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Abstract

We address the 3D object detection task by capturing features directly on depth maps
with a 2D CNN. Most existing 3D object detection methods take point clouds as input,
even when each point cloud is converted from a single depth map. Although they have
achieved impressive performance, point cloud based 3D detectors usually have high com-
putational cost and complex structure, which limits their application on mobile devices
and in real-time scenarios. Building on the state-of-the-art VoteNet [29], we propose
2.5D-VoteNet, a powerful and efficient depth map based 3D detection pipeline. Since
our models extract features directly on depth maps, most computation remains in 2D
space and can be efficiently executed. Instead of using an off-the-shelf 2D CNN, we
introduce relative depth convolution (RDConv) to learn robust local features. Our end-
to-end pipeline achieves state-of-the-art results on the challenging SUN RGB-D [39]
benchmark and surpasses the baseline with a clear margin on ScanNet [8] frame-level
detection task. Meanwhile, our method reaches a significantly higher inference speed
than existing methods (69 FPS).

1 Introduction

Many methods have been proposed for 3D object detection on point cloud data. Roughly
speaking, they can be separated into projection-based methods [5, 6, 17, 19, 20, 35, 36, 49,
54] and point cloud based methods [3, 7, 11, 13, 16, 29, 33, 34, 40]. Projection-based meth-
ods project point clouds into bird eye view, front view or multiple views. By doing this, point
clouds are converted into images, so that mature 2D CNNs can be applied. However, they
are usually unsuitable for indoor scenarios because objects are more cluttered than outdoors.
Point cloud based methods use raw or quantized (voxelized) point clouds as input. In order
to aggregate local and global features from point clouds, they often hierarchically down-
sample the input and perform convolution-like operations. Since point clouds are sparse and
irregular, these operations are computationally expensive due to irregular memory access
and dynamic kernel overhead [25]. Although they have achieved promising performance,
point cloud based methods are unable to achieve high inference speed. The state-of-the-art
methods for indoor scenes have typically a frame rate of ∼10 FPS [3, 10, 29, 30, 44, 50]
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and cannot fulfil the requirement in some real-time applications. Moreover, the high com-
putational cost and special self-defined operators in point cloud based methods (e.g. Point-
Net++ [31], sparse 3D convolution in [11]) prohibit hardware implementations on a lot of
mobile or small devices (e.g. cell phones, small robots, drones), since they support solely
efficient processors with either less computational resources (e.g. ARM CPU, mobile GPU)
or limited operator support (e.g. neural ASIC, NPU).

Our work is motivated by the observation that, in many applications, especially in indoor
scenarios, a point cloud is converted from a single depth map. Given the camera calibration,
depth maps and point clouds are two different representations of exactly the same informa-
tion. Thus, it should be possible to perform 3D object detection directly on depth maps
instead of point clouds. In this work, we capture features on depth maps, while keeping
the detection head and post-processing in 3D space. Unlike existing 2D CNNs, which use
absolute depth as input, the backbone of our network is augmented with novel relative depth
convolution (RDConv), which learns local features from relative depth information. The RD-
Conv is motivated by the simple intuition that local geometries (e.g. edges, corners) depend
more on relative depth and are invariant to the absolute depth. Compared to the common con-
volution using absolute depth, RDConv extracts more informative features and improves the
detection result. Our pipeline shows higher inference speed and better hardware-friendliness
than point cloud based methods, while reaching competitive performance.

Our contributions in this work are as follows: (1) We introduce a simple and efficient
depth map based 3D detection pipeline. (2) We propose the novel approach of relative depth
convolution (RDConv), which is effective at capturing local information on depth maps.
(3) Our models achieve the state-of-the-art results on the challenging SUN RGB-D [39]
benchmark and are significantly faster than existing methods. (4) Our models outperform
the baseline VoteNet [29] in the ScanNet [8] frame-level detection task with a clear margin.

2 Related Works
3D Detection on Point Clouds. Bird eye view based methods [5, 6, 17, 19, 35, 36, 49, 54]
project LiDAR point clouds to the ground plane to generate pseudo-images and are widely
used for autonomous driving. However, they are unsuitable in cluttered indoor scenes. For
3D detection in indoor scenarios, [18] estimates object orientations via Manhattan Frame Es-
timation (MFE) and performs bounding box regression by feeding 3D coordinates histogram
to a multi-layer perceptron. Deep Sliding Shape [37] uses Truncated Signed Distance Func-
tion (TSDF) to encode depth maps and generates 3D proposal via dense 3D convolution.
Although these methods use RGB-D images as input, they don’t directly aggregate features
on 2D images. VoteNet [29] proposes an end-to-end pipeline for 3D detection in point cloud
and uses deep Hough voting to centralize the point features. Recent works [3, 30, 44, 45, 50]
further optimize VoteNet to improve the prediction quality. However, most variants don’t
take the inference speed into consideration. Based on sparse 3D convolution, GSDN [11]
proposes generative methods to compensate the sparsity of point clouds. But this approach
is only applicable on 3D scans.
RGB Fusion in 3D Detection. [18, 28, 48] generate 2D regions of interest (RoI) on RGB
images using a pre-trained 2D detector. Objects within each 2D RoI are then detected via
point cloud based networks. [13, 14, 38] enrich point features with high-level color features
from RGB images. ImVoteNet [30] uses a 2D detector to gain extra image votes. Due to the
late fusion strategy, the computational cost of these methods is inevitably high.
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2D CNN for Range Images and Depth Maps. Unlike the bird eye view based methods,
some works [5, 20, 27] project LiDAR point clouds to the front view. However, they directly
predict 3D bounding boxes on 2D feature maps and consequently lose precise 3D spatial
information. RangeRCNN [23] combines the LiDAR range image with point view and bird
eye view representation for 3D detection. However, the pipeline is still computationally ex-
pensive due to the complicate structure. Bewley et al. [2] propose range conditioned dilated
convolution for scale invariant 3D detection on range images, while our method addresses
the absolute depth invariance of local features. Besides the detection tasks, 2D CNNs and
RGB-D images have been widely utilized in semantic segmentation and salient object detec-
tion tasks. A lot of works focus on suitable structures for fusing features from two modal-
ities [4, 15, 21, 22, 26, 51, 52]. Some works [43, 46, 47] mimic the behavior of 3D CNNs
with 2D CNNs. However, our work shows that capturing geometrical features on depth maps
doesn’t necessarily mean to mimic 3D CNNs.

Point Cloud based 3D Detection
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Figure 1: Point cloud based and depth map based 3D detection pipelines. We take the image
sample from the SUN RGB-D dataset [39].

3 Depth Map based 3D Detection
In this section we first briefly revisit the pipeline of point cloud based 3D detection (Sec. 3.1).
Later, we introduce our depth map based pipeline (Sec. 3.2). Then, we introduce an impor-
tant ingredient of our method: relative depth convolution (RDConv) (Sec. 3.3).

3.1 Point Cloud based Pipeline
The common workflow of a point cloud based 3D object detection can be separated into four
components: the pre-processing, a 3D backbone, a detection head and the post-processing.
As illustrated in Fig. 1 , depth maps are converted into point clouds at pre-processing stage.
Usually, point clouds are further down-sampled or quantized to reduce the computational
cost. The backbone takes sparse point coordinates to conduct convolution-like operations
within local spherical neighborhood [29, 31], on sparse grids [7, 11] or within local regions
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defined by K-nearest-neighbors [3, 34]. The output of the backbone is a down-sampled sub-
set of the input point cloud with high level features attached to each point (also called feature
carriers or points of interest). The detection head then aggregates object-relevant information
and performs bounding box regression and semantic classification. In post-precessing stage,
non-maximum suppression (NMS) is applied to remove redundant predictions.

3.2 Depth Map based Pipeline

Our pipeline is shown in Fig. 1 . We use a U-shaped 2D CNN to encode the high-resolution
depth map into a low-resolution feature map. Thus, the feature aggregation takes place in
2D space rather than in 3D space. However, to fully utilize the spatial information, we keep
feature carriers, the detection head and the NMS in 3D space. To build feature carriers,
the input depth map is scaled to the same resolution as the feature map and lifted into 3D
space. Then, each feature vector in the feature map is registered to the corresponding 3D
point. Since feature carriers are in 3D space and can be processed as in the point cloud based
pipeline, we adopt the detection head (with the voting module) and the post-processing from
VoteNet [29]. Thus, we name our model 2.5D-VoteNet.

Compared to point cloud based methods, our depth map based pipeline brings multi-
ple advantages. First, the network is accelerated thanks to the efficiency of the 2D CNN.
Moreover, the low computational cost allows a deeper backbone and higher-resolution input,
which results in more informative features and better detection quality. Point cloud based
networks, however, have usually limited model depth and only accept down-sampled or vox-
elized point clouds to avoid excessive run-time and memory usage. Also, our simple design
simplifies the hardware implementation in real-world applications. Meanwhile, our pipeline
simplifies the fusion of geometrical and color information, since both the depth map and
color map have 2D grid structures and can be scaled to the same resolution. On the con-
trary, it’s nontrivial to incorporate RGB images into the point cloud based pipeline due to
different data properties (e.g. regularity vs. irregularity, high resolution vs. low resolution),
as discussed in [13, 14, 30]. Specifically, we gain a significant performance boost by adding
only one layer to accept RGB images. The fusion strategy is further explained in Sec. 4.

The main concern of the depth map based 3D detection is that the 2D backbone is un-
aware of the camera calibration. However, our experiments imply that our models learn
calibration invariance via data augmentation (see supplementary material). The limitation of
our method is that it cannot directly handle 3D scans, which are reconstructed from multiple
views of depth maps.

3.3 Relative Depth Convolution

In this work, we propose a novel convolution operation which depends on relative depth
rather than absolute depth. The intuition behind this design is trivial: local geometries (e.g.
edges and corners) rely more on relative depth than absolute depth. The observation implies
that absolute depth invariance might help a 2D CNN to capture more informative and robust
features on depth maps.

Following this intuition, the proposed relative depth convolution (RDConv) normalizes
the depth values in each sliding window with respect to a local reference depth. The new
operator negligibly increases the computational cost and can replace the first convolution
layer in a common 2D CNN without changing its overall structure. Let x∈Z2 be an arbitrary
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2D coordinate, d(x) : Z2 7→ R a depth map and y(x) : Z2 7→ Rn an n-dimensional feature
map. The RDConv is defined as follows:

y(x) = ∑
∆x∈Ω

(d(x+∆x)−Dr(x)) ·M(x+∆x) ·w(∆x) (1)

where ∆x ∈Z2 defines the offsets, Ω⊂Z2 the set of offsets and w(∆x) : Z2 7→ Rn learnable
weights of kernels. M(x) defines a binary mask with M(x) = 0 if d(x) = 0, and M(x) = 1 if
d(x) > 0. Dr(x) is the reference depth. In this work, we use the average depth within each
sliding window as reference, which is defined with:

Dr(x) =
∑∆x∈Ω M(x+∆x) ·d(x+∆x)

∑∆x∈Ω M(x+∆x)+ ε
(2)

Here ε is a small constant to avoid dividing by zero. The binary mask M(x) is necessary
since depth maps might contain bad pixels (e.g. dark pixels on the depth map in Fig. 1). It
means their depth values are not measurable or invalid. The depth of bad pixels is usually set
to zero by the pre-processing. The binary mask M(x) omits bad pixels for the convolution
kernel and for the relative depth calculation.
Discussions on masking. Since the depth values of bad pixels are zeroed by pre-processing,
normal 2D Conv as the first layer already benefits from the masking effect. The advantage
of RDConv comes therefore from the local depth normalization rather than the binary mask.
Unlike sparsity invariant convolution [41], we don’t apply binary masks in deeper layers.
First, [41] focuses on very sparse 2D data, while depth maps in indoor scenes have limited
sparsity. Also, the missing information at bad pixels can be recovered in deeper layers, as
pixels share information with neighbors during the forward propagation. We empirically
found that masking at deep layers brings no benefits to our pipeline.

4 Implementation Details
In this section, we introduce the detailed architecture and configuration of 2.5D-VoteNet.
Backbone and Fusion. We build up our backbone based on ResNet-34 [12]. As shown in
Fig. 2, we modify ResNet-34 by adding an RDConv layer parallel to the first Conv layer. We
don’t remove the first Conv layer, in order to preserve information in absolute depth. We add
the outputs of RDConv and common Conv for simplicity, as we empirically found adding
and concatenation generate similar results. However, experiments show that our network
also works without absolute depth. Unlike [12], we down-sample the feature map after the
first Conv layer with strided convolution instead of pooling. Also, we reduce the output
channels of the last Conv-Block in ResNet-34 from 512 to 256. We add skip connections
between down-sampling and up-sampling parts. The output of the backbone is a feature map
down-sampled by 8 and with 256 channels.

Until now, our network utilizes solely the geometrical information (depth map). For
RGB fusion, we add an extra 2D Conv layer to accept RGB images at the beginning of the
network. Then, the RGB features and the geometrical features are concatenated. We intend
to use this early fusion strategy for efficiency and simplicity. In the fused model, the channel
numbers of all 7×7 layers are reduced from 64 to 32, so that the first scale level has the same
output channel number as in the geometry-only model.
Feature Carriers. To build the feature carriers, the depth map is resized to the same res-
olution as the output feature map from the backbone. With camera calibrations, the scaled
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Conv2d, 3×3, s=2 

Residual Block

Upsample, s=2 

Conv2d, 7×7, s=2 

RDConv, 7×7, s=2 
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Figure 2: Architecture of our 2D backbone. Up-sample layers are followed by LeakyReLU
and batch normalization (BN). RDCov and other Conv layers are followed by ReLU and BN.
We use 2×2 transposed convolution to up-sample the feature maps.

depth map is lifted to the up-right coordinate system. We further sample 1024 points using
farthest point sampling.
Detection Head. We adopt the detection head, consisting of a voting module and a proposal
module, and the loss function from VoteNet [29]. The voting module predicts object cen-
ters and centralizes the point features. The proposal module clusters the point features and
generates bounding box proposals.
Loss functions. Following [29], our network is trained end-to-end with a multi-task loss,
defined as a weighted sum of a voting loss, an objectness loss, a 3D bounding box loss
and a semantic classification loss. Furthermore, the box loss is composed of center regres-
sion, heading and size classification and GIoU sub-losses. One difference to [29] is that we
omit the regression losses for heading angle residual and size residual and add a 3D-GIoU
loss [53]. We refer readers to [29] and [53] for more details.
Input and Data Augmentation. The input depth maps and RGB images are scaled to
416× 544. Zero padding is applied to keep the original aspect ratio. For data augmenta-
tion, we randomly resize the input by scaling the short edge by Uniform[320, 512]. Also, we
randomly flip images and rotate them around their principal points by Uniform[−15◦,15◦].
To improve the robustness against bad pixels, the depth values of 20% pixels are randomly
set to zero. Also, the intrinsic and extrinsic parameters are augmented accordingly, when
images are scaled, rotated and flipped.
Training on SUN RGB-D. The SUN RGB-D dataset [39] contains∼10K RGB-D images of
indoor scenes. We follow the official train/val split and use ∼5K scenes for training. We use
Adam optimizer and train models for 160 epochs with initial learning rate 0.001 and batch
size 16. The learning rate is decayed with factor 0.1 after 100 and 130 epochs, respectively.
Training on ScanNet. ScanNet [8] contains∼1500 reconstructed 3D scans of indoor scenes
with axis-aligned bounding box labels. In order to evaluate our models on ScanNet, we
build a frame-level detection dataset based on it. Specifically, we unpack the raw data of
ScanNet to gain ∼2M frames. We sample ∼100K RGB-D images for training and ∼10K
for validation. The train/val split follows previous works [13, 29]. We project the scan-level
bounding box labels to each camera coordinate system to gain the frame-level ground truth.
In addition to our own models, we train a VoteNet on the frame-level ScanNet dataset as
baseline. We train all models for 40 epochs and apply ×0.1 learning rate decay after 20 and
30 epochs. Other configurations follow the SUN RGB-D training.
Inference. At inference time, we perform axis-aligned 3D NMS (C++ implementation) as
post-processing. Following previous works, we validate our networks on the most common
object classes and calculate the mean average precision (mAP) with 25% 3D-IoU threshold.
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In this work, the inference speed (latency per frame) is measured on a PC with an Intel Core
i7-8700 CPU and an Nvidia RTX 2080Ti GPU using Pytorch.

5 Experiments

In this section, we first compare 2.5D-VoteNet with SOTA methods (Sec. 5.1). Then, we
show results of analysis studies and visualize qualitative results (Sec. 5.2). More experiments
and visualizations can be found in supplementary materials.

5.1 Comparison with State-of-the-Art Methods

The state-of-the-art methods can be separated into methods without extra data and with
extra data. The latter have components pretrained on other datasets (e.g. ImageNet [9],
COCO [24], ScanNet [8]), whereas the former are directly trained on the target dataset.
Results on SUN RGB-D. We compare the geometry-only and fused version of 2.5D-VoteNet
with SOTA methods on the SUN RGB-D benchmark. As shown in Tab. 1, both our mod-
els achieve competitive results and are significantly faster than previous methods. The
geometry-only and fused model reach 3.1% and 4.0% higher mAP than the baseline VoteNet
(57.7% mAP), respectively. Our fused model achieves the best results (61.7% mAP) among
methods without extra data. Moreover, we explore the pretraining on ScanNet frame-level
dataset. The pretraining further improves the mAP of our models by 1.2% and 2%, respec-
tively. Our fused model then reaches the best mAP (63.7%) among all methods.

It’s worth noting that several methods in comparison [3, 10, 30, 44, 45, 50] are optimized
variants of VoteNet [29]. They aim to improve the mAP rather than the speed. Our work,
however, significantly improves both aspects at the same time. As shown by the results, our
models achieve impressive trade-off between detection accuracy and speed.
Results on ScanNet. The detection results on ScanNet frame-level detection task are shown
in Tab. 2. We evaluate models with 18 object classes, following [13, 29]. Our geo-only and
fused model achieves 6.8% and 7.2% higher mAP that the baseline VoteNet, respectively.
The improvement on this dataset is more significant than on SUN RGB-D. We believe that
it’s because ScanNet frames are more challenging due to more partially visible objects and
more hard samples, e.g. sinks, doors and pictures (see Fig. 5).

5.2 Analysis Experiments

In this section, we show results of analysis experiments. We use mAP with 25% 3D-IoU
threshold on SUN RGB-D as metric of detection quality. We don’t pretrain models on Scan-
Net in following experiments.
RDConv vs. Conv. Tab. 4 shows that, with common Conv as the first layer, the depth map
based pipeline doesn’t generate good detection result (56.1% mAP). Also, we found the
training process unstable. It might be due to over-fitting, since common Conv takes absolute
depth as input and learns relative spatial relations indirectly. By simply replacing the first
layer with RDConv, the network gains a significant performance improvement (∼ 4%) and
the instability is also removed. The result proves that RDConv is the key component which
enables our depth map based detection to learn informative features. While the network with
one RDConv alone as the first layer already achieves competitive performance (60.4% mAP),
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Methods Input ED batht. bed booksh. chair desk dresser nightst. sofa table toilet Time mAP
DSS [38] P+I X 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 19.55s 42.1
PointFusion [48] P+I X 37.3 68.6 37.7 55.1 17.2 23.9 32.3 53.8 31.0 83.8 1.3s 45.4
F-PointNet [28] P+I X 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 0.12s 54.0
PointContrast [45] V X - - - - - - - - - - - 57.5
ImVoteNet [30] P+I X 75.9 87.6 41.3 76.7 28.7 41.4 69.9 70.7 51.1 90.5 - 63.4
*Ours (geo-only) D X 75.3 88.1 41.6 75.6 29.2 39.1 61.0 70.5 49.7 89.8 14.5ms 62.0
*Ours (fused) D+I X 76.4 87.1 50.5 75.0 31.2 41.4 64.4 70.7 49.7 90.3 14.5ms 63.7
COG [32] P+I x 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 10min 47.6
Density based [1] P x 79.4 88.2 32.1 17.0 37.4 53.7 50.0 65.3 53.3 95.8 1.24s 57.2
VoteNet [29] P x 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 0.1s 57.7
MLCVNet [44] P x 79.2 85.8 31.9 75.8 26.5 31.3 61.5 66.3 50.4 89.1 - 59.8
EPNet [14] P+I x 75.4 85.2 35.4 75.0 26.1 31.3 62.0 67.2 52.1 88.2 - 59.8
H3DNet [50] P x - - - - - - - - - - 0.15s 60.1
SPOT [10] P x - - - - - - - - - - - 60.4
HGNet [3] P x 78.0 84.5 35.7 75.2 34.3 37.6 61.7 65.7 51.6 91.1 0.1s 61.6
Ours (geo-only) D x 77.5 86.8 36.5 75.3 27.0 37.5 64.0 66.8 48.7 87.8 14.5ms 60.8
Ours (fused) D+I x 71.8 85.3 44.8 76.2 27.0 33.4 68.3 70.0 51.8 88.6 14.5ms 61.7

Table 1: Quantitative detection results on validation set of SUN RGB-D with v1 annotation.
The metric is mean average precision (mAP) with 25% 3D-IoU threshold over the 10 most
common object classes. The upper half of the table shows results of methods with extra data
and the lower half the methods without extra data. Our models marked with * are pretrained
on ScanNet frame-level dataset. Some values are absent because they are not reported in the
original publications. Bold: the best result. ED: extra data. P: raw point clouds. I: color
images. V: voxels. D: depth maps.

Methods mAP(%)
VoteNet 44.0
Ours (geo) 50.8
Ours (fused) 51.2

Table 2: Detection re-
sults on ScanNet frame-
level detection task.

Methods Time per Frame (ms) Size (MB)
Backbone Head NMS Total

VoteNet [29] - - - 100 11.7
VoteNet 59.1 6.6 0.3 66.0 11.7
Ours (geo) 7.7 6.6 0.3 14.5 67.4
Ours (fused) 7.7 6.6 0.3 14.5 67.4

Table 3: Speed and model size of our models and the baseline.
Pre-processing is excluded since it runs in parallel on the CPU.

combining the absolute depth and using RGB fusion brings further improvement (0.4% and
0.9%), respectively.
3D GIoU-Loss. As discussed in [53], object detection benefits from IoU-Loss since it unifies
the optimization target and the evaluation metric. To clarify the influence of 3D-GIoU loss,
we remove it and train 2.5D-VoteNet with the same loss function as [29]. As shown in Tab. 4,
by using 3D-GIoU loss our geometry-only network gains 1.8% improvement, whereas the
fused version gains 1.1%. However, even without the advanced loss function, our networks
outperform the baseline VoteNet and reach comparable results with SOTA methods.
Fusion with RGB Images. We test different fusion strategies, including directly concate-
nating normalized depth maps to RGB images as the forth channel, early fusion with an
extra Conv layer to accept RGB values (see Fig. 2) and late fusion with two backbones.
By the late fusion, the RGB backbone is based on a pre-trained ResNet-34 and has similar
up-sampling layers as in Fig. 2. With such two-stream structure, the network learns geomet-
rical and color features with respective backbones. Learned features are then concatenated
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First Layers Input w/o GIoU w/ GIoU
Conv D 55.0 56.1
RDConv D 58.7 60.4
Conv + RDConv D 59.0 60.8
Conv + RDConv D+I 60.6 61.7

Table 4: Impact of first layers and GIoU-
Loss on the detection results on SUN RGB-
D. First layers mean layers which directly
use RGB images or depth maps as input. D:
depth maps. I: RGB images.

Fusion First Layers mAP (%)
Geo-only RDConv + Conv 60.8
RGB-only Conv 53.3
Naive Concat. Conv 59.9
Early Fusion RDConv + Conv 61.7
Late Fusion RDConv + Conv 54.5

Table 5: Detection results with different fu-
sion strategies on SUN RGB-D. Early Fu-
sion is our proposed strategy.

to build feature carriers. To balance the learning rate in different modalities, we use multi-
tower training [42] for late fusion, following [30]. Also, we show results with each modality
alone. As shown in Tab. 5, the simple and efficient early fusion strategy brings the best result
(61.7% mAP). Also, the geometry-only model brings better results than naive concatenation
(60.8% vs. 59.9% mAP), which proves the effectiveness of RDConv. Interestingly, the late
fusion doesn’t generate good results (54.5% mAP). It’s probably due to over-fitting, as the
two-stream structure requires more data to train.
Reference Depth. RDConv uses the masked mean average depth in each sliding window
as reference. Here, we further test the mean and max value of each sliding window as
reference. Moreover, depth maps in real-world may contain more noise than SUN RGB-D
dataset [39]. To validate the robustness of our networks, we add extra bad pixels in this
experiment. Fig. 3 shows that the three choices deliver similar results when no extra bad
pixels are added. However, the mean value brings slightly better result than the max value
and center value, when depth maps have more bad pixels. We believe that our models are
less sensitive to noise in data, if mean value is used as reference depth in RDConv.
Kernel Size. We use 7×7 kernel for RDConv layer. To clarify the impact of the kernel size,
we train models with kernel sizes of 3×3, 5×5, 7×7 and 9×9, respectively. We don’t use
absolute depth in this experiment, in order to emphasize the contribution of RDConv. As
shown in Fig. 4, the 3×3 kernel generate 59.9% mAP on SUN RGB-D dataset. The value
increases to 60.0% and 60.4% with 5×5 and 7×7 kernel, respectively. Larger kernel (9×9)
doesn’t bring more improvement.
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Figure 3: Performance of different reference depths on
SUN RGB-D dataset. Absolute depth is not used, in
order to emphasize the contribution of RDConv.
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Figure 4: Performance of RD-
Conv with different kernel sizes
on SUN RGB-D.

Model Size and Speed. For fair comparison, we adopt the open source code of VoteNet and
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Cabinet ChairTableDoor PictureSink

TableSofa ChairBookshelf

VoteNetGround Truth OursImage

Image ImageOurs Ours

Counter

Figure 5: Qualitative results. Upper: comparison of 2.5D-VoteNet and VoteNet [29] on SUN
RGB-D dataset [39]. Lower: our detection results on ScanNet [8] frames. Note that SUN
RGB-D v1 annotation contains noisy and misaligned labels. All models use solely geometry
information. Better viewed with color.

measure the model speed with the same setup in Sec. 4. Due to different hardware and setup,
the run-time is shorter than in the publication. As shown in Tab. 3, our models are 4.5 times
faster than the baseline, thanks to the efficient 2D backbone. Note the speed of our geo-only
and fused models are the same, since the difference is too small to be measured. Also, the
fused version has one more Conv layer than the geo-only model and the layer has only ∼5K
parameters. To validate our pipeline on mobile devices, we implement 2.5D-VoteNet on an
Nvidia Jetson Xavier NX. The Pytorch model runs with 148ms per frame (∼7 FPS).
Qualitative Results. As qualitative results, the detected boxes from 2.5D-VoteNet (geo-only
version for fair comparison) and VoteNet are illustrated in Fig. 5.

6 Conclusion
In this work we have introduced 2.5D-VoteNet: a simple, powerful and efficient method
for real-time 3D object detection. Our models reach state-of-the-art performance and show
significant speed improvement over previous point cloud based methods. Our depth map
based pipeline is promising, as it allows the application of 2D structures and technique in 3D
detection tasks. Due to the lack of annotated data, 3D detectors are usually hard to train and
suffer over-fitting. In future work we intend to exploit the self-supervised pretraining for our
backbone.
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