ∈ O instead of the true states of
the environment.2 For any particular state s ∈ S of the environment, the corresponding

1 The minor exceptions being related to conditions for draws by repetition.
2 This di�ers from [48] which contains a slightly di�erent de�nition of POMDPs.
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observation o ∈ O received by the agent is determined by a probabilistic function, which
may only depend on the current state s , not on its history

p (o | s ) � Pr{Ot =o | St =s} . (4.4)

In a POMDP, the agent’s task is to map observations to actions with the unvaried goal to
maximize the cumulative reward. In the optimal solution, the agent takes the best action
for each possible observation (or belief over the state of the environment).

The agent’s way of behaving is formally de�ned by the so-called policy, a mapping
from perceived states (or observations) to actions. While it may simply be a deterministic
function π : S→ A, π (s ) = a in some cases, the more general case is a stochastic policy,
where π (a |s ) denotes the probability of taking action At = a when encountering the state
St = s . The policy is the core part of any RL agent, as it alone is su�cient to determine its
behavior. The agent’s goal may be described as �nding the policy which yields the largest
amount of reward.

The high degree of generality with which the formal RL problem is de�ned makes it
applicable to a large number of di�erent tasks and domains. This notion is expressed in
the reward hypothesis which states [48]:

“That all of what we mean by goals and purposes can be well thought of as the
maximization of the expected value of the cumulative sum of a received scalar
signal (called reward).”

The goal, that is to be pursued by an RL agent, is always de�ned in the form of a scalar
reward function

r (s,a, s′) � E
[
Rt | St−1=s,At−1=a, St =s′

]
=

∑
r∈R

r
p (s′, r | s,a)
p (s′ | s,a) . (4.5)

This is a powerful formalism, however, in some applications, where the de�nition of the
reward is not immediately apparent, it can be di�cult to express the goal in just a single
scalar function. While one might be able to describe the overall intention, formalizing
that idea in a precise mathematical function can be a challenging task, but one that it is
essential to the success of any RL-based endeavor.

In the simplest case, the agent will maximize the return, which is simply the sum of the
rewards

Gt = Rt+1 + Rt+2 + Rt+3 + · · · + RT , (4.6)
where T denotes a terminal time step. This is a valid approach in applications that are
episodic tasks, that is, those which come with a natural notion of a terminal state, such
as the end of a game. Although individual episodes may end in di�erent ways, the next
episode begins again in some starting state which is independent of the previous episode.
In contrast, a continuing task is one which does not naturally break down into individual
episodes, but continually goes on without limit. In this case, the return de�ned in Eq. (4.6)
is problematic as the sum of rewards can easily become in�nitely large (for example with
a reward of +1 at every time step). The discounted return

Gt � Rt+1 + γRt+2 + γ
2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1 , (4.7)
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thus incorporates a discount factor 0 ≤ γ ≤ 1 to ensure convergence. The choice of γ = 1
restores the undiscounted reward de�ned in Eq. (4.6), while γ < 1 guarantees convergence
as long as the reward sequence {Rt } is bounded. In the extreme case of γ = 0, the agent
focuses exclusively on the immediate reward and neglects any further consequences of its
actions on the long-term perspective. The discount factor thus directly a�ects the agent’s
trade-o� between immediate and delayed rewards. In this way, the discount factor is not
a free parameter, but its value changes the overall goal pursued by the agent. A policy
which is optimal for the discount factor γ may not be optimal for a di�erent value γ ′. The
discount factor is thus best viewed as a part of the problem de�nition, not as a tunable
parameter of the solution method.

In order to track the objective pursued by the agent, almost all RL algorithms estimate
some form of value function. A value function quanti�es how valuable it is for the agent to
be in a given state (or to perform a particular action in a given state) in terms of the future
reward that can be expected, that is, the expected return. This value always depends on
the current policy followed by the agent, which can easily be illustrated by considering
again the example of games like chess or Go. Unless the agent knows how to convert a
favorable position into a win, the position is clearly not as valuable as it may be otherwise.
With suboptimal play, the agent may make a mistake which leads to a draw or even a
loss. The expected outcome of the game (or expected return) thus depends not only on the
position, but also on the agent’s play de�ned by its policy. Hence, the state-value function
for policy π is de�ned as the expected return when starting in state s and following policy
π thereafter

vπ (s ) � Eπ[Gt | St =s] = Eπ

∞∑
k=0

γkRt+k+1
��� St =s

 . (4.8)

To help with the agent’s task of choosing actions, it can be more convenient to de�ne a
function which describes the value of taking the action a when encountering a particular
state s . The action-value function for policy π is thus de�ned as the expected return when
starting in state s , taking action a, and following policy π thereafter

qπ (s,a) � Eπ[Gt | St =s,At =a] = Eπ

∞∑
k=0

γkRt+k+1
��� St =s,At =a

 . (4.9)

The relation between the two value functions is simply

vπ (s ) =
∑
a

π (s |a) qπ (s,a) . (4.10)

To estimate these functions one typically makes use of the recursive relationship between
the value of a state St = s and the value of its successor state St+1 = s′. As the return
de�ned in Eq. (4.7) can be decomposed into the immediate reward and the discounted
return of the successor state

Gt = Rt+1 + γ (Rt+2 + γRt+3 + . . . ) = Rt+1 + γGt+1 , (4.11)
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the same can also be done for the value function

vπ (s ) � Eπ[Gt | St =s]
= Eπ[Rt+1 + γGt+1 | St =s]
= Eπ[Rt+1 + γvπ (St+1) | St =s]
=

∑
a

π (a |s )
∑
s ′,r

p (s′, r | s,a) [r + γvπ (s′)] . (4.12)

Equation (4.12) is known as the Bellman equation for vπ . It expresses the value of a given
state s in terms of the immediate reward and the values of possible successor states under
policy π weighted by the transition probabilities of the environment. Analogously, one
obtains the Bellman equation for the action-value function

qπ (s,a) =
∑
s ′,r

p (s′, r | s,a)
r + γ

∑
a

π (s′,a′) qπ (s′,a′)
 . (4.13)

While there are RL algorithms which dispense with the idea of a value function and
rely exclusively on direct policy search, most algorithms incorporate some form of value
estimation. The Bellman equation forms the basis of a number of ways to approximate
value functions and thereby gives rise to di�erent learning concepts, which are introduced
in the next section. The optimal state-value function

v∗(s ) � max
π

vπ (s ) for all s ∈ S , (4.14)

describes the maximum return that can be expected for any policy. A policy π is optimal
if and only if it attains the same amount of expected return, vπ (s ) = v∗(s ) for all s ∈ S. An
optimal policy π∗ has also an optimal action-value function

q∗(s,a) � max
π

qπ (s,a) for all s ∈ S and a ∈ A . (4.15)

The Bellman equation for optimal value functions can be written in a simpler form, without
reference to a particular policy. The Bellman optimality equation for v∗ is

v∗(s ) = max
a

∑
s ′,r

p (s′, r | s,a) [r + γv∗(s′)] , (4.16)

and for q∗
q∗(s,a) =

∑
s ′,r

p (s′, r | s,a)
[
r + γ max

a′
q∗(s′,a′)

]
. (4.17)

In theory, the Bellman optimality equations for all states s ∈ S form a set of n equations
with n unknowns and may thus be solved by a variety of methods for solving systems of
nonlinear equations. Given either v∗ or q∗, it is relatively easy to de�ne an optimal policy
by acting greedily, that is, by always choosing the action that corresponds to the highest
value, e.g.

π∗(s ) = argmax
a

q∗(s,a) . (4.18)
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In practice, it is rarely feasible to solve RL problems in this way as it relies on a number of
strict assumptions which are frequently violated, like perfect ful�llment of the Markov
property or precise knowledge of the environment’s dynamics. One might also simply not
have su�cient computing resources to solve the problem within a reasonable amount of
runtime. While a well-de�ned notion of optimality is helpful to organize and guide di�erent
approaches towards learning, in reinforcement learning applications one commonly has
to settle for approximate solutions.

Another concept which may help with the overall objective of �nding good policies
is the use of a model.3 In reinforcement learning, a model approximates the dynamics
of the environment and thereby allows for predictions of the environment’s response to
actions taken by the agent. The use of a model provides RL agents with the opportunity
to consider future situations before they are actually encountered. This may inform their
course of action ahead of time and is called planning. RL algorithms that make use of
models and planning are called model-based methods, whereas those that do not are called
model-free methods. In model-based methods, the experience collected by the agent in the
actual environment can be augmented by simulated experience using the model, which
can greatly increase the sample e�ciency compared to model-free approaches.

4.3. Learning Concepts
Given the above de�nition of the formal RL problem, this section addresses the question of
how to �nd better policies, that is, how to improve the agent’s behavior until the problem
can be considered solved. In general, the answer to this question depends heavily on the
type of information which is available to the agent and on the nature of the state and
action space, S and A. To introduce some of the most fundamental learning concepts, this
section focuses on the special case of a �nite MDP, where the state, action and reward sets,
S, A and R, are all �nite. Section 4.4 then extends these ideas to the more general case of
continuous state and action spaces.

For cases where the transition dynamics of the MDP p (s′, r | s,a) are known, there is a
collection of algorithms, referred to as dynamic programming (DP), which can be used to
compute optimal policies. Because of their requirement of a perfect model and their great
computational expense, these methods are of limited utility in practical RL applications.
However, they provide a good foundation for understanding the methods introduced later
on. Dynamic programming and a large part of reinforcement learning methods in general
build upon the idea of using a value function to guide the search for good policies. In
a �rst step, one is thus concerned with �nding the value function vπ for a given policy
π , which is called policy evaluation or the prediction problem. Although applying the
Bellman equation in Eq. (4.12) to all states s ∈ S leads to a system of linear equations which
may be solved for vπ by di�erent methods, one is more interested in iterative solution

3 In contrast to the broad use of the term model across the domain of machine learning, it has a quite
speci�c meaning in reinforcement learning which is related to the capability of agents to use planning. A
model-free RL method may still make use of neural networks or other modeling concepts which are not
directly related to planning.
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Figure 4.2.: The term generalized policy iteration refers to the concept of alternating
between policy evaluation and policy improvement steps (left). Starting with
an arbitrary policy π and value function v , the estimate of the value function
is improved towards the true value function vπ and then used to improve the
policy by making it greedy with respect tov (middle). The interaction between
the two processes eventually leads to a stable joint solution, the optimal value
function v∗ and an optimal policy π∗ (right). Figure adapted from [48].

methods due to their scalability. Starting with an initial, arbitrarily chosen estimate v0,
the Bellman equation can be used as an update rule

vk+1(s ) � E[Rt+1 + γvk (St+1) | St =s]
=

∑
a

π (a |s )
∑
s ′,r

p (s′, r | s,a) [r + γvk (s′)] for all s ∈ S , (4.19)

to obtain a sequence of approximations {vk }, which can be shown to converge to vπ as
k → ∞. The algorithm de�ned by Eq. (4.19) is called iterative policy evaluation. Given an
estimate of the value function for the currently followed policy, one can simply improve
the original policy π by making it greedy with respect to the original value function vπ .
This process is referred to as policy improvement. In case of an arbitrary deterministic
policy π (s ), the new greedy policy may be de�ned as

π ′(s ) = argmax
a

qπ (s,a)

= argmax
a

∑
s ′,r

p (s′, r | s,a) [r + γvπ (s′)] . (4.20)

An algorithm that alternates between these two processes, policy evaluation and policy
improvement, can be expected to converge to the optimal value function and an optimal
policy. The general idea of interleaving these two processes is called generalized policy
iteration (GPI) and illustrated in Fig. 4.2. The idea of GPI is not limited to just DP methods,
but a core concept of many RL solution methods. Another remarkable property of DP
methods is that they estimate the values of states based on estimates of the values of
successor states, as in Eq. (4.19). This general concept of updating estimates based on other
estimates is called bootstrapping and a central idea used by many RL methods.
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In cases where the dynamics of the environment are unknown, which is the majority of
situations, the RL agent has to learn exclusively from experience, that is, sample sequences
of states, actions and rewards. Monte Carlo methods o�er exactly that, but may still attain
optimal solutions. The term refers to methods which only update value estimates and
policies at the end of an episode based on averaged complete returns. They are thus only
well-de�ned for episodic tasks, where all episodes eventually terminate and complete
returns can be calculated. In this case, one can adapt the concept of GPI for Monte Carlo
methods by estimating the expected return via the average return seen by the agent after
visiting a particular state

vπ (s ) � Eπ[Gt | St =s] ≈ avgπ[Gt | St =s] . (4.21)

As the number of visits to the state increases and more returns are observed, the average in
Eq. (4.21) should converge to the expected value of the return. In order to perform policy
improvement in a similar way as in Eq. (4.20) it is useful to estimate the action-values
instead

qπ (s,a) � Eπ[Gt | St =s,At =a] ≈ avgπ[Gt | St =s,At =a] . (4.22)

Using the action-value function, the new greedy policy can simply be constructed as

π ′(s ) = argmax
a

qπ (s,a) . (4.23)

The main problem with this approach is that many state-action pairs may never be visited
by the agent. In the case of a deterministic policy, the agent will always choose the same
action π (s ) = a and thus not provide any returns for other actions. The estimates of
qπ (s,a

′) will therefore not improve and the agent may be stuck in a suboptimal solution.
To prevent this from happening, one has to ensure su�cient exploration, which means
that the agent has to eventually try all actions. One way to achieve this, is to guarantee a
minimal probability with which each action is taken. An ε-greedy policy

π ′(s,a) =

1 − ε + ε/|A|, if a = argmaxa qπ (s,a)
ε/|A|, if a , argmaxa qπ (s,a)

, (4.24)

for some ε > 0, thus selects the greedy action most of the time, but retains the minimal
probability ε/|A| for all other actions. Although policies like the one de�ned in Eq. (4.24)
solve the problem of maintaining exploration, they introduce explicit randomness and
thereby give up optimal behavior. This is indicative of a bigger issue, namely, the inevitable
trade-o� between exploration and exploitation. One approach to deal with this problem
more e�ectively is the idea of using two policies instead of one. While an exploratory
behavior policy is used to interact with the environment and to generate experience, the
agent also retains and updates a second, greedy target policy, which fully exploits the
gained knowledge and approximates optimal behavior. The general concept of learning
about one policy while following another to sample data is called o�-policy learning.
Compared to the on-policy approach of using only one policy, o�-policy methods often
come at the cost of greater variance and slower convergence. Learning about a policy
from data which is distributed according to a di�erent policy also requires special care
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and additional measures. On the other hand, o�-policy learning is the more powerful
and general concept. In fact, o�-policy methods include the on-policy case as the special
instance where behavior and target policy are the same. In principle, they also allow RL
agents to learn from data generated by more conventional controllers or from human
behavior, which opens up a variety of additional use cases.

While Monte Carlo methods can learn directly from raw experience, they only perform
updates at the end of an episode, which is not very e�cient and may thus require a
lot of sample data. This issue is addressed by the concept of temporal-di�erence (TD)
learning, which is a very central idea in reinforcement learning. TD methods can perform
updates already during episodes because, like DP methods, they base estimates in part
on other estimates, that is, they bootstrap. However, unlike DP methods, they can also
learn exclusively from experience and don’t require any knowledge about the transition
dynamics of the environment. In this way, TD methods incorporate ideas from both, DP
and Monte Carlo methods. Like the other two, they also use the concept of GPI to �nd
better policies. In order to solve the prediction problem, that is, to estimate the value
function, the simplest TD method makes the update4

V (St ) ← V (St ) + α [Rt+1 + γV (St+1) −V (St )] , (4.25)

immediately after transitioning from St to St+1 and receiving Rt+1. Here, α ∈ (0, 1] is a
constant parameter, referred to as the learning rate, which determines the step-size of the
update. Each iteration moves V (St ) towards the target Rt+1 + γV (St+1) by reducing the
so-called TD error

δt � Rt+1 + γV (St+1) −V (St ) . (4.26)

As the TD error approaches zero, the updates become smaller and smaller and the value
estimate ofV (St ) converges. The algorithm de�ned by Eq. (4.25) is called TD(0) or one-step
TD as it looks exactly one step ahead to �nd an estimate which the update is based on.
This is a special case of the TD(λ) algorithm which generalizes the idea to an arbitrary
number of steps, up to λ = 1, which corresponds to using complete returns as in the case
of Monte Carlo methods. To perform policy improvement, it is again more convenient to
estimate the action-value function

Q (St ,At ) ← Q (St ,At ) + α [Rt+1 + γQ (St+1,At+1) −Q (St ,At )] . (4.27)

The algorithm de�ned by this update rule is called Sarsa, referring to the fact that is makes
use of every element in the tuple (St ,At ,Rt+1, St+1,At+1). Based on Sarsa prediction of the
action-value function one can easily de�ne an on-policy control method by combining
it with an ε-greedy policy as de�ned in Eq. (4.24). One of the early breakthroughs in
reinforcement learning was the development of an o�-policy version of the Sarsa method.
The algorithm, called Q-learning, is de�ned by the update rule

Q (St ,At ) ← Q (St ,At ) + α
[
Rt+1 + γ max

a
Q (St+1,a) −Q (St ,At )

]
, (4.28)

4 V and Q denote array estimates of the state-value function v and the action-value function q, respectively.
In the case of �nite MDPs, these are valid representations which may be used for practical implementations.
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where the estimate of the action-value function in the next state Q (St+1,At+1) is replaced
by a maximization over all available actions in state St+1. Instead of considering the action
that was actually taken by the behavior policy, At+1, the update rule considers the optimal
way to continue from this point onwards. Therefore, the action-value function learned via
Eq. (4.28) directly approximates q∗, independent of the policy being followed. In fact, under
the condition of su�cient exploration, Q-learning has been shown to always converge to
the optimal action-value function.

The learning concepts introduced in this section, in particular Q-learning and TD
learning, are used by many modern RL algorithms. While better policies are generally
found through some form of GPI, the discussed DP, Monte Carlo and TD methods mostly
di�er in the way they approach the prediction problem, that is, how they estimate value
functions. By combining the ability to learn directly from experience with the idea of
bootstrapping, TD methods are capable of processing experience online while requiring
relatively little computation. These bene�ts make TD learning one of the cornerstones of
modern reinforcement learning.

4.4. Approximate Solution Methods
The algorithms discussed in the previous section are e�ective solution methods for �nite
MDPs with relatively small state and action spaces. This, however, is quite a strong
presupposition as many problems naturally come with state spaces which are enormous,
as in the example of games like chess or Go. And even worse, in physical problems the
state space is typically continuous. In those cases, the solution methods of section 4.3 are
no longer applicable as the value functions cannot be implemented as simple lookup tables
or arrays. Any attempt to do so would require a lot of resources in terms of sample data,
memory and computation time. Yet, for very large state spaces, most of the states will never
have been encountered by the agent regardless. The learned value function thus cannot be
expected to make usable predictions about the environment. The key issue to solve here is
that of generalization. As the agent cannot be expected to encounter every possible state,
it has to generalize its experience from those states which were actually visited. While
relying on experience from similar states may improve the agent’s decision making in
new, previously unseen situations, it clearly cannot be expected to act optimally in every
instance. Instead, one has to settle for approximate solutions. The kind of generalization
required here is usually referred to as function approximation. Using only the experience
of a limited subset, the task is to infer an approximate value function for the entire, possibly
in�nite, set of states. The general task of function approximation is illustrated for a simple
one-dimensional function in Fig. 4.3. Fortunately, function approximation is precisely the
type of problem which is considered in supervised learning, which makes many of the
methods studied in that �eld applicable to the task at hand. Yet, the reinforcement learning
setting involves a number of issues, which usually do not arise in supervised learning, such
as bootstrapping, delayed targets or nonstationarity. Reinforcement learning methods thus
commonly introduce additional measures to improve the stability of the training process.
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Figure 4.3.: Principle of function approximation. Given only a collection of samples
{(xi ,yi )}, with f (xi ) = yi , the task is to approximate the function f (x ) on
the entirety of its domain.

Approximate solution methods which use GPI typically represent the estimated value
function as a parametrized function v̂ (s,w ) with weight vector w ∈ Rd . During policy
evaluation, they usually minimize the mean squared value error

VE(w ) �
∑
s∈S

µ (s ) [vπ (s ) − v̂ (s,w )]2 , (4.29)

where µ (s ) denotes the on-policy distribution, that is, the distribution of states while
following the policy π . A particularly well suited class of algorithms to optimize the
objective function de�ned by Eq. (4.29) in online reinforcement learning are those based
on stochastic gradient descent (SGD). In order to apply gradient descent methods, the
approximate value function v̂ (s,w ) has to be a di�erentiable function of w for all s ∈ S. If
that is the case, SGD methods can be used to iteratively adjust the weight vector wt over a
series of time steps t to reduce the mean squared value error. They do so by moving the
weight vector a small amount into the direction of the largest error reduction

wt+1 � wt − 1
2α∇ [Ut − v̂ (St ,wt )]2

= wt + α [Ut − v̂ (St ,wt )]∇v̂ (St ,wt ) , (4.30)

where Ut is an estimate of the true value function vπ (St ), e.g., the Monte Carlo target
Ut � Gt or the TD(0) targetUt � Rt+1 +γv̂ (St+1,w ). An important special case of function
approximation, where this concept is applicable, is that in which v̂ (s,w ) is a linear function
of the weight vector w . Here, the states are described by a real-valued feature vector

x (s ) � (x1(s ),x2(s ), . . . ,xd (s ))
> , (4.31)

where each feature xi is the value of a function xi : S → R. The linear approximate
state-value function is given by the inner product between the weight vector w and the
feature vector x (s )

v̂ (s,w ) � w>x (s ) �
d∑
i=1

wixi (s ) . (4.32)
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Given the simple gradient of this function, ∇v̂ (s,w ) = x (s ), the general SGD update in
Eq. (4.30) reduces to

wt+1 � wt + α
[
Ut −w>t x (St )

]
x (St ) , (4.33)

which in the special case of using the TD(0) target is

wt+1 � wt + α
[
Rt+1 + γw

>
t x (St+1) −w>t x (St )

]
x (St ) . (4.34)

Analogously, one can derive similar update rules for an approximate action-value function
q̂(s,a,w ), which can facilitate the construction of a policy, e.g., by using an ε-greedy policy
as de�ned in Eq. (4.24). These linear methods already give rise to powerful approximate
solution methods, which are applicable to a large range of problems and can be very e�cient
in terms of sample data and computation. Thereby, the performance is crucially dependent
on the representation of the states in terms of the features xi . The choice of appropriate
features for a task depends heavily on the particularities of the considered problem and
can be a way of adding prior domain knowledge to RL systems. As constructing features
which are ideally suited for these linear methods can be a very challenging task, it is often
bene�cial to resort to nonlinear function approximation.

The most common way of achieving nonlinear function approximation in reinforcement
learning is through the use of arti�cial neural networks. A neural network (NN) is composed
of a number of interconnected units, also called nodes or neurons, which process an
incoming real-valued signal and transmit the updated signal to other units. The connections
between individual units are called edges, which typically have a weight wi that scales the
transmitted signal. The units are arranged in so-called layers, which may perform di�erent
operations on their respective input. An incoming signal travels from the input layer to
the output layer while passing an arbitrary number of hidden layers. Overall, a neural
network is a parametrized di�erentiable function f (x ,w ), which maps a real-valued input
vector x to a possibly also vector-valued output y. One of the simplest forms of a neural
network is a feedforward NN as illustrated in Fig. 4.4. Here, the real-valued input vector
x , which may now have a di�erent dimension as the weight vector w ∈ Rd , is initially
processed by the neurons in the �rst hidden layer. Each neuron in that layer computes
the weighted sum of the input signals, adds a real-valued bias wb and applies a so-called
activation function, e.g., д(w1x1+w2x2+w3x3+w4x4+wb ). The such computed outputs of
the �rst hidden layer serve as the inputs of the second hidden layer, where there procedure
is repeated. Finally, the outputs of the second hidden layer are the inputs of the single
neuron in the output layer, which again computes the weighted sum, adds a bias and
applies an activation function. In general, a feedforward neural network may have an
arbitrary number of hidden layers, each with an arbitrary number of units. Typically, the
number of parameters aggregated in w , that is, the number of all weights and biases, is
much larger than the number of inputs. Di�erent layers and di�erent nodes may also have
di�erent activation functions. Some of the most commonly used functions are the logistic
sigmoid function

σ : R→ (0, 1) with σ (x ) �
1

1 + e−x , (4.35)
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Figure 4.4.: A simple example of a feedforward neural network. The four-dimensional
input vector x is processed by two hidden layers with �ve nodes each, before
a single output node computes the output f (x ,w ).

the tangens hyperbolicus, which is simply a rescaled version of the logistic sigmoid function
de�ned above

tanh : R→ (−1, 1) with tanh(x ) � 1 − 2
1 + e2x = 2σ (2x ) − 1 , (4.36)

the recti�ed linear unit (ReLU) activation function

ReLU : R→ [0,∞) with ReLU(x ) � max(0,x ) , (4.37)

or simply the identity function

id : R→ (−∞,∞) with id(x ) � x . (4.38)

Perhaps the most widely used activation function nowadays is the ReLU activation function.
If only the identity function id(x ) is used for all neurons, then the output is just a linear
function of the input vector x . The nonlinearity of the overall function f (x ,w ) is achieved
by using nonlinear activation functions like those in Eqs. (4.35), (4.36) and (4.37). There are
many di�erent architectures beyond these simple feedforward NNs, like recurrent neural
networks (RNNs) or convolutional neural networks (CNNs). A more detailed introduction
to the general subject, and to these architectures in particular, can be found in [56].
However, in theory, a simple feedforward NN with a single hidden layer, which contains
enough units, can already approximate any continuous function. Despite this remarkable
property, more sophisticated architectures and additional hidden layers can signi�cantly
improve the performance of NNs in practical applications. Particularly the use of NNs
with many hidden layers, which are referred to as deep neural networks, has led to
impressive results in recent years. One of the most prominent examples is the use of deep
convolutional neural networks in the domain of computer vision, which led to signi�cant
performance gains in tasks like the classi�cation or segmentation of images. Here, the
additional hidden layers progressively extract higher-level features from raw pixel input
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and form a hierarchical representation of concepts and patterns. Independent of the used
architecture, neural networks are typically trained by some form of back-propagation
based on (stochastic) gradient descent. Given an NN-based approximation of the value
function v̂ (s,w ) or q̂(s,a,w ), update rules like the one de�ned in Eq. (4.30) can be used to
train the network and to iteratively improve the value estimation.

A remarkable side e�ect of using function approximation in reinforcement learning
is that it also extends these methods to partially observable problems. If the chosen
representation of the approximate value function does not allow the estimated value to
depend on certain aspects of the state, then it is just as if those aspects are unobservable.

While the use of a parametrized approximate value function addresses the issue of
enormous state spaces, it does not cover the case of very large or continuous action spaces.
The greedy policies in Eqs. (4.23) and (4.24) are implicitly de�ned by the action-value
function and rely on a maximization of qπ (s,a) over all available actions a ∈ A in a given
state s ∈ S. This is no longer feasible for very large action spaces. Instead, the policy is
represented explicitly in a parametrized form

π (a |s,θ ) = Pr{At =a | St =s,θ t =θ } , (4.39)

where θ t ∈ Rd denotes the policy’s parameter vector θ at time step t . In this case, the
RL objective is equivalent to the search for that parameter vector θ which optimizes the
agent’s performance. Given a di�erentiable scalar measure of the agent’s performance
J (θ ), the parameter vector can be improved iteratively based on the gradient with respect
to its argument, or more generally

θ t+1 = θ t + α F∇J (θ t ) , (4.40)

where F∇J (θ t ) denotes a stochastic estimate of the gradient. RL methods which use a
parametrized policy and follow this general policy improvement scheme are called policy
gradient methods, independent of whether or not they use an approximate value function.
In episodic tasks, the performance measure may simply be de�ned as

J (θ ) � vπθ (s0) , (4.41)

where vπθ (s ) is the true value function for the policy πθ determined by the parameter
vector θ and s0 denotes the starting state. In this case, a change in the parameter vector
θ does not merely a�ect the actions taken by the agent, but also the distribution of the
encountered states which depends on the typically unknown transition dynamics of the
environment. This makes the policy improvement step more complicated. Fortunately,
the so-called policy gradient theorem relates the required gradient of J (θ ) to known
quantities5

∇J (θ ) ∝
∑
s

µ (s )
∑
a

qπ (s,a)∇π (a |s,θ )

= Eπ


∑
a

qπ (St ,a)∇π (a |St ,θ )
 . (4.42)

5 Here, and in the remaining section, only the special case of no discounting (γ = 1) is considered for
simplicity of notation.
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Based on the expression in Eq. (4.42) and the Monte Carlo estimate of the discounted
return, one can derive the update rule

θ t+1 � θ t + α Gt
∇π (At |St ,θ t )
π (At |St ,θ t )

= θ t + α Gt∇ lnπ (At |St ,θ t ) , (4.43)
which de�nes the so-called REINFORCE algorithm. This is a Monte Carlo policy gradient
method which uses complete returns instead of an estimated value function. In contrast to
the value-based methods discussed above, REINFORCE is a policy-based algorithm which
does not use an explicit value function. Reinforcement learning methods which use both,
a parametrized value function v̂ (s,w ) or q̂(s,a,w ) and a parametrized policy π (a |s,θ ), are
usually referred to as actor-critic methods. The term actor refers to the learned policy
π (a |s,θ ) which determines the chosen actions while the term critic refers to the learned
value function, v̂ (s,w ) or q̂(s,a,w ), which is used to evaluate (or criticize) the action
selection. Given an approximate value function, the Monte Carlo target in Eq. (4.43) can
be replaced by an expression that allows for updates before the end of an episode. One
example is the one-step actor-critic de�ned by

θ t+1 � θ t + α
[
Rt+1 + γv̂ (St+1,w ) − v̂ (St ,w )

]∇π (At |St ,θ t )
π (At |St ,θ t )

= θ t + α δt∇ lnπ (At |St ,θ t ) , (4.44)
which instead uses the TD error δt . Analogously to the TD(0) methods Sarsa and Q-
learning, the update rule in Eq. (4.44) uses bootstrapping to allow for updates after each
time step. While the TD target reduces variance compared to the Monte Carlo approach, it
depends on the approximation of the value function and thus introduces bias. The idea of
optimizing this trade-o� gives rise to a range of actor-critic variants, some of which resort
to estimating the so-called advantage function

Aπ (s,a) � qπ (s,a) −vπ (s ) . (4.45)
A selection of modern actor-critic algorithms is introduced in the following section. Overall,
policy gradient methods can be used to address problems with very large or continuous
action spaces, which extends the collection of RL solution methods to the most general
case of a continuous state and action space.

4.5. Modern Reinforcement Learning Algorithms
As detailed in the chapters 5 and 6, the problem considered in this thesis is a continuing
task with a continuous state and action space. This section thus covers a selection of
modern algorithms which are suited for this type of RL problem. Given the availability
of a simulation code and the fast data rates expected at the actual storage ring, sample
e�ciency is not a primary concern in the context of this task, which is why only model-free
methods are considered. The fact that these algorithms were all published between 2015
and 2018 is indicative of the rapid ongoing development in the �eld. It also means that
further improvements upon the presented algorithms as well as the publication of new
methods can be expected in the coming years.
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4.5.1. Deep Deterministic Policy Gradient
The combination of deep neural networks with the concept of Q-learning led to the devel-
opment of an RL algorithm, called Deep Q-Network (DQN), which achieved impressive
results in the domain of Atari games [53]. Receiving only raw pixel information and the
game score as input, DQN was able to achieve a level of control that was comparable to
human play. While DQN is capable of solving problems with high-dimensional observation
spaces, it can only handle discrete and low-dimensional action spaces. The extension of
the learning concepts underlying DQN to the domain of continuous action spaces led
to the development of an algorithm called Deep Deterministic Policy Gradient (DDPG)
in 2015 [57], which also builds upon the Deterministic Policy Gradient (DPG) method
published the year before [58]. DDPG is a model-free, o�-policy actor-critic algorithm
which uses deep neural networks for approximation of the action-value function and a
deterministic policy. Assuming a deterministic policy π : S→ A, the action-value function
can be expressed as

qπ (St ,At ) = E[Rt+1 + γqπ (St+1,π (St+1))] . (4.46)

This allows for an approximate action-value function q̂(s,a,w ), which can be learned
o�-policy, that is, by transitions generated from a di�erent stochastic behavior policy
b (a |s ). The parametrized action-value function is optimized by minimizing the loss

L(w ) � Eb

[(
q̂(St ,At ,w ) − yt

)2]
, (4.47)

with
yt � Rt+1 + γq̂(St+1,π (St+1,θ ),w ) , (4.48)

where the fact that yt is also dependent onw is ignored. The parametrized policy π (s,θ ) is
updated by using the gradient of the expected return from the start distribution, given by

∇θ J (θ ) ≈ Eb
[
∇θπ (s,θ ) ∇aq̂(s,a,w ) |a=π (s,θ )

]
. (4.49)

Following the example of DQN, DDPG also makes use of a so-called replay bu�er and sep-
arate target networks to stabilize the training process of the nonlinear function approxima-
tors. The replay bu�er is a �nite sized cache which stores the transitions (St ,At ,Rt+1, St+1)
sampled by the exploration policy. The updates of the actor and the critic are performed
on a minibatch sampled uniformly from the bu�er, which decorrelates the transitions.
The target networks are copies, π ′(s,θ ′) and q̂′(s,a,w′), of the actor and critic networks,
respectively. They are used to slowly track the learned networks,

w′ ← τw + (1 − τ )w′ and θ ′ ← τθ + (1 − τ )θ ′ , (4.50)

with τ � 1. This constrains the target values to change slowly and improves the stability of
learning. As DDPG is an o�-policy algorithm, it can be combined with arbitrary exploration
policies. In [57], the behavior policy is constructed by adding noise sampled from a noise
process N to the actor policy

b (St ) � π (St ,θ t ) +N , (4.51)
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suggesting an Ornstein-Uhlenbeck process [59] for exploration e�ciency in physical
control problems with inertia. The DDPG algorithm was found to robustly solve a range of
simulated physics tasks, including classic problems such as cartpole swing-up and legged
locomotion, even when learning directly from raw pixel inputs.

4.5.2. Twin Delayed Deep Deterministic Policy Gradient
To address commonly observed issues with DDPG, the so-called Twin Delayed Deep
Deterministic Policy Gradient (TD3) method published in 2018 [60] introduces additional
measures to improve the stability of learning. Building upon the DDPG algorithm, it
addresses potential overestimation of action-values and its deteriorating e�ects on learning
through three appropriate adjustments: clipped double-Q learning, target policy smoothing
and delayed policy updates. The �rst of these refers to the fact that TD3 concurrently
learns two approximate action-value functions, q̂1 and q̂2, which are used to adjust the
target

yt � Rt+1 + γ min
i=1,2

q̂i (St+1,π (St+1,θ ),wi ) . (4.52)

Both action-value functions are trained on this target, that is, they optimize the loss
function de�ned in Eq. (4.47) for the new target. Using only the smaller value of the
two functions, q̂1 and q̂2, helps to avoid overestimation of the action-value function. The
parametrized policy π (s,θ ) is trained according to the gradient in Eq. (4.49) using only the
�rst action-value function q̂1(s,a,w1). The de�nition of yt in Eq. (4.52) is further adjusted
by adding additional noise to the Q-learning target computed by the learned target policy
π (s,θ ). While an approximate value function generally leads to similar values for similar
actions, this is enforced explicitly by �tting a small area around the target action

yt � Rt+1 + γ min
i=1,2

q̂i (St+1,π (St+1,θ ) + ϵ,wi ) , (4.53)

with the noise parameter
ϵ ∼ clip(N (0,σ 2),−ϵ̂, ϵ̂ ) , (4.54)

where N (0,σ 2) denotes the normal distribution with zero mean and standard deviation σ
and ϵ̂ is constraining the magnitude of the noise. This is called target policy smoothing
and acts as a form of regularization. Lastly, TD3 also delays the updates of the policy and
the target networks. While the approximate action-value functions are updated after each
time step, the policy and target networks are only updated every couple iterations, which
further stabilizes the training process. In tests on a range of OpenAI gym [61] tasks, TD3
has been found to match or outperform the original version of DDPG.

4.5.3. Soft Actor-Critic
The Soft Actor-Critic (SAC) algorithm published in 2018 [62] shares several features with
TD3. However, unlike DDPG and TD3, it learns a stochastic policy π (a |s,θ ) and uses
entropy regularization. In maximum entropy reinforcement learning, the agent seeks to
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maximize both the expected return and the expected entropy of the policy. The reinforce-
ment learning objective is thus de�ned as �nding the policy

π∗ � argmax
π
Eπ


∞∑
k=0

γk
(
Rt+k+1 + αTH (π ( · |St+k ))

) , (4.55)

with the entropy
H (p) � E[− lnp (x )] , (4.56)

and the temperature parameter αT > 0, which determines the trade-o� between reward
and entropy, and thus controls the stochasticity of the optimal policy. The corresponding
state-value function is consequently de�ned as

vπ (s ) � Eπ


∞∑
k=0

γk
(
Rt+k+1 + αTH (π ( · |St+k ))

) ��� St =s
 , (4.57)

and the action-value function as

qπ (s,a) � Eπ


∞∑
k=0

γk
(
Rt+k+1 + αTH (π ( · |St+k ))

) ��� St =s,At =a
 . (4.58)

Analogously to TD3, the SAC algorithm trains two parametrized action-value functions,
q̂1(s,a,w1) and q̂2(s,a,w2). They are optimized based on the loss function

L(wi ) � Eπ

[1
2
(
q̂(St ,At ,wi ) − yt

)2]
, (4.59)

where the Q-learning target may be expressed as

yt � Rt+1 + γ (1 − τ )
(
min
i=1,2

q̂i (St+1,At+1,wi ) − αT lnπ (At+1 |St+1,θ )
)
, (4.60)

where At+1 is distributed according to the learned policy, that is, At+1 ∼ π ( · |St+1,θ ).
The stochastic policy can be implemented as a Gaussian distribution with the mean and
covariance given by a neural network. It is optimized based on the gradient of

J (θ ) � E

[
DKL

(
π ( · |St ,θ )







exp(q̂1(St , · ,w1))

ZKL(St ,w1)

)]
, (4.61)

where DKL denotes the Kullback-Leibler divergence and the generally intractable partition
function ZKL(St ,w1) normalizes the distribution, but does not contribute to the required
gradient and can thus be ignored. The inclusion of the entropy in the SAC objective serves
the purpose of improving the exploration and robustness of this actor-critic method. The
algorithm was tested on a range of OpenAI gym tasks and found to generally outperform
DDPG and other state-of-the-art model-free deep RL methods.
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4.5.4. Proximal Policy Optimization
In contrast to the o�-policy methods introduced above, the Proximal Policy Optimization
(PPO) algorithm published in 2017 [63] is an on-policy method. While on-policy methods
o�er the bene�t of reduced sample variance, they are not able to use experience which was
previously obtained under a di�erent policy, which makes them less sample e�cient. PPO
generally uses an estimate of the advantage function Ât at time t to express the policy
gradient

∇J (θ ) = E
[
∇π (At |St )Ât

]
, (4.62)

but introduces constrains to limit the size of the policy updates. Similarly to the Trust
Region Policy Optimization (TRPO) method [64], it de�nes the clipped surrogate objective

JCLIP(θ ) � E
[
min

(
rt (θ )Ât , clip(rt , 1 − ϵc, 1 + ϵc)Ât

)]
, (4.63)

with the hyperparameter ϵc > 0 and the probability ratio

rt (θ ) �
π (At |St ,θ )
π (At |St ,θold) , (4.64)

where θold is the policy’s parameter vector before the update. While the �rst term in
Eq. (4.63) is equivalent to the TRPO objective, the second term modi�es the surrogate
objective by clipping the probability ratio. By taking the minimum, the �nal objective
becomes a lower bound on the unclipped objective. An alternative approach uses a penalty
on the Kullback-Leibler divergence to achieve some target value d targKL each policy update

JKLPEN(θ ) � E
[
rt (θ )Ât − βKLDKL

(
π ( · |St ,θold) ‖ π ( · |St ,θ )

)]
, (4.65)

where the hyperparameter βKL is adjusted based on the value of

dKL � E
[
DKL

(
π ( · |St ,θold) ‖ π ( · |St ,θ )

)]
, (4.66)

that is,

βKL ←

βKL/2, if dKL < d

targ
KL /1.5

2 βKL, if dKL > 1.5d targKL
. (4.67)

In principle, any method of estimating the advantage function Ât can be used in combina-
tion with the objective functions in Eqs. (4.63) and (4.65). In [63], a truncated version of
generalized advantage estimation, that is, an n-step TD method based on a parametrized
state-value function is suggested

Ât � δ̂t + (γλ)δ̂t+1 + · · · + (γλ)n−t+1δ̂n−1 , (4.68)

with the estimate of the TD error

δ̂t = Rt+1 + γv̂ (St+1,w ) − v̂ (St ,w ) . (4.69)

Implemented like this, the PPO algorithm can make use of the experience collected by
several parallel actors. After each actor collected n steps of data, the surrogate objective
is calculated and optimized by stochastic gradient descent. In tests on a collection of
benchmark tasks, including simulated robotic locomotion and Atari game playing, PPO
was found to outperform other online policy gradient methods.
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4.6. Reinforcement Learning and Particle Accelerators
All in all, reinforcement learning o�ers a variety of methods that are well-suited to tackle
issues in and around accelerator physics. This is partly because of the underlying learning
paradigm, which allows RL methods to learn purely from interaction with a stochastic
system. As large particle accelerators are commonly built as one of a kind machines, and
their exact setup and con�guration may change over the years, relying on pre-existing,
labeled data sets is frequently not an option. In addition, many of the problems encountered
at these machines are of a dynamic nature. This may be an intrinsic property of the
considered problem, like in tasks which directly address the dynamics of the beam, or
because of inevitable drifts in related subsystems, e.g., because of changes in temperature
or humidity. On the other hand, particle accelerators represent a particularly demanding
and multifaceted domain to develop and test RL methods. As some of the largest, most
data-intensive, and most complex machines ever built or conceived, particle accelerators
come with a variety of challenging, often continuous control problems. Owing to the large
number of interacting subsystems, a priori models are usually insu�cient to predict the
precise behavior of a particular particle accelerator. Machine commissioning and day-to-
day operation thus involve a signi�cant amount of trial-and-error search and online tuning.
The application of RL methods simultaneously o�ers the opportunity to automatize some
of these processes as well as to approach problems which could not have been tackled
with conventional methods.

Given the recency of some of the advances made in the domain of reinforcement
learning, it is remarkable that there is already a range of applications seeking to deploy
these methods at particle accelerators [65–71]. These e�orts include tasks like control of
various RF subsystems, laser alignment or optimization of magnetic �eld strengths. In these
applications and for the future success of RL methods in the �eld of accelerator physics, it is
crucially important that the deployed algorithms are selected with the necessary care and
diligence to match the requirements and particularities of the considered task. Questions
like whether or not the task can be modeled with a �nite state or action space, what an
appropriate reward function looks like or how important sample e�ciency is to the success
of the application all should be answered beforehand. Depending on the speci�cs of a
given problem, di�erent RL methods may have varying levels of e�ectiveness or may not
even be applicable to the task. One important distinction is that between problems that are
stationary optimization tasks and those that are not. The learning concepts and methods
introduced in this chapter focus on sequential decision problems, that is, situations in which
a sequence of actions or decisions is required to reach a prede�ned goal. This is because
the pursued objective of micro-bunching control is inherently of that nature, requiring
continuous action to counteract the perturbation caused by CSR self-interaction. Although
a stationary solution might be reached in the sense that repetitive action may be su�cient
to achieve or maintain the desired level of control, this is a special case and cannot be
assumed a priori. Stationary optimization problems, in which one seeks to optimize a �nite
set of parameters purely through interaction with the system, are an important special case
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of the general RL problem.6 These are generally referred to as (contextual) multi-armed
bandit problems and come with their own individually tailored solution methods. One
of these methods, which is particularly e�ective in situations where the interaction with
the environment is expensive of some sort, is Bayesian optimization (BO) using Gaussian
processes (GPs). BO has been successfully deployed at a number of accelerator facilities
for a variety of tasks [72–78], including the optimization of free-electron lasers (FELs) and
laser plasma accelerators (LPAs).

In practice, stating an accelerator physics task as a formal RL problem and selecting
ideally suited solution methods can be a di�cult task as it requires intimate knowledge
of both domains. Nonetheless, with the growing expertise in the particle accelerator
community and the ongoing rapid development of modern reinforcement learning methods,
the number of successful RL applications is likely to increase over the coming years. Their
impact on the �eld at large will, to some extent, depend on the acceptance and willingness
to cope with these black box type systems. Ideally used, reinforcement learning methods
may support and guide the process of scienti�c discovery.

6 Intuitively, one may think about this distinction as the di�erence between the task of playing the game of
chess and the task of solving a mate in one problem (which immediately wins and ends the game).
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5. Micro-Bunching Instability: An
Approach to Control

So many questions. Humans asked them about everything, but
they usually weren’t half as good at �nding the answers.

— Guillermo del Toro & Cornelia Funke,
Pan’s Labyrinth: The Labyrinth of the Faun

In order to develop a better understanding of the longitudinal dynamics underlying the
micro-bunching instability, this chapter focuses on the perturbation of the synchrotron
motion that is caused by the self-interaction of the electron bunch with its own emitted
CSR. Adopting the perspective of a single particle, the unperturbed longitudinal particle
motion can be described by a simple one-dimensional harmonic oscillator. The inclusion of
the additional CSR wake potential causes a speci�c deformation of the particle trajectories,
which can be described approximately by a perturbation of the strength of the linear
restoring force exerted by the RF system. Below the threshold current, this perturbation
breaks the homogeneity in the longitudinal phase space and leads to a quadrupole-like
deformation of the charge distribution, potentially acting as a seeding mechanism for the
micro-bunching instability. Above the threshold current, the charge distribution and thus
the perturbation caused by the CSR wake potential are continuously varying in time. Yet
again, the corresponding formation process of micro-structures in the longitudinal charge
distribution can be shown to be largely driven by a dynamic perturbation of the restoring
force. The presented content is largely based on the publications in [79] and [80].

These �ndings o�er a new perspective on di�erent aspects of the observed micro-
bunching dynamics and the interpretation of measurements at KARA. Simultaneously,
they give rise to a range of further questions, which are promising subjects for future
research, as brie�y outlined in section 5.4. Eventually, the insights gained by this analysis
lead to an approach towards control of the micro-bunching dynamics based on a dedicated
RF amplitude modulation scheme. The necessity of dynamic adaptations of the RF signal
to counteract the CSR-induced perturbation is discussed in section 5.5 and motivates the
RL-based control pursued in the following chapters.

5.1. Perturbation of the Restoring Force
In the absence of collective e�ects, and assuming a linear momentum compaction and
a linear accelerating voltage (sin(x ) ≈ x for small x), the Hamiltonian given by Eq. (3.6)
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takes the form of a simple one-dimensional harmonic oscillator. Here, the RF potential
acts as a linear restoring force

VRF(q) = −kq , (5.1)
with the constant parameter k describing the slope of the RF potential, that is, the strength
of the restoring force. Neglecting radiation damping and di�usion, this leads to the simple
equations of motion

q̈ +
k

ξ
q = 0 and p̈ +

k

ξ
p = 0 , (5.2)

with the constant scaling parameter ξ , and the solution

q(t ) = a0 cos(ωt + φ0) , (5.3)
q̇(t ) = p (t ) = −a0ω sin(ωt + φ0) , (5.4)

with the angular oscillation frequency ω =
√
k/ξ , the amplitude a0 and the initial phase

φ0. Due to the speci�c choice of the generalized coordinates q and p in Eq. (3.2), and the
notation of time in multiples of the synchrotron period, Θ = fs,0t , the expression k/ξ
simpli�es to 1, yielding the Hamiltonian in Eq. (3.3) and perfectly circular trajectories in
phase space as illustrated in Fig. 2.4a. In anticipation of the additional e�ect of the CSR
wake potential, a small perturbation to the strength of the restoring force is introduced

k′ = k − ε with ε > 0 . (5.5)

With the reduced restoring force de�ned by k′, the system remains a harmonic oscillator,
but now has the altered solution

q′(t ) = a0 cos(ω′t + φ0) , (5.6)
q̇′(t ) = p′(t ) = −a0ω′ sin(ω′t + φ0) , (5.7)

with the angular oscillation frequency

ω′ =
√
k′/ξ =

√
(k − ε )/ξ . (5.8)

While the maximum deviation in q is una�ected

max |q′(t ) | = max |q(t ) | = |a0 | , (5.9)

the maximum deviation in p is decreased by the perturbation

max |p′(t ) | = |a0ω′| < |a0ω | = max |p (t ) | . (5.10)

The particle’s trajectory in the phase space spanned by the original de�nitions of q and p
in Eq. (3.2) is thus elliptical, as illustrated in Fig. 5.1, and of altered periodicity

|ω′| < |ω | . (5.11)

In the following section, the e�ect of the additional CSR wake potential on the particle
motion below the instability threshold is approximated as a position-dependent pertur-
bation to the strength of the linear restoring force as de�ned in Eq. (5.5). This serves the
purpose of developing a better understanding of how single particle motion relates to the
formation of micro-structures and how to counteract it.
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Figure 5.1.: A small perturbation of the strength of the restoring forcek leads to an elliptical
particle trajectory in the phase space spanned by the generalized coordinates
q and p.

5.2. Particle Motion below Threshold
Given the parallel plates impedance ZPP

CSR de�ned in Eq. (3.10) and illustrated in Fig. 3.3,
the wake potential of a Gaussian bunch pro�le takes the form shown in the upper part of
Fig. 5.2. While such a perfectly Gaussian electron distribution exists only in the absence
of collective e�ects, that is, in the zero current limit, a higher bunch current leads to an
increased perturbation strength and thus distortion of the Gaussian shape. Yet, at a �xed
bunch current below the instability threshold, the distribution still remains fairly stationary,
ψ (q,p, t ) ≈ ψ (q,p), which corresponds to a stationary wake potential as depicted in the
lower part of Fig. 5.2 for exemplary parameter settings (data set D2 with д = 32mm,
de�ned in appendix A.1) and a range of di�erent bunch currents. It should be noted that
the general shape of the wake potential is still similar to that of a Gaussian shaped bunch
up until right below the threshold current of Ith = 260 µA, where the wake potential is no
longer stationary.

A single particle propagating in the longitudinal phase space is subject to the sum of
the linear RF potential and the CSR wake potential, that is, the e�ective potential Ve� (q)
de�ned in Eq. (3.13). Because of its small deviations from the synchronous phase, the
particle is only exposed to Ve� (q) on a part of its domain, q ∈ [qmin,qmax], where qmin and
qmax denote the maximum deviations from the longitudinal position of the synchronous
particle as indicated in Fig. 5.1. By approximating Ve� (q) as a linear function on the given
interval

Ve� (q) ≈ −k′q with q ∈ [qmin,qmax] , (5.12)

as illustrated in Fig. 5.3, the single particle motion is still harmonic below the threshold
current, with the strength of the restoring force k′ being dependent on qmin and qmax.
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Figure 5.2.: CSR wake potential for a Gaussian bunch pro�le (red and blue, top) and for the
bunch currents I = (50, 100, 150, 200, 250) µA below the instability threshold
of Ith = 260 µA (bottom). Shown are the respective temporal averages for
simulations (including damping and di�usion) of the parameter settings de�ned
for D2 in appendix A.1 (with д = 32mm).
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Figure 5.3.: Combining the RF potential VRF(q) and the CSR wake potential VCSR(q) yields
an e�ective potential Ve� (q) that the electrons are exposed to during their
revolution in the storage ring. Close to the synchronous position q = 0, the
potential can be approximated by a linear function (shown as solid red line
for an exemplary particle with an amplitude of roughly qmax ≈ 1.1). For larger
deviations from q = 0 the linear approximation becomes less accurate, but still
provides a useful estimate of the perturbed potential.

While the linear approximation seems quite suitable for particles with small deviations
from the synchronous particle, the approximation is getting more inaccurate for larger
oscillation amplitudes. Yet, as the majority of the charge is located close to q = 0, this
constitutes the most interesting part of the potential, and the simple model is shown to
yield reasonable approximations nonetheless. As is apparent from Fig. 5.3, the CSR wake
potential acts as a perturbation to the slope of the RF potential with the strength of the
perturbation being dependent on the amplitude of the particle’s oscillation. According to
Eqs. (5.5)–(5.11), this results in a position-dependent ellipticity of particle trajectories in
phase space. Analogously, the oscillation frequency varies as a function of the particle’s
maximum deviation from the synchronous particle.

These insights can be veri�ed by using the passive particle tracking method1 that was
recently added to Inovesa [81]. To that end, the initial charge distribution ψ (q,p, t0) is
modeled by a particle ensemble of one hundred thousand particles, as illustrated in Fig. 5.4.
Subsequently, the temporal evolution under the in�uence of the CSR wake potential is
calculated simultaneously for both, the charge and the particle distribution. The thus

1 The computation of the CSR wake potential is still based on the charge density function ψ (q,p, t ), the
particles are tracked accordingly.
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Figure 5.4.: In order to examine single particle trajectories, the initial charge distribution
ψ (q,p, t0) (left) is modeled by a distribution of one hundred thousand particles
(right). The single particle motion is then simulated using the passive particle
tracking implemented in Inovesa.

obtained simulation results for the particle distribution are displayed in Fig. 5.5. Here, the
upper part shows the di�erence of the maximum amplitude in q and p

∆amax(qmax) = qmax − pmax , (5.13)

for the individual particles as a function of their maximum longitudinal deviation qmax.
The particle trajectories clearly deviate from ∆amax = 0, which would correspond to a
circular trajectory, and thereby show the expected position-dependent ellipticity. While the
trajectories are already elliptical close to the origin, the maximum di�erence in amplitude
is reached at values of qmax in the range of 1.0 to 1.5 depending on the bunch current. Both
the maximum value of ∆amax and the corresponding longitudinal position are increasing
with higher bunch currents due to the increased strength of the perturbation. For particles
with larger deviation from the synchronous particle the amplitude di�erence reduces again,
indicating a trend to more circular shaped trajectories for larger amplitudes. Additionally,
the lower part of Fig. 5.5 displays the corresponding oscillation frequencies. As expected
from Eqs. (5.5)–(5.11), the individual oscillation frequencies of particles close to q = 0 are
signi�cantly lower than the nominal synchrotron frequency fs,0 due to the perturbation
of the linear restoring force. Yet, this di�erence diminishes for particle trajectories with
larger amplitudes yielding di�erent oscillation frequencies dependent on the position
of the particles within the bunch. These results can be directly compared to predictions

60



5.2. Particle Motion below Threshold

0.00

0.05

0.10

0.15

0.20

0.25

∆
a
m
ax
(a
rb
.u

ni
t)

50

100

150

200

250

bu
nc
h
cu
rr
en
t(
µA

)

0.5 1 1.5 2 2.5 3 3.5

0.75

0.80

0.85

0.90

0.95

qmax = zmax/σz,0

os
ci
lla
tio

n
fre

qu
en
cy

(f
s,0
)

50

100

150

200

250

bu
nc
h
cu
rr
en
t(
µA

)

Figure 5.5.: Amplitude di�erences (top) and oscillation frequencies (bottom) of one hundred
thousand particle trajectories simulated with Inovesa for several bunch currents
below the instability threshold. The small oscillations of the frequencies, mainly
visible in the range of 0 < qmax < 1, are presumed numerical artifacts of the
simulation and data analysis. The solid red lines depict predictions based on
the linear approximation of Ve� (q) for the bunch current I = 250 µA.
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based on the linear approximation of Ve� (q) in Eq. (5.12). To do so, the estimated value of
k′(qmax) is used to determine the oscillation frequency at that position

fs(qmax) = ωs(qmax)/2π ≈
√
k′(qmax)/ζ , (5.14)

where ζ is just used for normalization purposes. Given an estimate of the oscillation
frequency and using the approximation pmax ≈ qmaxωs(qmax), the expected di�erence in
amplitude is

∆amax(qmax) ≈ qmax [1 − ωs(qmax)] . (5.15)

The calculated estimates are shown as solid red lines in Fig. 5.5 for the case of I = 250 µA.
Clearly, the linear approximation of the e�ective potential in Eq. (5.12) is already su�cient
for describing a major part of the perturbation by the CSR wake potential and its e�ect on
the synchrotron motion of single particles. While the estimates of fs(qmax) and ∆amax(qmax)
deviate from the simulated trajectories for larger values of qmax, this is expected due to the
inaccuracy of the linear approximation of Ve� (q) for values further away from q = 0. In
case of the amplitude di�erence ∆amax(qmax), the deviation already starts at small values
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Figure 5.6.: Visualization of the e�ect of the position-dependent elliptical trajectories in
phase space on the resulting charge density. Shown are perfectly elliptical
trajectories of one thousand particles with uniformly distributed energies and
an amplitude di�erence given by the estimate shown as solid red line in Fig. 5.5.
The large number of trajectories helps to visualize the varying density of
trajectories. In addition, the dashed red line depicts a single elliptical particle
trajectory with qmax = zmax/σz,0 ≈ 1.1.
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of qmax, the general shape however, can still be reproduced.
In order to understand the implications of these modi�ed single particle trajectories, an

ensemble of particles with uniformly distributed energies and perfectly elliptical trajecto-
ries is considered. Thereby, the ellipticity is determined according to the position-dependent
amplitude di�erence ∆amax(qmax) shown as solid red line in Fig. 5.5. As is apparent from
the visualization in Fig. 5.6, this leads to a non-uniform distribution of particle trajecto-
ries in phase space. In particular, two distinguished locations of lower particle trajectory
concentration are visible close to the origin. Similarly, though harder to identify by eye,
there are two locations of higher particle trajectory concentration at larger oscillation
amplitudes (roughly at z ≈ ±2σz,0). This general pattern is a direct consequence of the
basic shape of the CSR wake potential shown in Fig. 5.2. The CSR-induced perturbation of
the RF potential thus breaks the homogeneity in phase space and creates local particle
densities that form a quadrupole-like modulation of the longitudinal charge distribution.
This inhomogeneity introduces a higher frequency component to the longitudinal bunch
pro�le and may thereby initially seed the formation of micro-structures, that is, kick o�
the micro-bunching instability. It is worth noting that the general notion of dense particle
trajectories leading up to a distinct charge modulation within the bunch resembles the
caustic expression adopted for micro-bunching phenomena in linear accelerators [82].

This initial excitation of a quadrupole-like mode can be further veri�ed by examining
the Fourier transformed longitudinal bunch pro�les across di�erent bunch currents below
the instability threshold. As is apparent from Fig. 5.7, the current-dependent perturbation
by the CSR wake potential introduces a structure at higher frequencies to the longitudinal
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Figure 5.7.: Magnitude of the Fourier transformed bunch pro�le |ρ̃ (ω) | for a range of bunch
currents below the instability threshold of Ith = 260 µA. The red rectangle
marks the additional frequency component (at roughly 85GHz) that is excited
due to the perturbation by the CSR wake potential.
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charge distribution. For the used parameter settings this frequency is found at about
85GHz corresponding to a modulation of the bunch pro�le at the wavelength

λ ≈ c/85GHz ≈ 2.2σz,0 , (5.16)

which is roughly the distance of the two expected distinguished locations of decreased
charge density in phase space. As the micro-structures occurring above the threshold
current correspond to a signi�cantly higher frequency (roughly at 150GHz, shown in
appendix A.4), the peak in Fig. 5.7 can clearly be attributed to the initial quadrupole mode.

5.3. Particle Motion above Threshold
The previous section considered only the perturbation of the single particle synchrotron
motion created by the stationary CSR wake potential below the threshold current. Here,
the linear approximation of the e�ective potential in Eq. (5.12) yields a simple model
which su�ciently describes major aspects of the resulting particle trajectories and thereby
facilitates understanding the implications of this perturbation. Essentially, the underlying
longitudinal dynamics can be considered a simple one-dimensional harmonic oscillator
with a position-dependent perturbation of the linear restoring force. Above the insta-
bility threshold, the longitudinal charge distribution as well as the CSR wake potential
are not stationary anymore, which makes this simple model no longer applicable. Nev-
ertheless, the notion of a perturbed restoring force extends to the dynamics just above
the instability threshold and eventually motivates an approach towards control of the
micro-bunching instability. The provided analysis builds upon extensive, prior studies
of the micro-bunching dynamics above the instability threshold at KARA. It extends the
gained understanding of the underlying longitudinal beam dynamics and o�ers a new
perspective on the interpretation of previous observations.

In order to examine the single particle trajectories above the instability threshold, the
initial charge distribution ψ (q,p, t0) is again modeled by a distribution of one hundred
thousand particles and passively tracked using Inovesa. The upper part of Fig. 5.8 shows
the amplitude di�erence ∆amax(qmax) of the resulting particle trajectories for a range of
bunch currents in comparison to a current below the instability threshold (I = 250 µA,
violet line). Due to the more complex dynamics and the variation of the individual particle
trajectories in time, the data scatters a lot. In order to enable a comparison between
multiple currents nonetheless, a moving average over qmax with a window length of 1000
data points is displayed. The elliptical shape is still apparent and seems quite comparable to
the results below the threshold current in Fig. 5.5. The position of the maximum amplitude
di�erence ∆amax(qmax) however, is slightly shifting to larger values. This implies that
the local charge accumulation (see Fig. 5.6) also shifts to a position further away from
the origin. Particularly interesting is the change in the distribution of the corresponding
oscillation frequencies that is displayed below. While the higher bunch current leads to an
abrupt change of the oscillation frequencies in the interval qmax ∈ [0.3, 1.5], it has a much
smaller e�ect on the oscillation frequencies of particles with larger amplitudes. This region
of qmax ∈ [0.3, 1.5] is precisely where the micro-structures occur in phase space and hints
to the additional wake potential caused by the corresponding charge modulation.
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Figure 5.8.: Shown are the amplitude di�erence (top) and oscillation frequency (bottom) of
particles trajectories for the bunch currents I = (250, 260, 270, 280, 290) µA. As
the data scatters a lot, only a moving average over qmax is displayed to enable
a comparison between di�erent currents.
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Figure 5.9.: Temporal evolution of the longitudinal bunch pro�le (top) and its di�erence
to the temporal average (middle) for the bunch current I = 290 µA. In order
to visualize the corresponding single particle motion one thousand particle
trajectories are plotted on top with an opacity of 0.05, displaying a distinct mod-
ulation of the maximum deviation in the longitudinal position. The maximum
oscillation amplitude (solid red curve) is reached for particles that are exposed
to the additional wake potential caused by the local charge modulation. These
dynamics are largely driven by the CSR-induced dynamic perturbation of the
strength of the restoring force, estimated at the position of the synchronous
particle by k0 (bottom, linear �t in the interval [−0.2, 0.2]σz,0).
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To factor in the temporal dynamics above the instability threshold, a di�erent way of
visualizing the individual particle trajectories is required. The upper part of Fig. 5.9 thus
displays the temporal evolution of the longitudinal bunch pro�le over a time period of two
and a half synchrotron periods for the bunch current I = 290 µA. By close examination,
the periodic modulation of the charge density due to the occurring micro-structures can
already be identi�ed. Nevertheless, the di�erence to the temporal average ∆ρ (z) is again
shown below, which displays the micro-bunching dynamics much more explicitly. In
order to examine how the motion of single particles relates to these micro-bunching
dynamics one thousand particle trajectories are plotted on top with an opacity of 0.05.
These trajectories are deliberately chosen to have an average radius in phase space

r =
1
n

n∑
i=1

rti =
1
n

n∑
i=1

√
q2ti + p

2
ti
, (5.17)

which is comparable to the estimated distance of the micro-structures from the origin.
Finally, the bottom part of Fig. 5.9 shows the estimated slope of the e�ective potential at
the position of the synchronous particle

k0(t ) ≈ − ∂Ve� (q, t )
∂q

�����q=0 . (5.18)

The almost sinusoidal oscillation of k0(t ) clearly coincides with the periodic modulation
of the charge density. In the following subsections, di�erent aspects of the particle motion
above the instability threshold are examined using the insights of previous sections.

5.3.1. Head-Tail Asymmetry
Particularly intriguing is the distinct modulation of the maximum amplitude qmax that
is visible at the head of the bunch (q > 0). This modulation is perfectly synchronized to
the micro-structure dynamics in the charge density and reaches its extrema at exactly the
same positions in time. However, similarly to the charge modulation, it predominantly
occurs at the head and diminishes towards the tail of the bunch. The maximum amplitude
in q is reached when a particle travels on a trajectory that leads to its exposure to an
additional contribution in the CSR wake potential caused by the local charge modulation.
Particles traveling exactly along the position of the maximum local charge density (red
areas) while passing through q ∈ [0, 2] are subsequently driven to the largest deviations
qmax (illustrated by the solid red curve in Fig. 5.9). Similarly, particles passing through the
minima (blue areas) end up closest to the origin.

This asymmetry can be explained by the di�erent e�ects a local structure at di�erent
positions in the charge density has on the restoring force. For q > 0, a positive contribution
to the e�ective potential Ve� results in a further decrease of the restoring force and thus
drives particles further outside in phase space. This ampli�es the inhomogeneity and can
thereby drive and support the local charge modulation. In contrast, a positive contribution
at q < 0 partially recovers the strength of the restoring force and focuses the particles
towards the center of the charge distribution, reducing the inhomogeneity and damping
the local structure.
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While this explains why the micro-structures are more pronounced at the head of the
bunch rather than the tail, it simultaneously illustrates how single particle motion is
leading up to these local charge modulations. Particles are driven outside in phase space,
cause an excess of charge at that position and thereby form the occurring micro-structures.

5.3.2. Formation of Micro-Structures
To investigate how the motion of individual particles relates to the motion of the observed
micro-structures, this subsection takes a look at the location of particles one synchrotron
period before they form a local structure. To do so, Fig. 5.10 displays the particle distribution
at time step t = 0Ts,0 in two di�erent ways. On the left hand side each individual particle
is colored according to the relative charge density at this time step

color(n = i ) ← ∆ψ (qn=i ,pn=i , tcolor = 0Ts,0) , (5.19)

where n = i is the particle index and (qn=i ,pn=i ) denotes its location in phase space at
time tcolor. The color assignment on the right hand side is adjusted to match the relative
charge density one synchrotron period afterwards ∆ψ (qn=i ,pn=i , tcolor = 1Ts,0) instead.
The distribution on the right hand side thus shows where the particles forming the micro-
structures at time step t = 1Ts,0 were one synchrotron period before. Thereby, one can
analyze where the particles forming the local structures come from and whether or not
they stay within these structures. Clearly, the two distributions look quite di�erent. This
implies that the particles forming the structures at t = 0Ts,0 do not necessarily participate
in forming the same kind of structure one synchrotron period later. They might for example
travel from the position of a local maximum (red) to position of a local minimum (blue) or
vice versa. This e�ect was already observed in previous studies [13].

Fig. 5.10 illustrates conceptually that the formation of these micro-structures is not
merely caused by the resonant motion of single particles, but rather by the collective
e�ect of many particles traveling on varying trajectories. Moreover, the relation between
the motion of individual particles and the occurring micro-structures was found to vary
signi�cantly across di�erent bunch currents and parameter settings (an exemplary, di�erent
bunch current is shown in appendix A.5).

5.3.3. Micro-Structure Frequency
As discussed in section 3.4, the occurrence of micro-structures in the longitudinal phase
space results in �uctuations of the emitted CSR power. Right above the instability threshold,
this �uctuation is typically dominated by the characteristic frequency fms. As reported by
di�erent facilities, e.g. [29, 32, 36], this frequency is usually observed close to an integer
multiple of the nominal synchrotron frequency

fms ≈m fs,0 , (5.20)

but may deviate signi�cantly depending on the parameter settings [29, 32]. This subsection
aims to illustrate how this frequency originates from the micro-bunching dynamics in the
longitudinal phase space.
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Figure 5.10.: To illustrate the relation between single particle motion to the formation
and propagation of micro-structures, the particle distribution at time step
t = 0Ts,0 for the bunch current I = 290 µA is depicted in two di�erent ways.
On the left hand side, each individual particle is colored according to the
corresponding relative charge density ∆ψ (q,p, tcolor = 0Ts,0) at that particle’s
location (opacity of 0.15). On the right hand side, the color assignment is
adjusted to match ∆ψ (q,p, tcolor = 1Ts,0) instead. It thereby illustrates which
particles will form the micro-structures one synchrotron period after this
time step.

The integrated power of the emitted CSR, PCSR(t ), is solely determined by the longitudi-
nal bunch pro�le ρ (q, t ), and the CSR impedance. Di�erent charge distributions in phase
space at di�erent time steps ti,j thus result in the exact same value of the radiated power
if they correspond to identical longitudinal pro�les ρ (q, ti ) � ρ (q, tj ). Consequently, the
periodic structure of the �uctuating CSR power can be explained by a repetitive sequence
of the longitudinal pro�les. The most trivial way to produce similar longitudinal pro�les
at di�erent time steps is by having the charge densities in phase space be similar as well

ψ (q,p, ti ) ≈ ψ (q,p, tj ) . (5.21)

In the simulations with Inovesa this was always found to be the case. The charge densities
separated by one period of the micro-structure frequency ∆t = 1/fms are nearly indistin-
guishable by eye and only di�er by small numeric values. The observed micro-structure
frequency is thus directly determined by the periodic behavior of the micro-bunching
dynamics and the corresponding time interval. However, as established above, the propa-
gation of these micro-structures in phase space and in time is a non-trivial subject. With
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the varying oscillation frequencies of the single particle trajectories (illustrated in Fig. 5.8)
and the collective formation of the occurring micro-structures, very little can be deduced
about the oscillation frequency of the micro-structures themselves. Empirically, it was
found to deviate up to 20% from the nominal synchrotron frequency. In that case, the
simple estimate in Eq. (5.20) is no longer applicable. In particular, trying to estimate the
integerm via

m ≈ fms/fs,0 (5.22)
will yield inconsistent and unreliable results as the micro-structures may propagate at
di�ering frequencies. Lastly, it is worth noting that the interpretation of m as a simple
azimuthal mode number is di�cult to align with the head-tail asymmetry of the CSR
self-interaction discussed in subsection 5.3.1. This asymmetry explains why the micro-
structures always form at the head of the bunch and are more pronounced there. The
micro-structure frequency observed in the emitted CSR power is simply determined by
the repetition rate of this formation process.

5.3.4. Dependence on Shielding
Figures 3.8 and 3.10 as well as Fig. 5.9 illustrate the distinct charge modulation that forms
under the in�uence of CSR self-interaction in the micro-bunching instability. Evidently,
the modulation pattern is asymmetric as the micro-structures change shape and notably
amplitude depending on their position in phase space. Nonetheless, one might be willing to
identify an integer number nstr of maxima constituting the charge modulation. Modifying
Eq. (5.20), we can relate this to the micro-structure frequency

fms = nstr fstr , (5.23)
where 1/fstr denotes the time it takes the micro-structures to perform one full revolution
in phase space. As discussed above, this is only loosely related to the oscillation frequency
of single particles and may deviate from the nominal synchrotron period. As already
mentioned in [83], the integer nstr changes if the shielding by the vacuum pipe is altered by
varying its height. This subsection considers the corresponding synchrotron motion across
these di�erent parameter settings. Figure 5.11 thus displays the oscillation frequencies of
the micro-structures (red) and the single particle frequencies at their positions in phase
space (blue). All frequencies are estimated directly above the instability threshold Ith,
which itself is changing due to the varying shielding [8]. The dashed red line connects data
points with the same number of maxima nstr in the charge modulation pattern, which was
estimated by examining the charge density di�erence ∆ψ (q,p, t ) by eye. With increased
shielding (reduced vacuum gap) the particle frequencies are growing quite smoothly.
The oscillation frequencies of the micro-structures, however, show a di�ering behavior.
While they take on very similar values for the vacuum gaps (19, 22, 24, 27, 32)mm, the
micro-structure oscillation frequencies are growing much faster with decreasing vacuum
gap. This can be observed up until the point where an additional extremum is identi�ed
and nstr is incremented. Afterwards, the frequencies of particles and micro-structures
are found at very similar values again (for example after the transition from 28mm to
27mm). Figure 5.11 thereby illustrates again the partial decoupling of the micro-structure
propagation in phase space from the single particle motion.
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Figure 5.11.: Modifying the CSR shielding by varying the vacuum gap leads to altered
micro-bunching dynamics in the longitudinal phase space. While the single
particle frequency at the micro-structure position (blue squares) increases
smoothly with reduced vacuum gap, the oscillation frequency of the micro-
structures themselves (red circles) grows much faster and shows an abrupt
change when an additional structure is observed.

5.3.5. Amplitude and Position of Micro-Structures
As explained in subsection 5.3.1, the additional wake potential caused by the micro-
structures at the head of the bunch can support and drive the micro-bunching dynamics.
Larger local charge modulations lead to a larger perturbation by the additional wake
potential which then results in the individual particles being driven to larger oscillation
amplitudes. Following this chain of thought, naturally we expect a correlation between the
maximum amplitude of the occurring micro-structures and their maximum longitudinal
deviation from the origin in phase space. In order to verify this, Fig. 5.12 displays the
maximum amplitude and maximum longitudinal position of the occurring micro-structures
for a range of bunch currents between 260 µA and 1000 µA. With increasing current the
strength of the perturbation caused by the CSR self-interaction increases, which leads to
larger amplitudes of the micro-structures within the bunch. Figure 5.12 illustrates that
this corresponds to a larger deviation from the synchronous particle as the particles are
exposed to a stronger CSR wake potential. For the simulation data considered here, a clear
linear correlation (as illustrated by the dashed red line) with a correlation coe�cient of
0.91 is found.
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Figure 5.12.: Correlation between the maximum amplitude and maximum longitudinal
position of the occurring micro-structures. Shown is simulation data for bunch
currents between 260 µA and 1000 µA. The dashed red line illustrates the clear
linear correlation with a correlation coe�cient of 0.91.

5.4. Implications and Further Questions
In summary, the perturbation of the synchrotron motion studied in the preceding sections
amounts to an intuitive explanation of how micro-structures form under the in�uence
of CSR self-interaction. The perturbation caused by the stationary CSR wake potential
below the threshold current leads to a reduced strength of the restoring force exerted
by the RF system. Particles are thus driven to larger deviations from the synchronous
particle forming a quadrupole-like deformation of the longitudinal charge distribution. This
introduces a higher frequency component to the bunch pro�le and the corresponding wake
potential, which grows with increasing bunch current (as visible in Fig. 5.7). Eventually, the
equilibrium between charge distribution and CSR wake potential becomes unstable and
their interaction leads to the dynamic formation of micro-structures in the longitudinal
phase space. This formation process is again largely driven by a dynamic perturbation of
the restoring force as illustrated in Fig. 5.9. Depending on their oscillation phase, individual
particles are exposed to additional contributions to the CSR wake potential and are thereby
driven to smaller or larger deviations from the synchronous particle. The accumulation of
particle trajectories at speci�c locations in phase space causes an excess of charge at that
position and creates local structures. Besides motivating an approach towards control of
the micro-bunching dynamics, which is discussed in the �nal section of this chapter, this
o�ers a new perspective on di�erent aspects of the instability and raises a range of further
questions brie�y addressed below.
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The quadrupole-like deformation of the charge distribution found below the threshold
current merits further studies to improve the understanding of the initial formation of
dynamic structures from a stationary charge distribution. Moreover, it is worth pointing
out that the additional weak instability introduced in subsection 3.4.2, is usually observed
with a micro-structure frequency of fms ≈ 2 fs,0. This corresponds to a non-stationary
quadrupole mode in the longitudinal charge distribution, which aligns remarkably well
with the stationary quadrupole-like deformation below the threshold current. Moreover,
measurements of such a quadrupole-like deformation of the longitudinal charge distribu-
tion were already reported in [84], albeit for bunch currents above the instability threshold.

Another promising subject for further studies is the dependence of the micro-bunching
dynamics on shielding as illustrated in Fig. 5.11. The distinct transitions in the number of
observed micro-structures and the associated changes in their oscillation frequency are
particularly interesting as they provide additional insight into the formation process of
the micro-structures under di�erent boundary conditions. They may also hint towards an
intrinsic discretization of the micro-bunching dynamics as already mentioned in [83].

As primarily discussed in the subsections 5.3.2 and 5.3.4, the propagation of the micro-
structures in the longitudinal phase space may deviate from the motion of single par-
ticles. Nonetheless, given the general distribution of particle oscillation frequencies in
Figs. 5.5 and 5.8, it seems reasonable to assume that also the collectively formed structures
propagate faster if they are located further away from the origin in phase space. Based on
this hypothesis a basic reasoning can be derived which explains the occurrence of several
characteristic features in the simulated and measured CSR power spectrograms (example
shown in Fig. 3.6). The increasing bunch current leads to a stronger perturbation by the
CSR wake potential and thus to a larger amplitude of the occurring micro-structures. As
established in subsection 5.3.5, this corresponds to a drift of the micro-structure position
towards larger longitudinal deviations in phase space. Granted that this leads to a faster
oscillation of the structures in phase space (f ′str > fstr), the micro-structure frequency
is, according to Eq. (5.23), increasing as well. While this explains the slight shift of the
micro-structure frequency across current directly above the threshold, these simple initial
dynamics are only observed in a comparably small current range. In Fig. 3.6, the domi-
nant frequency fans out at roughly 120 µA marking a clear transition in the occurring
dynamics. At these higher bunch currents, the micro-structures reach an amplitude that
can no longer be supported by the corresponding CSR wake potential. Reaching this
amplitude, the bunch blows up in size and the structures smear out in phase space. As
the increased bunch length leads to a reduced perturbation by CSR, the bunch is mainly
shrinking due to radiation damping afterwards. Once the bunch length is short enough,
the micro-structures emerge again and continuously grow in amplitude. When forming
initially, the structures are located close to the origin in phase space and propagate rather
slowly, which corresponds to a low micro-structure frequency observed in the CSR power
signal. With increasing amplitude the micro-structures are then driven further outside in
phase space and accelerate in oscillation frequency. This leads to a sawtooth-shaped burst
of CSR emission up until the point where the micro-structure amplitude becomes too large
and the cycle starts anew. The spread out micro-structure frequency would thus be caused
by the varying oscillation frequencies of the micro-structures during their continuous
growth in phase space. These considerations motivate a future study that concentrates
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on a more detailed analysis of the temporal evolution of the micro-structure frequency in
both, simulations and measurements. The rather low frequencies at the edge of the �gure,
however, correspond to the repetition rate of the described bursting cycle and are thus
related to the longitudinal damping time as shown in [85]. The approach towards control
pursued in the following chapters instead concentrates on time scales comparable to the
formation process of the micro-structures, which is governed by the synchrotron period.

5.5. Necessity of Dynamic Control
One of the key insights of the preceding chapter is that the micro-bunching dynamics
above the instability threshold correspond to a modulation of the restoring force, that is,
the slope of the e�ective potentialVe� (q). That naturally motivates an approach to control
of the micro-bunching dynamics by aiming to increase or counteract this perturbation
with an RF amplitude modulation

VRF(t ) = V̂ (t ) sin(2π fRF t ) , (5.24)
V̂ (t ) = V0 +Vmod sin(2π fmod t + φmod) . (5.25)

While the perturbation by the CSR wake potential cannot be compensated in its entirety,
this aims at stabilizing the strength of the restoring force and thereby mitigating the micro-
bunching dynamics, as illustrated in Fig. 5.13. By choosing the natural micro-structure
frequency of the occurring instability (can be observed in the emitted CSR signal) as the
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Figure 5.13.: The dynamic perturbation of the slope of the e�ective potential at the syn-
chronous position k0 is found to be critical for the micro-structure formation
process. By modulating the RF amplitude, the CSR-induced perturbation can
be partially counteracted.
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Figure 5.14.: An RF amplitude modulation at the micro-structure frequency with the appro-
priate phase can partially recover the strength of the restoring force as illus-
trated in Fig. 5.13. Here, the application of a modulation with Vmod = 0.01V0
leads to an initial reduction of the CSR power oscillations, as marked by the
red rectangle (parameter settings according to D1 with I = 115 µA). Yet, after
merely a few synchrotron periods, the control signal runs out of sync and
ampli�es the oscillation instead.

modulation frequency fmod � fms, and carefully adjusting the amplitude Vmod and phase
φmod, the RF modulation can be expected to partially compensate the perturbation by the
CSR wake potential. Figure 5.14 demonstrates how this can lead to a reduction of the
oscillations in the CSR power signal, which corresponds to a mitigation of the occurring
micro-bunching dynamics. Yet, the initial damping e�ect only lasts for a few synchrotron
periods. In fact, the magnitude of the subsequent oscillation is even slightly higher than
that caused by the natural micro-bunching dynamics. This can be explained by the dynamic
self-interaction of the charge distribution and the CSR wake potential. Once the applied
RF modulation starts interfering with the natural beam dynamics, the evolution of the
longitudinal charge distribution and thus the CSR wake potential are changing as well.
Particularly the deliberately chosen modi�cation of the restoring force leads to an altered
oscillation frequency and thus signi�cantly a�ects the synchrotron motion of the present
micro-structures. Continuously applying this RF amplitude modulation may initially have
the desired e�ect, but will eventually run out of sync with the perturbation it is aiming to
counteract. In that case, the RF modulation may no longer stabilize the restoring force,
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but actually further drive the instability. As demonstrated in section 7.2, an RF amplitude
modulation with a constant frequency and amplitude may thus be used to excite the
micro-bunching dynamics to higher amplitudes. Continuous mitigation, however, is a
more challenging task as the RF modulation has to be adjusted over time according to the
altered micro-bunching dynamics

Vmod → Vmod(t ) and fmod → fmod(t ) , (5.26)

which leads to a dynamic RF amplitude modulation scheme

V̂ (t ) = V0 +Vmod(t ) sin(2π fmod(t ) t + φmod) . (5.27)

The necessity of continuous adjustment of the modulation amplitude and frequency
constitutes a sequential decision problem, which motivates the use of reinforcement
learning in the following chapters.
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Nothing ever is, everything is becoming. (panta rhei)

— Heraclitean philosophy

The idea of using a dynamic RF amplitude modulation scheme to counteract the pertur-
bation caused by the CSR self-interaction, which was developed in the previous chapter,
inherently leads to a sequential decision problem. At a repetition rate that matches the time
scale of the micro-structure formation process, the RF modulation has to be continuously
adjusted according to the altered perturbation by the CSR wake potential. In order to
apply reinforcement learning solution methods, this chapter aims at de�ning the task as a
formal RL problem. The general idea of addressing the problem via RL methods emanates
from an interdisciplinary collaboration at KIT between the Laboratory for Applications of
Synchrotron Radiation (LAS), the Institute for Beam Dynamics and Technology (IBPT) and
the High Performance Humanoid Technologies (H2T) group in the Institute for Anthro-
pomatics and Robotics (IAR) and was �rst published in [86]. As the de�nition of several
essential RL elements, like the reward function or the observed feature vector, are not im-
mediately apparent, this is not a straightforward task. In fact, the formulation given below
is the result of various iterations over the past years and still subject to change should
inconsistencies or a deviation from the intuitive understanding of the physical objective
arise. Nonetheless, the �nal formulation stated below allowed for the proof-of-principle
control presented in chapter 7.

From a reinforcement learning perspective, the problem of micro-bunching control
constitutes a continuing task with a naturally continuous state and action space. One
major advantage in satisfying the conditions of a formal RL problem is that the de�nition
of a Markovian state is straightforward. Yet, this information is only partially available
at the actual storage ring. Section 6.2 thus introduces two di�erent formulations of the
problem: one that is theoretically sound with a perfect ful�llment of the Markov property,
and one that represents a more feasible option tailored towards the implementation at
KARA. Furthermore, the complementary objectives of either mitigation or excitation of
the micro-bunching dynamics are addressed in section 6.3.

6.1. Choice of Action Space
Given the insights of the previous chapter, the action space is simply de�ned as

A � {Vmod} × { fmod} , (6.1)

77



6. Feedback Design

where any action a ∈ A de�nes an RF amplitude modulation for the subsequent time step
according to Eq. (5.27). To reduce the size of the action space, the modulation amplitude
and frequency are subjected to constraints, respectively

Vmod ∈ [Vmin,Vmax] and fmod ∈ [fmin, fmax] , (6.2)

where an amplitude at the percent level is typically su�cient, e.g., Vmod ∈ [0, 0.01]V0,
and the modulation frequency is restricted to a small range around the estimated micro-
structure frequency, e.g., fmod ∈ [fms − 0.5 fs,0, fms + 0.5 fs,0]. To facilitate the use of neural
networks, the �nal action space is normalized to

A � [0, 1] × [0, 1] or A � [−1, 1] × [−1, 1] . (6.3)

As already discussed in [86], the straightforward choice of giving the RL agent full
control over both the RF amplitude and the RF phase

A � {V0} × {φ0} , (6.4)

leaves the agent with an option for a trivial solution. The micro-bunching dynamics in
general and the instability threshold (according to Eq. (3.16)) in particular are dependent
on the amplitude of the RF voltage as it directly a�ects the length of the bunch. The
agent may therefore simply lower the RF voltage, which lengthens the bunch, reduces
the CSR-induced perturbation and therefore stabilizes the dynamics just naturally. To
circumvent that issue for the initial formulation in [86], the action space was restricted to
modulations of both quantities, the RF amplitude and the RF phase

A � {Vmod} × { fmod,V } × {φmod} × { fmod,φ } . (6.5)

Although chapter 5 suggests a modulation of particularly the RF amplitude, the modulation
of the RF phase was also found to a�ect the micro-bunching dynamics. It thus remains
an interesting option for an extension of the action space de�ned in Eq. (6.1). Yet, as the
e�ect of an RF amplitude modulation on the micro-bunching dynamics is understood more
clearly and extensive control could already be achieved without involvement of the RF
phase, the empirical studies in chapter 7 focus exclusively on the action space de�ned in
Eq. (6.1).

6.2. State De�nition and Markov Property
In case of the micro-bunching instability and its simulation via VFP solvers, the de�nition
of a Markovian state is straightforward. At any given point in time, the charge distribution
ψ (q,p, t ) and its evolution solely depend on a set of constant parameters and the preceding
charge distribution. De�ning the temporal sequence of charge distributions as the state
signal1

St � ψ (q,p, ti ) (6.6)
1 To distinguish between the RL time step parameter t and the time step indicating the discrete time series

of simulated or measured physical quantities, the latter is denoted with ti . Equation (6.6) should thus be
read as: The state at time step t is given by the i-th element of the discrete time series of simulated or
measured charge distributions.
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thus yields a Markov process, fully satisfying Eq. (4.2). As constant parameters can be
neglected, and in order to tailor the de�nition of the state space to the use of neural
networks, the state de�nition is slightly modi�ed to

St � ∆ψ̂ (q,p, ti ) , (6.7)

with the di�erence of the normalized charge distribution to the normalized, initial temporal
averageψ init(q,p)/Q as observed for the natural dynamics of the instability

∆ψ̂ (q,p, ti ) � ψ̂ (q,p, ti ) −ψ init(q,p)/Q . (6.8)

It is worth noting that the straightforward ful�llment of the Markov property is not a
special property of the micro-bunching instability nor of VFP solvers, but rather a general
characteristic of a physical phase space. Classically speaking, in the absence of external
forces, the knowledge of a particle’s position and its velocity allows for predictions about
its trajectory. Analogously, it provides an RL agent with the necessary information to
make predictions about the environment. As many accelerator problems are described
using a charge density or particle distribution in an up to six-dimensional phase space, this
motivates the use of RL algorithms for a larger range of problems. Typically though, the
exact charge distribution in phase space is di�cult to measure at an actual storage ring.
Although �rst e�orts towards phase space tomography at KARA have shown promising
results [87], this type of information is still not fully accessible.

There are, however, several diagnostic systems in place which can measure derived beam
properties and thereby provide information about the longitudinal charge distribution. An
electro-optical near �eld setup is capable of measuring the longitudinal bunch pro�le on
a turn-by-turn basis [88]. Complementary information about the charge distribution in
energy can be obtained by measuring the horizontal bunch pro�le in a dispersive section
of the storage ring using a fast-gated camera [89]. Yet, the simplest and most reliable way
to acquire information about the micro-bunching dynamics is to measure the emitted CSR
power PCSR(t ) [32, 40], which is typically done using Schottky diodes and the in-house
developed data acquisition system KAPTURE (Karlsruhe Pulse Taking Ultra-fast Readout
Electronics) [90]. Compared to the use of the full longitudinal charge distribution in phase
space, this condenses the information to a single scalar number, the integrated CSR power
emitted by that distribution. Whether or not an observation based on solely the CSR power
signal

Ot � Ot (PCSR(t )) , (6.9)
yields su�cient information to successfully apply reinforcement learning solution methods
is unknown a priori. Ideally, the condensed information yields a fast learning rate and
convergence to a satisfying amount of control over the longitudinal beam dynamics. In
anticipation of that issue and based on the accumulated experience about the dynamics of
the instability at KARA, a hand-crafted eight-dimensional feature vector is introduced

x (t ) � (x1(t ),x2(t ), . . . ,x8(t ))
> , (6.10)

which aims to capture the most relevant information about the state of the micro-bunching
dynamics. As the CSR signal can be measured on a turn-by-turn basis, the sample rate is
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equal to the revolution frequency. As frev is about a factor of 400 larger than the nominal
synchrotron frequency fs,0, several samples can be acquired between the agent’s actions

{
St−1,At−1︷   ︸︸   ︷
PCSR(t0), PCSR(t1), . . . ,

St ,At︷   ︸︸   ︷
PCSR(tn )} , (6.11)

where t0 coincides with the preceding RL time step t − 1 and tn corresponds to the current
RL time step t . Based on this, the �rst feature is de�ned as the mean of the CSR power
signal observed since the last RL time step

µCSR(t ) �
1
n

n∑
i=1

PCSR(ti ) , (6.12)

normalized by the initial mean µ initCSR as observed during the natural behavior of the insta-
bility

x1(t ) � (µCSR(t ) − µ initCSR)/µ
init
CSR . (6.13)

Analogously, the second feature is de�ned as the normalized standard deviation of the
preceding CSR signal

x2(t ) � (σCSR(t ) − σ init
CSR)/σ

init
CSR . (6.14)

The third feature is designed to indicate a slow trend of the emitted CSR power and is
de�ned as

x3(t ) �
2
π
arctan

(
µCSR,end(t ) − µCSR,start(t )

n

)
, (6.15)

where µCSR,start(t ) and µCSR,end(t ) denote the mean of the CSR power signal around the
start and end of the sequence in Eq. (6.11), respectively2. Given the clear signature of
the instability in the frequency domain, features four to six aim to encode the dominant
frequency contribution in the Fourier transformed CSR power signal. To attain a minimum
resolution in the frequency domain, the preceding 1024 values are considered to calculate
the Fourier transform P̃CSR(ω), even if the sequence in Eq. (6.11) has less entries. The
fourth feature indicates the relative strength of the main peak in the frequency distribution

x4(t ) � |P̃0,CSR(ωmain) | /
∑
i

|P̃0,CSR(ωi ) | , (6.16)

where |P̃0,CSR(ωi ) | denotes the magnitude of the Fourier transform of the normalized time
signal de�ned by the preceding 1024 values of PCSR(tn )

P̃0,CSR(ωi ) � F (PCSR(tj ) − µCSR(tj )) with j ∈ [n − 1024,n] , (6.17)

and ωmain the main contributing angular frequency

|P̃0,CSR(ωmain) | � max
ωi
|P̃0,CSR(ωi ) | . (6.18)

2 Typically, the �rst and last ten values in the sequence are considered.
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The �fth feature is de�ned as the normalized frequency

x5(t ) � |P̃0,CSR(ωmain) | /ωmax , (6.19)

where ωmax denotes the maximum valid frequency in the spectrum. The sixth feature also
adds the corresponding complex phase

x6(t ) �
1
2π

2π + arctan
*,
Im(P̃0,CSR(ωmain))

Re(P̃0,CSR(ωmain))
+-

 mod 2π . (6.20)

The seventh feature represents an estimate of the phase di�erence ∆ϑ between the applied
sinusoidal RF amplitude modulation and the CSR power signal in the preceding time step,
determined via cross-correlation

x7(t ) �

∆ϑ0/π, if ∆ϑ0 ≤ π

(∆ϑ0 − 2π)/π, if ∆ϑ0 > π
. (6.21)

with
∆ϑ0 � ∆ϑ mod 2π . (6.22)

The de�nition of this feature in particular is based on the analysis in chapter 5 and is
expected to provide critical information about the synchronization between the applied
control signal and the ongoing micro-bunching dynamics. Finally, the eighth and last
feature is reserved for the termination condition introduced in section 6.4. Altogether, the
features of vector xt de�ne an observation at time t

Ot � x (t ) , (6.23)

which can be provided by the diagnostic systems already in place at KARA.
As particularly the feature x7(t ) is expected to carry crucial information, the more

theoretical de�nition in Eq. (6.7) is also augmented by an additional �ve-dimensional
feature vector

xa(t ) � (xa1 (t ),x
a
2 (t ), . . . ,x

a
5 (t ))

> . (6.24)

Here, the �rst two features directly encode the phase of the applied RF amplitude modula-
tion

xa1 (t ) � cos(ϑ ) and xa2 (t ) � sin(ϑ ) , (6.25)

and the third and fourth represent the phase di�erence to the CSR power signal

xa3 (t ) � cos(∆ϑ ) and xa4 (t ) � sin(∆ϑ ) . (6.26)

Analogously to the feature vector in Eq. (6.10), the �fth and last feature is reserved for the
termination condition introduced in section 6.4. The full information given to the agent in
this more theoretical formulation of the problem is �nally given by the tuple

St � (∆ψ̂ (q,p, ti ),x
a(t )) . (6.27)
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6.3. Choice of Reward Function
The de�nition of a proper reward function is a crucial component of any RL based endeavor
as it solely de�nes the objective pursued by the agent. It is thus of critical importance that
the optimization of this function corresponds to the desired behavior of the agent. Only
in that case, can the agent be expected to make progress towards solving the real world
task. For the overarching objective of achieving extensive control over the micro-bunching
instability, both mitigation and excitation of the micro-bunching dynamics are considered
throughout this thesis. As it turns out, the former is fundamentally more challenging
than the latter. An excitation of the dynamics can already be achieved via a constant
RF amplitude modulation as demonstrated in section 7.2, whereas mitigation requires a
dynamic adjustment of the modulation amplitude and frequency. The de�nition of a reward
function which describes the objective of mitigating the instability is thus considered �rst
and more extensively. The alternative objective of exciting the micro-bunching dynamics
is brie�y addressed afterwards.

As much of the interest around the pursued micro-bunching control is centered around
the corresponding emission of CSR, it seems natural to construct a reward function based
on the CSR power signal

Rt � Rt (PCSR(t )) . (6.28)

An additional bene�t of doing so is that this de�nition and the observation de�ned in
Eq. (6.23) are based on the same measurements, which facilitates the practical imple-
mentation. As the occurring micro-bunching dynamics lead to distinct oscillations in the
CSR power signal, the reduction of these �uctuations corresponds to a mitigation of the
underlying dynamics. As outlined in section 3.4.3, lengthening the bunch is a way of
achieving this mitigation, but one that comes at the cost of limiting the operation in other
regards, e.g., it leads to a decreased emission of CSR and reduces the capability to support
time-resolved experiments. To maintain the average intensity of the emitted CSR power
and to prevent a simple lengthening of the bunch, the average power of the signal should
thus be considered simultaneously. An early version of the reward was therefore de�ned
as

Rt �
(µCSR(t ) − µ initCSR)/µ

init
CSR

(σCSR(t ) − σ init
CSR)/σ

init
CSR
. (6.29)

Yet, it was found that this does not constitute a good trade-o� between mean and standard
deviation of the signal as it essentially neglects the mean for small values of the standard
deviation. The de�nition was therefore changed to

Rt �
µCSR(t ) − µ initCSR

µ initCSR
−wσ

σCSR(t ) − σ init
CSR

σ init
CSR

, (6.30)

with the trade-o� parameter wσ . In empirical studies this de�nition was found to closely
match the intuitive understanding of the objective. Typically, with an equal weighting for
the average power and the amount of �uctuation, that is, wσ = 1.

Given the apparent oscillation of the CSR power signal, the estimates of its mean and
standard deviation depend on the time window considered and the corresponding phase
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of the oscillation. To reduce the susceptibility to this issue, a smoother version of the
de�nition in Eq. (6.30) can be obtained by considering a longer sequence of prior values
of PCSR(ti ). While this reduces the �uctuation of the reward signal, it also dilutes the
information about the more recent signal. Another way of reducing the �uctuations of
the reward signal is by replacing the calculation of the mean and standard deviation in
Eq. (6.30) by more robust proxies. For example, the mean may be approximated by

µCSR(t ) ≈ µproxyCSR (t ) �
1
2 (Pmax(t ) + Pmin(t )) , (6.31)

with the maximum and minimum values of the CSR power signal in the preceding time
frame

Pmax(t ) � max
ti

PCSR(ti ) and Pmin(t ) � min
ti

PCSR(ti ) . (6.32)

Analogously, the standard deviation can be approximated by

σCSR(t ) ≈ σ proxy
CSR (t ) �

√
1
2

[(
Pmax(t ) − µproxyCSR (t )

)2
+

(
Pmin(t ) − µproxyCSR (t )

)2]
. (6.33)

The use of these proxies leads to a reduced oscillation of the reward function, but comes
at the cost of blurring the objective and a higher susceptibility to noisy extrema, as can be
expected in measurements. Both modi�cations of Eq. (6.30), smoothing via a larger time
frame and the use of proxies, were found to yield good results in empirical testing. They
are thus both maintained until studies at the actual accelerator may lead to a preference
for one or the other.

The alternative objective of exciting the micro-bunching dynamics is typically pursued
in order to obtain higher intensities of the CSR power emitted in the corresponding
frequency range. The reward at time t may thus simply be de�ned as

Rt �

∫ ω2

ω1

PCSR(ω, ti ) dω , (6.34)

where [ω1,ω2] de�nes the frequency range of interest. Section 7.2 considers the optimiza-
tion of this objective under the in�uence of constant RF amplitude modulations, which
corresponds to an agent that always selects the same action from the action space de�ned
in Eq. (6.1). Although this is su�cient for reaching a signi�cantly higher emitted CSR
power, dynamic adjustments of the RF signal may be even more e�ective in driving the
micro-bunching dynamics and are thus a promising subject for further research.

All in all, the actions de�ned in Eq. (6.1), the Markovian states in Eq. (6.27) and the re-
wards in Eq. (6.30) or (6.34) yield a fully functional MDP. The replacement of the Markovian
states with the observation of a feature vector in Eq. (6.23) leads to a partially observable
MDP, which can be implemented at KARA. Figure 6.1 illustrates the resultant general
feedback scheme. The agent is informed by measurements of the CSR signal, from which
both the observation and the reward are constructed, and interacts with the longitudinal
beam dynamics via the RF system. The repetition rate of the entire feedback loop has to
match the time scale of the micro-structure formation process, that is, it has to be in the
order of the synchrotron frequency. In practice, this yields challenging time constraint
for the involved data transmission and data processing, as well as the decision making
process of the agent. The topic is thus revisited in more detail in chapter 8.
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Figure 6.1.: General feedback scheme for the implementation of RL-based micro-bunching
control at KARA. The agent receives an observationOt and rewardRt calculated
based on the measured CSR power signal PCSR(ti ) and choses an action At that
de�nes the RF amplitude modulation for the subsequent time step.

6.4. Termination Condition
The fact that the pursued micro-bunching control constitutes a continuing task leads to
an additional complication for training an RL agent in practice. Although the concept
of temporal di�erence learning allows updates during the episode and the agent may
thus be trained in a very long episode, it is more feasible in practice to break down the
learning process into episodes of reasonable length. This facilitates the data handling and
the analysis of the agent’s performance. Yet, terminating the agent’s experience after an
arbitrary number of steps leads to an ill-posed problem, as best illustrated in an example:
Say the agent encounters a particular state s as the terminal state of the episode ST = s .
Per de�nition, the state- or action-value of that state would be equal to zero. In the given
MDP, however, the same state could also occur at the beginning of the episode or at any
step in between. Depending on the number of steps remaining until termination of the
episode, the cumulative reward and thus the expected value can take on very di�erent
values. Were the reward simply de�ned as Rt � +1 at each step, the expected value would
be equal to the expected number of steps after the state is encountered. As the agent only
receives the state, but not the index of the time step at which it is encountered, this can
lead to large �uctuations in the estimates of the value function independent of the quality
of the currently followed policy. Even worse, as function approximation is going to be
applied to deal with the continuous state and action spaces, not only the estimate of vπ (s )
is going to be a�ected by this ambiguity, but also states which are somewhat similar to s .
With value estimates this arbitrary the agent cannot be expected to learn e�ciently.

To address this issue, an explicit termination condition is introduced. Instead of a �xed
number of steps, the episode is terminated based on an additional performance measure.
A textbook example of this approach is the well-known cart-pole balancing task. Here,
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the episode is typically terminated after the pole exceeds a certain angle from its ideal
vertical position. For the RL problem considered in this thesis, the termination condition is
based on the reward function. After the �rst ten initial steps, the episode is terminated if
the agent does not meet a minimum performance requirement, that is, if the termination
condition

c termt ≥ 0 with c termt �

0 if t < 10
Rt − Rt−10 if t ≥ 10

, (6.35)

is violated. Thereby, performance is measured by the latest reward Rt compared to the
one ten steps prior Rt−10. This requirement of improvement is relaxed in cases where a
high enough level of control is already achieved, which in this application corresponds to
a high enough immediate reward

Rt ≥ rrelax , (6.36)

where the relaxation parameter is usually set to rrelax = 0.5. The episode is thus terminated
at the �rst time step the boolean statement

(c termt < 0) ∧ (Rt < rrelax) , (6.37)

is found to be true. This �xes the ambiguity of the value estimates, but introduces a
dependency on a reward in the agent’s past, which violates the Markov property. The
parameter c termt is thus added as the �nal feature of the eight-dimensional feature vector
in Eq. (6.10) and the �ve-dimensional feature vector in Eq. (6.24).

One drawback of the de�nition of c termt in Eq. (6.35) is that it focuses solely on a single
reward in the past Rt−10. This may lead to a termination of the episode just because a
single pair (Rt−10,Rt ) did not satisfy the termination condition although good average
progress was made by the agent. In an alternative de�nition, a quantile Qp of the reward
gradients is used instead to address the potential stochasticity of the learning process

c termt �

0 if t < 10
Qp ({Rt−9 − Rt−10, . . . ,Rt − Rt−1}) if t ≥ 10

. (6.38)

With this de�nition the agent may continue the episode if the ratio p of reward gradients is
positive. In empirical testing the best results were achieved for p = 0.67, but this version of
the termination condition generally allowed for long episodes where the agent was visibly
not improving towards the general objective. Overall the de�nition of the termination
condition in Eq. (6.35) was found to be more reliable.
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If a machine is expected to be infallible,
it cannot also be intelligent.

— Alan Turing

The approach towards micro-bunching control developed in chapter 5 and formalized as a
reinforcement learning problem in chapter 6 is based on the idea of using a modulation
of the RF amplitude to interact with the occurring micro-bunching dynamics. In order to
test the validity of this approach and the e�ectiveness of applying reinforcement learning
methods, the general feedback scheme is implemented in a virtual environment using the
VFP solver Inovesa for the simulation of the underlying longitudinal beam dynamics. The
modular implementation described in section 7.1 allows for tests of various combinations
of the di�erent de�nitions introduced in chapter 6. Thereby, the general objective of micro-
bunching control is split into two complementary formulations of the task: In section 7.2,
a deliberate and controlled excitation of the micro-bunching dynamics is pursued, which
serves the purpose of providing intense coherent radiation to dedicated applications. As
this can already be achieved with an RF modulation of constant amplitude and frequency,
the limits of this approach are explored without the employment of RL solution methods.
The more challenging task of mitigating the micro-bunching dynamics is pursued in
section 7.3. A practical way of mitigating the instability is desirable as it extends the
regime of stable operation at electron storage rings to shorter bunch lengths and higher
bunch currents. Besides expanding the range of sustainable beam parameters at existing
machines, and thus their capability to support further research, it also enables a more
e�ective optimization of related beam properties and thereby facilitates the design of
new faclities. To achieve this mitigation, the modulation of the RF amplitude has to be
continuously adjusted to the varying perturbation caused by the CSR wake potential. As a
general proof of feasibility and in order to provide a benchmark scenario, subsection 7.3.1
demonstrates the e�ectiveness of the dynamic RF amplitude modulation scheme via manual
control. The reinforcement learning control presented in the subsections 7.3.2 and 7.3.3 is
evaluated along this benchmark scenario. In subsection 7.3.2, the agent is given full access
to the Markov states, that is, the charge distribution in phase space, which constitutes
a theoretically sound formulation of the problem. In subsection 7.3.3, the information
provided to the agent is restricted to a feature vector derived from the observed CSR power
signal, which represents a more feasible formulation tailored towards the implementation
at KARA.

Overall, the presented results serve as a proof-of-principle for the approach to micro-
bunching control developed in this thesis. Both excitation and mitigation of the micro-
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bunching dynamics are successfully demonstrated, indicating the extensive control which
can be achieved by careful, dynamic adjustments of the RF amplitude. However, there are
also recurring instabilities observed in the RL training process, which are not yet fully
understood. Furthermore, the demonstrated RL-based control has to be generalized across
continuous time, di�erent bunch currents and varying machine parameters. These subjects
are addressed in the �nal section of this chapter and further expanded on in chapter 8.

7.1. General Implementation Scheme
In order to facilitate the application of di�erent RL solution methods, the reinforcement
learning environment is implemented in Python as an OpenAI gym [61] environment.
This o�ers the bene�t of standardized interfaces the agent can interact with and thus
supports a variety of reinforcement learning libraries. The general implementation scheme
is illustrated in Fig. 7.1. The longitudinal beam dynamics underlying the micro-bunching
instability are simulated using the VFP solver Inovesa written in C++. The Python package
InovesaIPC (Inovesa Inter-Process Communication) written by Patrick Schreiber allows
for communication with Inovesa during runtime. As indicated in Fig. 7.1, the environment
is implemented in a modular approach to support di�erent de�nitions of all essential
RL elements. The reward handler implements the di�erent reward functions described
in section 6.3. Based on the choice of the reward function, the termination condition is
derived according to the de�nitions in section 6.4. In order to ful�ll the Markov property
as closely as possible, the termination condition is added to the observation provided by
the observation handler, which primarily supports the de�nitions in Eqs. (6.27) and (6.23).
Finally, the action handler implements di�erent ways to manipulate the RF signal, most
importantly modulations of the RF amplitude. As the phase di�erence between the sinu-
soidal RF modulation and the oscillation of the CSR power signal is expected to carry
crucial information about the state of the micro-bunching dynamics, the observation is
also augmented by this particular feature. In order to ensure the validity of the physics
simulation during the interaction with an RL agent, several checks are incorporated into
the environment. One such example is a regular inspection of the charge loss. As Inovesa
describes the charge density in phase space on a �xed grid, large deviations from the
synchronous position may lead to a cut-o� at the tails of the distribution. If this results
in a charge loss of more than 0.1 %, a large negative number is added as a penalty to the
reward at that time step Rt . This serves the purpose of discouraging the agent of pursuing
solutions that involve non-physical distributions. For the action space de�ned in Eq. (6.1)
this boundary condition was violated very rarely. Yet, it gains in relevance when the action
space is extended to also include RF phase modulations. The entire interaction process
between an agent and the environment during an episode can be stored in a history-�le
of HDF5-format [91]. Simultaneously, Inovesa supports storage of the data related to the
physics simulation in an additional HDF5-�le. The RL agents used in conjunction with
this environment are largely based on three di�erent RL libraries: keras-rl [92], Stable
Baselines [93] and TF-Agents [94]. The back end computation of the involved neural
networks for all three libraries is done in TensorFlow [95]. While Stable Baselines and
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Figure 7.1.: Implementation of the RL feedback scheme in simulations (InovesaRL package).
At the center is an OpenAI gym environment which communicates via the
InovesaIPC package with the VFP solver Inovesa, used for the simulation of the
longitudinal beam dynamics. Because of its modular design, the environment
supports various de�nitions and combinations of the di�erent RL elements.
The standardized interface facilitates the application of RL algorithms from
di�erent RL libraries, including keras-rl, Stable Baselines and TF-Agents.

TF-Agents support all four RL algorithms introduced in section 4.5, DDPG, TD3, SAC and
PPO, the older library keras-rl only o�ers an implementation of the DDPG algorithm.

All these modules are combined into an installable Python package called InovesaRL
and virtualized in a Docker [96] container to improve the reproducibility of the obtained
results.

7.2. Excitation of Micro-Bunching Dynamics
In chapter 5, the perturbation of the restoring force exerted by the RF system was found to
be critical for the formation process of the occurring micro-structures. This immediately
suggests the use of an RF amplitude modulation to amplify the perturbation by the CSR
wake potential and thereby excite the micro-bunching dynamics, as published in [97].
Given that the strength of the restoring force at the synchronous position, k0, is naturally
modulated at the micro-structure frequency, a straightforward approach leads to an RF
amplitude modulation at that frequency.

Neglecting the relative phase between the natural perturbation and the applied RF
signal, this idea is tested on an exemplary data set (D2 with д = 32mm) at a bunch
current directly above the instability threshold, that is, I = 260 µA. Figure 7.2 illustrates
the results of applying an RF amplitude modulation at the micro-structure frequency
fmod = fms = 4.74 fs,0 with an amplitude of Vmod = 0.05V0. The application of the RF
amplitude modulation immediately increases the oscillation amplitude of the CSR power
signal. Subsequent to an initial transition phase, the oscillation settles for a new quasi-
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Figure 7.2.: The natural micro-bunching dynamics can be ampli�ed with an RF amplitude
modulation at the micro-structure frequency fmod = fms. The oscillation of
the CSR power signal (top) is immediately ampli�ed by the RF modulation
applied after t = 0Ts,0 (bottom). After an initial transition phase, roughly
from t = 0Ts,0 to t = 15Ts,0, the micro-bunching dynamics settle for a new
quasi-equilibrium with higher oscillation amplitude.

equilibrium (around t = 15Ts,0). Compared to the natural oscillation, the signal takes on
a more sinusoidal shape with a clearly ampli�ed oscillation amplitude. With a constant
application of the RF amplitude modulation, the observed dynamics also continue in
the same, highly repetitive manner after the time frame displayed in Fig. 7.2. At this
point, the oscillation of the CSR power signal is largely driven by the external excitation.
Independent of the initial phase di�erence between the natural perturbation of the restoring
force and the applied RF modulation, this behavior is always observed in the simulations
conducted throughout this thesis. After an initial adjustment period, the micro-bunching
dynamics follow the external excitation which ampli�es the natural perturbation by the
CSR wake potential and eventually drives the micro-bunching dynamics. This increased
oscillation of the CSR power signal is the result of an ampli�cation of the micro-structures
in the longitudinal phase space as illustrated in Fig. 7.3. While the overall shape of the
micro-structures is almost identical to those occurring naturally, the applied RF amplitude
modulation clearly leads to a growth of the micro-structures in amplitude. Compared to
the natural micro-structures, the maximum amplitude in Fig. 7.3b is increased by nearly
50 percent. This is expected given the analysis of the perturbed synchrotron motion in
chapter 5. After the initial transition phase, the perturbation by the CSR wake potential is
synchronized to the external excitation. As a consequence of the additional e�ect of the
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(a) Natural micro-structures (b) Excitation of micro-structures

Figure 7.3.: (a) The naturally occurring micro-bunching dynamics lead to the formation of
distinct micro-structures in the longitudinal phase space. (b) An RF amplitude
modulation at the micro-structure frequency, fmod = fms, and with Vmod =
0.05V0, leads to an ampli�cation of the already naturally occurring structures
by nearly 50 percent.

RF amplitude modulation, the individual particles forming the micro-structures are driven
further outside in phase space, which ampli�es the inhomogeneity and leads to a growth
of the local structures. As the RF amplitude modulation a�ects the charge distribution in
phase space and the corresponding longitudinal bunch pro�le, it also leads to an altered
emission of CSR. In order to assess the e�ects on the radiated CSR power spectrum, the
temporal average of the spectrum

PCSR(ω) �
1
n

n∑
i=1

PCSR(ω, ti ) , (7.1)

is shown in Fig. 7.4 for both, the natural behavior of the instability and under the in�uence
of the RF amplitude modulation. In large parts the two spectra are very similar. Yet, in
the frequency range corresponding to the spatial extent of the structure, that is, around
150GHz the emitted power is notably increased (up to 30 percent) by the RF modulation.
This is expected due to the similar shape but increased amplitude of the micro-structures in
Fig. 7.3b. With a reward function de�ned according to Eq. (6.34), Rt =

∫ ω2
ω1

PCSR(ω, ti ) dω,
on the frequency range [140, 200] GHz, the RF modulation increases the average reward
by about 25 percent. Applications which rely on intense coherent radiation in that speci�c
frequency range may thus be supported through the additional RF modulation. It is worth
noting that the total integrated CSR power, e.g. over the frequency range [1, 1000] GHz, is
about the same compared to the natural micro-bunching dynamics. The main di�erence
achieved via the RF amplitude modulation is that the part of the spectrum which corre-
sponds to the spatial extent of the micro-structures is notably ampli�ed. These results
con�rm the e�ectiveness of interacting with the micro-bunching dynamics via an RF
amplitude modulation and thereby verify the insights of chapter 5.
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Figure 7.4.: The applied RF amplitude modulation ampli�es the average CSR power spec-
trum in the frequency range corresponding to the spatial extent of the occurring
micro-structures. Here, the emitted power is increased by up to 30 percent in
the frequency range around 150GHz.

Besides the excitation of the naturally occurring micro-bunching dynamics, the applica-
tion of an RF amplitude modulation was also found to o�er the possibility of imprinting a
new set of micro-structures on the charge distribution. In a scan across di�erent modula-
tion frequencies, another strong response to the applied modulation was found close to the
third harmonic of the nominal synchrotron frequency. In fact, the e�ect of an RF amplitude
modulation at fmod = 3.06 fs,0 with the same modulation amplitude Vmod = 0.05V0 on
the oscillation of the CSR power signal, shown in Fig. 7.5, is even stronger compared to
the RF modulation at the natural micro-structure frequency. Immediately after the RF
amplitude modulation is applied, the oscillation amplitude of the CSR power signal starts
growing and quickly reaches signi�cantly larger values. Even at the end of the displayed
time frame, the oscillation amplitude is still increasing. After about 50 synchrotron periods
it eventually settles between the values of 38.2mW and 66.4mW. Thereby, the CSR power
signal does not take on the almost perfectly sinusoidal shape displayed in Fig. 7.2, instead it
features a stronger second harmonic which slightly deforms the signal. Yet, the oscillation
is clearly driven by the external excitation directly after the RF modulation is applied.
Similarly to the excitation at the micro-structure frequency, these increased oscillations of
the CSR power signal are the result of an ampli�cation of the micro-bunching dynamics
in the longitudinal phase space. In this case, the micro-structures shown in Fig. 7.6 are
not only of increased amplitude, but also of altered shape. Compared to the about �ve
micro-structures occurring due to the natural behavior of the instability, the applied RF
amplitude modulation imprints an entirely new set of merely three micro-structures on the
charge distribution. The maximum amplitude of these new micro-structures is more than
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Figure 7.5.: Besides the excitation of the natural micro-bunching dynamics, an RF amplitude
modulation at the third harmonic of the nominal synchrotron frequency, fmod =
3.06 fs,0, was found to have a strong e�ect on the longitudinal beam dynamics.
The oscillation of the CSR power signal (top) immediately responds to the
external excitation by the RF amplitude modulation (bottom) and quickly
reaches much larger amplitudes. Eventually, the oscillation slightly deviates
from a purely sinusoidal signal, as visible towards the end of the displayed time
frame. At this point, the oscillation of the signal continues to grow in amplitude
for 30 more synchrotron periods before it settles for a regular oscillation
between 38.2mW and 66.4mW.

three times larger than that of the naturally occurring structures, which leads to the signif-
icantly higher peak intensity of the emitted CSR power. Here, the natural micro-bunching
dynamics are replaced by a new periodic perturbation of the restoring force induced by the
applied RF amplitude modulation. The original micro-structures are no longer visible in
the longitudinal phase space and the corresponding frequency fms is strongly suppressed
in the oscillation of the CSR power signal. These altered micro-bunching dynamics lead
to substantial changes in the corresponding emission of CSR. As the naturally occurring
micro-structures are replaced by a new set of structures imprinted on the charge distribu-
tion, the emission of CSR at frequencies corresponding to the spatial extent of the original
structure, that is around 150GHz, is visibly reduced in the average CSR power spectrum
shown in Fig. 7.7. Yet, the emission at frequencies corresponding to the spatial extent of
the new micro-structures, between 60GHz and 140GHz, is increased up to a full order of
magnitude. With a reward function de�ned according to Eq. (6.34) on the frequency range
[60, 140] GHz, the RF modulation leads to an increase of the average reward by more than
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(a) Natural micro-structures (b) Excitation of micro-structures

Figure 7.6.: (a) The naturally occurring set of micro-structures consists of about �ve struc-
tures with relatively small amplitudes. (b) An RF amplitude modulation at
the third harmonic of the nominal synchrotron frequency, fmod = 3.06 fs,0,
and with Vmod = 0.05V0, leads to a new set micro-structures in the longitudi-
nal phase space, which consists of only three structures, but of much larger
amplitude.
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Figure 7.7.: The altered micro-bunching dynamics due to the applied RF amplitude modu-
lation at fmod = 3.06 fs,0 lead to substantial changes in the radiated CSR power
spectrum. While the intensity is decreased in the frequency range correspond-
ing to the spatial extent of the original micro-structure, the new set of large
micro-structures shown in Fig. 7.6 increases the emission between 60GHz and
140GHz by a large margin.
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200 percent. For the parameter settings in this example, the RF amplitude modulation at
fmod = 3.06 fs,0 would thus be of particular interest to experiments with a requirement of
intense CSR in that frequency range.

These examples demonstrate how an RF amplitude modulation can be used to excite the
micro-bunching dynamics, either by amplifying the naturally occurring micro-structures
or by imprinting a new set of structures. For the considered set of simulation parameters,
the ladder could only be achieved by an RF modulation at the third harmonic of the
synchrotron frequency, alternative modulation frequencies did not have the same, strong
e�ect on the micro-bunching dynamics. In order to determine the conditions under which
a new set of micro-structures can be imprinted on the charge distribution and to assess
the full potential of this approach, a more systematic study is required. Nonetheless, the
ampli�cation of the natural micro-bunching dynamics via an RF amplitude modulation at
the micro-structure frequency veri�es the insights developed in chapter 5 and provides a
simple test scenario for �rst experiments at KARA as discussed in chapter 8.

7.3. Mitigation of Micro-Bunching Dynamics
Compared to an excitation of the occurring micro-structures, their mitigation is a more
challenging objective. As illustrated in section 5.5, the application of an RF amplitude
modulation with constant amplitude and frequency is not su�cient to counteract the dy-
namic perturbation caused by the CSR wake potential. Instead, the modulation parameters
have to be adjusted according to the altered micro-bunching dynamics caused by previous
interactions with the beam. This leads to the sequential decision problem formalized in
chapter 6. In a �rst step, the objective of mitigation is pursued through manual control, that
is, the actions are chosen manually in a trial-and-error process, not by an RL agent. This
serves as proof for the general feasibility and the soundness of the problem formulation.
The achieved level of control is also used as a performance benchmark for the subsequent
RL e�orts. Initially, the agent is given full access to the Markov states of the MDP, which
provides the theoretical comfort of a problem formulation that can expected to be solvable
by RL algorithms. Although the �nal amount of immediate reward is larger under manual
control, the benchmark level of total reward is reached, and even slightly exceeded, in
this formulation. The best training runs thus yield an RL agent which is clearly capable
of mitigating the micro-bunching dynamics. The restriction of the agent’s information
to an observable feature vector in subsection 7.3.3 comes at the cost of losing some theo-
retical comfort, but facilitates the practical implementation at KARA. Unexpectedly, the
performance achieved with this approach even surpasses the prior results.

7.3.1. Proof of Feasibility: Manual Control
To verify the feasibility of mitigating the micro-bunching dynamics via a dynamically
adjusted modulation of the RF amplitude, this idea was tested on an exemplary set of
simulation parameters (data set D1) at a bunch current directly above the threshold
current, I = 115 µA. As the formation of micro-structures happens at the time scale of
the synchrotron period, the time between two consecutive actions ∆t should be chosen
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Figure 7.8.: Result of a carefully selected sequence of RF amplitude modulations, found in
a trial-and-error process. The initial oscillation of the CSR power signal (top)
is continuously damped by the applied RF modulation (bottom). At the end of
the considered time frame, the oscillation of the CSR power signal is reduced
to a minimum and clearly damped compared to the natural behavior of the
instability indicated in gray.

in the same order of magnitude to e�ciently counteract the micro-bunching dynamics.
For the empirical studies presented in this chapter, ∆t was therefore set to a quarter of
the nominal synchrotron period. Figure 7.8 illustrates the results achieved by carefully
adjusting the modulation parameters during a total time frame of 20 synchrotron periods.
The oscillation of the CSR power signal shown in the upper part of the �gure is continuously
reduced down to the point where it is barely visible for the last �ve synchrotron periods.
Compared to the natural behavior of the instability, indicated by the gray line, this clearly
demonstrates a mitigation of the underlying micro-bunching dynamics. The corresponding
micro-structures at t = 0Ts,0 and t = 20Ts,0 are shown in Fig. 7.9, illustrating the e�ect
on the charge distribution in the longitudinal phase space. To achieve these results, the
amplitude of the RF modulation is initially increased until it starts damping the oscillation
in the CSR power signal. As the micro-bunching dynamics are gradually mitigated, the
strength of the perturbation by the CSR wake potential is reduced and the modulation
amplitude can thus be lowered for the subsequent synchrotron periods. Eventually, the
amplitude is slightly increased again at the very end of the considered time frame.
Simultaneously, though barely visible to the unaided eye, the modulation frequency is also
slightly adjusted over the entire sequence. The corresponding action values chosen from
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(a) Initial micro-structures at t = 0Ts,0 (b) Mitigated micro-structures at t = 20Ts,0

Figure 7.9.: (a) The initial micro-structures for the sequence displayed in Fig. 7.8 are quickly
damped by the applied modulation of the RF amplitude. (b) After 20 synchrotron
periods, the micro-structures are mitigated signi�cantly, which yields a smooth
charge distribution in the longitudinal phase space.
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Figure 7.10.: Action values chosen during the sequence displayed in Fig. 7.8. The modula-
tion amplitude Vmod is initially increased until the actions show the desired
e�ect and the perturbation by the CSR wake potential is reduced. After the
�rst 20 steps, it can therefore be lowered again. The modulation frequency is
kept close to the natural micro-structure frequency at fms = 2.99 fs,0.
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Figure 7.11.: Rewards corresponding to the sequence displayed in Fig. 7.8, calculated ac-
cording to the de�nition in Eq. (6.30). To reduce oscillations in the reward
signal, the CSR signal of four prior steps is used to calculate the mean and
standard deviation.
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Figure 7.12.: Observed features corresponding to the sequence displayed in Fig. 7.8, cal-
culated according to the de�nitions in Eqs. (6.13)–(6.21) and Eq. (6.35). The
reduced standard deviation of the CSR power signal, encoded in feature x2
(red line), is the main reason for the high rewards achieved towards the end
of the sequence.
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the normalized action space de�ned in Eq. (6.3) are displayed in Fig. 7.10. Thereby, the
modulation amplitude and frequency are constrained to the intervals Vmod ∈ [0, 0.1]V0
and fmod ∈ [2.5, 3.5] fs,0, with the natural micro-structure frequency in this case being
at fms = 2.99 fs,0. In an attempt to directly counteract the perturbation by the CSR wake
potential, the modulation frequency was kept around the value of 0.5 for most of the
chosen actions, that is, it does not deviate much from the natural micro-structure frequency.
Yet, it has to be slightly adjusted as the micro-bunching dynamics are altered by previous
actions.

The corresponding sequence of rewards is calculated according to the de�nition in
Eq. (6.30) and shown in Fig. 7.11. To obtain a smoother reward signal, the CSR signal of
four prior steps is considered for the calculation of the mean and standard deviation. Under
these conditions the reward function seems to closely match the physical objective. As
the CSR signal in Fig. 7.8 is improving, the reward continuously grows from close to zero,
R1 = 0.01, to almost one, R80 = 0.98, at the end of the sequence. The total undiscounted
return obtained over the full sequence is G0 = 41.65, and as a reference for the subsequent
RL e�orts, the discounted return withγ = 0.99 isG0(γ = 0.99) = 24.26. Although the mean
of the CSR power signal is slightly increasing over the sequence, the large majority of the
reward is obtained due to a reduction of the standard deviation. As the normalized mean
and standard deviation are features in the observation vector, this is visible in Fig. 7.12
where all eight features, calculated according to the de�nitions in Eqs. (6.13)–(6.21) and
Eq. (6.35), are displayed for the considered sequence. While the mean encoded in feature
x1 is almost zero, that is, unchanged compared to the natural behavior of the instability,
the standard deviation encoded in feature x2 is gradually reduced from zero to minus one.
The mitigation of the micro-bunching dynamics is also indicated by feature x4, which
encodes the relative strength of the main oscillation frequency in the Fourier transformed
CSR power signal. As the micro-structures and the corresponding �uctuations of the CSR
power signal are damped, the feature reduces from close to one at the start of the sequence
to almost zero towards the end. Although the phase of this CSR power oscillation encoded
in feature x6 varies periodically throughout the entire sequence, the phase di�erence to
the applied RF modulation indicated by feature x7 shows a di�erent behavior. In fact, the
mitigation of the micro-bunching dynamics seems most e�ective for negative values down
to about x7 = −0.5. Finally, the feature x8 displays the termination condition according
to the de�nition in Eq. (6.35). As it is greater or equal to zero for the entire sequence, the
reward signal is continuously improving and the episode would not be terminated. Given
that the obtained reward exceeds the value of the relaxation parameter rrelax = 0.5 after
about 40 steps, the episode would not be terminated regardless.

Overall, these results verify the feasibility of mitigating the micro-bunching dynamics
via a modulation of the RF amplitude. It is also important to point out that this not achieved
at the cost of lengthening the bunch. In fact, the bunch length is even slightly decreased by
the applied RF amplitude modulation. This is indicated by the slowly increasing mean of the
CSR power in Fig. 7.8 and shown explicitly in appendix A.6. In the following two sections,
RL algorithms are applied to the same task, for which the manual control discussed above
serves as a performance benchmark. Particularly with the agent having full access to the
Markov states of the system, these results also guarantee that the problem is solvable, at
least to the level of control achieved here.
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7.3.2. RL Results with Phase Space Information
Given a fully functional implementation of the OpenAI gym environment described in
section 7.1 and a basic understanding of the involved physics interactions, the application of
reinforcement learning methods was pursued in an interdisciplinary collaboration between
the Laboratory for Applications of Synchrotron Radiation (LAS), the Institute for Beam
Dynamics and Technology (IBPT) and the High Performance Humanoid Technologies
(H2T) group in the Institute for Anthropomatics and Robotics (IAR). In particular, the task
of training an RL agent with full access to the Markov states of the system was pursued
in a Master’s thesis conducted by Melvin Klein, at the KIT Department of Informatics
under shared supervision by both institutes [98]. His work resulted in the �rst RL agent
reaching the benchmark level of control illustrated in the previous section and provided
vital improvements to the formal problem de�nition given in chapter 6. This subsection
reviews the most important results of those joint e�orts and presents the peak performance
of an RL agent trained using the PPO algorithm. While similar results were achieved using
the DDPG or the SAC algorithm, all these algorithms were found to heavily depend on
the used random seed. Random number generation is required for the calculation of the
exploration noise, the sampling from a replay bu�er and other random elements of the used
RL algorithms. Moreover, the learning process was frequently unstable, that is, the agent’s
performance seemed to degrade with continued training time. Also the TD3 algorithm,
which is build on DDPG and meant to further stabilize the algorithm, was not found to
improve these issues. Of the four algorithms, PPO has the unique characteristic of being
an on-policy algorithm which, in theory, should result in reduced variance at the cost of
being less sample e�cient. Yet, the instabilities in the training process seemed to occur
as frequently as for the other algorithms. As these issues also persist under the use of a
feature vector, which is discussed in the next subsection, they are further addressed in the
�nal section of this chapter.

The state de�ned in Eq. (6.27) is a tuple consisting of a matrix ∆ψ̂ (q,p, ti ) describing
the charge density in the longitudinal phase space and a �ve-dimensional feature vector
xa(t ). In order to e�ciently process this information in a neural network, a convolutional
architecture is chosen. In empirical testing, the layout illustrated in Fig. 7.13 was found
to yield the best performance and was thus generally used for the actor network, and if
required, slightly adapted for the critic network. Initially, the charge density matrix is
processed by �ve convolutional layers with 3 × 3-�lters, each followed by a max pooling
layer. The output of the �nal layer is concatenated with the additional feature vector xa(t )
and further processed in four fully connected layers, eventually yielding a two dimensional
action vector as output. The activation function used for all hidden layers, convolutional
and fully connected, is the leaky ReLU function de�ned by

ReLUleaky : R→ (−∞,∞) with ReLUleaky(x ) �

x if x > 0
0.01x if x ≤ 0

, (7.2)

which allows for a small positive gradient when the unit would otherwise not be active.
This was found to yield slightly better results than the standard ReLU function de�ned
in Eq. (4.37). The activation function of the output layer is the logistic sigmoid function
de�ned in Eq. (4.35), which restricts the resulting action to a ∈ [0, 1] × [0, 1]. Given the
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Figure 7.13.: Layout of the actor network used to process the states de�ned by Eq. (6.27).
The charge density matrix is processed by alternating convolution and max
pooling layers and subsequently concatenated with the additional feature
vector, which serves as the input for the �nal fully connected layers.

exemplary actions chosen under manual control, the actor and critic network may also be
pre-trained on a small data set. This was partially used to optimize the architecture of the
network, but did not result in a warm start or an improvement of the �nal performance
for the pre-trained agents. The initially well-performing network is quickly altered by the
updates of the agent and degrades in performance, essentially starting from scratch again
after only a few episodes.

In order to evaluate the outcome of individual training sessions, the agents are put into
evaluation mode, that is, all randomness involved in the exploration process is turned o�
and the agent chooses greedily at every time step. As the underlying physics simulation
is fully deterministic, this yields perfectly reproducible results once the actions are �xed.
Even for the largest used networks, the computation time of the training process is
primarily determined by the physics simulation. This is still the case when running
the parallelized version of Inovesa and ultimately limited by the latency in-between
individual simulation steps. Nonetheless, a typical training session consisting of 50 000 to
500 000 steps of the RL environment can be conducted within a single day on standard
desktop computers1, or even faster if more powerful hardware is available. Extending the
training session to a larger number of steps was not found to be particularly bene�cial
due to the aforementioned instabilities leading to degrading performances. Although the
maximum episode length is typically restricted to 80 steps during training, the pursued
micro-bunching control fundamentally constitutes a continuing task. As the objective is
not to obtain high immediate rewards at the cost of future return, a discount factor close
to one, γ = 0.99, is used to keep the return bounded independent of the episode length.

As an important milestone, Fig. 7.14 displays one of the �rst results where the benchmark
performance was exceeded by an RL agent. Under peak performance, the PPO agent
managed to perform 80 steps without termination of the episode. In fact, it even manages

1 As an example, and for better comparability, one of the used systems was an ESPRIMO P920 manufactured
by FUJITSU featuring an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz.
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Figure 7.14.: Mitigation of the micro-bunching dynamics and the corresponding oscilla-
tions in the CSR power signal (top) by an RL agent trained with the PPO
algorithm. The chosen actions and the resulting modulation of the RF am-
plitude (bottom) di�er quite signi�cantly from the manual control shown in
Fig. 7.8. Yet, the agent clearly achieves a mitigation compared to the natural
behavior of the instability (gray line) with an overall performance that is
comparable.

to continue for several steps, reaching a total of 116 steps before violating the termination
condition. While the CSR power signal is deteriorated in the �rst synchrotron period, the
agent subsequently recovers and succeeds in damping the oscillation quite e�ectively
with the best performance reached after about 15 synchrotron periods. Afterwards, the
oscillation reaches slightly larger amplitudes again. The e�ect on the corresponding charge
distribution in the longitudinal phase space is shown in Fig. 7.15. The naturally occurring
micro-structures are again clearly reduced in amplitude, resulting in a much smoother
distribution. Intriguingly, these results are achieved by a very di�erent manipulation of
the RF amplitude compared to the manual control shown in Fig. 7.8. The agent alternates
between small and large modulation amplitudes and simultaneously varies the modulation
frequency, as can be seen Fig. 7.16. The agent makes use of a large part of the available
action space while dynamically adjusting its actions to the changing micro-bunching
dynamics. This suggests that di�erent strategies to mitigate the micro-bunching dynamics
are feasible within the de�ned actions space. Given that the agent aims to maximize
the discounted return, the exact de�nition of the reward function assigns priority to one
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(a) Initial micro-structures at t = 0Ts,0 (b) Mitigated micro-structures at t = 20Ts,0

Figure 7.15.: (a) The initial micro-structures for the sequence displayed in Fig. 7.14 are
quickly damped by the PPO agent. (b) Similarly to Fig. 7.9b, after 20 syn-
chrotron periods, the micro-structures are clearly reduced in amplitude.
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Figure 7.16.: Actions chosen by the PPO agent for the sequence displayed in Fig. 7.14. Both,
the amplitude and the frequency of the modulation are dynamically adjusted
by the RL agent to mitigate the micro-bunching dynamics.
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Figure 7.17.: Rewards obtained by the PPO agent during the sequence displayed in Fig. 7.14.
While the maximum value of immediate reward at R67 = 0.82 is lower than
under manual control, the total return is slightly higher, G0 = 45.66, due to
the fast improvement at the beginning of the sequence.
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Figure 7.18.: Evolution of the feature vector corresponding to the sequence displayed in
Fig. 7.14. Although the RL agent is provided with states de�ned according
to Eq. (6.27), these features are still used for the purpose of analysis and
comparison.
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strategy or the other. While the choice in Eq. (6.30) seems to match the general physics
objective, an additional re�nement of the de�nition may be bene�cial to create a higher
incentive for the desired solution. The sequence of rewards generated by these actions
is shown in Fig. 7.17. Although the maximum achieved immediate reward, R67 = 0.82, is
lower than for manual control, the total undiscounted and discounted return, G0 = 45.66
and G0(γ = 0.99) = 28.24, are slightly higher. This is because the PPO agent is faster
in achieving a high level of reward, reaching Rt = 0.5 after merely 30 thirty steps. At
about 45 steps it reaches a plateau at Rt = 0.8 before the obtained reward decreases again
towards the end of the sequence. Yet, it stays above the value of the relaxation parameter
rrelax = 0.5, which prevents the termination of the episode.

Although the agent is provided with states de�ned according to Eq. (6.27), for the
purpose of analysis and better comparability, the feature vector de�ned in Eq. (6.10) is
calculated for the given data set and displayed in Fig. 7.18. Here, the fast reduction of the
�uctuation of the CSR power signal is clearly indicated by feature x2 encoding its standard
deviation. After about 30 steps it reaches a value around x2 ≈ −0.8 and stays at that level
for the remaining sequence. Simultaneously, the relative amplitude of the main oscillation
frequency encoded by feature x4 is reduced again. What di�ers quite signi�cantly from the
features displayed in Fig. 7.12, is the relative phase between the applied modulation and the
CSR power signal. Instead of staying at negative values around x7 ≈ −0.5, it periodically
jumps to large positive values again. This seems to be correlated to the periodic adjustment
of the modulation amplitude shown in Fig. 7.16. Whenever the phase is mismatched, with
feature x7 jumping to large positive values, the modulation amplitude is lowered to almost
zero in order to not degrade the signal. Yet, the agent is capable of establishing the correct
phase relation again by adjusting the modulation frequency and subsequently ramps up
the modulation amplitude, damping the micro-bunching dynamics in the process.

7.3.3. RL Results with Solely CSR Information
The results illustrated in the previous subsection demonstrate the e�ectiveness of RL
methods to solve the sequential decision process arising from the required dynamic
adjustment of the RF amplitude modulation. While this veri�es the general approach
and provides some theoretical comfort, the �nal objective is a solution which can be
implemented at KARA. Unfortunately, providing the RL agent with precise and reliable
measurements of the charge distribution in the longitudinal phase space is not yet an
available option. The RL e�orts in this subsection are thus focused on solving the same
task while replacing the state de�nition in Eq. (6.27) with the feature vector in Eq. (6.10),
which relies solely on the observed CSR power signal. As this is quite a substantial change
which undermines the ful�llment of the Markov property, the feasibility of this approach
is unknown a priori. If the information encoded in the eight-dimensional feature vector
were found to be insu�cient to decide on the necessary adjustments of the RF modulation,
the problem would be ill-posed and not solvable for any RL agent. Yet, that did not turn out
to be the case in practice. In fact, the peak performance presented in this subsection even
slightly exceeds the results of the previous subsection. The reason for these �ndings may be
related to the considerable, additional computational e�ort involved in deriving meaningful
features from the charge density matrix. The architecture of the neural networks used in
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Figure 7.19.: Layout of the actor network used to process the observations de�ned by the
eight-dimensional feature vector derived from the CSR power signal.

conjunction with the state de�nition in Eq. (6.27) is far more complex than the networks
used to process the eight-dimensional feature vector. Typically, a simple fully connected
network with three to four hidden layers, as illustrated in Fig. 7.19, was used and found to
be su�cient. While the best results were achieved with four layers consisting of 64 units
each, going down to three layers with as few as 16 units still led to reasonable results.
Given the challenging repetition rate of the RL feedback loop in practice, there is a clear
incentive to reduce the complexity of the network as much as possible. The activation
function used for all hidden layers is the standard ReLU function de�ned in Eq. (4.37).
In order to restrict the two-dimensional output of the network to the normalized action
space, A � [0, 1] × [0, 1], the activation function of the �nal layer is the logistic sigmoid
function de�ned in Eq. (4.35).

Figure 7.20 displays one of the earlier results obtained while training an RL agent on the
eight-dimensional CSR feature vector. The termination condition in this particular training
session was based on the reward gradients of previous steps as de�ned in Eq. (6.38). While
this was later found to facilitate long episodes in which the agent was not improving and
therefore neglected in favor of the de�nition in Eq. (6.35), it led to some early successes
in training. Under peak performance, the DDPG agent manages to reach 73 steps, or
18.25 synchrotron periods, before eventually violating the termination condition. During
that time the oscillation of the CSR power signal is visibly reduced, albeit not to the
same level as in Figs. 7.8 or 7.14. After the �rst �ve synchrotron periods, in which the
oscillation amplitude is temporarily even larger than for the natural behavior of the
instability, the agent manages to damp the oscillations for a time window of roughly
ten synchrotron periods before the oscillation amplitude grows again at the end of the
episode. At t = 18.25Ts,0, the episode is eventually terminated due to the immediate
reward dropping below the value of the relaxation parameter, rrelax = 0.5. The e�ect on the
corresponding charge distribution in the longitudinal phase space is illustrated in Fig. 7.21.
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Figure 7.20.: Mitigation of the micro-bunching dynamics and the corresponding �uctua-
tions in the CSR power signal (top) by the DDPG agent. The applied mod-
ulation of the RF amplitude (bottom) di�ers again from the manual control
in Fig. 7.9b and also from that of the PPO agent in Fig. 7.14. The dashed red
lines indicate the termination of the episode due to insu�cient performance
by the agent.

Shortly before the oscillations in the CSR power signal grow again, at t = 15Ts,0, the micro-
structures are signi�cantly damped but can still be identi�ed in the charge distribution.
Over the remaining three synchrotron periods the amplitude of the micro-structures
reaches about the same level again as for the initial distribution shown in Fig. 7.21a.
These results are achieved through a sequence of actions which frequently includes large
changes between consecutive steps, as shown in Fig. 7.22, and therefore seems quite
chaotic. Although there is a trend to smaller modulation amplitudes and frequencies
halfway through the episode, both action values still �uctuate during the entire sequence.
This behavior is quite di�erent from the sequence of actions under manual control shown
in Fig. 7.10 and also from those selected by the PPO agent displayed in Fig. 7.16. The
sequence of rewards achieved by these actions is shown in Fig. 7.23. Both, the maximum
immediate reward at R64 = 0.57 and the total return,G0 = 26.15 andG0(γ = 0.99) = 16.52,
are substantially lower compared to previous results. The general distribution of rewards
resembles that in Fig. 7.28. After dropping below the baseline level of Rt = 0 initially, the
agent quickly improves during the subsequent steps and eventually reaches a plateau, here
merely around Rt = 0.5. Eventually, the performance is reduced again, which in this case
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(a) Initial micro-structures at t = 0Ts,0 (b) Mitigated micro-structures at t = 15Ts,0

Figure 7.21.: (a) The initial micro-structures are damped by the DDPD agent during the
sequence displayed in Fig. 7.20. (b) Shortly before the episode is terminated
due to insu�cient performance by the agent, the micro-structures are visibly
reduced in amplitude.
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Figure 7.22.: Actions chosen by the DDPG agent during the sequence displayed in Fig. 7.20.
Besides a slight trend to smaller action values halfway through the episode,
the modulation amplitude and frequency mainly display rapid, irregular
oscillations.
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Figure 7.23.: Rewards corresponding to the sequence displayed in Fig. 7.20. The maximum
immediate reward at R64 = 0.57 as well as the total return G0 = 26.15 are
substantially lower than in the previous subsections, yet the distribution of
rewards resembles that in Fig. 7.17.
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Figure 7.24.: Features as observed by the DDPG agent during the sequence displayed in
Fig. 7.20. The termination condition encoded in feature x8 is based on the
alternative de�nition in Eq. (6.38).
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terminates the episode as the reward drops below the value of the relaxation parameter.
The corresponding sequence of the CSR feature vector, as observed by the agent, is shown
in Fig. 7.24. While the relative amplitude of the main oscillation frequency, encoded in
feature x4, is immediately decreased to about x4 = 0.5 at the start of the episode, this
does not result in a reduced standard deviation, encoded in feature x2, or a high reward.
This indicates that the oscillation of the CSR power signal initially continues at roughly
the same level, but with a modi�ed frequency distribution. After 20 steps, the standard
deviation is eventually reduced corresponding to the increased reward in Fig. 7.23. For the
period between step 20 and step 60, where the mitigation of the micro-bunching dynamics
is most successful and the reward is at its highest value, the phase di�erence between
the applied RF modulation and the CSR power signal is again at similar values compared
to Figs. 7.12 and 7.18. The corresponding feature mainly stays at small negative values,
−0.5 < x7 < 0, until jumping to x7 = 0.8 at step 63, where control over the micro-bunching
dynamics is gradually lost and the corresponding reward declines. Although these results
do not quite reach the level of control demonstrated in subsections 7.3.1 and 7.3.2, given
the signi�cantly reduced information available to the agent, they were considered an
important intermediate step. Yet, they were exceeded considerably shortly afterwards.

The results of the up to now most successful training session, using again the PPO
algorithm, are displayed in Fig. 7.25.2 Here, the oscillations of the reward function are
not mitigated by averaging the mean and standard deviation of the CSR signal over prior
steps, but by using the proxies de�ned in Eq. (6.31) and Eq. (6.33). Although these two
complementary de�nitions generally lead to very similar values of the reward function, to
ensure comparability, the performance is again evaluated using the same reward function
as above. Similarly to the results in the previous subsection, the agent also quickly manages
to damp the oscillation of the CSR power signal and the corresponding micro-structures.
After merely �ve synchrotron periods, the agent has already reached a high level of control
and manages to maintain it until the end of the displayed time frame. In fact, the agent
even managed to reach a total number of 160 steps and was only terminated because of
the a priori de�ned maximum episode length. The level of control demonstrated after
t = 5Ts,0 in Fig. 7.25 was maintained for about 35 synchrotron periods. To achieve this,
the agent almost exclusively uses the modulation frequency for dynamic adjustments
while generally setting the modulation amplitude to the maximum value. The e�ect on
the corresponding charge distribution in the longitudinal phase space is illustrated in
Fig. 7.26. The mitigation of the oscillations in the CSR power signal in Fig. 7.25 is again
accompanied by a signi�cant reduction of the micro-structures in amplitude. After �ve
initial synchrotron periods, the charge distribution is already quite smooth and kept that
way for the remaining episode. The actions chosen by the agent during that sequence are
shown in Fig. 7.27. Again, the choice of actions is quite di�erent from previous results.
With the exception of actions A12 and A16, the modulation amplitude is set to values close
to the maximum throughout the entire episode. The necessary dynamic adjustments to the
varying perturbation by the CSR wake potential are made via the modulation frequency.
Starting at smaller values initially, the chosen modulation frequency eventually oscillates
around the value of 0.5, which corresponds to the natural micro-structure frequency. The

2 Courtesy of Melvin Klein, who brie�y worked on the subject as a research assistant.
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Figure 7.25.: Mitigation of the oscillations in the emitted CSR power (top) and the underly-
ing micro-bunching dynamics by a PPO agent trained on the feature vector
derived from the CSR power signal. The modulation of the RF amplitude
chosen by the agent (bottom), is almost always at the maximum amplitude.
Dynamic adjustments to the changing micro-bunching dynamics are made
almost exclusively via the modulation frequency as shown in Fig. 7.27.

sequence of rewards, calculated according to the same de�nition as for previous agents
(smoothing via prior time steps), is shown in Fig. 7.28. While the maximum immediate
reward obtained by the agent, R43 = 0.83 is only slightly higher than in Fig. 7.17 and still
below the level of manual control, the total return, G0 = 52.18 and G0(γ = 0.99) = 32.92,
is increased by a considerable margin. This additional gain in cumulative reward is again
achieved by reaching high levels of immediate reward more quickly. The agent reaches
values around Rt = 0.5 after merely 15 steps, and Rt = 0.8 after about 25 steps. This
high level of reward is subsequently maintained in a very stable manner until the end of
the episode. Analogously to the previously presented agents, the high return is primarily
achieved by a reduction of the �uctuations in the CSR power signal and the resulting
standard deviation. This is apparent from Fig. 7.29, which displays the feature vector
observed by the agent (termination condition x8 derived from proxies). The features x4
and x7 clearly indicate again the reduced oscillation of the CSR power signal. Moreover,
the phase di�erence between the applied RF modulation and the CSR power signal quickly
reaches and stabilizes at values around x = −0.5, which has been found to be quite e�ective
throughout this thesis. This result is particularly intriguing as it con�rms an expectation
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(a) Initial micro-structures at t = 0Ts,0 (b) Mitigated micro-structures at t = 20Ts,0

Figure 7.26.: (a) The natural micro-structures occurring at the beginning of the sequence
displayed in Fig. 7.25 are quickly damped by the RL agent. (b) After 20 syn-
chrotron periods, the micro-structures are signi�cantly reduced in amplitude.
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Figure 7.27.: Actions chosen by the PPO agent for the sequence displayed in Fig. 7.25.
While the modulation frequency is dynamically adjusted according to the
changing micro-bunching dynamics, the modulation amplitude is set close to
the maximum value throughout the episode.
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Figure 7.28.: Sequence of rewards corresponding to the mitigation of the micro-bunching
dynamics shown Fig. 7.25. The obtained reward quickly reaches and stabilizes
at values around Rt = 0.8, which allows the agent to achieve the highest
return yet, G0 = 52.18.
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Figure 7.29.: Features as observed by the PPO agent. The termination condition is calculated
using the proxies de�ned in Eq. (6.31) and Eq. (6.33). After an initial adjustment
period, the phase di�erence between the applied RF amplitude modulation
and the observed CSR power signal is kept almost constant by the agent, that
is, x7 ≈ −0.5.

113



7. Micro-Bunching Control in Simulations

5 10 15 20 25

0

10

20

30

40

50

60

episodes (103)

G
0(
γ
=
0.
99
)

20

40

60

80

100

120

140

160

180

ep
iso

de
le
ng

th

Figure 7.30.: Learning process of the PPO agent trained on the CSR feature vector (in
evaluation mode). After about 10 000 episodes, the performance starts to
�uctuate and eventually drops to the baseline level again after episode 18 750.

based on the analysis of the underlying longitudinal beam dynamics in chapter 5. With a
constant phase relation to the perturbation caused by the CSR wake potential, the applied
RF amplitude modulation succeeds in partially recovering the strength of the restoring force
and thereby mitigates the formation of micro-structures. As the RL agents are not given
any prior knowledge about the environment, these results con�rm the general hypothesis
and simultaneously demonstrate the agent’s ability of identifying crucial information
about the underlying dynamics.

While the RL agents presented in this and the previous subsection clearly demonstrate
the capability of mitigating the micro-bunching dynamics, this high level of control is
only achieved under peak performance. The exemplary learning process of the PPO agent
trained on the CSR feature vector is illustrated in Fig. 7.30. Shown are the discounted return
(using proxies) and the episode length achieved by the agent after being set into evaluation
mode. After about 5000 episodes, the agent starts to continuously improve and eventually
reaches the maximum a priori de�ned episode length of 160 steps and a corresponding
return of G0(γ = 0.99) = 57.06 at episode 10 375. Afterwards, the performance starts to
�uctuate and slightly degrades until reaching episode 18 750, which constitutes the peak
performance shown in Figs. 7.25–7.29. Subsequently, the performance suddenly drops
again to the baseline level ofG0(γ = 0.99) = 0 and an episode length of ten steps. Although
a small improvement may be identi�ed towards the end of the training session, the agent
essential stays at the baseline level for the remaining episodes. A detailed investigation of
the causes for these sudden losses in performance was beyond the scope of this thesis. Yet,
the �nal section of this chapter discusses are range of measures to potentially stabilize
the agent’s learning process, some of which were already rudimentarily tested during
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this thesis while others are meant as an outlook towards future work. Overall though, the
achieved peak performances clearly demonstrate the feasibility of the developed approach
in simulations and provide a proof-of-principle study for the implementation at KARA.

7.4. Remarks on Stability and Generalization
The instabilities encountered in the agent’s learning process, as illustrated in Fig. 7.30,
are undesirable but not strictly prohibitive for the implementation of the developed RL
feedback scheme. After the agent is trained for a su�cient number of steps, one may
simply select that version of the agent which performs best during evaluation. Nonetheless,
the ideal case would be a stable learning process in which the performance of the agent
gradually increases until a satisfying amount of control is reached and training can be
stopped. While various adjustments of the available hyperparameters, in particular the
agent’s learning rate, were tested, they generally were not found to signi�cantly improve
the stability of the learning process. An additional, promising option is to tailor the agent’s
exploration noise to the given environment in order to reduce undesirable randomness
during training. In the case of the DDPG agent, a slight performance improvement was
achieved by changing the Ornstein-Uhlenbeck process suggested in [57] to a Gaussian
white noise process. Yet, the learning process was still found to be unstable. One additional
complication encountered during these e�orts is the di�culty to �x the random seed for
the agents implemented in Keras-RL, Stable Baselines and TF-Agents. A �xed random
seed o�ers the bene�t of a reproducible test scenario, where the learning process is
observed to be unstable. The e�ect of di�erent measures may then be tested and compared
to the initial performance. Yet, due to a variety of reasons, this option is typically not
foreseen in the three di�erent RL libraries. While perfect reproducibly was achieved for
some algorithms, such as the DDPG algorithm implemented in Keras-RL, others required
substantial changes to the implementation of the algorithm and were beyond the scope of
this thesis. An alternative approach would be to perform a su�cient number of training
sessions with the same parameter settings in order to compare the frequency and severity
of the occurring instabilities. While the available time and hardware did not permit such
an extensive study, it may be considered more feasible for an implementation at the actual
storage ring. The data rate expected at KARA exceeds that of Inovesa by several orders of
magnitude. In fact, sample e�ciency is expected to be of very little concern in practice.
While the best overall performance found in [98] was attributed to the SAC algorithm, the
four tested algorithms all achieve very comparable performances and the PPO algorithm is
thus generally favored for an implementation at KARA. Due to its nature as an on-policy
algorithm, its training process is expected to be more stable. The comparably poor sample
e�ciency may hinder preparatory simulation e�orts, but is expected to be negligible
for the performance at KARA. Additional stability may also be gained by a modi�cation
of the used reward function or by a restriction of the action space. The di�erent action
sequences shown in sections 7.3.1 to 7.3.3 suggest that di�erent strategies to mitigate the
micro-bunching dynamics are feasible within the available action space. While this is not
an issue in itself, it may lead to contradictory updates during training and thereby reduce
the stability of the agent’s learning process. An additional term in the reward function,
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which favors a continuous action sequence where changes between consecutive actions
are small, may be bene�cial in assigning priority to more favorable solutions and clarifying
the objective. A similar e�ect may be achievable through a restriction of the available
action space. As demonstrated by the agent in Fig. 7.27, assigning a constant value to the
modulation amplitude may still provide su�cient �exibility to dynamically adjust the
RF modulation to the varying perturbation by the CSR wake potential. A smaller action
space is generally desirable, as it reduces the required amount of exploration and the
overall complexity of the task. Another opportunity to improve the overall performance is
a careful analysis of the di�erent features constituting the eight-dimensional CSR feature
vector and their respective relevance for the agent’s learning process. While feature x7 is
assumed to carry crucial information about the micro-bunching dynamics, other features
may not be particularly relevant for the agent’s decision making. As the features x3 and x5
are typically found at values close to zero, a rescaling may also be bene�cial.

Besides these open questions regarding the stability of the learning process, there are
further challenges in exploiting the full potential of the presented approach to micro-
bunching control. In order to achieve extensive control over the micro-bunching dynamics
at KARA, the presented results results have to be generalized to a larger range of parameters.
One such example is the set of machine parameters used for the proof-of-principle studies in
this chapter (de�ned in appendix A.1, data sets D1 and D2). As the instability threshold and
the micro-bunching dynamics in general depend on several machine parameters, including
the accelerating voltage V0 and the momentum compaction factor αc, the demonstrated
control has to be veri�ed for alternative con�gurations of the accelerator. Moreover, as
the dynamics also change with the bunch current, leading to the di�erent instability
regimes described in subsection 3.4.2, the same holds also true for alternative values of the
bunch current. Yet, as the micro-structure formation process is expected to follow a similar
mechanism, that is, being largely driven by a CSR-induced perturbation of the restoring
force, the developed approach should also be applicable to the dynamics at larger bunch
currents. The observed CSR bursts in the sawtooth-bursting regime are generated by
rapidly growing micro-structures. These eventually reach considerably larger amplitudes,
but their overall shape, and that of the corresponding CSR wake potential, is found to be
very similar to those at lower currents. While the perturbation generated by the CSR wake
potential may be larger at higher bunch currents, it should still be feasible to counteract
these dynamics by an adaptive RF amplitude modulation scheme, although this may require
higher modulation amplitudes. As the �nal objective is continuous control of the occurring
micro-bunching dynamics, the achieved simulation results also have to be extended to
longer time frames. While the benchmark challenge with a length of 20 synchrotron
periods (equal to 2.86ms) was met and even surpassed by the most successful RL agents,
this still constitutes a relatively short time frame compared to the minutes or even hours
required at the real storage ring. The 160 steps reached by the PPO agent presented in
the previous section are a promising �rst step in this direction. Finally, the general RL
feedback scheme has to be tested for its robustness against noise and stochasticity. The
two most relevant sources of noise are expected to result from inaccuracies in realizing
the intended RF potential and measurement uncertainties on the observed CSR power
signal. As an option for adding RF noise has already been implemented in Inovesa [99],
and the uncertainty on the CSR measurements may easily be modeled by the InovesaRL
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environment, these additional in�uences can already be tested in preparatory simulations.
Given the generally stochastic treatment of RL problems, most RL algorithms, including
those presented in this chapter, should be capable of dealing with a low to medium level
of noise.
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8. Towards Micro-Bunching Control
at KARA

What does his lucid explanation amount to but this, that in theory there
is no di�erence between theory and practice, while in practice there is?

— Benjamin Brewster,
The Yale Literary Magazine Vol. 47, Portfolio: Theory and Praxis

The simulation results presented in the previous chapter demonstrate the feasibility of
controlling the micro-bunching dynamics by a carefully adjusted modulation of the RF
amplitude. While an RF modulation with constant amplitude and frequency was found to
be su�cient for an excitation of the micro-bunching dynamics, their mitigation required
dynamic adjustments according to the varying perturbation by the CSR wake potential.
The implementation of this general feedback scheme at KARA involves a range of further
challenges. In particular, the high frequency at which the RF amplitude modulation has
to be adjusted to the evolving beam dynamics leads to a major challenge in practice.
The required interaction rate with the beam is directly determined by the time scale of
the micro-structure formation process, which is governed by the synchrotron frequency.
Although mitigation of the micro-structures was �rst demonstrated by manual control in
subsection 7.3.1, the time di�erence between consecutive actions in the considered example
is ∆t = Ts,0/4 = 36 µs. Even tough ∆t may be set to slightly larger values, it has to be in the
same order of magnitude as the synchrotron period, which essentially precludes any form
of human involvement in the decision making process. Tasking an RL agent with these
decisions still leads to a requirement of very performant hardware to enable the entire
feedback loop to run at the required repetition rate. The planned implementation of the RL-
based feedback loop, as detailed in section 8.1, thus involves specially designed electronics
developed by the Institute of Data Processing and Electronics (IPE) at KIT. While fast read-
out electronics for the THz detectors were already developed over the past years, and the
second generation thereof, called KAPTURE-2 (Karlsruhe Pulse Taking Ultra-fast Readout
Electronics) [100], is available for use, the implementation of the RL agent requires further
e�orts. In order to meet the requirements resulting from the short computation time
between consecutive actions, the RL algorithm and the corresponding neural networks are
implemented on an FPGA (Field-Programmable Gate Array). In close cooperation between
the IPE and LAS, this general task was taken on by Weijia Wang in his PhD thesis at the
KIT Department of Electrical Engineering and Information Technology [101]. Section 8.2
of this chapter provides a brief review of these e�orts and summarizes the �nal results.
Following the simulation results in section 7.2, �rst experiments to verify the possibility of
in�uencing the micro-bunching dynamics at KARA by a modulation of the RF amplitude
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are presented in section 8.3. The chapter �nally concludes with a brief outlook towards
future steps and key challenges in implementing the proposed feedback scheme at KARA.

8.1. Implementation of the RL Feedback Scheme
As a test facility for new beam and acceleration technologies and due to its extensive
sensor network, the Karlsruhe Research Accelerator (KARA) is ideally suited for the
implementation and �rst tests of the proposed feedback scheme. The information about
the state of the micro-bunching dynamics, which is required for the agent’s decision
making process, is provided by extensively tested and well-established THz diagnostics to
measure the emitted CSR power. Using a broadband Schottky diode and the KAPTURE-
2 sampling system, the CSR power signal can be measured on a turn-by-turn or even
on a bunch-by-bunch basis. To achieve the required high data throughput and fast data
processing, the KAPTURE-2 front-end is read out by an FPGA DAQ board on which
di�erent reinforcement learning algorithms can be implemented. First results with an
implementation of the DDPG algorithm are brie�y discussed in the subsequent section.
Eventually, the actions provided by the RL agent have to be passed to the RF system of
the storage ring in order to realize the corresponding modulation of the RF amplitude. As
the more feasible option compared to the main RF system at KARA, a small kicker cavity,
which is regularly used in the bunch-by-bunch (BBB) feedback system of the storage ring,
is chosen for the interaction with the electron beam. Using the BBB control system, the
action vector chosen by the RL agent �nally has to be mapped to the corresponding cavity
signal. The planned implementation of the entire feedback loop is illustrated in Fig. 8.1,
and was recently published in [102].

One crucial question regarding the feasibility of the proposed hardware implementation
is whether or not the BBB cavity can reach the necessary modulation amplitudes. Given
the simulation results in section 7.3, the required modulation amplitude is roughly Vmax ∈
[1, 10] kV. Although there is no calibration data available for the BBB cavity installed at
KARA, the maximum reachable voltage can still be estimated. In simulation studies for
the almost identical kicker cavity installed at BESSY II [103], the authors arrive at a shunt
impedance of Rshunt ≈ 1100Ω. Given the relation

Rshunt =
|V0 |2
2P , (8.1)

and the input power of P = 200W used at KARA, the maximum voltage is estimated at
V0 ≈ 663 kV, which is slightly below the value used for the simulations in section 7.3, but
may still be su�cient. Furthermore, the maximum reachable cavity voltage was also tested
in a basic experiment at KARA. As RF modulations can be applied by either the main RF
system or the BBB system, one may simply compare their e�ect on the beam. Using the
known amplitude of the modulation set via the main RF system as a reference, a rough guess
can also be derived from these measurements. To do so, the electron beam was subjected
to an RF phase modulation at the second harmonic of the nominal synchrotron frequency
as this typically caused as strong response of the beam. The e�ect of the modulation
was observed via the BBB spectrum, which relies on the measurements of several beam
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THz detector

KAPTURE-2

FPGA DAQ

BBB cavity

BBB system
action

Figure 8.1.: Planned hardware implementation of the proposed RL feedback scheme. The
CSR power signal is measured by a THz detector, sampled by the KAPTURE-2
board and read out by the FPGA DAQ board, on which the RL algorithm is
implemented. The chosen action is passed to the BBB control system, which
generates the corresponding modulation of the RF amplitude. Images: Courtesy
of Weijia Wang.

position monitors (BPMs) installed in the storage ring. To apply an RF phase modulation
via the main RF system, the KARA control system o�ers two di�erent options. While it
can directly be set in the CSS (Control System Studio) panel, the resulting modulation is
expected to also partially involve a modulation of the RF amplitude. An additional Matlab
script decouples the RF phase modulation from the RF amplitude and is thus expected to be
more reliable. For both options, the peak intensity in the BBB spectrum was measured for
a range of modulation amplitudes. These are compared to phase modulations via the BBB
kicker cavity at modulation amplitudes of 0.5 and 1.0, as illustrated in Fig. 8.2. Assuming
the e�ect of the RF phase modulation can be described as a simple displacement from the
synchronous phase, the required voltage is given by

∆V = V0 [sin(φs + φmod) − sin(φs)] . (8.2)

Using the measurements of the RF modulation set via the CSS panel, one arrives at an
estimate of V0 ∈ [5.45, 6.13] kV. Yet, the reached peak intensity is clearly lower compared
to the RF phase modulation applied via the Matlab script, which is attributed to the partially
induced amplitude modulation. Using the measurements of the latter as a reference, one
arrives at the slightly lower value of V0 ∈ [4.54, 5.23] kV. Regardless which reference is
chosen, the estimated maximum cavity voltage is considerably higher than that derived
from the shunt impedance. Yet, both estimates roughly put the maximum BBB cavity
voltage at the kV-level, which is expected to be su�cient for mitigating the micro-bunching
dynamics at low bunch currents.
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Figure 8.2.: Estimate of the BBB cavity voltage. By comparing the e�ect of RF phase
modulations via the main RF system and the BBB system, the maximum BBB
cavity voltage can roughly be estimated using Eq. (8.2). The measurements
are interpolated by �tting a limited growth function, f (x ) � a − (a − b) e−c x .
Data: Courtesy of Edmund Blomley.

8.2. Meeting the Necessary Time Constraints
One of the major challenges in implementing the feedback scheme illustrated in Fig. 8.1
is meeting the necessary time constraints. In principle, every single iteration requires
the extraction of the CSR feature vector from the data sampled by KAPTURE-2, the
computation of the next action chosen by the RL agent and an update of the involved
neural networks based on the previous experience acquired in the environment. While
the latter may possibly be relaxed to updates at every n steps, the computation of the CSR
feature vector and the chosen action are strictly bound to time constraints determined by
the underlying beam dynamics. The computation time required for the action selection
by the agent, that is, inference of the actor network, is thus of crucial importance for
the feasibility of the proposed feedback loop. In order to meet these requirements, two
di�erent solutions for the implementation of the RL agent are considered in [102]. The �rst
option consists of a heterogeneous architecture, in which the FPGA card is connected to
an external GPU. For faster processing, the data is directly transfered from the FPGA into
the GPU memory, bypassing the CPU memory system. One bene�t of this implementation
is that standard machine learning frameworks like TensorFlow are inherently supported
by this architecture. The second option directly employs the ARM processor embedded
in the FPGA. As this does not require any data transfer to external processing units, it
generally yielded better performances and was thus considered the more favorable option
for this application. After initial tests of the implemented DDPG agent on the textbook
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CartPole problem, the FPGA was connected to the simulation environment introduced in
section 7.1 in order to determine the agent’s performance. The calculation of the underlying
beam dynamics using Inovesa and the computation of the CSR feature vector, as well as
the reward function, were conducted on a PC connected by an Ethernet link. With an
actor network consisting of four fully-connected hidden layers with 64 units each, the
time for a single step of inference was found at ∆t = 16.93 µs. This is signi�cantly below
the time di�erence between consecutive actions used for the simulations in chapter 7
and thus constitutes an important milestone regarding the feasibility of the proposed
implementation. Yet, the average time required for a full training step, which also involves
backpropagation of the neural networks, was ∆t = 1648 µs. This means the computation of
a single training step takes about the time of 50 steps of the environment. Given the high
data rate expected at KARA, this may still yield su�cient updates to train an RL agent in
practice, but it does slow down the learning process. Ideally, updates should be calculated
after every step of the environment. As an additional re�nement of the implementation
may further reduce the computation time and the performance of the available hardware
can be expected to further improve over the next years, this may eventually become
feasible. For the time being, the frequency of the training steps has to be restricted to
match the required computation time. The actions calculated by the RL agent are �nally
passed on to the BBB system to realize the corresponding modulation of the RF amplitude.
As achieving fast enough data processing requires a modi�cation of the BBB source code,
this �nal step in implementing the RL feedback loop could not be completed within the
scope of this thesis. Yet, the required adjustments are considered technically feasible and
discussions with the manufacturer of the BBB control system, Dimtel, Inc., are ongoing.

8.3. First Experimental Results
Although the implementation of the complete feedback loop is delayed by the required
adjustments of the BBB source code, and the RL-based mitigation could thus not be tested
in practice, several preliminary experiments could still be conducted at KARA. While the
mitigation of the micro-bunching dynamics relies on fast adaptations of the RF amplitude
modulation, this is not necessarily required for an excitation of the occurring micro-
structures, as shown in section 7.2. The expected e�ect of an RF amplitude modulation
on the micro-bunching dynamics can thus be con�rmed without completion of the full
feedback loop described in section 8.1. Using the main RF system, the electron beam
can simply be exposed to a constant RF amplitude modulation at the micro-structure
frequency. Based on the simulations in section 7.2, this should result in an excitation of
the micro-bunching dynamics and an ampli�cation of the corresponding �uctuation of
the CSR power signal. Given the low-frequency noise on the measured time signals, the
results are analyzed in the frequency domain. Figure 8.3 thus displays the spectrum of
�uctuations in the measured CSR power signal. Without external excitation, the naturally
occurring micro-bunching dynamics already result in a distinct peak at the micro-structure
frequency, here roughly at fms = 18.45 kHz. Yet, the RF amplitude modulation at that
frequency, fmod = fms and Vmod = 0.05V0, ampli�es that peak signi�cantly. Compared to
the natural micro-bunching dynamics, the spectral intensity of fms is increased by more
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Figure 8.3.: Frequency distribution of the �uctuations in the measured CSR power signal.
Besides low-frequency noise up to 10 kHz, the natural spectrum mainly features
a distinct peak at the micro-structure frequency fms = 18.45 kHz. The applied
RF amplitude modulation ampli�es the spectral intensity of that frequency
by more than a factor of �ve. The data may partially show oscillations of the
arrival time at the THz detector. Data: Courtesy of Miriam Brosi.
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Figure 8.4.: Simulated �uctuation spectrum corresponding to the measurements in Fig. 8.3.
The ampli�ed peak intensity at fms corresponds to an increased amplitude of
the occurring micro-structures as illustrated in section 7.2.
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than a factor of �ve. Also visible is an excitation of the second harmonic at 36.9 kHz. In
the corresponding Inovesa simulations, shown in Fig. 8.4, the micro-structure frequency
is found at a slightly di�erent value, fms = 17.21 kHz. The e�ect of the RF amplitude
modulation on the spectrum, however, is similar to that in the measurements. While the
peak intensity at fms is only increased by a factor of two, it is also accompanied by an
excitation of the second harmonic at 34.42 kHz. Given the availability of the corresponding
charge distribution in the longitudinal phase space in simulations, these oscillations of the
CSR power signal can directly be attributed to an increased amplitude of the occurring
micro-structures, as illustrated in section 7.2. The measurements in Fig. 8.3 are thus also
interpreted as the result of an excitation of the underlying micro-bunching dynamics.
Thereby, they qualitatively con�rm the expected interaction with the electron beam, albeit
the exact numerical values di�er between simulation and measurement.

In order to prepare for �rst tests of the RL-based mitigation of the micro-bunching
dynamics, the exact machine con�guration used for the simulations in section 7.3 and
detailed in appendix A.1, data set D1, is reproduced at KARA. By setting the amplitude
of the RF voltage to the simulated value of V0 = 1.0MV and adjusting the momentum
compaction factor αc via the quadrupole magnets, the synchrotron frequency is adjusted
to match the simulations as closely as possible. Thereby, the synchrotron frequency is
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Figure 8.5.: CSR power spectrogram measured at KARA for the same con�guration of
machine parameters that is used for the simulations in section 7.3 (detailed in
appendix A.1, data set D1). Compared to the CSR power spectrogram generated
from simulation data, shown in Fig. 3.6, the observed micro-bunching dynamics
are in high qualitative agreement. Several characteristic features, such as
the threshold current at Ith = 114 µA and the micro-structure frequency at
fms = 20.95 kHz, also match quantitatively. Data: Courtesy of Miriam Brosi.
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measured via the BBB spectrum and compared to the nominal synchrotron frequency,
fs,0 = 7.0 kHz. To compare the natural beam dynamics in this particular con�guration to
the simulations conducted with Inovesa, the emitted CSR power signal is measured in a
single bunch operation across di�erent bunch currents. Aggregating these measurements,
Fig. 8.5 displays the corresponding CSR power spectrogram. In comparison, the simulated
CSR power spectrogram shown in Fig. 3.6 matches the measurements quite closely. The
threshold current, Ith = 114 µA, and the micro-structure frequency, fms = 20.95 kHz, are
found at very similar values in both, simulation and measurement. To achieve optimal
comparability, �rst tests of the RL-based mitigation of the micro-bunching dynamics
should be conducted in the current range directly above the instability threshold.

8.4. Future Steps
The implementation of the general feedback scheme at KARA is accompanied by a range of
technical di�culties to reach the required repetition rates. Yet, given the specially designed
electronics and the implementation of the RL agent on an FPGA, these challenges can
be met in practice. Wherever feasible, the involved components were tested and found
to meet the requirements of the RL-based feedback loop. Although, in theory, the use of
the PPO algorithm is preferred due its advantages regarding stability, the performances
of the four di�erent RL algorithms tested on simulation data are quite comparable and
the existing FPGA implementation of the DDPG algorithm is thus expected to allow
for �rst proof-of-principle experiments. Beyond the technical feasibility, the transition
from the simulation environment to the actual storage ring will also involve a range of
challenges regarding generalization and robustness of the used algorithms. In principle,
the performance of the RL agents trained in simulations may directly be tested at KARA.
Yet, given the still existing di�erences between the virtual and the practical environment,
the agents presumably have to be trained directly by interacting with the accelerator.
Using the pre-trained neural networks may still be bene�cial though, as it may result in
a warm start and a faster learning process. An additional concern is the robustness of
the RL algorithms against di�erent sources of noise that can be expected at KARA. As
mentioned in section 7.4, the most prominent sources of noise can be modeled in the virtual
environment and thus tested in preparatory simulations. Ultimately though, the practical
feasibility of the feedback scheme can only be fully demonstrated at the actual storage
ring. The high level of agreement between the Inovesa simulations and the measurements
at KARA constitutes a promising starting point to reproduce the results of section 7.3 in
practice.

While an excitation of the micro-bunching dynamics and the underlying interaction
of an RF amplitude modulation with the electron bunch were demonstrated in �rst ex-
periments, further studies are required to explore the limitations of this approach. As the
possibility to apply an RF amplitude modulation with constant modulation amplitude and
frequency is already provided by the KARA control system, these studies are not reliant
on the completion of the feedback loop described in section 8.1. In principle, the available
diagnostics o�er the possibility to directly study the e�ect of the RF modulations on the
emitted CSR spectrum. Such an analysis would provide the opportunity of tailoring the
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operation of the storage ring to applications with a requirement of intense CSR in the
frequency ranges corresponding to the spatial extent of the occurring micro-structures.
Moreover, a systematic study across di�erent machine parameters, such as the RF voltage
or the momentum compaction factor, may yield additional insights into the formation
process of the occurring micro-structures and its dependencies. While an RF amplitude
modulation at the micro-structure frequency should generally result in an excitation of
the natural micro-bunching dynamics, the possibility to imprint new structures on the
charge distribution, as described in section 7.2, o�ers a range of further opportunities to
manipulate the longitudinal beam dynamics and the corresponding emission of CSR. It is
thus considered a promising subject for further research.
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The operation of storage rings with short electron bunches leads to the emission of intense
coherent synchrotron radiation which can be provided to a large range of experiments. Yet,
the self-interaction of these bunches with their own emitted CSR in the bending magnets
of the storage ring leads to complex longitudinal dynamics and, at high enough bunch
currents, to the formation of dynamically varying micro-structures in the longitudinal
charge distribution. Referred to as the micro-bunching instability throughout this thesis,
the overall phenomenon poses a critical limitation to the operation of electron storage
rings with high bunch currents. The overarching objective of this thesis was thus to
identify an avenue towards control of the occurring micro-bunching dynamics. As the
presence of these micro-structures leads to an increased emission of radiation at frequencies
corresponding to the spatial extent of the structure, the bene�ts of extensive control over
these dynamics are twofold. A deliberate and controlled excitation of the occurring micro-
structures can enhance the emitted radiation in a narrow frequency range and thereby
improve the conditions for applications with a demand for intense CSR at these frequencies.
On the other hand, practical mitigation of the CSR-induced micro-bunching dynamics
extends the regime of stable operation to shorter bunches and higher bunch currents.
Besides improving the operating conditions at existing machines, it also allows for a more
e�ective optimization of related beam properties and thereby faciliates the design of new
facilities.

In order to better understand the formation process of the occurring micro-structures,
chapter 5 focused on an analysis of the synchrotron motion under the in�uence of CSR
self-interaction. Taking the perspective of a single particle, the CSR-induced wake potential
was found to cause a position-dependent perturbation of the restoring force exerted by
the RF system. Below the instability threshold, this leads to a quadrupole-like modulation
of the longitudinal charge distribution. By introducing a higher frequency component to
the bunch pro�le, this ampli�es the CSR self-interaction and may thereby act as a seeding
mechanism for the micro-bunching instability. Above the instability threshold, the varying
perturbation of the restoring force repetitively drives particles to larger deviations from the
synchronous position. As the particles cause an excess of charge at these positions, they
create local charge modulations and thereby form the occurring micro-structures. Given
that the entire process is largely driven by the perturbation of the restoring force, this
naturally motivates the application of an RF amplitude modulation. By amplifying the CSR-
induced perturbation, the applied modulation can be used to excite the micro-bunching
dynamics, that is, to create larger micro-structures in the longitudinal charge distribution.
By counteracting the perturbation and thereby recovering the strength of the restoring
force, the micro-bunching dynamics can instead be mitigated. Yet, as the interaction
with the beam also alters the CSR-induced perturbation, the RF amplitude modulation
has to be continuously adjusted according to the evolving charge distribution and the
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corresponding wake potential. As the task of identifying these adjustments constitutes
a sequential decision problem, it motivates the application of reinforcement learning
methods pursued in the subsequent chapters. Regardless of whether or not RL methods are
employed, the modulation of the RF amplitude represents a very e�ective tool to in�uence
the micro-structure formation process. The identi�cation of this approach towards control
of the micro-bunching dynamics occurring in electron storage rings is considered a major
result of this thesis.

In collaboration with the H2T group at KIT and based on the experience with the
micro-bunching instability acquired at KARA, the obtained sequential decision problem
has been formulated as a formal RL problem in chapter 6. Thereby, the general problem is
split into two complementary formulations. In the more theoretical approach, the agent is
given access to the full Markovian states of system, including the charge distribution in the
longitudinal phase space, which can be obtained in the simulations using Inovesa. While
the information is very di�cult to obtain at an actual storage ring, this served the purpose
of verifying the general feasibility of the pursued approach. In a second formulation,
tailored towards a practical implementation at KARA, the information provided to the
agent is restricted to the observed CSR power signal, from which an eight-dimensional
feature vector is derived.

Both excitation and mitigation of the CSR-driven micro-bunching dynamics were suc-
cessfully demonstrated on simulation data in chapter 7. Besides the ampli�cation of the
naturally occurring micro-structures through an RF amplitude modulation at the micro-
structure frequency, an additional option to imprint a new set of micro-structures on the
beam was discovered. Using a modulation frequency close to the third harmonic of the nom-
inal synchrotron frequency, the generated micro-structures reached an amplitude which
was more than three times larger than that of the naturally occurring micro-structures. As
this leads to substantial changes in the radiated CSR power spectrum, most importantly an
increase of the radiated power in the frequency range corresponding to the spatial extent
of the micro-structures, it is considered a promising option to tailor the emission of CSR to
individual experiments. The practically more challenging task of mitigating the occurring
micro-bunching dynamics was initially tested by manually selecting the required actions.
While this veri�ed the solvability of the task set for the RL agents, it also served as a
performance benchmark for subsequent studies. A �rst milestone was reached when the
�rst RL agent exceeded the total return obtained under manual control. Given access to
the full Markovian states of the system, the PPO agent managed to gradually reduce the
micro-structure amplitude and the corresponding oscillation of the CSR power signal over
a time frame of 20 synchrotron periods. Unexpectedly, these results were even exceeded
by an RL agent trained on the eight-dimensional CSR feature vector. Beyond an overall
improved performance and a higher total return, the PPO agent used in this case managed
to extend its control to twice the number of steps as de�ned by the benchmark scenario.
After 40 synchrotron periods, the episode was only terminated because the a priori de�ned
maximum episode length was reached. Overall, these results not only verify the feasibility
of mitigating the micro-bunching dynamics via a dynamically adjusted RF amplitude
modulation, but also the e�ectiveness of RL methods to solve the corresponding sequential
decision problem. Yet, one major di�culty encountered throughout these studies were
instabilities in the agent’s learning process. Instead of gradually improving with continued
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training time, the agents frequently drop to the baseline level of performance, in some
cases not recovering for the remainder of the training session. A detailed analysis of the
reasons for these instabilities was beyond the scope of this thesis, but is considered an
important task in preparing for future implementations of the proposed RL-based feedback
scheme.

The main challenge for an implementation of the feedback loop at KARA is reaching
the required repetition rates. As the micro-structure formation process happens at at a
fraction of the synchrotron period, e�ective counteraction is bound to the same time
scale. In order to reach repetition rates below the ms-level, specially designed electronics
developed by the IPE at KIT are incorporated into the hardware implementation of the
feedback scheme. With an implementation of the DDPG agent on an FPGA, the mandatory
time constraints for inference of the actor network could be met. While a full training step
still takes longer than the time window available between consecutive actions, this is not
a strict limitation for the feasibility of the pursued approach. By restricting the training
process to updates at every n steps the time constraints can still be met, albeit at the
cost of slowing down the learning process. Ultimately though, the implementation of the
complete feedback loop was beyond the scope of this thesis and the RL-based mitigation of
the micro-bunching dynamics could thus not be tested in practice. However, the expected
interaction of an RF amplitude modulation with the micro-structure formation process
could still be veri�ed for an excitation of the micro-bunching dynamics. Furthermore, in
preparation for �rst tests of the RL-based feedback, the exact con�guration of machine
parameters used for the simulation studies was reproduced at KARA. The micro-bunching
dynamics observed in this con�guration were generally found to be in high qualitative
and quantitative agreement with the corresponding simulations, providing a solid basis
for future e�orts to reproduce the achieved results in practice.

While the work summarized in this thesis expands the understanding of the longitudinal
dynamics underlying the micro-bunching instability and o�ers an e�ective approach to
control the formation of micro-structures, it simultaneously raises a range of further
questions. The interplay between the oscillation of individual particles and the collectively
generated micro-structures, as well as the brie�y mentioned dependence on shielding
thereof is one such example that warrants further studies. As the provided analysis mostly
focuses on the dynamics directly above the threshold, an extension to higher beam currents
and the additional weak instability occurring under speci�c operating conditions may
also yield further insights. Regarding the overarching objective of gaining control over
the occurring micro-bunching dynamics, there may also be alternative approaches to
identifying the required dynamic adjustments of the applied RF signal. While reinforcement
learning methods have proven very e�ective in solving the corresponding sequential
decision problem, a deeper understanding of the underlying dynamics may allow for
di�erent formulations of the task. Additional insights may also be gained by a careful
analysis of the di�erent features constituting the eight-dimensional CSR feature vector and
their respective relevance for the agent’s decisions. Focusing in particular on the relative
phase between the oscillation of the CSR power signal and the applied RF modulation, it
may eventually be possible to derive simpler heuristics to solve the underlying control
problem. Given the complex dynamics created by the CSR self-interaction across di�erent
bunch currents, this is certainly not a straightforward task, and reinforcement learning
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9. Summary and Outlook

methods may thus still be bene�cial in supporting the overall process. With the rapid
progress being made within the �eld of reinforcement learning, there may also be new,
more suitable algorithms available for this particular task over the course of the upcoming
years. The stability of the learning process and the robustness against noise are important
criteria for selecting such algorithms. Finally, given the generality of the approach pursued
in this thesis, it may also be applicable or transferable to control problems at particle
accelerators in and outside the domain of longitudinal beam dynamics.
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A. Appendix

A.1. Simulation Settings
The Inovesa simulations conducted in the context of this thesis yield to major sets of data,
D1 and D2, that result from the di�erent parameter settings listed in Table A.1. With the
exception of a scan across di�erent vacuum gaps in D2, these parameters correspond to
attainable machine con�gurations of the storage ring KARA in its short-bunch operation
mode. While there is no general preference for one or the other, the respective values of the
accelerating voltage yield a slightly di�erent behavior of the micro-bunching instability
and some of its characteristic features.

Table A.1.: Simulation parameters used to generate the data discussed in this thesis. The
data sets D1 and D2 mainly di�er in the values used for the accelerating voltage
and the vacuum gap.

Parameter Unit D1 D2

amplitude of RF voltage V0 MV 1.0 0.6
beam energy E GeV 1.3 1.3
beam energy spread σδ ,0 4.7 × 10−4 4.7 × 10−4
bending radius R m 5.559 5.559
bunch current I µA 1 − 200 1 − 1000
longitudinal damping time τd ms 10.4 10.4
harmonic number h 184 184
initial charge distribution ρ (z,E, t0) Gaussian Gaussian
revolution frequency frev MHz 2.7 2.7
nominal synchrotron frequency fs,0 kHz 7.0 7.0
vacuum gap д mm 32 (KARA) 16 − 32

A.2. CSR Power Spectrogram with Logarithmic
Frequency Axis

As the low frequency contributions corresponding to the slow repetition rate of the CSR
bursts in the sawtooth bursting regime are di�cult to identify in Fig. 3.6, the same data is
shown with a logarithmically scaled frequency axis in Fig. A.1. Here, the contributions
in the order of 1 kHz are clearly visible. For the exemplary bunch current of I = 185 µA
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Figure A.1.: Shown is the same CSR Power Spectrogram as in Fig. 3.6 but with a logarithmic
frequency axis, highlighting the low frequency contributions emerging around
I = 120 µA.
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Figure A.2.: Toy study to illustrate the Fourier transform of a sawtooth wave, explaining
the higher harmonics of fburst in Fig. A.1. The pure sawtooth wave on the left
approximates the CSR power signal in Fig. 3.9. Its Fourier transform shown on
the right is composed of the sawtooth repetition rate and its higher harmonics.
The gray line depicts the magnitude of the Fourier transform of the CSR power
signal at the bunch current I = 185 µA, displaying similar characteristics.
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A.3. AlphaGo and the Black Box Issue

discussed in section 3.4.2, the repetition rate of the bursts corresponds to the dominant
frequency around fburst = 0.47 kHz while the remaining lines are higher harmonics thereof.
These additional harmonics are expected in a Fourier transformed sawtooth wave as
illustrated in Fig. A.2. At higher currents, the CSR bursts develop a sharper peak structure,
which leads to a multitude of contributing frequencies between I = 160 µA and I = 180 µA.

A.3. AlphaGo and the Black Box Issue
In the �ve-game Go match between AlphaGo and Lee Sedol, who was at the time considered
to be one of the strongest human Go players, AlphaGo won all but the fourth game
(AlphaGo 4 – 1 Lee Sedol). While the RL-based program won game one convincingly, its
capability to deviate from traditional Go theory was more clearly demonstrated by a move
in the second game. AlphaGo’s move 37 of that game, shown in Fig. A.3a, was described by
professional commentator Michael Redmond as “unique” and “creative”. Surprised by this,
Lee Sedol took an unusually long time to respond to the move. Although it was at the time
suspected to be a mistake by the program, AlphaGo subsequently managed to win the
game and, in retrospect, move 37 became one of the early signs for AlphaGo’s innovative
play. This unique, innovative perspective on the game was also found in some of the
opening sequences played by AlphaGo, one example being the so-called early 3-3 invasion
shown in Fig. A.3b. Defying conventional Go theory, AlphaGo regularly found success
with this opening, which led to professional players studying and trying the sequence
in their own games. In an attempt to describe the underlying reasoning, a book on the
subject was published merely two years later [104].
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Figure A.3.: (a) During the second match against Lee Sedol, AlphaGo made a surprising
move 37, which may be seen as an early indication of AlphaGo’s innovative
play style. (b) The early 3-3 invasion played by AlphaGo de�ed conventional
Go theory and let to a reconsideration of the sequence in professional play.
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Overall, AlphaGo’s innovative play and its impact on professional Go is an example
of humans learning from a black box type system. Although AlphaGo does not provide
any reasoning for its decisions, studying the various lines of play advances modern Go
theory and helps professional players to reach a higher level of play. Instead of looking
at problems like opening sequences with all its possible variations, they may study the
choices made by AlphaGo and their implications. This notion of studying a solution to
improve the understanding of a problem may also be transferable to RL applications in
physics. For the task pursued in this thesis, that is, achieving control over the CSR-induced
micro-bunching dynamics, this may imply studying the agent’s actions to derive simpler
heuristics or even an analytical description for appropriate control signals. It may also
simply contribute to the understanding of the underlying longitudinal beam dynamics.

A.4. Frequency Component of Micro-Structures
The frequency component corresponding to the formation of micro-structures di�ers from
that of the quadrupole-like mode identi�ed in section 5.2. As marked by the red rectangle
in Fig. A.4, the micro-structures forming above the threshold current Ith = 260 µA mainly
correspond to frequency contributions around 150GHz.
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Figure A.4.: Magnitude of the averaged Fourier transformed bunch pro�le |ρ̃ (ω) | for a
range of bunch currents. The peak at roughly 85GHz corresponds to the
quadrupole-like modulation already forming below the instability threshold
of Ith = 260 µA. The red rectangle marks the additional main frequency com-
ponent that corresponds to the micro-structures forming in the longitudinal
charge distribution.
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A.5. Origin of Particles forming the Micro-Structures

A.5. Origin of Particles forming the Micro-Structures
In contrast to the formation process indicated by Fig. 5.10 in subsection 5.3.2, individual
particles may instead stay in their respective structure for di�erent parameter settings
or bunch currents. Figure A.5 shows one such example. While the formation process is
changing over time at this higher current located in the sawtooth bursting regime, for
the time frame displayed in Fig. A.5, the distributions clearly show a partial overlap. This
means a major part of the particles contributing to the formation of the micro-structures
stays within their respective structure for at least one synchrotron period. Although
one might expect this behavior to correspond to the growth of the micro-structures in
amplitude in the sawtooth bursting regime, this could not be con�rmed in further studies
across di�erent bunch currents.
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Figure A.5.: Analogously to Fig. 5.10, the particle distribution at time step t = 0Ts
is depicted with the color assignment ∆ψ (q,p, tcolor = 0Ts) (left) and
∆ψ (q,p, tcolor = 1Ts) (right) for the bunch current I = 500 µA. In contrast
to the lower bunch current, the distributions show a partial overlap, indi-
cating that particles stay within their respective structure over at least one
synchrotron period.
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A.6. Bunch Length during Mitigation of
Micro-Bunching Dynamics

The mitigation of the micro-bunching dynamics demonstrated in the section 7.3 changes
the distribution of charge in the longitudinal phase space. It is thus important to verify that
the mitigation is not achieved at the cost of or due to an increased bunch length. Figure A.6
therefore displays the bunch length corresponding to the manual control illustrated in
Fig. 7.8 over the same time period. Owing to the reduction of the micro-structures in
amplitude, the initial oscillation of the bunch length is continuously damped as the charge
density in phase space reaches a smoother distribution. Simultaneously, the average bunch
length is even slightly decreased by the applied RF modulation. This is a consequence of the
improved focusing towards the position of the synchronous particle, which is achieved by
partially recovering the restoring force. As a shorter bunch generally leads to an increased
emission of CSR, this e�ect is already indicated in Fig. 7.8 by the slightly increasing average
CSR power at the end of the displayed time frame.
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Figure A.6.: Evolution of the bunch length for the sequence displayed in Fig. 7.8. Both, the
oscillation and the average value of the bunch length are decreased by the
applied modulation of the RF amplitude.
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