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Abstract. A common definition of black-box zero-knowledge considers
strict polynomial time (PPT) adversaries but expected polynomial time
(EPT) simulation. This is necessary for constant round black-box zero-
knowledge in the plain model, and the asymmetry between simulator and
adversary an accepted consequence. Consideration of EPT adversaries
naturally leads to designated adversaries, i.e. adversaries which are only
required to be efficient in the protocol they are designed to attack. They
were first examined in Feige’s thesis [9], where obstructions to proving
security are shown. Prior work on (designated) EPT adversaries by Katz
and Lindell (TCC’05) requires superpolynomial hardness assumptions,
whereas the work of Goldreich (TCC’07) postulates “nice” behaviour
under rewinding.
In this work, we start from scratch and revisit the definition of effi-
cient algorithms. We argue that the standard runtime classes, PPT and
EPT, behave “unnatural” from a cryptographic perspective. Namely,
algorithms can have indistinguishable runtime distributions, yet one is
considered efficient while the other is not. Hence, classical runtime classes
are not “closed under indistinguishability”, which causes problems. Re-
laxations of PPT which are “closed” are (well-)known and used.
We propose computationally expected polynomial time (CEPT), the
class of runtimes which are (computationally) indistinguishable from
EPT, which is “closed”. We analyze CEPT in the setting of uniform com-
plexity (following Goldreich (JC’93)) with designated adversaries, and
provide easy-to-check criteria for zero-knowledge protocols with black-
box simulation in the plain model which show that many (all known?)
such protocols handle designated CEPT adversaries in CEPT.

1 Introduction
Interactive proof systems allow a prover P to convince a verifier V of the “truth”
of a statement x, i.e. that x ∈ L for some language L. Soundness of the pro-
tocol ensures that if the verifier accepts, then x ∈ L with high probability.
Zero-knowledge proof systems allow P to convince V of x ∈ L without revealing
anything else. The definition of zero-knowledge relies on the (more general) sim-
ulation paradigm: It stipulates that, for every (malicious) verifier V∗, there is a
simulator Sim which, given only the inputs x, aux of V∗, can produce a simulated
output (or view1) out = Sim(x, aux), which is indistinguishable from the output
1 We use view and output synonymously in the introduction.
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outV∗⟨P(x,w),V∗(x, aux)⟩ of a real interaction. Thus, anything V∗ learns in the
interaction, it could simulate itself — if Sim and V∗ lie in the same complexity
class.

Let us write X/Y (zero-knowledge) for adversary complexity X and simula-
tor complexity Y . The two widespread notions of zero-knowledge are PPT/PPT
and PPT/EPT. The former satisfies the “promise of zero-knowledge”, but comes
at a price. Barak and Lindell [2] show that it is impossible to construct constant
round proof systems with black-box simulation and negligible soundness error in
the plain model. Since constant round black-box zero-knowledge is attractive for
many reasons, the relaxation of PPT/EPT zero-knowledge is common. How-
ever, this asymmetry breaks the “promise of zero-knowledge”. The adversary
cannot execute Sim, hence it cannot simulate the interaction. More concretely,
this setting does not compose well. If we incorporate an EPT simulator into a
(previously PPT) adversary, the new adversary is EPT. This common approach
— constructing simulators for more complex systems from simulators of building
blocks — therefore fails due to the asymmetry.

To remedy the asymmetry, we need to handle EPT adversaries. There are
several sensible definitions of EPT adversaries, but the arguably most natural
choice are designated EPT adversaries. That is, adversaries which only need to
be EPT when interacting with the protocol they are designed to attack. Feige
[9] first considered this setting, and demonstrates significant technical obstacles
against achieving security in the presence of such attacks.

The problems of EPT (and designated adversaries) are not limited to zero-
knowledge, and extend to the simulation paradigm, e.g. multi-party computa-
tion.

Preliminary conventions. Throughout, κ denotes the security parameter. We
generally consider objects which are families (of objects) parameterized by κ,
but often leave the dependency implicit. We abbreviate systems of (interactive)
machines (or algorithms) by system. A system is closed, if it only expects κ as
input, and produces some output. For example, a prover P does not constitute
a closed system, nor does the interaction ⟨P,V⟩, since it still lacks the inputs
to P and V. Our primary setting is uniform complexity [11], where inputs to an
(otherwise closed) system are generated efficiently by so-called input generators.
Interaction of algorithms A, B is denoted ⟨A,B⟩, the time spent in A is denoted
timeA(⟨A,B⟩), and similarly for time spent in B or A + B. Oracle access to O

is written AO. An algorithm A is a priori efficient, if the runtime bound is
independent from its environment, e.g. classical “a priori PPT”. The term a
posteriori emphasizes an absence of a priori efficiency, i.e. bounds which depend
on the environment, e.g. in the case of designated adversaries.

1.1 Obstacles

We first recall some obstacles regarding expected runtime and designated adver-
saries which we have to keep in mind. For more discussions and details, we refer
to the excellent introductions of [19, 14] and to [9, Section 3].
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Runtime squaring. Consider (a family of) random variables Tκ over N, where
P(Tκ = 2κ) = 2−κ and Tκ is 0 otherwise. Then Tκ has polynomially bounded
expectation E(Tκ) = 1, but E(T 2

κ ) = 2κ. That is Sκ = T 2
κ is not expected poly-

nomial time anymore. This behaviour not only prevents machine model inde-
pendence of EPT as an efficiency notion, but also the non-black-box simulation
technique of Barak [1] (which suffers from a quadratic growth in runtime).

Composition and rewinding. Consider an oracle algorithm AO with access to
a PPT oracle O. Then to check if the total time timeA+O(AO) is PPT, we
can count an oracle call as a single step. Moreover, it makes no difference if
A has “straightline” or “rewinding” access to O. For EPT, even a standalone
definition of “O is EPT” is non-trivial and possibly fragile. For example, there
are oracles, where any PPT A with “straightline” access to O results in an EPT
interaction, yet access “with rewinding” to O allows an explosion of expected
runtime. See [19] for a concrete example.

Designated EPT adversaries. For a designated adversary A against zero-
knowledge of a proof system (P,V), we require (only) that A is efficient when
interacting with that protocol. Since a zero-knowledge simulator deviates from
the real protocol, the runtime guarantees of A are void.

1.2 Motivation: Reproving zero-knowledge of graph 3-colouring

The constant-round black-box zero-knowledge proof of Goldreich and Kahan [15]
is our running example for demonstrating problems and developing our approach.

Recall that (non-interactive) commitment schemes allow a committer to com-
mit to a value in a way which is hiding and binding, i.e. the commitment does
not reveal the value to the receiver, yet it can be unveiled to at most one value.
A commitment scheme consists of algorithms (Gen,Com,VfyOpen). The commit-
ment key is generated via ck← Gen(κ).

The constant round protocol of Goldreich–Kahan The protocol of [15]
uses two different commitments, Com(H) is perfectly hiding, Com(B) is perfectly
binding. The idea of protocol G3CGK is a parallel, N -fold, repetition of the
standard zero-knowledge proof for G3C, with the twist that the verifier commits
to all of its challenges beforehand. Let G = (V,E) be the graph and let ψ be a
3-colouring of G. The prover is given (G,ψ) and the verifier G.

(P0) P sends ckhide ← Gen(H)(κ). (ckbind ← Gen(B)(κ) is deterministic.)
(V0) V picks N = κ · card(E) challenge edges ei ← E, and commits to them

using Com(H).
(P1) P picks randomized colourings for each of the N parallel repetitions of the

standard graph 3-colouring proof system, and sends the Com(B)-committed
randomized node colours to V.

(V1) V opens all commitments (to ei).
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(P2) P aborts if any opening is invalid. Otherwise, P proceeds in the paral-
lel repetition using these challenges, i.e. in the i-th repetition P opens the
committed colours for the nodes of edge ei.

(V2) V aborts iff any opening is invalid, any edge not correctly coloured, or if
ckhide is “bad”. Else V accepts.

The soundness of this protocol follows from Com(H) being perfectly hiding.
Therefore, each of the N parallel repetitions is essentially an independent repe-
tition of the usual graph 3-colouring proof. For N = κ · card(E) parallel rounds,
the probability to successfully cheat is negligible (in κ), see [15].

Proving zero-knowledge: A (failed?) attempt Now, we prove black-box
zero-knowledge for designated adversaries. That is, we describe a simulator which
uses the adversary V∗ only as a black-box, which can be queried and rewound to
a (previous) state. We proceed in three game hops, gradually replacing the view
of a real interaction with a simulated view. Successive games are constructed so
that their change in output (which is a purported view) is indistinguishable.

G0 This is the real G3C protocol. The output is the real view.
G1 The prover rewinds a verifier which completes (V1) successfully (i.e. sends

valid openings on the first try) to (V0) and repeats (P1) until a second run
where V validly opens all commitments. The output is the view of this second
succesful run. The prover uses fresh randomness in each reiteration of (P1)
(whereas the black-box has fixed randomness).

G2 If the two openings in (V1) differ, return ambig, indicating ambiguity of the
commitment. Otherwise, proceed unchanged.

G3 The initial commitments (in (P1)) to a 3-colouring are replaced with commit-
ments to 0. These commitments are never opened. In successive iterations,
the commitments to a 3-colouring are replaced by commitments to pseudo-
colourings ψi (for ei), i.e. for edge ei = (ui, vi), ψi colours ui and vi differently
(and uniformly), whereas ψi colours all v ̸= ui, vi with 0. Hence the opened
commitments simulate a valid 3-colouring at the challenge edges ei.

Evidently, Game G3 outputs a purported view independent of the witness. Thus,
the simulator is defined as in G3: In a first try, it commits (using Com(B)) to all
zeroes instead of a 3-colouring in (P1), and uses this “garbage” commitment to
learn the verifier’s challenge (in (V1)). If the verifier does not successfully open
the commitments (in (V1)), Sim aborts (as an honest prover would) and outputs
the respective view. Otherwise, Sim rewinds the verifier to Step 2 and sends a
pseudo-colouring (w.r.t. the previously revealed challenge) instead. Sim retries
until the verifier succesfully unveils (in (V1)) again. (If the verifier opens to a
different challenge, return view = ambig.)

Now, we sketch a security proof for Sim. We argue by game hopping.
G0 to G1. The expected number of rewinds is at most 1. Namely, if V∗ opens

in (V1) with probability ε, then an expected number of 1
ε rewinds are required.

Consequently, the expected runtime is polynomial (and G1 is EPT). The output
distribution of the games is identical.
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G1 to G2. It is easy to obtain an adversary against the binding property of
Com(H) which succeeds with the same probability that G2 outputs ambig. Thus,
this probability is negligible.

G2 to G3. Embedding a (multi-)hiding game for Com(B) in this step is
straightforward. Namely, using the left-or-right indistinguishability formulation,
where the commitment oracle either commits the first or second challenge mes-
sage. Thus, by security of the commitment scheme, G2 and G3 are indistinguish-
able.2

A closer look. The above proof is clear and simple. But the described simulator
is not EPT! While G2 and G3 are (computationally) indistinguishable, the tran-
sition does not necessarily preserve expected polynomial runtime [9, 19]. Feige [9]
points out a simple attack, where V∗ brute-forces the commitments with some
tiny probability p, and runs for a very long time if the contents are not valid
3-colourings. This is EPT in the real protocol, but our simulator as well as the
simulator in [15] do not handle V∗ in EPT. The problem lies with designated
adversaries as following example shows.

Example 1. Let V∗ sample in step (V0) a “garbage” commitment c′ to zeroes,
using Com(B) just like Sim in its first step, trying to predict Sim’s choice. (c′ is a
“proof of simulation”.) Now V∗ unveils e in (V1) if and only if it receives c′. The
honest prover always aborts in (P2) because V∗ will never unveil. However, if
Sim happens to chose c = c′ as its “garbage” commitment, the simulation runs
forever, because V∗ unveils only for this c′, which is not a pseudo-colouring.

As described, V∗ is a priori PPT, and indeed, the simulator in [15] uses a
“normalization technique” which prevents this attack. However, exploiting des-
ignated PPT, V∗ may instead run for a very long time, when it receives c′.

Obstructions to simple fixes. Let us recall a few simple, but insufficient fixes. A
first idea is to truncate the execution of A at some point. For PPT adversaries,
this may seem viable.3 However, there are EPT adversaries, or more concretely
runtime distributions, where any strict polynomial truncation affects the output
in the real protocol noticeably. So we cannot expect that such a truncation works
well for Sim. See [9, Section 3] for a more convincing argument against truncation.

Being unable to truncate, we could enforce better behaviour on the adversary.
Intuitively, it seems enough to require that V∗ runs in expected polynomial time
in any interaction [19, 14]. However, even this is not enough. Katz and Lindell
[19] exploit the soundness error of the proof system to construct an adversary
which runs in expected polynomial time in any interaction, but still makes the
2 We rely on security of binding and hiding against expected time adversaries, which

follows from PPT-security by runtime truncation arguments, e.g. by Lemma 1.
3 Even there, the situation is far from easy. In a UC setting with an a posteriori

efficiency notion (and designated adversaries), Hofheinz, Unruh, and Müller-Quade
show in [18, Section 9] that (pathological) functionalities can make simulation in
PPT impossible (if one wants security under composition for just a single instance).
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expected runtime of the simulator superpolynomial. The problem is that these
runtime guarantees are void in the presence of rewinding.

Modifications of these fixes work, but at a price: Katz and Lindell [19] use
superpolynomial truncation and need to assume superpolynomial hardness. Gol-
dreich [14] restricts to algorithms (hence adversaries) which behave well under
rewinding. We discuss these in Section 1.5. Our price will be proof techniques,
which become more technical and, perhaps, more limited.

Our fix: There is no problem. Our starting point is the conviction that the given
“proof” should evidently establish the security of the scheme for any cryptograph-
ically sensible notion of runtime. If one could distinguish the runtime of G2 and
G3, then this would break the hiding property of the commitment scheme. Thus,
the runtimes are indistinguishable. Following, in computational spirit, Leibniz’
“identity of indiscernibles”, we declare runtimes which are indistinguishable from
efficient by efficient distinguishers as efficient per definition. With this, the proof
works and the simulator, while not expected polynomial time, is computation-
ally expected polynomial time (CEPT), which means its runtime distribution is
indistinguishable from EPT.

We glossed over a crucial detail: We solved the problem with the very strategy
we claim to fix — different runtime classes for Sim and V∗! Fortunately, Sim also
handles CEPT adversaries in CEPT.

1.3 Contribution

Our main contribution is the reexamination of the notion of runtime in cryptog-
raphy. We offer a novel, and arguably natural, alternative solution for a problem
that was never fully resolved. Our contribution is therefore primarily of explo-
rational and definitional nature. More concretely:

– We define CEPT, a small relaxation of EPT with a simple characterization.
– To the best of our knowledge, this is the first work which embraces uniform4

complexity, expected time, and designated adversaries.
– We develop general tools for this setting, most importantly, a hybrid lemma.
– Easy-to-check criteria show that many (all known?) black-box zero-knowl-

edge arguments from standard assumptions in the plain model5 have CEPT
simulators which handle designated CEPT adversaries. Consequently, secu-
rity against designated adversaries is natural. For example, the proof sys-
tems [16, 15, 24, 29, 20, 28] satisfy our criteria.

– We impose no (non-essential) restrictions on the adversary, nor do we need
additional (hardness) assumptions.

– We sketch the application of our techniques to secure function evaluation.

4 Our results are applicable to a minor generalization of the non-uniform setting as
well, namely non-uniformly generated input distributions.

5 Unfortunately, problems might arise with superpolynomial hardness assumptions.
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All of this comes at a price. Our notions and proofs are not complicated, yet
somewhat technical. This is, in part, because of a posteriori runtime and uniform
complexity. Still, we argue that we have demonstrated the viability of our new
notion of efficiency, at least for zero-knowledge.

A complexity theoretic perspective. This work is only concerned with the com-
plexity class of feasible attacks, and does not assume or impose complexity re-
quirements on protocols. Due to designated adversaries, the complexity class
of adversaries is (implicitly) defined per protocol, similar to [19]. We bootstrap
feasibility from complexity classes for (standalone) sampling algorithms, i.e. al-
gorithms with no inputs except κ. Hence a (designated) adversary is feasible if
the completed system of protocol and adversary (including input generation) is
CEPT (or more generally, in some complexity class of feasible sampling algo-
rithms).

The complexity class of simulators is relative to the adversary, and thus
depends both on the protocol and the ideal functionality. Namely, feasibility of
a simulator Sim means that if an adversary A is feasible (w.r.t. the protocol),
then “Sim(A)” is feasible (w.r.t. the ideal functionality).

Comments on our approach. The uniform complexity setting drives complex-
ity, yet is necessary, since a notion of time that depends on non-uniformity
is rather pathological. Losing the power of non-uniformity (and strictness of
PPT) requires many small adjustments to definitions. Moreover, annoying tech-
nical problems with efficiency arise inadvertently, depending on formalizations
of games and models. As in prior work, we mostly ignore them, but do point
them out and propose solutions. They are easily fixed by adding “laziness”, “in-
direction”, or “caching”.

An important point raised by a reviewer of TCC’20 is the “danger of zero-
knowledge being trivialized” by “expanding the class of attacks”, and a case
for “moving towards knowledge tightness” (with which we fully agree). Many
variations of zero-knowledge, from weak distributional [8, 6] to precise [25, 7],
exist. We argue that our notion is very close to the “standard” notion with
EPT simulation, but allows designated (C)EPT adversaries. Indeed, it seems
to gravitate towards “knowledge tightness” [14], as seen by runtime explosion
examples due to expectation.

1.4 Technical overview and results

We give an overview of our techniques, definitions, and results. Recall that we
only consider runtimes for closed systems (which receive only κ as input and
produce some output). W.r.t. uniform complexity and designated adversaries,
i.e. adversaries which only need to be efficient in the real protocol [9], closed
systems are the default situation anyway. A runtime class T is a set of run-
time distributions. A runtime (distribution) is a family (Tκ)κ of distributions
Tκ over N0. We use runtime and runtime distribution synonymously. Computa-
tional T-time indistinguishability of oracles and distributions is defined in the
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obvious way (c.f. Definition 5). For statistical T-query indistinguishability, we
count only queries as steps, and require T-time w.r.t. this. (In our setting, un-
bounded queries often imply perfect indistinguishability, which is too strong.)

The basic tools.

Statistical vs. computational indistinguishability. The (folklore) equivalence of
statistical and computational indistinguishability for distributions with “small”
support is a simple, but central, tool. For polynomial runtime, “small” support
means polynomial support, say {0, . . . , poly1(κ)}. Assuming non-uniform advice,
the advice is large enough to encode the optimal decisions, achieving statisti-
cal distance as distinguishing advantage. This extends to “polynomially-tailed”
runtime distributions T . There, by assumption, for any poly0 there is a poly1
such that P(Tκ > poly1(κ)) ≤ 1

poly0(κ)
, Hence, we can reduce to strict polynomial

support by truncating at poly1, sacrificing 1/poly0 in statistical distance. The
Markov bound shows that expected polynomial time is polynomially tailed. Re-
moving non-uniformity is possible with repeated sampling, e.g. by approximating
the distribution.

Standard reduction. Another simple, yet central, tool is the standard cutoff
argument. It is the core tool to obtain efficiency from indistinguishability.

Lemma 1 (Standard reduction to PPT). Let D be a distinguisher for
two oracles O0, O1. Suppose D has advantage at least ε ≥ 1

polyadv
(infinitely

often). Suppose furthermore that DO0 is EPT (even CEPT) with expected time
poly0. Then there is an a priori PPT distinguisher A with advantage at least ε

4
(infinitely often). (Here, ε, polyadv, poly0 are functions in κ.)

We stress that we require no runtime guarantees for DO1 — it may never halt.
For a proof sketch, define N = 4poly0 ·polyadv and let A be the runtime cutoff of
D at N . The outputs of AO0 and DO0 are ε

4 close. For AO1 and DO1 this may be
false. However, if DO1 exceeds N steps with probability higher than 2ε

4 , then the
runtime is a distinguishing statistic with advantage ε

4 . Thus, we can assume the
outputs of AO1 and DO1 are 2ε

4 close. Now, a short calculation shows that A has
advantage at least ε

4 . Namely, ∆(AO1 ,AO0) ≥ ∆(DO1 ,DO0)−∆(AO1 ,DO1)−
∆(DO0 ,AO0).

Computationally expected polynomial time. We define the runtime classes
PPT (resp. EPT), as usual, i.e. (Tκ)κ ∈ PPT ⇐⇒ ∃poly : P(Tκ ≤ poly(κ)) = 1
(resp. (Tκ)κ ∈ EPT ⇐⇒ ∃poly : E(Tκ) ≤ poly(κ)).

Definition 1 (Simplified6 Definition 8). A runtime S, i.e. a family of ran-
dom variables Sκ with values in N0, is computationally expected polynomial

6 Formally, “triple-oracle” instead of “standard” indistinguishability is used. Assum-
ing non-uniform advice, or runtimes T, S which are induced by algorithms, the sim-
plified definition is equivalent to the actual one.
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time (CEPT), if there exists a runtime T which is (perfectly) expected polyno-
mial time (i.e. EPT), such that any a priori PPT distinguisher has negligible
distinguishing advantage for the distributions T and S. The class of CEPT
runtime distributions is denoted CEPT. Computationally strict polynomial
time (CPPT) is defined analogously.

Characterizing CEPT. At a first glimpse, CEPT looks hard to handle. Fortu-
nately, this is a mirage. We have following characterization of CEPT.

Proposition 1 (Simplified6 Corollary 1). Let T be a runtime. The following
are equivalent:

(0) T is in CEPT.
(1) ∃S ∈ EPT which is computationally PPT-indistinguishable from T .
(2) ∃S ∈ EPT s.t. T and S are statistically indistinguishable (given polynomially

many samples).
(3) There is a set of good events Gκ with P(Gκ) ≥ 1−ε(κ) such that E(Tκ |Gκ) ≤

tκ (for the conditional expectation), where ε is negligible and t is polynomial.

Let T be a runtime. Item (3) defines virtually expected time (t, ε) with virtual
expectation (bounded by) t and virtuality ε. Thus, the characterization says that
computational, statistical and virtual EPT coincide.

Proposition 1 follows essentially from the statistical-to-computational reduc-
tion and a variant of Lemma 1. Thanks to this characterization, working with
CEPT is feasible. One uses item (1) to justify that indistinguishability transi-
tions preserve CEPT. And one relies on item (3) to simplify to the case of EPT,
usually in unconditional transitions, such as efficiency of rewinding.

An intrinsic characterization. The full Corollary 1 not only reveals that CEPT
is “well-behaved”. It also shows that the runtime class CEPT is “closed un-
der indistinguishability”: Any runtime S which is CEPT-indistinguishable from
some T ∈ CEPT lies in CEPT. This intrinsic property sets it apart from EPT.
(Indeed, CEPT is the closure of EPT.) PPT and CPPT behave analogously.

Example 2. Let A be an algorithm which outputs 42 in exactly 1010 steps, and let
A′ act identical to A, except with probability 2−κ, in which case it runs 22κ steps.
Then A′ is neither PPT nor EPT. Yet, A and A′ are indistinguishable even given
timed black-box access. That is, observing both output and runtime of the black-
box, it is not possible to tell A and A′ apart. Thus, it is rather unexpected that
A′ is considered inefficient. For many properties, e.g. correctness or soundness,
statistical relaxations from “perfect” exist. CPPT and CEPT should be viewed
as such relaxations for efficiency.

Working with CEPT. Applying the characterization of CEPT to a whole system
⟨P,V∗⟩, the good event G may induce arbitrary stochastic dependencies on
(internal) random coins of the parties. This is inconvenient. We are interested
only in one party, namely V∗. Moreover, in a simulation, there is no P anymore
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and the probability space changed, hence there is no event G. To account for
this, we observe that only the messages V∗ receives from P are relevant for V∗’s
behaviour, not P’s internal randomness. In the full version [21], we formulate a
convenience lemma for handling this, whereas in this extended abstract, we deal
with it directly.

Definitions and tools for zero-knowledge. Here, we state our definition of
uniform complexity zero-knowledge, demonstrate how to prove zero-knowledge
for G3CGK, and then abstract the approach to cover a large class of protocols.

Definition of zero-knowledge. For uniform auxiliary input zero-knowledge, the
input (x,w, aux, state) ← I(κ) is efficiently generated by an input generator
I. A designated adversary (I,V∗) consists of input generation, malicious veri-
fier, and distinguisher, but we leave I often implicit. The distinguisher receives
out and state, the latter is needed for modular sequential composition.7 Here,
out = outV∗⟨P(x,w),V∗(x, aux)⟩ or out = outSimSim(code(V∗), x, aux), where
(x,w, aux, state) is sampled by I(κ). As a shorthand, for the system which
lets I sample inputs and passes them as above, we write ⟨P,V⟩I. From des-
ignated CEPT adversaries, we require that timeI+P+V∗+D((state, outV∗P(x,w),
V∗(x, aux))) is CEPT.

Concrete example. Recall that in Section 1.2, we showed zero-knowledge of the
graph 3-colouring protocol G3CGK of Goldreich and Kahan [15] as follows:

Step 1: Introduce all rewinding steps as in G1. Here, virtually expected run-
time and virtuality at most doubles. Roughly, rewinding at most doubles the
probability that a query query is asked. Since this, in particular, applies to long
running “bad” queries, virtuality at most doubles.

Step 2: Apply indistinguishability transitions, which reduce to hiding resp.
binding properties of the commitment. From this, we obtain both good output
quality and efficiency of Sim. Concretely, indistinguishability and efficiency follow
by an application of the standard reduction (to PPT).

We abstract this strategy to cover a large class of zero-knowledge proofs.8

Intuitively, we apply the ideas of [14] (“normality”) and [19] (“query indistin-
guishability”), but separate the unconditional part (namely, that rewinding pre-
serves efficiency), and the computational part (namely, that simulated queries
preserve efficiency).9

Abstracting Step 1 (Rewinding strategies). A rewinding strategy RWS has
black-box rewinding (bb-rw) access to a malicious verifier V∗, and abstracts a
simulator’s rewinding behaviour. Unlike the simulator, RWS has access to the
witness. For RWS to be normal, we impose three requirements.
7 While [11] passes no extra state, only sequential repetition is proven there.
8 Strictly speaking, we concentrate on zero-knowledge arguments, since we need effi-

cient provers.
9 We significantly deviate from [19] to obtain simpler reductions.



On expected polynomial runtime in cryptography 11

Firstly, a normal rewinding strategy outputs an adversarial view which is
distributed (almost) as in the real execution. Secondly, there is some poly so that

E(timeRWS+V∗(RWSV∗
)) ≤ poly(κ) · E(timeP+V∗(⟨P,V∗⟩))

for any adversary V∗. We call this (polynomial) runtime tightness of RWS.10

Thirdly, RWS has (polynomial) probability tightness, which is defined as fol-
lows: Let prrws(query) be the probability that RWS asks V∗ a query query. Let
prreal(query) be the probability that the prover P asks query. Then RWS has
probability tightness poly if for all queries query

prrws(query) ≤ poly(κ) · prreal(query).

Intuitively, runtime tightness ensures that RWS preserves EPT, whereas
probability tightness bounds the growth of virtuality. Indeed, the virtuality δ in
⟨P,V∗⟩ increases to at most poly · δ in RWSV∗

. This follows because the proba-
bility for a “bad” query in RWSV∗

is at most poly-fold higher than in ⟨P,V∗⟩.

Lemma 2 (Informal). Let RWS be a normal rewinding strategy for (P,V) with
runtime and probability tightness poly. Let (I,V∗) be an adversary. If ⟨P,V∗⟩I
is CEPT with virtually expected time (t, ε), then RWS(V∗) composed with I is
CEPT with virtually expected time (poly · t, poly · ε).

(Weak) relative efficiency. We generalize the guarantees of rewinding strategies
to relative efficiency of (oracle) algorithms. An oracle algorithm B is efficient
relative to A with runtime tightness (polytime, polyvirt) if for all oracles O:
If timeA+O(AO) is virtually expected (t, ε)-time, then timeB+O(BO) is virtually
expected (polytime · t, polyvirt · ε)-time.

We call B weakly efficient relative to A, if whenever timeA+O(AO) is effi-
cient (e.g. CEPT), then timeB+O(BO) is efficient (e.g. CEPT).

Abstracting Step 2 (Simple assumptions). A “simple” assumption is a pair of
efficiently computable oracles C0 and C1, and the assumption that C0

c
≈ C1, i.e.

C0 and C1 cannot be distinguished in PPT.11 For example, hiding resp. binding
for commitment schemes are simple assumptions.

In Step 2, we reduce the indistinguishability of RWSV∗
and SimV∗

to a simple
assumption. That is, there is some algorithm R such that RWSV∗

≡ RC0(V∗),
and RC1(V∗) ≡ SimV∗

. Moreover, we assume that RC0(V∗) is efficient relative to
RWSV∗

, and SimV∗
is efficient relative to RC1(V∗).

10 Up to minor technical details, polynomial runtime tightness of RWS coincides with
“normality” of Sim in [14, Def. 6].

11 Technically, our definition of “simple assumption” corresponds to falsifiable assump-
tions [26] in the sense of [10]. We deliberately do not call them falsifiable, since
our proof techniques should extend to a larger class of assumptions, which includes
non-falsifiable assumptions.
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Putting it together (Benign simulators). Black-box simulators whose security
proof follows the above outline are called benign. See Fig. 1 for an overview of
properties and their relation.

CEPT characterizationstandard reduction comp. ind. to stat. ind.

aux. input ZKbenign query-benign

normal RWS eff. rel. to simple ass. normal RWS “efficiency notion” query ind.

sequential ZK

hybrid lemma

Fig. 1: A rough overview of dependencies of core results and definitions. The
greyed out approach follows [19] more closely, see the full version [21]. The top
line is used everywhere implicitly.

Lemma 3 (Informal). Argument systems with benign simulators are auxiliary-
input zero-knowledge against CEPT adversaries.

Proof (Summary). The proof strategy above can be summarized symbolically:

outV∗⟨P,V∗⟩ ≡ RWS(V∗) ≡ RC0(V∗)
c
≈ RC1(V∗) ≡ Sim(V∗).

More precisely, consider a CEPT adversary (I,V∗). By normality of RWS,
outV∗⟨P,V∗⟩ and RWS(V∗) have (almost) identical output distributions, and
RWS(V∗) is CEPT. By relative efficiency, RC0(V∗) is CEPT if RWSV∗

is CEPT.
Since C0

c
≈ C1, by a standard reduction, if RC0(V∗) is CEPT, so is RC1(V∗), and

their outputs are indistinguishable. Finally, since SimV∗
is efficient relative to

RC1(V∗), also SimV∗
is CEPT. All in all, SimV∗

is efficient and produces indis-
tinguishable outputs.

Benign simulators are common, e.g. the classic, constant round, and concur-
rent zero-knowledge protocols in [16, 15, 24, 29, 20, 28] satisfy this property.

Sequential composition and hybrid arguments. It turns out that hybrid
arguments are non-trivial in the setting of a posteriori efficiency. Here, we outline
the challenges in proving the hybrid lemma, how to overcome them, and how to
obtain security of sequential composition from our abstract hybrid lemma.

Intermezzo: Tightness bounds. The use of relative efficiency with polynomial
tightnesss bounds is not strictly necessary. Nevertheless, it offers “more quantifi-
able” security and is easier to handle. For example, benign simulators are easily
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seen to “compose sequentially” because, (1) normal RWS and relative efficiency
compose sequentially, and (2) “simple” assumptions satisfy indistinguishability
under “repeated trials”. Together, this translates to sequential composition of
benign simulation. Hence, argument systems with benign simulators are sequen-
tial zero-knowledge against CEPT adversaries. Unfortunately, the general case
is much more involved.

The hybrid lemma. To keep things tidy, we consider an abstract hybrid argument,
which applies to zero-knowledge simulation and much more. Due to a posteriori
efficiency, the lemma is both non-trivial to prove and non-trivial to state.

Lemma 4 (Hybrid lemma). Let O0 and O1 be two oracles and suppose that
O1 is weakly efficient relative to O0 and O0

c
≈ O1. Denote by rep(O0) and rep(O1)

oracles which give repeated access to independent instances of Ob. Then rep(O1)

is weakly efficient relative to rep(O0) and rep(O0)
c
≈ rep(O1).

Lemma 4 hides much of the complexity caused by a posteriori efficiency,
and is often a suitable black-box drop-in for the hybrid argument. We sketch
how to adapt the usual hybrid reduction. In our setting, rep(Ob) gives access
to arbitrarily many independent instances of Ob. The usual hybrids Hi use O1

for the first i instances, and switch to O0 for all other instances. W.l.o.g., only
q = poly(κ) many O-instances are accessed by the distinguisher D. The hybrid
distinguisher D′ guesses an index i∗ ← {0, . . . , q − 1}, and simulates a hybrid
Hi+b embedding its challenge oracle O∗

b .
If D has advantage ε, then the hybrid distinguisher D′ has advantage ε/q.

In the classic PPT setting, we assume that O0 and O1 are classical PPT, and
hence find that D′ is PPT and therefore efficient. In an a posteriori setting,
the efficiency of D′ is a bigger hurdle. We make the minimal assumptions, that
timeD+rep(O0)(D

rep(O0)) is efficient and that O1 is weakly efficient relative to O0.12

Hence, we do not trivially know whether timeD+rep(O1)(D
rep(O1)) or the hybrid

distinguisher D′, which has to emulate many oracle instances, is efficient. Indeed,
a naive argument would invoke weak relative efficiency q times. In the case of
PPT, this would mean q-many polynomial bounds. But, for all we know, these
could have the form 2ipoly(κ) in the i-th invocation, leading to an inefficient
simulation.

The core problem is therefore to avoid a superconstant application of weak rel-
ative efficiency.13 Essentially this problem was encountered by Hofheinz, Unruh,
and Müller-Quade [18] in the setting of universal composability and a posteriori
PPT. They provide a nifty solution, namely to randomize the oracle indexing.
This ensures that, in each hybrid, every emulation of O0 (resp. O1) has identi-
cal runtime distribution T0 (resp. T1). This gives a uniform bound on runtime
12 The hybrid proof technique requires the hybrid distinguisher to emulate all but one

oracle instance, and for this we need weak relative efficiency.
13 For reference, even for a priori PPT sequential composition for zero-knowledge, one

must avoid a superconstant invocation of the existence of simulators. There, the
solution is to consider a “universal” adversary and its “universal” simulator.
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changes. Now, we show how to extend the proof of [18], which is limited to
CPPT.

We prove the hybrid argument in game hops, starting from the real protocol
G1. In G2, we replace one oracle instance of O0 by O1 (at a random point). In
G3, every instance of O0 but one is replaced by O1. In G4, only O1 is used. Since
O1 is weakly efficient relative to O0 and O0

c
≈ O1, the transitions from G1 to G2

(resp. G3 to G4) preserve efficiency and are indistinguishable. The step from G2

to G3 is the crux. Note that we have at least one O0 (resp. O1) instance in either
game. Take any one and denote the time spent in that instance by T0 (resp.
T1). Since we randomized the instances, the distribution of T0 (resp. T1) does
not depend on the concrete instance. Importantly, even in the hybrid reduction,
there is an instance which can be used to compute T0 (resp. T1). Moreover,
the total time spent in computing instances of O0 and O1 is “dominated”14 by
q · T0 + q · T1. Thus, it suffices to prove that S = T ′ + T0 + T1 is CEPT, where
T ′ is the time spent outside emulation of instances of O0 and O1. (Note that S,
T ′, T0, T1 depend on the hybrid Hℓ, where ℓ ∈ {1, . . . , q− 1}; we suppressed this
dependency.) Now, we have two properties:

– Sℓ is CEPT if and only if time(Hℓ) is CEPT for the ℓ-th hybrid Hℓ.
– The reduction can compute and output Sℓ.

Thus, it suffices that S1 and Sq−1 are indistinguishable, since we know that S1 is
CEPT. Curiously, we now reduced efficiency to indistinguishability.15 To prove
indistinguishability, we can truncate the reduction (or rather, the hybrids) to
strict PPT as in the standard reduction. Thus, we obtain S1

c
≈ Sq. The hybrid

lemma follows. The actual reasoning of this last step is a bit lengthier, but fol-
lows [18] quite closely: We truncate each oracle separately to maintain symmetry
of timeout probabilities. Unfortunately, the reduction does not give the usual
telescoping sum, since the challenge oracle cannot be truncated. Due to symme-
try, the error is “dominated” by observed timeouts. Hence, it suffices to find
a (uniform) bound for the timeout probabilities over all Hℓ. Our reasoning for
this is mildly more complex than [18], since we do not have negligible bounds for
timeouts, but only polynomial tail bounds, and we make a weaker assumption
on efficiency of O0 and O1.

Modular sequential composition. With Lemma 4 at hand, it is straightforward
to prove that auxiliary input zero-knowledge composes sequentially. In fact, the
well-known proof works almost without modifications by using the hybrid lemma
(Lemma 4), which absorbs the bulk of the complexity. Indeed, it is possible to
prove a modular sequential composition theorem for secure function evaluation,
similar to [19]. Interestingly, in [19], subprotocols must have simulators which
are EPT in any interaction, whereas in our setting, there is no such restriction.
14 To be exact, dominated with slack q: P(timeO0+O1(Hℓ) > t) ≤ q ·P(q(Tℓ,0+Tℓ,1) > t).
15 The CEPT characterization does not strictly apply here, but a simple variation

does.
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1.5 Related work
We are aware of three (lines of) related works w.r.t. EPT: The results by Katz
and Lindell [19] and those of Goldreich [14], both focused on cryptography. And
the relaxation of EPT for average-case complexity by Levin [23]. A general
difference of our approach is, that we treat the security parameter separate from
input sizes, whereas [19, 14] assume κ = |x|. With respect to a posteriori runtime,
[18] is a close analogue, although for PPT and in the UC setting.

Comparison with [19]. Katz and Lindell [19] tackle the problem of expected
polynomial time by using a superpolynomial runtime cutoff. They show that this
cutoff guarantees a (strict) EPT adversary. However, for the superpolynomial
cutoff, they need to fix one superpolynomial function α and have to assume
security of primitives w.r.t. (strict) α-time adversaries. Squinting hard enough,
their approach is dual to ours. Instead of assuming superpolynomial security and
doing a cutoff, we “ignore negligible events” in runtime statistics, thus doing a
“cutoff in the probability space”. Moreover, we require no fixed bound.

Interestingly, their first result [19, Theorem 5] holds for “adversaries which
are EPT w.r.t. the real protocol”. Their notion is minimally weaker than ours,
as it requires efficiency of the adversary for all inputs instead of a sequence of
input distributions.16 [19, Section 3.5] claims that other scenarios, e.g. sequential
composition, fall within [19, Theorem 5]. Their modular sequential composition
theorem, [19, Theorem 12], however, requires that subprotocol simulators are
“expected polynomial time in any interaction”, which neither Theorem 5 nor
Theorem 12 assert for the resulting simulators.

Comparison with [14]. Goldreich [14] strengthens the notion of expected poly-
nomial time to obtain a complexity class which is stand-alone and suitable for
rewinding based proofs. He requires expected polynomial time w.r.t. any reset at-
tack, hence restricts to “nice” adversaries. With this, normal (in the sense of [14])
black-box simulators run in expected polynomial time, essentially by assumption.
This way of dealing with designated adversaries is far from the spirit of our work.

Comparison with [23]. The relaxation of expected polynomial time adopted by
Levin [23] and variations [13, 14, 3] are very strong. Let T be a runtime distribu-
tion. One definition requires that for some poly and γ > 0, P(Tκ > C) ≤ poly(κ)

Cγ

for large enough κ and C ≥ 0. Equivalently, E(T γκ ) is polynomially bounded
(in κ) for some γ > 0. Allowing negligible “errors” relaxes the notion further.
This definition fixes the composition problems of expected polynomial time. But
arguably, it stretches what is considered efficient far beyond what one may be
willing to accept. Indeed, runtimes whose expectation is “very infinite” are con-
sidered efficient.17 The goals of average case complexity theory and cryptography
16 Their definitions are a consequence of their non-uniform security definition and com-

plexity setting. The proof of [19, Theorem 5] never changes adversarial inputs, so
there is no obstruction to handling designated adversaries in our sense.

17 Setting c = 2 and γ = 3 in Remark 1 yields a runtime T with E(T ) =
∑∞

n=1 n, which
is still considered efficient.
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do not align here. We stress that our approach, while relaxing expected polyno-
mial time, is far from being so generous, see Section 1.6.

Related work on CPPT. The notion of CPPT is (in different forms) used and
well-known. For example, Boneh and Shoup [4] rely on such a notion. This
sidesteps technical problems, such as sampling uniformly from {0, 1, 2} with
binary coins. With a focus on complexity theory, Goldreich [12] defines typical
efficiency similar to CPPT. As the relaxations for strict bounds is very straight-
forward, we suspect more works using CPPT variations for a variety of reasons.

Comparison with [18]. Hofheinz, Unruh, and Müller-Quade [18] define PPT with
overwhelming probability (w.o.p.), i.e. CPPT, and consider a posteriori efficiency.
They work in the setting of universal composability (UC), and their main focus is
an overall sensible notion of runtime, which does not artificially restrict evidently
efficient functionalities, such as databases or bulletin boards. Their notion of
efficiency is similar to our setting with CPPT. In fact, we use their techniques
for the hybrid argument. Since [18] defines and assumes protocol efficiency, which
we deliberately neglect, there are some differences. Reinterpreting [18], their
approach is based on: “If for all (stand-alone) efficient D the machine DO0 is
efficient, then for all (stand-alone) efficient D the machine DO1 is efficient.”18

Our approach is based on: “For all D, if the machine DO0 is efficient, then
the machine DO1 is efficient.” The stronger (protocol) efficiency requirements
are harder to justify in our setting. (Even classical PPT O0 can be “inefficient”
for expected poly-size inputs. E.g., disallowing quadratic time protocols seems
harsh.)

More related work. Halevi and Micali [17] define a notion of efficiency for proofs
of knowledge, which closely resembles our notion of normal rewinding strategies.
Precise zero-knowledge [25, 27] requires that simulation and real execution time
are closely related. Due to Feige’s “attack” (or Example 1), this does not seem
to help with designated EPT adversaries.

1.6 Separations

We briefly provide separations between some runtime notions. Here, we focus
only on efficiency of adversaries, and ignore requirements imposed on proto-
col efficiency, since we deliberately neglected those. We consider basic runtime
classes (i.e. runtimes of sampling algorithms) and how they are lifted to interac-
tive algorithms.

Both [19, Definition 1] and [18, Definitions 1 and 2] use an “a posteriori”
lifting. The former lifts EPT, the latter lifts CPPT; both allow designated
adversaries and are similar to our setting. “A priori” liftings, such as [14, Defi-
nitions 1–4] are far more restrictive (on adversaries), effectively disallowing des-
ignated adversaries.
18 Think of D as the environment, O0 as the protocol, and O1 as the simulator.
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Regarding the underlying runtime classes, the works [19, 14] deal with (per-
fect) EPT, negligible deviations are not allowed. The notion of PPT w.o.p.
from [18] and CPPT coincide. To separate PPT, EPT, CPPT, CEPT, and
Levin’s relaxations, we first recall fat-tailed distributions.

Remark 1 (Fat-tailed distributions). The sum
∑
n n

−c is finite if and only if
c > 1. Thus, we obtain a random variable X with P(X = n) ∝ n−c. For γ >
0 we have E(Xγ) ∝

∑
n n

−c+γ . If c − γ ≤ 1, then E(Xγ) = ∞. Moreover,
P(X ≥ k) ≥ k−c, i.e. X has fat tails. In particular, for c = 3, E(X) < ∞ but
E(X2) ∝

∑
n n

−1 =∞, and P(X ≥ poly) ≥ 1
poly3 for any poly.

Allowing a negligible deviation clearly separates perfect runtime distribu-
tions from their computational counterparts. Clearly, PPT is strictly contained
in EPT. The separation of CPPT and CEPT follows from fat-tailed distri-
butions. In Section 1.6 below, we separate CEPT from Levin’s relaxations of
EPT, denoted LT, and Vadhan’s relaxation [14] of LT, denoted VT, which al-
lows negligible deviation. In the following diagram, strict inclusions are denoted
by arrows.

PPT EPT LT

CPPT CEPT VT

Levin’s relaxation and CEPT. We noted in Remark 1, that
∑∞
n=1 n

−c =
αc <∞ for c > 1 gives rise to a distribution Zc over N via normalizing the sum.
Let X = Z3

2 . Then E(X) = 1
αc

∑∞
n=1 n =∞. Since Z2 is fat-tailed, so is X. Let

Yk = X|(·≥k3)7→0. It follows immediately that E(Yk) = E(X|(·≥k3)7→0) ≥
1
αc
k2

for any k ∈ N. Thus, for any superpolynomial cutoff K, we find E(YK) ≥ 1
2αc

K2

is superpolynomial, and as a consequence, there is no superpolynomial cutoff
which makes X EPT. (We interpret X as a constant family of runtimes.)

Formally, CEPT uses ν-quantile cutoffs (i.e. we may condition on an event G
of overwhelming probability 1−ν that minimizes E(T |G)). For X, any ν-quantile
cutoff for negligible ν induces some bound k which maximizes P(T ≤ k) ≥ ν. If
k were polynomial, then (due to “fat tails”) ν must also be polynomial. Hence, k
must be superpolynomial, and consequently there is no negligible quantile cutoff
which makes X EPT. All in all, the runtime distribution X is allowed by Levin’s
relaxation, but is not CEPT.

1.7 Structure of the paper

In the introduction, we discuss motivation, contribution and related work, and
sketch our definitions and techniques.. In Section 2, we clarify notation, recall and
adapt standard definitions, and give basic requirements for runtime. In Section 3,
we define virtually expected time, the “triple-oracle distinguishing” notion, and
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CEPT. We also state the characterization of CEPT and provide a proof sketch.
In Section 4, we define zero-knowledge protocols and designated adversaries. We
then prove, in full detail, that the naive simulator for G3CGK works, and show
by example how benign simulators look like. Lastly, in Section 5, we discuss the
hybrid lemma and sequential composition.

Due to limited space, many of the definitions, tools, and results in the intro-
duction are only sketched or missing. For these, we refer to the full version [21].

2 Preliminaries
In this section, we state some basic definitions and (non-)standard conventions.
Since machine models more influence in an EPT setting than in a strict PPT
setting, we fix some suitable RAM model for the rest of this work.

Notation and basic definitions. We denote the security parameter by κ; it is
often suppressed. Similarly, we often speak of an object X, instead of a family of
objects (Xκ)κ parameterized by κ. We always assume binary encoding of data,
unless explicitly specified otherwise. We write X ∼ Y if a random variable X
is distributed as Y . For random variables X, Y over a (partially) ordered set

(A,≤) we write X
d
≤ Y if P(X > a) ≤ P(Y < a) for all a ∈ A and say Y

dominates X (or is greater than X in distribution). We use the same notation

for families of random variables, i.e. we write X ≤ Y and mean Xκ

d
≤ Yκ for

all κ. We write X|a7→b (resp. X|S 7→b, resp. X|pred7→b) for the random variable
where a (resp. any a satisfying a ∈ S resp. pred(a) = 1) is mapped to b, and
everything else unchanged, e.g. X|⊥7→0 or X|S 7→0 or X|≥N 7→N . The statistical
distance ∆(ρ, σ) of distributions (i.e. measures) ρ, σ over a countable set Ω is
1
2

∑
ω∈Ω|ρ(ω)− σ(ω)|. With poly, polylog, and negl we denote polynomial, poly-

logarithmic and negligible functions (in κ) respectively. Usually, we (implicitly)
assume that poly, polylog, and negl are monontone. A function negl is negligible
if limκ→∞ poly(κ)negl(κ) = 0 for every polynomial poly. In many definitions, we
assume the existence of a negligible bound negl on some advantage ε = ε(κ). We
use “strict pointwise ≤” for bounds, i.e. ε ≤ negl denotes ∀κ : ε(κ) ≤ negl(κ).

Systems, algorithms, interaction and machine models. We always consider (in-
duced) systems, which offer interfaces for (message-based) communication.19

Input and output are modelled as interfaces as well. The security parameter κ
is an implicit input interface of (almost) every system. A system is closed if its
only open interfaces are input for κ and output, i.e. if it is a “sampling algorithm”
which on inputs κ samples some output. Besides (black-box) oracle-access, an
algorithm A can have timed access to an oracle O, which means AO can limit
the allotted time s of a call to O and is informed of the elapsed runtime t when
O returns. We let t = timeout if O did not return in the allotted timespan s,
i.e. if t > s. We write bbrw(A) for black-box rewinding access to A.
19 We use an ad-hoc definition of system. A compatible, precise notion was recently

(concurrently) introduced in [22].
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Preliminary remarks on runtime. For an oracle algorithm A, we write timeA(AO)
for the time spent in A, timeO(AO) for the time spent in O, and timeA+O(AO) for
the time spent in both. This notation extends naturally to systems built from
interacting machines. Note that T = timeA(AO) is a random variable. We assume
that an oracle call is a single step and that runtimes sum up, i.e. timeA(AO) +
timeO(AO) = timeA+O(AO), as dependent random variables.

Definition 2. A runtime (distribution) T is a family of random variables
(resp. distributions) over N0 parameterized by the security parameter κ. We (only)
view a runtime as a random variable Tκ : Ωκ → N0, when stochastic dependency
is relevant. A runtime class T is a set of runtime distributions. A (sampling)
algorithm A is T-time if timeA(A) ∈ T, more explicitly, Tκ = timeA(A(κ)) is
in T.

Example 3. The runtime classes PPT and EPT of strict polynomial time (PPT)
and expected polynomial time (EPT) are defined in the obvious way, i.e.: T ∈
PPT (resp. T ∈ EPT) if there exists a polynomial poly such that P(Tκ >
poly(κ)) = 0 (resp. E(Tκ) ≤ poly(κ)).

In any closed system, every component has an associated random variable,
describing the time spent in it. We only consider such runtimes (most often,
the total runtime). Hence, efficiency depends only on κ, since closed systems
have no (other) input. In particular, we do not assign a stand-alone runtime
notion to a non-closed system, e.g. an algorithm A which needs inputs (besides
κ), resp. oracle access, resp. communication partners. The exception to the rule
are a priori PPT resp. EPT algorithms A, for which there is a bound poly such
that timeA(. . . ) ≤ poly resp. E(timeA(. . . )) ≤ poly for any choice of inputs, resp.
oracles, resp. parties.

Our central tool for dealing with expected time is truncation.

Definition 3 (Runtime truncation). Let A be an algorithm. We define A≤N

as the algorithm which executes A up to N steps, and then returns A’s output.
If A did not finish in time, A≤N returns timeout.

Probability theory. The underlying probability space is usually denoted by Ω.
We allow product extension of Ω to suit our needs, say extending to Ω′ = Ω×Σ
with Bernoulli distribution Ber( 13 ) on Σ = {0, 1}. Random variables over Ω are
lifted implicitly and we again write Ω instead of Ω′. Let N0 ∪ {∞, timeout} be
totally ordered via n <∞ < timeout for all n ∈ N0.

Definition 4 (ν-quantile cutoff). Let T be a distribution on N0 ∪ {∞} and
ν > 0. Suppose that P(T = ∞) ≤ ν. The (exact) ν-quantile (cutoff) T ν is
following distribution on N0 ∪ timeout. Let CDFT ( · ) : N0 ∪ {∞} → [0, 1] be the
CDF of T . Then CDFT ν ( · ) : N0 ∪ timeout → [0, 1] is defined by CDFT ν (n) =
min{1−ν,CDFT (n)} for n ∈ N, and CDFT ν (∞) = limn→∞ min{1−ν,CDFT (n)},
hence P(T ν =∞) = 0, and CDFT ν (timeout) = 1,

It is easy to see that, perhaps after extending Ω, there always is an event
A ⊆ Ω such that T ν := T |A 7→timeout is a ν-quantile cutoff of T .
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Remark 2 (Equal-unless). If X,Y : Ω → S are random variables over Ω and
coincide (as functions), except for an event E ⊆ Ω, thenX and Y are (pointwise)
equal unless E. We extend this to oracles (and algorithms) in the natural way.
Definition 5 ((Oracle-)Indistinguishability). Let O0 and O1 be (not nec-
essarily computable) oracles with identical interfaces. A distinguisher D is a
system which connects to all interfaces or O0, O1, resulting in a closed system
DOb . The (standard) distinguishing advantage of D is defined by

Advdist
D,O0,O1

(κ) = |P(DO1(κ)(κ) = 1)− P(DO0(κ)(κ) = 1)|.

By abuse of notation, we sometimes abbreviate Advdist
D,O0,O1

by Advdist
D,O.

Let T be a runtime class. Then O0 and O1 are computationally (stan-
dard) indistinguishable in T-time, written O0

c
≈T O1 if for any T-time dis-

tinguisher D, i.e. timeD(DOb(κ)(κ)) ∈ T (for b = 0, 1), there is some negligible
negl such that Advdist

D,O(κ) ≤ negl. We define statistical T-query indistinguishabil-
ity by counting only oracle-queries as runtime. If all (unbounded) distinguishers
have advantage 0, we speak of perfect indistinguishability and write O0 ≡ O1.

Indistinguishability of distributions X and Y [under repeated samples] is
defined in the natural compatible way, namely via oracles OX and OY which
outputs a single [a fresh] sample of X resp. Y [for each query]. By truncation
arguments, if a statistical EPT-query distinguisher exists, so does a statistical
PPT-query distinguisher, i.e. a strict polynomial number of queries suffice.

3 Computationally expected polynomial time
In this section, we define computationally expected polynomial time (CEPT).

Virtually expected time. We are interested in properties, which need only
hold with overwhelming probability. We formalize this for the expectation of
non-negative random variables as follows.
Definition 6 (Virtual expectation). Let X : Ω→ R≥0 ∪ {∞} Let ε > 0. We
say X has ε-virtual expectation (bounded by) t if

∃G ⊆ Ω: P(G) ≥ 1− ε ∧ E(X |G) ≤ t

We extend this to families by requiring it to hold component-wise. Moreover, we
say a runtime T is ε-virtually t-time if T has ε-virtual expectation bounded by
t. We abbreviate this as virtually expected (t, ε)-time and call ε the virtuality
of time (t, ε). If we do not specify ε, it is a negligible function.

Virtual expectation has a “probably approximately” flavour. It is closely
related to “ε-smooth properties”, such as ε-smooth min-entropy. Virtual expec-
tation behaves well under restriction (up to a certain extent):

Let X : Ω→ R≥0 be a random variable and E(X) = t. Then any restriction
of X to an event G of measure 1− ε implies E(X |G) ≤ (1− ε)−1t. The upshot
is that, as long as we condition on overwhelming (in fact, noticeable) events G,
polynomially bounded expectation is preserved.
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Triple-oracle indistinguishability. To prevent technical artefacts in defini-
tions of runtime classes and distinguishing-closedness, we use triple-oracle indis-
tinguishability. Triple-oracle distinguishing should be interpreted as distinguish-
ing with repeated samples, plus sampling access to the distributions X0, X1.
Recall that we always use binary encodings, and this includes runtime oracles
(even though unary encodings work there without change).

Definition 7. A triple-oracle distinguisher D for distributions X0, X1, re-
ceives access to three oracles O0, O1 and O∗

b , which sample according to some
distributions X0, X1, and Xb. The distinguishing advantage is Adv3-dist

D,O0,O1
=

|P(DO0,O1,O
∗
1 (κ) = 1)− P(DO0,O1,O

∗
0 (κ) = 1)|.

Two runtime distributions T, S are computationally T-time triple-oracle
indistinguishable, if any T-time distinguisher has advantage o(1). If T contains
PPT, then (by amplification) any distinguisher has negligible advantage. For
statistical triple-oracle indistinguishability, we only count oracle queries as a
step (and often explicitly speak of statistical T-query distinguishers).20

A runtime class T is computationally closed if for any runtime S: If some
T ∈ T is triple-oracle indistinguishable from S, then S ∈ T.

In the definition, we sketched our approach for general runtime classes (namely
requiring o(1) advantage bound). This definition applies to runtime classes from
other algebras, such as polylog or quasi-polynomial time, and implicitly uses the
notion of negligible function for these algebras. From now on, we specialize to the
polynomial setting, where amplification enforces (poly-)negligible advantage.

Characterizing CEPT. We begin with the fundamental definitions.

Definition 8 (CEPT and CPPT). The runtime class CEPT of computa-
tionally expected polynomial time contains all runtimes which are (triple-
oracle) PPT-time indistinguishable from expected polynomial time: In other
words: A runtime T is CEPT if there is an EPT T̃ , such that T and T̃ are
triple-oracle PPT-indistinguishable.

The runtime class CPPT of computationally (strict) probabilistic poly-
nomial time is defined analogously.

Now, we turn towards the characterization of CEPT. We start with a few
simple lemmata. Their central technique is to approximate probability distribu-
tions with suitable precision, and then use this information for distinguishing.

Lemma 5. Suppose S and T are runtimes and T ∈ CEPT. Then statistical
CEPT-query and computational CEPT-time triple-oracle indistinguishability co-
incide. Moreover, a priori PPT distinguishers are sufficient.
20 We never consider unbounded queries for statistical triple-oracle distinguishing, as

this trivially coincides with perfect indistinguishability.
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Proof (Proof sketch). It is clear that statistical indistinguishability implies com-
putational indistinguishability. The proof is quite simple, and based on standard
truncation arguments. For T ∈ CEPT there exists, by definition, some T̃ ∈ EPT

such that T and T̃ are computationally triple-oracle indistinguishable. Hence, for
any efficiently computable N = N(κ), we have |P(T > N)− P(T̃ > N)| ≤ negl.

To show that T and T̃ are statistically triple-oracle indistinguishable, we ar-
gue by contraposition and assume the statistical distance ∆(T, T̃ ) is at least
δ = 1

poly0
infinitely often. Note that P(T̃ > N) ≤ poly1

N , where E(T̃ ) ≤ poly1.
Thus, by truncating T , T̃ after, say N = 4poly0poly1, we know that T≤N and
T̃≤N are distributions with polynomial support in {0, . . . , N} and non-negligible
statistical distance δ

4 infinitely often. Since we have (repeated) sample access
to T , T̃ and the challenge runtime, we can approximate the probability dis-
tributions up to any 1

poly precision in polynomial time. Consequently, we can
construct a (computational) PPT distinguisher if T and T̃ are not statistically
PPT-query indistinguishable. A similar line of reasoning show that T and S are
computationally distinguishable if they are statistically far.

Lemma 6. Let T and S be runtimes induced by algorithms A, B, and suppose
T ∈ CEPT. Then triple-oracle and standard PPT-time indistinguishability co-
incide.

Proof (Proof sketch). As in Lemma 6, after suitable truncation we can assume
that T and S, and hence A and B, are actually PPT. By sampling T resp. S via
emulation of A resp. B (instead of oracle queries), and a hybrid argument (over
challenge queries) the claim follows.

We stress that to efficiently distinguish two induced runtimes, it is sufficient that
one of the two algorithms is efficient.21 Putting things together yields following
characterization of CEPT and CPPT:

Corollary 1 (Characterization of CEPT). Let T be a runtime. The fol-
lowing conditions are equivalent:

(0) T is in CEPT.
(1) T is PPT-time triple-oracle comp. indist. from some T̃ ∈ EPT.
(2) T is PPT-query triple-oracle stat. indist. from some T̃ ∈ EPT.
(3) T is virtually expected polynomial time. Explicitly: There is a negligible func-

tion negl, an event G with P(G) ≥ 1− negl, and a polynomial poly, such that
E(Tκ |G) ≤ poly(κ).

Furthermore, T ∈ CEPT satisfies the tail bound P(Tκ > N) ≤ poly(κ)
N + negl(κ)

for poly and negl as in (3). Consequently, CEPT is a closed runtime class.
For induced runtimes T = timeA(A), S = timeB(B), where T ∈ CEPT, and
21 If neither runtime is efficient, we are in a setting where the truncation argument

does not work. Indeed, strings can be encoded as numbers, hence runtimes. Thus,
this is indistinguishability of general distributions.
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S is arbitrary, triple-oracle indistinguishability and standard indistinguishability
coincide. The analogous characterization and properties hold for CPPT.

Proof (Proof sketch of Corollary 1). Equivalence of items (1) and (2) follows
from Lemma 5. Now, we show (2) implies (3). As in Lemma 5, we see that triple-
oracle indistinguishability implies statistical closeness. By assumption, there is
some T̃ ∈ EPT with ∆(T, T̃ ) ≤ ν negligible. Let S = T ν be the ν-quantile of T ,
note that S ≤ E(T̃ ), and let G be an event associated with the quantile, (which
exists, perhaps after extension of Ω) that is, S = T |Ω\G 7→timeout. Then we have
E(S) ≤ E(T̃ ) ≤ poly, and item (3) easily follows. The converse is trivial.

To see the tail bound, note that for T ∈ CEPT there is a “good” runtime
T̃ ∈ EPT with ∆(T, T̃ ) ≤ negl. Thus, the tail bound follows immediately from
Markov’s bound applied to T̃ and statistical distance of negl. Hence, CEPT
distinguishers are as powerful as PPT distinguishers. Thus, CEPT is closed

Finally, for induced runtimes, Lemma 6 demonstrates the equivalence of
triple-oracle and standard distinguishing.

Proof (Proof sketch of Corollary 1). Equivalence of items (1) and (2) follows
from Lemma 5. For (2) =⇒ (3) note that since T is statistically triple-oracle
indistinguishable from T̃ and T̃ ∈ EPT, we have that ∆(()T, T̃ ) = ν is negligible.
The converse is trivial.

To see the tail-bound, note that for T ∈ CEPT there is a “good” runtime
T̃ ∈ EPT with ∆(T, T̃ ) ≤ negl. Thus, the tail bound follows immediately from
Markov’s bound applied to T̃ and statistical distance of negl. Hence, CEPT
distinguishers are as powerful as PPT distinguisher. Thus CEPT is closed.

Lemma 6 shows the equivalence of triple-oracle and standard distinguishing.

Remark 3 (Non-uniformity). As noted in the introduction, non-uniform advice
can replace sampling access. For non-uniform distinguishers, triple-oracle and
standard indistinguishability coincide. This simplifies Corollary 1.

4 Application to zero-knowledge arguments

Our flavour of zero-knowledge follows Goldreich’s treatment of uniform complex-
ity [11], combined with Feige’s designated adversaries [9]. We only define efficient
proof systems for NP-languages.

Definition 9 (Interactive arguments). Let R be an NP-relation with corre-
sponding language L. An argument (system) for L consists of two interactive
algorithms (P,V) such that:

Efficiency: There is a polynomial poly so that for all (κ, x, w) the runtime
timeP+V(⟨P(x,w),V(x)⟩) is bounded by poly(κ, |x|).

Completeness: ∀(x,w) ∈ R : outV⟨P(x,w),V(x)⟩ = 1.
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Definition 9 essentially assumes “classic” PPT algorithms, but it will be ev-
ident that our techniques do not require this. We do not define soundness, but
note that it is easily handled via truncation to a PPT adversary. The terms
proof and argument systems are often used interchangeably (and we also do
this). Strictly speaking, proof systems require unconditional soundness and al-
low unbounded provers. Argument systems allow computational soundness and
require efficient provers. All our exemplary proof systems [16, 15, 24, 29, 20, 28]
have efficient provers, hence are also argument systems.

4.1 Zero-knowledge

Definition 10. Let T,S ∈ {PPT,CPPT,EPT,CEPT}. Let (P,V) be an ar-
gument system. A universal simulator Sim takes as input (code(V∗), x, aux)
and simulates V∗’s output. Let (I,V∗,D) be an adversary. We define the real
and ideal executions as

RealI,V∗(κ) := (state, outV∗⟨P(x,w),V∗(x, aux)⟩)
and IdealI,Sim(code(V∗))(κ) := (state,Sim(code(V∗), x, aux))

where (x,w, aux, state)← I and (x,w) ∈ R, else Real and Ideal return a failure
symbol, say ⊥. We omit the input code(V∗) to Sim, if it is clear from the context.
The advantage of (I,V∗,D) is

Advzk
I,V∗,D(κ) := |P(D(RealI,V∗(κ)) = 1)− P(D(IdealI,Sim(κ)) = 1)|.

An adversary (I,V∗,D) is T-time if timeI+P+V∗+D(D(RealI,V∗)) ∈ T.
The argument is (uniform) (auxiliary input) zero-knowledge against

T-time adversaries w.r.t. S-time Sim, if for any T-time adversary (I,V∗,D):

– timeI+Sim+D(D(IdealI,Sim)) ∈ S. The runtime of Sim includes whatever time
is spent to emulate V∗. In a (generalized) sense, Sim is weakly (T,S)-efficient
relative to P.

– Advzk
I,V∗,D(κ) is negligible

Some more remarks are in order.

Remark 4. In our setting, existential and universal simulation are equivalent.
The adversary Vuniv, which executes aux as its code, is universal.

Remark 5 (Reductions to PPT). By a standard reduction to PPT, we may
w.l.o.g. assume that D is a priori PPT. Perhaps surprisingly, this is false for I.
Intuitively, verifying the quality of the output of Sim requires only PPT D (and
I). Verifying the efficiency, however, does not. The cause is that I may generate
expected poly-size inputs.

Remark 6 (Efficiency of the simulation). Definition 10 only ensures that Sim is
weakly efficient relative to P, i.e. we have no tightness bounds. Relative efficiency
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with tightness bounds is an unconditional property, and hence not possible if zero-
knowledge holds only computationally.

In the definition, it is possible to replace timeI+Sim+D(D(IdealI,Sim)) ∈ S with
timeSim(D(IdealI,Sim)) ∈ S, since I is unaffected, and D is w.l.o.g. a priori PPT.
Remark 7 (“Environmental” distinguishing: Why I outputs state). In Defini-
tion 10, we allow I to output state, effectively making (I,D) into a stateful
distinguishing “environment”. Viewing Sim and P as oracles, this corresponds
to oracle indistinguishability. Without this, the security does not obviously help
when used as a subprotocol, since a protocol is effectively a (stateful) distinguish-
ing environment. Definition 10 is discussed in-depth in [21]. Here, we only note
that in the non-uniform classical PPT setting, it coincides with the standard
definition.
Remark 8. We seldom mention non-uniform zero-knowledge formulations in the
rest of this work. Our definitions, constructions and proofs make timed bb-rw use
of the adversary, and therefore apply in the non-uniform setting without change.

4.2 Application to graph 3-colouring
To exemplify the setting, the technical challenges, and our techniques, we use the
constant-round zero-knowledge proof of Goldreich and Kahan [15] as a worked
example. We only prove zero-knowledge, as completeness and soundness are un-
conditional. Formal definitions of commitment schemes are in the full version [21].
We assume left-or-right (LR) oracles in the hiding experiment for commitment
schemes. (Security against CEPT adversaries follows from security against PPT
adversaries by a simple truncation argument.)

The protocol. We recall G3CGK from Section 1.2. It requires two non-interactive
commitments schemes; Com(H) is perfectly hiding, Com(B) is perfectly binding.
The common input is G = (V,E) and the prover’s witness is a 3-colouring ψ.

(P0) P sends ckhide ← Gen(H)(κ). (ckbind ← Gen(B)(κ) is deterministic.)
(V0) V randomly picks challenge edges ei ← E for i = 1, . . . , N = κ · card(E),

commits to them as cei = Com(H)(ckhide, ei), and sends all {cei}i=1,...,N .
(P1) P picks randomized colourings ψi for all i = 1, . . . , N and commits to

all node colours for all graphs in (sets of) commitments {{cψi,j}j∈V }i=1,...,N

using Com(B). P sends all cψi,j to V.
(V1) V opens the commitments cei to ei for all i = 1, . . . , N .
(P2) P aborts if any opening is invalid or ei ̸∈ E for some i. Otherwise, for all

iterations i = 1, . . . , N , P opens the commitments cψi,a, cψi,b for the colours
of the nodes of edge ei = (a, b) in repetition i.

(V2) V aborts iff any opening is invalid, any edge not correctly coloured, or if
ckhide is bad. Otherwise, V accepts.
In [15], delaying the check of ckhide to the end of the protocol weakens the

requirements on VfyCK, as the verifier may learn setup randomness of ckhide at
that point. But this is irrelevant for zero-knowledge.
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Proof of zero-knowledge. Our goal is to show the following lemma.

Lemma 7. Suppose Com(H) and Com(B) are a priori PPT algorithms. Then
protocol G3CGK in Section 4.2 is zero-knowledge against CEPT adversaries
with a bb-rw CEPT simulator. Let (I,V∗) be a CEPT adversary and suppose
T := timeP+V∗(RealI,V∗) is (t, ε)-time. Then Sim handles (I,V∗) in virtually
expected time (t′, 2ε + ε′). Here ε′ stems from an advantage against the hiding
property of Com(B), hence ε′ negligible. If the time to compute a commitment
depends only on the message length, then t′ is roughly 2t.

Our proof differs from that in [15] on two accounts: First, we do not use the
runtime normalization procedure in [15]. This is because a negligible deviation
from EPT is absorbed into the CEPT virtuality, namely ε′. Second, we handle
designated CEPT adversaries. In particular, the runtime classes of simulator
and adversary coincide. We first prove the result for perfect EPT adversaries.

Lemma 8. The claims in Lemma 7 hold if T ∈ EPT, i.e. ε = 0.

Proof (Proof sketch). We proceed in game hops. The initial game being RealI,V∗

and the final game being IdealI,Sim. We consider (timed) bb-rw simulation.
Game G0 is the real protocol. The output is the verifier’s output and state

(from I). From now on, we ignore the state output, since no game hop affects it.
Game G1: If the verifier opens the commitments in (V1) correctly, the game

repeatedly rewinds it to (P1) using fresh prover randomness, until it obtains a
second run where V∗ unveils the commitments correctly (in (V1)). The output
is V∗’s output at the end of this second successful run. If the verifier failed in the
first run, the protocol proceeds as usual. The outputs of G1 and G0 are identically
distributed. It can be shown that this modification preserves (perfect) EPT of
the overall game, i.e. G1 is perfect EPT. More precisely, the (virtually) expected
time is about 2t (plus emulation overhead). To see this, use that each iteration
executes P’s code with fresh randomness. For the analysis, condition to fix the
randomness of everything but P; averaging over the randomness of I, V∗ (and
D), then extends the reasoning again. Since bb-rw-access fixes the randomness of
V∗ between rewinds, the probability that V∗ opens the commitment in step (V1)
is p in each (independent) try. Hence, the number of rewinds is distributed
geometrically, and 1 + p

∑∞
i=1 i · p(1 − p)i−1 = 2 is the expected number of

overall iterations (including the first try). Consequently, the expected runtime
doubles at most.22

Game G2: Test if both (valid) openings of V∗’s commitments in (P1) open to
the same value. Else, G2 outputs ambig, indicating equivocation of the commit-
ment. This modification hardly affects the runtime, so it is still bounded roughly
by 2t. The probability for ambig is negligible, since one can (trivially) reduce to
22 Formally arguing that the expected time is bounded by 2t is a bit more technical than

for strict time bounds. But it follows easily from the independence of the iterations
(due to fresh prover randomness), and the fact that t, in particular, upper bounds
the expected time per iteration.
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an adversary against the binding property of Com(B). That is, there is an adver-
sary B such that |P(D(out(G2) = 1))− P(D(out(G1) = 1))| = Advbind

Com(B)(B).
In Game G3, the initial commitments (in (P1)) to 3-colourings are replaced

with commitments to 0. These commitments are never opened. Thus, we can
reduce distinguishing Games 2 and 3 to breaking the hiding property of Com(B)

modelled as left-or-right indistinguishability. More precisely, the reduction con-
structs real resp. all-zero colourings, and uses the LR-challenge commitment
oracle Ob which receives two messages (m0,m1) and commits to mb. Use m0 to
commit to the real colouring (left), whereas m1 is the all-zero colouring (right).
The modification of G2 to “oracle committing” yields an EPT Game G2′ (in-
stantiated with O0). The modification of G3 to G3′ (with O1) is CEPT. This
follows immediately from the standard reduction, because Games G2′ and G3′

differ only in their oracle, and the case of O0 is EPT. More precisely, the
standard reduction applied to O0 and O1 yields an adversary B such that
|P(D(out(G2)) = 1) − P(D(out(G1)) = 1)| ≥ 1

4 Advhide
Com(B)(B) infinitely often,

assuming B has non-negligible advantage.
Consequently, Game G3′ is efficient with (oracle) runtime T3′

c
≈ T2′ , and the

output distributions of Games G2′ and G3′ are indistinguishable. Finally, note
that Game G3 and G3′ only differ by (not) using oracle calls. Incorporating these
oracles does not affect CEPT (as O1 is an a priori PPT oracle). Thus, G3

is efficient (i.e. CEPT) as well. Assuming the time to compute a commitment
depends only on the message length, a precise analysis shows, that the (virtually)
expected time is affected negligibly (up to machine model artefacts).

In Game G4, the commitments in the reiterations of (P1) are replaced by
commitments to pseudo-colourings for each ei, that is, at the challenge edge ei,
two random different colours are picked, and all other colours are set to 0. If V∗

equivocates, the game outputs ambig. The argument for efficiency and indistin-
guishability of outputs is analogous to the step from Game G2 to Game G3. It
reduces all replacements to the hiding property in a single step. This is possible
since our definition of hiding is left-or-right oracle indistinguishability with an
arbitrary number of challenge commitments. As before, a precise analysis shows
that the (virtually) expected time is affected negligibly.

All in all, if G0 runs in (virtually) expected time t, then G4 runs in expected
time about 2t, ignoring the overhead introduced by bb-rw emulation, etc. More-
over, the output is indistinguishable, i.e. |P(D(out(G4)) = 1)−P(D(out(G0))) =
1| ≤ negl.

The simulator is defined as in G4: It makes a first test-run with an all-zeroes
colouring. If the verifier does not open its challenge commitment in (V1), Sim
aborts (like the real prover in (P2)). Otherwise, it rewinds V∗ (and uses pseudo-
colourings) until V∗ opens the challenge commitment again, and outputs the
verifier’s final output of this run (or ambig). (To prevent non-halting executions,
we may abort after, e.g., 22κ steps. But this is not necessary for our results.)

We point out some important parts of the proof: First, in Game G1, rewinding
and its preservation of EPT is unconditional. That is, rewinding is separated
from the computational steps happening after it. Second, since the simulator’s
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time per iteration is roughly that of prover and verifier, the total simulation time
is CEPT (and roughly virtually expected 2t).

There is only one obstacle to extend our result to CEPT adversaries. It is
not obvious, whether the introduction of rewinding in G1 preserves CEPT. For-
tunately, this is quite simple to see: The probability that a certain commitment
is sent in (P1) increases, since the verifier is rewound and many commitments
may be tried. However, the probability only increases by a factor of 2. Thus,
“bad” queries are only twice as likely as before.

Proof (Proof sketch of Lemma 7). G0 to G1: Fix the first message ckhide of
P to bbrw(V∗) and the randomness of V∗ (which is fixed since we consider a
bb-rw oracle). Let pb(c) be the probability, that in protocol step (P1) Gb sends
c = {{cψi,j}j∈V }i=1,...,N to bbrw(V∗) at least once. (For G0, also at most once.
But rewinding in G1 increases the chances.) Let γi denote the i-th query sent
in step (P1) (or ⊥ if none was sent), let the random variable I denote the total
number of queries. Then

p1(c) = P(∃j ≤ i : γj = c ∧ I ≤ j) ≤
∞∑
i=1

P(I ≥ i ∧ γi = c)

=

∞∑
i=1

P(I ≥ i)P(γi = c | I ≥ i) ≤
∞∑
i=1

P(I ≥ i) · p0(c) = E(I) · p0(c).

In the penultimate equality, we use that, for any fixed i, γi is a fresh random
commitment (or never sampled, if I < i). As argued before, E(I) = 2, hence
p1(c) ≤ 2p0(c). Thus, the probability p1(c) for G1 to issue query c is at most twice
that of G0. By averaging over first messages c (according to prover randomness),
the derivation extends to our setting of interest, where c is chosen randomly by
P. Next, we conclude from this, that the virtuality at most doubles.

We argue similar to the “good set/runtime” from Corollary 1, but with inter-
active machines. That is, we define an oracle V′, which will be EPT, as follows:
Consider the “behavioural decision” tree for V∗ where the root has edges which
are labelled by a choice of random tape for V∗. The edges in lower layers are
labelled by messages which V∗ can receive. The nodes are labelled with the run-
time spent to answer the string of message on the path. We can now construct
a runtime cutoff at t as follows: Replace every node which is labelled with ℓ > t
by a timeout node. Let V′ be a oracle which acts according to this decision tree.
That is, V′ acts exactly like V∗, except if a timeout node is chosen. In that case
V′ outputs timeout and shuts down. Thus, V∗ and V′ are equal until timeout.
Suppose for simplicity, that there is a superpolynomial t, such that truncation
at t yields an EPT V′, i.e. timeV′(G0) is EPT.23

23 There are two small problems, which are dealt with in detail in the full version [21].
First, we argued using runtime cutoffs instead of quantile cutoffs (without justifica-
tion). Assuming there exists a unique t such that P(T ≤ t) = 1− ν, then the cutoff
at t is the ν-quantile. Otherwise, defining V′ is a bit more technical. The second
problem is that V′ is not an algorithm, it is a “timeful system”, i.e. a system which
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Denote by G′
0 the modification of G0 which uses V′ instead of V∗, and let G′

0

immediately output timeout if V′ does. Then timeV′(G′
0) is EPT by construction,

and essentially equals the virtual expected time of timeV∗(G0). The statistical
distance ∆(G0,G′

0) is exactly the probability that V′ outputs timeout. Let G′
1

be defined analogously to G′
0.

Let timeout(query) be 1 if query causes a timeout and 0 otherwise. Then

PG′
1
(timeout) =

∑
query

timeout(query) · p1(query)

≤ 2
∑

query
timeout(query) · p0(query) = 2 · PG′

0
(timeout).

Since the probability for timeout bounds the virtuality if we use V∗ instead of V′,
this shows that G1 is CEPT, with virtuality 2ε. If G0 always halts, the outputs
of G1 and G0 are identically distributed. In general, the statistical distance is (at
most) 2 · P(G0 = nohalt); this follows as for virtuality, which must encompass
the probability of non-halting executions. Conditioned on halting executions,
the distributions G0 and G1 are identical. The transition to G2 now relies on the
standard reduction, all other steps of Lemma 8 apply literally.

In the full version [21], we abstract the above proof strategy, by defining
rewinding strategies, reductions to “simple assumptions”, and benign simulators,
as sketched in the introduction.

Remark 9. With an analogous proof, one finds that the simulator in [15] is also
a CEPT simulator. Its advantage is, that it handles adversaries which are a
priori PPT, as well as EPT w.r.t. any reset attack [14], without introducing
any “virtuality”, i.e. the simulation is EPT. On the other hand, it increases
virtuality of CEPT adversaries by a larger factor.

5 Hybrid argument and sequential composition

We formally state the hybrid lemma, and sketch its application to composition
of zero-knowledge proofs.

5.1 Hybrid lemma

Definition 11 (Relative efficiency). Let A and B be two (interactive) al-
gorithms with identical interfaces. We say that B is weakly (T,S)-efficient
relative to A w.r.t. (implicit) runtime classes T, S, if for all distinguishing
environments E (which yield closed systems ⟨E,A⟩, ⟨E,B⟩) we have

timeE+A(⟨E,A⟩) ∈ T =⇒ timeE+A(⟨E,B⟩) ∈ S.

has an associated notion of runtime. One way around this is to note that we do not
need V′ to be an algorithm. It is merely a formalism to track the change of virtuality.
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In the following, we assume T = S = CEPT unless specified otherwise. Note
that, except for notation, Definition 11 considers oracle indistinguishability.

Example 4. Viewing the real (resp. simulated) interaction in Definition 10 as
oracles OP (resp. OSim), security implies that OP

c
≈ OSim and OSim is weakly

efficient relative to OP

Now, we define a natural generalization of distinguishing with repeated sam-
ples, but for general oracle indistinguishability.

Definition 12 (Repeated oracle access). Let O be an oracle. We denote by
rep(O) an oracle which offers repeated access to independent instances of O. We
denote by repq(O) an oracle which limits access to a total of q instances of O.

Note that rep(O) = rep∞(O). We can now state the hybrid argument.

Lemma 9 (Hybrid-Lemma for CEPT). Suppose O1 is weakly efficient
relative to O0 and suppose O0

c
≈ O1. Let D be an algorithm with oracle-

access to rep(Ob), and suppose that timeD+rep(O0)(D
rep(O0)) ∈ CEPT. Then

timeD+rep(O1)(D
rep(O1)) ∈ CEPT and the distinguishing advantage is

|P(Drep(O0) = 1)− P(Drep(O1) = 1)| ≤ negl.

That is, rep(O1) is weakly efficient relative to rep(O0), and rep(O0)
c
≈ rep(O1).

Due to limited pages, we refer to the introduction (Section 1.4) for a proof
sketch. A full proof is given in [21].

5.2 Sequential zero-knowledge

Definition 13 (Sequential zero-knowledge). Let (P,V) be a zero-knowl-
edge argument. Suppose Sim is a universal simulator. Modify Definition 10 as
follows: Replace I by EO which can repeatedly call its oracle O (either OP or
OSim). Define real and ideal executions and the advantage accordingly. For secu-
rity, require the analogue of the efficiency for Sim and negligible advantage.

Some remarks are in order. First, one V∗ is fixed for all calls to O, but one may
assume a universal V∗ anyway. Second, E can adaptively choose (x,w, aux) in
its call to O. Third, effectively, Definition 13 stipulates that rep(OSim) is weakly
efficient relative to rep(OP), and rep(OSim)

c
≈ rep(OP).

We are now ready to state and prove the sequential composition lemma.

Lemma 10 (Sequential composition lemma). Let (P,V) be an argument
system. Suppose Sim is a simulator for auxiliary input zero-knowledge (which
handles CEPT adversaries in CEPT). Then (P,V) is sequential zero-knowledge
(with the same simulator Sim).

The proof is an almost trivial consequence of the hybrid lemma.
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Proof. Let (E,V∗,D) be a CEPT adversary against sequential zero-knowledge.
Let OP(x,w, aux) and OSim(x,w, aux) be as in Definition 13. By definition,

RealE,V∗(κ) = outE⟨E, rep(OP)⟩ and IdealI,Sim(κ) = outE⟨E, rep(OSim)⟩

Define a distinguisher A for rep(OP) and rep(OSim) as D(outE⟨E, rep(O)⟩). Now,
we are in the usual setting of oracle (in)distinguishability. Since Sim is an auxil-
iary input zero-knowledge simulator for (P,V), we have that OSim is weakly effi-
cient relative to OP and that OP

c
≈ OSim. Thus, the hybrid lemma (Lemma 9) is

applicable. Hence rep(OP) is weakly relative efficient to rep(OSim) and rep(OP)
c
≈

rep(OSim). This concludes the proof.

Remark 10. In the real-ideal setting for secure function evaluation (SFE), our
definition of auxiliary input and sequential security are analogous to zero-knowl-
edge. The modular sequential composition theorem [5, 19] stipulates that if a
protocol π is secure in F-hybrid model (and uses F-calls sequentially), then it
πρ is secure, where F-calls are replaced by subprotocol calls to ρ, and ρ securely
realizes F. Even in our a posteriori setting, the proof is straightforward, since it
is basically an application of the hybrid lemma, similar to Lemma 10.
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